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ABSTRACT
XUN LI Developing and validating joint dynamic ambulance location and flexible
dispatching strategies: a simulation-optimization approach (Under the direction of DR.
CEM SAYDAM)

Emergency Medical Services (EMS) system’s mission is to provide timely and
effective treatment to anyone in need of urgent medical care throughout their jurisdiction.
The main goal of most EMS deployment is to reduce mortality, disability, pain and
suffering. There are several metrics for level of EMS service, and among them, response
time (RT) and call coverage rate are the most popular ones used by EMS providers and
researchers. Ability to provide timely response is affected by fleet size and the locations
of the ambulances. Hence, literature on ambulance location has been dominated by
models which generally maximize or guarantee coverage, minimize mean response time,
and alike. Essentially all models, including highly sophisticated queuing embedded
optimization models, rely on several simplifying assumptions in order to make them
tractable. These include the vehicle busy probabilities calculated a priori, dispatching the
nearest ambulance to all incidents, a zone (call demand) being covered (can be reached)
if it is within the distance/time threshold as a binary exogenous variable, static unit
dispatch, and so on. The default dispatch policy is to send the nearest ambulance to all
medical emergencies and it is widely accepted by many EMS providers. However,
sending nearest ambulance is not always optimal, often imposes heavy workloads on
ambulance crews posted in high demand zones while reducing available coverage or
requiring ambulance relocations to ensure high demand zones are covered adequately.

In this study we propose a simulation embedded optimization approach for

relocating ambulances and determining flexible dispatch policies that balance ambulance



Y,
crew workloads while meeting fast response times for life-threatening calls. A realistic
simulation model allows us to remove most of the simplifying assumptions which are
required in analytical approaches such as integer programming models as well as queuing
theory based models. We show that this approach provides a much richer output that can
be used by EMS managers to estimate lives saved for multiple life threatening situations
while providing a detailed statistics on important performance measures such as actual
ambulance workloads and response times. We validate our approach with an advanced
coverage optimization model using real-life data. We present computational statistics and

demonstrate the efficacy of a tiered dispatch policy using real-world data.
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CHAPTER 1: INTRODUCTION

1.1. Problem Domain

Emergency Medical Services (EMS) system’s mission is to provide timely and
effective treatment to anyone in need of urgent medical care throughout their jurisdiction.
The main goal of most EMS deployment is to reduce mortality, disability, pain and
suffering. A typical process of providing emergency medical service begins when an
emergency call is received by the emergency dispatch call center, the emergency medical
dispatcher assesses the call by asking few questions and determines its urgency, and
determines which EMS vehicle to dispatch according to the priority of the call. High
priority calls are of great interest to the EMS provider, among which most are life
threating. Usually the closest available vehicle is sent to the accident scene as quickly as
possible [1, 2]. When the vehicle reaches the scene, some form of on-scene treatment is
provided to the patient. Sometimes, a second vehicle with higher skilled officers may also
be dispatched to ensure the correct level of care is provided at the scene for high priority
calls. If the treatment on the scene is not satisfactory, then the patient is transported to a
nearest hospital in order to receive further care. Otherwise, the vehicle becomes free at
the scene and typically returns to its designated home base or a temporary post to await
its next call [3-5].

Healthcare is an area of growing importance as well as cost in most countries and
EMS is a crucial component of modern healthcare system. As a result EMS is an

important research domain that has received a great deal of attention in the operations
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research (OR) community [4]. The design and operation of EMS has been a vibrant area
for operation research professionals since mid-1960’s [6]. Generally, most body of
literature in EMS researches field concentrate on two objectives: reducing cost of
operation and increasing the level of EMS service. EMS is often operated by city or local
government with a limited budget [7, 8]. The maintenance cost of ambulances and the
personnel costs make up majority the operating costs of EMS. Consequently, the number
of ambulances is often used as a surrogate unit for cost.

1.2. EMS Performance Metrics

There are several metrics for level of EMS service, and among them, response
time and call coverage rate are the most popular ones used by EMS providers and
researchers [4, 6, 9]. Response time (RT) is often defined as the elapsed time between the
call being received at the dispatch center and an ambulance arriving at the incident scene.
Quickly arriving at the incident scene does reduce suffering while satisfying the public’s
perception that shorter RT always save lives. RTs are how EMS providers compete for
contracts, and it’s how EMS leadership proves to the community that they meet or exceed
the contractually agreed performance goals [10]. Historically, RT has been perceived as
a critically important factor and has been widely used as one of the most important
criteria for evaluating and designing EMS. In 1979, Eisenberg and colleagues reported
that survival from witnessed prehospital cardiac arrest of a medical origin in adults was
maximized if the time from collapse to cardiopulmonary resuscitation and the time from
collapse to definitive care were 4 and 8 minutes respectively [11]. Some follow up
research also showed that sudden cardiac arrests require RT less than five minutes to be

effective [12, 13] and that when RT is reduced from 14 minutes to 5 minutes the survival
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rate for cardiac arrests could almost be doubled [12]. One study indicates that for every
30 minutes of delay in receiving percutaneous coronary intervention (PCI), the
myocardial infarction with ST elevation patient’s one-year mortality increases by 7.5%
[14].

Coverage is another critical aspect researchers must consider as well as EMS
administrators or managers. A demand call is said to be covered if it can be reached
within a certain pre-specified response time threshold (RTT) by at least one ambulance.
Often researchers implement a given RTT as a distance threshold in their models. In most
optimization models demand locations within the distance threshold of an ambulance are
assumed to be covered and any demand location further away is not covered [4]. A call
that cannot be reached by a vehicle within the RTT is said to be a lost call. The
percentage of calls with response times less than RTT is referred as coverage [4]. The
performance targets for response times vary by the location (metropolitan or rural area)
of the call and the priority of the call. Metropolitan calls that are designated as life
threatening (high priority) typically requires the shortest target response time, while low
priority rural calls have longer RTT [5]. Although there is no universally accepted
response time standard in the U.S. the most common EMS (ambulance) response time
standard is based on National Fire Protection Association (NFPA) 1720 which is 8
minutes 59 seconds (inclusive of the 60 seconds of call handling time) for 90 percent of
life threating calls [15].

1.3. Response Time and Patient Outcomes
Recently, the clinical effectiveness of using RT as a universal rule has been

questioned. It makes intuitive sense that fast ambulance RTs should influence patient
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outcome, however, apart from cardiac arrest [13, 16], no evidence found in literature
suggests a direct relationship between prehospital RTs and patient outcomes. In fact,
there is growing evidence that, apart from out of hospital cardiac arrest, penetrating
trauma (e.g., critical gunshot wound) kinds of medical emergencies, fast response times
are not associated with improved patient outcomes [12]. In trauma cases the RT can be
longer than five or eight minutes as long as the patient is transferred to a trauma center
under one hour which is known as the “golden hour” or “golden time” [17].

Blackwell et al. [18] tested the hypothesis that patient outcomes do not differ
substantially by a case-control retrospective study. The study patients which are cases
defined as Priority 1 transports with RTs exceeding 10:59 minutes were compared with
controls with RTs of 10:59 minutes or less. Their results indicated that the two groups do
not have a statistically significant difference in neither the mortality nor the frequency of
critical procedural interventions. Another retrospective study set in an EMS system that
responds to calls for a population of approximately 1 million by Blanchard et al. [19]
compared the risk of mortality in patients (all types) who received a response time greater
or equal to 8 minutes with that of those who did not. This study suggested that RTs of
> 8 minutes were not associated with a decrease of survival to hospital discharge. Weiss
et al. [20] conducted a study in specific traumatic and medical emergencies and found no
evidence that increasing RT is associated with worse patients outcome. Though RTs
represent an important performance indicator, but taken alone, it does not completely
predict outcome of disease severity or mortality

The ultimate goal of an EMS is to maximize the number of patients that survive.

Hence patient survival is regarded as the real performance measure of EMS systems [21].
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As mentioned above in practice RTT is often used to evaluate EMS as opposed to patient
survival for the following reasons [9]: First, estimating patient survival is difficult since
it is assessed at the hospital and a patient may be discharged several days after delivery to
the emergency department. Second, patient survival information is not readily available
due to medical privacy regulations. On the other hand, RT statistics are easy to obtain and
evaluate. However, without including survival rate, the coverage concept based on RTT
has an important limitation due to its black-and-white nature [21]. Locating ambulances
according to RTT may result in arbitrarily bad patient survival rates. As a result of
increasing questions about the effectiveness of RTs, a few researchers began
incorporating patient survivability in their objectives. Erkut et al. [21] illustrate the
importance of explicitly linking ambulance location to patient survivability and modeled
a survival function as a monotonically decreasing function of the response time that
returns the probability of survival for the patient. They proposed a new model, Maximal
Survival Location Problem (MSLP) by incorporating explicitly this survival function into
existing covering models. Unlike previous covering models whose objective is to
maximize total covered demand based on RTT, MSLP aims to maximize the expected
number of survival patients. MSLP is able to examine consequences of different response
time overcoming the weakness of hard RTT. Knight et al. [22] developed the Maximal
Expected Survival Location Model for heterogeneous Patients (MESLMHP) extending
Erkut et al.’s work. MESLMHP used a novel approach and made two significant
advancements. Firstly, MESLMHP incorporates survival functions for capturing
multiple-classes of heterogeneous patients rather than a single patient class in MSLP thus

enabling more realistic analysis for various outcome measures. Secondly, the objective of
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MESLMHP is to maximize the overall expected patient survival probability, where the
survival probability of each patient type is summed up according to its weight.
1.4. Dispatch Policy

EMS vehicle dispatch policy is the protocol of sending vehicles to the incident
scenes according to the priority of the calls. Emergency medical 9-1-1 calls are typically
classified as Priority 1, 2, 3, where Priority 1 calls are life threatening emergencies,
Priority 2 calls are emergencies that may be life-threatening, and Priority 3 calls do not
appear to be life-threatening emergencies [9]. 2010 JEMS Survey [8] showed that 82.7%
of the top 200 cities reported having a protocol-driven dispatch process and 68.1%
indicated they objectively triage every call. The default dispatch policy is to send the
nearest ambulance to all medical emergencies and it is widely accepted by many EMS
providers. However, sending nearest ambulance is not always optimal and sometimes can
be problematic. For instance fast response with lights and sirens can potentially place
EMS providers, patients and in nearby public at risk [23, 24]. Carter et al. [25] showed
the common rule of sending the closest ambulance is not always optimal by using a
simple case where two units, A and B, have equally large areas of responsibility, but A’s
area has a significantly higher call frequency. In this case, allowing B to respond to some
of the calls for which A is the closest unit will reduce the mean response time. Persse et
al. [26] analyzed data from Houston and showed that prioritized dispatch policy where
advanced life support (ALS) resources are dispatched to priority 1 calls significantly
improves survival rates.

Since sending ambulances to all 9-1-1 calls reduces available coverage by taking

valuable response resources out of place which jeopardizes another possible more critical
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request [8] a well-designed dispatch policy is necessary for an effective and efficient
EMS system. Andersson and Varbrand [2] described the development of decision support
tools for dynamic ambulance relocation and automatic ambulance dispatching. They
calculated preparedness in a way as a trigger for their automatic relocation module. Once
the level of preparedness has dropped below a certain threshold value, relocation of one
or more ambulances is executed to raise the preparedness value. Bandara et al. [27]
evaluated the performance of dispatching rules in terms of patients’ survival probability
to determine optimal dispatching strategies for EMS systems. A priority list based on the
location and degree of urgency of the call is included in their model. They found that the
optimal dispatching rules are different for different types of calls. Sending the closest
ambulance is optimal for priority 1 calls while sending ambulance by following an
ordered preference list is optimal for priority 2 calls. Toro-D Bz et al. [1] developed a
joint model combining location and dispatching decisions simultaneously. Their results
show that the commonly used closet dispatching rule leads to the best solutions when the
objective is minimizing the mean response time and maximizing coverage
simultaneously.

The underlying argument of sending the nearest ambulance to incidents is that
shorter the response time and the better patient outcomes. As discussed earlier some high-
acuity calls require a timely response such as cardiac arrest, shock and myocardial
infarction but to treat every EMS call as though it’s a cardiac arrest puts EMS providers
and the public in danger because many other conditions are not time sensitive [10].
Emergency calls have different priorities and not every emergency call is life threatening.

Even for life-threatening calls (priority 1) except for cardiac arrest which makes only
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small part of all events, there is no direct association between shorter RTs and increasing
survival of patients at hospital discharge. Based on the weakness and potential problems
of always sending the nearest ambulance discussed above we believe it is necessary to
compare alternative dispatch policies with the default dispatch policy.

1.5 Study Motivation and Expected Contributions

This proposal has the following objectives. Our primary objective is to develop a
realistic model to locate and dispatch ambulances by taking into account call priorities
while meeting fast response times for life-threatening calls. Our second objective is to
develop and test the efficacy of alternative dispatch policies with that of the closest
ambulance dispatch policy. To achieve these objectives, we propose a simulation-
optimization approach which removes the need for majority of the simplifying
assumptions needed for mathematical modeling approaches. With the simulation model
we implement alternate dispatch policies such as dispatching the nearest ambulance to
priority 1 calls while for all other calls, we consider dispatch policies such as “dispatch
the ambulance which has the least utilization”, and others. Further, a high fidelity
simulation model allows us to track various performance measures and produce a
continuous graph depicting the cumulative density function of the realized coverage. This
graph will enable the decision makers to easily assess the predicted survival rates for
multiple classes of high acuity medical emergencies.

As mentioned before MSLP is a relatively new research direction and is shown to
be superior to more traditional approaches by Knight et al. [22]. This research will further
contribute to this novel research direction. Our approach is based on the works of McLay

and Mayorga [9], Knight et al. [22] and closely follows the principles outlined in
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Mason’s simulation optimization approach [28]. We expect to show that using the
maximal expected coverage location model to generate the initial vehicle locations
followed by a high fidelity simulation model embedded optimization algorithm results in
improved response and total service times for various critical emergencies. To the best of
our knowledge, our high fidelity simulation model which includes real-life operational
details such as dispatching ambulances when they become available regardless of their
current locations (e.g., at the incident scene, at an hospital, etc.), patient transports to area
hospitals and travel times based on real-data, has not been developed and used in a
simulation-optimization framework. Another important contribution is the application of
a weighted objective function which includes cardiac arrest survival function, tiered
response times based on call priorities, and other metrics to be determined via
experiments. Furthermore, with our approach we are able to test the efficacy of flexible
dispatch policies on coverage statistics and ambulance crew workloads which has not
been done previously.

In summary, with our simulation-optimization methodology reflects significantly
more details of real EMS operations. Hence the results are expected to be more useful
and practical for EMS administrators and managers.

1.6 Study Outline

In Chapter 2 we review relevant EMS ambulance location maximization and
dispatch policy literature and in Chapter 3 we clean and conduct a thorough analysis of a
historical EMS dataset to prepare the ground for development of our simulation model. In
Chapter 4 we present the development of our simulation model based on our data analysis

and previous literature. In Chapter 5 we describe the heuristic search algorithms
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implemented for our simulation-optimization approach and fine tune them via an
experimental design. In Chapter 6 we apply our approach to Charlotte, and finally in
Chapter 7 we summarize our results, discuss the limitations of this study and suggest

directions for future research.



CHAPTER 2: LITERATURE REVIEW

2.1 A Complex and Important Research Domain

Locating ambulances and vehicle dispatching policies are the key parts of EMS
planning and management because they determine the performance of providing
emergency medical service, which ultimately influences patient’s life intimately. EMS
vehicle locating, dispatching, and relocating are a very complex research topic due to the
high variability of the call volume, location and severity of EMS, making it difficult to
decide where to position ambulances and their crews while they wait for their next call
[4]. The complexity and the importance of EMS has attracted a great amount of research
interests which makes it one of the richest and most diverse areas in OR literature.
Brotcorne et al. [29], Goldberg [6], Farahani et al. [30], and Li et al. [31] provide
excellent reviews of the research developments in this domain. These location and
relocation models span from early static, deterministic models to recent probabilistic and
dynamic models. For the purpose of this study, we briefly review milestone models and
those models relevant to our research and important optimization techniques used to
solve those models.
2.2 Development of Classical Models and Extensions

The early models proposed were generally deterministic and static. Typically
these pioneer models pursued the optimal solutions by using integer linear programming
formulations. Set Covering Location Problem (SCLP) introduced by Toregas, Swain,

ReVelle and Bergman [32] is widely known as the first EMS location covering model.
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The SCLP minimizes the total number of ambulances needed to cover all demand points.
The SCLP is a mandatory coverage model which assumes there are enough resources to
acquire the servers needed to cover all demand points. The next important development
was the Maximum Coverage Location Problem (MCLP) proposed by Church and
ReVelle [33]. The MCLP use an alternative approach and overcomes some of the
shortcomings of SCLP. Instead of minimizing the number of facilities needed to cover
the entire population as in SCLP, MCLP maximizes demand coverage of the population
constrained by the capability of EMS, represented by the ambulance fleet size. The SCLP
and MCLP did not take into account that once an ambulance is called for service it might
not be available to cover the next incoming call. This issue is quite common in congested
systems. Hogan and ReVelle [34] introduced the concept of backup coverage which
addressed the congestion problem in single coverage models by providing extra coverage.
Gendreau et al. [35] proposed the Double Standard Model (DSM) and designed a tabu
search heuristic for its solution. The DSM requires that all the population must be
covered within a longer distance and a propotion of the demand must also be covered
within a shorter distance standard. One of the first models explicitly addressing the
unavailability probability of ambulances is the Maximum expected covering Location
Problem (MEXCLP) suggested by Daskin [36] which maximizes the expected overage of
demand while taking into account the possibility of ambulances being unavailable. In
MEXCLP, the congestion is modeled by assuming that all servers (ambulances) operate
independently and have the same busy probability p, computed a priori. Daskin showed
that the coverage probability of a demand point can be modeled as 1 — p™ where m is the

number of ambulances located with the RTT. Similarly ReVelle and Hogan [37]
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addressed the congestion effect in the Maximum Availability Location Problem (MALP)
by explicitly considering ambulance busy probabilities and developing an expression for
coverage reliability. The MALP | assumes all ambulances are equally busy while MALP
Il divides the region into sectors and computes busy fraction for each sector. These are
some of the early probabilistic models for ambulance location problem and they are
followed by many extensions. The adjusted MEXCLP model (AMEXCLP) proposed by
Batta et al. [38] extended MEXCLP by relaxing three of MEXCLP’s assumptions and
utilizing the hypercube queuing model in its solution procedure. The AMEXCLP takes
into account that ambulances do not operate independently and utilized the correction
factor derived by Larson [39]. An extension of MEXCLP called TIMEXCLP, developed
by Repede and Bernardo [40] explicitly considered variations in demand throughout the
day. Another extension of MEXCLP proposed by Goldberg et al. [41] considered the
stochastic travel times and the unequal vehicle utilizations. Marianov and ReVelle [42]
proposed the queuing probabilistic location set covering problem (QPLSCP). In
QPLSCP, busy fractions are site specific and where the minimum number of ambulances
necessary to cover a demand point is computed under the condition that the probability of
all of them being simultaneously busy does not exceed a given threshold.

2.3 Dynamic Redeployment Models

Dynamic redeployment models are more recent and more sophisticated in nature.
Dynamic models deal with the real-time planning and management of EMS. It is well
documented that demand for ambulances fluctuates spatially and temporally by day-of-
the-week and time-of-the-day [43]. Dynamic redeployment models can aid managers

make daily or even hourly plans to better respond to predictable demand fluctuations by
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time and space [44]. The basic idea of dynamic methods is to relocate emergency
vehicles periodically in a strategic way to protect more areas with updated new
information such as current status of ambulances and demand forecasts. The ideal way is
that whenever there are idle EMS facilities located in low demand areas to move some of
them to higher demand areas. Compared with static models, dynamic models are more
flexible [31] and hence more challenging to solve requiring more powerful solution
techniques [29]. Dynamic models are relatively rare in the ambulance location literature.
The models currently found in the literature can be categorized into two categories: (1)
Real-time, where ambulance redeployment decisions are computed with every call and
(2) Planned Multi-period, where an ambulance redeployment plan considers an entire day
or week based on demand forecasts [29, 43].

2.4 Real-time Redeployment Models

Real-time redeployment models typically relocate ambulances every time one is
dispatched or becomes available for dispatch. The work by Gendreau et al. [45] is among
the earliest real time redeployment models in ambulance literature. They developed the
Dynamic Double Standard Model at time t (DDSM") based on their previous work on
DSM. The DDSM" maximizes double coverage of demand while minimizing relocation
costs. The DDSM' penalizes (1) repeated relocation of the same vehicle, (2) long round
trips and (3) long trips between two sites. The model’s input parameters are updated each
time a call is received and DDSM" is solved each time. They developed a parallel tabu
search heuristic to solve DDSM' quickly in real time. However, as pointed by the
Gendreau et al. [46], the real-time redeployment algorithms heavily rely on the

computing capability of EMS dispatch center. In fact not every center is able to do
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parallel computing. Furthermore when calls arrive in quick succession, there may not be
enough time to generate a new solution or the solution could be infeasible. In addition,
frequent ambulance relocations can cause a confusion of drivers because of the frequent
changes of the route or destination [27] . As a result, Gendreau et al. [46] proposed an
alternative approach i.e. preplanned repositioning in the Maximal Expected Coverage
Relocation Problem (MECRP) [46]. In MECRP, a series of location scenarios for all
vehicles are precomputed as a priori compliance table which can readily be applied
wherever a call is made. This new approach comes along with the limitation of the
number of ambulances to be planned. Similarly using compliance table policy Alanis et
al. [47] developed a two-dimensional Markov chain which relaxed assumptions of
deterministic response time and binomial probability distribution for the number of busy
ambulances in EMCRP. The authors show that the model can be used to find the best or
near optimal compliance table from a set of 100 random tables with the number of
ambulances up to 18.

