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ABSTRACT 

 

 

XUN LI Developing and validating joint dynamic ambulance location and flexible 

dispatching strategies: a simulation-optimization approach (Under the direction of DR. 

CEM SAYDAM) 

 

Emergency Medical Services (EMS) system’s mission is to provide timely and 

effective treatment to anyone in need of urgent medical care throughout their jurisdiction. 

The main goal of most EMS deployment is to reduce mortality, disability, pain and 

suffering.  There are several metrics for level of EMS service, and among them, response 

time (RT) and call coverage rate are the most popular ones used by EMS providers and 

researchers. Ability to provide timely response is affected by fleet size and the locations 

of the ambulances. Hence, literature on ambulance location has been dominated by 

models which generally maximize or guarantee coverage, minimize mean response time, 

and alike. Essentially all models, including highly sophisticated queuing embedded 

optimization models, rely on several simplifying assumptions in order to make them 

tractable. These include the vehicle busy probabilities calculated a priori, dispatching the 

nearest ambulance to all incidents, a zone (call demand) being covered (can be reached) 

if it is within the distance/time threshold as a binary exogenous variable, static unit 

dispatch, and so on. The default dispatch policy is to send the nearest ambulance to all 

medical emergencies and it is widely accepted by many EMS providers. However, 

sending nearest ambulance is not always optimal, often imposes heavy workloads on 

ambulance crews posted in high demand zones while reducing available coverage or 

requiring ambulance relocations to ensure high demand zones are covered adequately. 

 In this study we propose a simulation embedded optimization approach for 

relocating ambulances and determining flexible dispatch policies that balance ambulance 
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crew workloads while meeting fast response times for life-threatening calls. A realistic 

simulation model allows us to remove most of the simplifying assumptions which are 

required in analytical approaches such as integer programming models as well as queuing 

theory based models. We show that this approach provides a much richer output that can 

be used by EMS managers to estimate lives saved for multiple life threatening situations 

while providing a detailed statistics on important performance measures such as actual 

ambulance workloads and response times. We validate our approach with an advanced 

coverage optimization model using real-life data. We present computational statistics and 

demonstrate the efficacy of a tiered dispatch policy using real-world data.  
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CHAPTER 1: INTRODUCTION 

1.1. Problem Domain 

Emergency Medical Services (EMS) system’s mission is to provide timely and 

effective treatment to anyone in need of urgent medical care throughout their jurisdiction. 

The main goal of most EMS deployment is to reduce mortality, disability, pain and 

suffering.  A typical process of providing emergency medical service begins when an 

emergency call is received by the emergency dispatch call center, the emergency medical 

dispatcher assesses the call by asking few questions and determines its urgency, and 

determines which EMS vehicle to dispatch according to the priority of the call. High 

priority calls are of great interest to the EMS provider, among which most are life 

threating. Usually the closest available vehicle is sent to the accident scene as quickly as 

possible [1, 2]. When the vehicle reaches the scene, some form of on-scene treatment is 

provided to the patient. Sometimes, a second vehicle with higher skilled officers may also 

be dispatched to ensure the correct level of care is provided at the scene for high priority 

calls. If the treatment on the scene is not satisfactory, then the patient is transported to a 

nearest hospital in order to receive further care. Otherwise, the vehicle becomes free at 

the scene and typically returns to its designated home base or a temporary post to await 

its next call [3-5].   

Healthcare is an area of growing importance as well as cost in most countries and 

EMS is a crucial component of modern healthcare system. As a result EMS is an 

important research domain that has received a great deal of attention in the operations 
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research (OR) community [4]. The design and operation of EMS has been a vibrant area 

for operation research professionals since mid-1960’s [6]. Generally, most body of 

literature in EMS researches field concentrate on two objectives: reducing cost of 

operation and increasing the level of EMS service. EMS is often operated by city or local 

government with a limited budget [7, 8]. The maintenance cost of ambulances and the 

personnel costs make up majority the operating costs of EMS. Consequently, the number 

of ambulances is often used as a surrogate unit for cost.   

1.2. EMS Performance Metrics 

There are several metrics for level of EMS service, and among them, response 

time and call coverage rate are the most popular ones used by EMS providers and 

researchers [4, 6, 9]. Response time (RT) is often defined as the elapsed time between the 

call being received at the dispatch center and an ambulance arriving at the incident scene. 

Quickly arriving at the incident scene does reduce suffering while satisfying the public’s 

perception that shorter RT always save lives. RTs are how EMS providers compete for 

contracts, and it’s how EMS leadership proves to the community that they meet or exceed 

the contractually agreed performance goals [10].  Historically, RT has been perceived as 

a critically important factor and has been widely used as one of the most important 

criteria for evaluating and designing EMS.  In 1979, Eisenberg and colleagues reported 

that survival from witnessed prehospital cardiac arrest of a medical origin in adults was 

maximized if the time from collapse to cardiopulmonary resuscitation and the time from 

collapse to definitive care were 4 and 8 minutes respectively [11]. Some follow up 

research also showed that sudden cardiac arrests require RT less than five minutes to be 

effective [12, 13] and that when RT is reduced  from 14 minutes to 5 minutes the survival 
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rate for cardiac arrests could almost be doubled [12]. One study indicates that for every 

30 minutes of delay in receiving percutaneous coronary intervention (PCI), the 

myocardial infarction with ST elevation patient’s one-year mortality increases by 7.5% 

[14].  

Coverage is another critical aspect researchers must consider as well as EMS 

administrators or managers. A demand call is said to be covered if it can be reached 

within a certain pre-specified response time threshold (RTT) by at least one ambulance. 

Often researchers implement a given RTT as a distance threshold in their models. In most 

optimization models demand locations within the distance threshold of an ambulance are 

assumed to be covered and any demand location further away is not covered [4]. A call 

that cannot be reached by a vehicle within the RTT is said to be a lost call.  The 

percentage of calls with response times less than RTT is referred as coverage [4]. The 

performance targets for response times vary by the location (metropolitan or rural area) 

of the call and the priority of the call. Metropolitan calls that are designated as life 

threatening (high priority) typically requires the shortest target response time, while low 

priority rural calls have longer RTT [5]. Although there is no universally accepted 

response time standard in the U.S. the most common EMS (ambulance) response time 

standard is based on National Fire Protection Association (NFPA) 1720  which is 8 

minutes 59 seconds (inclusive of the 60 seconds of call handling time) for 90 percent of 

life threating calls [15].  

1.3. Response Time and Patient Outcomes 

Recently, the clinical effectiveness of using RT as a universal rule has been 

questioned. It makes intuitive sense that fast ambulance RTs should influence patient 



4 

 

outcome, however, apart from cardiac arrest [13, 16], no evidence found in literature 

suggests a direct relationship between prehospital RTs and patient outcomes. In fact, 

there is growing evidence that, apart from out of hospital cardiac arrest, penetrating 

trauma (e.g., critical gunshot wound) kinds of medical emergencies, fast response times 

are not associated with improved patient outcomes [12]. In trauma cases the RT can be 

longer than five or eight minutes as long as the patient is transferred to a trauma center 

under one hour which is known as the “golden hour” or “golden time” [17].   

Blackwell et al. [18] tested the hypothesis that patient outcomes do not differ 

substantially by a case-control retrospective study.  The study patients which are cases 

defined as Priority 1 transports with RTs exceeding 10:59 minutes were compared with 

controls with RTs of 10:59 minutes or less. Their results indicated that the two groups do 

not have a statistically significant difference in neither the mortality nor the frequency of 

critical procedural interventions. Another retrospective study set in an EMS system that 

responds to calls for a population of approximately 1 million by Blanchard et al. [19] 

compared the risk of mortality in patients (all types) who received a response time greater 

or equal to 8 minutes with that of those who did not. This study suggested that RTs of 

≥ 8 minutes were not associated with a decrease of survival to hospital discharge. Weiss 

et al. [20] conducted a study in specific traumatic and medical emergencies and found no 

evidence that increasing RT is associated with worse patients outcome. Though RTs 

represent an important performance indicator, but taken alone, it does not completely 

predict outcome of disease severity or mortality 

The ultimate goal of an EMS is to maximize the number of patients that survive. 

Hence patient survival is regarded as the real performance measure of EMS systems [21].  
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As mentioned above in practice RTT is often used to evaluate EMS as opposed to patient 

survival for the following reasons [9]:  First, estimating patient survival is difficult since 

it is assessed at the hospital and a patient may be discharged several days after delivery to 

the emergency department. Second, patient survival information is not readily available 

due to medical privacy regulations. On the other hand, RT statistics are easy to obtain and 

evaluate. However, without including survival rate, the coverage concept based on RTT 

has an important limitation due to its black-and-white nature [21]. Locating ambulances 

according to RTT may result in arbitrarily bad patient survival rates. As a result of 

increasing questions about the effectiveness of RTs, a few researchers began 

incorporating patient survivability in their objectives. Erkut et al. [21] illustrate the 

importance of explicitly linking ambulance location to patient survivability and modeled 

a survival function as a monotonically decreasing function of the response time that 

returns the probability of survival for the patient. They proposed a new model, Maximal 

Survival Location Problem (MSLP) by incorporating explicitly this survival function into 

existing covering models. Unlike previous covering models whose objective is to 

maximize total covered demand based on RTT, MSLP aims to maximize the expected 

number of survival patients. MSLP is able to examine consequences of different response 

time overcoming the weakness of hard RTT.  Knight et al. [22] developed the Maximal 

Expected Survival Location Model for heterogeneous Patients (MESLMHP) extending 

Erkut et al.’s work. MESLMHP used a novel approach and made two significant 

advancements. Firstly, MESLMHP incorporates survival functions for capturing 

multiple-classes of heterogeneous patients rather than a single patient class in MSLP thus 

enabling more realistic analysis for various outcome measures. Secondly, the objective of 
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MESLMHP is to maximize the overall expected patient survival probability, where the 

survival probability of each patient type is summed up according to its weight.  

1.4. Dispatch Policy       

EMS vehicle dispatch policy is the protocol of sending vehicles to the incident 

scenes according to the priority of the calls.  Emergency medical 9-1-1 calls are typically 

classified as Priority 1, 2, 3, where Priority 1 calls are life threatening emergencies, 

Priority 2 calls are emergencies that may be life-threatening, and Priority 3 calls do not 

appear to be life-threatening emergencies [9]. 2010 JEMS Survey [8] showed that 82.7% 

of the top 200 cities reported having a protocol-driven dispatch process and 68.1% 

indicated they objectively triage every call. The default dispatch policy is to send the 

nearest ambulance to all medical emergencies and it is widely accepted by many EMS 

providers. However, sending nearest ambulance is not always optimal and sometimes can 

be problematic. For instance fast response with lights and sirens can potentially place 

EMS providers, patients and in nearby public at risk [23, 24]. Carter et al. [25] showed 

the common rule of sending the closest ambulance is not always optimal by using a 

simple case where two units, A and B, have equally large areas of responsibility, but A’s 

area has a significantly higher call frequency.  In this case, allowing B to respond to some 

of the calls for which A is the closest unit will reduce the mean response time. Persse et 

al. [26] analyzed data from Houston and showed that prioritized dispatch policy where 

advanced life support (ALS) resources are dispatched to priority 1 calls significantly 

improves survival rates.  

Since sending ambulances to all 9-1-1 calls reduces available coverage by taking 

valuable response resources out of place which jeopardizes another possible more critical 
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request [8] a well-designed dispatch policy is necessary for an effective and efficient 

EMS system. Andersson and Varbrand [2] described the development of decision support 

tools for dynamic ambulance relocation and automatic ambulance dispatching. They 

calculated preparedness in a way as a trigger for their automatic relocation module. Once 

the level of preparedness has dropped below a certain threshold value, relocation of one 

or more ambulances is executed to raise the preparedness value. Bandara et al. [27] 

evaluated the performance of dispatching rules in terms of patients’ survival probability 

to determine optimal dispatching strategies for EMS systems. A priority list based on the 

location and degree of urgency of the call is included in their model. They found that the 

optimal dispatching rules are different for different types of calls. Sending the closest 

ambulance is optimal for priority 1 calls while sending ambulance by following an 

ordered preference list is optimal for priority 2 calls. Toro-Díaz et al. [1] developed a 

joint model combining location and dispatching decisions simultaneously. Their results 

show that the commonly used closet dispatching rule leads to the best solutions when the 

objective is minimizing the mean response time and maximizing coverage 

simultaneously.    

The underlying argument of sending the nearest ambulance to incidents is that 

shorter the response time and the better patient outcomes. As discussed earlier some high-

acuity calls require a timely response such as cardiac arrest, shock and myocardial 

infarction but to treat every EMS call as though it’s a cardiac arrest puts EMS providers 

and the public in danger because many other conditions are not time sensitive [10].  

Emergency calls have different priorities and not every emergency call is life threatening. 

Even for life-threatening calls (priority 1) except for cardiac arrest which makes only 
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small part of all events, there is no direct association between shorter RTs and increasing 

survival of patients at hospital discharge. Based on the weakness and potential problems 

of always sending the nearest ambulance discussed above we believe it is necessary to 

compare alternative dispatch policies with the default dispatch policy.  

