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ABSTRACT 
 
 

MIN CHUL PARK Corporate bonds: theoretical and empirical study (Under the direction 
of DR. STEVEN P. CLARK) 

 
 

This dissertation consists of three parts.  The first chapter presents an analysis of 

the structural difference between a make-whole callable and a traditional callable bond.  

Based on the analysis, we construct a reduced-form model for the make-whole callable 

bond.  The second chapter empirically investigates validation of our model with the 

extended Kalman filter.  In this chapter, we show not only that our model is valid for the 

sequence of the make-whole callable bond behavior, but also that our model outperforms 

the model from Jarrow et al. (2010). 

The third chapter examines the association between issuer’s debt structure and 

yield spreads.  Specifically, we investigate whether or not an investor requires 

compensation for liquidity risk.  Diamond (1991) introduces liquidity risk as the risk of a 

borrower being forced into inefficient liquidation when refinancing is not available.  

According to Diamond’s argument, the firm holding the larger proportion of short-term 

debt to its debt structure is more vulnerable to the unforeseen negative event.  

Consequently, it will increase firm’s risk.  Through our tests in this chapter, we find that 

for investment grade bonds, the results consistently show that the fraction of debt 

maturing in one or two year is positively related to the yield spreads. 
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CHAPTER 1: ANALYSIS OF A BOND WITH MAKE WHOLE PROVISON WITH 
REDUCED FORM APPROACH 

 
 

 In this chapter, we demonstrate how to apply the reduced-form model to a bond 

with a make-whole provision.  First, we present the structural difference between a 

callable bond with fixed call price and a bond with a make-whole provision.  Based on 

the structural differences, we develop a reduced-form model for the bond.   

 The call price of a bond with a make-whole call provision is given as the 

maximum value between par value and the present value of the bond’s remaining 

payments.  The discount rate in the calculation of the present value is the prevailing 

comparable maturity Treasury yield plus a spread specified in the contract of a bond, 

which is called the make-whole premium.  Therefore, this unique bond feature reduces 

the interest rate risk that the traditional callable bond possesses. 

 For this reason, according to Mann and Power (2003), the make-whole callable 

bond has been gaining popularity since its introduction in the U.S. in 1995. Power and 

Tysyplakov (2008) develop a structural model for the make-whole callable bond, but 

their model significantly underestimates the yield on the bond.  The structural model, in 

general, relies on a contingent claim.  However, Mann and Power (2003) argue that the 

make-whole callable bond is not structured as a refunding vehicle.  Rather, it is structured 

to enable a firm to retire debt without relying on a tender offer when the firm needs to 

restructure its capital structure.  Therefore, as Jarrow et al. (2010) note, the structural 

model has limitations on capturing this sub-optimal call policy. 
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 This chapter develops the reduced form model for the make-whole callable bond.  

Performance and validation of our model is tested in Chapter 2 with two different 

econometric tools (Kalman filter and Markov Chain Monte Carlo).  This chapter is 

organized as follows:  Section 1 reviews related previous studies, Section 2 presents the 

structural difference between the bond with fixed call price and the make-whole callable 

bond, and develops a reduced model, and finally, Section 3 summarizes this chapter. 
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1.1 Literature Review 

Theoretical models of credit spreads can be categorized as either structural or 

reduced-form models of default.  Often, practitioners or scholars compare structural 

models with the reduced form-models for corporate bonds.  Both approaches have 

advantages and limitations in valuing risky bonds.  In this section, a literature review of 

structural models and reduced-from models is presented. 

1.1.1 The Structural Models 

The structural models that originated from Merton’s model (1974) directly relate 

the price of equity to default probabilities and the price of corporate bonds. This model 

applies the claims-based approach to valuing corporate debt by using option pricing 

theory.  This framework for valuing risk debt has been applied in a number of studies 

including Geske (1977), Ingersoll (1977a, 1977b), Merton (1977), Smith and Warner 

(1979), and many others.  However, Jones, Mason, and Rosenfeld (1984) and Franks and 

Torous (1989) show that the structural models based on Morten’s framework produce 

credit spreads much smaller than the actual credit spreads. In addition, Longstaff and 

Schwartz (1995) note that one of the drawbacks of this approach is that default is 

assumed to occur only when the firm exhausts its assets.  This assumption is not very 

realistic because firms usually default long before the firm’s assets are exhausted. 

In order to overcome this drawback, Longstaff and Schwartz (1995) extend the 

Black and Cox (1976) model, which allows default to occur when the value of assets 

reach a lower threshold. Their model assumes that this lower threshold could be obtained 

exogenously from a minimum level of cash flows from assets requirement or from 

minimum net worth or working capital requirements in the indenture.  The advantage of 
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the Longstaff and Schwartz model over previous models is that their model incorporates 

both default risk and interest rate risk. In contrast to Longstaff and Schwartz (1995), 

Leland and Toft (1996) construct a model with an assumption that the lower threshold is 

determined endogenously.  The endogenous threshold is derived with the view that 

bankruptcy is an optimal decision by equity holders to give their control of a firm to bond 

holders.  The prominent achievement of this model is that it is able to show a tradeoff 

between tax advantages, bankruptcy costs, and agency cost.  However, unlike the 

Longstaff and Schwartz model, the Leland and Toft model assumes a constant interest 

rate, which implies that it does not consider interest rate risk. 

Commonly, these models do not consider the effect of a stationary leverage ratio 

on credit spreads. Opel and Titman (1997) provide empirical evidence for the existence 

of target leverage ratios at the firm level within an industry.  Furthermore, dynamic 

models of optimal capital structure by Fisher, Heinkel, and Zechner (1989), and 

Goldstein, Ju, and Leland (2001) find that firm value is maximized when a firm acts to 

keep its leverage ratio within a certain band.  Therefore, Collin-Dufresne and Goldstein 

(2001) develop a structural model of default with stochastic interest rates that generates 

stationary leverage ratios.  In order to incorporate stationary leverage ratio, major 

assumptions of this model is that a firm has the option to increase leverage at some 

intermediate date between issuing date (or current date) and maturity date.  It also 

assumes that if the firm exercises this option, it does so by issuing a zero coupon bond 

with the same maturity as previously issued debt.  Furthermore, it assumes that the face 

value of the newly issued debt is chosen to reset firm leverage back to its initial target 

value.  Finally, it assumes that the proceeds of new debt issuance are used to repurchase 
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existing equity, leaving firm value unchanged.  With these assumptions, the model is able 

to incorporate a stationary leverage ratio, allowing the firm to deviate from its target 

leverage ratio only over the short-run. Additionally, like the Longstaff and Schwartz 

model, this model also incorporates interest rate risk.  Compared to previous models, 

their model generates larger credit spreads for firms with low initial leverage ratios, 

which could partially overcome the problem that structural models of default are well 

below those observed in practice (Jones, Mason, and Rosenfeld, 1984).  Further, their 

model generates term structure of credit spreads for speculative-grade debt that are 

consistent with the empirical findings of Helwege and Turner (1999). 

However, as documented by Lyden and Saraniti (2000), the structural models 

above tend to underestimate yield spreads.  The errors are systematically related to 

coupon and maturity.  As noted by Duffie and Lando (2001) and Lyden and Saraniti 

(2001), these prediction errors are related to the estimates of unobservable asset and its 

volatility.  Duffie and Lando (2001) mention that, in practice, it is typically difficult for 

investors in the secondary market for corporate bonds to observe a firm’s assets directly, 

due to noisy or delayed accounting reports, or barriers to monitoring by other means.  

Therefore, investors must conjecture value of a firm’s asset with publicly available 

information such as accounting data or business-cycle data. In order to overcome this 

shortcoming of the previous structural models, Duffie and Lando (2001) strive for 

optimal capital structure and default policy, and then derive the conditional distribution 

of the firm’s assets, given incomplete accounting information, along with the associated 

default probabilities, default arrival intensity, and credit spread. By incorporating the 

incomplete accounting information and default arrival intensity, their model is able to 
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generate large credit spread than the previous models in the case of short-term maturity.  

The Duffie and Lando model is different from the traditional structural models in that the 

model includes default arrival intensity which is a typical characteristic of the reduced-

form model. Thus, their model is rather a hybrid model than solely a structural model. 

There are few empirical studies of comparing structural models.  Anderson and 

Sundaresan (2000) empirically compare the original Merton model with the structural 

models that incorporate endogenous bankruptcy barriers, such as the Leland and Toft 

model.  They find that Leland and Toft type model is somewhat superior to the original 

Merton model.  Additionally, Lyden and Saraniti (2000) implement and compare two 

structural models, the Merton with the Longstaff and Schwartz models. They find that 

both models underestimate yield spreads, and that the errors are systematically related to 

coupon and maturity.  However, in the study of Eon et al (2003), they find that the 

predicted spreads from the Morton model is too low, but that the other structural models 

predict spreads that are too high on average.  Although these structural models perform 

reasonably well, the problems of using structural models are mathematical complexity 

and difficulty in estimating unobservable value of firm’s assets.  For these reasons, many 

practitioners and scholars support an alternative approach, reduced-form models. 

1.1.2 Reduced-Form Model 

The Reduced-Form model has a relatively shorter history than the structural 

model.  The unique feature of the reduced-from model is the intensity-based framework. 

The fundamental idea of the intensity-based framework is to model the default time as the 

first jump of a Poisson process.  Major issues in the reduced-form model are the 
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treatment of the recovery payment and the correlations between interest rates, intensities 

and recoveries. 

Jarrow and Turnbull (1995) consider that the recovery rate is an exogenous 

fraction of the value of an equivalent default-free bond (Recovery of Treasury, RT).  

Duffie and Singleton (1999a) note that estimating value of the bond is computationally 

burdensome under RT.  For this reason, Jarrow and Turnbull (1995) made assumptions 

that simplify computation.  For example, they assumed that the risk-neutral default 

hazard rate process is independent of the short rate, and that the fractional loss process is 

constant.  Under these assumptions, Schönbuncher (2003) notes that coupon bonds can 

recover more than their face value when the bonds have a high default risk, a long time to 

mature, and trades close to their face value.1

The other specifications of recovery rates are the recovery of face value (RFV) 

and the recovery of market value (RMV).  Duffee (1998) introduced RFV under which a 

recovery rate is an exogenous fraction of the face value of the defaultable bond, while 

Duffie and Singleton (1999a) introduced RMV under which a recovery rate is equal to an 

exogenous fraction of the market value of the bond just before default.  Both RMV and 

RFV have advantage and disadvantage over each other. Schönbuncher (2003) mentions 

that small theoretical differences between these two will not make much difference in 

many application scenarios.  However, RMV is mathematically easier to apply because 

standard default-free term-structure modeling techniques can be applied, while RFV is 

more realistic when one assumes liquidation at default value and that absolute priority 

  Lando (1998) develop a model that allows a 

random hazard rate process to be dependent of the short interest rate process, but the 

model adds substantially computational complexity.  

                                                 
1 Schönbucher (2003) presents a numeric example for this particular case.  
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applies (Duffie and Singleton, 1999a).  In this study, we adopt RMV, as Jarrow et al. 

(2010) did. 

Beside treatment of a recovery rate, the other issues are specifications of interest 

rates and default intensities.  Schönbucher (2003) lists ideal specifications of the interest 

rates and the default intensities.  First, both interest rate and default intensity should be 

stochastic processes. Second, the dynamics of interest rate and intensity process should 

include a correlation between them as Duffee (1998) found empirical evidence that credit 

spreads are a decreasing function of interest rates.  Third, a desirable property for interest 

rates and default intensity processes is that they remain positive at all times.  Finally, 

simple application for pricing is always better.  For this last reason, most reduced-form 

models in the previous literature adopt the class of affine process (see Duffie and Kan 

(1996) and Duffie, Pan, and Singleton (2000) for a detailed explanation).2

Lastly, there are three main different approaches to model the default dependence 

between firms in the reduced-form approach.  The first approach introduced in the 

previous literatures is conditionally independent defaults (CID) models by Duffee (1999). 

CID models make the firm’s default intensities dependent on common factors and a firm 

specific factor variable.  In CID models, firms’ default intensities are independent, which 

is conditioned to the realization of common factors.  In other words, the default 

correlation is introduced only through the dependence of each firm’s intensity on random 

common factors because a firm's specific factor is independent across firms.  The major 

  Allowing for 

correlation among the Brownian motions in the state variable processes is able to 

incorporate a correlation between the interest rates process and the intensity process.  

                                                 
2 For an extensive review of the use of affine processes for credit risk modeling using intensity models, see 
Duffie (2005) 
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drawback of this model is that it generates lower levels of default correlation than 

empirical default correlations.  For example, Hull and White (2001) suggest that the 

range of default correlations that can be achieved is limited. Even when there is perfect 

correlation between two hazard rates, the corresponding correlation between defaults in 

any chosen period of time is usually very low. This is liable to be a problem in some 

circumstances.  Schönbucher and Schubert (2001) also comment that the default 

correlations that can be reached with this approach are typically too low when compared 

with empirical default correlations, and furthermore it is very hard to derive and analyze 

the resulting default dependency structure.  