Maxwell et al. [48] formulated ambulance redeployment as a Markov decision
process and explored a novel approximate dynamic programming (ADP) approach for
solving real-time redeployment policy. Recently Schmid [49] proposed a stochastic
dynamic model explicitly including time-dependent information for both traveling times
and the request volume to maximize the number of calls reached within a time threshold.
They also used an ADP approach to solve the optimization problem resulting in faster

computation and improved performance.
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2.5 Multi-period Redeployment Models

The TIMEXCLP can be viewed as the earliest multi-period redeployment model
[43]. Schmid & Doerner [50] extended DSM from a single to a multi-period model.
Time-dependent variations in travel times and coverage are also explicitly considered in
this model. They formulated the problem as a mixed integer program which aims to
optimize coverage at various points in time simultaneously and they developed a
metaheuristic algorithm based on variable neighborhood search to solve it. Erdogan et al.
[51] developed a two-stage approach to scheduling ambulance crews to maximize
expected coverage for a typical planning horizon of one week. They utilize Budge et al.’s
approximate hypercube model [52] to compute station-specific busy probabilities and
solve the ambulance redeployment problem for every hour of the week. They use the
output of the first stage as the input for the next stage of two crew-scheduling models and
they show the tractable characteristic of the second approach. Rajagopalan et al. [44]
proposed the Dynamic Available Coverage Location model (DACL) with the objective of
minimizing the number of ambulances while meeting specified coverage availability
requirements. Their approach extended QPLSCP by incorporating ambulance specific
busy probabilities which are solved by using Jarvis’ hypercube approximation algorithm
[53]. They solved DACL using tabu search heuristic with a look-ahead procedure.

The number of relocations is not considered in the objective of DACL. Patients
are not the only stake holder and the crew of EMS also should be considered. Frequent
relocation often results in crew fatigue and lower morale and which in turn damages the
quality of the service [7, 54]. More recently, Saydam et al. [43] proposed the Dynamic

Redeployment Covering Location model (DRCL) which is an extension of the DACL to



17
address crew fatigue phenomena. The DRCL has two objectives: minimize the number of
ambulances and minimize the number of redeployments for a given fleet during a given
shift, while meeting coverage requirements. They developed a fast meta-heuristic based
on a steepest descent search and showed this new approach outperforms DACL across all
key criteria.

2.6 Optimization Techniques

Ambulance location and relocation problems are typically NP-complete problems
[55, 56] therefore to exactly solve them is prohibitive in computing time. Designing
effective and efficient algorithms/solution procedures to solve the optimization problem
IS quite necessary in most situations. The heuristic algorithms are broadly used to solve
large scale and NP-hard problems and the main heuristic algorithms utilized in this
domain include Tabu Search (TS), Lagrangian Relaxation (LR), Simulated Annealing
(SA) and Genetic Algorithm (GA) [31]. We refer the reader to Li et al. [31] for a
comprehensive review of optimization techniques to solve ambulance location and
relocation models. Brotcorne et al. [57] proposed heuristics for large-scale covering-
location problems with continuous potential location sites and discrete sets of demand
points. Beasley and Chu [58], Saydam and Aytug [59], Inanoni et al. [60] and Toro Diaz
et al. [1] used GAs to solve their model. Gendreau et al. [35, 45] and Rajagopalan et al.
[44] used TS to solve their EMS models. Arostegui et al. [61] conducted experimental
studies to compare the performance of TS, SA and GA applied to EMS location model.
They found that TS always yields satisfactory solutions faster and is easy to develop and
implement. Similarly, Rajagopalan et al. [62] compared the performance of several

meta-heuristics applied to a probabilistic location model via a statistical experimental
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design. They analyzed the results using ANOVA and showed that on average TS and SA
find the best solutions in the least amount of time.

2.7 Simulation Approach in EMS Literature

While using simulation technique for EMS research traces back to about 1970s, it
is much less frequently utilized and often it has been used as a descriptive tool to evaluate
the quality of solutions obtained via an analytical approach. Savas [63] used simulation as
a tool to analyze the possible improvements in ambulance service of New York.
Haghani et al. [64] developed a simulation model to evaluate alternative emergency
vehicle dispatching strategies aiming to minimize average response times. Andersson and
Varbrand [2] developed a simulation model to test their decision support tools. Restrepo
et al. [65] and Maxwell et al. [48] are recent researchers who developed simulation
approaches for final evaluation of modeling. Yue et al. [66] used a simulation-based
approach to maximize coverage over a distribution of requests.

St John Ambulance is said to be the first one that has implemented a
comprehensive simulation technique in the ambulance location area [5]. St John
Ambulance founded in 1877 in the United Kingdom is a well-known provider of medical
first aid and ambulance service. It first used an ambulance simulation system named
BartSim to address staff scheduling problems [28, 67]. Computer simulation based EMS
models tend to have a higher degree of detail and try to precisely mimic the operations of
the actual system. They also can have a high degree of face validity and can obtain

extremely accurate replication and validation results [6].



CHAPTER 3: DATA ANALYSIS

In order to develop a realistic simulation model we analyzed historical emergency
call dataset from Mecklenburg County, Charlotte, North Carolina. The dataset is
collected from a region of approximately 540 square miles with a population of 801,137
in 2004. The original dataset provided by the emergency medical services agency
(MEDIC) has 79,890 records. This dataset includes records of single- and multi-unit
dispatches to 62,008 calls they received and scheduled, non-emergency patient transport
records. The records include important fields for this study such as the call time stamp,
call priority (1-4 for medical emergencies), latitude and longitude of the incident (patient)
location, the responding unit(s) location coordinates, call-, chute-, travel-, service-times,
and others. We first cleaned the data and compiled statistics for the following key
variables:

e Call Time — the interval from a call being received to the dispatch of an
ambulance.

e Chute Time — the time between the dispatch and the paramedic en route
toward the incident scene.

e Travel Time — the time from the ambulance en route until its arrival at the
incident scene.

e Service Time — the time elapse from the ambulance’s arrival at the scene

until it becomes available for the next dispatch.



20
e Distance to the scene — the distance between the responding ambulance
current location and the incident scene.
e Single and multi-vehicle responses.

3.1 Data Cleaning Process
Prior to computing statistics and fitting distributions to key variables the data
required some cleaning due to missing or incorrectly entered fields. First we only kept
records which were identified as medical dispatches with call priorities 1-4, where 1 is a
life threatening event as assessed at the time of the 911 call, also known as a delta-level
event. This reduced the dataset to a total of 64,678 records, which comprise 81% of all
dispatches. Second, we deleted records with blank fields for any of five variables. Third,
we screened the data for apparent errors such as negative values in which case we
eliminated that record and corrected errors such as latitude and longitude in reverse hence
wrong columns. Fourth, we scrutinized the data by checking whether the values are
reasonable. Each variable has practical meaning such that the values should fall in
certain scope based on current operational practices, common sense and literature. For
example, occasionally 9-1-1 call time exceeds several minutes whereas the dispatcher
dispatches an ambulance early in the call time while staying on the phone assisting either
the patient or the caller. We used a group of presumed scopes for the five variables: 0.25
minutes < Call Time < 5 minutes, 0.25 minutes< Chute Time < 5 minutes, 1 minute
<Travel Time<30 minutes, and Distance < 15 miles. We excluded the records with values
outside these ranges from the statistical analyses. The data cleaning process essentially
eliminated about 8% of the records leaving 59,622 records to study single and multiple

dispatch frequencies, compute descriptive statistics, and apply goodness-of-fit tests.
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3.2 Summary of Findings
The data showed that number of units sent to a single call varied from 1to 8. The
percentage of single ambulance dispatches was 85%. The percentage of double
dispatches was 14%. Clearly, the majority of calls have been serviced by one or two
ambulances (99%). A very few of calls required more than 3 units, which can be
explained by events such as floods, multi-vehicle traffic accidents, and alike. For calls
serviced by multiple vehicles we kept only the records of the first arriving unit which
gives us a total of 38,399 calls. We noted that there were relatively much fewer calls
classified as priority three or four (both non-life threatening), therefore we combined
them into priority three calls. This resulted in 8921, 24242, and 5236 priority one, two,
and three calls respectively. From here on, we refer to priority 3 and 4 combined as

priority 3. We first compiled summary statistics for all calls as shown in TABLE 1

below:
TABLE 1: Summary statistics
Call Chute Travel Service Euclidian Distance
Time Time Time Time to
(min) (min) (min) (min) Incident (miles)
Minimum | 0.25 0.25 1.00 5.02 0.00
Maximum | 4.98 5.00 29.97 108.17 15.84
Mean 0.59 0.92 6.11 55.06 2.12

3.3 Travel Time
Average travel time of low priority calls is expected to be longer than that of

higher priority calls considering that high priority calls ambulances are more likely to use
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lights and sirens and travel faster. To test this hypothesis we examined the travel time
distributions by creating Box-and-Whisker Plots of travel time by priority. From
FIGURE 1 we see travel time of priority 3 has higher median than those of priority 1 and
priority 2 and also is more disperse. However, distributions of travel time of priority one
and priority two are very similar. This is possible due to MEDIC applying the same travel
guidelines for priority 1 and priority 2 calls in delivering ambulance to the accident
scenes. A simple two-sample t-test showed that we fail to reject the null hypothesis that

the means are equal (p < 0.01).

Box Plot for Travel Time

30 T

20

Travel Time

Priority Number

FIGURE 1: Travel time box plot

In order to generate travel times realistically in our simulation program, we

developed regression models of travel time on distance for priority 1 and 2 combined,
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and priority 3 calls. The dependent variable is travel time in minutes and the independent
variable is distance in miles which we initially computed using incident and responding
ambulance coordinates with spherical law of cosines formula [68]. This resulted in a
Euclidean distance which we then applied the Minkowski coefficient, 1.54, to estimate
the actual road distances [69].

Subsequent to some exploratory analyses with various power transformations we
found that the square root transformations applied to both dependent (travel time) and
independent (distance) give the best results, resulting in R? values of 95.4% and 94.5%
for priority 1 & 2 combined and priority 3 calls, respectively. In order to express the
predictions in the original scale we back-transformed the resulting equations which are
displayed in TABLE 2. From those relations we can also deduct that ambulances run to
an incident scene at a speed of 35.40 miles/hour and 26.11 miles/hour for priority 1 & 2,

and priority 3 calls, respectively.

TABLE 2: Travel time models for estimating real road network distances

Call Priorities | Travel time models

Priority 1, 2 travel time = 1.6951 * distance

Priority 3 travel time = 2.2976 * distance

3.4 Chute Time and Call Time
The data analysis of chute time showed that apart from some outliers, chute times
are clustered around the mean of 0.9 minutes with a standard deviation of 0.54 minutes.

In reality, chute time for different calls tend to have very small difference, because the


http://mathworld.wolfram.com/SphericalTrigonometry.html
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crews are trained to quickly respond to all dispatches. In addition, chute time is a very
small part of total service time, so, instead of sampling from a distribution we opted to
use the mean chute time for every call in our simulation. For similar reasons, the mean
(0.59 minutes) of call time is used as the simulated call time.

3.5 Service Time

Service time is a major part of the total time that an ambulance spends on an
emergency call. For calls that don’t need transportation to hospital service time is just the
time spent on the incident scene. For calls, of which patients are transported to hospital,
service time includes time spent on the scene, travel time to hospital and handover time in
hospital. Although our dataset does not identify clearly which incidents needed transport
to area hospitals a recent study with Charlotte data reported that about 75 percent of all
calls require transport to a hospital [70].

We conducted a goodness-of-fit test with data of all priorities which showed that
the service times follow a normal distribution with a mean of 55.06 (min) and a standard
deviation of 15.36. As a rule of thumb, the service time of top priority calls is likely to be
longer than low priority calls. To reflect this fact, we drilled down to fit normal
distributions to different priority categories. Service time of priority 1 calls has a fitted
normal distribution with a mean of 58.42 and a standard deviation of 14.56. The service
time of priority 2 calls follows a fitted normal distribution with a mean of 54.63 and a
standard deviation of 15.43. The service time of priority 3 calls follow a fitted normal
distribution with a mean of 51.35 and a standard deviation of 15.27. These results are
consistent with the reality that the on scene treatment provided for high acuity patients is

more likely to be intensive and hence takes longer time. FIGURE 2 displays fitted normal
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distributions and the corresponding statistics of service times for all calls, priority 1 calls,

priority 2 calls, and priority 3 calls.
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FIGURE 2: Service time distributions

In our simulation model, the corresponding normal distribution is used to generate
the service time for an emergency call according to its specific priority category. This
process happens when we create the file of emergency calls, which is before the running
of the simulation model. In other words we pre-generate service time of each emergency

call.



CHAPTER 4: THE SIMULATION MODEL

An important contribution of this study is the development of a high fidelity
simulation model that mimics the operations of an EMS provider such as MEDIC. The
basic assumption in our simulation model is that the real-time location and status of all
vehicles are known which is true in practically all EMS systems in the U.S. The
following is an overview of our simulation model.

The response process starts with the dispatch center receiving an emergency (9-1-
1) call. The dispatch operator determines the call priority based on the dispatch protocol
in use and dispatches one more ambulances to the incident scene. While the call center is
waiting for the next urgent call, the ambulance(s) travels to incident scene. At the scene
the crew treats the patient and determines if the patient needs to be transported to the
nearest area hospital. If so, the ambulance departs for the hospital, arrives at the hospital
and hands off the patient. At this moment the ambulance becomes available for the next
dispatch, if any. Otherwise, the ambulance travels back to its post or to the next call
location. If hospital transport is not needed then ambulance becomes available for the
next call and departs to its post.

While developing the simulation model we attempted to include all important
real-life aspects of an urban EMS operation and only made simplifying assumptions to
ensure that the code is fast enough to be embedded in a search algorithm and when the

impact of them on the statistics of interest is negligible. Next, we discuss the logic flow
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of the simulation model in more detail and present our rationale for the assumptions we
made at various junctions.

4.1 Simulation Design

We developed the simulation module using Java (SE Version 7). The simulation
module is designed to run a trace-driven simulation where the calls used in the simulation
are read from a file. The calls are generated apriori for the first set of experiments and
sampled from a real call database for the case study. Each call has a time stamp, location,
priority, and service time information. This approach is beneficial for testing and model
validation as well as for comparing various dispatch policies. The main logic flow the
simulation model begins with a 9-1-1 call read from a file or retrieved from memory. The
program updates all vehicles’ information including current location and status (idle or
busy). Then based on the status and location of vehicles as well as priority and location of
this new incoming call the program decides which vehicle(s) to dispatch according to the
dispatch policy applied. If there is no vehicle available, then the program counts this call
as a missed call. Once an ambulance is assigned to a call its status is set to busy, after a
short time of preparation (Chute time) it departs to the incident scene. As discussed
previously we use 0.9 minutes as the chute time for all calls instead of sampling from a
distribution. Next, we calculate the distance to incident followed by the travel time using
the regression models developed earlier. When the vehicle reaches the scene, some form
of on-scene treatment is provided to the patient. If the treatment on the scene is not
satisfactory, then the patient is transported to a nearest hospital in order to receive further
care. In our simulation if the generated service time is 15 minutes longer than the travel

time to hospital we assume the patient is transported to hospital with a probability of
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75%. The travel time to the nearest hospital is calculated by the corresponding regression
models discussed earlier. If transportation to hospital is not needed then the call is
completed at the scene and the ambulance becomes available for the next call. The
ambulance could be assigned to the next call after service completion at the scene or at
the hospital or en route. If it is not assigned to a new call, then it returns to its base
station or post and waits for the next dispatch order.
In reality idle ambulances can be dispatched to a call while en route to their posts.
To our best knowledge, no previous model included en-route dispatch. Our simulation
model includes this important feature that an ambulance could be dispatched even en
route to their posts as long as it is idle, which is another contribution of this research. An
ambulance’s completion time of previous call service denoted as t; is recorded in
memory. When an emergency call is received, our simulation model reads its time stamp
t, and calculates the time elapse t,_ t;, which is used to calculate the distance this
ambulance has traveled from its previous location (either an incident scene or a hospital)
which is also recorded in memory. Based on the traveled distance and its last location the
current location of this ambulance is identified. If the traveled distance is greater than the
distance from its post to its last location then the ambulance is already back to the
appointed base location. Otherwise a location on the path is identified as its current
location. We don’t have the data to know how fast ambulances travel back to their posts
but until they are dispatched to a new priority 1, 2 calls we can assume that the
ambulances return to their posts at an average speed of 26.11 miles/hour, same as running

for priority 3 call as provided earlier and without lights and siren
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A high-level flowchart of our simulation model is depicted in FIGURE 3. The
detailed process of assigning available ambulances to a call is presented in FIGURE 4. If
there is only one free ambulance then the system will just dispatch this ambulance to the
new call. When the number of available ambulances is great than one, the system will
first check the priority of the call. If it is a priority-one call, the nearest free ambulance
will be dispatched to it. If the call is determined not priority one, then an ambulance will
be dispatched according to one of the dispatch policies in our experiments. FIGURE 5

depicts the process of an ambulance from the dispatch to back at station.
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CHAPTER 5: SEARCH ALGORITHMS FOR THE SIMULATION OPTIMIZATION
FRAMEWOK

Assuming response units are homogeneous and in each zone at most one unit can
reside, to locate M units in N zones the size of the solution space is the combination of N
taken M at a time without repetition (N™), which is a typical NP-complete problem. In
our simulation model we don’t limit the number of ambulances in a zone, so the solution
space is even larger. When M and N are large numbers it is extremely expensive in
computing to find the exact optimal solution by enumeration. However, we are
encouraged by the fact that there have been various meta-heuristic search methods
successfully applied in this domain that have found near-optimal solutions [44]. In this
research, we implement three meta-heuristic algorithms: random-start hill-climbing
algorithm, simulated annealing algorithm and tabu-search algorithm. Before we describe
our meta-heuristic search algorithms implementations, it is necessary to illustrate the
procedure of generating neighboring solution spaces and the data representation used in
all meta-heuristics.
5.1 Generating Neighboring Solution Spaces

The process of generating neighboring solution spaces or successors of current
solution space plays an important role in all three meta-heuristic search algorithms
embedded in our simulation model. The three meta-heuristic search algorithms share a

similar strategy of generating solution state successors.
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To better illustrate the process of generating successors, we use a simplified
example of 16 zones (4 by 4) and three ambulances. As depicted in FIGURE 6 the
sixteen zones are numbered from 1 to 16 and three ambulances are labeled as A, B, and
C. The location combination of zone 6, 7 and 8 is denoted as (6, 7, 8) which is the initial
solution space. Since the ambulances are homogeneous (6, 8, 7), (7, 8, 6), (7, 6, 8), (8, 6,
7), and (8, 7, 6) are all same solution state as (6, 7, 8). We refer the initial solution state as
the start state and we use current state to denote any intermediate solution state. Initially
current state is start state. A successor or a neighbor solution of current state is generated
by moving one of the ambulances from its current zone to another possible zone. If two
solutions can be generated from each other by changing only one ambulance’s location
we say they are neighboring solutions. For instance, moving ambulance A from zone 6 to
zone 2 gives a neighbor solution space (2, 7, 8). We say (6, 7, 8) and (2, 7, 8) are
neighboring solutions. Similarly, (7, 7, 8) is another neighbor by moving ambulance A
from zone 6 to zone 7, which means we have two ambulances allocated to the same
location. On the other hand (1, 2, 3) is not a neighbor solution space of (6, 7, 8) because
this implies that more than one ambulance is moved to another location. The total number
of successor or neighbors of current state as depicted in this example is 3 < 15 = 45,
These neighboring solutions are evaluated and one of them will be picked out to replace

current solution state.
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1 2 3 4
5 6 7 8
A B C
9 10 11 12
13 14 15 16

FIGURE 6: Initial solution space prior to generating successors

Each solution’s objective function is evaluated by executing our simulation model
presented in Section 4. The simulation model mimics the entire process how an EMS
system handles all 9-1-1 calls within a period of time. So, each round of execution of the
simulation model consumes significant portion of computing time. Hence, it is very
important to eliminate duplicated solutions before evaluating the objective function. We
notice that any two successive solution states have some common neighbors. For
example: assume (2, 7, 8) is picked out from the 45 neighbors to replace current state (6,
7, 8), therefore (6, 7, 8) is followed by (2, 7, 8) as two successive solution states and they
have common neighbors already evaluated in the previous iteration. To avoid generating
and evaluating those solutions that are evaluated in previous state we simply tag the new

location of the first ambulance which is “2” in this example.



36

5.2 Data Representation
We use a one-dimensional array of size m+2 to represent a solution where m is
the number of ambulances in the system. The first m elements in each vector are the
ordered zone numbers of ambulance posts. Index m in each vector stores the objective
function value (ObjF) and index m+1 contains a tag used to track the location by
changing which this solution is generated. TABLE 3 illustrates the vector used for all

meta-heuristics.

TABLE 3: Data representation

Elements | 3 7 9 ObjF | Tag
Index 0 1 2 m m+1

5.3 Random-Start Hill-Climbing Search Algorithm (RSHC)

The hill-climbing search algorithm is a simple loop (iterative process) that
continually moves in the direction of increasing objective value. It terminates when it
reaches a “peak” where no neighbor has a higher objective value. Hill climbing is similar
to a greedy local search algorithm because it grabs a good neighbor state without
considering about where to go next. For that reason, hill-climbing often makes rapid
progress toward a solution and also often encounters local maxima and gets stuck with

nowhere else to go. The hill-climbing search algorithm [71] is shown in TABLE 4.
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TABLE 4: Hill climbing algorithm

Hill-Climbing returns a state that is a local maximum
current < MAKE-NODE(problem.INITIAL-STATE)
Loop do
1. Neighbors<Generate all successors of current state
2. Best_neighbor<Get the successor with the highest objective function value
3. if best_neighbor.VALUE < current.VALUE then return current.STATE
and exit loop else current < neighbor

Hill-climbing algorithm itself often cannot find a satisfactory solution because the
possibility of being stuck at a local optimal solution. To avoid ending with a local optimal
solution, random-restart hill climbing algorithm conducts a series of hill-climbing
searches from randomly generated initial states. It records the state of each run of hill-
climbing and at last return the state with highest value of objective function. The state is
a set of ambulances locations and the objective function in our model is not fixed which
can be assigned according to different aims. When we do experiments and compare with
existing models in literature we assign the objective function as the tally of covered calls
under a threshold. We also designed a weighted objective function to overcome the
weakness of solely objective. The random-start hill-climbing algorithm implemented in

our simulation model is depicted in TABLE 5.
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TABLE 5: Random start hill climbing algorithm

best «— Random-start
Loopi— 1toK
current «— Random-start
Loop While
neighbor «— a successor of current with highest value of ObjF
If neighbor_ObjF < current_ObjF then return current. STATE else
current «— neighbor
End IF
End Loop
If (best_ObjF < current_ObjF) then best «— Current
End If
End Loop

5.4 Simulated Annealing Search Algorithm (SA)

As mentioned above the Hill-climbing algorithm never moves to a state with
lower objective function value. Therefore, it is likely to get stuck at a locally optimum
while simulated annealing allows such move with a probability that is negatively
proportional to the gap between the objective value of current state and that of a neighbor
state. The method simulated annealing employed to escape from a locally optimum is an
analogy with a technique of cooling metal known as “annealing” [71]. The higher the
“temperature” T, the higher probability is to accept a worse solution. The value of T is
decreasing during the running time according to “cooling” ratio a. When the
“temperature” drops below 30 the algorithm terminates and return the best found. The
simulated annealing search algorithm implemented in our model is shown in TABLE 6.
We follow Arostegui et al.’s procedure [72] to select the initial temperature T so that the
resulting probability of accepting non-improving solution is 95% in the beginning of the

run time.
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TABLE 6: Simulated annealing search algorithm

current < Initial-State (a set of locations assigned as ambulances base locations)
best «— Initial-State
T« Ty
Loop While (T > 30)
L1 = current_ObjF
candidate «— a successor of current with highest value of ObjF
L2 = candidate_ObjF
If L1 < L2 then current < candidate
If(L2<best_ObjF) then best «— candidate
End If
Else AE = L2 — L1
p = Exp(AE/T)
best «— candidate only with probability p
End Else
End If
T «—aT
End Loop

5.5 Tabu Search Algorithm (TS)

The tabu search algorithm is originally proposed by Glover [73] in 1986. The
overall approach is to avoid entrainment in a loop by forbidding or penalizing moves
which point to solution spaces previously visited (known as “tabu list”). Unlike hill-
climbing which won’t make a move where the objective is worse than that of current
state, tabu search algorithm always makes a move to the accessible best neighboring
solution.