1.5 Study Motivation and Expected Contributions  

This proposal has the following objectives. Our primary objective is to develop a 

realistic model to locate and dispatch ambulances by taking into account call priorities 

while meeting fast response times for life-threatening calls.  Our second objective is to 

develop and test the efficacy of alternative dispatch policies with that of the closest 

ambulance dispatch policy. To achieve these objectives, we propose a simulation-

optimization approach which removes the need for majority of the simplifying 

assumptions needed for mathematical modeling approaches. With the simulation model 

we implement alternate dispatch policies such as dispatching the nearest ambulance to 

priority 1 calls while for all other calls, we consider dispatch policies such as “dispatch 

the ambulance which has the least utilization”, and others. Further, a high fidelity 

simulation model allows us to track various performance measures and produce a 

continuous graph depicting the cumulative density function of the realized coverage. This 

graph will enable the decision makers to easily assess the predicted survival rates for 

multiple classes of high acuity medical emergencies.  

As mentioned before MSLP is a relatively new research direction and is shown to 

be superior to more traditional approaches by Knight et al. [22]. This research will further 

contribute to this novel research direction. Our approach is based on the works of McLay 

and Mayorga [9], Knight et al. [22] and closely follows the principles outlined in 
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Mason’s simulation optimization approach [28]. We expect to show that using the 

maximal expected coverage location model to generate the initial vehicle locations 

followed by a high fidelity simulation model embedded optimization algorithm results in 

improved response and total service times for various critical emergencies. To the best of 

our knowledge, our high fidelity simulation model which includes real-life operational 

details such as dispatching ambulances when they become available regardless of their 

current locations (e.g., at the incident scene, at an hospital, etc.), patient transports to area 

hospitals and travel times based on real-data, has not been developed and used in a 

simulation-optimization framework. Another important contribution is the application of 

a weighted objective function which includes cardiac arrest survival function, tiered 

response times based on call priorities, and other metrics to be determined via 

experiments. Furthermore, with our approach we are able to test the efficacy of flexible 

dispatch policies on coverage statistics and ambulance crew workloads which has not 

been done previously.  

In summary, with our simulation-optimization methodology reflects significantly 

more details of real EMS operations. Hence the results are expected to be more useful 

and practical for EMS administrators and managers.   

1.6 Study Outline 

In Chapter 2 we review relevant EMS ambulance location maximization and 

dispatch policy literature and in Chapter 3 we clean and conduct a thorough analysis of a 

historical EMS dataset to prepare the ground for development of our simulation model. In 

Chapter 4 we present the development of our simulation model based on our data analysis 

and previous literature. In Chapter 5 we describe the heuristic search algorithms 
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implemented for our simulation-optimization approach and fine tune them via an 

experimental design. In Chapter 6 we apply our approach to Charlotte, and finally in 

Chapter 7 we summarize our results, discuss the limitations of this study and suggest 

directions for future research.



 

 

CHAPTER 2:  LITERATURE REVIEW 

2.1 A Complex and Important Research Domain 

Locating ambulances and vehicle dispatching policies are the key parts of EMS 

planning and management because they determine the performance of providing 

emergency medical service, which ultimately influences patient’s life intimately.  EMS 

vehicle locating, dispatching, and relocating are a very complex research topic due to the 

high variability of the call volume, location and severity of EMS, making it difficult to 

decide where to position ambulances and their crews while they wait for their next call 

[4].  The complexity and the importance of EMS has attracted a great amount of research 

interests which makes it one of the richest and most diverse areas in OR literature. 

Brotcorne et al. [29], Goldberg [6], Farahani et al. [30], and Li et al. [31] provide 

excellent reviews of the research developments in this domain. These location and 

relocation models span from early static, deterministic models to recent probabilistic and 

dynamic models. For the purpose of this study, we briefly review milestone models and 

those models relevant to our research and important optimization techniques used to 

solve those models.  

2.2 Development of Classical Models and Extensions 

The early models proposed were generally deterministic and static. Typically 

these pioneer models pursued the optimal solutions by using integer linear programming 

formulations. Set Covering Location Problem (SCLP) introduced by Toregas, Swain, 

ReVelle and Bergman [32] is widely known as the first EMS location covering model. 
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The SCLP minimizes the total number of ambulances needed to cover all demand points. 

The SCLP is a mandatory coverage model which assumes there are enough resources to 

acquire the servers needed to cover all demand points. The next important development 

was the Maximum Coverage Location Problem (MCLP) proposed by Church and 

ReVelle [33]. The MCLP use an alternative approach and overcomes some of the 

shortcomings of SCLP.  Instead of minimizing the number of facilities needed to cover 

the entire population as in SCLP, MCLP maximizes demand coverage of the population 

constrained by the capability of EMS, represented by the ambulance fleet size. The SCLP 

and MCLP did not take into account that once an ambulance is called for service it might 

not be available to cover the next incoming call. This issue is quite common in congested 

systems.  Hogan and ReVelle [34] introduced the concept of backup coverage which  

addressed the congestion problem in single coverage models by providing extra coverage.  

Gendreau et al. [35] proposed the Double Standard Model (DSM) and designed a tabu 

search heuristic for its solution.  The DSM requires that all the population must be 

covered within a longer distance and a propotion of the demand must also be covered 

within a shorter distance standard. One of the first models explicitly addressing the 

unavailability probability of ambulances is the Maximum expected covering Location 

Problem (MEXCLP) suggested by Daskin [36] which maximizes the expected overage of 

demand while taking into account the possibility of ambulances being unavailable. In 

MEXCLP, the congestion is modeled by assuming that all servers (ambulances) operate 

independently and have the same busy probability 𝑝, computed a priori. Daskin showed 

that the coverage probability of a demand point can be modeled as 1 − 𝑝𝑚 where m is the 

number of ambulances located with the RTT. Similarly ReVelle and Hogan [37] 
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addressed the congestion effect in the Maximum Availability Location Problem (MALP) 

by explicitly considering ambulance busy probabilities and developing an expression for 

coverage reliability. The MALP I assumes all ambulances are equally busy while MALP 

II divides the region into sectors and computes busy fraction for each sector. These are 

some of the early probabilistic models for ambulance location problem and they are 

followed by many extensions. The adjusted MEXCLP model (AMEXCLP) proposed by 

Batta et al. [38] extended MEXCLP by relaxing three of MEXCLP’s assumptions and 

utilizing the hypercube queuing model in its solution procedure.  The AMEXCLP takes 

into account that ambulances do not operate independently and utilized the  correction 

factor derived by Larson [39]. An extension of MEXCLP called TIMEXCLP, developed 

by Repede and Bernardo [40] explicitly considered variations in demand throughout the 

day. Another extension of MEXCLP proposed by Goldberg et al. [41] considered the 

stochastic travel times and the unequal vehicle utilizations.  Marianov and ReVelle [42] 

proposed the queuing probabilistic location set covering problem (QPLSCP). In 

QPLSCP, busy fractions are site specific and where the minimum number of ambulances 

necessary to cover a demand point is computed under the condition that the probability of 

all of them being simultaneously busy does not exceed a given threshold.   

2.3 Dynamic Redeployment Models 

Dynamic redeployment models are more recent and more sophisticated in nature. 

Dynamic models deal with the real-time planning and management of EMS.  It is well 

documented that demand for ambulances fluctuates spatially and temporally by day-of-

the-week and time-of-the-day [43]. Dynamic redeployment models can aid managers 

make daily or even hourly plans to better respond to predictable demand fluctuations by 
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time and space [44]. The basic idea of dynamic methods is to relocate emergency 

vehicles periodically in a strategic way to protect more areas with updated new 

information such as current status of ambulances and demand forecasts. The ideal way is 

that whenever there are idle EMS facilities located in low demand areas to move some of 

them to higher demand areas. Compared with static models, dynamic models are more 

flexible [31] and hence more challenging to solve requiring more powerful solution 

techniques [29].  Dynamic models are relatively rare in the ambulance location literature. 

The models currently found in the literature can be categorized into two categories: (1) 

Real-time, where ambulance redeployment decisions are computed with every call and 

(2) Planned Multi-period, where an ambulance redeployment plan considers an entire day 

or week based on demand forecasts [29, 43].  

2.4 Real-time Redeployment Models  

Real-time redeployment models typically relocate ambulances every time one is 

dispatched or becomes available for dispatch. The work by Gendreau et al. [45] is among 

the earliest real time redeployment models in ambulance literature. They developed the 

Dynamic Double Standard Model at time t (DDSM
t
) based on their previous work on 

DSM. The DDSM
t
 maximizes double coverage of demand while minimizing relocation 

costs. The DDSM
t
 penalizes (1) repeated relocation of the same vehicle, (2) long round 

trips and (3) long trips between two sites. The model’s input parameters are updated each 

time a call is received and DDSM
t
 is solved each time. They developed a parallel tabu 

search heuristic to solve DDSM
t 

quickly in real time. However, as pointed by the 

Gendreau et al. [46], the real-time redeployment algorithms heavily rely on the 

computing capability of EMS dispatch center. In fact not every center is able to do 



15 

 

parallel computing.  Furthermore when calls arrive in quick succession, there may not be 

enough time to generate a new solution or the solution could be infeasible. In addition, 

frequent ambulance relocations can cause a confusion of drivers because of the frequent 

changes of the route or destination [27] . As a result, Gendreau et al. [46] proposed an 

alternative approach i.e. preplanned repositioning in the Maximal Expected Coverage 

Relocation Problem (MECRP) [46]. In MECRP, a series of location scenarios for all 

vehicles are precomputed as a priori compliance table which can readily be applied 

wherever a call is made. This new approach comes along with the limitation of the 

number of ambulances to be planned.   Similarly using compliance table policy Alanis et 

al. [47] developed a two-dimensional Markov chain which relaxed assumptions of 

deterministic response time and binomial probability distribution for the number of busy 

ambulances in EMCRP. The authors show that the model can be used to find the best or 

near optimal compliance table from a set of 100 random tables with the number of 

ambulances up to 18.  

Maxwell et al. [48] formulated ambulance redeployment as a Markov decision 

process and explored a novel approximate dynamic programming (ADP) approach for 

solving real-time redeployment policy.  Recently Schmid [49] proposed a stochastic 

dynamic model explicitly including time-dependent information for both traveling times 

and the request volume to maximize the number of calls reached within a time threshold. 

They also used an ADP approach to solve the optimization problem resulting in faster 

computation and improved performance.  
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2.5 Multi-period Redeployment Models 

The TIMEXCLP can be viewed as the earliest multi-period redeployment model 

[43]. Schmid & Doerner [50] extended DSM from a single to a multi-period model. 

Time-dependent variations in travel times and coverage are also explicitly considered in 

this model.  They formulated the problem as a mixed integer program which aims to 

optimize coverage at various points in time simultaneously and they developed a 

metaheuristic algorithm based on variable neighborhood search to solve it.  Erdogan et al. 

[51] developed a two-stage approach to scheduling ambulance crews to maximize 

expected coverage for a typical planning horizon of one week. They utilize Budge et al.’s 

approximate hypercube model [52] to compute station-specific busy probabilities and 

solve the ambulance redeployment problem for every hour of the week.  They use the 

output of the first stage as the input for the next stage of two crew-scheduling models and 

they show the tractable characteristic of the second approach. Rajagopalan et al. [44] 

proposed the Dynamic Available Coverage Location model (DACL) with the objective of 

minimizing the number of ambulances while meeting specified coverage availability 

requirements. Their approach extended QPLSCP by incorporating ambulance specific 

busy probabilities which are solved by using Jarvis’ hypercube approximation algorithm 

[53].  They solved DACL using tabu search heuristic with a look-ahead procedure.  

The number of relocations is not considered in the objective of DACL. Patients 

are not the only stake holder and the crew of EMS also should be considered.  Frequent 

relocation often results in crew fatigue and lower morale and which in turn damages the 

quality of the service [7, 54].  More recently, Saydam et al. [43] proposed the Dynamic 

Redeployment Covering Location model (DRCL) which is an extension of the DACL  to 
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address crew fatigue phenomena. The DRCL has two objectives: minimize the number of 

ambulances and minimize the number of redeployments for a given fleet during a given 

shift, while meeting coverage requirements. They developed a fast meta-heuristic based 

on a steepest descent search and showed this new approach outperforms DACL across all 

key criteria.  

2.6 Optimization Techniques 

Ambulance location and relocation problems are typically NP-complete problems 

[55, 56]  therefore to exactly solve them is prohibitive in computing time. Designing 

effective and efficient algorithms/solution procedures to solve the optimization problem 

is quite necessary in most situations.  The heuristic algorithms are broadly used to solve 

large scale and NP-hard problems and the main heuristic algorithms utilized in this 

domain include Tabu Search (TS), Lagrangian Relaxation (LR), Simulated Annealing 

(SA) and Genetic Algorithm (GA) [31]. We refer the reader to Li et al. [31] for a 

comprehensive review of optimization techniques to solve ambulance location and 

relocation models.  Brotcorne et al. [57] proposed heuristics for large-scale covering-

location problems with continuous potential location sites and discrete sets of demand 

points. Beasley and Chu [58], Saydam and Aytug [59], Inanoni et al. [60] and Toro Diaz 

et al. [1] used GAs to solve their model. Gendreau et al. [35, 45]  and Rajagopalan et al. 