However, Yu (2005) argue that low default correlation in reduced-form models 

may have more to do with an inadequate common factor structure than the assumption of 

conditional independence.  In his study, he generates default correlations from the two 

CID models, Duffee (1999) and Driessen (2005) models. Duffee’s model has two 

common factors that are extracted from Treasury yields, while Driessen’s model has two 

additional common factors that capture the co-movement of corporate credit yields. He 

shows that the first case generates a default correlation much lower than empirical 

observations, while the second case generates comparable, or even higher, values. 

Duffie and Singleton (1999b) introduce the second approach in order to deal with 

the low correlation problem.  They proposed two ways.  Their first proposal is to include 

a pure jump process in the default intensity process.  These jumps consist of two parts, 

joint jumps and idiosyncratic jumps.  Their second proposal is to include common credit 

events that could trigger simultaneous defaults.  Each common credit event is modeled as 

a Poisson process.  The last approach to model default correlation is called the contagion 



10 

  

model. The basic idea of this model is that the default of one firm increases the default 

probabilities of related firms (for more details, see Davis and Lo (2001) and Jarrow and 

Yu (2001)).  Although these last two approaches are theoretically sounding, they have 

problems with calibration and implementation.  For this reason, this study adopts the 

Duffee’s model, as Jarrow et al. (2010) did3

Often, researchers compare the structural model with the reduced-form model for 

risky bonds.  There are well-known differences between these two models.  Unlike 

structural models, reduced form models do not consider a link between default and firm 

value explicitly.  In the reduced form model, default time cannot be predicted through the 

value of firm, rather it is the first jump governed by the exogenous jump process.  The 

parameters controlling the default hazard rate are inferred from market data.  Thus, 

reduced form models incorporate existing market data for a firm’s bond, while structural 

models often ignore market data.  This difference also implies that, unlike reduced form 

models, structural models generate defaults endogenously because they provide a relation 

between a firm’s credit quality and financial conditions.  Another difference is that, 

unlike the reduced form model, the structural model determines recovery rates 

endogenously through the value of the firm’s assets and liabilities at default. 

. 

In sum, if there is clear data of bond prices in the market, the accuracy of the 

reduced form model will be substantially increased, but obtaining clear data is not an 

easy task4

                                                 
3 It is possible to adopt Driessen model at the cost of adding mathematical complexity. 

.  Relatively speaking, structural models have better tractability and richer 

economical interpretations because they determine default timed and recovery rated 

endogenously, unlike reduced form models.  However, the advantage of using the 

4 It is well stated in the study of Arora et al. (2005) in that they compare the performance of a reduced 
model with a structural model.  
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reduced form model is that it is relatively simpler than the structural model 

mathematically because of the exogenous determination of default time and recovery rate. 

Besides these differences, Jarrow and Protter (2004) point out that the major 

difference between a structural and a reduced form model is the assumption of the 

information set.  Structural models assume complete knowledge of very detailed 

information, which means that the market and managers, in firms, share exactly the same 

information.  Under this assumption, a firm’s default time is predictable.  Unlike the 

structural model, a reduced-form model assumes a relatively less detailed information set. 

This assumption implies that the firm’s default time is inaccessible.  Since asset value 

process is not observable by the market, and the market determines the price of risk debts, 

Jarrow and Potter (2004) argue that usage of reduced form models are more appropriate 

for pricing debts than usage of structural models.  Based on their argument, we believe 

that using a reduced form model for pricing a bond with make-whole call provisions is 

relatively more appropriate, which is explained in the following sub-section. 

1.1.3 Make-Whole Call Provisions 

A structural difference between fixed-call provision and make-whole call 

provision is that the call price in the make-whole call provision floats inversely with risk-

free rates.  In a bond with the make-whole call provision, the call price is obtained by 

maximum value between par value and the present value of the bond’s remaining 

payments.  This present value is calculated by using the discount rate, that is the 

prevailing comparable maturity Treasury yield plus a spread specified in the contract of a 

bond, which is called the make-whole premium.  As mentioned in the study of Power and 

Tsyplakov (2008), the make-whole call provision has three distinctive advantages over 
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fixed-call provision.  First, because of the negative relation between the call price and 

risk-free rates, the call price in a make-whole call provision eliminates interest rate risk. 

Consequently, up-front costs for a make-whole call provision should be lower than a 

fixed-priced call provision.  Furthermore, because of absence of interest risk, Mann and 

Powers (2003) state that unlike a fixed-call provision, make-whole call provision is not 

structured as a refunding vehicle.  Rather, the make-whole call provision is structured to 

enable a firm to retire debt without relying on a tender offer when the firm needs to 

restructure its capital structure.  Second, most bonds with fixed-call provision have 

several years of call or refund protection in their contracts in order to mitigate the interest 

rate risk that bondholders are exposed to.  Finally, there is possibility that fixed-price call 

prices are greater than tender offer prices, if interest rates have risen since the bond was 

issued. Power and Tsyplakov (2008) study costs of using bonds with a make-whole call 

provision by developing structural frame models for those bonds.  These costs are 

incremental yields over yields on non-callable bonds.  They argue that these costs are 

costs of having additional financial flexibility from using make-whole call provisions 

instead of using non-callable bonds because companies that use make-whole call 

provisions can exercise this provision when they need to restructure their capital structure.  

However, their estimated incremental yields from their model are significantly smaller 

than observed incremental yields.  They give one potential explanation for this disparity; 

that the decision to incorporate a make-whole call provision is endogenous and this 

endogeneity biases their estimated coefficients.  Additionally, from previous literature, a 

company might delay to exercise its call option on its bonds because of transaction costs 

incurred when calling (Mauer, 1993), or because of concerns about wealth transfers 
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resulting from temporary capital structure changes (Longstaff and Tuckman, 1994), or 

because of a suboptimal call policy employed by the company (King and Mauer, 2000).  

From these reasons, we can also apply Jarrow and Potter’s argument (2004).  Since 

market and managers in the firm do not share information about the firm’s call policy, 

calling time is not predictable.  This supports the usage of reduced form models for 

pricing a callable bond. 

Moreover, Nayar and Stock (2008) document an empirical study about the 

relationship between a firm's abnormal stock return and different type (i.e. non-callable, 

fixed callable and make-whole callable bonds) of bond issues.  They find that a non-

callable bond issuance is associated with a significantly negative abnormal stock return, 

but callable bonds do not have this negative effect.  Specifically, their evidence shows 

that long-run returns for make-whole call issuers are superior to that of both regular 

callable and non-callable issuers.  These results are consistent with their argument that 

managers in a firm that issue make-whole callable bond have better information about 

their firm's future aspects than investors in the market.  Since the structure of make-whole 

callable bond does not allow interest rate risk, rational callable situation occurs when 

default risk premium is decreased. Therefore, managers who anticipate a decrease in their 

default risk premium in the future would more likely issue make-whole callable bond.  

Thus, Nayar and Stock (2008) argue that an issuance of a make-whole callable bond is a 

clearer signal of brighter future prospects to investors in the market.  From their argument, 

it is clear that the reduced-form model is more suitable for make-whole callable bond 

because firms that issue make-whole callable bonds have relatively more severe degree of 

information asymmetry. 
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1.2 Reduced-Form Model for Bonds with Make-Whole Call Provisions 

In this section, we develop a reduced-form model for bonds with make-whole call 

provisions by extending the model that Jarrow et al. (2010) present.  A closed-form 

formula for this bond is also derived under affine model specification. 

1.2.1 Structural Difference between Fixed Callable and Make-Whole Callable Bonds5

In this sub-section, we demonstrate the structural difference between fixed 

callable (FX) and make-whole callable (MW) bonds, which will allow us to make 

necessary modifications from the existing model for callable bond.  For simplicity, we 

assume that a perpetual life bond with fixed coupon payment (c) per period is issued, and 

that the bond is priced at par (P0) with a discount rate (r0).  We also assume that the 

discount rate consists of two parts.  One part is yield (i0) on an equivalent maturity 

treasury bond, and the other part is the credit spread (q0) based on market knowledge on 

the issuing firm on the issuing date (t=0).  Thus, price at the issuing date is: 

 

𝑃0  = 𝑐/𝑟0 = 𝑐/(𝑖0 +  𝑞0)  (1) 

In the case of fixed callable bond, rationally, issuers buy back their bonds, when call 

price (CFX) is less than current market price of the bonds.  Therefore, a rational 

condition for calling these bonds is: 

𝐶𝐹𝑋 < 𝑃𝑡 ⇒ 𝐶𝐹𝑋 < 𝑐/(𝑖𝑡 +  𝑞𝑡) ⇒ 𝑐/(𝑖𝑡 + 𝑞𝑡) − 𝐶𝐹𝑋 > 0 (2) 

Based on condition (2), we can infer that the probability of calling bonds is negatively 

related to interest rates and credit spreads.  Furthermore, it is positively related to coupon 

rates.  The call spread in the model of Jarrow et al. (2010) incorporates the interest rate 

factor and coupon rates directly, but a credit spread factor is indirectly included through 

the interest rate factor.  This is due to Duffee (1998) finding empirical evidence that both 
                                                 
5 An analysis in this section is an extension of Nayar and Stock (2008) 
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callable and non-callable bond’s that spread over Treasury yields are inversely related to 

the Treasury yields.  He also finds that this inverse relation is much stronger for callable 

bonds because of a consequence of variations in the value of the embedded call option. 

On the other hand, unlike the call price of fixed callable bond, the call price 

(CMW) of the make-whole callable bond is not constant over time.  This is because the 

call price is obtained by maximum value between par and present value of the bond’s 

remaining payments.  This present value is calculated by using the discount rate, that is 

the prevailing comparable maturity Treasury yield plus a spread specified in the contract 

of a bond, which is called the make-whole premium (M).  Thus, if we assume that the 

issuer exercises the call option on date (T=t), the call price of the make-whole callable 

bond can be expressed as: 

𝐶𝑀𝑊𝑡 = 𝑚𝑎𝑥[𝑐/(𝑖𝑡 + 𝑀)𝑃0] 

𝐶𝑀𝑊𝑡 = 𝑚𝑎𝑥[𝑐/(𝑖𝑡 + 𝑀), 𝑐/(𝑖0 + 𝑞0)] (3) 

Since Mann and Power (2003) find that make-whole premiums in most bonds with make-

whole provision are set below prevailing credit spread, which makes the call option out-

of-the-money at issuing date, we can safely assume that: 

𝑀 < 𝑞0 (4) 

Again, the rational condition for exercising this option is: 

𝐶𝑀𝑊𝑡 < 𝑐/(𝑖𝑡 + 𝑞𝑡) ⇒ 𝑚𝑎𝑥[𝑐/(𝑖𝑡 + 𝑀), 𝑐/(𝑖0 + 𝑞0)] < 𝑐/(𝑖𝑡 + 𝑞𝑡)

∴ 𝑚𝑎𝑥[1/(𝑖𝑡 + 𝑀), 1/(𝑖0 + 𝑞0)] < 1/(𝑖𝑡 + 𝑞𝑡) (5) 

We can break into two cases.  First case is: 

𝐼𝑓 1/(𝑖𝑡 + 𝑀) > 1/(𝑖0 + 𝑞0) ⇒ 𝑖𝑡 < 𝑞0 − 𝑀 + 𝑖0  (6) 

𝑡ℎ𝑒𝑛,𝑓𝑟𝑜𝑚 (5), 1/(𝑖𝑡 + 𝑀) < 1/(𝑖𝑡 + 𝑞𝑡) ⇒ 𝑞𝑡 < 𝑀 (7) 
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𝑠𝑖𝑛𝑐𝑒 (4),𝑞𝑡 < 𝑞0 (8) 

When current interest rate is less than the difference between initial credit spread and 

make-whole premium plus initial interest rate, condition (7) must be satisfied for the 

option to be in-the-money.  Since we assume that the initial credit spread is greater than 

the make-whole premium, in order to satisfy condition (7), the current credit spread must 

be less than the initial credit spread. 

Second case is: 

𝐼𝑓 1/(𝑖𝑡 + 𝑀) < 1/(𝑖0 + 𝑞0) ⇒ 𝑖𝑡 > 𝑞0 − 𝑀 + 𝑖0   (9) 

𝑡ℎ𝑒𝑛, 𝑓𝑟𝑜𝑚 (5), 1/(𝑖0 + 𝑞0) < 1/(𝑖𝑡 + 𝑞𝑡) (10) 

When current interest rate is greater than the difference between initial credit spread and 

make-whole premium plus initial interest rate, condition (10) must be satisfied for the 

option to be in-the-money.  If condition (4) and (9) are true, we can infer that the current 

interest rate is greater than the initial interest rate.  Given that the current interest rate is 

greater than the initial interest rate, in order for condition (10) to be satisfied, again, 

current credit spread must be smaller than the initial credit spread. 