A chief mechanism for exploiting memory in tabu search is to declare a subset of
solutions similar to recently examined solutions are tabu. Each tabu has a tenure
(duration) which determines how many iterations the tabu be in effect. The tabu list also
referred to memory comprises of solutions (tabu) previously visited. The size of the tabu

list equals the tenure of tabu because once a tabu passes tenure it will be automatically
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removed from the tabu list (memory). Tabu list size and tenure also define the maximum
number of tabus allowed at any time. We described the process of generating neighboring
solution spaces in Section 5.1. Our tabu search algorithm uses similar process of
generating neighbors. However in tabu search algorithm we need to consider how to
design tabu so that the algorithm won’t move to a solution State previously visited. We
use the locations of all response ambulances’ posts i.e. the solution vector’s previous m
elements as tabu because the solutions are distinguished by the ambulance locations. In
order not to repeat any previous accepted solution, we set tabu list size to the number of
iterations. TABLE 7 describes the tabu search algorithm implemented in our simulation

model.
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TABLE 7: Tabu search algorithm

current < start state
best «— current
Loopk — 1to K
Ordered Neighbors_List < generate_neighboring_solution (current) and
sort in descending order by value of ObjF
Loop While
index «— 0
neighbor < get_index_th_element(Ordered_Neighbors_L.ist)
move_action<—get move_action(neighbor)
If (tabu_Contains(move_action))
then index <« index + 1
Else break While loop
End IF
End Loop
current «— get_index th element(Ordered Neighbors List)
Update_tabu ()
If (best_ObjF < current_ObjF) then best < Current
End If
End Loop

5.6 Experiments to fine tune the search algorithms

Prior to applying our simulation-optimization approach to a case study using real
historical data, we generated a simulated dataset to train, test and refine our algorithms.
Since we will utilize real data from Mecklenburg County (Greater Charlotte) in our case
study which is divided into 168 zones by imposing a grid of 2 mile by 2 mile squares, we
assume a hypothetical region (city) spanning 400 square miles (20 x 20). We divide this
region into 100 zones with a 10 x 10 grid so each zone is also 2 mile by 2 mile square. In
FIGURE 7, we show the call volumes originating from each zone where. The total
number of calls is 1200. In Greater Charlotte there are three major hospitals, of which
two are adjacent to each other. In our simulated we assume there is one hospital located

in zone 45 (city center).
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1 2 2 3 1 3 1 2 1 1
1 2 3 5 7 3 7 3 3 1
2 3 10 19 22 17 16 12 2 3
1 5 27 36 50 43 23 23 7 1
1 8 12 46 52 47 28 26 4 1
3 2 23 40 48 41 33 21 9 2
1 9 25 27 33 35 35 32 5 2
2 5 15 12 22 18 25 12 7 1
1 3 9 4 3 5 8 3 6 1
1 2 1 1 2 1 1 2 1 1

FIGURE 7: Hypothetical region (zones and calls distribution)

5.7 Preliminary Results

To fine tune our search algorithms we chose the MEXCLP model as the
benchmark which is presented in Appendix A. Given a fleet of ambulances, the
MEXCLP determines the optimal ambulance locations that maximize the expected
coverage of calls. For the first set of runs, we set the average busy probability of
ambulances to 30% (p = 0.3), assumed a fleet size of 24 ambulances, and set the distance
threshold for coverage to 2.2 miles (S = 2.2). We developed a formulation generator
which reads the call distribution data and grid information and develops the MEXCLP

model in CPLEX format.
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The CPLEX solution of the instance of the MEXCLP model covered 1,055 calls

(an expected coverage of 87.92%) by placing the fleet in the following zones:
14, 22, 26, 27, 34, 35, 36, 38, 43, 44, 48, 55, 56, 57, 58, 63, 64, 65, 69, 72, 76, 77, 84, 88.
Next, to generate 1,200 calls which will simulate approximately the same
parameter values used for the MEXCLP model, we assumed that the number of calls

follow a Poisson distribution with a calculated mean of A = 6.9 calls per hour. We
applied the traffic intensity equation p = A/m# where p = 0.3 and m = 24 . From

TABLE 1 we know the averaged total service time is 62.68 minutes from which we
calculated 4 = 0.96. Hence, we randomly generated 1,200 calls with time stamps, and
randomly allocated the zone number of the calls based on the volume distribution in
TABLE 7. For the purpose of this section, we only generated (assumed) priority 1 calls
and used the default dispatch policy of sending the nearest vehicle. Next, the service time
of calls is generated via the normal distribution of priority 1 calls presented in Section
3.5.

We first ran our simulation model with the MEXCLP solution (found by
CPLEX). Interestingly, the simulation model resulted in covering 1019 calls (84.92%
coverage) which is consistent with earlier published findings which indicate that
MEXCLP tends to overestimate coverage [59]. Then we set the objective function as to
maximize the number of covered calls. We ran our simulation model with random-start
hill-climbing search algorithm of 10 random starts, after 507.5 seconds, it gives a result
of 1073 (89.42%) with the following ambulance locations:

14, 26, 27, 29, 32, 35, 35, 38, 43, 45, 46, 47, 55, 57, 59, 63, 64, 65, 66, 73, 77, 78, 85, 88.
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Simulated annealing solved this problem instance with a result of 1055 (89.42%) and the
following ambulance locations:
23, 25, 27, 29, 34, 35, 36, 37, 42, 44, 46, 47, 48, 55, 55, 58, 62, 63, 67, 74, 76, 77, 84, 88.

We also ran tabu-search algorithm with a randomly generated initial solution (TS-
RS), after 50 iterations (203.7 seconds) which resulted in a solution whose objective
value is 1065 (88.75%) and the following ambulance locations:

14, 24, 26, 27, 29, 32, 34, 36, 44, 46, 47, 48, 53, 55, 55, 58, 63, 65, 67, 68, 73, 75, 79, 87.
Then we use the solution of MEXCLP as the initial solution of tabu search (TS-
MEXCLP), after 50 iterations (194.4 seconds) it found its best solution with objective
value of 1073 (89.42%), and the following ambulance locations:

14, 26, 27, 29, 32, 35, 35, 38, 43, 45, 46, 47, 55, 57, 59, 63, 64, 65, 66, 73, 77, 78, 85, 88.
Using MEXCLP as the initial solution tabu search algorithm founds a best solution
exactly same as that of random-start hill climbing but with less time.

We conducted further experiments to compare MEXCLP and our simulation
model embedded with each meta-heuristic algorithm. First, we tuned the parameters of all
three meta-heuristics which resulted in following settings: number of random starts in
RSHC is 5, number of iterations and tabu list size in TS is same as 60, initial temperature
T = 2000 and cooling ratio is 0.92 in SA. Second, we generated 20 problem instances of
1200 calls using same process as the presented earlier to run the simulation model with
each embedded meta-heuristics. Below TABLE 8 summarizes the results. The MEXCLP
column represents the covered number of calls generated by our simulation model with
the MEXCLP solution. For all search algorithms the first value is the best objective value

(i.e. covered number of calls) found and the second value is the computing time in
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seconds. The average row shows the average of call number covered. The results show
that all three meta-heuristics find better solutions than the MEXCLP model confirming
that the three meta-heuristics are well-tuned and running effectively and efficiently. In
addition we see that tabu search algorithm (TS-MEXCLP, TS-RS) outperform other two
algorithms in computing time and in the quality of solutions (objective function value).
These results confirm previous literature reports where GAs and other meta-heuristics
have shown to produce very good results in this domain, but many researchers have also

found that TS algorithms tend to produce even better solutions [1, 30, 35, 62, 74].

TABLE 8: Comparison of meta-heuristics and MEXCLP-Priority one
MEXCLP RSHC TS-MEXCLP | TS-RS SA
Instance OFRV, CPU | OFV, CPU | OFV, CPU | OFRV, CPU
OFV
(sec) (sec) (sec) (sec)

1 1007 1055, 244.2 1061, 232.0 1063, 239.6 1039, 233.9
2 992 1032, 258.0 1041, 241.0 1042, 236.6 1032, 237.7
3 982 1054, 304.0 1054, 232.5 1050, 224.0 1046, 236.9
4 990 1054, 282.8 1064, 230.5 1064, 229.8 1040, 227.0
8) 1022 1069, 265.8 1078, 222.1 1073, 236.4 1072, 239.1
6 1021 1070, 313.6 1073, 229.8 1075, 226.7 1057, 229.9
7 1016 1060, 291.7 1062, 229.2 1062, 230.1 1052, 238.0
8 992 1039, 226.2 1042, 231.7 1047, 229.5 1048, 225.7
9 995 1049, 310.8 1054, 229.3 1051, 233.8 1044, 233.0
10 1005 1036, 246.7 1046, 226.4 1042, 226.4 1037, 225.0
11 995 1054, 312.5 1054, 245.0 1061, 231,1 1053, 236.2
12 993 1045, 322.6 1042, 227.7 1047, 218.9 1040, 235.8
13 999 1050, 291.4 1049, 235.0 1053, 237.5 1047, 229.8
14 1001 1041, 238.6 1041, 227.8 1052, 224.0 1049, 234.1
15 1021 1058 268.6 1060, 232.6 1064, 216.9 1060, 234.6
16 1000 1054, 259.3 1066, 227.9 1068, 230.9 1063, 232,9
17 989 1039, 313.6 1047, 220.9 1047, 223.1 1028, 232.4
18 998 1050, 297.2 1052, 237.3 1049, 232.0 1048, 242.6
19 999 1062, 294.0 1062, 237.1 1061, 240.7 1063, 232.0
20 1016 1061, 275.3 1060, 232,7 1063, 231.3 1053, 236.7
Average | 1001.7 1051.6,280.8 | 1055.4,231.4 | 1056.7, 229.96 | 1048.6, 233.6
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As can be seen in TABLE 8 both implementations of the TS algorithms produce

nearly identical results. So, to further compare the performances of TS-RS and TS-
MEXCLP we conducted experiments with same twenty problem instances but we
reduced the number of iterations from 60 to 20 and 10. The results are presented in
TABLE 9. From these results we see TS-MEXCLP has a better performance than TS-RS
when the number of iterations is quite small (10 iterations). As we expected using the
solution from MEXCLP as the initial solution of tabu search is a good strategy to find a
near optimal solution considerably faster. We then repeated some experiments running
both algorithms 120 iterations in which case they generated almost identical results.
Clearly, if the number of iterations needs to be limited due to a need to solve the
problems rapidly, TS-MEXCLP has a significant advantage over TS-RS due to starting
with a very good initial solution (generated by MEXCLP). However, if the CPU time is
not a major constraint in the study or application one can run the TS-RS algorithm longer

(significantly more iterations) to find a high quality solution.
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10 iterations 20 iterations
Instance TS-MEXCLP TS-RS TS-MEXCLP TS-RS
OFV, CPU (sec) | OFV, CPU (sec) | OFV, CPU (sec) | OFV, CPU (sec)

1 1057, 43.3 1035, 43.9 1058, 81.7 1053, 83.4
2 1039, 43.5 1035, 43.6 1041, 81.6 1036, 80.9
3 1043, 43.4 1042, 44.4 1047, 81.7 1050, 80.36
4 1053, 42.2 1051, 42.4 1054, 77.8 1049, 78.7
5 1073, 42.4 1058, 41.4 1078, 77.8 1068, 78.5
6 1053, 42.1 1034, 43.6 1073, 81.4 1070, 81.5
7 1055, 43.3 1038, 43.2 1055, 81.5 1057, 80.7
8 1038, 42.5 1017, 42.4 1038, 80.4 1043, 81.8
9 1044, 42.8 1035, 43.4 1051, 80.2 1040, 78.0
10 1046, 41.4 1025, 42.6 1046, 76.1 1038, 80.6
11 1053, 41.4 1043, 42.7 1053,81.3 1053, 81.7
12 1033, 42.7 1038, 44.2 1034, 76.0 1034, 80.3
13 1038, 44.2 1029, 43.8 1046, 81.8 1045, 77.6
14 1038, 43.3 1035, 42.5 1038, 79.1 1043, 91.4
15 1053, 43.3 1031, 41.5 1061, 121.2 1061, 105.0
16 1043, 41.9 1049, 44.5 1061, 79.5 1060, 81.3
17 1042, 43.1 1032, 40.9 1043, 78.2 1040, 76.6
18 1047, 43.0 1032, 46.1 1047, 81.1 1042, 80.7
19 1050, 44.6 1050, 41.8 1054, 80.6 1063, 80.5
20 1057, 42.5 1045, 43.1 1057, 82.0 1054, 77.7
Average | 1047.8,42.8 1037.7,43.1 1051.8, 82.1 1050.0, 81.9

In our last set of experiments we tested the search algorithms with data which

included call priorities. The 20 instances were generated by following same process as

before but the priority number is not always one. As mentioned in Chapter 3, there are

8921, 24242, and 5236 priority one, two, and three calls, respectively. The priority

number of a call (1, 2 and 3) is assigned based on the percentage of each type of calls:
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priority one 23.23%, priority two 63.13% and priority three 13.64%. We also generated
the travel and service times based on the priority of the calls by applying the distributions
in Chapter 3. The results from these experiments are summarized in TABLE 10 which
show that the TS consistently produces higher quality solutions in reasonably fast CPU

times.

TABLE 10: Comparison of meta-heuristics and MEXCLP-Priorities

RSHC TS-RS SA
Instance '(\)/IFE\);CLP OFV, CPU g?:yléﬁﬁl‘(sec) OFV, CPU|OFV, CPU
(sec) (sec) (sec)
1 1013 1052,290.4 |1061, 302.7 1061, 302.0 1059, 365.6
2 1004 1051, 322.9 |1060, 284.4 1061, 279.5 1042, 359.5
3 1001 1056, 279.7 1063, 283.1 1061, 279.1 1049, 370.9
4 1018 1054, 250.7 | 1055, 280.7 1055, 280.7 1061, 280.9
5 1007 1057,295.6 |1061, 288.1 1061, 282.7 1047, 368.0
6 1007 1059, 341.1 |1057, 288.0 1061, 287.8 1054, 373.7
7 1030 1058, 306.6 |1061, 285.1 1061, 280.1 1054, 361.8
8 1014 1058, 298.6 |1063, 279.5 1061, 279.9 1045, 382.7
9 1011 1054, 321.4 |1062, 281.5 1061, 283.4 1050, 362.6
10 1012 1051, 307.0 {1060, 280.0 1061, 278.7 1052, 364.5
11 1037 1057, 347.9 |1058, 280.6 1061, 276.5 1056, 365.4
12 1011 1058, 322.5 |1064, 279.0 1061, 278.1 1052, 364.9
13 1011 1054, 324.8 | 1063, 283.2 1061, 283.1 1045, 371.0
14 976 1054, 280.6 | 1058, 234.2 1061, 236.7 1052, 316.1
15 1011 1051, 306.8 | 1063, 244.2 1061, 238.4 1047, 309.1
16 1010 1060, 251.6 | 1061, 232.7 1061, 224.8 1058, 291.5
17 1026 1058, 246.2 | 1058, 224.0 1061, 223.1 1055, 290.6
18 1033 1057, 260.6 |1063, 225.1 1061, 223.9 1054, 292.2
19 1037 1053, 275.5 |1060, 241.3 1061, 225.2 1052, 292.2
20 997 1051, 253.5 |1058, 223.8 1061, 223.4 1052, 292.9
AVERAGE |1013.3 1055,294.2 |1060.45,266.1 |1060.7,263.4 |1051, 388.8




CHAPTER 6: APPLICATION OF THE SIMULATION-OPTIMIZATION
MODEL TO CHARLOTTE

In this chapter we apply our simulation-optimization model to the historical 9-1-1
call dataset from Mecklenburg County (Greater Charlotte) EMS service agency. We first
compare our simulation-optimization model with an advanced analytical model, the
dynamic expected coverage location model (DECL) developed by Rajagopalan et al.
[74]. Second, we develop a weighted objective function which draws upon on an out of
hospital cardiac arrest survival rate function and further takes different priority calls into
consideration. We apply our simulation-optimization model with the weighted objective
function to Greater Charlotte and compare the efficacy of alternate dispatch policies. The
application of our model is intended to demonstrate its usefulness in determining near
optimal solutions to real-life ambulance dispatch policies while providing detailed
coverage and ambulance workload statistics.

6.1 Description of the Model Settings for Greater Charlotte Area

As mentioned in Chapter 3 we have access to a complete 9-1-1 call dataset
provided by the Mecklenburg County EMS agency, MEDIC. For the application of our
approach the Greater Charlotte area is mapped into 168 2-by-2 mile nodes as depicted in
FIGURE 8. All historical demand calls fall in a particular node according to its latitude
and longitude. There are three major hospitals located in the center of each of the three
yellow colored nodes (29, 60, and 91). The nodes that make the boundary (orange nodes)

have the lowest call volumes. Therefore it is neither practical to place ambulances on
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those nodes nor possible for them being solution nodes by search algorithm, hence our
search algorithm is programmed to exclude these nodes while searching for ambulance
locations. The four red nodes are outside the official Mecklenburg County boundary
however we created these dummy nodes so that the en-route dispatch algorithm can work
properly, essentially travel across these nodes as needed. There are no demands from the
dummy nodes and they cannot be the used as ambulance locations. In our en-route
dispatch algorithm, when an ambulance completes its service for a call either at the scene
or at a hospital and there are no pending dispatch requests, it will travel back to its base
node via the nearest route via Manhattan distance principle. For example if an ambulance
placed on node 40, when it completes service at node 58 it can travel back via route 58 -
38 = 40 or route 58 - 60 - 40. If both routes are fully within the area the algorithm
will pick up an arbitrary route, and if one route is not fully covered by the area the
algorithm choose the one fully covered by the area. For example, an ambulance whose
base is node 130 completes a service at node 166 then the only route it will travel back is

166 - 133 - 130.
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FIGURE 8: Mecklenburg county (Greater Charlotte) gridded to 168 demand zones

6.2 Comparisons with DECL

To demonstrate the benefits of using simulation-optimization approach to
determine the near optimal ambulance posts instead of using an analytical approach we
ran a series of comparisons with the dynamic expected coverage location (DECL) model
developed by Rajagopalan et al. [74]. Briefly, DECL determines the minimum number of

ambulances and their locations for a requirement of 95% coverage for each time interval.
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Complete description of the DECL is in Appendix B. In applying the DECL, Rajagopalan
et al. divided days of the week into twelve 2-hour time intervals which resulted in a total
of 84 time intervals, hence 84 problem instances and utilized the same call dataset from
Charlotte MEDIC. It is important to note the key assumptions and differences between

the two approaches:

e DECL assumes all calls are of same priority while in our model calls are assigned
priority 1, 2 and 3, based on the percentage of each type of calls: priority 1

23.23%, priority 2 63.13% and priority 3 13.64%.

e Service times of different priority calls are generated from the distribution shown

in FIGURE 2.

e Travel times of different priority calls are computed based on travel time models

in TABLE 2.

e In our model 75% of the patients are transported to the nearest hospital.

e In our model ambulances can be dispatched when they complete a service and

while en-route to their posts.

e For these runs, we used the default dispatch policy of sending the nearest

ambulance to all calls.

We ran our model with the same number of ambulances obtained by DECL for each of
the 84 problem instances and obtained the following call coverage statistics displayed in

TABLE 11.
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TABLE 11: Simulation-optimization coverage (%)

Intervals Sunday |Monday | Tuesday |Wednesday | Thursday |Friday |Saturday
12am-2am [88.43 [85.05 94.17 90.63 92.31 9499 |97.51
2am—4am 86.82 ]92.35 96.14 96.06 92.21 96.58 [91.13
4 am—6am 93.68 [96.61 98.10 94.67 94.70 99.04 [89.97
6 am—8am 91.67 [90.41 90.98 87.46 90.73 89.46 |91.61
8am—10am |89.64 |84.75 85.22 82.98 81.88 88.40 [90.55
10am-—12pm |87.10 |84.75 84.91 82.28 79.86 87.84 |87.27
12pm-2pm |83.08 |82.09 84.39 77.17 82.13 81.78 |86.64
2 pm—4pm 84.13 |80.47 86.40 83.57 81.23 79.89 [83.15
4 pm—6 pm 81.67 [76.49 81.30 78.73 77.44 77.36 [81.40
6 pm—8 pm 82.85 [80.78 84.56 76.80 72.84 81.57 [80.33
8pm-10pm |[78.97 |85.79 82.06 80.27 81.70 82.10 [85.55
10 pm—12am [89.01 |85.52 88.85 83.19 83.08 82.65 [80.11

Next, we computed the difference between the DECL estimated coverage rates
and coverage rates from the simulation optimization model which are shown in TABLE
12. The coverage statistics estimated by DECL are significantly higher than our
simulation-optimization coverages in 78 of the 84 problem instances. On average DECL
overestimates coverage by a 9.39 percent and the maximum net deviation is 24 percent.