[44] used TS to solve their EMS models. Arostegui et al. [61] conducted experimental 

studies to compare the performance of TS, SA and GA applied to EMS location model.  

They found that TS always yields satisfactory solutions faster and is easy to develop and 

implement.  Similarly,  Rajagopalan et al. [62] compared the performance of several 

meta-heuristics applied to a probabilistic location model via a statistical experimental 
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design. They analyzed the results using ANOVA and showed that on average TS and SA 

find the best solutions in the least amount of time.  

2.7 Simulation Approach in EMS Literature 

While using simulation technique for EMS research traces back to about 1970s, it 

is much less frequently utilized and often it has been used as a descriptive tool to evaluate 

the quality of solutions obtained via an analytical approach. Savas [63] used simulation as 

a tool to analyze the possible improvements in ambulance service of  New York.  

Haghani et al. [64] developed a simulation model to evaluate alternative emergency 

vehicle dispatching strategies aiming to minimize average response times. Andersson and 

Varbrand [2] developed a simulation model to test their decision support tools. Restrepo 

et al. [65] and Maxwell et al. [48] are recent researchers who developed simulation 

approaches for final evaluation of modeling. Yue et al. [66] used a simulation-based 

approach to maximize coverage over a distribution of requests.  

St John Ambulance is said to be the first one that has implemented a 

comprehensive simulation technique in the ambulance location area [5]. St John 

Ambulance founded in 1877 in the United Kingdom is a well-known provider of medical 

first aid and ambulance service. It first used an ambulance simulation system named 

BartSim to address staff scheduling problems [28, 67]. Computer simulation based EMS 

models tend to have a higher degree of detail and try to precisely mimic the operations of 

the actual system. They also can have a high degree of face validity and can obtain 

extremely accurate replication and validation results [6].   



 

 

CHAPTER 3: DATA ANALYSIS  

In order to develop a realistic simulation model we analyzed historical emergency 

call dataset from Mecklenburg County, Charlotte, North Carolina.  The dataset is 

collected from a region of approximately 540 square miles with a population of 801,137 

in 2004. The original dataset provided by the emergency medical services agency 

(MEDIC) has 79,890 records. This dataset includes records of single- and multi-unit 

dispatches to 62,008 calls they received and scheduled, non-emergency patient transport 

records. The records include important fields for this study such as the call time stamp, 

call priority (1-4 for medical emergencies), latitude and longitude of the incident (patient) 

location, the responding unit(s) location coordinates, call-, chute-, travel-, service-times, 

and others. We first cleaned the data and compiled statistics for the following key 

variables:   

 Call Time – the interval from a call being received to the dispatch of an 

ambulance. 

 Chute Time – the time between the dispatch and the paramedic en route 

toward the incident scene. 

 Travel Time – the time from the ambulance en route until its arrival at the 

incident scene. 

 Service Time – the time elapse from the ambulance’s arrival at the scene 

until it becomes available for the next dispatch.  



20 

 

 Distance to the scene – the distance between the responding ambulance 

current location and the incident scene.    

 Single and multi-vehicle responses. 

3.1 Data Cleaning Process 

Prior to computing statistics and fitting distributions to key variables the data 

required some cleaning due to missing or incorrectly entered fields.   First we only kept 

records which were identified as medical dispatches with call priorities 1-4, where 1 is a 

life threatening event as assessed at the time of the 911 call, also known as a delta-level 

event.  This reduced the dataset to a total of 64,678 records, which comprise 81% of all 

dispatches.  Second, we deleted records with blank fields for any of five variables. Third, 

we screened the data for apparent errors such as negative values in which case we 

eliminated that record and corrected errors such as latitude and longitude in reverse hence 

wrong columns.  Fourth, we scrutinized the data by checking whether the values are 

reasonable.  Each variable has practical meaning such that the values should fall in 

certain scope based on current operational practices, common sense and literature.  For 

example, occasionally 9-1-1 call time exceeds several minutes whereas the dispatcher 

dispatches an ambulance early in the call time while staying on the phone assisting either 

the patient or the caller.  We used a group of presumed scopes for the five variables: 0.25 

minutes < Call Time < 5 minutes, 0.25 minutes< Chute Time < 5 minutes, 1 minute 

<Travel Time<30 minutes, and Distance < 15 miles. We excluded the records with values 

outside these ranges from the statistical analyses. The data cleaning process essentially 

eliminated about 8% of the records leaving 59,622 records to study single and multiple 

dispatch frequencies, compute descriptive statistics, and apply goodness-of-fit tests.  
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3.2 Summary of Findings 

The data showed that number of units sent to a single call varied from 1 to 8.  The 

percentage of single ambulance dispatches was 85%. The percentage of double 

dispatches was 14%. Clearly, the majority of calls have been serviced by one or two 

ambulances (99%). A very few of calls required more than 3 units, which can be 

explained by events such as floods, multi-vehicle traffic accidents, and alike.  For calls 

serviced by multiple vehicles we kept only the records of the first arriving unit which 

gives us a total of 38,399 calls.  We noted that there were relatively much fewer calls 

classified as priority three or four (both non-life threatening), therefore we combined 

them into priority three calls. This resulted in 8921, 24242, and 5236 priority one, two, 

and three calls respectively. From here on, we refer to priority 3 and 4 combined as 

priority 3. We first compiled summary statistics for all calls as shown in TABLE 1 

below: 

TABLE 1: Summary statistics 

 

Call 

Time 

(min) 

Chute 

Time 

(min) 

Travel 

Time 

(min) 

Service 

Time 

(min) 

Euclidian Distance 

to 

Incident (miles) 

Minimum 0.25 0.25 1.00 5.02 0.00 

Maximum 4.98 5.00 29.97 108.17 15.84 

Mean 0.59 0.92 6.11 55.06 2.12 

 

3.3 Travel Time 

Average travel time of low priority calls is expected to be longer than that of 

higher priority calls considering that high priority calls ambulances are more likely to use 
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lights and sirens and travel faster. To test this hypothesis we examined the travel time 

distributions by creating Box-and-Whisker Plots of travel time by priority. From 

FIGURE 1 we see travel time of priority 3 has higher median than those of priority 1 and 

priority 2 and also is more disperse. However, distributions of travel time of priority one 

and priority two are very similar. This is possible due to MEDIC applying the same travel 

guidelines for priority 1 and priority 2 calls in delivering ambulance to the accident 

scenes. A simple two-sample t-test showed that we fail to reject the null hypothesis that 

the means are equal (p < 0.01).  

 

 

FIGURE 1:  Travel time box plot 

 

In order to generate travel times realistically in our simulation program, we 

developed regression models of travel time on distance for priority 1 and 2 combined, 
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and priority 3 calls.  The dependent variable is travel time in minutes and the independent 

variable is distance in miles which we initially computed using incident and responding 

ambulance coordinates with spherical law of cosines formula [68]. This resulted in a 

Euclidean distance which we then applied the Minkowski coefficient, 1.54, to estimate 

the actual road distances [69]. 

 Subsequent to some exploratory analyses with various power transformations we 

found that the square root transformations applied to both dependent (travel time) and 

independent (distance) give the best results, resulting in R
2
 values of 95.4% and 94.5% 

for priority 1 & 2 combined and priority 3 calls, respectively. In order to express the 

predictions in the original scale we back-transformed the resulting equations which are 

displayed in TABLE 2. From those relations we can also deduct that ambulances run to 

an incident scene at a speed of 35.40 miles/hour and 26.11 miles/hour for priority 1 & 2, 

and priority 3 calls, respectively.  

TABLE 2: Travel time models for estimating real road network distances 

Call Priorities Travel time models 

Priority 1, 2 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 = 1.6951 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

  Priority 3 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 = 2.2976 ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 

3.4 Chute Time and Call Time 

The data analysis of chute time showed that apart from some outliers, chute times 

are clustered around the mean of 0.9 minutes with a standard deviation of 0.54 minutes.  

In reality, chute time for different calls tend to have very small difference, because the 

http://mathworld.wolfram.com/SphericalTrigonometry.html
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crews are trained to quickly respond to all dispatches.  In addition, chute time is a very 

small part of total service time, so, instead of sampling from a distribution we opted to 

use the mean chute time for every call in our simulation. For similar reasons, the mean 

(0.59 minutes) of call time is used as the simulated call time.   

3.5 Service Time 

Service time is a major part of the total time that an ambulance spends on an 

emergency call.  For calls that don’t need transportation to hospital service time is just the 

time spent on the incident scene. For calls, of which patients are transported to hospital, 

service time includes time spent on the scene, travel time to hospital and handover time in 

hospital. Although our dataset does not identify clearly which incidents needed transport 

to area hospitals a recent study with Charlotte data reported that about 75 percent of all 

calls require transport to a hospital [70].  

We conducted a goodness-of-fit test with data of all priorities which showed that 

the service times follow a normal distribution with a mean of 55.06 (min) and a standard 

deviation of 15.36.  As a rule of thumb, the service time of top priority calls is likely to be 

longer than low priority calls. To reflect this fact, we drilled down to fit normal 

distributions to different priority categories. Service time of priority 1 calls has a fitted 

normal distribution with a mean of 58.42 and a standard deviation of 14.56.   The service 

time of priority 2 calls follows a fitted normal distribution with a mean of 54.63 and a 

standard deviation of 15.43. The service time of priority 3 calls follow a fitted normal 

distribution with a mean of 51.35 and a standard deviation of 15.27. These results are 

consistent with the reality that the on scene treatment provided for high acuity patients is 

more likely to be intensive and hence takes longer time. FIGURE 2 displays fitted normal 
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distributions and the corresponding statistics of service times for all calls, priority 1 calls, 

priority 2 calls, and priority 3 calls.  

 

 

In our simulation model, the corresponding normal distribution is used to generate 

the service time for an emergency call according to its specific priority category. This 

process happens when we create the file of emergency calls, which is before the running 

of the simulation model. In other words we pre-generate service time of each emergency 

call. 

 FIGURE 2: Service time distributions 



 

 

CHAPTER 4: THE SIMULATION MODEL 

         An important contribution of this study is the development of a high fidelity 

simulation model that mimics the operations of an EMS provider such as MEDIC. The 

basic assumption in our simulation model is that the real-time location and status of all 

vehicles are known which is true in practically all EMS systems in the U.S. The 

following is an overview of our simulation model. 

 The response process starts with the dispatch center receiving an emergency (9-1-

1) call. The dispatch operator determines the call priority based on the dispatch protocol 

in use and dispatches one more ambulances to the incident scene. While the call center is 

waiting for the next urgent call, the ambulance(s) travels to incident scene. At the scene 

the crew treats the patient and determines if the patient needs to be transported to the 

nearest area hospital. If so, the ambulance departs for the hospital, arrives at the hospital 

and hands off the patient. At this moment the ambulance becomes available for the next 

dispatch, if any. Otherwise, the ambulance travels back to its post or to the next call 

location.  If hospital transport is not needed then ambulance becomes available for the 

next call and departs to its post. 

 While developing the simulation model we attempted to include all important 

real-life aspects of an urban EMS operation and only made simplifying assumptions to 

ensure that the code is fast enough to be embedded in a search algorithm and when the 

impact of them on the statistics of interest is negligible. Next, we discuss the logic flow 
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of the simulation model in more detail and present our rationale for the assumptions we 

made at various junctions.  

4.1 Simulation Design 

We developed the simulation module using Java (SE Version 7). The simulation 

module is designed to run a trace-driven simulation where the calls used in the simulation 

are read from a file. The calls are generated apriori for the first set of experiments and 

sampled from a real call database for the case study. Each call has a time stamp, location, 

priority, and service time information. This approach is beneficial for testing and model 

validation as well as for comparing various dispatch policies. The main logic flow the 

simulation model begins with a 9-1-1 call read from a file or retrieved from memory. The 

program updates all vehicles’ information including current location and status (idle or 

busy). Then based on the status and location of vehicles as well as priority and location of 

this new incoming call the program decides which vehicle(s) to dispatch according to the 

dispatch policy applied. If there is no vehicle available, then the program counts this call 

as a missed call. Once an ambulance is assigned to a call its status is set to busy, after a 

short time of preparation (Chute time) it departs to the incident scene. As discussed 

previously we use 0.9 minutes as the chute time for all calls instead of sampling from a 

distribution. Next, we calculate the distance to incident followed by the travel time using 

the regression models developed earlier. When the vehicle reaches the scene, some form 

of on-scene treatment is provided to the patient. If the treatment on the scene is not 

satisfactory, then the patient is transported to a nearest hospital in order to receive further 

care. In our simulation if the generated service time is 15 minutes longer than the travel 

time to hospital we assume the patient is transported to hospital with a probability of 
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75%. The travel time to the nearest hospital is calculated by the corresponding regression 

models discussed earlier. If transportation to hospital is not needed then the call is 

completed at the scene and the ambulance becomes available for the next call.  The 

ambulance could be assigned to the next call after service completion at the scene or at 

the hospital or en route.  If it is not assigned to a new call, then it returns to its base 

station or post and waits for the next dispatch order. 