In sum, from these two cases, whether interest rates go up or not, the option value 

depends on the change in issuer’s credit risk.  In other words, unlike the option values in 

fixed callable bond, the option values on make-whole callable bond are independent of a 

change in Treasury rates.  Since a change in Treasury rates partially reflects the condition 

of the market, the important factor for the option value in the make-whole bond could be 

an issuer’s individual credit risk. 

The model from Jarrow et al. (2010) is originally constructed for the fixed 

callable bond.  Given this structural difference, we argue that their model cannot directly 
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apply to the make-whole callable bond.  Therefore, we construct the reduced-from model 

for the make-whole callable bond in the next sub-section.  

1.2.2 Development of the Reduced-Form Model6

 As usual, it is assumed that uncertainties in the financial markets are modeled by 

a complete probability space 

 

),,( PFΩ and a filtration TtotFF ≤≤= )( .  We also assume that 

there are three claims.  The first claim is the obligation of the firm to pay X dollars at 

maturity T.  The second claim is that the investor gets Xd dollars at 𝜏𝑑when the firm 

defaults.  It is assumed that Xd is a fraction (𝛿) of the market value of the bond. The third 

claim is that the investor receives call price (Xc) at𝜏𝑐, when the firm exercises its call 

option on its bond.  We also assume that a fraction (k) of the market value of the bond is 

call price at𝜏𝑐.  Under these settings, the payoff on the bond is: 

𝑍 = 𝑋𝑐1�𝜏𝑐<𝜏𝑑,𝜏𝑐,<𝑇� + 𝑋𝑑1�𝜏𝑑<𝜏𝑐,𝜏𝑑,<𝑇� + 𝑋1{𝑇<𝜏𝑐,𝑇<𝜏𝑑} (11) 

where 1{.} presents an indicator function.  Subsequently, the time t price of the zero 

coupon make-whole callable bond can be expressed as: 

𝑉(𝑡,𝑇, 0, 𝛿,𝑘) = �
𝐸𝑡
𝑄 �𝑍𝑒−∫ 𝑟𝑢𝑑𝑢

𝜏�
𝑡 � 

0
, �  𝑡 ≤ �̃�
𝑡 ≥ �̃� 

(12) 

where { }Τ= ,,min~
dc τττ . Where the instantaneous risk-free interest rate is rt , and Q

tE is 

the expectation operator under the equivalent martingale measure Q. 

 Since this study takes the reduced-form approach into consideration for analysis 

of the make-whole callable bond, we need to have the dynamics of the call and default 

intensities even though the study of Duffie and Singleston (1999) assume that firms 

                                                 
6 The notation and procedure in this chapter follows the notation in Jarrow et al. (2010). 
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exercise their call option on bonds  in order to minimize the market value of the bonds.  

However, as Jarrow et al. note, by introducing the call intensity, the reduced-form model 

could include “suboptimal” exercising strategies that could be caused by either market 

frictions or firm-specific strategy.  This feature is particularly important to the case of the 

make-whole callable bond because, as Mann and Power (2003) argue, the prime purpose 

of issuing make-whole bond could be restructuring the firm’s capital structure. 

 For this reason, we need to consider two independent (call and default) point 

processes, { }cttcN τ≥≡ 1, and { }dttdN τ≥≡ 1, , that follows the Cox process, and that have 

intensities, tc,λ  and td ,λ , respectively.  With these point processes, the discounted gain 

process can be: 

𝐺𝑡 = 𝑒−∫ 𝑟𝑢𝑑𝑢
𝑡
𝑡 𝑉𝑐(𝑡,𝑇, 0, 𝛿,𝑘)�1 − 𝑁𝑐,𝑡��1 − 𝑁𝑑,𝑡�

+ � 𝑒−∫ 𝑟𝑢𝑑𝑢
𝑢
0 𝑘𝑉𝑐(𝑢−,𝑇, 0, 𝛿,𝑘)�1 − 𝑁𝑑,𝑡�𝑑𝑁𝑐,𝑢

𝑡

0

+ � 𝑒−∫ 𝑟𝑢𝑑𝑢
𝑢
0 𝛿𝑉𝑐(𝑢−,𝑇, 0, 𝛿,𝑘)�1 − 𝑁𝑐,𝑡�𝑑𝑁𝑑,𝑢

𝑡

0
 

where ),,0,,( kTtVc δ  is the market value of the make-whole callable bond if there has 

been no event of exercising the call option or default by time t.   The first term is the 

discounted price when there has been no default or exercising of the option.  The second 

term is the discounted strike price upon exercising the option, and the third term is the 

discounted payoff upon default.  By applying Ito’s formula to the discounted gain process, 

we can see that for G to be a martingale, the necessary and sufficient condition is: 

𝑉𝑐(𝑡,𝑇, 0, 𝛿,𝑘) = 𝐸𝑡
𝑄𝑒𝑥𝑝 �−� �𝑟𝑢 + (1 − 𝑘)𝜆𝑐,𝑢 + (1 − 𝛿)𝜆𝑑,𝑢�

𝑇

𝑡
𝑑𝑢� (13) 
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From (13), we can see that td ,)1( λδ−  and tck ,)1( λ−  are default spread and call spread, 

respectively.  Let the default and call adjusted discount rate be: 

𝑅𝑢 = 𝑟𝑢 + (1 − 𝑘)𝜆𝑐,𝑢 + (1 − 𝛿)𝜆𝑑,𝑢.  Then the price of the callable coupon bond is: 

𝑉𝑐(𝑡,𝑇, 𝑐, 𝛿,𝑘) = 𝐸𝑡
𝑄 � � 𝑐𝑒−∫ 𝑅𝑢𝑑𝑢

𝑇𝑖
𝑡 + 𝑒−∫ 𝑅𝑢𝑑𝑢

𝑇
𝑡

𝑡<𝑇𝑖≤𝑇

� (14) 

where c is coupon payments on T1, T2, T3,…Tn=T.  Furthermore, the price of the non-

callable coupon bond is: 

𝐸𝑡
𝑄 � � 𝑐𝑒−∫ 𝑅𝑢∗ 𝑑𝑢

𝑇𝑖
𝑡 + 𝑒−∫ 𝑅𝑢∗ 𝑑𝑢

𝜏
𝑡

𝑡<𝑇𝑖≤𝑇

� (15) 

where uduu rR ,
* )1( λδ−+= is the default adjusted discount rate.  Later, in chapter 2, we 

use equation (14) and (15) to estimate yield to maturity for the make-whole callable bond 

and non-callable bond. 

 In order to apply the above models of bond price, we need to specify the discount 

rate that consists of interest rates, default and the call processes.  For the spot interest rate, 

as many studies (e.g. Duffee (1999), Duffie and Singleton (1997), Duffie et al. (2004), 

Jarrow et al. (2010), etc.) use, we also consider two factors affine model: 

𝑟𝑡 = 𝛼𝑟 + 𝑠1,𝑡 + 𝑠2,𝑡 (16) 

where 𝛼𝑟is a constant, and the two state variables (s1,t and s2,t) indicate the slope and level 

of the Treasury yield curve.  It is assumed that each factor follows a square root process: 

𝑑𝑠𝑖,𝑡 = 𝜅𝑖�𝜃𝑖 − 𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊𝑖,𝑡,𝑓𝑜𝑟 𝑖 = 1,2 

and under the equivalent martingale measure Q, 

𝑑𝑠𝑖,𝑡 = �𝜅𝑖𝜃𝑖 − (𝜅𝑖 + 𝜂𝑖)𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊�𝑖,𝑡,𝑓𝑜𝑟 𝑖 = 1,2 (17) 
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where tiW , , and tiW ,
ˆ  are independent Brownian motion under P and Q, respectively.  𝜂 

indicates the market price of risk associate with tiW ,
ˆ .  It is well known that, with the 

combination of (16) and (17), we can derive a closed-form solution for the default-free 

zero coupon bond prices, in which the bonds’ yields are linear in s1,t and s2,t. 

 For the default spread ( td ,)1( λδ− ), we assume that: 

(1 − 𝜎)𝜆𝑑,𝑡 = 𝛼𝑑 + ℎ𝑑,𝑡 + 𝛽𝑑1�𝑠1,𝑡 − �̅�1� + 𝛽𝑑2�𝑠2,𝑡 − �̅�2� (18) 

𝑑ℎ𝑑,𝑡 = 𝜅𝑑�𝜃𝑑 − ℎ𝑑,𝑡�𝑑𝑡 + 𝜎𝑑�ℎ𝑑,𝑡𝑑𝑊𝑑,𝑡  

𝑑ℎ𝑑,𝑡 = �𝜅𝑑𝜃𝑑 − (𝜅𝑑 + 𝜂𝑑)ℎ𝑑,𝑡�𝑑𝑡 + 𝜎𝑑�ℎ𝑑,𝑡𝑑𝑊�𝑑,𝑡 (19) 

where dη indicates the market price of risk associated with tdW ,
ˆ .  The constant term (𝛼𝑑) 

is included to capture a situation where the default spreads for very high-quality firms are 

positive, even at the short end of the yield curve.  This situation could be caused by the 

liquidity risk or incomplete accounting information.  The second term ( tdh , ) is included to 

capture firm-specific risk that affects the default spread.  More specifically, it possibly 

captures fluctuation of the firm’s financial condition.  The last component �𝛽𝑑1�𝑠1,𝑡 −

�̅�1) + 𝛽𝑑2�𝑠2,𝑡 − �̅�2�� is included to capture the dependence of corporate bond yields on 

the variations in the default-free term structure factors. 

 For the call spread ( uc,)1( λκ− ), we assume that: 

(1 − 𝑘)𝜆𝑐,𝑡 = 𝛼𝑐 + ℎ𝑐,𝑡 + 𝜙�𝑀, 𝑠1,𝑡, 𝑠2,𝑡,ℎ𝑑,𝑡� (20) 

𝜙�𝑀, 𝑠1,𝑡, 𝑠2,𝑡,ℎ𝑑,𝑡� = 𝛽𝑐1
𝑀
ℎ𝑑,𝑡

 (21) 

𝑑ℎ𝑐,𝑡 = 𝜅𝑐�𝜃𝑐 − ℎ𝑐,𝑡�𝑑𝑡 + 𝜎𝑐�ℎ𝑐,𝑡𝑑𝑊𝑐,𝑡  
𝑑ℎ𝑐,𝑡 = �𝜅𝑐𝜃𝑐 − (𝜅𝑐 + 𝜂𝑐)ℎ𝑐,𝑡�𝑑𝑡 + 𝜎𝑐�ℎ𝑐,𝑡𝑑𝑊�𝑐,𝑡 (22) 
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where cη indicates the market price of risk associated with tcW ,
ˆ .  The constant term ( cα ) 

is included to allow a nonzero call spread, even for firms that have close to zero call risk.  

The second term ( tch , ) is included to capture a firm-specific reason (e.g. restructuring 

capital structure) to exercising the call option on the bond, and the third term (φ ) 

captures call spread because of the standard rational reasons for exercising the call option.  

In the previous sub-section, we conclude that an issuer’s individual credit risk is the only 

factor that affects the value of the embedded option. 

For this reason, only 𝛽𝑐1 �
𝑀
ℎ𝑑,𝑡

� is involved in equation (21). The component � 𝑀
ℎ𝑑,𝑡

� 

allows the effect of the make-whole premium on the call spread explicitly, and it also 

allows for any possible nonlinear dependence of the call spread on firm-specific default 

spread.  Thus, this functional form � 𝑀
ℎ𝑑,𝑡

� implies a positive relation between the make-

whole premium and the call spreads, it also implies a negative relation between the firm-

specific default risk and the call spread.   Further, unlike Jarrow et al. (2010), we do not 

consider coupon rate because coupon rate in the make-whole callable bond is not likely to 

affect the decision of exercising the option, as shown in the previous sub-section.  