In the six problem instances where DECL essentially under-estimates the true
coverage, the average difference is -1.65 percent and the maximum difference is -3.33
percent. It is also interesting to note that these problem instances are among lowest
demand time intervals. Further analysis reveal that during low demand instances
throughout the week, typically 2-6 a.m. Monday-Friday, DECL tends to be relatively
more accurate resulting in coverage estimation errors under four percent. We can
conclude that DECL can predict coverage rates accurately under low demand intervals
which are the early hours of workdays, Monday through Friday 2-4 and 4-6 a.m. One

possible reason for this is that during these times the call demand volumes are the lowest
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resulting in low workloads which in turn implies fewer, if any, en-route and end-of-
service dispatches. However, DECL estimated coverages rapidly degrade under high
congestion and high demand intervals because of the nature of analytical models’
inability to capture the dynamic nature of the ambulance dispatch practices, essentially
due to the necessity of simplifying real-life details, a common phenomenon in this class

of analytical models.

TABLE 12: Difference between DECL and Sim-Opt coverage rates (%)

Intervals Sun. Mon. | Tues. | Wed. | Thur. | Fri. Sat.
12 am—2am 6.89 9.95 1.46 4,71 2.86 0.76 -2.20
2. am—4 am 8.18 3.09 -0.63 | 0.28 3.14 -1.11 | 3.97
4 am—6am 2.29 -0.53 | -2.64 | 0.55 0.84 -3.33 | 5,55
6 am — 8 am 4.00 4,94 4.70 8.41 4.80 5.69 3.74
8am—10am 6.05 10.39 |10.26 | 12.43 | 13.73 | 6.93 5.14
10am—-12pm | 8.03 10.96 |10.40 | 12.86 | 15.37 | 7.65 8.67
12 pm -2 pm 1193 | 1366 |11.30 |17.87 |13.61 |13.26 |9.17
2 pm—4pm 11.34 | 1465 |8.70 12.34 |14.32 |15.15 |12.16
4 pm—6 pm 1347 |18.71 |14.04 |16.81 |18.27 |17.72 |1459
6 pm—8pm 1218 | 1494 |1136 |1898 |22.63 |13.76 | 14.78
8 pm— 10 pm 16.12 |10.38 | 13.10 |14.86 |14.30 |13.12 |9.59
10pm—12am | 6.41 10.24 | 6.89 12.33 | 12.54 13.15 | 15.04
Average 8.91 10.11 | 7.41 11.04 | 11.37 8.56 8.35

In summary, the DECL generally overestimates the coverage. The tendency to
overestimate coverage by expected coverage class of models has been repeatedly
reported in the literature [38, 56, 59]. When we further check the average workload of
ambulances based on the optimal fleet size found by the DECL, we noticed that the
average workload is close to 60% which is nearly the twice the rate considered
reasonable in the EMS community. In other words, DECL overestimates coverage which

essentially means it underestimates the number of ambulances required to achieve the
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target 95% coverage. Though a simulated comparison has been done in their article
leading to small differences but the simulation used in their comparison is quite limited
compared with the one we developed in this study. Our simulation-optimization model
as discussed in Chapter 4 captures almost every aspect of real life operations of a typical
EMS.

6.3 Objective Function

The majority of the existing objective functions in the EMS literature are based on
single aspect of EMS, e.g. coverage or cardiac arrest survivability function For example,
deterministic or probabilistic coverage functions do not consider that different types of
calls have different priorities. Survivability function as discussed before is specific to
only OHCA and less than 0.5% of all calls are classified as OHCA [70]. Recently Knight
et al. [22] extended Erkut et al.’s cardiac arrest survival function [21] by taking into
account multiple-classes of patient outcomes. They developed a multi-objective function
based on an OHCA function and the call categories similar to MEDIC’s call priorities (1,
2, and 3). In order to capture different types of calls and their different level of interests
to EMS administration we adapted Knight et al.’s objective function. The objective
function we will maximize is a weighted sum of the four objectives shown below:
ObjF(state) = SF(RT)w, + CV; (RT )w; + CV,(RT )w, + CV5(RT)w; 1)
, Where SF is a survival probability function for cardiac arrest patients shown in Eqg. (2):
SF(RT) = 1/(1 + exp(—0.26 + 0.139 * RT)) (2)
CV denotes a function which tallies the number of calls reached for priority 1, 2 and 3
within the pre-determined RT thresholds (targets). We follow Knight et al.’s

heterogeneous measures [22] and use 8-, 14-, and 21-minutes as hard RT targets for
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priority 1, 2, and 3 calls, respectively. Hence, the CV functions can be expressed as

follows:

1 0<RT <8
CV,(RT) =

0 RT >8

1 0<RT <14
CV,(RT) =

0 RT >14

1 0<RT<21
CV,(RT) =

0 RT > 21

©)

(4)

(5)

It is important to note that the probability of survival after an OHCA with a RT =

0 is about 57 percent and with a RT = 8 minutes the odds of survival drops to 30 percent.

FIGURE 9 below displays the rapid decline of survival probability as the RT increases.

60.00%

50.00%

40.00%

30.00%

Probability

20.00%

10.00%

0.00%

FIGURE 9: Survival probability function for OHCA

10

Response Time (min)

15

20



o7

The objective function showed in Eg. (1) combines heterogeneous outcome
measures into a single function which takes four types of calls into consideration. For
each type of call the EMS administrator can choose different weights according to call
statistics of the region. In this research we adopted the same weights use by Knight et
al. wy = 16,w; =8, w, = 2, w3 = 1, for cardiac arrest calls, priority 1 calls, priority 2
calls and priority 3 calls, respectively. Clearly EMS administrators can choose different
RT targets and different weights according to their contractual requirements.

6.4 Results from Using a Tiered Ambulance Dispatch Policy
6.4.1 Analysis of Results

In order to test the efficacy of tiered (alternate) dispatch policies on OHCA
survival rates, response times per call priority (via the weighted objective function), and
the resulting ambulance crew workloads we solved a series of problems using the same
real call data set organized into 84 meaningful scenarios. Importantly, when testing
alternate dispatch policies in these runs we utilized the call priorities to determine which
vehicle to dispatch. Also noteworthy is the fact that, in our approach, fleet size is an input
variable whereas DECL finds the minimum number of ambulances to meet the target
coverage rate.

In this regard, we noticed that, with the DECL prescribed (recommended) fleet
sizes for the 84 problem scenarios, an interesting phenomenon occurred: In running the
simulation optimization model with the default dispatch policy, the resulting average
ambulance workload was approx. 54-56%, which is considered high in the EMS
community; normally, the ideal (practical) average workload is about 30%. Hence, we

conducted experiments for each of the scenarios in order to determine those fleet sizes
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that would result in a 30-32% average workload. This would then allow us to test the
efficacy of alternate dispatch policies under lower average workloads.

The numbers of ambulances for high- and low-average workloads are shown in
TABLES 13 and 14. Note that two different dispatch policies, and two sets of fleet sizes,
provide a total of four different settings for each of the 84 intervals, which imply 4 x 84 =

336 runs.

TABLE 13: Numbers of ambulances resulting in high average workload

Intervals Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
12am—-2am 11 14 13 14 15 19 17
2am—-4am 13 14 13 13 14 15 16
4am—-6am 12 13 12 13 14 13 13
6 am—8am 15 16 15 15 15 13 13
8am—-10am 17 18 17 17 18 16 15
10am—=12 pm 19 19 17 18 19 18 17
12 pm -2 pm 19 19 18 19 19 19 18
2pm—4pm 19 19 19 18 19 18 18
4 pm—6pm 18 19 18 18 19 18 16
6 pm—-8pm 17 19 16 16 17 18 16
8 pm—10 pm 16 16 15 16 17 18 16
10 pm—12 am 14 16 14 14 17 17 15
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TABLE 14: Numbers of ambulances resulting in low average workload

Intervals Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
12am-2am 15 21 19 19 20 24 27
2am—-4am 19 19 18 20 18 23 26
4am—-6am 15 14 15 15 16 18 19
6am—8am 23 22 22 22 22 19 18
8am—10am 29 30 31 30 29 25 24
10am-12pm | 34 33 33 33 33 29 28
12pm-2pm | 34 33 35 34 34 32 30
2pm—4pm 36 33 33 34 36 32 31
4 pm—6pm 37 35 35 35 38 32 29
6 pm—8 pm 35 33 31 32 32 33 30
8pm—-10pm | 28 29 29 29 32 31 29
10pm-—-12am | 25 26 24 25 30 32 25

In the first set of runs, we used the DECL-provided fleet sizes (high average
workloads) along with the default (current) dispatch policy of sending the nearest
ambulance to all calls. TABLE 15 displays the outcomes of these runs for Monday only.
The columns in TABLE 15, and the subsequent TABLES 16-18, below, represent the
following:

» Column “OBJ-Fun” provides the objective function value of the best solution
found.

» Under column “OHCA”, we report the expected number of survivors of OHCA
based on the total number of simulated OHCA incidents within priority 1 calls, as
well as the survival probability (SF%).

» Columns “P1-P3” display, respectively, the number of priority 1-3 calls reached
under the corresponding target, RT; the total number of priority 1-3 calls; and

the resulting (percent) coverages.
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» Column “Workload” displays the workload statistics (average, standard deviation,

minimum, maximum, and range). For example, in TABLE 15, row ‘12 a.m. — 2

a.m.” we display the results from applying the default dispatch policy with a

DECL- prescribed fleet size of 11 ambulances (high average workload). Results

show that the average workload is 0.401 with a range of [0.246-0.482]. There are

three OHCA calls, where the expected number of survivors, based on realized

RTs, is 1.506. The corresponding average survival probability is 50.19%.

How we track the OHCA calls is an important real-life feature of our proposed
model. As mentioned earlier, approximately 0.5% of all calls tend to be confirmed as
OHCA. As previously noted, an OHCA- triggered call must be categorized as priority
1. With the percentage of priority 1 calls being 23.23%, in our trace-driven simulation,
the percentage of OHCA incidents among priority 1 calls was 2.15%.

For example, in the specified time interval (see above), there were a total of 428
calls from which 100 calls were randomly sampled as priority 1, 274 as priority 2, and
54 as priority 3 (with corresponding percentages 23.23%, 63.13% and 13.64%,
respectively). From the sampled 100 priority 1 calls, three were categorized as OHCA
(with corresponding percentages 2.15% figure listed above).

The results from all 336 runs are listed in Appendix C. We analyzed the findings
for each day, and conducted a series of paired t-tests to determine whether there are
significant differences between the average values of each of the key performance
metrics (viz., OHCA survival probability, coverage rates by call priority, and workload

range). The test results are presented in Appendix D. We found that, overall the results
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are consistent across ‘days of the week.” Thus, hereafter we will use Monday’s results to

summarize the results of our experiments.
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6.4.2. OHCA Survival Probability and Priority 1 Call Coverage Comparisons.

We are primarily interested in the magnitude of the difference between the mean
OHCA survival probabilities resulting from the default dispatch policy (DEF), and the
alternate dispatch policy of LU; and, further, whether or not this difference is statistically
significant. Similarly, we are interested in differences in the mean coverage rates of the
dispatch policies.

For brevity, we formally state the null and alternate hypotheses for the OHCA
survival probability as follows:

e HO: The difference in the mean OHCA values under DEF and LU policies is zero.
e H1: The difference in the mean OHCA values under DEF and LU policies is
greater than zero.

TABLE 19 below, summarizes the results of the 20 paired t-tests of Monday’s runs.

TABLE 19: Summary of paired t-test results

High Average | Low Average
Mean Workload Workload
Difference DEF - LU DEF - LU

Diff. P - value | Diff. P - value
OHCA -0.0070 0.33* 0.0000 NA

P1 Coverage 0.0217 <0.01 0.0491 <0.01
P2 Coverage 0.1860 <0.01 0.2670 <0.01
P3 Coverage -0.0033 0.34%* 0.0034 0.12*
WL range 0.1699 <0.01 0.3103 <0.01

Under high average workload conditions, we note that the mean difference in
OHCA survival probability between DEF and LU is -0.0070. While this implies that, on

Mondays, the LU policy improves OHCA survival probability by 0.7%, it is clearly
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statistically insignificant (p-value = 0.33). Importantly, across all days, we note nearly
identical results where the mean differences range from -0.0102 (Sunday) to 0.0227
(Wednesday) with all statistically insignificant (1-tail, 5% significance level).

Under low average workload conditions, the mean difference in OHCA survival
probability between DEF and LU policies is zero for all days. This is, in fact, an expected
result. The system wide ambulance busy probability is in the neighborhood of 30% since
both dispatch policies send the nearest ambulance to OHCA calls probability of finding
an idle ambulance nearby is thus much greater than it would be in systems where the
average busy probability is high.

The null and alternate hypotheses for priority 1 call coverage are as follows:

e HO: The difference in the mean priority 1 call coverage values under DEF and LU
policies is zero.

e H1: The difference in the mean priority 1 call coverage values under DEF and LU
policies is greater than zero.

Under high workload conditions, the mean difference in priority 1 call coverage
between DEF and LU is seen to be (TABLE 19) 0.0217, and is statistically significant at
the @ = 0.01 level. Across all days, we note similar results, i.e., that the difference is
statistically significant at @ = 0.01 except for Thursdays at the « = 0.05 level. We also
note that the differences range from 0.0206 (Thursday) to 0.0414 (Sunday).

Under low average workload conditions, we see nearly identical results where the
mean differences range from 0.0477 (Sunday) to 0.0620 (Wednesday), with all

statistically significant (1-tail, 1% significance level).
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These results suggest that the default and alternative dispatch policies have
different priority 1 call coverage values. The former thus achieves 2.06% to 4.14% more
coverage under high workload conditions, and 4.77% to 6.20% more coverage under low
workload conditions than does the latter.

6.4.3. Priority 2 and 3 Call Coverage Comparisons

Utilizing similar forms from earlier comparisons, the null and alternate
hypotheses for priority 2 call coverage are as follows:

e HO: The difference in the mean priority 2 call coverage values under DEF and LU
policies is zero.

e H1: The difference in the mean priority 2 call coverage values under DEF and LU
policies is greater than zero.

Referring again to TABLE 19, we find that, under high workload conditions, the
mean difference in priority 2 call coverage between DEF and LU is 0.1860. This implies
that, on Mondays, the DEF policy achieves 18.6% more coverage for priority 2 calls. The
p-value is less than 0.01. We thus reject the null hypothesis that the two policies have
same mean coverage at the a = 0.01 significance level. Across all days, we note
identical results, where the mean differences range from 0.1699 to 0.1992 and, again, all
are statistically significant at the 1% single-tail significance level.

Under low workload conditions, the mean differences range from 0.2649 to 0.276,
where, again, all are statistically significant at the 1% significance level.

The null and alternate hypotheses for priority 3 call coverage are as follows:

e HO: The difference in the mean priority 3 call coverage values under DEF and LU

policies is zero.
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e H1: The difference in the mean priority 3 call coverage values under DEF and LU
policies is greater than zero.

Under high average workload conditions, TABLE 19 results show that the mean
difference in priority 3 call coverage between the two policies is -0.0033 (-0.3%). This
implies that, on Mondays, the LU policy results in a slightly higher priority 3 call
coverage. However, the one tail t-test critical value is 0.34, which allows acceptance of
the null hypothesis, HO.

Examining other days, we find the same results, except that on Saturdays, a small,
statistically significant (P-value = 0.025) difference (1.45%) occurs in favor of the DEF
policy. Again, though, on all other days, the mean difference is not statistically
significant.

Under low average workload, the results are similar to those for high workload
conditions. Thus, with the exception of Tuesday’s results, where the mean difference is
quite minimal (0.64%) but statistically significant (P-value =0.038), the mean difference
on all other days was found to be not statistically significant. Hence, we can safely
conclude that coverage of priority 3 calls under LU policy will not result in a significant
reduction under either high- or low-workload conditions. This is a finding of some
practical and theoretical importance.

6.4.4. Workload Imbalance Comparisons

Workload range reflects the degree to which the load is balanced/imbalanced
across all ambulances. It is an important metric that adds to the information needed by
administrators in order to create a more efficient and effective fleet of ambulances. We

follow a similar procedure to test the mean difference of workload between the various
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dispatch policies. According to the design of least utilization dispatch policy described
previously, we expect to see LU reduce the workload range considerably more relative to
DEF.

We formally state the relevant null and alternative hypotheses below:

e HO: The difference in the mean workload ranges under DEF and LU policies is
zero.

e H1: The difference in the mean workload ranges under DEF and LU policies is
greater than zero.

As shown in TABLE 19, under high workload conditions the difference of mean
ranges between DEF and LU is 0.1699 (16.99%) which is statistically significant at the
1% significance level. As anticipated, the latter reduced the workload imbalance from
27.18% to 10.19%, representing a sizeable 62.51% reduction in magnitude. Further,
across all days, we note significant reductions in workload imbalance where the mean
differences ranges from 0.1441 to 0.2109, with all statistically significant (1-tail 1%
significance level).

Of note, we observe a larger reduction in imbalances under low workload
conditions where Monday’s results show a difference of 0.3103 (31.03%). Essentially,
LU policy reduced the imbalance from 0.4242 to 0.1138, representing a 73.20%
reduction. Not surprisingly, a t-test shows this reduction to be statistically significant at
the 1% level. Similarly, across all days, the mean differences ranges from 0.2662 to

0.3389, where, again, all are statistically significant (1-tail 1% significance level).
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6.4.5 Overall Comparisons

From previous sub-sections, we see that neither DEF nor LU is likely to make a
statistically significant difference in terms of the OHCA survival rate or priority 3 call’s
coverage. We are thus not able to determine which of them is the better dispatch policy
based on either OHCA or priority 3 call’s coverage outcomes.

For the coverage of priority 1 calls, excluding OHCA, DEF is statistically better
than LU; but, the magnitude of this difference is rather small. For instance, under high
workload conditions on Mondays, DEF provides coverage of 58.13% of priority 1 calls,
while LU offers coverage of 55.96%.

For coverage of priority 2 calls, the difference between DEF and LU is
statistically significant and substantial in size. For instance, under high workload
conditions on Mondays, DEF has coverage of 80.52% of priority 2 calls, while LU
generates only 61.93% coverage. In terms of coverage of priority 1 (excluding OHCA)
calls, DEF thus provides slightly better performance than does LU. In covering priority
2 calls, DEF is considerably better than LU. Interestingly, however, is the fact that, for
the workload range, LU achieves significantly better outcomes than does DEF. For
instance, under high workload conditions on Mondays, LU reduces the workload from
DEF’s 0.2718 to 0.1019, a notable reduction of 62.51%.

The key reasons for DEF and LU generating nearly identical outcomes in terms
of both OHCA and coverage of priority 1 calls is, we believe, the following: Both DEF
and LU send the nearest available ambulance to priority 1 calls, including OHCA. The
objective function in the search algorithm heavily favors covering OHCA and priority 1

calls by placing the units in the areas where these calls tend to originate from. Also, there
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are very few (<0.5% of all; <2.15% of priority 1 calls) OHCA calls. Lastly, the OHCA
survival probability is a continuous function based on RT. When an OHCA RT is, say 8
minutes 1 second vs. 8 minutes, the difference in the computed survival probability is the
difference 0.2990 — 0.2985 = 0.0005, clearly negligible. Taken all together, mean
difference in OHCA survival probability between DEF and LU is, as expected,
negligible. However, none-OHCA priority 1 calls hold the second largest weight and they
are also being covered with the nearest ambulances. The results show that LU policy
tends to cover 2-4% less than DEF policy and the difference is statistically significant.
We believe that this difference is in part due to the simple 0/1 tally function used in the
objective function (as well as widely in the literature) where a RT of 8 minutes counts
towards being the covered (1), conversely an RT of 8 minutes 1 second will not count at
all (0). Further, as we detailed in Chapter 1, Section 1.3, outside the OHCA incidents
there appears to be no clear connection between fast RTs and patient outcomes.
Therefore, we can argue that 2-4% less coverage of non-OHCA P1 calls do not
necessarily imply significant reduction in the patient survival.

Interestingly, DEF and LU lead to significantly different coverages of priority 2
calls since the former, unlike the latter, chooses to send its nearest ambulance to priority
2 calls. This generally results in less travel time and, hence, a shorter RT. Curiously, it is
not entirely clear why there is little or no difference between the two policies in terms of
priority 3 call coverage. One possible explanation is that these calls are much less
insensitive to RT. For example, in our simulation, the target RT of priority 3 coverage is
24 minutes, which is not difficult to meet, even if the nearest ambulance is not

dispatched. The alternative dispatch policy was designed to favor sending less busy
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vehicles from all those available so it reduces the workload range significantly relative to
DEF.

6.4.6 Comparing and Evaluating Priority 1 Coverage via CDFs

Regardless of the dispatch policy implemented, the simulation optimization
approach provides detailed coverage statistics by call type, individual workload of all
ambulances (not shown for brevity), workload ranges and even call by call location and

dispatch details. The below FIGURE 10 is a snapshot of a piece of detail dispatch output

data.

Call Id Call Zone Call Arrivi Priority Response Response Survivabi Miss Hospital TimeToHt totalTime
1 92 0.0675 2 14 4,894 0 false true 3.394 50.03325
2 119 0.090278 1 27 4,8902 0 false true 10.1706 58.78659
3 119 0.093333 3 18 10.6852 0 false true 13.7778 6£3.52018
4 80 0.141389 2 16 1.5 0 false true 10,182 70.57551
] 134 0.150833 2 28 4,894 0 false true 13.576  77.1138
6 147 0.170833 2 32 4,894 0 false true 20.364 42.307%4
7 135 0.187222 2 23 8.288 0 false true 16.97 62.61707
g 120 0.255278 1 22 4,8902 0 false false 0 85.81733
9 39 0.268889 2 3 4,894 0 false true 10,182 54.73281
10 92 0.29 2 15 4,894 0 false false 0 79.53743
11 109 0.336389 2 25 130 0 false true 16.97 48.33024
12 77 0.360556 2 12 4,894 0 false true 6.788 6£639.61338
13 79 0.380556 2 13 4,894 0 false true 6.788 60.75123
14 107 0.403611 1 19 4,8902 0 false true 10,1706 92.60624
15 80 0.57 3 9 10.6852 0 false true 13.7778 51.64397
16 39 0.621389 2 4 8.288 0 false true 10,182 6£3.28212
17 15 0.697778 2 2 1.5 0 false false 0 4420692
18 107 0.761389 T 24 4,8902 0 false true 10.1706 65.07184
139 43 0.801111 3 7 6.0926 0 false false 0 58.62314

FIGURE 10: Detailed dispatch output

In order to illustrate one of these features we consider the interval of Monday
which has the largest call volume in a 2-hour period. Period 4 pm — 6 pm had, in our

research, a total of 1021 calls, the largest number amongst the 12 intervals. Of these calls,
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six were OHCA, 247 were none-OHCA priority 1, 629 were priority 2 calls while 139
were priority 3 calls.