In reality idle ambulances can be dispatched to a call while en route to their posts. 

To our best knowledge, no previous model included en-route dispatch. Our simulation 

model includes this important feature that an ambulance could be dispatched even en 

route to their posts as long as it is idle, which is another contribution of this research. An 

ambulance’s completion time of previous call service denoted as 𝑡1  is recorded in 

memory. When an emergency call is received, our simulation model reads its time stamp 

𝑡2  and calculates the time elapse  𝑡2− 𝑡1 , which is used to calculate the distance this 

ambulance has traveled from its previous location (either an incident scene or a hospital) 

which is also recorded in memory. Based on the traveled distance and its last location the 

current location of this ambulance is identified. If the traveled distance is greater than the 

distance from its post to its last location then the ambulance is already back to the 

appointed base location. Otherwise a location on the path is identified as its current 

location. We don’t have the data to know how fast ambulances travel back to their posts 

but until they are dispatched to a new priority 1, 2 calls we can assume that the 

ambulances return to their posts at an average speed of 26.11 miles/hour, same as running 

for priority 3 call as provided earlier and without lights and siren 
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A high-level flowchart of our simulation model is depicted in FIGURE 3. The 

detailed process of assigning available ambulances to a call is presented in FIGURE 4. If 

there is only one free ambulance then the system will just dispatch this ambulance to the 

new call. When the number of available ambulances is great than one, the system will 

first check the priority of the call. If it is a priority-one call, the nearest free ambulance 

will be dispatched to it. If the call is determined not priority one, then an ambulance will 

be dispatched according to one of the dispatch policies in our experiments. FIGURE 5 

depicts the process of an ambulance from the dispatch to back at station.  
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FIGURE 3: Simulation model overview flow chart 
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FIGURE 4: Dispatch process 
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FIGURE 5: Proposed schema for ambulance dispatch to an [emergency] scene



 

 

CHAPTER 5: SEARCH ALGORITHMS FOR THE SIMULATION OPTIMIZATION 

FRAMEWOK 

Assuming response units are homogeneous and in each zone at most one unit can 

reside, to locate M units in N zones the size of the solution space is the combination of N 

taken M at a time without repetition (N
M

), which is a typical NP-complete problem. In 

our simulation model we don’t limit the number of ambulances in a zone, so the solution 

space is even larger. When M and N are large numbers it is extremely expensive in 

computing to find the exact optimal solution by enumeration. However, we are 

encouraged by the fact that there have been various meta-heuristic search methods 

successfully applied in this domain that have found near-optimal solutions [44].  In this 

research, we implement three meta-heuristic algorithms: random-start hill-climbing 

algorithm, simulated annealing algorithm and tabu-search algorithm. Before we describe 

our meta-heuristic search algorithms implementations, it is necessary to illustrate the 

procedure of generating neighboring solution spaces and the data representation used in 

all meta-heuristics.  

5.1 Generating Neighboring Solution Spaces 

The process of generating neighboring solution spaces or successors of current 

solution space plays an important role in all three meta-heuristic search algorithms 

embedded in our simulation model. The three meta-heuristic search algorithms share a 

similar strategy of generating solution state successors.    
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To better illustrate the process of generating successors, we use a simplified 

example of 16 zones (4 by 4) and three ambulances. As depicted in FIGURE 6 the 

sixteen zones are numbered from 1 to 16 and three ambulances are labeled as A, B, and 

C. The location combination of zone 6, 7 and 8 is denoted as (6, 7, 8) which is the initial 

solution space. Since the ambulances are homogeneous (6, 8, 7), (7, 8, 6), (7, 6, 8), (8, 6, 

7), and (8, 7, 6) are all same solution state as (6, 7, 8). We refer the initial solution state as 

the start state and we use current state to denote any intermediate solution state. Initially 

current state is start state. A successor or a neighbor solution of current state is generated 

by moving one of the ambulances from its current zone to another possible zone.  If two 

solutions can be generated from each other by changing only one ambulance’s location 

we say they are neighboring solutions. For instance, moving ambulance A from zone 6 to 

zone 2 gives a neighbor solution space (2, 7, 8).  We say (6, 7, 8) and (2, 7, 8) are 

neighboring solutions. Similarly, (7, 7, 8) is another neighbor by moving ambulance A 

from zone 6 to zone 7, which means we have two ambulances allocated to the same 

location. On the other hand (1, 2, 3) is not a neighbor solution space of (6, 7, 8) because 

this implies that more than one ambulance is moved to another location. The total number 

of successor or neighbors of current state as depicted in this example is 3 × 15 = 45. 

These neighboring solutions are evaluated and one of them will be picked out to replace 

current solution state. 
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1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

FIGURE 6: Initial solution space prior to generating successors 

 

Each solution’s objective function is evaluated by executing our simulation model 

presented in Section 4. The simulation model mimics the entire process how an EMS 

system handles all 9-1-1 calls within a period of time. So, each round of execution of the 

simulation model consumes significant portion of computing time. Hence, it is very 

important to eliminate duplicated solutions before evaluating the objective function. We 

notice that any two successive solution states have some common neighbors. For 

example:  assume (2, 7, 8) is picked out from the 45 neighbors to replace current state (6, 

7, 8), therefore (6, 7, 8) is followed by (2, 7, 8) as two successive solution states and they 

have common neighbors already evaluated in the previous iteration. To avoid generating 

and evaluating those solutions that are evaluated in previous state we simply tag the new 

location of the first ambulance which is “2” in this example.  

 

A B C 
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5.2 Data Representation 

We use a one-dimensional array of size m+2 to represent a solution where m is 

the number of ambulances in the system. The first m elements in each vector are the 

ordered zone numbers of ambulance posts. Index m in each vector stores the objective 

function value (ObjF) and index m+1 contains a tag used to track the location by 

changing which this solution is generated. TABLE 3 illustrates the vector used for all 

meta-heuristics. 

TABLE 3: Data representation 

Elements 3 7 9 
 

ObjF Tag 
Index 0 1 2 … m m+1 

 

5.3 Random-Start Hill-Climbing Search Algorithm (RSHC) 

The hill-climbing search algorithm is a simple loop (iterative process) that 

continually moves in the direction of increasing objective value. It terminates when it 

reaches a “peak” where no neighbor has a higher objective value.  Hill climbing is similar 

to a greedy local search algorithm because it grabs a good neighbor state without 

considering about where to go next. For that reason, hill-climbing often makes rapid 

progress toward a solution and also often encounters local maxima and gets stuck with 

nowhere else to go.  The hill-climbing search algorithm [71] is shown in TABLE 4. 
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TABLE 4: Hill climbing algorithm 

Hill-Climbing returns a state that is a local maximum 

current ←MAKE-NODE(problem.INITIAL-STATE) 

Loop do 

1. Neighbors←Generate all successors of current state 

2. Best_neighbor←Get the successor with the highest objective function value  

3. if best_neighbor.VALUE ≤ current.VALUE then return current.STATE  

and exit loop else current ← neighbor 

 

 

 

Hill-climbing algorithm itself often cannot find a satisfactory solution because the 

possibility of being stuck at a local optimal solution. To avoid ending with a local optimal 

solution, random-restart hill climbing algorithm conducts a series of hill-climbing 

searches from randomly generated initial states. It records the state of each run of hill-

climbing and at last return the state with highest value of objective function. The 𝑠𝑡𝑎𝑡𝑒 is 

a set of ambulances locations and the objective function in our model is not fixed which 

can be assigned according to different aims. When we do experiments and compare with 

existing models in literature we assign the objective function as the tally of covered calls 

under a threshold. We also designed a weighted objective function to overcome the 

weakness of solely objective. The random-start hill-climbing algorithm implemented in 

our simulation model is depicted in TABLE 5.  
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TABLE 5: Random start hill climbing algorithm 

best ← Random-start 

Loop i → 1 to K         

current ← Random-start 

Loop While  

          neighbor ← a successor of current with highest value of ObjF 

          If neighbor_ObjF ≤ current_ObjF then return current.STATE else 

          current ← neighbor 

          End IF 

    End Loop 

        If (best_ObjF < current_ObjF) then best ← Current  

        End If 

End Loop 

 

        

            

5.4 Simulated Annealing Search Algorithm (SA) 

As mentioned above the Hill-climbing algorithm never moves to a state with 

lower objective function value. Therefore, it is likely to get stuck at a locally optimum 

while simulated annealing allows such move with a probability that is negatively 

proportional to the gap between the objective value of current state and that of a neighbor 

state. The method simulated annealing employed to escape from a locally optimum is an 

analogy with a technique of cooling metal known as “annealing” [71]. The higher the 

“temperature” 𝑇, the higher probability is to accept a worse solution.  The value of  𝑇 is 

decreasing during the running time according to “cooling” ratio α. When the 

“temperature” drops below 30 the algorithm terminates and return the best found. The 

simulated annealing search algorithm implemented in our model is shown in TABLE 6.  

We follow Arostegui et al.’s procedure [72] to select the initial temperature 𝑇 so that the 

resulting probability of accepting non-improving solution is 95% in the beginning of the 

run time.   
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TABLE 6: Simulated annealing search algorithm 

current ← Initial-State (a set of locations assigned as ambulances base locations) 

best ← Initial-State 

T ← T0  

Loop While (T > 30)           

          L1 = current_ObjF 

  candidate ← a successor of current with highest value of ObjF   

  L2 = candidate_ObjF 

          If L1 <  L2 then current ← candidate 

                  If(L2<best_ObjF) then best ← candidate      

                  End If                     

      Else ∆𝐸 =  𝐿2 − 𝐿1               

                          𝑝 =  𝐸𝑥𝑝( ∆𝐸/𝑇)  
                          best ← candidate only with probability 𝑝 

                    End Else 

               End If 

        T  ←𝛼𝑇 

End Loop 

 

 

5.5 Tabu Search Algorithm (TS) 

The tabu search algorithm is originally proposed by Glover [73]  in 1986. The 

overall approach is to avoid entrainment in a loop by forbidding or penalizing moves 

which point to solution spaces previously visited (known as “tabu list”). Unlike hill-

climbing which won’t make a move where the objective is worse than that of current 

state, tabu search algorithm always makes a move to the accessible best neighboring 

solution.  

A chief mechanism for exploiting memory in tabu search is to declare a subset of 

solutions similar to recently examined solutions are tabu. Each tabu has a tenure 

(duration) which determines how many iterations the tabu be in effect. The tabu list also 

referred to memory comprises of solutions (tabu) previously visited. The size of the tabu 

list equals the tenure of tabu because once a tabu passes tenure it will be automatically 
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removed from the tabu list (memory). Tabu list size and tenure also define the maximum 

number of tabus allowed at any time. We described the process of generating neighboring 

solution spaces in Section 5.1. Our tabu search algorithm uses similar process of 

generating neighbors. However in tabu search algorithm we need to consider how to 

design tabu so that the algorithm won’t move to a solution state previously visited. We 

use the locations of all response ambulances’ posts i.e. the solution vector’s previous m 

elements as tabu because the solutions are distinguished by the ambulance locations. In 

order not to repeat any previous accepted solution, we set tabu list size to the number of 

iterations. TABLE 7 describes the tabu search algorithm implemented in our simulation 

model.  
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TABLE 7: Tabu search algorithm 

current ← start state 

best ← current 

Loop k → 1 to K   

       Ordered_Neighbors_List ← generate_neighboring_solution (current) and  

                                                       sort in descending order by value of ObjF       

Loop While  

          index ←  0 

          neighbor ← get_index_th_element(Ordered_Neighbors_List) 

          move_action←get_move_action(neighbor)           

          If (tabu_Contains(move_action)) 

                then index ← index + 1       

          Else break While loop 

          End IF 

End Loop 

current ← get_index_th_element(Ordered_Neighbors_List) 

Update_tabu ( ) 

        If (best_ObjF < current_ObjF) then best ← Current  

        End If 

End Loop 

 

 

 

5.6 Experiments to fine tune the search algorithms 

Prior to applying our simulation-optimization approach to a case study using real 

historical data, we generated a simulated dataset to train, test and refine our algorithms. 