From the above model specification, the default and call adjusted discount rate is: 

𝑅𝑢 = 𝑟𝑢 + (1 − 𝜎)𝜆𝑑,𝑢 + (1 − 𝑘)𝜆𝑐,𝑢

= 𝛼𝑟 + 𝑠1,𝑢 + 𝑠2,𝑢 + �𝛼𝑑 + ℎ𝑑,𝑢 + 𝛽𝑑1�𝑠1,𝑢 − �̅�1� + 𝛽𝑑2�𝑠2,𝑢 − �̅�2��

+ �𝛼𝑐 + ℎ𝑐,𝑢 + 𝛽𝑐1
𝑀
ℎ𝑑,𝑢

� = 𝐴 + 𝑠1,𝑢
∗ + 𝑠2,𝑢

∗ + ℎ𝑑,𝑢 + 𝛽𝑐1
𝑀
ℎ𝑑,𝑢

+ ℎ𝑐,𝑢 

where 𝐴 = 𝛼𝑟 + 𝛼𝑑 + 𝛼𝑐 + 𝛽𝑑1�̅�1 − 𝛽𝑑2�̅�2, 𝑠1,𝑢
∗ = [1 + 𝛽𝑑1]𝑠1,𝑢  

and 𝑠2,𝑢
∗ = [1 + 𝛽𝑑2]𝑠2,𝑢.  We can have the dynamics of the translated factor *

,uis : 
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𝑑𝑠1,𝑡
∗ = 𝜅𝑖�𝜃𝑖∗ − 𝑠𝑖,𝑡∗ �𝑑𝑡 + 𝜎𝑖∗�𝑠𝑖,𝑡∗ 𝑑𝑊𝑖,𝑡 

𝑑𝑠1,𝑡
∗ = �𝜅𝑖𝜃𝑖∗ − (𝜅𝑖 + 𝜂𝑖)𝑠𝑖,𝑡∗ �𝑑𝑡 + 𝜎𝑖∗�𝑠𝑖,𝑡∗ 𝑑𝑊�𝑖,𝑡,𝑓𝑜𝑟 𝑖 = 1,2 

where 𝜃𝑖∗ = 𝜃𝑖(1 + 𝛽𝑑𝑖) and 𝜎𝑖∗ = 𝜎𝑖�1 + 𝛽𝑑𝑖 

The zero-coupon make-whole callable bond is: 

𝑉𝑐(𝑡,𝑇, 0, 𝛿,𝑘) = 𝐸𝑡
𝑄 �𝑒𝑥𝑝 �−� 𝑅𝑢

𝑇

𝑡
𝑑𝑢��

= 𝑒𝑥𝑝[−𝐴(𝑇 − 𝑡)] ∙ 𝐸𝑡
𝑄 �𝑒𝑥𝑝 �−� 𝑠1,𝑢

∗ 𝑑𝑢
𝑇

𝑡
�� ∙ 𝐸𝑡

𝑄 �𝑒𝑥𝑝 �−� 𝑠2,𝑢
∗ 𝑑𝑢

𝑇

𝑡
��

∙ 𝐸𝑡
𝑄 �𝑒𝑥𝑝 �−� ℎ𝑐,𝑢

∗ 𝑑𝑢
𝑇

𝑡
�� ∙ 𝜋�ℎ𝑑,𝑢, 𝑡,𝑇� 

where 𝜋�ℎ𝑑,𝑢, 𝑡,𝑇� = 𝐸𝑡
𝑄 �𝑒𝑥𝑝 �−∫ �ℎ𝑑,𝑢 + 𝛽𝑐1

𝑀
ℎ𝑑,𝑢

� 𝑑𝑢𝑇
𝑡 ��. 

In standard analysis form, 

𝑉𝑐(𝑡,𝑇, 0, 𝛿,𝑘) = 𝑒𝑥𝑝[−𝐴(𝑇 − 𝑡)]𝑒𝑥𝑝�𝜓0(𝑡) − 𝜓1(𝑡)𝑠1,𝑢
∗ − 𝜓2(𝑡)𝑠2,𝑢

∗ − 𝜓𝑐(𝑡)ℎ𝑐,𝑢�

∙ 𝜋�ℎ𝑑,𝑢, 𝑡,𝑇� 

where 𝜓0(𝑡) = 𝜓01(𝑡) + 𝜓02(𝑡) + 𝜓0𝑐(𝑡) 

𝜓𝑖(𝑡) =
2�𝑒𝛾𝑖(𝑇−𝑡) − 1�

2𝛾𝑖 + (𝜅𝑖 + 𝜂𝑖 + 𝛾𝑖)(𝑒𝛾𝑖(𝑇−𝑡) − 1)
 

𝜓0𝑖(𝑡) =
2𝜅𝑖𝜃𝑖∗

𝜎𝑖∗2
log �

2𝛾1𝑒
1
2�𝜅𝑖+𝜂𝑖+𝛾𝑖�(𝑇−𝑡)

2𝛾𝑖 + (𝜅𝑖 + 𝜂𝑖 + 𝛾𝑖)(𝑒𝛾𝑖(𝑇−𝑡) − 1)
�  𝑓𝑜𝑟 𝑖 = 1,2 

𝜓0𝑐(𝑡) =
2𝜅𝑐𝜃𝑐
𝜎𝑐2

log �
2𝛾𝑐𝑒

1
2(𝜅𝑐+𝜂𝑐+𝛾𝑐)(𝑇−𝑡)

2𝛾𝑐 + (𝜅𝑐 + 𝜂𝑐 + 𝛾𝑐)(𝑒𝛾𝑐(𝑇−𝑡) − 1)
� 

𝛾𝑖 = �(𝜅𝑖 + 𝜂𝑖)2 + 2𝜎𝑖∗2and𝛾𝑐 = �(𝜅𝑐 + 𝜂𝑐)2 + 2𝜎𝑐2. 
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There is no well-known close-form solution for ),,( , Tth udπ  because ℎ𝑑,𝑢 + 𝛽𝑐1
𝑀
ℎ𝑑,𝑢

 is 

outside the standard affine family.  However, Kimmel (2008) develops a method that 

properly makes non-affine transformations of the time variable so that the power series 

can be applied to derive close-form solutions.  In our case, we can apply Kimmel’s 

method allowing us to get a close-form solution for ),,( , Tth udπ .  The application of 

Kimmel’s method is shown briefly in the Appendix A. 
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1.3 Summary and Conclusion 

First, this chapter analyzes the structural difference between a make-whole and a 

traditional callable bond.  From the analysis, the major difference between these two 

bonds is that the value of the embedded option in the make-whole callable bond is 

independent of Treasury rates.  On the other hand, the value option in the traditional 

callable bond is affected by Treasury rates and credit risk.  This difference is due to the 

unique feature of the option in the make-whole callable bond.  Unlike the call price in the 

traditional callable bond, the call price in the make-whole bond is not fixed.  It is 

determined by the maximum value between par value and the present value of the bond’s 

remaining payments.  The discount rate in the calculation of the present value is the 

prevailing comparable maturity Treasury yield plus a spread specified in the contract of a 

bond, which is called the make-whole premium. 

Second, based on the analysis, we construct a reduced form model for the make-

whole callable bond.  Previously, Jarrow et al. (2010) develop a reduced form model for 

the traditional callable bond; in which the option value is dependent on Treasury rates.  

However, from our analysis, we argue that we cannot directly apply the model from 

Jarrow et al. (2010) because of the unique structure of the make-whole callable bond. 

The next chapter empirically investigates validation of our model with the 

extended Kalman filter, and compares performance of our model with one of the model 

from Jarrow et al. (2010). 

  



 

  

 
 
 
 
 

CHAPTER 2: ANALYSIS OF A BOND WITH MAKE WHOLE PROVISION 
CALIBRATION OF PARAMETERS: KALMAN FILTER 

 
 

The main objective of this chapter is to see whether or not the reduced-form 

model developed in Chapter 1 can be really fitted into real market data of make-whole 

callable bonds.  Additionally, we compare the performance of our model with the 

performance of the model (hereafter JLLW model) from Jarrow et al. (2010).  As stated 

in Chapter 1, the major difference between our model and the JLLW model is that our 

model assumes the embedded option value depends on the individual default factor, 

while JLLW model assume the option value depends on the default-free interest rates.  

Originally, the JLLW model is constructed for the callable bond whose purchase price in 

embedded option is fixed.  Therefore, we argue, that the JLLW model does not suit the 

make-whole callable bond because the purchase price in the make-whole call option is 

not fixed.  Indeed, our analysis with the extended Kalman filter shows that JLLW does 

not fit into make-whole callable bonds in our sample, while our model is reasonably fit 

into the observed data of make-whole callable Bonds. 

 In order to investigate the validation of our model, we need a good estimation 

methods.   Our two candidates for econometric methods are the Kalman filter and the 

Markov Chain Monte Carlo (MCMC).  In Previous studies, Pearson and Sun (1994) 

apply the Maximum Likelihood (ML) Method in order to estimate a two-factor CIR 

model with the exact density that Cox et al. (1985) identify.  State variables are inverted 

from the pricing equation (Measurement system).  The yield distribution can be obtained 
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from the transition density and the Jacobian matrix of the transformation.  One of the 

restrictions in the ML method application is that the number of state variables should 

match with number of securities with different maturities.  It implies that the observations 

are measured without an error.  However, Jagannathan et al (2001) and Liu et al. (2000) 

modify the ML process in order to deal with a situation where the number of securities is 

greater than the number (N) of state variables.  In their study, they assume that first N 

yields are measured without error while the remaining measurement errors are joint 

normal.  Thus, the consequent disadvantage is that there is no clear way to choose certain 

rates to be measured without noise.  Another well-known drawback of this approach is 

that the state variables could be negative, which is found in the study of Duffie and 

Singleton (1997).  This is a significant problem when it is dealing with non-Gaussian 

Exponential Affine Model.  

 Another popular method used for estimating term-structural models is the Method 

of Moments.  Under the principle of GMM, Simulated Method of Moments (SMM) is 

suggested by Duffie and Singleton (1993), and Efficient Method of Moment (EMM) is 

defined by Gallant and Tauchen (1996).  There are several advantages of using 

SMM/GMM.  First, moment estimates have the asymptotic properties of ML estimates.  

Second, Moment methods are generally applicable for various non-linear multi-factor 

models with high dimension parameters.  Third, they allow a measurement error, which 

implies that the number of securities can be greater than the number of state variables.  

However, Duffee and Stanton (2004) show that EMM estimates are often seriously 

biased for finite samples, or for the normal size of term-structure data observations.  Even 
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in a single-factor Vasicek setting, a Monte Carlo Simulation shows that EMM 

performance diverges significantly from ML. 

 On the other hand, Kalam filter and MCMC methods have relatively less 

restrictions.  For this reason, they have gained popularity in the affine term-structure 

literature.  In this study, we compare the performance of these two methods in our case.  

Our results on the performance of the two methods on risk-free term structure show that 

the MCMC method does not work as well.  The problem of using the MCMC method 

arises from our risk-free term structure data.  As Sögner (2009) demonstrates, this issue 

with the MCMC method is that the parameter estimation becomes almost impossible, due 

to ill conditioned transformation between the latent state variables process driving the 

yields and the yield observed.  Unfortunately, our Treasury data shows evidence of unit-

root behavior.  Meanwhile, the extended Kalman filter works reasonably well on our risk-

free term structure data.  Therefore, we apply the Kalman filter estimation to analyze the 

make-whole callable Bonds in our sample. This chapter is organized as follows: section 1 

contains a brief review of the Kalman filter and the MCMC methods, section 2 describes 

our data set and procedures, section 3 compares our model with one from Jarrow et al. 

(2010), and concludes with section 4.
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2.1 Kalman Filter and MCMC Method 

2.1.1 Kalman Filter 

 The Kalman filter technique has recently gained popularity in the Affine Term-

Structure Literature as a result of the work by Chen and Scott (2003), de Jong (2000), 

Lund (1997), Geyer and Pichler (1998), Duffee (1999), and Jarrow et al. (2010). This 

approach is very useful in situations such as ours, where the underlying state variables are 

not observable.  The state-space form consists of the measurement system and transition 

system.  The measurement system represents the affine relationship (shown in Chapter 1) 

between the zero-coupon rate and the state variables.  On the other hand, the transition 

system is an unobserved system of equations that describes the dynamics of the state 

variables.  By using this state-space form, the Kalman filter recursively form inferences 

about the unobserved values of the state variables by conditioning on the observed 

market zero-coupon rates.  These recursive inferences are used to maximize a log-

likelihood function for searching the optimal parameter set. With the CIR model, 

however, the transition density follows a non-central chi-squared distribution, which is 

rather difficult to handle. Fortunately, Ball and Torous (1996) show that, over small time 

intervals, diffusions arising from stochastic differential equations behave like the 

Brownian Motions. 

For this reason, in order to estimate the multi-factor CIR model, Chen and Scott 

(2003) use this approach with quasi-maximum likelihood (QML) method by 

approximating the transition density with normal density, where first and second 

moments are given by those of the non-central Chi-square density.  However, this 

approximation often results in an inconsistent QML estimator.  Duffee and Staton (2004) 
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compare three methods (ML, EMM, and Kalman filter) for the term structural models.  