FIGURE 11 shows the cumulative coverage function with respect to response time
for high average workload mode for all priority 1 calls and FIGURE 12 shows the
cumulative coverage function with respect to response time for low average workload
mode for all priority 1 calls. On the graphs the green curve represents default dispatch
policy, while the red curve is alternative LU dispatch policy.

These graphs developed from the actual call statistics, and the fitted theoretical
CDFs, are designed to provide the EMS administrator with the information and flexibility
to evaluate their deployment and dispatch policies to effectively respond high priority
calls. For example, via Figure 11 the EMS manager can assess the expected coverage of
priority 1 calls with, say 8 minutes of RT, which shows that under high average workload
and DEF dispatch policy it is 69.37%, whereas for LU policy it drops to 64.92%. And
from Figure 11 we also can tell that under high workload condition DEF achieve slightly
better priority 1 call coverage when RT < 26 min and the two curves merges towards

100% coverage when RT>26 min.
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In Figure 12, DEF and LU cross at RT =5 min (rounded). When RT <5 min LU

is actually performs slightly better than DEF with some small gains in OHCA survival

probabilities. Whereas when RT > 5 min and RT < 12 min DEF tends to perform slightly
better. Clearly When RT > 12 both DEF and LU provides 100% coverage.

In summary, the simulation-optimization approach appears to be superior to

analytical approaches and can accommodate different dispatch policies and provide a

holistic analysis of the EMS practices, current or planned.



CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

In the current research effort, we developed a simulation embedded optimization
approach to relocate ambulances and determine flexible dispatch policies for maximum
performance. The proposed approach is based on a thorough analysis of a large historical
dataset which makes the model and outcomes more realistic.

In particular, we considered various call priorities; modeled distribution and travel
time based on historical data analysis; compared selected dispatch policies; and, then,
developed weighted objective functions for multiple classes of concerned interests. In
addition, in our trace-driven simulation model, we included en-route dispatching in which
ambulances can be dispatched to the next call when one completes a previous call
regardless of its current location. This, we believe, is the first simulation model to
incorporate rich, real-life conditions of a functioning EMS. Doing so allows us to remove
most of the simplifying assumptions that were required in earlier analytical approaches
that utilize more classic OR/MS models such as integer programming and, queuing
theory.

Three search algorithms (TS, SA and RSHC) were developed and embedded in
our simulation model. We used both designed (constructed) and real data to tune, test,
and compare these algorithms for efficiency and effectiveness. We subsequently found
that TS was the most suitable in terms of solving the maximization problem of interest

here.
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We applied our simulation-optimization model to the historical 9-1-1 call dataset
and compared results with DECL. We then showed that DECL was able to predict
coverage more accurately under low demand conditions. However, this ability rapidly
degrades under high congestion and high demand circumstances as it is unable to capture
those real-life details of central importance in the current research effort.

In order to capture different types of calls and their different level of interests to
EMS administration we adapted Knight et al.’s objective function which combines
heterogeneous outcome measures into a single function that takes four types of calls into
consideration. The objective function was able to capture a variety of phenomena of
interest to EMS administrators, while providing sufficient flexibility for them to create
their own ‘best’ objective function. In this regard, we applied two dispatch policies (DEF
and LU) in an effort to examine how various policies might affect the performance of an
EMS system.

We ran our simulation model for seven days, creating 12 time intervals within
each day under both high and low workload conditions. This was done using both two
dispatch policies. Results suggest that there is little or no difference between DEF and
LU in terms of OHCA survival rate and priority 3 call coverage. DEF achieves higher
coverage of priority 2 calls than does LU. Although DEF tends to have better
performance in its coverage of priority 1 calls, the difference is rather small and in all
likelihood does not impact patient outcomes. On the other hand LU significantly reduced
the workload range which suggests that it can help balance the workload amongst
ambulances and potentially have a positive impact on quality of medical care delivered

by the crews.
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In general, there appears to be some benefits to practicing DEF or LU dispatch
policy. We are able offer some guidelines. For example, if an EMS administrator is
concerned more about strict call coverage vs., say, workload balance of ambulance crews,
he/she should probably favor the default dispatch policy that sends the nearest ambulance
to all calls. On the other hand, if he/she seeks a more balanced workload amongst
vehicles, LU policy is clearly more appropriate. However, should an EMS agency adopt a
tiered dispatch policy similar to LU they should monitor RTs and patient outcomes as
well as keeping track of coverage statistics which are the industry norm. We have thus
demonstrated that our proposed approach can be used by EMS managers to evaluate their
current practices and test the efficacy of alternate policies.

Although the findings are promising we are quite aware of the potential
limitations of our approach. The simulation-optimization model can be applied in a true
GIS environment utilizing the exact roads and highways, including one-way streets which
will further increase its realism and usefulness. Ambulance travel models can also be
improved by taking into account the traffic conditions which vary especially during the
rush hours.

In terms of future research, there are a number of possible directions. The
approach can be extended to consider optimal time of base (post) swaps for the busiest
and least busy pairs of ambulances in order to balance their workloads, while dispatching
the closest unit to priority 1 and 2 calls. Another extension of the base simulation-
optimization model can be to include a two-tiered response where fire engines with
EMTs are dispatched to P3 calls and ambulances are dispatched to P1 & P2 calls. After

EMTs assess the patient’s condition they can request an ambulance for transfer to a
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hospital. Finally, our simulation optimization model can be extended to study emergency

room crowding and ambulance diversion policies.
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APPENDIX A: MEXCLP

The classic Maximum Expected Coverage Location Problem (MEXCLP) is
developed by Daskin [36]. In this model, it is assumed that each ambulance has the
same probability of being unavailable to answer a call and all ambulances operate
independently. Let,

A = Average arrival rate, and x = Average service rate,

p= A - system wide unit busy probability,
mu

Y5 =1 0if not
Maximize:

B {1 if node j is covered by k ambulances

Zn)ih,-y,-k(l— p)p** 3)

j=1 k=1

Subject to:

2.3% 22 Yy Vi )
i=1 k=1

Yx<m (5)

Yik € {0’1} vj
(6)
x, € {01} Vi (7)

The objective function (3) maximizes the expected number of covered demands. The

inner term hijjk p“* when multiplied by (1— p) represents the expected number of
k=1

covered demand at demand node j. This when summed overall demand nodes j gives the

expected number of covered demands. Constraint (4) tracks the number of times each
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zone is covered and constraint (5) places an upper bound on the fleet size. Constraints (6)

and (7) are integrality constraints.
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APPENDIX B: DECL

The dynamic available coverage location (DECL) model proposed by
Rajagopalan et al. [74] determines the minimum number of ambulances and their
locations to meet a system wide coverage requirement for each time interval. The
authors utilize Jarvis’ hypercube approximation algorithm [53]. An added advantage of
Jarvis’ methodology is that it allows for server specific general service time distributions
which in this study we found that they are normally distributed. Let t be the index of time
intervals, h;. be the fraction of demand at node j at time interval t, n be the number of
nodes in the system, and c; be the minimum expected coverage requirement at time t. Let

P, be the busy probability of the kt" preferred server for a given demand node at time

interval t, p, be the average system busy probability at time interval t, m be the total

number of servers available for deployment, and set N; is the set of all servers that can

cover node j. The main decision variable is defined as follows:

. = 1if server k is located at node j at timet
W 0 not
_ |1if node j is covered by server k during time interval t
Yikt =1 0if not
n m k-1
zz(zvpt,k—1)hj,tyk,j,t(1_pk,t)Hp|,t (8)
j=1 k=1 I=1
Minimize:
T n m
Z=322 Xk ©)
t=1 j=1 k=1
Subject to:

ij,keNj,t => Vike Vi (10)
k=1 k=1
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n m k-1

ZZ(Z’pt!k_1)hj,tyk,j,t(l_pk,t)le,t 2 C, (11)
j=1 k=1 I=1

2.2 Xj SM Vi (12)
=1 k=L

Yiio Xjke = {O’l} Vi, j,k,t (13)

Objective (9) minimizes the total number of ambulances deployed. Constraint (10) counts
the number of ambulances that cover each node and tracks which server’s cover each
demand node. Constraint (11) ensures that total system wide coverage will be greater

thanc, the pre-specified required coverage. A constraint (12) sets the maximum number

of servers in the system. Constraints (13) enforce binary and non-negativity requirements.



91

/8¢°0| 999°0| 89¢€0 ¢S50 9206 ¢2’es 8629 =bay Ly 99¢’€C wns

0¢Z’0| LT9'0| L6E0 690°0| €090 <ZT'¥6 G8 08| 9¥'S8 66€ Tve|l 00799 08T 66| 0809 ¢l vesT| 6£'8/GT| wegT—wdQT
8€C0| ¢TL0| v.v'0 G90°'0| ¥69°0| /S'88 S0T €6 99'8L 14814 G9E| 00799 ST 86| ¢6'09 ¢l 8esT| vrT1e9T| wdor—wdg
T6C°0| ¥69°0| €0¥'0 080°0| 8S0| 9T06 act 0TT| LO'E8 199 99| 6L1S 6T¢ 0¢T| ¢L'0S G| 9eg¢| /Scvoz| wdg-wdg
¥5¢°0| S.°0| 96V°0 /S0°0| 1990 €0'V8 144" T¢T| ¥.'8L 6179 TTS| ¢9'6¥ 09¢ 6¢T| ¥Z'19 9| ¥.0€| 6TPvcce wdg—wd y
GLC'0| 8EL0| €910 L.0°0| ¥09'0| 1¢'88 9€T 0¢T| 6908 909 687 ¢1'99 LEC EET| 6LTY 9| 80S¢| <¢T1'¢0ce wdy —wd g
¢8¢°0| 90L°0| v¢v'0 /00| 8850 €906 8¢T 9TT| T6'T8 G/S T.v| 6TVS 12¢ €¢T| T.°09 G| 9gg¢| 167802] wdz-wdgT
€vC’0| TL9'0| 8¢v'0 TL0'0|] 890| LZ'S8 6¢T OTT| 60'T8 189 9| T9'LS €e¢ VET| 6C'T1S G| g952| ¢€0°G.Tz| wdzT —weQr
TZE0| €ETL0| ¢6E0 1,00 9¥S'0| €98 E€TT 86| T¢'6L S0S 0017| GE'E9 16T T¢T| 92°08 €l 80S'T| €T068T| weQT—weg
¥G€'0| T190| 99¢°0 0TT'0| v¥¥'0| V1.8 0L T9| 6V°€8 L€ €L¢| 09'89 T¢T €8| 0.6V gl T6V'T| 98'V6<T weg—uweg
0TE0| 6SY°0| 6VT°0 G80°0| t¢€'0| G9'€6 1€ 6¢| 188 LLT 9GT| SC¢'6L €5 | €9'67 ¢| €660 T88¢69 we 9 —uwey
60€°0| §95°0| 9¥C0 /80°0| 60%°0| 00°00T ov ov| LO'T6 vee 02| 6¢'1L 0L ¢S| S6'67 €| 66V'T| 96,88 we ¢ —we ¢
0S€°0| EV9'0| €620 880°0| Tsv'0| V9v6 99 €G] 90°/8 98¢ 6v¢| 6C'TL T0T ¢L| 6T0S €l 90S'T| 60TSTT| wWeg—-wecZl

abued| XVIN| NIA| AapiS| DAV %| [EI0L| PaIan0D| 96| [GIOL| PaIonod| 9| [GIOL| PaIond| 0| [EI0L| Pones
‘dx3| un4-rgo s[eAtalu]

peopfaoM ed Zd Td VYOHO

Ko110d yoredsi@ ynegaq peOPIOM YBIH Aepsan L

s)nsal 43Q peopyiom abesane ybiy Aepsany 0z 319V.L

AVANNS O1 AVAS3INL 40 S11NS3Y O X1AN3IddV




92

€TT0] ¢950] 8v70 ¥50] 0068 9579 TE'6G | =AY AR
T80°0| G€50| ¥S¥0| 0200 6150| 6506] S8 /1| 890L] e6e| ¢sz|0029| oSt €6 080G €| 25T 6€60vT| We gl —wdoT
9100| 9190 90| S000|8090|2928| S0T 26| 8L09] vor|  ¢8z|25¢S| it 26| 2609 € 8¢S T| yroTyT| wdor—wdg
26T0] ¢€90| vr0| 1900|2090| 0,28 2T J0T| 82€9| 19G|  Ss€|S0¢S| 6T¢|  vIT|2L0S g 966 | /669/T| wdg—wdg
€210] 169°0] 8950| 9200| 90| v9z8| wwl 6TT| 608G| 6V9|  Zl€|ST9r| 092| 02T ¥z1s 9| v.0€|6TecesT| wdo-wdy
¥.T0| €v9°0| 69v'0| Z€00]| G290| 28€8| 9¢eT vIT| 66T9| 909|  cl€|cees| Z€z|  ver|LT0S 9 0T0€| 9T868T| wdy—wdg
080°0| ¢290| cvG0| 2100|8090 9TS8| 82T 60T| ¥0T9| G.G|  15¢|0€€S| Zzz| 1T |TL0S 5 965 | /66787 wdz-wdeT
¥IT0| T19°0| L6v0| 200 8650|2898 62T CIT| 0ST9| 18G|  19¢| €61G| €€z| 12T 6218 5 95 | €0€y8T | wd 2T — we T
7700 | €850 8650| 0100|9950 1928 €TT 66| 95€9| S0S|  Tce|c09S| T6T|  LOT| 920S € 80ST| €T TZIT| WeoT-—uwes
€T20| ¢6v'0| 6,20| 8V00|8Sr0|62¥6| OL 99| 2699| lze| e1z|6259| TeT 6L| ccee € 000T| 2STT| wWeg-uweg
2€0'0] 65€°0| 82€0| 8000 LECO|SS€6| 1€ 62| 900L| 2/T| wver|scel| €S | €967 z €660] 188829| Weg-uwey
G9T0| 697°0| YOE0| 8€00| 82r0| 0006| OF 9€| zecL| wee| 29t L989| oL 8v | 566 € 66V'T| 9/6/9L| Wey-ueg
/2T0] 887°0| T960| 1€0°0| 69v0| T286| 95 65| e0s9| 98z| 98T|8zeL| 70T €] 6108 € 90GT| 60'GE0T| WeZ - We T
abued | XYIN | NIW | A8Q'PIS| OAV| % | [B10L | Palanod | 9% | [eI0L | PaJaA0d|  Op | [CI0L | PaIdA0d|  Op | [BIOL|  panes
‘dx3 und sfeAlalu|
PEOPIIOM ed d d voHo| f80

Ad1104 uonezijnn 1sea peopjaopn ybiH Aepsan

s1nsal N1 peopiom abeiane ybiy Aepseny Tz 319vV.L




93

2070 6250] 22T 0 T€0] 1566 1616 1768 =Pay | 89Lee wng
SZr0| S50|ScT0| 6IT0| €0| 2886 S8 v8| 0066| 666|  S6€| L988| O0ST|  €€T| 08°0S 5 ¥2ST| 6€296T| WegT—wd ot
8SV°0| 1950] €600 PIT 0| cT1€0| 00000T| SOT S0T| 26'86| v9¥|  6Sv| €v16| SLT|  09T| 260§ € 8¢S T| vrizee| wdor-wdg
¥0r'0| 950| 95T0| 20T0| €2€0| 0000T| 22T 7eT| S.86| 19|  ¥SG| Tv06| 612 86T 220G 5 9€G7| LG¥S8z| wdg-wdg
2050] €09°0] T0T0| ¥IT0| ¥€0|0000T| w¥l vwT| 8E66| 6v9|  Sv9| 9v'e8| 09z|  0€z| vZ1s 9 v.0€| 6Tecee| wdg-wdy
€T7'0| 8S50| G¥T0| 60T0| 6260 0000T| 9€T 9ET| 8986 909|  86S| €826| LeZ|  0cz| L10S 9 0T0€| 9rovie| wdy-wdg
¥67°0| ¢19°0| 8TT0| OTT 0| T¢€0| 2266| 821 [T| 0666| GS|  T1/G|S6¢6| Lcz|  11¢| 120G g 9€Gz| LG/66¢| wdz-wdeT
TG7°0| 8v50| 2600| €0T0| v2€0| 0000T| 62T 62T| 86'86| .8G|  18S| 9506| eez|  112| 621S 5 595Z| €0°020¢ | wd zT — we o1
28€°0| ¥87°0| 2OTO| 00T0| GTE0|0000T| €TT €TT| T9'86| G0G|  86V| G006| T6T|  </T| 9208 € 80ST| €1605¢| WeoT-uwes
OvE0| 9150| 92T0| G600 cI€0| L586| OL 69| 2096| Lze|  vie| evS8| Ter|  €0T| OL6¥ € T6r'T| 987VST| Weg—uweg
G€C0| 1r0| ¥ZT0| 800 6620]0000T| 1€ Te| 9926| LLT| ¥9T| c0€8| €5 v7 | €967 z €660| 18392.| Weg-uwey
10| 687°0| 6ET0|  LOTO| ¥620| 0000T| O ov| 86'S6| vzz|  Siz| 0006 OL €9] s6'67 € 66V'T| 9/6766| Wey-—ueg
89€0| 697°0| TOTO| OTTO|c6c0| T286| 95 G| 0e66| 98z| w8z|0T06| TOT 16| 6105 € 90GT| 60°G/ET| Weg-WegT
abued [ XVIN| NIN| AQ'PIS| OAV| %] [B10L | Paianod | 9o | [BIOL | PaJanod| 9o | [B1OL | PaJan0d| 9o [€10L panes
'dx3 und s[eAlalu|
PEOPHIOM ed Zd Td voHo| 80

21104 ydredsiq 1jnejeq peopIopn Mo Aepsan

syInsal 43Q peopjiom abeiane moj Aepsen] :zz 319v.L




94

LTT0[ T9€0] Sv20 €60 €686 06'0L €9'58[ =bAv ly| 89L€z]| wns
6ST0| 2GE0| €6T0| 9V0O0| 6TE0| 0000T| S8 S8 | 69vL| 66 86| 0098| 0ST 62T | 0805 €| veST|6ELELT| WwegT —wdoT
6TT0| €56°0| ¥€20| 0200 GE€0| 00°00T| SOT SOT | €589| vov gTe| 98'98| ST 25T | 26'05 e| 825T|vrT86T| wdoT-wdg
860°0| 6950| 20| ¢200|8vE0| 8166| cct TeT| SS2L| 195 L0v| 95€8| 61¢ €8T | 2L 0S S| o9egz|/56evz| wdg—wdg
6ST0| 6850| €20| 6£00| G9E0| 00°00T| vvT vvT| /899] 6v9 vev| 00G8| 092 T2z | v21s 9| wvl0c|6T6e8z| wdg-wdy
9TT0| ZLE0| 1920| S200| ¥S€0| 9266| OFT SET| ¥9'69| 909 Zzv| 1988] €2 0TZ| LT0S 9| otoe|9r/0/z| wdy—wdg
€80°0| €950| 820| S100|GvE0| vv'86| 8eT 92T | 8L0L| SIS L0v | v€98| Lz 96T | TL0S S| o9egz|/58rSe| wdz-wdet
ZvT0| GLE0| €€20| ¥€00| SE0| Sv'86| 6eT [ZT| 2TL9| 78S v6E| 8678| €cC 86T | 621G S| 595Z|€0o0vSe| wdgr —we ot
6900 | G9€0| 9620| ¥1000| ZESO| 00°00T| €11 €TT| ¢1'89| <05 vve| zev8| 161 29T | 9208 €| 80ST|€TTeTlz| weor-weg
2500 ZGE0] 00| 1100| €c0| Z586| oL 69| 60€L| LcE 62| v928| 1e1T 00T | 026 €| T16vT|980/ET| wWeg-weg
6500 | v2€0| G820 0100| €I€0| 2296| 1€ 0S| ¢o0L| i1 SZT| 16%8| €5 S| €967 Z| €660|188G59| wWeg-wey
6220| GLE0| 9YT 0| ¥S00| cT€0| 0000T| oY ov| 99°€L| vee SoT| 1258 0L 09| G667 €| 66vT|9/6€/8] wey-weg
8ETO| 6550| T020| 6200 1€0| €v96| 95 vG| ZTSL| 982 ST¢| ¢crsg| 10T 68| 6105 €| 90ST|600zzT| Wwez-wegt
abuey | XVIN| NI | AaPIS| DAV % | 101 | POJIBA0D | 0% | [€I0L | Palan0d| 0% | [eI0L | Palahod| 0% | [eI0L| PaAes
‘dxg und sjeAlau|
PEO>1IOM £d zd Td voHo| €0