Since we will utilize real data from Mecklenburg County (Greater Charlotte) in our case 

study which is divided into 168 zones by imposing a grid of 2 mile by 2 mile squares, we 

assume a hypothetical region (city) spanning 400 square miles (20 x 20). We divide this 

region into 100 zones with a 10 x 10 grid so each zone is also 2 mile by 2 mile square. In 

FIGURE 7, we show the call volumes originating from each zone where. The total 

number of calls is 1200. In Greater Charlotte there are three major hospitals, of which 

two are adjacent to each other. In our simulated we assume there is one hospital located 

in zone 45 (city center).   
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1 2 2 3 1 3 1 2 1 1 

1 2 3 5 7 3 7 3 3 1 

2 3 10 19 22 17 16 12 2 3 

1 5 27 36 50 43 23 23 7 1 

1 8 12 46 52 47 28 26 4 1 

3 2 23 40 48 41 33 21 9 2 

1 9 25 27 33 35 35 32 5 2 

2 5 15 12 22 18 25 12 7 1 

1 3 9 4 3 5 8 3 6 1 

1 2 1 1 2 1 1 2 1 1 

FIGURE 7: Hypothetical region (zones and calls distribution) 

5.7 Preliminary Results 

To fine tune our search algorithms we chose the MEXCLP model as the 

benchmark which is presented in Appendix A. Given a fleet of ambulances, the 

MEXCLP determines the optimal ambulance locations that maximize the expected 

coverage of calls. For the first set of runs, we set the average busy probability of 

ambulances to 30% (p = 0.3), assumed a fleet size of 24 ambulances, and set the distance 

threshold for coverage to 2.2 miles (S = 2.2). We developed a formulation generator 

which reads the call distribution data and grid information and develops the MEXCLP 

model in CPLEX format.  
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The CPLEX solution of the instance of the MEXCLP model covered 1,055 calls 

(an expected coverage of 87.92%) by placing the fleet in the following zones:  

14, 22, 26, 27, 34, 35, 36, 38, 43, 44, 48, 55, 56, 57, 58, 63, 64, 65, 69, 72, 76, 77, 84, 88.  

Next, to generate 1,200 calls which will simulate approximately the same 

parameter values used for the MEXCLP model, we assumed that the number of calls 

follow a Poisson distribution with a calculated mean of  𝜆 = 6.9 calls per hour. We 

applied the traffic intensity equation 𝜌 = 𝜆
𝑚𝜇⁄   where  𝜌 = 0.3  and  𝑚 = 24 . From 

TABLE 1 we know the averaged total service time is 62.68 minutes from which we 

calculated 𝜇 = 0.96. Hence, we randomly generated 1,200 calls with time stamps, and 

randomly allocated the zone number of the calls based on the volume distribution in 

TABLE 7. For the purpose of this section, we only generated (assumed) priority 1 calls 

and used the default dispatch policy of sending the nearest vehicle. Next, the service time 

of calls is generated via the normal distribution of priority 1 calls presented in Section 

3.5.  

We first ran our simulation model with the MEXCLP solution (found by 

CPLEX). Interestingly, the simulation model resulted in covering 1019 calls (84.92% 

coverage) which is consistent with earlier published findings which indicate that 

MEXCLP tends to overestimate coverage [59].  Then we set the objective function as to 

maximize the number of covered calls. We ran our simulation model with random-start 

hill-climbing search algorithm of 10 random starts, after 507.5 seconds, it gives a result 

of 1073 (89.42%) with the following ambulance locations: 

14, 26, 27, 29, 32, 35, 35, 38, 43, 45, 46, 47, 55, 57, 59, 63, 64, 65, 66, 73, 77, 78, 85, 88. 
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Simulated annealing solved this problem instance with a result of 1055 (89.42%) and the 

following ambulance locations:  

23, 25, 27, 29, 34, 35, 36, 37, 42, 44, 46, 47, 48, 55, 55, 58, 62, 63, 67, 74, 76, 77, 84, 88. 

We also ran tabu-search algorithm with a randomly generated initial solution (TS-

RS), after 50 iterations (203.7 seconds) which resulted in a solution whose objective 

value is 1065 (88.75%) and the following ambulance locations:  

14, 24, 26, 27, 29, 32, 34, 36, 44, 46, 47, 48, 53, 55, 55, 58, 63, 65, 67, 68, 73, 75, 79, 87.  

Then we use the solution of MEXCLP as the initial solution of tabu search (TS-

MEXCLP), after 50 iterations (194.4 seconds) it found its best solution with objective 

value of 1073 (89.42%), and the following ambulance locations: 

14, 26, 27, 29, 32, 35, 35, 38, 43, 45, 46, 47, 55, 57, 59, 63, 64, 65, 66, 73, 77, 78, 85, 88. 

Using MEXCLP as the initial solution tabu search algorithm founds a best solution 

exactly same as that of random-start hill climbing but with less time.  

We conducted further experiments to compare MEXCLP and our simulation 

model embedded with each meta-heuristic algorithm. First, we tuned the parameters of all 

three meta-heuristics which resulted in following settings: number of random starts in 

RSHC is 5, number of iterations and tabu list size in TS is same as 60, initial temperature 

T = 2000 and cooling ratio is 0.92 in SA. Second, we generated 20 problem instances of 

1200 calls using same process as the presented earlier to run the simulation model with 

each embedded meta-heuristics. Below TABLE 8 summarizes the results. The MEXCLP 

column represents the covered number of calls generated by our simulation model with 

the MEXCLP solution. For all search algorithms the first value is the best objective value 

(i.e. covered number of calls) found and the second value is the computing time in 
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seconds. The average row shows the average of call number covered. The results show 

that all three meta-heuristics find better solutions than the MEXCLP model confirming 

that the three meta-heuristics are well-tuned and running effectively and efficiently. In 

addition we see that tabu search algorithm (TS-MEXCLP, TS-RS) outperform other two 

algorithms in computing time and in the quality of solutions (objective function value). 

These results confirm previous literature reports where GAs and other meta-heuristics 

have shown to produce very good results in this domain, but many researchers have also 

found that TS algorithms tend to produce even better solutions  [1, 30, 35, 62, 74]. 

  

TABLE 8: Comparison of meta-heuristics and MEXCLP-Priority one 

Instance 
MEXCLP  

OFV 

RSHC 

OFV, CPU 

(sec) 

TS-MEXCLP 

OFV, CPU 

(sec) 

TS-RS 

OFV, CPU 

(sec) 

SA 

OFV, CPU 

(sec) 

1 1007 1055, 244.2 1061, 232.0 1063, 239.6 1039, 233.9 

2 992 1032, 258.0 1041, 241.0 1042, 236.6 1032, 237.7 

3 982 1054, 304.0 1054, 232.5 1050, 224.0 1046, 236.9 

4 990 1054, 282.8 1064, 230.5 1064, 229.8 1040, 227.0 

5 1022 1069, 265.8 1078, 222.1 1073, 236.4 1072, 239.1 

6 1021 1070, 313.6 1073, 229.8 1075, 226.7 1057, 229.9 

7 1016 1060, 291.7 1062, 229.2 1062, 230.1 1052, 238.0 

8 992 1039, 226.2 1042, 231.7 1047, 229.5 1048, 225.7 

9 995 1049, 310.8 1054, 229.3 1051, 233.8 1044, 233.0 

10 1005 1036, 246.7 1046, 226.4 1042, 226.4 1037, 225.0 

11 995 1054, 312.5 1054, 245.0 1061, 231,1 1053, 236.2 

12 993 1045, 322.6 1042, 227.7 1047, 218.9 1040, 235.8 

13 999 1050, 291.4 1049, 235.0 1053, 237.5 1047, 229.8 

14 1001 1041, 238.6 1041, 227.8 1052, 224.0 1049, 234.1 

15 1021 1058 268.6 1060, 232.6 1064, 216.9 1060, 234.6 

16 1000 1054, 259.3 1066, 227.9 1068, 230.9 1063, 232,9 

17 989 1039, 313.6 1047, 220.9 1047, 223.1 1028, 232.4 

18 998 1050, 297.2 1052, 237.3 1049, 232.0 1048, 242.6 

19 999 1062, 294.0 1062, 237.1 1061, 240.7 1063, 232.0 

20 1016 1061, 275.3 1060, 232,7 1063, 231.3 1053, 236.7 

Average 1001.7 1051.6, 280.8 1055.4, 231.4 1056.7, 229.96 1048.6, 233.6 
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As can be seen in TABLE 8 both implementations of the TS algorithms produce 

nearly identical results. So, to further compare the performances of TS-RS and TS-

MEXCLP we conducted experiments with same twenty problem instances but we 

reduced the number of iterations from 60 to 20 and 10. The results are presented in 

TABLE 9. From these results we see TS-MEXCLP has a better performance than TS-RS 

when the number of iterations is quite small (10 iterations). As we expected using the 

solution from MEXCLP as the initial solution of tabu search is a good strategy to find a 

near optimal solution considerably faster. We then repeated some experiments running 

both algorithms 120 iterations in which case they generated almost identical results. 

Clearly, if the number of iterations needs to be limited due to a need to solve the 

problems rapidly, TS-MEXCLP has a significant advantage over TS-RS due to starting 

with a very good initial solution (generated by MEXCLP). However, if the CPU time is 

not a major constraint in the study or application one can run the TS-RS algorithm longer 

(significantly more iterations) to find a high quality solution. 
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TABLE 9: Comparison of TS-MEXCLP and TS-RS 

  10 iterations 20 iterations 

Instance 
TS-MEXCLP 

OFV, CPU (sec) 
TS-RS 

OFV, CPU (sec) 
TS-MEXCLP 

OFV, CPU (sec) 
TS-RS 

OFV, CPU (sec) 

1 1057, 43.3 1035, 43.9 1058, 81.7 1053, 83.4 

2 1039, 43.5 1035, 43.6 1041, 81.6 1036, 80.9 

3 1043, 43.4 1042, 44.4 1047, 81.7 1050, 80.36 

4 1053, 42.2 1051, 42.4 1054, 77.8 1049, 78.7 

5 1073, 42.4 1058, 41.4 1078, 77.8 1068, 78.5 

6 1053, 42.1 1034, 43.6 1073, 81.4 1070, 81.5 

7 1055, 43.3 1038, 43.2 1055, 81.5 1057, 80.7 

8 1038, 42.5 1017, 42.4 1038, 80.4 1043, 81.8 

9 1044, 42.8 1035, 43.4 1051, 80.2 1040, 78.0 

10 1046, 41.4 1025, 42.6 1046, 76.1 1038, 80.6 

11 1053, 41.4 1043, 42.7 1053,81.3 1053, 81.7 

12 1033, 42.7 1038, 44.2 1034, 76.0 1034, 80.3 

13 1038, 44.2 1029, 43.8 1046, 81.8 1045, 77.6 

14 1038, 43.3 1035, 42.5 1038, 79.1 1043, 91.4 

15 1053, 43.3 1031, 41.5 1061, 121.2 1061, 105.0 

16 1043, 41.9 1049, 44.5 1061, 79.5 1060, 81.3 

17 1042, 43.1 1032, 40.9 1043, 78.2 1040, 76.6 

18 1047, 43.0 1032, 46.1 1047, 81.1 1042, 80.7 

19 1050, 44.6 1050, 41.8 1054, 80.6 1063, 80.5 

20 1057, 42.5 1045, 43.1 1057, 82.0 1054, 77.7 
Average 1047.8, 42.8 1037.7, 43.1 1051.8, 82.1 1050.0, 81.9 

 

In our last set of experiments we tested the search algorithms with data which 

included call priorities. The 20 instances were generated by following same process as 

before but the priority number is not always one. As mentioned in Chapter 3, there are 

8921, 24242, and 5236 priority one, two, and three calls, respectively. The priority 

number of a call (1, 2 and 3) is assigned based on the percentage of each type of calls: 
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priority one 23.23%, priority two 63.13% and priority three 13.64%. We also generated 

the travel and service times based on the priority of the calls by applying the distributions 

in Chapter 3. The results from these experiments are summarized in TABLE 10 which 

show that the TS consistently produces higher quality solutions in reasonably fast CPU 

times. 

 TABLE 10: Comparison of meta-heuristics and MEXCLP-Priorities 

Instance 
MEXCLP  

OFV 

RSHC 

OFV, CPU 

(sec) 

TS-MEXCLP 

OFV, CPU (sec) 

TS-RS 

OFV, CPU 

(sec) 

SA 

OFV, CPU 

(sec) 
1 1013 1052, 290.4 1061, 302.7 1061, 302.0 1059, 365.6 

2 1004 1051, 322.9 1060, 284.4 1061, 279.5 1042, 359.5 

3 1001 1056, 279.7 1063, 283.1 1061, 279.1 1049, 370.9 

4 1018 1054, 250.7 1055, 280.7 1055, 280.7 1061, 280.9 

5 1007 1057, 295.6 1061, 288.1 1061, 282.7 1047, 368.0 

6 1007 1059, 341.1 1057, 288.0 1061, 287.8 1054, 373.7 

7 1030 1058, 306.6 1061, 285.1 1061, 280.1 1054, 361.8 

8 1014 1058, 298.6 1063, 279.5 1061, 279.9 1045, 382.7 

9 1011 1054, 321.4 1062, 281.5 1061, 283.4 1050, 362.6 

10 1012 1051, 307.0 1060, 280.0 1061, 278.7 1052, 364.5 

11 1037 1057, 347.9 1058, 280.6 1061, 276.5 1056, 365.4 

12 1011 1058, 322.5 1064, 279.0 1061, 278.1 1052, 364.9 

13 1011 1054, 324.8 1063, 283.2 1061, 283.1 1045, 371.0 

14 976 1054, 280.6 1058, 234.2 1061, 236.7 1052, 316.1 

15 1011 1051, 306.8 1063, 244.2 1061, 238.4 1047, 309.1 

16 1010 1060, 251.6 1061, 232.7 1061, 224.8 1058, 291.5 

17 1026 1058, 246.2 1058, 224.0 1061, 223.1 1055, 290.6 

18 1033 1057, 260.6 1063, 225.1 1061, 223.9 1054, 292.2 

19 1037 1053, 275.5 1060, 241.3 1061, 225.2 1052, 292.2 

20 997 1051, 253.5 1058, 223.8 1061, 223.4 1052, 292.9 

AVERAGE 1013.3 1055, 294.2 1060.45, 266.1 1060.7, 263.4 1051, 388.8 



 

 

CHAPTER 6:  APPLICATION OF THE SIMULATION-OPTIMIZATION 

MODEL TO CHARLOTTE 

In this chapter we apply our simulation-optimization model to the historical 9-1-1 

call dataset from Mecklenburg County (Greater Charlotte) EMS service agency. We first 

compare our simulation-optimization model with an advanced analytical model, the 

dynamic expected coverage location model (DECL) developed by Rajagopalan et al. 