Even though they found small biases in parameter estimation for the case of Kalman filter, 

the degree of biasness is less, when compared to EMM. Therefore, they prefer to use the 

Kalman filter over EMM in cases where the ML approach is not feasible to apply.  In 

addition to this inconsistent issue, there is another disadvantage to the Kalman filter in 

that it could give negative state variables.  In order to deal with this problem, Chen and 

Scott (2003) propose to replace negative estimates of state variables with zero.  In our 

application of the Kalman filter, we also follow the proposal from Chen and Scott (2003). 

2.1.2 Markov Chain Monte Carlo (MCMC) 

 This study also considers the MCMC approach, which not only achieves the 

asymptotic efficiency of MLE, but also provides the finite-sample distribution.  The 

sampling-based MCMC method avoids the computation of a high-dimensional integral 

necessary for obtaining the marginal distribution of parameters.  At the meantime, it 

retains the generality and simplicity of moment methods.  It generates random samples 

from complicated likelihood in any functional form.  The random samples converge to 

finite-sample distribution of MLE.  Unlike other methods, MCMC provides a solution to 

exact filtering of the unobserved state variables. 

 There are a number of sampling approaches in estimating marginal density.  The 

popular ones are Metropolis-Hastings (MH) Sampler and Gibbs sampler.  The MH 

sampler obtains the state of the chain at i+1 by sampling a candidate point 𝛾from a 

proposal distribution q(.|Xi) that depends only on the previous state Xi and can have any 

form, subject to regularity conditions ( Roberts, 1995).  The most popular choice of the 
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proposal distribution is normal with mean Xi and fixed variance (i.e. Random Walk 

proposal density). 

 The required regularity conditions for the proposal distribution are irreducibility 

and aperiodicity.  Irreducibility means that there is a positive probability that the Markov 

chain can reach any nonempty set from all starting points.  Aperiodicity ensures that the 

chain will not oscillate between different sets of states.  These conditions are usually 

satisfied if the proposal distribution has a positive density on the same support as the 

target distribution.  The steps of the algorithm are outline below: 

1. Set initial value for X0. 

2. Generate a candidate point 𝛾 from q(.|Xi). 

3. Generate U from a uniform (0,1) distribution 

4. if U is less than }
)|()(

)|()(
,1min{

ii

i

XqX
Xq
γ

γγ
Π
Π

, then set Xi+1= 𝛾 else set Xi+1= Xi. 

5. Set i=i+1 and repeat steps 2 through 5. 

In our application, we use MH with random walk proposal density because, as 

commented by Liu (2007), there is no clear evidence of advantages using certain proposal 

densities instead of random-walk process. 

 On the other hand, Gibbs sampler is the other popular choice.  Although it can be 

shown to be a special case of the MH algorithm, there are two eminent differences 

between the Gibbs sampler and MH.  First, a candidate point is always accepted. Second, 

the full conditional distribution should be recognized, which makes the algorithm less 

applicable. For these reason, it is applied for estimating measurement errors in our case. 
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 Recently, MCMC had been getting a lot of attention in financial econometrics 

because of the advantage mentioned above.  For example, Eraker (2001) demonstrates the 

analysis of a one-factor Gaussian Short rate model and stochastic volatility models, 

where Gibbs sampler and MH algorithm are applied. Mikkelsen (2001) analyzes a one-

factor Vasicek model with a cross-sectional data of both bond and swap rate, where the 

market price of risk is estimated. Aguilar and West (2000) use MCMC and sequential 

filter to estimate dynamic factor models with international exchange rates data.  Certainly, 

it is interesting to see whether it could perform better than Kalman filter in our case, 

although Jaquier et al. (1994) shows that the Bayesian Markove Chain estimators 

outperform estimators from moment and QML methods on stochastic volatility models. 



32 

  

2.2 The Data and Estimation Procedure 

 In this section, the data is described, and the procedure of the estimation is 

introduced.  If possible, it is idealistic to estimate the default free term structure jointly 

with corporate bonds from all firms in the sample. However, Duffee (1999) points out 

that it is computationally infeasible because of the huge dimension of the problem.  

Alternatively, it is possible to estimate the default-free term structure jointly with 

corporate bonds from each individual firm, but the drawback of using this estimation is 

that we could have different estimates of the risk-free process for different firms.  

Therefore, first, this study estimates the default-free term structure from observed yields 

on Treasury securities, and then, with estimated risk-free, we estimate the default process.  

Finally, the call process is estimated with using estimated risk free and default process. 

2.2.1 The Data 

 In order to estimate the default-free term structure, spot rates for 6-month and 12-

month Treasury bills, and 2-, 3-, 5-, 10-, and 30-year Treasury bonds.  We collect these 

spot rates from Bloomberg terminal, where they estimate the derived zero coupon yields 

by stripping the par coupon curve.  The maturities of the Treasury securities cover the 

maturity spectrum of all corporate bonds used in our analysis.  Corporate bond data are 

obtained from Bloomberg terminal and Datastream.   First, we collect the bond data from 

Datastream because, as Chen et al. (2007) note, it is used to provide prices, which in turn, 

uses Merrill  Lynch as the data source for the price across all market makers for the 

bonds.   The remaining bond data in our sample is obtained from Bloomberg Generic 

Quote, which reflects the consensus quotes among market participants. 
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 As Duffee (1999) and Jarrow et al. (2010) impose restrictions on their collection 

on bond data, we also require a firm to have at least one non-callable bond and one make-

whole callable bond.  Furthermore, in order to control liquidity and maturity premium on 

the bond, we require maturities difference of two bonds are at least 24 months.  Finally, 

historical price of the both bond should be available for at least 24 months.  After 

imposing these restrictions, we have 38 firms in our sample. Table 1 shows the list of 

firms in our sample, and their credit ratings.  Our sample companies’ S&P rating is 

mostly greater than BBB-.  Additionally, rating distribution shown in Table 2 is very 

similar to the sample in the study of Power and Tsyplakov (2008).  However, distribution 

of make-whole premium in our sample is much lower than the one in the sample from the 

study of Power and Tsyplakov (2008).  

 Notably, Table 2 exhibits that yield-to-maturity difference between a make-whole 

callable and non-callable bond (yield-to-maturity on make-whole callable bond minus 

yield-to-maturity on non-callable bond) from a same firm is -0.084 % on average without 

considering maturity difference.  However, Power and Tsyplakov (2008) demonstrate, by 

using Bloomberg’s Fair Market Yield with linear interpolation technique, that the yield 

spreads between these two bonds are 5-7 basis points. Although Power and Tsyplakov 

(2008) note that this yield spread measure likely underestimate the true yield spread, they 

state that there exist very thin yield spreads between these two bonds.  Furthermore, Elton 

et al. (2001) find evidence that coupon rates have a significantly effect on bond’s yield 

spread over comparable treasury rates.  Therefore, we believe that -0.084 % yield-to-

maturity is reasonable.
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2.2.2 The Estimation Procedure7

 First, we will present the state-space form that our two econometric methods 

(Kalman filter and MCMC) are based on.  Let 

 

),...,( 1 ′= Nttt yyY be the yields on N 

Treasury bonds, and },{ ,2,1 ttt ssS = be the unobservable state variables that drive the 

default-free term structure. Thus, measurement and transition system can be obtained as 

follows: 

𝑌𝑡 = Φ(𝑆𝑡) + 𝜀𝑡,𝐸𝑡−1(𝜀𝑡𝜀𝑡′) = Σ 

𝑆𝑡 = 𝜇 + Γ𝑆𝑡−1 + 𝑣𝑡 , E𝑡−1(𝑣𝑡𝑣𝑡′) = Ω(𝑆𝑡−1) 

The function )( tSΦ maps the two state variables into seven yields of Treasury Bonds. Σ

and )( 1−Ω tS  are diagonal matrices corresponding to the variances of the measurement 

errors of yields and state variables, respectively. Thus, the conditional variance depends 

upon the unknown values for 1−tS  , which makes the estimator based on the Kalman filter 

inconsistent, even though the simulation experiments from Duan and Simunato (1999) 

show that induced biases are very small.  Since we use seven Treasury bonds with 

different maturities, and we assume two state variables for default-free process, Σ and 

)( 1−Ω tS  are 7 by 7 diagonal matrix, and 2 by 2 diagonal matrix, respectively.  µ , Γ  and 

)( 1−Ω tS  in the transition system are defined as: 

𝜇 = �
𝜃1�1 − 𝑒−𝜅1/12�
𝜃2(1 − 𝑒−𝜅2/12)� , Γ = �𝑒

−𝜅1/12 0
0 𝑒−𝜅2/12� 

Ω𝑖,𝑖(𝑆𝑡−1) = 𝜅𝑖−1𝜎𝑖2 �𝑠𝑖,𝑡−1�𝑒−𝜅1/12 − 𝑒−2𝜅1/12� +
𝜃𝑖
2
�1 − 𝑒−𝜅1/12�

2
�  𝑓𝑜𝑟 𝑖 = 1,2 

                                                 
7 The notation in this chapter follows those in chapter 1, which also closely follows the notation in Jarrow 
et al. (2010). 
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From this state-space form, we can apply the Kalman filter with the QML suggested by 

Chen and Scott (2003).  

 For the MCMC application, since there is no well-known full-conditional density 

for parameters in our case, we cannot apply the Gibbs sampler for estimating parameters 

except for variances in measurement error.  Even though Frühwirth-Schnatter and Geyer 

(1998) adopt a normal proposal density that linearizes around the old value and use an 

approximation to normal conditional density to propose the candidates for state variables, 

as commented by Liu (2007), there is no clear evidence of advantages using certain 

proposal densities instead of random-walk process.  This is the reason why we apply the 

MH algorithm with random walk density proposal to estimate the parameters.  

Furthermore, Gelman et al. (1996) suggest that the optimal variance is to adjust the 

variance-covariance matrix by a coefficient, dc /38.2≈ , where d is the dimension of 

the parameter set.  By this adjustment, the optimal rule has an acceptance rate of about 

0.25 for high-dimensional models.  In our application, we also consider the suggestion 

from Gelman et al. (1996). 

 In order to apply MH algorithm, we need to have information about target 

distribution up to the constant proportionality.  For the CIR-model, the exact transition 

densities are known to be non-central chi-square densities. It can be expressed as below: 

𝑝(𝑆𝑡|𝑆𝑡−1) = �𝑝�𝑠𝑗,𝑡�𝑠𝑗,𝑡−1�
2

𝑗=1

 (1) 

𝑝�𝑠𝑗,𝑡�𝑠𝑗,𝑡−1� = 𝑐𝑗𝑒−𝑐𝑗�𝑠𝑗,𝑡+𝑒
−𝜅𝑗Δ𝑡𝑠𝑗,𝑡−1� �

𝑠𝑗,𝑡

𝑒−𝜅𝑗Δ𝑡𝑠𝑗,𝑡−1
�

𝑞𝑗
2
𝐼𝑞𝑗 �2𝑐𝑗�𝑠𝑗,𝑡𝑒−𝜅𝑗Δt𝑠𝑗,𝑡−1� 

𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 =
2𝜅𝑗

𝜎𝑗2(1 − 𝑒−𝜅𝑗Δ𝑡)
 , 𝑞𝑗 =

2𝜅𝑗𝜃𝑗
𝜎𝑗2

− 1 
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where (.)
jqI  is the modified Bessel Function of the first kind of order jq .  If we assume 

that the state variables are independent a priori, the prior p(S0) is: 

𝑝�𝑠𝑗,0� = 𝑝𝐺 �𝑠𝑗,0; 𝑞𝑗 + 1, 2𝜅𝑗
𝜎2
�, where pG(.) indicates gamma distribution density function.  

The target density should have as much information about the joint posterior distribution 

as possible.  The joint posterior distribution )|,( TT YHSp  is given by Bayes’ theorem: 

)()|(),|()|,( HpHSpHSYpYHSp TTTTT ∝ , where H is the parameter vector. 

It consists of three densities: "complete data likelihood", )|( HSp T , and the marginal 

prior of the model parameter H.  The first part, ),|( HSYp TT is called “complete data 

likelihood” that is the product of the observation densities: 

𝑝(𝑦𝑡|𝑆𝑡) = �𝑝𝑁�𝑦𝑖;𝑦�𝑖,𝑡, Σ𝑖𝑖,𝑡�
7

𝑖=1

 

where pN(.) is the normal distribution density function, and tiy ,ˆ is the estimated yield from 

the measurement system.  The second part, )|( HSp T , is obtained by the product of 

transition densities (1) times the prior )( 0,jsp .  The last part is the marginal prior of the 

model parameter H, which we assume the following un-informative priors: 

𝑝�𝜃𝑗� ∝ 𝑐,𝑝�𝜅𝑗� ∝ 𝑐,𝑝�𝜎𝑗2� ∝ 1/𝜎𝑗2,𝑝�𝜂𝑗� ∝ 𝑐 𝑗 = 1,2 

𝑝(𝜎𝜀𝑖2 ) ∝ 1/𝜎𝜀𝑖2  𝑖 = 1,2, … ,7 

The full conditional densities, .)|( jHp  and .)|( ,tjsp  are proportional to )|,( TT YHSp .  