Ad1]0d uonezijnn 1sea] peopilop\ Mo Aepsan

syInsal 43Q peoiom abelane moj Aepsen] £z 319V.L




95

09¢'0| ¢99'0| covo GG'0|€L°.L8 €8'6L 08'85| =bay 6| L9C'V¢C wns
¥12'0| ¢¥90| 6Z¥0 990'0| 9€5°0|€0'T6 8. T.|0C'€8 SLE ¢1€|99'6Y| S¥T ¢L {0805 € ¢s'T 6£°662T |we zT —wd QT
8v¢'0| L.9°0| 6270 TL00| 965°0|98'¢8| SOT 18|€ELLL L9 €9€|VT'€q| GLT €6(¢6'0S € 8¢S'T ¥y 18GT| wd T —wd g
0T¢'0| SGEL'0| t¢S0 €L0°0| L€9'0|€8'08| 0¢T L6(6L.°0L TS €8€(86'95| 60¢ LTT|2L'0S S 9€5°¢ /66€8T| wdg-wdg
8€C’'0| L19.°0] 6¢50 €90°0| ¢99'0|€L¢8| 6ET STT|9T'SL g9 SlV|6L8V| 8¥¢ TCT| VTS 9 v.0'¢ 67280z wdg-wdy
¥6Z°0| S89'0| T6E0 0.00| v09'0{60'€8| 9T ETIT|v0'6L 909 6.7|05°09| 8€¢C YyT|.LT°0S 9 0T0'€ 9T'TLCC wdy —wd g
0S¢'0| LS.°0| LOSO T90°0| €99'0(08'€8| cvl 6TT|GESL L€9 0877 |99v| €S¢ €IT|9¢'¢y 9 9€5°¢ 16€20z| wdz-wdgT
9.T'0| 0¢L0| ¥¥S0 ¥50'0| 8¥9'0|90'68| 8¢T V1T |¥0°9. 9.8 8EV|T9'€S| 8¢¢ ¢CT|6C'1S S G96°¢ €0°200Z |wd g1 — we o7
90¢'0| 6990 €970 T90'0| ¢6S°0|0C¢'¢8| 8TT L6|€EELL G¢s 9017|82°'9G9| 66T ¢TT|9T°0S 14 900°¢ T'/€8T| we QT —weg
LT€0| 099°0| €¥E0 €L0'0| S.v'0|.906 7 89|¢¢'¢8 09¢ 96¢|¥2'€9| 9€T 98(0.L6Y € T6Y'T 98'TLET| Weg—-weg
6¢v'0| 095°0| CETO €ET'0| LLE0|VT'L6 o1 V€|6T'G8 ¢0¢ ¢LT|T9°€E8 19 15(€9°61 4 €660 T88°'T08| wWe9g—wey
€.2'0| 0T9'0| L€C0 6.0°0| €8E€'0({c0'€E6 19174 0v|.8'68 LEC €T1¢|6€9. L GG |S6'61 € 667'T 9,6'6¢6| Wepy—weg
8G¢'0| GSS°0| L6C°0 880°0| SS¥'0|0€'96 4] ¢5(8098 €Le GEC|6L°6S 16 8G(6T°0S € 90S'T 60°0TOT| we¢—wegT
sbued| XVIN| NIN]| ‘Aeapis| oAv % | [€10L | P3I3A0D %| [el01 |pP34sn0d % | [€10_L | P313A0D % jelol panes
‘dx3| ung-rgo s[eAsau|
PeoHI0MN €d Zd Td VYOHO

Aa110d yoredsip 3negaq peoptdopn ybiH Aepssupapn

S)1INsal 43Q peoyiom abeiane ybiy Aepsaupapn vz 319V.L




96

5600 1650] 9670 150] zz.8 5829 LL7S] =BAY 6v| celzz| wns
8TT0| €850| G9v'0| 82000| ¢950| 9rs8| 8L 69| L0T9| si¢ 62¢| 996v| ST .| 0805 €| vesT|6eLeTT|WR T —WdOT
ST00| S290| T190]  v00'0| 2190 0008 SOT v8| GL'95| /9 S9z| 002S| ST 16| 26'05 €| 8¢GT| yr99eT| wdor —wdg
TIT0| 0990 6v50] 92000| Lv90| LT¥8| o0zt T0T| €£65] 1S Tee| ee8v|  60C T0T| €80V 5| cvoz| 29€85T| wdg—wdg
9800 689°0| €090]  810°0| v29°0| 6218| 6ET E€TT| vG8S8| z€9 0LE| L€9v| 8w GTT| T6°€E 9] veoz| Gggo8T| wdg-wdy
ZIT0| €590[ 8v0| 8c000| L290| 8808| O€T 0TT| Y0'€9| 909 z8e| ¢ges| s SZT| LT 0G 9] ot0¢€|9TceeT| wdy-wde
20°0| 0020[ €29°0] 90000| G89°0] 1cS8| evl TeT| vS19]  Z€9 Z6e| 80€y| €s¢ 60T| 9z 2y 9| 9egz| 26187 wdg - wdeT
180°0| 069°0[ 609°0]  Z10°0| 999°0] 9068 821 ¥IT| 89°85| 9.5 gee| 0005 82z ¥IT| 6215 5| gosz|coersT|wder - we ot
8TT0| S290| L050]  1200| ¢190| S0€8| 81t 86| 2929| S¢S 62€| GL6V| 661 66 9105 ¥|  900°Z| T08GT| WeQTl-wWweg
T€00| 0150 6/70] 8000] 6v0| €£68] G’ /9| €€85] 09¢ 0T¢| 9565| 9€T 18] 0167 €| 716vT|98%8GTT| Weg-wWweg
/9T°0| 9€v°0[ 6920] 800| 88€°0] 00°00T|  Ge se| 2L oz 1| S0LL| 19 17| €967 Z| €660| 1880cL] weg-uey
69T0| vzv0| GG'0| €v0'0| TOV0| 006 & 6e| LG2L| leT Z.T| 9089 2L 67| S6'67 €| 66vT|9.686L] Wep-weg
/v0°0| 867°0[ 1S70] S100| 69v0] vv¥6|  ¥S TS| 9889] €lc 88T| ¢809| 6 65| 6105 €| 90ST| 60€c6| Weg-weger
abued| XVIN| NIN| 7eQ'PIS| OAV| %] [EI0L| PaiaA0D| 06| [eI0L| Palanod| 05| [eI0L| Padan0d|  Op| [€I0L| Panes
‘dx3 und sfeAlalu|
PEOPIIOM ed zd Td voHo| €0

Ad110d uoirezi|nn 1sea peodopA YbIH Aepsaupap

S1Nsal N1 peopIom abeiane ybiy Aepsaupapn G2 319V.L




97

9v'0| 055°0| ¥0T'0 180| 6£66 0786 18'06| =Py 67| /Slvz|  wns
/80| ¥0S0| ZTT0|  660°0] 90£0| 00°00T 8L 8| eeu6| sig sog| 99'68|  SvT 0ET| 0805 £ v2S'T| 6£2/8T| We zT —wd o1
eT¥'0| 225'0| TT'0| 90T'0| 20£0| 0000T|  SOT SO0T| 22'86| L9 19v| /596| S/T 69T| 2605 £ 825'T| vv'sove| wdor-wdg
8vS'0| 979'0| 890°0|  2ZT'0| LT€0| 0000T|  0ZT 02ZT| 9266| T¥S eS| oe'e6| 60T S6T| 22705 5 985z| LSv6Le| wdg-wdo
£85°0| €29'0| 60°0| SSTO| 62€°0| 8266  6ET 8eT| 85'86| 2€9 £29| Lzv8|  8ve 602| 215 9 7,0'¢| 61'50T¢| wdg-wdy
£vS'0| T09'0| 850°0|  62T°0| 8€€'0| 9266  9€T SeT| vE'66| 909 209| 09'T6| 8tz 812| LT°05 9 0710'g| 9T'TETE| wdy-wdg
857°0| /85°0| 62T0|  20T'0| 20| 6586  zvT OvT| L£66] /€9 ge9| 82'e6| €52 9gZ| ¥¥'0S 9 9z0'¢| zreree| wdz—wdegt
evv'0| vpS0| TOTO|  660°0| STE0| 2266 82T 1ZT| €T'66| 9.5 1/5| 81'S6| 822 L12| 6215 g 595'2| €0'9v0e| wid ZT — we o1
1680 2250| S€T0| 80T'0| 1€0|0000T| 8TT 8TT| 29'66| Ses £2S| Lvv6| 66T 88T| 9705 v 900'Z| T1'00/Z| WeQT-wesg
86£°0| £/5°0| S/T0|  ¥0T'0| 9T€0| L9'86 s/ vl| 8256] 09g eve| 0528 9T 6TT| 0L'6¥ £ T6V'T| 98'SELT| Weg-weg
gev'0| €850 T0|  90T'0| ¥62°0| 00°00T se se| €596 2oz S6T| 0816 19 95| £9°67 4 £66'0| 788'888| Weg-wey
vZr'0| v.v'0| S00|  960°0| 2/2°0| 96 £v Zr| 02°96| lgT 8zz| 1916] 2L 99| S6'67 £ 667’ T| 86'6Y0T| Wey-Weg
2880 2050| 2T0|  S60°0| ¥OE0| 00°00T S vS| 0826| €Lz 19z| Tr08] /6 8L| 6T°05 £ 905'T| 60'9£2T| Wez—wegT
oA\e

abuey| XVIN| NIW| Aams| DAY %| [101|paianod| 95| [e10L| PaJsn0d| 94| [E101| Palanod|  9p| [e10L u.o_xw ung

PeOIOM £d Zd Td VvOHO| -rdo sfeAsalu|

Ao1j0d yoredsiq 1nejaq peoppAoA MO AepSsupPan

s1Insal 43Q peopjiom abeiaAe Moj Aepsaupap 9z 319V.L




98

vIT°0 |95E°0 (2¥C0 €€'0 |0E'66 6L g6v8 | =bay 6y | 8LV wns

€600 [8¥€0 (S5C0 |TCO0 9¢€"0 [00°00T |8L 8L €LTL |SLE 69¢ 8ET8 |1 8Tt 08°05 € ¥esT 6E¥8ST el —wd ([
¥60°0 |LEE0 |P¥C0 |CCO0 €C€’0 (5066 |(SOT vo1 ¢STL |9V £33 £S°88 |SLT qqT 608 € 8¢S v'9g07 |wd o —wd g
960°0 |€9€°0 (89¢°0 |0C00 Tv€°0 (00°00T [OCT ol €169 |IvS vLE 80°/8 |60 81 ¢L'08 9 9€s'C (S9ge | wdg—wdg
[8T°0 |¢8E0 (S6T°0 |VP0°0 ¢SE°0 |00°00T (6ET 6ET q1'69 |C€9 LEY 8038 |87C TT¢ ve1s 9 vL0°€ 61°05¢ | wdg—wdy
¢8T°0 |€6€°0 |TTC'O |S¥00 ¢9€°0 |00°00T (9€T 9el ¢€89 (909 1447 6’98 |8EC €0¢ LT°0S 9 010t 91'9¢9¢ | wdy—wdyg
¢C1'0 |8LE0 (99C°0 |8200 ¢S€°0 169786 |[CV1 ovl P89 |L€9 9ev €E'68 |€SC 9cc vr°0S 9 90t 8987 |wd 7 —wd 7]
¢ET'0 |£S€°0 |9CC°0 |SC00 8EE'0 |CC'66 (8CT La vv'69 |9L9 oov 16'68 |8¢C S0¢ 6C'1S 9 999°C €0'809¢ ud g1 —ure (1
9€0'0 |£S€°0 |¢CE'0 |900°0 ¥€E0 [T9°96 |8TT vt 87'0L (S¢S 0LE ¥6°L8 |66T QLT 91°0% 14 900 1'98¢¢ |We (] —wegy
9600 |TSE0 |SSC°0 |6T0°0 GEE'0 |00°00T [SL 74 09'/9 |09¢ 1374 89'8L |9€T L0T 0L'6Y € Tev'T 980pyT | Weg —we9
GG0'0 |¥CE0 (69C°0 |€ETO0 80€°0 [00°00T |SE at ¢LLL (20 LST SC's8 (19 [4S €9°'6Y [4 €66°0 188°08L | We g —we
¢¢T'0 |€0€0 (8T'0 |LC00 £8C°0 [00°00T |EY 3% 90°8L |LEC a81 09°[8 |CL €9 9661 € 66v'1 9/6°0v6 | Wepy —wey
T9T°0 |€LE0 (¢CC0 |£C00 ¢ce0 (9186 (va €9 66°€L |ELC 4014 0C€L |16 1L 6109 € 90S°T 60607 |We g —We ]
abuey|XVIN| NI ‘N3dPIS| DAY % [e101 pPoI9n0] % [e101 PoI3A0]y Op [e10] pPoa13A0)] % [e10] poanes .me._:n_-ﬁm_o SEeAIaIU|

PEOX10/M\ &d ¢d Td VOHO

uoIezIjiN 1sea Peo|MIoA M0 AepSaup i

s)nsal N peoiom abesane mo| Aepsaupspn :/Z 319V.L




99

€8¢°0 1989°0 (€0F°0 G50 |6¢'38 ¢6°08 ¥1°95 | =bAy 05 | 9vLve wns

G6T°0 (VL9°0 |6L¥°0 |6¥0°0 9750 |89°08 |88 1L 06'6L |ETV 0ce 9T'€S |8ST 78 08°09 € st 6’ LTyl ezl —wd (]
292’0 [S0L°0 |Evr’0 |CLO00 G850 (£9'98 |S0T 16 €8'6L |TLY 9/¢ 98'09 |SLT 68 6°09 € 8¢S'T vr6/ST [wd ] —wd g
GT¢’0 (T9L°0 |9¥S°0 |¥S0°0 999°0 (L6'T8 |CCT 00T 89°0L (959 €6¢ TCSy |6T¢ 66 €807 S wo'c £9°0T/T | wdg-wdg
09T'0 |0CL0 [99°0 |¥0°0 T199°0 |09°£8 |#¥T 9T 6T'vL |L¥9 08t T9'6v |89¢ 8T Y18 9 /0°€ 61'65T¢ | wdg —wdy
8/T°0 (T¥L0 |¥9S°0 |¥¥0°0 €790 [LT'V8 |6ET LTT 6T'8L |619 1414 7905 |EvC 14 LT°0S 9 010t 9r’/TTZ | wdp—wdg
8620 [S6L°0 |L6V°0 |0L0°0 9€9°0 [CE'L8 [CPT 1£4) 8T'8L |L€9 8617 00’877 0S¢ 0cT ¥7°0S 9 9¢0°¢ st (wdz-wdgp
90€'0 [E€ELO |8¢i'0 |1890°0 L€9°0 [PT'C8 |OVT STT L9'SL |€€9 (A% 6697 |6¥C LTT 1809 9 870°¢ L1507 pd 7] —we (]
T8¢°0 |ETL0 |CEV'0 |8L0°0 6/5°0 (86’88 |8TT SOT 66'LL |LCS Ty .75 (TOC 90T 9109 1% 900°¢ T'L08T (We(Q] —weg
T.E0 (£59°0 |98¢°0 |TOTO S0 (¢Cl6 |TL 0L 8C'68 |SPE 80¢ 7979 [0€T 08 0.6y € T6v'T 98'6vET | We g —wWeg
0/£°0 (T¢S0 |IST'0 |60T°0 9%€°0 [00°00T |SE 13 8T'T6 |P0C 98T €e08 |19 67 €967 [4 €660 8818 | Weg —wWe
¥6¢'0 (¥6S°0 |€'0 (#7600 TSV'0 |vC'88 (TS 514 80°06 |¢S¢ LT 29’69 |6L SS9 S6°6Y € 661’1 9/6'C% | Wefy —wWeg
6570 (809°0 |8¥1°0 |9TT°0 TEV'0 [SSV6 |SS (s 6'S8 |8¢ 1474 00's9 |00T 99 6109 € 90S'T 607807 |We7 —we7]
abued | XvIN| NI Asapis|oav| 9% | ol pasenod op [ 10l pasanod o4 | 1oL pasanod op  [jer01panes .me_su_-nm_o o

PEO| Y10 £d ed 1d VOHO

Ka1j04 yaredsip yneyaq peoyaop ybiH Aepsiny L

s)nsal 43 peopyiom abesane yodiy Aepsinyl :82 319v.L




100

¥80°0 [T69°0 [90G°0 190 |60°/8 8L'T9 801s | =bav 05 | 9vLve wns

000 |€LS°0 |€ES0 (6000 €99°0 [9€98 |88 9L LL°09 |ETY TS¢C ev'vs (89T 98 08°0S € ST 6£°06CT [ue g] —wd (]
1/0°0 |9T9°0 |6€S°0 [LTO0 665°0 |TL'S8 |SOT 06 ST'T9 |TLY 88¢ ev'TS |9LT 06 €609 € 8¢S'T vroTyT |wd o] —wdg
/0T°0 |869°0 |T6S°0 |¥7¢0°0 SL9°0 (L8'LL |CCT S6 8L'€S (999 66¢ LV'ty |6T¢ €6 €8°0v S [47,04 (9°69yT | wdg—wdg
8T0°0 |889°0 [£90 ([SO00 6/9°0 |CL'V8 |PPT [44) 18°LS (L9 VLE 90'81 |8S9¢ 14" YC1S 9 VL0°€ 6T°TT6T | wdg—wdy
TS0°0 |S89°0 (€90 [0TOO €99°0 |€ELC8 |6ET STT 0L'95 |619 TGE L6'8 |EVC 61T LT°0S 9 0To'e or’/18T | wdy -wdg
8/T°0 |849°0 |T0S0 8€0°0 99'0 |0T'€E8 |TvT STT T8'6S (/€9 T8¢ 0¢'Ly |09¢ 81T °09 9 9¢0°¢t w8t |wdg —wdgp
¢¢0°0 |¢99°0 [¥9°0 (9000 ¥99°0 |6¢'¥8 |0VT STT SP'T9 [€€9 68¢€ LS'CY |6V 90T 18°09 9 8V0°€E LL7T6LT ud 7] —we (]
€¢0°0 |609°0 (9850 (£000 8650 [6C°L8 |8TT €01 0T'T9 |LCS [443 9’8y |10¢ L6 91°0S 14 900°¢C T'GGGT  |We (] —we g
¥8T°0 |L0S°0 |¥CE0 [EVO0 69Y°0 |1€8°'S6 |CL 69 79’79 |SPE €CC €065 |0€T LL (VA% € Tev'1l 98ySTT | Weg —weg
0200 |6LE°0 |6FE0 [0TOO €9€°0 [00°00T |SE 513 LS'TL |V0C vt 6v'0L |19 134 €967 [4 €660 788989 | Wweg —wWe§
8¢¢'0 10250 [¢6C°0 (9900 LV'0 |LC98 |TS 144 90°/9 |CS¢ 697 68°0L (6L 99 S6°'6Y € 66v'T 9/6'¢S8 | We{ —wWe g
980°0 |¢LY'0 |LTV0 [ETOO S'0 |116°06 |SS 0s 67’99 (V8¢ 98T 00'99 |00T 99 6109 € 90S'T 60996 |We 7 —wWe{]
abued|[xvIN| NI ‘reapis|oav| % | 1ol passnod op | fe10L pasanod o4 | [er0L pasenod o4 [jer0Lpanes .o_xw:n_-nm_o I

PeoPIoM €d ¢d Td VYOHO

Ka110d uonezinn 1ses peooM YbIH Aepsiny |

s)nsal N peopiom abelane ybiy Aepsinyl 6z 319V.L




101

8I¥'0 |6¥5°0 {TETO0 T€0 |¢066 e6'L6 8168 | =bav 05 | Tve'ae wns

TPE0 |96¥°0 |€ST°0 |680°0 96¢°0|00°00T |38 88 859°L6 [ETY €0y 1988 [8ST ot 0805 € vesT 6€'8€07 e g —wd o]
6T7'0 [¥15°0 |S60°0 |S60°0 TOE0 |00°00T (SOT 90T v6'86 (ILy |99 1468 [SLT LST ¢6°0S € 8¢ST vy'L1€¢ |wd o7 —wd g
¢¢v’0 169570 |£¥T°0 |COT0 €CE0 8166 |CCT 11 vL'86 (959 6vS L8°06 [6TC 661 ¢L°09 q 9€a'C (57587 | wd g —wdog
0G0 169570 |60T°0 |6TT°0 G¢E000°00T [T 144’ 6’86 |LV9 0v9 S1'68 [85¢C 0€e vC1s 9 v/[0€ 6reree | wdg—wdy
vLy'0 |T09°0 (LCTO |CCT0 £¢€°0|00°00T |6ET 6€T 89'66 |619 L19 9E'T6 |EiC 444 LT°09 9 010°¢ 9T'L6T€ | Wdy-wdg
9.0 |909°0 |€ET0 |6CT0 €v€'0100°00T [T 42" €9'66 |L€9 €9 0’68 |0S¢ Y44 'S 9 9c0°t wevee (wdz-wdgg
¢6v'0 |619°0 |8¢T°0 |6TT0 ¥ve'0 (€796 |OVT qeT 0786 |€€9 189 96'68 |6¥7C 144 18°09 9 870°€ LL°LTee pd gy —uwe o[
890 |TSS°0 |€8T°0 |S60°0 LTE0|9V'L6 (8TT 1 0186 |LCS LTS 95°06 (T0C 4] 9109 v 1900 T'[€9¢ |we(] —wWegy
98E'0 |9€5°0 |ST'0 |TOTO 86¢°0 |00°00T |¢L [/ 6E’L6 |aPE 9ee 9198 [0€T [4Y! 0L'6Y € 16’1 98°¢99T | Weg -weg
8GE'0 |94¥°0 |8TT°0 |SCT0 L6C0|VT'L6 |SE ve v1'€6 |v0C 061 (588 (19 7S €9'6Y [4 €660 188798 | Weg —wey
¢0v'0 [¢€S0 |6¢T°0 |VIT0 L8C0|10°86 (1S 0S 18'86 |¢SC 74 v1'76 |64 44 96°6Y € 66771 86°LPTT | Wep —weg
0Ey'0 |1€S°0 |TOT°0 |¥CT0 T€'0 |00°00T|9G 99 €19 |¥8¢ €LC 00'S8 |00T a8 61°09 € 9097 60'G0ET |We ¢ —We 7]
abuey|XVIN| NIIN| ‘Ae@ PIS|OAV| % | [€101 PalaA0] 09 | [€101 Poi9A0] Op | 101 P343A0J % |e10] paAeS dx3 n4-cgol seral