[74].  Second, we develop a weighted objective function which draws upon on an out of 

hospital cardiac arrest survival rate function and further takes different priority calls into 

consideration. We apply our simulation-optimization model with the weighted objective 

function to Greater Charlotte and compare the efficacy of alternate dispatch policies. The 

application of our model is intended to demonstrate its usefulness in determining near 

optimal solutions to real-life ambulance dispatch policies while providing detailed 

coverage and ambulance workload statistics.   

6.1 Description of the Model Settings for Greater Charlotte Area  

As mentioned in Chapter 3 we have access to a complete 9-1-1 call dataset 

provided by the Mecklenburg County EMS agency, MEDIC. For the application of our 

approach the Greater Charlotte area is mapped into 168 2-by-2 mile nodes as depicted in 

FIGURE 8. All historical demand calls fall in a particular node according to its latitude 

and longitude. There are three major hospitals located in the center of each of the three 

yellow colored nodes (29, 60, and 91).  The nodes that make the boundary (orange nodes) 

have the lowest call volumes. Therefore it is neither practical to place ambulances on 
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those nodes nor possible for them being solution nodes by search algorithm, hence our 

search algorithm is programmed to exclude these nodes while searching for ambulance 

locations. The four red nodes are outside the official Mecklenburg County boundary 

however we created these dummy nodes so that the en-route dispatch algorithm can work 

properly, essentially travel across these nodes as needed. There are no demands from the 

dummy nodes and they cannot be the used as ambulance locations. In our en-route 

dispatch algorithm, when an ambulance completes its service for a call either at the scene 

or at a hospital and there are no pending dispatch requests, it will travel back to its base 

node via the nearest route via Manhattan distance principle. For example if an ambulance 

placed on node 40, when it completes service at node 58 it can travel back via route 58  

38  40 or route 58  60  40. If both routes are fully within the area the algorithm 

will pick up an arbitrary route, and if one route is not fully covered by the area the 

algorithm choose the one fully covered by the area. For example, an ambulance whose 

base is node 130 completes a service at node 166 then the only route it will travel back is 

166  133  130. 
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FIGURE 8: Mecklenburg county (Greater Charlotte) gridded to 168 demand zones 

 

6.2 Comparisons with DECL 

To demonstrate the benefits of using simulation-optimization approach to 

determine the near optimal ambulance posts instead of using an analytical approach we 

ran a series of comparisons with the dynamic expected coverage location (DECL) model 

developed by Rajagopalan et al. [74]. Briefly, DECL determines the minimum number of 

ambulances and their locations for a requirement of 95% coverage for each time interval. 
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Complete description of the DECL is in Appendix B. In applying the DECL, Rajagopalan 

et al. divided days of the week into twelve 2-hour time intervals which resulted in a total 

of 84 time intervals, hence 84 problem instances and utilized the same call dataset from 

Charlotte MEDIC. It is important to note the key assumptions and differences between 

the two approaches: 

 DECL assumes all calls are of same priority while in our model calls are assigned 

priority 1, 2 and 3, based on the percentage of each type of calls: priority 1 

23.23%, priority 2 63.13% and priority 3 13.64%. 

 Service times of different priority calls are generated from the distribution shown 

in FIGURE 2.  

 Travel times of different priority calls are computed based on travel time models 

in TABLE 2.  

 In our model 75% of the patients are transported to the nearest hospital. 

 In our model ambulances can be dispatched when they complete a service and 

while en-route to their posts. 

 For these runs, we used the default dispatch policy of sending the nearest 

ambulance to all calls. 

We ran our model with the same number of ambulances obtained by DECL for each of 

the 84 problem instances and obtained the following call coverage statistics displayed in 

TABLE 11. 
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TABLE 11: Simulation-optimization coverage (%) 

Intervals Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

12 am – 2 am 88.43 85.05 94.17 90.63 92.31 94.99 97.51 

2 am – 4 am 86.82 92.35 96.14 96.06 92.21 96.58 91.13 

4 am – 6 am 93.68 96.61 98.10 94.67 94.70 99.04 89.97 

6 am – 8 am 91.67 90.41 90.98 87.46 90.73 89.46 91.61 

8 am – 10 am 89.64 84.75 85.22 82.98 81.88 88.40 90.55 

10 am – 12 pm 87.10 84.75 84.91 82.28 79.86 87.84 87.27 

12 pm – 2 pm 83.08 82.09 84.39 77.17 82.13 81.78 86.64 

2 pm – 4pm 84.13 80.47 86.40 83.57 81.23 79.89 83.15 

4 pm – 6 pm 81.67 76.49 81.30 78.73 77.44 77.36 81.40 

6 pm – 8 pm 82.85 80.78 84.56 76.80 72.84 81.57 80.33 

8 pm – 10 pm 78.97 85.79 82.06 80.27 81.70 82.10 85.55 

10 pm – 12 am 89.01 85.52 88.85 83.19 83.08 82.65 80.11 

 

Next, we computed the difference between the DECL estimated coverage rates 

and coverage rates from the simulation optimization model which are shown in TABLE 

12. The coverage statistics estimated by DECL are significantly higher than our 

simulation-optimization coverages in 78 of the 84 problem instances. On average DECL 

overestimates coverage by a 9.39 percent and the maximum net deviation is 24 percent. 

In the six problem instances where DECL essentially under-estimates the true 

coverage, the average difference is -1.65 percent and the maximum difference is -3.33 

percent. It is also interesting to note that these problem instances are among lowest 

demand time intervals. Further analysis reveal that during low demand instances 

throughout the week, typically 2-6 a.m. Monday-Friday, DECL tends to be relatively 

more accurate resulting in coverage estimation errors under four percent. We can 

conclude that DECL can predict coverage rates accurately under low demand intervals 

which are the early hours of workdays, Monday through Friday 2-4 and 4-6 a.m. One 

possible reason for this is that during these times the call demand volumes are the lowest 
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resulting in low workloads which in turn implies fewer, if any, en-route and end-of-

service dispatches. However, DECL estimated coverages rapidly degrade under high 

congestion and high demand intervals because of the nature of analytical models’ 

inability to capture the dynamic nature of the ambulance dispatch practices, essentially 

due to the necessity of simplifying real-life details, a common phenomenon in this class 

of analytical models.      

TABLE 12: Difference between DECL and Sim-Opt coverage rates (%) 

Intervals Sun. Mon. Tues. Wed. Thur. Fri. Sat. 

12 am – 2 am 6.89 9.95 1.46 4.71 2.86 0.76 -2.20 

2 am – 4 am 8.18 3.09 -0.63 0.28 3.14 -1.11 3.97 

4 am – 6 am 2.29 -0.53 -2.64 0.55 0.84 -3.33 5.55 

6 am – 8 am 4.00 4.94 4.70 8.41 4.80 5.69 3.74 

8 am – 10 am 6.05 10.39 10.26 12.43 13.73 6.93 5.14 

10 am – 12 pm 8.03 10.96 10.40 12.86 15.37 7.65 8.67 

12 pm – 2 pm 11.93 13.66 11.30 17.87 13.61 13.26 9.17 

2 pm – 4pm 11.34 14.65 8.70 12.34 14.32 15.15 12.16 

4 pm – 6 pm 13.47 18.71 14.04 16.81 18.27 17.72 14.59 

6 pm – 8 pm 12.18 14.94 11.36 18.98 22.63 13.76 14.78 

8 pm – 10 pm 16.12 10.38 13.10 14.86 14.30 13.12 9.59 

10 pm – 12 am 6.41 10.24 6.89 12.33 12.54 13.15 15.04 

Average 8.91 10.11 7.41 11.04 11.37 8.56 8.35 

 

In summary, the DECL generally overestimates the coverage. The tendency to 

overestimate coverage by expected coverage class of models has been repeatedly 

reported in the literature [38, 56, 59]. When we further check the average workload of 

ambulances based on the optimal fleet size found by the DECL, we noticed that the 

average workload is close to 60% which is nearly the twice the rate considered 

reasonable in the EMS community. In other words, DECL overestimates coverage which 

essentially means it underestimates the number of ambulances required to achieve the 
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target 95% coverage. Though a simulated comparison has been done in their article 

leading to small differences but the simulation used in their comparison is quite limited 

compared with the one we developed in this study.  Our simulation-optimization model 

as discussed in Chapter 4 captures almost every aspect of real life operations of a typical 

EMS. 

6.3 Objective Function 

The majority of the existing objective functions in the EMS literature are based on 

single aspect of EMS, e.g. coverage or cardiac arrest survivability function For example, 

deterministic or probabilistic coverage functions do not consider that different types of 

calls have different priorities. Survivability function as discussed before is specific to 

only OHCA and less than 0.5% of all calls are classified as OHCA [70]. Recently Knight 

et al. [22] extended Erkut et al.’s cardiac arrest survival function [21] by taking into 

account multiple-classes of patient outcomes. They developed a multi-objective function 

based on an OHCA function and the call categories similar to MEDIC’s call priorities (1, 

2, and 3).  In order to capture different types of calls and their different level of interests 

to EMS administration we adapted Knight et al.’s objective function. The objective 

function we will maximize is a weighted sum of the four objectives shown below:  

ObjF(state) = SF(RT)w0 + CV1(RT )w1 + CV2(RT )w2 +  CV3(RT)w3                                (1) 

, where SF is a survival probability function for cardiac arrest patients shown in Eq. (2): 

SF(RT) = 1/(1 + exp(−0.26 + 0.139 ∗ RT))                                       (2) 

CV denotes a function which tallies the number of calls reached for priority 1, 2 and 3 

within the pre-determined RT thresholds (targets). We follow Knight et al.’s 

heterogeneous measures [22] and use 8-, 14-, and 21-minutes as hard RT targets for 
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priority 1, 2, and 3 calls, respectively. Hence, the CV functions can be expressed as 

follows: 
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It is important to note that the probability of survival after an OHCA with a RT = 

0 is about 57 percent and with a RT = 8 minutes the odds of survival drops to 30 percent. 

FIGURE 9 below displays the rapid decline of survival probability as the RT increases.  

 

 

FIGURE 9: Survival probability function for OHCA 
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The objective function showed in Eq. (1) combines heterogeneous outcome 

measures into a single function which takes four types of calls into consideration. For 

each type of call the EMS administrator can choose different weights according to call 

statistics of the region. In this research we adopted the same weights use by Knight et 

al. w0 = 16, w1 = 8, w2 = 2, w3 = 1, for cardiac arrest calls, priority 1 calls, priority 2 

calls and priority 3 calls, respectively. Clearly EMS administrators can choose different 

RT targets and different weights according to their contractual requirements.  

6.4 Results from Using a Tiered Ambulance Dispatch Policy 

6.4.1 Analysis of Results  

In order to test the efficacy of tiered (alternate) dispatch policies on OHCA 

survival rates, response times per call priority (via the weighted objective function), and 

the resulting ambulance crew workloads we solved a series of problems using the same 

real call data set organized into 84 meaningful scenarios. Importantly, when testing 

alternate dispatch policies in these runs we utilized the call priorities to determine which 

vehicle to dispatch. Also noteworthy is the fact that, in our approach, fleet size is an input 

variable whereas DECL finds the minimum number of ambulances to meet the target 

coverage rate.  

 In this regard, we noticed that, with the DECL prescribed (recommended) fleet 

sizes for the 84 problem scenarios, an interesting phenomenon occurred:  In running the 

simulation optimization model with the default dispatch policy, the resulting average 

ambulance workload was approx. 54-56%, which is considered high in the EMS 

community; normally,   the ideal (practical) average workload is about 30%. Hence, we 

conducted experiments for each of the scenarios in order to determine those fleet sizes 
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that would result in a 30-32% average workload. This would then allow us to test the 

efficacy of alternate dispatch policies under lower average workloads.   

The numbers of ambulances for high- and low-average workloads are shown in 

TABLES 13 and 14.  Note that two different dispatch policies, and two sets of fleet sizes, 

provide a total of four different settings for each of the 84 intervals, which imply 4 x 84 = 

336 runs.  