Thus, our target distribution function is: 

𝑝�𝐻𝑗�. �,𝑝�𝑠𝑗,𝑡�. � ∝ 𝑝(𝑌𝑇|𝑆𝑇 ,𝐻)𝑝(𝑆𝑇|𝐻)𝑝(𝐻) (2) 
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However, since the state variables vary with time, we have to sample the state variables 

at each time.  Therefore, we follow suggestion from Frühwirth-Schnatter and Geyer 

(1998). The target distribution functions for .)|( ,tjsp is: 

𝑝�𝑠𝑗,𝑡� ∙� ∝ �
𝑝(𝑌𝑡|𝑆𝑡,𝐻)𝑝�𝑠𝑗,𝑡�𝑠𝑗,𝑡−1,𝐻�𝑝�𝑠𝑗,𝑡+1�𝑠𝑗,𝑡,𝐻𝑗�

𝑝(𝑌𝑇|𝑆𝑇 ,𝐻)𝑝�𝑠𝑗,𝑇�𝑠𝑗,𝑇−1,𝐻𝑗�
𝑝�𝑠𝑗,0�𝐻𝑗�𝑝�𝑠𝑗,1�𝑠𝑗,0,𝐻𝑗�

� 

1 ≤ 𝑡 ≤ 𝑇 − 1 

t=T 

t=0 

For variance of the measurement errors, full conditional posteriors can be driven with 

their un-informative priors (see Frühwirth-Schnatter and Geyer (1998)).  For this reason, 

we apply the Gibbs samplers for the variance of the measurement errors.  The full 

conditional posterior is: 

𝑝(𝜎𝜀𝑖2 � ∙) = 𝑝𝐼𝐺 �𝜎𝜀𝑖2 ;𝑇/2,1/2��𝑦𝑖,𝑡 − 𝑦�𝑖,𝑡�
2

𝑇

𝑡=1

� 

From the setting above, we generate 200,000 iterations.  After discarding the first 

199,000, we analyze the results. 

Then we begin to tackle estimating parameters and the state variables in the 

default-free process, as done by Duffee (1999) and Jarrow et al. (2010), we take 

}ˆ,ˆ{ ,2,1 tt ss as true variables that determine the default-free process to estimates the default 

process of a particular firm.  The measurement system and transition system in our 

second step are: 

𝑌𝑑,𝑡 = Φ𝑑�ℎ𝑑,𝑡, �̂�1,𝑡, �̂�2,𝑡� + 𝜀𝑑,𝑡 𝐸𝑡−𝑇�𝜀𝑑,𝑡𝜀𝑑,𝑡
′ � = �𝑑 

ℎ𝑑,𝑡 = 𝜇𝑑(𝑇) + Γ𝑑(𝑇)ℎ𝑑,𝑡−𝑇 + 𝑢𝑡 𝐸𝑡−𝑇(𝑢𝑡𝑢𝑡′) = Ω𝑑�ℎ𝑑,𝑡−𝑇 ,𝑇� 
 

dΦ is an implicit function that maps the state variables into defaultable bond yields.  The 

function is implicitly given by numerically solving for the yield corresponding to the 
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coupon price.  Thus, we first calculate the theoretical bond price using the equation from 

Chapter 1, given the values of ts ,1̂ , ts ,2ˆ , and tdh , . Second, we solve for the theoretical 

yield to maturity ( tdY ,
ˆ ). 

For application of Kalman filter, we need to linearize the measurement equation 

around a predicted value of  tdh ,  as follows: 

𝑌𝑑,𝑡 = �𝜕Φ𝑑�ℎ𝑑,𝑡�
𝜕ℎ𝑑,𝑡

�
ℎ𝑑,𝑡=ℎ𝑑,𝑡|𝑡−1�

ℎ𝑡 + Φ𝑑�ℎ𝑑,𝑡|𝑡−1�� − �𝜕Φ𝑑�ℎ𝑑,𝑡�
𝜕ℎ𝑑,𝑡

�
ℎ𝑑,𝑡=ℎ𝑑,𝑡|𝑡−1�

ℎ𝑑,𝑡|𝑡−1� + 𝜀𝑑,𝑡 

where 1|, −ttdh is the predicted value from the information up to time t-1.  However, for the 

application of MCMC, there is no need for this linearization, and its procedure is similar 

to the one in the first step. 

Once the default parameters and intensity are estimated, they are used to estimate 

the call process with the following measurement and transition systems: 

𝑌𝑐,𝑡 = Φ𝑐�ℎ𝑐,𝑡,ℎ𝑑,𝑡, �̂�1,𝑡, �̂�2,𝑡� + 𝜀𝑐,𝑡 𝐸𝑡−𝑇�𝜀𝑐,𝑡𝜀𝑐,𝑡
′ � = �𝑐 

ℎ𝑐,𝑡 = 𝜇𝑐(𝑡) + Γ𝑐(𝑇)ℎ𝑐,𝑡−𝑇 + 𝜉𝑡 𝐸𝑡−𝑇(𝜉𝑡𝜉𝑡′) = Ω𝑐�ℎ𝑐,𝑡−𝑇 ,𝑇� 
 

jµ , jΓ , dΩ  and cΩ  in the transition equation is given by: 

𝜇𝑗(𝑇) = 𝜃𝑗 �1 − 𝑒−
𝑇𝜅𝑗
12 � Γ𝑗(𝑇) = 𝑒−

𝑇𝜅𝑗
12  

Ω𝑗�ℎ𝑗,𝑡−𝑇 ,𝑇� = 𝜅𝑗−1𝜎𝑗2 �ℎ𝑗,𝑡−𝑇 �𝑒−
𝑇𝜅𝑗
12 − 𝑒−

𝑇𝜅𝑗
6 � +

𝜃𝑗
2
�1 − 𝑒−

𝑇𝜅𝑗
12 �

2
� 𝑓𝑜𝑟 𝑗 = 𝑐, 𝑑 

 
Next section presents empirical results based on the procedure stated in this section. 
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2.3 Empirical Results 

This section presents empirical evidence on the performance of our model 

developed in Chapter 1.  In addition, we compare the performance of our model with that 

of the JLLW model.  However, we first compare performances of two econometric tools 

(the extended Kalman filter and MCMC method) on our Treasury data. 

2.3.1 Performances of the Kalman Filter and the MCMC Method on US Treasury Data 

 Table 3 reports performances of the Kalman filter and the MCMC methods on our 

US Treasury rates data.  For simplicity, we exclude 𝛼 term in equation (13) in Chapter 1.  

It shows that both methods tend to overestimate default-free term structure based on the 

mean errors in Table 3.  However, estimated parameters from these two methods are 

quite different.   Based on Root Mean Square Errors (RMSE) for two methods, the 

Kalman filter works much better than MCMC method.  It is obvious that, from RMSE, 

MCMC cannot capture default-free term structure behavior in the sample. 

A problem of using the MCMC method arises from these risk-free term structure 

data.  As Sögner (2009) demonstrates this issue with the MCMC method, parameter 

estimation becomes almost impossible, due to ill conditioned transformation between the 

latent state variables process driving the yields and the yield observed, especially when 

all yields from a different maturity Treasury are observed with noise . This issue is also 

recognized in Piazzesi (2005). Unfortunately, our Treasury data shows evidence of unit-

root behavior, which is shown in Table 4 that reports results of the augmented Dickey 

Fuller test.  On the other hand, the extended Kalman filter works reasonably well on our 

risk-free term structure data.  Therefore, we analyze make-whole callable bonds with the 

extended Kalman filter.
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Table 3: Comparison between Kalman Filter and MCMC Performance on US Treasury 
Rates Data 
 
The instantaneous interest rate is: 𝑟𝑡 = 𝑠1,𝑡 + 𝑠2,𝑡. 
The dynamics are 

𝑑𝑠𝑖,𝑡 = 𝜅𝑖�𝜃𝑖 − 𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊𝑖,𝑡, for 𝑖 = 1,2   (True measure) 
𝑑𝑠𝑖,𝑡 = �𝜅𝑖𝜃𝑖 − (𝜅𝑖 + 𝜂𝑖)𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊�𝑖,𝑡, for 𝑖 = 1,2  (Martingale Measure) 
 
US Treasury rates data from January, 2002 to March, 2011 are used.  The standard errors 
(STD) are computed assuming the Kalman filter linearization is exact.  The estimates 
from MCMC are based on 200,000 MCMC steps and 199,000 burn-in. 
A. Estimation from Kalman filter 

i    
1 0.3238 0.0361 0.1139 -0.0938 

STD 0.1202 0.0136 0.0104 0.1150 
2 0.1527 0.0016 0.0300 -0.1292 

STD 0.0398 0.0005 0.0105 0.0442 
Bond 

maturity 
Mean error 

(actual-fitted) Root mean square error 
6 months -0.0017 0.0059 

1 year -0.0022 0.0060 
2 years -0.0027 0.0056 
3 years -0.0025 0.0053 
5 years -0.0012 0.0050 
10 years 0.0006 0.0052 
30 years -0.0006 0.0049 

B. Estimation from MCMC 
i    
1 2.3843 0.0489 0.7148 -0.0742 

STD 0.1594 0.0164 0.0067 0.0539 
2 2.7881 0.0358 0.7169 -0.0763 

STD 0.1432 0.0094 0.0079 0.0599 
Bond 

maturity 
Mean error 

(actual-fitted) Root mean square error 
6 months -0.0456 0.0530 

1 year -0.0504 0.0537 
2 years -0.0498 0.0513 
3 years -0.0473 0.0485 
5 years -0.0422 0.0431 
10 years -0.0343 0.0348 
30 years -0.0286 0.0290 
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Table 4: Unit Root Test for Treasury Rate Data 
 
This table presents results of Unit-root test from monthly US Treasury rates data from 
January, 2002 to March, 2011.  ACF1 is the first order autocorrelation coefficient of the 
corresponding rate time series.  ADF is the augmented Dickey Fuller test.  The p-values 
are presented below the corresponding Unit-root statistic. 

Bond 
maturity 

6 
months 1 year 2 years 3 years 5 years 10 years 30 years 

AFC1 0.9945 0.9933 0.9901 0.9890 0.9900 0.9943 0.9977 
ADF -0.6976 -0.7955 -1.0472 -1.1583 -1.1276 -0.8327 -0.4462 

p-value 0.3944 0.3586 0.2664 0.2258 0.2370 0.3450 0.4864 
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2.3.2 Extended Kalman Filter Results 

 Table 5 reports the parameter estimates for default-free term structure.  The 

results are very similar to those from Duffee (1999).  It shows that first factor has a 

higher long-run mean and faster speed of mean-reversion than second factor has.   The 

major difference between our results and the results from Duffee (1999) is 𝛼 term.  

Duffee (1999) set 𝛼 term equal to -0.01, because the improvement in fit given by a 

substantially lower value of 𝛼 term was minimal in his sample.  However, in our sample, 

results from setting 𝛼 term equal to -0.01 was worse than the results shown in Table 5 

although we did not include these results in the table. 

 Based on the estimated default-free process, we estimate the default risk 

parameters.  Table 6 summarizes the estimation results with non-callable bonds for each 

of the 38 firms.  It shows that estimated 𝛽d1and 𝛽d2 is generally negative, which supports 

the negative relationship between default spread and risk-free interest rates.  The results 

shown in Table 6 are generally similar to those in Duffee (1999) or Jarrow et al. (2010).  

The major difference, again, is that we allow 𝛼 term to be a negative value, which results 

in bigger magnitude of estimated parameters, compared to those in Duffee (1999) and 

Jarrow et al. (2010).8

 Finally, based on the estimated default-free and defaultable term structures, we 

estimate the call process using a make-whole callable bond with similar maturity from 

the same firm.  Panel A in Table 7 shows results with using our model in Chapter 1, and 

Panel B reports results with using the JLLW model.  Panel A in Table 7 shows that 

  However, distribution of the credit spreads is very similar to those 

in Duffee (1999) and Jarrow et al. (2010). 

                                                 
8 Even though we did not include results from restricting  term to be positive, in our sample data, allowing 
 term to be negative give noticeable improvement in fit. 
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estimated c1 has a positive value, which implies that an individual default factor is 

positively related to the call spreads.  Besides, the estimated call spread has mean 

(median) 16 basis points (11 basis point), which is reasonable, based on the study of 

Power and Tsyplakov (2008).  Meanwhile, Panel B in Table 7 reports that the estimated 

c2 has a value closed to zero, which implies that the second factors from the default-free 

process is not related to the call spreads.  Furthermore, the estimated c1 in panel B is 

positive, which indicates positive relationship between the first factor from the default-

free process and the call spread.  However, the call spreads in panel B has mean (median) 

as 13.13% (6.64 %).  Moreover, mean errors and RMSE is relatively very high, compared 

with those in panel A.  Therefore, it is hard to see that the JLLW model fit into our make-

whole callable bond data. 