PEOPIOM &d ¢d Td VOHO

Ka1j0d yoredsiq ynefaq peoj4op Mo Aepsany L

s)nsal 43 peopyiom abeiane moj Aepsinyl :0€ 319V.L




102

80T°0 |84E'0 |0SC°0 ¥€'0 190°66 LL0L 99'€g | =bay 05 | Tv2'qC wns

090°0 |¢¥E0 |¢6C°0 |0TO0 9TE€0 |EL'L6 |88 98 ev'IL |ETY S6¢ 1818 (8ST 1% 0809 € st 6€7LLT e 7] —wd (]
60T°0 |SPEQ |LECO |SCO0 €¢€°0100°00T |S0T S0T 8CL |TLY eve LS8 (SLT 5174 6°09 € 8¢S'T 6667 |wd o —wd g
TG00 |T9E°0 |TTE0 |600°0 9vE0 |8T°66 |[CCT TCT 99°CL [99S 01% 018 [6T¢C 78T ¢L0S S 9€9°¢C (SType | wdg—wdg
080°0 |99€°0 [S8¢°0 (6100 GE'0 |00°00T |¥WPT i 1089 |L¥9 (0147 LE'88 |8SC 8¢ Y19 9 vL0'E 61,687 | wd g —wdy
9/T'0 |€6€°0 [LTC°0 (8700 €59€°0 |00°00T [6€T 6€T T¢'L9 (619 91y €898 |EWC TT¢ L1°0S 9 010t 9r°/0L7 | wdy-wdg
6GT°0 |86€0 [8€C'0 (9200 69€°0 |00°00T [¢¥T (44’ 7819 |LE€9 1347 0018 0S¢ 0T¢ A 9 9¢0°t 779697 |wd 7 —wd g7
¢IT0 |98€°0 [PLC°0 (¥C00 L9€°0 EV'96 |OPT GeT 9v'[9 |€€9 Lty €6'T8 |67C ¥0¢ 18°09 9 870'€ ££'699¢ fud 71 —we ([
¥90°0 [¢SE0 |88C°0 |VT0°0 8€€’0 (91’66 |STT LTT 8L'0L |LCS €LE 80'€8 |T0C L9T 91°09 1 900°C T'Te€CC (we(Q[ —wegy
0°0 [6¢E0 |S8C°0 |TTO0 9T€'0 [00°00T |CL L €E'EL |SPE €aC 8¢'qL |0¢T 86 0L'6v € Tev'T 98'G8ET | We g —weg
0€C’0 |£€€°0 |80T0 |SS0°0 ¢1€°0)00°00T |5€ 13 0L (V0C TST €e08 (19 6v €9°6Y [4 €660 1887pL | WEQ—WeY
T8T'0 |0¥E0 |6ST0 |L¥O°0 €0€°0 |¥0'86 |19 0s TVeL (2S¢ S8T 1988 (6L 0L S6°6Y € 66v'T 86'€00T | Wey—weg
000 |EPEQ |¥OE0 |600°0 LC€°0|8T'86 |99 ¥S VCEL (V8¢ 80¢ 00°¢8 |00T [43] 61°09 € 90S'T 60°0STT (We g —we 7]
abuey|XvIN] NIA| ‘AaapIs| oA % | [e10L paianod o4 | (2101 pasanod op | [e10L passnod o5 [er0Lpanes dx3 P -

PeOHOM £d d 1d VOHO

Aa110d uoIrezijinn 15ea peojdop Mo Aepsiny L

s1Insal N7 peopdom abesane moj Aepsinyl (T 3719Vv.L




103

79¢°0 {299°0 [E0¥°0 S0 [EV'68 19'8 1009 | =bav 6y | €ECTC wns

€L2°0 (099°0 |£8€°0 |SL00 ¥95°0 |6V7'98 (TTT 96 9¢'08 |66V 10V 1699 |88T L0T TE€E € 6660 66'69LT e gl —wd ([
¢¢¢’0 |0TL0 |L8¥°0 |£L0°0 190 |CT'v6 [6TT [4%" 6C'6L |9€S T4 ¢L0S |L0C S0t 99°0S 14 L20C TrvesT (wd o) —wd g
8EC°0 |T¢L°0 |€817°0 |¢L00 8190|0098 (0CT 0T 00°SL |¥S 80v €E'eq |0T¢ (49" L 0S g 9€9°¢C (SyS8T | wd g —wd g
162’0 |£9L°0 |TS'0O |TL00 £99°0 [TO'€8 |€9T LT 6'TL |EL9 1431 997 (89¢ 14" V1S 9 vL0'€ 6TvpTe | wdg—wdy
9G¢'0 [¢8L°0 |19¢S0 |090°0 99°0 (¢6'08 |cCST 154} SS'9L |T99 90s TCES |99¢C Tl L1°0S 9 010°€ 9T'TIEC | Wdp-wdg
¢EC’0 |T9L°0 |8¢S°0 |6S0°0 ¢09°0|¢998 (vt 14s 8C¢'8L |09 T0S 90°Ly |SSC 0ctT 70 9 920t Zyeete (wd g —wd g
67¢'0 |669°0 |87'0 |TL00 ¢09°0 (0518 |6CT 60T S0'S8 |C8S Sev 6095 |0€EC 6Cl 6C'TS q 999°¢C €0'7LTe pd gp —we (f
0¢¢’0 (8€9°0 |8T¥0 |6S0°0 €S0 |TV'S6 (60T 0T Y8 |96y LTV 0679 |98T LTT 97'0s € 8097 €1'8681 |We (] —Wey
GTE0 |0€9°0 |STE0 |¥80°0 9Sv°0 |168'88 |CL 79 TC'S8 |8€EE 88¢ 7879 |8CT €8 0L'6% € T6v'T 98°LCET | Weg—WeEQ
0GE'0 (88%°0 |6ET0 |90T°0 9ve’0 (6516 |LE 13 (8°C6 |60¢C v61 €ETv8 (€9 €9 €9'6Y [4 €660 188'C98 | Weg —wWe §
¢8€'0 |5¢9°0 |¢vC0 |STT0 §8¢€°0 [VC'96 TV 07 T€C6 |VEC 9T¢ 9089 |CL 6v S6'6Y € 66Y'T 9/6'/83 | Wefy—wWe g
T0Z'0 |T¢S'0 |CE'0 |€90°0 86€°0 |€E86 |09 65 L0'T6 |T6C S9¢ 619, |S0T 08 6105 € 90S'T 60°€SCT |We g —we 7]
abuey|XvIN| NN Aeapis|onv| % | fe1ol patanod o6 | 2101 patanod o5 | 1oL patanod 95 [eroLpanes dx3 S -

PeOHOM ed d 1d VOHO

Aa1jod yoredsiq yneyaq peoj4oM ybiH Aepri4

s)nsal 43 peopyiom abesane ybiy Aepli4 :2€ 319v.L




104

T/0°0 (9460 (9090 990 |¥1'88 G.29 7,95 | =Py 6y | ¢0L'€C wns

650°0 |€09°0 |S¥S°0 |CTO0 €890 16798 |TTT 96 €79 |66V T1€ L8[y (88T 06 Teee € 6660 66°€SyT e 7] —wd (]
8ET'0 [L¥9°0 160570 |TE00 6¢9°0 |C6'68 |6TT L0T 8€T9 |9€S Y43 9.6y |L0C 130] 99°09 1% L0C tr'Te9r (wd o —wdg
G200 (¥¥9°0 |6T9°0 19000 L€9°0 (00°98 |0CT [40] qT'sS |WbS 00€ 06'TS |0T¢ 60T ¢L0S q 9eq'¢C (SpT9T | wdg-wdg
G¢0'0 |00L°0 |S£9°0 |L000 ¥89°0 [¢9'98 [€ST TeT L89S |€L9 9/¢ €0'vr (89¢ 81T ov'ey 9 St L'[98T wd 9 —wd y
9¢0°0 [€69°0 |£99°0 |800°0 6490 [6¢"8L |CST 61T TC09 |T99 86¢ ev'ey |199¢ TET LT°0S 9 010t 91’7107 | wdp —wdg
¢¢0°0 (T99°0 |6¢9°0 19000 90 [TC'S8 el |14} 60'T9 |0¥9 T6€ 90°Ly |9SC 0t A 9 9¢0°t TT6l |wd g —wd g
860°0 |¥S9°0 |99S°0 |6T0°0 G79'0109°L8 |6CT €17 8'09 |C8S 1413 16°€S [0€C 174} 6C'TS S §99°¢C €0'S8T ud 71 —we (]
700 [€LS°0 |6¢S°0 |CTO0 8990 [T6'68 |60T 86 L0’[9 |S6¥ (433 16'9S 98T 70T 970 € 809°T €T'8T9T (we ([ —wey
8T0°0 |€8%°0 |S9%°0 |900°0 VL¥'0 (6888 |CL 9 6,79 |8€EE 6T¢ 8€'69 |8CT 9L 0L'6Y € Tev'T 98°CEIT | Weg—wWeg
GG0'0 |T8E°0 |9¢E0 |¥T0°0 9€°0 [6v'98 |LE [43 89 |60¢ el 58 |€9 4] €96V [4 €660 188°6vL | Weg—Wef
Gl¢'0 (8vP'0 |ELT'0 |SLO0 ¥0°0|C9°L6 |CV Ty (9'[9 |¥EC 84T 999 |CL 8y 866V € 66v'T 9/6V9L | Wey—wWey
G90°0 |vEP'0 |69€°0 |STO0 LT¥°0 4996 |09 89 8€'89 |T6C 661 8¢¢L 90T 9L 61°09 € 90S'T 60°880T |We ¢ —we 7]
abuey|XvIN| NIIA| ‘rsapis|onav| % | rerol passnod op | erol passnod o | ferol paisnod 9 |10 panes dx3 ntcad sena

PEOXI0M €d d 1d VOHO

Aanjod uonezinn 1ses peopHom YoiH Aeplid

s1Insal N7 peopiom abeiane ybiy Aepli4 €€ 319v.L




105

¢ey0 |80 |2¢T0 T€0 |LT'66 g8'/6 0006 | =bAy 6y | 18.7¢ wns

[87'0 ({1890 |S60°0 (¥CT°0 80€°0 [0T'66 |TTT 01T 07’86 |66% 06v 68’68 |38T 691 0809 € ¥esT 6€'99% e gl —wd ([
T¢€'0 (0470 |6VT°0 |T60°0 L0€0 |00°00T |6TT 61T 69'86 (9€S 6¢S 6L'T6 |L0C 06T 99°0S 1% L20C tr6eLe wdop —wdg
8GE°0 |¢9¥0 |¥OT0 T600 ¢1e0 (LT'66 |0CT 611 19°L6 |W¥S TeS 6’16 |0TC 861 ¢L0S S 9€5°C 55087 | wd g —wdg
LT9°0 |€E¥9°0 |LCT°0 |CTT°0 ¢Ce’0 (00°00T |€ST €91 9686 |€L9 999 €016 |89¢C [4°T4 V1S 9 vL0'€ 61°055¢ | wdg-wdy
TLy°0 |8T9°0 |L¥T0 [PTTO €0 |vE'66 |CST 197 7986 199 (99 1868 |99¢C 8¢ L1°0S 9 010°€ or'/0ve | wdp-wdg
TEY'0 |¢LS0 |¥VT°0 |€0T°0 ¢€E’0 (00°00T |2 T (4 8¢'86 |0¥9 609 90°/L8 |9S¢C (444 °0s 9 970°¢ e (wd g -wdgp
GEG'0 [0T9°0 (SL0°0 |CCT0 CEE0|CCe6 |6CT 81 ¥6°L6 [C8S 0LS €°06 |0€C 80¢ 6C'1S S §99°¢C €0°€/67 pd g1 —we O]
YTv'0 |L¥S°0 (PET'O |9TTO ¢€'0 |00°00T|60T 60T 6586 |S6¥ 881 98'06 |98T 691 9C°0S € 8057 ET'TovC |We(f —we g
0T¥’0 [0€S°0 |TCT'0 |LOT°0 TOE0 |00°00T |CL L CC'86 (8€EE (433 91's8 |8¢T 60T 0L'6y € Tev'l 98'TE9T | Weg —wWeg
€60 |T¢S0 |8¢T°0 |TTT°0 TOE'0 [0E°L6 |LE 9¢ L6 |60C 861 87'06 |€9 LS €9'6Y [4 €660 188°¢06 | We g —we §
96’0 |8TS90 |¢CT°0 |SOT'0 ¥6C°0|C9'L6 |CV Ty W'L6 [PEC 8C¢C LY |CL 19 S6'6Y € 66v'T 86'800T | Wey —wWe g
LZ€0 |€SV0 |SCT°0 |#80°0 16¢°0 [€€'86 |09 65 1696 |T6¢C 8¢ ev'T6 |S0T 9% 61°0S € 9057 60°GTYT |Weg —wWe 7]
abued | xvIN| NI raapis|oav] % | ol pasanod o | feaol patenod op | a0l patenod op  [rer01panes dx3 PO -

PROIOM £d ed Td VOHO

Aa1jod yoredsiq yneya@ peojopm mo Aepuig

s1Insal 43Q peopiom abeiane ybiy Aepli4 € 319v.L




106

€070 [/S€°0 |¥5C0 €e0 7986 9€T.L 6ees | =bav oy | 19L1¢C wns

¢¢0'0 |¥P€'0 [CCE0 |S00°0 €€'0 (00°00T|TTT 171 vLTL |66V 84¢ 6L'6L (88T 09T 0809 € I/AN} 6€TS07 [ue 7] —wd (]
¥€0°'0 |ESE'0 [6T€°0 |LOO0 TEE0 [00°00T |6TT 61T 0v'69 |9€S (443 '8 |L0C 1817 99°09 1 L20'C trever (wdop —wdg
680°0 |¢SE0 (€6C°0 |CTO0 GEE'0 (00°00T |0CT 1[4} 8€'89 |WPS CLE 6198 |0TC 18T ¢L0S q 9€S'C (57ser | wdg-wdg
8¢T'0 |99€°0 (8€C'0 |8C00 6v€0 [00°00T |€ST 13 19°/9 |€L9 qqP 90’88 [89¢ 9¢e¢ vC1S 9 ¥L0°€ 61°000¢ | wdg-wdy
7,00 |08€°0 ({90€°0 |TT00 ¥5€°0 [FE'66 |CST 14T 0¢'0L |T99 9y 99’98 |S9¢ LT LT°09 9 010t 9T'ever | wdp-wdg
¥ET'0 |08€°0 |97C°0 |CE00 GGE'0 (6986 |1 04 €969 |0v9 Shy GE'C8 |SSC 0T¢ 709 9 970°¢ tresLg (wd g —wdgg
6¢T'0 [9L€°0 (910 |L200 99€°0 [CC'66 |6CT {4} 96°0L |C8S 1347 ¥0°€8 |0€C 16T 6C'TS q §99°C €0°€eS od 71 —we
¢6T'0 [68€0 (L6T0 |6¥0°0 TvE0 [00°00T |60T 60T 0T°0L |S6Y LYE 08'C8 981 AT 9709 € 80S°T €160 (We (] —we g
G600 |8EE'0 [EVC'O |€ECO0 CE0 (976 |CL 99 68'TL |8EE 1374 ve'LL 18CT 66 0L'6Y € T6v'T 98°[9€T | Weg—wWeg
¥8T°0 |€5€°0 |89T°0 |¥S0°0 9T€0 [0E'L6 |LE 9¢ g6l (60C 997 ETv8 (€9 €S €96l [4 €660 188°£08 | We g —wey
G9T'0 |LEE'0 |ELT0 |LEOO TE0 [C9°L6 |V Ty 09°EL |WEC Ut LT6L (CL LS S6°6Y € 66v'T 9/6'798 | Wey —wey
T¢0'0 |0CE0 (66C°0 |L000 TE0 (€€'86 |09 69 ¥S'EL |T6C v1¢C 9Lv8 (S0T 68 6109 € 90S'T 60°€CCT |We g —we ]
abuey[xvIN] NI Asapis|oav] % | 1oL passnod op | e10L passnod op |10l passnod o [fer0Lpanes _wa:“_-nmo SenIa|

PeOPHOM ed e 1d VOHO

Kotjod uonezi|n 1sea Peojom Mo Aepli

S1Insal N1 peopjiom abeiane ybiy Aepli4 :G€ 319v.L




107

0.¢°0 1¢99°0 |¢6E0 ¥5'0 (2006 00°¢8 7965 | =bAy v | TELEC wns

8¢¢’0 [¢cL0 |v6v'0 |€90°0 ¥€9°0 |¢T'S8 (TCT 130] 06°LL |CSS 01574 €9°CS |LTC vIT 9C'Ts S €95°C 9161 e 7] —wd (]
¥.¢'0 |02L°0 |9%P°0 |€L00 £85°0 (80'68 |6TT 90T 6'8L (9€S 141 T€99 (90¢ 91T 99°09 1 L20C wziel |wdop —wdg
TLZ0 |SPLO |vLP0 |S90°0 G790 (978 |(0ET 01T ¥0'8L |C6S (417 Wy |vEC 0T ¢L0S g 9€5°¢C (59067 | wdg-wdg
€60 [669°0 |99%°0 |990°0 9090 |¢L98 (8CT 1717 6L'6L |6LS 4] ¥8°CS |6CC T 88°09 S aC L0 | wdg -wdy
Y20 |9€L°0 [687°0 |€90°0 ¢9°0 |0C'L8 |(SCT 60T 069L |£9S 9¢y 9¢g'€s [€CC 61T qT'0s g 806°¢C reler | wdy —wdg
9TZ’0 |069°0 [E€L¥°0 |£S0°0 €659°0 199706 (LCT S1T 6€'08 (TLS 65t TT°6S [SCC €er TL°0S q 9€5°C (16T |wd 7 —wd g
19¢°0 (8990 |¥'0 |8L0°0 TvS°0 [¢6'C6 |ETT 0] €L'€8 (0TS LTy €L°09 |T6T 911 ¥5°09 € 9191 9z'TT6T [dg[ —we (]
GZE'0 1949°0 [TSE0 |€80°0 ¥6v°0 [16°06 (88 08 S0'88 [0TY T9¢ 06¢S |99T 4] 97’09 € 80G°T €18yl (Wwe (] —we gy
9¢’'0 [895°0 |CCE0 |€80°0 TvP0 (L5706 |€S 8y S'S8 |89¢ 6¢C 65°99 |€6 19 0L'6Y € Tev'T 98'L10T | Weg—Weg
T0Z'0 [€0S°0 |€0E'0 |SS0°0 8010 |68°88 [St 0 T9°€8 |8€EC 661 L6EL |EL ¥ L6'6Y € 66Vl 886'¢68 | Weg—UWey
YE'0 |T8S°0 [¥EC0 {9600 9.°0 (0096 |(SL L LT'68 |PSE 91¢ ¥9°€9 |CET 78 S6°6Y € 661’7 86'66ET | Wey—Wey
98€°0 [€E€9°0 |L¥C'0 |€0T0 70 [0L°L6 |L8 S8 1076 |TOV LLE 9¢08 |¢ST [44) 61°09 € 90S'T 60°6E8T |We g —wWe 7]
abued [ xvN| NIW[ ‘reaps|onv] % [ erol pasanod op | 10l pasanod op [ er0l pasonod op  [rer01panes dx: O -

PEOIHOM ed o 1d VOHO

Aa1jod yoredsip yneja@ peopom YbiH Aepanzes

s)nsal 43Q peopyiom abesane ybiy Aepines :9¢ 31gv.L




108

9210 |7/S°0 |877°0 660 (8988 1079 0L'ls | =bay Ly | 9€¢°EC wns

¥70°0 |859°0 (¥9°0 |S00°0 199°0 (LT'08 |TCT L6 ¥0'€9 ¢SS 8vE Te6Y |LTC L0T 9C'TS q €99°C 0697 e 7] —wd (]
80T°0 |S¢9°0 (LTS°0 |CC00 €09°0 [¢6'68 |6TT LOT 0L'6S |9€S 0ce 88'€S [90C 1117 99°09 1 L20C (991 |wd o —wdg
¥¢0°0 |¥S9°0 [€9°0 |900°0 T¥9°0 [¢9'¥8 |0€T 01T r'65 |65 0s€ Oy |PeC €01 €8'0v S [ar V4 (99997 | wdg-wdg
1800 |T¥9°0 (¥SS°0 |8T00 9790 SC'T8 (8T 70T 0T°09 |6LS 8v¢E ¢C0S |6CC STl 8809 S aC £09/7 | wdg-wdy
9/T°0 |€S9°0 [9L¥°0 |0OK00 ¥€9°0|00°88 |SCT 01T 19°69 |£99 8€¢ 16'CS |€CC 81T qT0S S 80S°C oLt | wdp-wdg
90¢°0 |0€9°0 (¥cv'0 |t70°0 609°0 [FE'T6 |LCT 917 SC09 |TLS 4 00'9¢ |SCC 14} TL°0S S 9€S'C (657s8T (wd 7 —wd gy
89T°0 |66S°0 [TEV'0 |SE00 €99°0 |ST'T6 [ETT €0t €9°€9 |0TS /43 $5°99 |T6T 80T 75709 € 9IsT 97'6€9T ud 7] —we (]
G0T'0 |¥CS'0 [6T¥°0 |00 (15°0|LL'68 (88 6L 0L 0TV 88¢ T9°'TS [SST 08 9709 € 80ST ET'6IET (We (] —wey
¢¢T’0 |¥87°0 [¢9€°0 |9€0°0 (SP'0 |6L798 (€9 17 ¥5°£9 |89¢ 18T 6C'T9 (€6 LS 0L'6Y € T6v'T 898°/88 | Weg—We9
€.0°0 |SPr'0 (TLE0 |LTO0 Y0 [68'88 |SP 07 L6'99 (8EC LST Ye'SL €L 99 L66Y € 66v'T 886°L18 | We g —We
8T€°0 |L¢S°0 (TC0 |LL00 96¥°0 |€E'E6 (SL 0L €6'89 |PSE e ¥9'€9 |CET 78 S6°6Y € 66v'T 86'€SCT | Wey—wey
TTT'0 |8¥'0 (8EE'0 |€CO0 TEVO(0L'L6 |18 S8 L00L |TOV 18¢ €9°LL [CST 81T 6109 € 90ST 609797 |We g —we 7]
abuey|XvIN| NIW| ‘Asapis|oav| % | feol baisnod o | [e10L passnod op | e10L passnod 95 |[e101panes .mesn_-nm_o SEAIA