 

TABLE 13: Numbers of ambulances resulting in high average workload 

Intervals Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

12 am – 2 am 11 14 13 14 15 19 17 
2 am – 4 am 13 14 13 13 14 15 16 

4 am – 6 am 12 13 12 13 14 13 13 
6 am – 8 am 15 16 15 15 15 13 13 
8 am – 10 am 17 18 17 17 18 16 15 

10 am – 12 pm 19 19 17 18 19 18 17 
12 pm – 2 pm 19 19 18 19 19 19 18 

2 pm – 4 pm 19 19 19 18 19 18 18 
4 pm – 6 pm 18 19 18 18 19 18 16 

6 pm – 8 pm 17 19 16 16 17 18 16 
8 pm – 10 pm 16 16 15 16 17 18 16 
10 pm – 12 am 14 16 14 14 17 17 15 
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TABLE 14: Numbers of ambulances resulting in low average workload 

Intervals Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
12 am – 2 am 15 21 19 19 20 24 27 
2 am – 4 am 19 19 18 20 18 23 26 
4 am – 6 am 15 14 15 15 16 18 19 
6 am – 8 am 23 22 22 22 22 19 18 
8 am – 10 am 29 30 31 30 29 25 24 
10 am – 12 pm 34 33 33 33 33 29 28 
12 pm – 2 pm 34 33 35 34 34 32 30 
2 pm – 4 pm 36 33 33 34 36 32 31 
4 pm – 6 pm 37 35 35 35 38 32 29 
6 pm – 8 pm 35 33 31 32 32 33 30 
8 pm – 10 pm 28 29 29 29 32 31 29 
10 pm – 12 am 25 26 24 25 30 32 25 

 

In the first set of runs, we used the DECL-provided fleet sizes (high average 

workloads) along with the default (current) dispatch policy of sending the nearest 

ambulance to all calls. TABLE 15 displays the outcomes of these runs for Monday only. 

The columns in TABLE 15, and the subsequent TABLES 16-18, below, represent the 

following: 

 Column “OBJ-Fun” provides the objective function value of the best solution 

found.  

 Under column “OHCA”, we report the expected number of survivors of OHCA 

based on the total number of simulated OHCA incidents within priority 1 calls, as 

well as  the survival probability (SF%).  

 Columns “P1-P3” display, respectively, the number of priority 1-3 calls reached 

under the corresponding target, RT;  the  total number of priority 1-3 calls;  and 

the resulting (percent) coverages.   
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 Column “Workload” displays the workload statistics (average, standard deviation, 

minimum, maximum, and range). For example, in TABLE 15, row ‘12 a.m. – 2 

a.m.’ we display the results from applying the default dispatch policy with a 

DECL- prescribed fleet size of 11  ambulances (high average workload).  Results 

show that the average workload is 0.401 with a range of [0.246-0.482]. There are 

three OHCA calls, where the expected number of survivors, based on realized 

RTs, is 1.506. The corresponding average survival probability is 50.19%.  

 How we track the OHCA calls is an important real-life feature of our proposed 

model. As mentioned earlier, approximately 0.5% of all calls tend to be confirmed as 

OHCA. As previously noted, an OHCA- triggered call must be categorized as ‘priority 

1.’  With the percentage of priority 1 calls being 23.23%, in our trace-driven simulation, 

the percentage of OHCA incidents among priority 1 calls was 2.15%.  

For example, in the specified  time interval (see above), there were a total of 428 

calls from which 100 calls were  randomly sampled as priority 1, 274  as priority 2, and 

54  as priority 3 (with corresponding percentages 23.23%, 63.13% and 13.64%, 

respectively). From the sampled 100 priority 1 calls, three were categorized as OHCA 

(with corresponding percentages 2.15% figure listed above).  

The results from all 336 runs are listed in Appendix C. We analyzed the findings 

for each day, and conducted a series of paired t-tests to determine whether there are 

significant differences between the average values of each of the key performance 

metrics (viz., OHCA survival probability, coverage rates by call priority, and workload 

range). The test results are presented in Appendix D. We found that, overall the results 
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are consistent across ‘days of the week.’ Thus, hereafter we will use Monday’s results to 

summarize the results of our experiments.
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6.4.2. OHCA Survival Probability and Priority 1 Call Coverage Comparisons. 

 We are primarily interested in the magnitude of the difference between the mean 

OHCA survival probabilities resulting from the default dispatch policy (DEF), and the 

alternate dispatch policy of LU; and, further, whether or not this difference is statistically 

significant.  Similarly, we are interested in differences in the mean coverage rates of the 

dispatch policies.   

            For brevity, we formally state the null and alternate hypotheses for the OHCA 

survival probability as follows: 

 H0: The difference in the mean OHCA values under DEF and LU policies is zero. 

 H1: The difference in the mean OHCA values under DEF and LU policies is 

greater than zero. 

TABLE 19 below, summarizes the results of the 20 paired t-tests of Monday’s runs.  

TABLE 19: Summary of paired t-test results 

Mean 
Difference 

High Average 
Workload 

Low Average 
Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA -0.0070 0.33* 0.0000 NA 

P1 Coverage 0.0217 <0.01 0.0491 <0.01 

P2 Coverage 0.1860 <0.01 0.2670 <0.01 

P3 Coverage -0.0033 0.34* 0.0034 0.12* 

WL range 0.1699 <0.01 0.3103 <0.01 
 

 

Under high average workload conditions, we note that the mean difference in 

OHCA survival probability between DEF and LU is -0.0070. While this implies that, on 

Mondays, the LU policy improves OHCA survival probability by 0.7%, it is clearly 
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statistically insignificant (p-value = 0.33). Importantly, across all days, we note nearly 

identical results where the mean differences range from -0.0102 (Sunday) to 0.0227 

(Wednesday) with all statistically insignificant (1-tail, 5% significance level).  

 Under low average workload conditions, the mean difference in OHCA survival 

probability between DEF and LU policies is zero for all days. This is, in fact, an expected 

result.  The system wide ambulance busy probability is in the neighborhood of 30% since 

both dispatch policies send the nearest ambulance to OHCA calls probability of finding 

an idle ambulance nearby is thus much greater than it would be in systems where the 

average busy probability is high.  

The null and alternate hypotheses for priority 1 call coverage are as follows: 

 H0: The difference in the mean priority 1 call coverage values under DEF and LU 

policies is zero. 

 H1: The difference in the mean priority 1 call coverage values under DEF and LU 

policies is greater than zero. 

Under high workload conditions, the mean difference in priority 1 call coverage 

between DEF and LU is seen to be (TABLE 19) 0.0217, and is statistically significant at 

the 𝛼 = 0.01 level. Across all days, we note similar results, i.e., that the difference is 

statistically significant at 𝛼 = 0.01  except for Thursdays at the 𝛼 = 0.05 level. We also 

note that the differences range from 0.0206 (Thursday) to 0.0414 (Sunday).  

Under low average workload conditions, we see nearly identical results where the 

mean differences range from 0.0477 (Sunday) to 0.0620 (Wednesday), with all 

statistically significant (1-tail, 1% significance level).  
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These results suggest that the default and alternative dispatch policies have 

different priority 1 call coverage values.  The former thus achieves 2.06% to 4.14% more 

coverage under high workload conditions, and 4.77% to 6.20% more coverage under low 

workload conditions than does the latter. 

6.4.3. Priority 2 and 3 Call Coverage Comparisons 

Utilizing similar forms from earlier comparisons, the null and alternate 

hypotheses for priority 2 call coverage are as follows: 

 H0: The difference in the mean priority 2 call coverage values under DEF and LU 

policies is zero. 

 H1: The difference in the mean priority 2 call coverage values under DEF and LU 

policies is greater than zero. 

 Referring again to TABLE 19, we find that, under high workload conditions, the 

mean difference in priority 2 call coverage between DEF and LU is 0.1860. This implies 

that, on Mondays, the DEF policy achieves 18.6% more coverage for priority 2 calls. The 

p-value is less than 0.01. We thus reject the null hypothesis that the two policies have 

same mean coverage at the 𝛼 = 0.01  significance level. Across all days, we note 

identical results, where the mean differences range from 0.1699 to 0.1992 and, again, all 

are statistically significant at the 1% single-tail significance level.  

            Under low workload conditions, the mean differences range from 0.2649 to 0.276, 

where, again, all are statistically significant at the 1% significance level. 

The null and alternate hypotheses for priority 3 call coverage are as follows: 

 H0: The difference in the mean priority 3 call coverage values under DEF and LU 

policies is zero. 
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 H1: The difference in the mean priority 3 call coverage values under DEF and LU 

policies is greater than zero. 

 Under high average workload conditions, TABLE 19 results show  that the mean 

difference in priority 3 call coverage between the two policies  is -0.0033 (-0.3%). This 

implies that, on Mondays, the LU policy results in a slightly higher priority 3 call 

coverage. However, the one tail t-test critical value is 0.34, which allows acceptance of 

the null hypothesis, H0.   

Examining other days, we find the same results, except that on Saturdays, a small, 

statistically significant (P-value = 0.025) difference (1.45%) occurs in favor of the DEF 

policy. Again, though, on all other days, the mean difference is not statistically 

significant.  

Under low average workload, the results are similar to those for high workload 

conditions. Thus, with the exception of Tuesday’s results, where the mean difference is 

quite minimal (0.64%) but statistically significant (P-value =0.038), the mean difference 

on all other days was found to be not statistically significant. Hence, we can safely 

conclude that coverage of priority 3 calls under LU policy will not result in a significant 

reduction under either high- or low-workload conditions. This is a finding of some 

practical and theoretical importance.    

6.4.4. Workload Imbalance Comparisons 

Workload range reflects the degree to which the load is balanced/imbalanced 

across all ambulances. It is an important metric that adds to the information needed by 

administrators in order to create a more efficient and effective fleet of ambulances. We 

follow a similar procedure to test the mean difference of workload between the various 
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dispatch policies. According to the design of least utilization dispatch policy described 

previously, we expect to see LU reduce the workload range considerably more relative to 

DEF.  

We formally state the relevant null and alternative hypotheses below: 

 H0: The difference in the mean workload ranges under DEF and LU policies is 

zero. 

 H1: The difference in the mean workload ranges under DEF and LU policies is 

greater than zero. 

 As shown in TABLE 19, under high workload conditions the difference of mean 

ranges between DEF and LU is 0.1699 (16.99%) which is statistically significant at the 

1% significance level. As anticipated, the latter reduced the workload imbalance from 

27.18% to 10.19%, representing a sizeable 62.51% reduction in magnitude. Further, 

across all days, we note significant reductions in workload imbalance where the mean 

differences ranges from 0.1441 to 0.2109, with all statistically significant (1-tail 1% 

significance level). 

 Of note, we observe a larger reduction in imbalances under low workload 

conditions where Monday’s results show a difference of 0.3103 (31.03%). Essentially, 

LU policy reduced the imbalance from 0.4242 to 0.1138, representing a 73.20% 

reduction. Not surprisingly, a t-test shows this reduction to be statistically significant at 

the 1% level. Similarly, across all days, the mean differences ranges from 0.2662 to 

0.3389, where, again, all are statistically significant (1-tail 1% significance level). 
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6.4.5 Overall Comparisons 

From previous sub-sections, we see that neither DEF nor LU is likely to make a 

statistically significant difference in terms of the OHCA survival rate or priority 3 call’s 

coverage. We are thus not able to determine which of them is the better dispatch policy 

based on either OHCA or priority 3 call’s coverage outcomes. 

For the coverage of priority 1 calls, excluding OHCA, DEF is statistically better 

than LU; but, the magnitude of this difference is rather small. For instance, under high 

workload conditions on Mondays, DEF provides coverage of 58.13% of priority 1 calls, 

while LU offers coverage of 55.96%.  

For coverage of priority 2 calls, the difference between DEF and LU is 

statistically significant and substantial in size. For instance, under high workload 

conditions on Mondays, DEF has coverage of 80.52% of priority 2 calls, while LU 

generates only 61.93% coverage. In terms of coverage of priority 1 (excluding OHCA) 

calls, DEF thus provides slightly better performance than does LU.   In covering priority 

2 calls, DEF is considerably better than LU. Interestingly, however, is the fact that, for 

the workload range, LU achieves significantly better outcomes than does DEF. For 

instance, under high workload conditions on Mondays, LU reduces the workload from 

DEF’s 0.2718 to 0.1019, a notable reduction of 62.51%.    

The key reasons for  DEF and LU generating nearly identical outcomes in terms 

of both OHCA and coverage of priority 1 calls is, we believe, the following: Both DEF 

and LU send the nearest available ambulance to priority 1 calls, including OHCA. The 

objective function in the search algorithm heavily favors covering OHCA and priority 1 

calls by placing the units in the areas where these calls tend to originate from. Also, there 
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are very few (<0.5% of all; <2.15% of priority 1 calls) OHCA calls. Lastly, the OHCA 

survival probability is a continuous function based on RT. When an OHCA RT is, say 8 

minutes 1 second vs. 8 minutes, the difference in the computed survival probability is the 

difference 0.2990 – 0.2985 = 0.0005, clearly negligible. Taken all together, mean 

difference in OHCA survival probability between DEF and LU is, as expected, 

negligible. However, none-OHCA priority 1 calls hold the second largest weight and they 

are also being covered with the nearest ambulances. The results show that LU policy 

tends to cover 2-4% less than DEF policy and the difference is statistically significant. 