 Results in Table 7 shows evidence that the value of embedded option in the make-

whole callable bond is dependent on the individual default factor, but there is no evidence 

that the value of the embedded option is dependent on risk-free rates.  Consequently, in 

order to apply reduced-form model to the make-whole callable bond,   the JLLW model 

is not suitable.  This is due to the model originally being constructed for the regular 

callable bond whose purchase price in the embedded option is fixed.  On the other hand, 

our model developed in Chapter 1 is reasonably fitted to our sample data, because our 

model includes the effect of an individual default factor on the call spreads. 

 These findings are more prominent in Table 8 that reports out-of-sample analysis.  

In this analysis, we have five firms each of that has another make-whole bond.  In order 

to produce results in panel B in Table 8, we first extract the estimated parameters for the  
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Table 5: Extended Kalman Filter Estimates of Default-Free Model 

The instantaneous interest rate is 
𝑟𝑡 = 𝛼 + 𝑠1,𝑡 + 𝑠2,𝑡. 

The dynamics are 
𝑑𝑠𝑖,𝑡 = 𝜅𝑖�𝜃𝑖 − 𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊𝑖,𝑡, for 𝑖 = 1,2   (True measure) 

𝑑𝑠𝑖,𝑡 = �𝜅𝑖𝜃𝑖 − (𝜅𝑖 + 𝜂𝑖)𝑠𝑖,𝑡�𝑑𝑡 + 𝜎𝑖�𝑠𝑖,𝑡𝑑𝑊�𝑖,𝑡, for 𝑖 = 1,2  (Martingale Measure) 
 
US Treasury rates data from January, 2002 to March, 2011 are used.  The standard errors 
(STD) are computed assuming the Kalman filter linearization is exact.   

i     
1 -0.0012 0.3347 0.0359 0.0755 -0.0909 

STD 0.0010 0.0341 0.0045 0.0039 0.0410 
2 

 
0.1973 0.0015 0.0327 -0.1663 

STD   0.0456 0.0003 0.0041 0.0400 

      

 

Bond 
maturity 

Measurement 
error 

Mean error 
(actual-
fitted) 

Root mean 
square 
error 

 
 

6 months 0.0037 -0.0013 0.0057 
 

 
STD 0.0003 

   
 

1 year 0.0041 -0.0018 0.0057 
 

 
STD 0.0008 

   
 

2 years 0.0009 -0.0023 0.0052 
 

 
STD 0.0001 

   
 

3 years 0.0015 -0.0021 0.0049 
 

 
STD 0.0002 

   
 

5 years 0.0032 -0.0009 0.0047 
 

 
STD 0.0003 

   
 

10 years 0.0037 0.0008 0.0051 
 

 
STD 0.0002 

   
 

30 years 0.0036 -0.0007 0.0048 
 

 
STD 0.0002     
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Table 6: Summary of Extended Kalman filter Estimates of 38 Firms’ Defaultable Model 
 
The instantaneous default-free interest rate is given by 

𝑟𝑡 = 𝛼 + 𝑠1,𝑡 + 𝑠2,𝑡 
where 𝑠1,𝑡  and 𝑠2,𝑡are independent square-root processes. Firm j’s instantaneous default 
risk is given by 

(1 − 𝜎)𝜆𝑑,𝑡 = 𝛼𝑑 + ℎ𝑑,𝑡 + 𝛽𝑑1�𝑠1,𝑡 − �̅�1� + 𝛽𝑑2�𝑠2,𝑡 − �̅�2� 
where ℎ𝑑,𝑡 follows a square-root process that is independent of the profess for 𝑠𝑖,𝑡, i=1,2: 
 

𝑑ℎ𝑑,𝑡 = 𝜅𝑑�𝜃𝑑 − ℎ𝑑,𝑡�𝑑𝑡 + 𝜎𝑑�ℎ𝑑,𝑡𝑑𝑊𝑑,𝑡                          (True Measure) 
𝑑ℎ𝑑,𝑡 = �𝜅𝑑𝜃𝑑 − (𝜅𝑑 + 𝜂𝑑)ℎ𝑑,𝑡�𝑑𝑡 + 𝜎𝑑�ℎ𝑑,𝑡𝑑𝑊�𝑑,𝑡  (Martingale measure) 

 
The estimation period is from January, 2002 to March, 2011 are used.  RMSE indicates 
the square root of the mean of the squared differences between the actual and fitted yields 
to maturity on firm j’s bond.  Mean Error is estimated by actual minus fitted yields to 
maturity on firm j’s bond. 

  
First 

Quartile Median 
Third 

Quartile Average 
 -0.0206 -0.0183 -0.0069 -0.0223 
 0.0149 0.0261 0.0416 0.0344 
 0.1695 0.3044 0.4979 0.3086 
 0.1298 0.1606 0.2426 0.1847 
 -0.1917 -0.1661 -0.1317 -0.1588 
d1 -0.4396 -0.1824 0.0261 -0.2282 
d2 -0.9784 -0.6260 -0.1454 -0.5366 

Spread 0.0054 0.0141 0.0268 0.0176 
Mean 
Error -0.0006 0.0000 0.0006 -0.0003 

RMSE 0.0046 0.0067 0.0081 0.0063 
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Table 7: Summary of Extended Kalman Filter Estimates of 38 Firms’ Make-Whole 
Callable Model 

 
The instantaneous default-free interest rate is given by 

𝑟𝑡 = 𝛼 + 𝑠1,𝑡 + 𝑠2,𝑡 
where 𝑠1,𝑡  and 𝑠2,𝑡are independent square-root processes. Firm j’s instantaneous default 
risk is given by 

(1 − 𝜎)𝜆𝑑,𝑡 = 𝛼𝑑 + ℎ𝑑,𝑡 + 𝛽𝑑1�𝑠1,𝑡 − �̅�1� + 𝛽𝑑2�𝑠2,𝑡 − �̅�2� 
where ℎ𝑑,𝑡 follows a square-root process that is independent of the profess for 𝑠𝑖,𝑡, i=1,2.  
For Panel A, firm j’s instantaneous call spread is given by 

(1 − 𝑘)𝜆𝑐,𝑡 = 𝛼𝑐 + ℎ𝑐,𝑡 + 𝛽𝑐1
𝑀
ℎ𝑑,𝑡

 

For Panel B, firms j’s instantaneous call spread follows Jarrow et al. (2010), which is 
given by 

(1 − 𝑘)𝜆𝑐,𝑡 = 𝛼𝑐 + ℎ𝑐,𝑡 + 𝛽𝑐1�𝑠1,𝑡 − �̅�1� + 𝛽𝑐2
𝐶
𝑠2,𝑡

 

where ℎ𝑐,𝑡 follows a square-root process that is independent of the profess for 𝑠𝑖,𝑡, i=1,2: 
 

𝑑ℎ𝑐,𝑡 = 𝜅𝑐�𝜃𝑐 − ℎ𝑐,𝑡�𝑑𝑡 + 𝜎𝑐�ℎ𝑐,𝑡𝑑𝑊𝑐,𝑡                          (True Measure) 
𝑑ℎ𝑐,𝑡 = �𝜅𝑐𝜃𝑐 − (𝜅𝑐 + 𝜂𝑐)ℎ𝑐,𝑡�𝑑𝑡 + 𝜎𝑐�ℎ𝑐,𝑡𝑑𝑊�𝑐,𝑡 (Martingale Measure) 

 
M and C indicate make-whole premium and coupon rate respectively.  The estimation 
period is from January, 2002 to March, 2011 are used.  RMSE indicates the square root 
of the mean of the squared differences between the actual and fitted yields to maturity on 
firm j’s bond.  Mean Error is estimated by actual minus fitted yields to maturity on firm 
j’s bond. 
A. Model Dependent on Individual Default Factor 

   First Quartile Median Third Quartile Average 
 -0.0099 -0.0077 -0.0020 -0.0060 
 0.0079 0.0175 0.0494 0.0355 
 0.0105 0.0384 0.1503 0.1104 
 0.4181 0.4462 0.4919 0.4559 
 -0.0110 -0.0104 -0.0096 -0.0103 
c1 0.00005 0.00009 0.00011 0.0025 

Spread -0.0032 0.0011 0.0057 0.0016 
Mean Error -0.0019 -0.0005 0.0001 -0.0009 

RMSE 0.0047 0.0061 0.0087 0.0066 
 
 
B. Model Dependent on Risk-Free Rates 

    First Quartile Median Third Quartile Average 
 -0.0074 0.0027 0.0058 0.0014 
 0.0169 0.0337 0.1325 0.0960 
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Table 7 (continued) 
 0.2961 0.3959 0.4309 0.3635 
 0.3370 0.3663 0.4409 0.3943 
 -0.0116 -0.0108 -0.0105 -0.0111 
c1 -0.0167 0.1085 0.2894 0.2318 
c2 0.0000 0.0000 0.0000 0.0000 

Spread 0.0365 0.0664 0.1584 0.1313 
Mean Error -0.0009 0.0040 0.0136 0.0052 

RMSE 0.0087 0.0173 0.0286 0.0182 
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make-whole callable bond from each of those five firms from Table 7.  With the 

estimated parameters, we estimate yields-to-maturity for another make-whole callable 

bond from the same firm. 

 Panel B in Table 8 shows that, based on the mean errors and RMSE, our model 

outperforms the JLLW model except for the Emerson Electric case.  Additionally, Figure 

1 shows how well our model can explicitly capture the sequence of observed yields-to-

maturity movement of the make-whole callable bond.  In Figure 1, it is explicitly shown 

that there is difficulty in predicting the sequence of the observed yields-to-maturity in the 

JLLW model except in the case of Emerson Electric.  On the other hand, our model 

consistently gives reasonable prediction, relative to the JLLW model.  Along with Figure 

1, results in Table 8 confirm the findings from Table 7. 
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Figure 1: Out-of-Sample Performance of Our Model vs. Model from Jarrow et al. (2010) 
This figure provide time series plots of yields to maturity based on market prices and estimated yield to 
maturity under the two models of callable bond of five companies.  Yield to maturity based on market price 
is solid line, estimated yield to maturity under the model in this study is solid line with star, and estimated 
yield to maturity under the model from Jarrow et al. (2010) is dashed line.  
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2.4 Summary and Conclusion 

 This chapter investigates whether or not the reduced-form model developed in 

Chapter 1 really fits into the real market data of make-whole callable bonds.  To 

implement our test, we need econometric tools. So, we first make a comparison between 

the performance of the Kalman filter and the MCMC method on our US Treasury data.  

The MCMC method perform poorly, compared to the Kalman filter.  This could be due to 

the evidence of our US Treasury data having near unit-root behavior.  As Sögner (2009) 

demonstrates this issue with the MCMC method, parameter estimation becomes almost 

impossible, due to ill conditioned transformation between the latent state variables 

process driving the yields and the yield observed, especially when all yields from a 

different maturity Treasury are observed with noise.  For this reason, we use the extended 

Kalman filter estimate parameter value. 

 The results from the Kalman filter estimation suggest that the value of the 

embedded option in the make-whole callable bond is dependent on individual default 

factors, but there is no evidence that the value of the embedded option is dependent on 

the risk-free rates. Consequently, in order to apply the reduced-form model to the make-

whole callable bond, the JLLW model is not suitable.  This is because this model, 

originally constructed for the regular callable bond, contains a fixed purchase price in the 

embedded option.  On the other hand, our model developed in Chapter 1 is reasonably 

fitted to our sample data, because our model includes the effect of an individual default 

factor on the call spreads. 

 



 

 
 

 
 
 
 
 

CHAPTER 3: DEBT STRUCTURE AND CORPORATE YIELD SPREAD 
 
 

This study examines the relation between proportions of short-term debt to the 

firm’s total debt and corporate yield spreads.  The determinants of credit spread have 

been the central issue in corporate finance.  Since the seminal work of Black and Scholes 

(1973) and Merton (1974), a large theoretical literature on pricing of corporate bonds has 

been introduced.  Theoretical models of credit spreads can be categorized as either 

structural or reduced-form models of default.  There are well-known differences between 

these two models.  Unlike structural models, reduced form models do not consider a link 

between default and firm value explicitly.  In the reduced form model, default time 

cannot be predicted through the firm's value, rather it is the first jump governed by the 

exogenous jump process.9  Structural models assume that a firm defaults when the value 

of its debt exceeds its value of assets.10

However, Colin-Dufresne et al. (2001) and Huang and Huang (2003) indicate that 

credit risk is not enough to explain corporate-Treasury yield spread.  Subsequently, many 

factors, other than credit risk, determine the spread, which have been introduced.  Tax 

  From this assumption, it is perceived that an 

increase in a firm’s leverage ratio intensifies default risk, which consequently, increases 

yield spread.  This relationship has often been found in previous empirical studies by (e.g. 