PEOIUOM ed o Td VOHO

Aanjod uonezi|nn 1sea peopop ybiH Aepinies

sjInsal N7 peopom abeiaae ybiy Aepinies /€ 319v.L




109

1860 9¢5°0 |EVT0 ¢€0 |8C'66 6L'L6 8968 | =bnv Ly | TEL'EC wns

€Er'0 |945°0 |EVTO (OVT0 CCe0|LTe6 |TT |0CT €L86 ¢SS (v |98'68 (LTC  |S6T  |9CTS S [esT  [risr eyl -wdog
¢GE0 |¢Ly'0 |¢T°0 (T600 9¢c’0|00°00T6TT  |6TT L066 |96 [T€S  [9CT6 (90C (88T  |99°09 v |20t |ewetie (wdop-wdg
0 |LL5°0 |9€T°0 (LCT0 8¢E'0|00°00T [OET  |OET 6v'66 |C69 685 (8T8 |VEC  [VOC  |CL0S S |97 |/S'0867 | wdg-wdog
6vr'0 [¥6S0 |SPT°0 |8TT0 T€E0|cce6 |8CT  |LCT LC86 |6£5 |95  |6€06 |6¢C  [LOC 8809 S |wWwST  |LT96¢ | wdg-wdy
8T7'0 |6¥S°0 |TETO (0CT0 Tec’0|0000T|SCT  |Scl 86 |£99 (89S  |69'68 |€CC  |00C  (ST0S S (80T  [zrT8sr | wdy—wdg
LLE0 |9¥5°0 |89T°0 (TOT0 peE'0 (0000T LT |LCT G786 |TLS (999  |997T6 |SCC  |90C  (TL0S S |9esT  |/sswer |wdz-wd ]
06¢°0 |99v°0 |PL1°0 |€EL0°0 (€0 |€C86 |EIT |1 €86 |01S [0S  |0T'T6 (T6l W1 |PST0S € 9197 97TeSz pd 71 —we ]
8070 |EPS0 |SET'O (€800 ¢0€'0|00°00T (88 88 99°'/6 |0Ty |00V  (pL'[8 |9ST  [9ET  |9C°09 € [80ST €1°000¢ |we Q[ —uwegy
L0E0 |6S¥°0 |¢ST'0 {9600 96¢°0|TT°86 |€9 [4S 99°¢6 |89¢  [ISC  |SC'68 |€6 €8 0L'6y € (Ter'T 98'TyCl | Weg—-weg
6v¢'0 |€6E°0 |P¥T°0 (000 98¢0 (8L°L6 |5V 144 %16 |8€C  [9¢C  |8L7T6 [EL 9 L6'6Y € |667'T 66'950T | Weg-wey
LEV'0 [199°0 |€CT0 |VCT0 ¢0€0 |00°00T |SL SL vLL6 |PSE |9FE  (T9'S8 |CET  [ETT  |S6'6Y € |667T 867691 | Wey —wWeg
y1v’0 €990 |6V1°0 |STT0 1¢E0|5886 |18 98 G¢86 |ToF  [v6€  |6£°06 |¢ST  |8ET (610§ € [90ST 60°C00C |Wwe ¢ —we 7]
abued|[XVIN| NIN ‘NOAPIS| OAY| % | [e10L PadsA0] 94 | [e10L PoisA0d Op | [B10L PoIsA0] Op [e10] paAesS "0x3 n4-0ga SEAIEW|

PEOIHI0M &d d Td VOHO

Aa110d yoredsiq yneya@ peO|IOM MO Aepanies

s1|nsal 43Q peopiom abeiane moj Aepanies g€ 319V.L




110

GTT°0 |09€°0 |SFC0 vE'0 0886 croL eLv8 | =bay Ly | TEL'EC wns

G8T'0 |69€°0 |¥81°0 |0¥0°0 ave0|CS'L6 |TCT 811 99°0L |CSS 06€ 8788 |L1¢C 61 9C'1S S €95°C Gz pegr—wdqp
¢50°0 |89€°0 |91€°0 (0TO0 SE'0 (00°00T|6TT 611 80°'TL |9€9 18¢ 6898 |90¢C 6LT 99°0S 14 L0¢C sy (wd o] —wdg
6ST°0 |08E°0 |TCC'0 (8€0°0 TSE'0 (9786 |OET 81 €C’L9 |C6S 86¢ 6T'v8 |PEC L6T ¢L0S 9 9€s'c (SovSe | wdg—wdg
910 |SLEO |8CC’0 |SCO0 ¥SE'0|CC’66 |8CT La €5'19 |6LS T6¢€ q1's8 |6¢C 961 8809 S wS'C L6057 | wdg-wdy
0pT°0 |T6€E°0 |TSCO [€C00 9GE°0 [00°00T |SCT S14! ¢0°£9 |19 08¢ vv'(8 |€CC 961 qT°0s S 805°C cregy | wdy —wdg
€80°0 |0LE°0 |88C°0 (STO0 6SE0 [EV'86 |LCT qcl SL°0L |TLS vob 868 |SCC [{174 TL°09 9 9€s'c £5'685¢ |wd 7 —wd g]
G900 [6SE°0 |W6C'0 |€T00 €VE'0 [00°00T |ETT €Tl 65°0L |01S 09¢ 0c'e8 |Tel LST 7909 € 91S1 9z'€TTe pd g1 —we o]
800 |0VE0 |¢9C0 (6100 ¢CE0 (00°00T |38 88 TLTL (0T ¥6¢ 99°08 |9ST 114 9’09 € 809°T ET00LT (We(] —We§y
60T°0 |0S€°0 |T¥C0 (SC0°0 CIE0 (TT86 |€S S 0’69 |89¢C 98T LS'6L |€6 vL 0L'6v € Tev'T 98'6c0T | Wwe gy —weg
T9T'0 [9¢€°0 |99T°0 |6€0°0 €0€°0 [00°00T |SP 17 €L'LL |8EC a8T 6T'e8 |EL 09 L6°6Y € 66T 886816 | Weg—wey
910 [LEE0 |T61°0 |8¢00 61E0 [EEL6 |SL €L LY'TL |VSE 13574 60¥8 |CET 111 96°6Y € 66771 86°06vT | Wepy—weg
6590°0 |SS€°0 |96C°0 [ETO0 vE0 99796 (L8 8 €869 (TP 08¢ 8198 |caT T€T 61°09 € 90S°T 6091/ (Weg—-weg]
abuey [ XVIN| NIW| ‘Aa'PIS| OAVY| % | [e101 passnold 9o | [e101 Palanod 9o | [eI0L PalaA0d % [€10] panes .me(_sn_-_wmo SlenIa|

PEOIHI0/ €d ¢d 1d VOHO

£2110d uoIezI|inN 1sea7 PeojdIop Mo Aepanyes

s1Insal N7 peopiom abeiane moj Aepanies :6€ 319V.L




111

90 |S¥9°0 |69€°0 ve'0 (19788 6718 Lr'6s | =Py Or | 86961 wns

G0E'0 [8E9°0 |€EE'0 |T8OO 615°0 |PC'88 (S8 74 0L'T8 |66€ 9ce 0019 |0ST 96 0805 € vesT 6€'61ST e 7] —wd (]
98T°0 |T99°0 |SL¥°0 |0S0°0 965°0 |CE98 |LT1 101 TL vl 819 (8¢ €0°€S |861 S0T 99°0S 14 L20°C Lyt |ud o) —wd g
T9¢°0 |£TL°0 (99%°0 |690°0 8¢9'0 (/908 61T 96 8E'BL |CES LTy €08y |0 L6 ¥0°1S 14 wo'e £98eLT | wdg—wdg
¢5¢'0 |€89°0 |TEY'O |850°0 909°0|09°88 |ETT 00T 8C'9L (90 98¢ 9C’05 |T6T 96 0£°09 € TeST vEv99T | wd g —wd
92’0 166970 €SP0 |CL00 ¢65°0 |6T°€8 611 66 1£°08 |PES 1437 LEYS |90 at 6€°0S 14 910°C Se'688T | wdy —wdg
062°0 |9£9°0 (98€°0 |€800 ¢95°0 {9L°06 |6TT 801 9L'8L |CES 5147 ap"ag |0 at 9L°8¢ 14 08ST 89987 |wd 7 —wd]
87¢'0 |£9°0 |6L€°0 |9L0°0 8190 |vL°06 |80T 86 96'6L |V8Y L8€ 0009 |08T 80T 7905 € 91sT 97'09.T [ud 71 —we Of
69¢°'0 |T09°0 |CEE’0 |690°0 C15°0 9€T6 (18 vl 0C’e8 |L8€ [443 0619 |L¥1 16 9c’0s € 8091 ET'0LPT |(We (] —wey
¥6¢°0 |695°0 (99C°0 |C60°0 90v°0 |9T°96 (S 09 95°L8 |LSC Scc vC0oL |¥8 69 0L'6y € Ter'T 898°966 | We g —we9
€.E'0 |9£9°0 |TOCO |TOTO LEY'0 00798 |09 1974 0098 0S¢ ST¢ ELTL |LL 99 L6°6Y € 66T 88676 | We 9 —wey
66T°0 |9¢9°0 |9¢¥'0 |S90°0 8909698 |6 08 01°€8 |9cv 113 88'65 [C9T L6 96°6Y € 66771 86°£89T | Wey —wWeg
G6E'0 |1€£9°0 (8£C°0 |TOTO 615°0 |0C’€6 (0T 96 LY'[8 €9 07 6L€9 VL1 111 61°0S € 90ST 60°818T |We ¢ —wWe ]
abuey [ XVIN| NIN| ‘A8aPIS|OAVY| % | [P10L pasnol o | [e10L Paisnol 94 | €101 P8idnod % [e10 panes “dx3 n4-cgol serswl

PEOIHI0M &d ¢d Td VOHO

Aa11od yaredsiq yneeq peopop ybiH Aepung

syInsal 43Q peopiom abeiaae ybiy Aepinies 0y 319v.L




112

G90°0 |TLG°0 {90G°0 G50 888 q529 £e'qs | =Py o | S8T°0C wns

87100 |6¥S°0 |€S'0 |#00°0 6€5°0 |CT'v6 |98 08 TV'€9 |66 €5¢ £9°85 |0ST 88 0809 € vesT 6EYIET e g[ —wd (]
LE€0°0 |V€90 |£6S°0 |600°0 9190 |0¢'T8 (LTT 96 98¢5 |819 6LC ¢S'TS |86 [ 99°0S 14 La0¢C 10T [wd o —wd g
9€0°0 |T99°0 |9¢9°0 |600°0 L¥9°0 |E8'6L |6TT 96 8LC9 |CES 433 LSy |0 98 015 14 wo'e (9¢€8yT | wdg-wdo
¥10°0 |0€9°0 (9T9°0 |¥000 T¢9°0 |ST'T6 |[ETT €01 0485 |909 L6¢ [AWARI1) 06 0£°09 € T¢ST vEToyT | wdg—wdy
v.T°0 |829°0 (¥SP°0 |8E00 909°0 |6€°£8 (61T voT 66'T9 |PES 1€ EVCS |90¢C 80T 6€°09 14 910°C G799t | wdp—wdg
€90°0 |T09°0 |8%S°0 |TT00 €85°0 |TL'S8 |6TT [40)! v1'LS |CES v0¢ 6v'1S |0 ¥0T 96°0S 14 8€0°C 19'7/ST |wd z —wd g
¥0T'0 |995°0 [¢9%°0 |£C00 6€S°0 |Pr'v6 |30T [40) vL09 |v8Y ¥6¢ 68°€S 08T L6 ¥5°09 € 91571 9z°06vT ud 7] —we (]
800 |T¥S'0 |€0S°0 |600°0 6¢5°0 |68°88 (18 [/ 8019 |(L8¢ 8¢ 8L'9S |L¥1 8 9¢'09 € 8057 ET'8yCT |We Q[ —wegy
9€0'0 |6EY'0 |€0V°0 |TTO0 Ccr'0 |8€06 |CS Ly 7999 |LSC TL1 £999 |¥8 99 0L'6v € 1671 898098 | weg—wWe9
0LT°0 (0870 |TE0 |C¥00 9’0 |00°06 |0S 174 09°€L 0S¢ ¥81 69 |LL 09 L6°6Y € 66Y'1 886'9€8 | We9—Wey
L.0°0 (TS0 |¥6Y°0 |8T00 655°0 |0E'T6 |6 8 Ev9 |9y vLC €085 |91 6 96°6Y € e6Y'1 86°/0VT | Wey—Weg
6700 €SS90 |¥ES'0 {900°0 950 |8€°L8 [€0T 06 09°€9 |E9v ¥6¢ 609 |PLT 901 61°09 € 90ST 60°095T |We g —wWeg]
abuey [ XVIN| NIN| ‘A8Q'PIS| OAY| % | [e101 paiano] 94 | [e30L patanod 9o | [eI0L p319A0) % [e101 panes "dxd ni-cgd semtal

PeOIXIOM &d ¢d 1d VOHO

Aatjod uonezijin 1sea peopom ybiH Aepuns

syInsal N7 peopiom abeiaae ybiy Aepinies Ty 319v.L




113

LEV'0 9990 8TTO 1€°0 |8¢66 10'86 8188 | =bny Oy | 98T°0¢ wns

Tvp'0 |999°0 (VIT°0 (TTT0 86C°0 (8’86 |58 8 00’66 |66€  [36€  |€ET6 [0GT  |LET  [08°0S € |PeST 6€v66T e 7] —wd (]
¢LE0 |6¢5°0 (99T°0 (COT0 ¢€0 (00°00T|LTT  |LTT 88'[6 |8TS [0S  |8€EB8 (86T  |9LT  [99°09 v |LC0C tre9se (wd o7 —wd g
LTy°0 |615°0 (¢OT°0 [ETT0 61€°0 (00°00T|6TT  |6TT GCe6 [¢€S  |8¢s  |0T'06 |cOC  [¢8T  [VO'TS v [th0C £9'€997 | wdg—wdg
6¢v'0 |9¢5°0 (£60°0 (80T CCE'0 [00°00T|ETT  [ETT 09'66 |905 [0S  |8¥'88 (T6T  |69T  [0L°0S € TS ve'L6vg | wdg-—wdy
¢1y'0 |8¥S°0 (9ET°0 (E0T0 LCE0|9T'66 |6TT  |8TT 88'86 |PES 8¢S |€8'B8 (90C  |E€8T  [6E°0S v [9T0°C 7097 | wdy-wdg
¢er0 |S¥S°0 (¢CT°0 ¥60°0 6¢E0 (9166 (61T (T 09'86 |C€S  |[¥¢S  |89°T6 [C0C  |S8T  [S6°0S v [8E0°C 19'8£9¢ [wd 7 -wdg]
¢vy'0 16550 (91T°0 (TOT0 G0E'0(ST'86 (80T (90T vi'86 V8¢  |9Lv  |68°€8 (08T  |TST  [¥S°0S € 9197 97'88z¢ d 71 —we (]
8Gv'0 |965°0 |8ET0 [60T°0 80€°0 |00°00T (T8 18 €6'L6 (8¢ |6LE  |TLSB |1 [9CT  [9C0S € 80971 ETTL8T |We (] —wegy
6e€0 |S05°0 (99T°0 (¢60°0 98¢°0 {8086 |CS 19 1196 [[SC  |L¥VC  |CS¥8 |¥8 1L 0L'6Y € [Tev1l 98'9¢TT | Weg-weg
¢vy'0 |£¢S0 (S80°0 (ETTO 16¢°0 [00°86 |0S 97 0C's6 |06¢  [8E€C  |TCT6 |LL 1L L6'6Y € |66vT 669111 | Weg-Wey
7950 |£€9°0 (9800 (9€T0 61€°0 [00°00T |¢6 6 99'.6 (9cy  |9TF  |08'S8 |C9T  |6ET  |S66V € |66VT 86'650C | Wey—wey
6190 |€19°0 (¥60°0 (SYT0 L1€0|0000T|€OT  |€0T 0L'86 |€9v  |LSv  |9€°(8 (VLT  |¢ST  [61°0G € |90ST 60°'/SCC |We g —we 7]
abueyd | XVIN| NI ‘A8Q PIS|OAV| % | [e10L PalsA0] 094 | [e10] PoaisA0d Op | [e10L PB3I3A0Y O [e10] panes dx3 n4-cgo| sfema]

PEOPHOM &d [4e| 1d VOHO

Aa110d yaredsiq 3neyaq peoj4op Mo Aepung

s)Insal 43 peojyiom abeiane moj Aepinies :zy 31gv.L




114

8600 [SSE0 [9520 £c0 [v1'66 9% 0L 8.cg | =bAv Ov | S8T0z |  wns

8T0°0 [LZc€0 [TE'0 |S00°0 6T€°0 [00°00T |S8 S8 LT'[9 [66E 89¢ 0098 |0ST 6CT 08°0S € 7¢aT 6€°£/9T Jue gl —wd (]
JTT0 [8S€0 [T€C0 [c200  [wvE0|0000T|ZTT  |LTT  |ves9 |81 |vse  |v8€8 86T  [99T  [9905  |v |zc0C  [|evssie |wd of —wdg
2800 |6SE0 [L£T0 [/T00  |IvE0|0000T|6TT  |61T  |8€SL |c€S  [1ov  [6908 |c0c  |e9T  [01S  |v |evoC  |£97/Sce | wdg-—wdg
1200 [£S€°0 [€€E'0 [900°0 7€°0 |00°00T |ETT €TT 9T'0L [90S qqe LL'€8 |T6T 091 0,£°0S € TeST vererg | wdg —wdy
8900 |¥9€°0 [S6C°0 |CTO0 GE'0 (00°00T|6TT 61T GE'89 [VES S9¢ ¢6'S8 [90¢ LLT 6€°0S 14 910°¢ ST'L6g | wdp—wdg
BIT0 |6LE0 [65C0 [9200  |€SE0|€86 [61T  |LIT  |s€99 |c€S  |ese  [€998 |0 [T |[s60S  |[v [8e0  [19'ssez |wdg—wd g
980°0 [95€°0 [£¢'0 |STOO L2€0|9T°86 (80T 90T €599 (¥8¥ [443 99°'G8 08T 1)) 7909 € 91S'T 97'9007 [ud g1 —we ([
#70°0 |TSE'0 |80€°0 |600°0 8¢E'0100°00T |18 18 90°'TL |/8€ SLC LC08 (VT 8TT 9¢'0S € 80S°T €T'66ST |We (] —we g
ZE€T0 [BEE0 (9020 [9200  |S0E0|ST96 [¢5 |05 |09TZ |£S¢  [v8T  |s608 [v8 |89 |oz6v  |¢  |l6PT  |858'G86 | WEg -weg
T8T0 |L€E0 [95T0 [9v00  |S0€0|00°86 |05 |67  |09°€L |0SC  [v8T  [1£S8 |LL |99  |[66F  |€  |66vT  |886'896 | Weg-wey
G220 |SLE'O |6¥T°0 |£90°0 7€'0 |00°00T |¢6 6 V6'€L (9CY STE 0T'¢8 |91 €eT S6°67 € 667'T 86°608T | Wey —wey
/900 €S0 (9820 [STO0  |Z€E0|€066 [€0T  |cOT  |00'EL |e9r  |8e€  [16'€8 [WT  |[9vT  [610S  |€  |90ST  |60°0L6T |Weg-We(]
oBuex | XVIN] NI "2QPIS[OAV| 9% [0l pasenod 96 | eroL paienod 96 | feioL paisnod 96 [eioLpones o ] sena

PEOIHOM £d o Td VOHO

Ad1104 uonezijnn 1sea peojy40p\ Mo Aepung

S1Insal N peoyIom abeiane moj Aepinles £ 319V.L




APPENDIX D: T-TESTS OF TUESDAY TO SUNDAY

TABLE 44: Tuesday summary of paired t-test results

Tuesday
High Average Workload Low Average Workload
Mean Difference DEF - LU DEF - LU
Diff. P - value Diff. P - value
OHCA 0.0067 0.34* 0.0000 NA
P1 Coverage 0.0327 <0.01 0.0384 <0.01
P2 Coverage 0.1866 <0.01 0.2706 <0.01
P3 Coverage 0.0126 0.18* 0.0064 <0.05
WL range 0.1740 <0.01 0.2850 <0.01

TABLE 45: Wednesday summary of paired t-test results

Wednesday

High Average Workload Low Average Workload
Mean Difference DEF - LU DEF - LU

Diff. P - value Diff. P - value
OHCA 0.0227 <0.10 0.0000 NA
P1 Coverage 0.0403 <0.01 0.0588 <0.01
P2 Coverage 0.1699 <0.01 0.2681 <0.01
P3 Coverage 0.0051 0.21* 0.0009 0.42*
WL range 0.1644 <0.01 0.3324 <0.01

TABLE 46: Thursday summary of paired t-test results

Thursday

High Average Workload Low Average Workload
Mean Difference DEF - LU DEF - LU

Diff. P - value Diff. P - value
OHCA 0.0000 NA 0.0000 NA
P1 Coverage 0.0206 <0.05 0.0552 <0.01
P2 Coverage 0.1915 <0.01 0.2715 <0.01
P3 Coverage 0.0120 0.08* -0.0004 0.46*
WL range 0.1982 <0.01 0.3104 <0.01
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TABLE 47: Friday summary of paired t-test results

Friday
High Average Workload Low Average Workload
Mean Difference DEF - LU DEF - LU
Diff. P - value Diff. P - value
OHCA 0.0074 0.17* 0.0000 NA
P1 Coverage 0.0327 <0.01 0.0660 <0.01
P2 Coverage 0.1992 <0.01 0.2649 <0.01
P3 Coverage 0.0129 0.11* 0.0067 0.19*
WL range 0.1930 <0.01 0.3183 <0.01
TABLE 48: Saturday summary of paired t-test results
Saturday
High Average Workload Low Average Workload
Mean Difference DEF- LU DEF- LU
Diff. P - value Diff. P - value
OHCA 0.0082 0.17* 0.0000 NA
P1 Coverage 0.0194 <0.01 0.0495 <0.01
P2 Coverage 0.1900 <0.01 0.2738 <0.01
P3 Coverage 0.0145 <0.05 0.0048 0.15*
WL range 0.1441 <0.01 0.2662 <0.01
TABLE 49: Sunday summary of paired t-test results
Sunday
High Average Workload Low Average Workload
Mean Difference DEF - LU DEF- LU
Diff. P - value Diff. P - value
OHCA -0.0102 0.17* 0.0000 NA
P1 Coverage 0.0414 <0.01 0.0440 <0.01
P2 Coverage 0.1893 <0.01 0.2761 <0.01
P3 Coverage 0.0002 0.49* 0.0014 0.28*
WL range 0.2109 <0.01 0.3389 <0.01
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TABLE 50: All days’ t-tests results

All 84
High Average Workload Low Average Workload
Mean Difference DEF - LU DEF - LU
Diff. P - value Diff. P - value
OHCA 0.0040 0.19* 0.0000 NA
P1 Coverage 0.0298 <0.01 0.0516 <0.01
P2 Coverage 0.1875 <0.01 0.2703 <0.01
P3 Coverage 0.0077 <0.05 0.0033 <0.05
WL range 0.1792 <0.01 0.3088 <0.01
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