We believe that this difference is in part due to the simple 0/1 tally function used in the 

objective function (as well as widely in the literature) where a RT of 8 minutes counts 

towards being the covered (1), conversely an RT of 8 minutes 1 second will not count at 

all (0). Further, as we detailed in Chapter 1, Section 1.3, outside the OHCA incidents 

there appears to be no clear connection between fast RTs and patient outcomes. 

Therefore, we can argue that 2-4% less coverage of non-OHCA P1 calls do not 

necessarily imply significant reduction in the patient survival. 

Interestingly, DEF and LU lead to significantly different coverages of priority 2 

calls since the former, unlike the latter, chooses to send its nearest ambulance to priority 

2 calls. This generally results in less travel time and, hence, a shorter RT. Curiously, it is 

not entirely clear why there is little or no difference between the two policies in terms of 

priority 3 call coverage. One possible explanation is that these calls are much less 

insensitive to RT.  For example, in our simulation, the target RT of priority 3 coverage is 

24 minutes, which is not difficult to meet, even if the nearest ambulance is not 

dispatched. The alternative dispatch policy was designed to favor sending less busy 
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vehicles from all those available so it reduces the workload range significantly relative to 

DEF. 

6.4.6 Comparing and Evaluating Priority 1 Coverage via CDFs 

Regardless of the dispatch policy implemented, the simulation optimization 

approach provides detailed coverage statistics by call type, individual workload of all 

ambulances (not shown for brevity), workload ranges and even call by call location and 

dispatch details. The below FIGURE 10 is a snapshot of a piece of detail dispatch output 

data.  

 

 

FIGURE 10: Detailed dispatch output 

 

In order to illustrate one of these features we consider the interval of Monday 

which has the largest call volume in a 2-hour period.  Period 4 pm – 6 pm had, in our 

research, a total of 1021 calls, the largest number amongst the 12 intervals. Of these calls, 
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six were OHCA, 247 were none-OHCA priority 1, 629 were priority 2 calls while 139 

were priority 3 calls. 

          FIGURE 11 shows the cumulative coverage function with respect to response time 

for high average workload mode for all priority 1 calls and FIGURE 12 shows the 

cumulative coverage function with respect to response time for low average workload 

mode for all priority 1 calls. On the graphs the green curve represents default dispatch 

policy, while the red curve is alternative LU dispatch policy.  

These graphs developed from the actual call statistics, and the fitted theoretical 

CDFs, are designed to provide the EMS administrator with the information and flexibility 

to evaluate their deployment and dispatch policies to effectively respond high priority 

calls. For example, via Figure 11 the EMS manager can assess the expected coverage of 

priority 1 calls with, say 8 minutes of RT, which shows that under high average workload 

and DEF dispatch policy it is 69.37%, whereas for LU policy it drops to 64.92%. And 

from Figure 11 we also can tell that under high workload condition DEF achieve slightly 

better priority 1 call coverage when RT < 26 min and the two curves merges towards 

100% coverage when RT>26 min. 
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FIGURE 11: CDF (High workload) of priority 1 calls 

 

FIGURE 12: CDF (Low workload) of priority 1 calls 
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In Figure 12, DEF and LU cross at RT = 5 min (rounded).  When RT < 5 min LU 

is actually performs slightly better than DEF with some small gains in OHCA survival 

probabilities. Whereas when RT > 5 min and RT < 12 min DEF tends to perform slightly 

better. Clearly When RT > 12 both DEF and LU provides 100% coverage.  

In summary, the simulation-optimization approach appears to be superior to 

analytical approaches and can accommodate different dispatch policies and provide a 

holistic analysis of the EMS practices, current or planned. 

 



 

 

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 

In the current research effort, we developed a simulation embedded optimization 

approach to relocate ambulances and determine flexible dispatch policies for maximum 

performance.  The proposed approach is based on a thorough analysis of a large historical 

dataset which makes the model and outcomes more realistic.  

In particular, we considered various call priorities; modeled distribution and travel 

time based on historical data analysis; compared selected dispatch policies; and, then, 

developed weighted objective functions for multiple classes of concerned interests. In 

addition, in our trace-driven simulation model, we included en-route dispatching in which 

ambulances can be dispatched to the next call when one completes a previous call 

regardless of its current location. This, we believe, is the first simulation model to 

incorporate rich, real-life conditions of a functioning EMS. Doing so allows us to remove 

most of the simplifying assumptions that were required in earlier analytical approaches 

that utilize more classic OR/MS models such as integer programming and,   queuing 

theory.   

Three search algorithms (TS, SA and RSHC) were developed and embedded in 

our simulation model. We used both designed (constructed) and real data to tune, test, 

and compare these algorithms for efficiency and effectiveness. We subsequently found 

that TS was the most suitable in terms of solving the maximization problem of interest 

here.  
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We applied our simulation-optimization model to the historical 9-1-1 call dataset 

and compared results with DECL. We then showed that DECL was able to predict 

coverage more accurately under low demand conditions. However, this ability rapidly 

degrades under high congestion and high demand circumstances as it is unable to capture 

those real-life details of central importance in the current research effort. 

In order to capture different types of calls and their different level of interests to 

EMS administration we adapted Knight et al.’s objective function which combines 

heterogeneous outcome measures into a single function that takes four types of calls into 

consideration. The objective function was able to capture a variety of phenomena of 

interest to EMS administrators, while providing sufficient flexibility for them to create 

their own ‘best’ objective function.  In this regard, we applied two dispatch policies (DEF 

and LU) in an effort to examine how various policies might affect the performance of an 

EMS system. 

We ran our simulation model for seven days, creating 12 time intervals within 

each day under both high and low workload conditions. This was done using both two 

dispatch policies. Results suggest that there is little or no difference between DEF and 

LU in terms of OHCA survival rate and priority 3 call coverage. DEF achieves higher 

coverage of priority 2 calls than does LU. Although DEF tends to have better 

performance in its coverage of priority 1 calls, the difference is rather small and in all 

likelihood does not impact patient outcomes. On the other hand LU significantly reduced 

the workload range which suggests that it can help balance the workload amongst 

ambulances and potentially have a positive impact on quality of medical care delivered 

by the crews. 
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In general, there appears to be some benefits to practicing DEF or LU dispatch 

policy. We are able offer some guidelines. For example, if an EMS administrator is 

concerned more about strict call coverage vs., say, workload balance of ambulance crews, 

he/she should probably favor the default dispatch policy that sends the nearest ambulance 

to all calls. On the other hand, if he/she seeks a more balanced workload amongst 

vehicles, LU policy is clearly more appropriate. However, should an EMS agency adopt a 

tiered dispatch policy similar to LU they should monitor RTs and patient outcomes as 

well as keeping track of coverage statistics which are the industry norm. We have thus 

demonstrated that our proposed approach can be used by EMS managers to evaluate their 

current practices and test the efficacy of alternate policies.   

Although the findings are promising we are quite aware of the potential 

limitations of our approach.  The simulation-optimization model can be applied in a true 

GIS environment utilizing the exact roads and highways, including one-way streets which 

will further increase its realism and usefulness. Ambulance travel models can also be 

improved by taking into account the traffic conditions which vary especially during the 

rush hours.  

In terms of future research, there are a number of possible directions. The 

approach can be extended to consider optimal time of base (post) swaps for the busiest 

and least busy pairs of ambulances in order to balance their workloads, while dispatching 

the closest unit to priority 1 and 2 calls. Another extension of the base simulation-

optimization model can be to include a two-tiered response where fire engines with 

EMTs are dispatched to P3 calls and ambulances are dispatched to P1 & P2 calls. After 

EMTs assess the patient’s condition they can request an ambulance for transfer to a 
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hospital. Finally, our simulation optimization model can be extended to study emergency 

room crowding and ambulance diversion policies. 
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APPENDIX A:  MEXCLP 

The classic Maximum Expected Coverage Location Problem (MEXCLP) is 

developed  by Daskin [36].  In this model, it is assumed that each ambulance has the 

same probability of being unavailable to answer a call and all ambulances operate 

independently.  Let, 

  = Average arrival rate, and   = Average service rate, 
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The objective function (3) maximizes the expected number of covered demands.  The 

inner term 



m

k

k

jkj pyh
1

1  when multiplied by )1( p  represents the expected number of 

covered demand at demand node j.  This when summed overall demand nodes j gives the 

expected number of covered demands.  Constraint (4) tracks the number of times each 
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zone is covered and constraint (5) places an upper bound on the fleet size. Constraints (6) 

and (7) are integrality constraints.  
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APPENDIX B: DECL 

The dynamic available coverage location (DECL) model proposed by 

Rajagopalan et al. [74] determines the minimum number of ambulances and their 

locations  to meet a system wide coverage requirement for each time interval. The 

authors utilize Jarvis’ hypercube approximation algorithm [53].  An added advantage of 

Jarvis’ methodology is that it allows for server specific general service time distributions 

which in this study we found that they are normally distributed. Let t be the index of time 

intervals, hj,t be the fraction of demand at node j at time interval t, n be the number of 

nodes in the system, and ct be the minimum expected coverage requirement at time t.  Let 

tkp ,  be the busy probability of the 𝑘𝑡ℎ preferred server for a given demand node at time 

interval t, ρt be the average system busy probability at time interval t, m be the total 

number of servers available for deployment, and set Nj is the set of all servers that can 

cover node j.  The main decision variable is defined as follows:  
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Objective (9) minimizes the total number of ambulances deployed. Constraint (10) counts 

the number of ambulances that cover each node and tracks which server’s cover each 

demand node. Constraint (11) ensures that total system wide coverage will be greater 

than tc  the pre-specified required coverage. A constraint (12) sets the maximum number 

of servers in the system. Constraints (13) enforce binary and non-negativity requirements. 
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APPENDIX D: T-TESTS OF TUESDAY TO SUNDAY 

 

TABLE 44: Tuesday summary of paired t-test results 

Tuesday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0067 0.34* 0.0000 NA 

P1 Coverage 0.0327 <0.01 0.0384 <0.01 

P2 Coverage 0.1866 <0.01 0.2706 <0.01 

P3 Coverage 0.0126 0.18* 0.0064 <0.05 

WL range 0.1740 <0.01 0.2850 <0.01 
 

TABLE 45: Wednesday summary of paired t-test results 

Wednesday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0227 <0.10 0.0000 NA 

P1 Coverage 0.0403 <0.01 0.0588 <0.01 

P2 Coverage 0.1699 <0.01 0.2681 <0.01 

P3 Coverage 0.0051 0.21* 0.0009 0.42* 

WL range 0.1644 <0.01 0.3324 <0.01 
 

TABLE 46: Thursday summary of paired t-test results 

Thursday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0000 NA 0.0000 NA 

P1 Coverage 0.0206 <0.05 0.0552 <0.01 

P2 Coverage 0.1915 <0.01 0.2715 <0.01 

P3 Coverage 0.0120 0.08* -0.0004 0.46* 

WL range 0.1982 <0.01 0.3104 <0.01 
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TABLE 47: Friday summary of paired t-test results 

Friday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0074 0.17* 0.0000 NA 

P1 Coverage 0.0327 <0.01 0.0660 <0.01 

P2 Coverage 0.1992 <0.01 0.2649 <0.01 

P3 Coverage 0.0129 0.11* 0.0067 0.19* 

WL range 0.1930 <0.01 0.3183 <0.01 
 

TABLE 48: Saturday summary of paired t-test results 

Saturday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0082 0.17* 0.0000 NA 

P1 Coverage 0.0194 <0.01 0.0495 <0.01 

P2 Coverage 0.1900 <0.01 0.2738 <0.01 

P3 Coverage 0.0145 <0.05 0.0048 0.15* 

WL range 0.1441 <0.01 0.2662 <0.01 
 

TABLE 49: Sunday summary of paired t-test results 

Sunday 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA -0.0102 0.17* 0.0000 NA 

P1 Coverage 0.0414 <0.01 0.0440 <0.01 

P2 Coverage 0.1893 <0.01 0.2761 <0.01 

P3 Coverage 0.0002 0.49* 0.0014 0.28* 

WL range 0.2109 <0.01 0.3389 <0.01 
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TABLE 50: All days’ t-tests results 

All 84 

Mean Difference 

High Average Workload Low Average Workload 

DEF - LU DEF - LU 

  Diff. P - value Diff. P - value 

OHCA 0.0040 0.19* 0.0000 NA 

P1 Coverage 0.0298 <0.01 0.0516 <0.01 

P2 Coverage 0.1875 <0.01 0.2703 <0.01 

P3 Coverage 0.0077 <0.05 0.0033 <0.05 

WL range 0.1792 <0.01 0.3088 <0.01 
 

 

 

 

 

 

 