Colin-Dufresne et al. (2001), Campbell and Taksler (2003), and Chen et al. (2007) etc.). 

                                                 
9 For more details on reduced-form models, see Jarrow and Turnbull (1995), Lando (1998), Duffie and 
Singleton (1999), and Duffee (1999) etc. 
10 For more details on structural models, see Geske (1977), Smith and Warner (1979), Longstaff and 
Schwartz (1995), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001) etc. 
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premium and Risk premium (Elton et al., 2001), idiosyncratic equity volatility (Campbell 

and Taskler, 2003), liquidity premium (Longstaff et al., 2005, and Chen et al., 2007), and 

firm-specific information (Kwan, 1996) are popularly recognized in this field.  Among 

these factors, firm-specific information has been left out in recent studies.  It could be 

because, as Campbell and Taksler (2003) notes, bond rating contemporaneously 

incorporating observed firm-level accounting characteristics, and rating agencies may 

also absorb market information through the observed yield spread when assigning a credit 

rating.  

Meanwhile, Diamond (1991) introduces liquidity risk as the risk of a borrower 

being forced into inefficient liquidation when refinancing is not available.11

According to Diamond’s argument, the firm holding the larger proportion of 

short-term debt in its debt structure is more vulnerable to the unforeseen negative event.  

Accordingly, bond investors should require more compensation for investing in bonds 

 In Diamond's 

(1991) model, choosing short-term debt over long-term debt has both benefit and cost. 

Firms using short-term debt could successfully lower debt’s interest rate if positive 

information is revealed at refinancing.  However, these firms are also exposed to 

refinancing risk if the revealed information is negative; lenders may refuse to refinance 

and force a firm into premature liquidation. Sharpe (1991) and Titman (1992) also 

suggest that unfavorable news about a borrower may arrive at the date of refinancing, 

causing investors not to extend credit or to raise the default premium on new debt. 

Barclay and Smith (1995) and Mark and Mauer (1996) find evidence in support of the 

Diamond (1991) model.   

                                                 
11 In this paper, liquidity risk indicates the risk that Diamond (1991) introduces, and liquidity premium 
indicates the premium that is caused by bond’s degree of liquidity costs in the market. 
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from a company with higher proportion of short-term debt in its debt structure.  

Furthermore, he also argues that a firm with unestablished credit history (an unrated 

company) relies more on short-term debt because it has limitation to access the public 

market.  A firm with speculative grade is more likely to use long-term debt because it is 

not able to afford liquidity risk.  A firm with investment grade that has relatively less 

growth opportunity is more likely to use short-term debt because it could lower its cost of 

debt. Empirical evidence of this nonlinear relation between bond ratings and a company’s 

proportional short-term debt is often found in the studies mentioned above.  On the other 

hand, Eom et al. (2004) studies the performance structural models.  In their study, they 

found that, generally, models tend to severely overstate credit risk of firms with high 

leverage or volatility, but suffer from a spread under-prediction problem with safer bonds.  

For this reason, we argue that, possibly, portion of unexplained spread from the structural 

form is liquidity risk. 

Therefore, this study attempts to investigate whether or not this liquidity risk is 

priced in the bond market with controlling generally accepted yield spread factors such as 

credit rating, maturity, amount outstanding, tax effect, equity volatility, and liquidity 

premium.  In other words, an investor in the bond market realizes this liquidity risk, and 

requires premium for taking this risk.  Our study finds that, for investment grade bonds, 

the issuers’ fraction of short-term debt has a positive effect on the cost of using their 

bonds.  However, for speculative grade bonds, we cannot conclude on any relationship 

between liquidity risk and corporate bond yields.  That could be partially due to the 

limited data source for speculative grade bonds. 
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This chapter is organized as follows:  brief review of previous literatures in 

Section 1,   variables and data are presented in Section 2, statistical methodology and our 

results are presented in Section 3, and Section 4 summarizes and concludes this chapter. 
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3.1 Literature Review 

Theoretical models of credit spreads can be categorized as either structural or 

reduced-form models of default.  Reduced form models do not explicitly consider a link 

between default and firm value.  In the reduced form model, default time cannot be 

predicted through the value of a firm, rather it is the first jump governed by an exogenous 

jump process. For this reason, the model is better for fitting observed credit spreads rather 

than offering insight on the fundamental determinants of the credit spread. 

On the other hand, the structural model explicitly relates default to firm value 

through the contingent-claim approach, which is introduced by Merton (1974).  Since the 

introduction, many studies (e.g. Geske (1977), Smith and Warner (1979), Longstaff and 

Schwartz (1995), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001) etc.) 

have extended or upgraded the structural models.  Under the structural form, changes in 

credit spreads could be predicted by changes in spot rate, leverage, and volatility of firm 

value.  Additionally, changes in slope of the yield curve is often considered because 

Litterman and Scheinkman (1991) find that the two most important factors driving the 

term structure of interest rates are level and slope of the term structure.  Therefore, 

rationally, if changes in slope of the Treasury curve make the expected future short rate 

change, it implies that changes in slope of the Treasury curve affect changes in credit 

spread.  Changes in macroeconomic condition is also often considered, as Fama and 

French (1989) find that credit spreads widen when economic conditions are weak. 

The empirical evidence of the negative relationship between corporate yield 

spread and treasury yield is presented by Duffee (1998) even though this relationship is 

weaker in the case of non-callable bond than callable bond.  Furthermore, Collin-
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Dufresne et al. (2001) generally confirm that factors mentioned above are significant in 

determining changes in corporate yield spread except for the slope of Treasury curve.  

However, their notable finding is that the residuals from their regression are highly cross-

correlated, and, from principal components analysis, they are mostly driven by a single 

common factor.  Although they cannot provide a sufficient explanation to the single 

common factor, they do suggest that monthly spread changes are principally driven by 

local supply/ demand shocks that are independent of both credit risk factors. 

Additionally, with the use of information in credit default swaps, Longstaff et al. 

(2005) find that the majority of the corporate spread is caused by default risk.  They also 

found a significant non-default component that is time varying and strongly related to 

measures of bond-specific illiquidity.  This liquidity premium is also found in the study 

of Chen et al. (2007) with a relatively large bond dataset.  Likewise, with the use of 

structural models, Hung and Hung (2003) find that credit risk is only a small portion of 

observed corporate yield spreads for investment grade bonds.  Although credit risk 

accounts for significantly higher portion of the observed yield for speculated grade bonds, 

there is still a significant portion that cannot be explained by credit risk. 

Thus, researchers have been looking for factors that the structural models could 

not capture.  One of the popular factors is bond-specific liquidity, as mentioned above.  

The other factors could be firm-specific information and tax effect.  Kwan (1996) 

examines the correlation between the returns on individual stocks and the yield changes 

of individual bonds issued by the same firm.  In this study, he empirically finds a 

negative and contemporaneous correlation.  From this finding, he concludes that 

individual stocks and bonds are driven by the same firm-specific information.  This 
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negative correlation is also confirmed by the study of Campbell and Taskler (2003).  

However, a notable finding in their study is that idiosyncratic firm-level volatility can 

explain as much cross-sectional variation in yields as can credit ratings while controlling 

for liquidity premium and factors from the structural form. 

On the other hand, Elton et al. (2001) introduce tax premium and risk premium in 

order to explain the portion of the corporate yield spread that default premium alone 

cannot capture.  They argue that tax effects occur because the investor in corporate bonds 

is subject to state and local taxes on interest payments, whereas government bonds are 

not subject to these taxes.  Consequently, investors should require more compensation for 

investing in corporate bonds because they have to pay extra expenses (i.e. tax expenses).  

They also argue that there could be risk premiums for systematic risk, if changes in the 

required compensation for risk affect both corporate bond and stock market. They found 

empirical evidence that a significant portion of the unexplained yield spread is caused by 

tax and risk premium. 

As mentioned in the introduction, this paper attempts to make a linkage between 

Diamond’s liquidity risk and the corporate yield spread.  According to Diamond’s 

argument, a firm with a larger proportion of short-term debt to its debt structure is more 

vulnerable to the unforeseen negative event.  We believe that investors should require 

additional compensation for this liquidity risk. Therefore, this paper examines the effects 

of proportion of short-term debts to its debt structure on the corporate yield spread with 

controlling factors previously considered.  To the best of our knowledge, no one has 

investigated this relationship directly.  Next section presents data and variables used in 

this study. 
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3.2 Data and Variables12

3.2.1 Data 

 

Data for monthly yield spreads and bond characteristics is collected from 

Datastream.  If Datastream has the available Standard and Poor’s rating for a bond, this 

is where we collect the rating information, otherwise, the rating information is from the 

Fixed Income Securities Database.  Furthermore, the bonds that do not have any credit 

rating information from either Datastream or Fixed Income Securities Database are 

excluded.  For all firm-level data, Compustat Annual Industrial database is used.  In order 

to minimize any survivorship bias in the yield spread, data for both active and inactive 

firms is collected.  The firm-level data is collected in the year prior to the yield spread 

measurement.  Finally, in order to measure liquidity costs for bonds, we use the modified 

LOT model proposed by Chen et al. (2007).  The most popular measure of liquidity costs 

is the bid-ask quotes for an individual security, but in bond data, these bid-ask quotes are 

very limited.  Therefore, in this study, we use an alternative method, the LOT model.  

Appendix C shows how we measure the liquidity costs from the LOT model.  In addition, 

statistically insignificant estimation is excluded.  The time frame of our data set is from 

2003 to 2010, because of the availability of bond data beginning from 2003. 

3.2.2 Variables 

 Since this study examines the effect of proportional short-term debt on corporate 

yield spread, our main variable is proportional short-term debt (Short-Term Debt).  In this 

study, short-term debt is the amount of debt that will mature within a short-period (one or 

two years) of time.  As stated above, if a firm has a higher proportion of short-term debt, 

                                                 
12 Procedure of collecting data the choice of yield spread determinants in this study closely follow one in 
Chen et al. (2007), Elton et al. (2001) and Campbell and Taksler (2003). 
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it means that the firm is more vulnerable to unforeseen, negative, future shock.  For this 

reason, the expected relation between proportion of short-term debt and corporate yield is 

positive. 

 Additionally, in order to control the tax effect in the study of Elton et al. (2001), 

coupon rate (Coupon) is used.  According to Elton et al. (2001), an investor of a bond that 

pays higher coupon is subject to a larger tax expense.  We also include equity volatility to 

control a firm’s systematic and idiosyncratic risk.  The equity volatility ( is calculated 

using 252 daily returns for the year prior to the corporate yield measure. Moreover, size 

of a firm (Size) based on 1980 dollar value and market to book value of a firm (Market to 

book) are included in our regression. We take the logarithm of total assets to obtain a 

firm’s size.  Market to book ratio is the market value of a firm divided by book value.  

Market value of the firm is calculated by total assets minus total equity plus market value 

of common equity plus preferred stock liquidating value.  The definition of market value 

of equity is stock price times the number of shares outstanding.  We also include four 

accounting variables (Pre-Tax, Income to sale, Book-leverage, and Leverage).  The 

variable, Pre-Tax, indicates pretax interest coverage ratio, and Income to sale is operating 

income divided by net sales.  We have two different leverage measures: book-leverage 

and leverage.  Book-leverage is total debt divided by book value of total assets, and 

leverage is total debt divided by market value of a firm.  It is generally perceived that a 

high level of the first two variables means healthy firms, and that leads us to conclude 

that these variables are negatively related to corporate yield spread.  High levels of the 

second two variables indicate that firms are highly levered, so an investor requires more 

compensation for bonds issued by the firms. 
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 For pretax interest coverage ratio variable, four groups are used following the 

procedure outline in Blum et al. (1998) in order to capture the possibility that particularly 

low pretax interest coverage convey more information about the risk of an issuer than 

high interest coverage.  For this reason, dummy variables are created for each group to 

indicate whether pretax interest coverage is less than 5, between 5 and 10, between 10 

and 20, or greater than 20.  In addition, bond-specific information (Credit rating, 

Maturity, and Amount) is also included.  The variable, credit rating, is numbered from 

one (AAA rated bond) to 22 (D rated bond).  Maturity is life remaining to a bond’s 

maturity date, which is expressed in years.  Amount is a logarithm of amount of bonds 

outstanding.   Furthermore, we consider three macroeconomic variables associated with 

yield spread.  The variables are the one-year Treasury rate (T-note), the difference 

between the 10-year and 2-year Treasury rates (Term Slope)  for the slope of the yield 

curve, and the difference between the 30 days Eurodollar and 3-month Treasury bill rate 

(EuroDollar) that is the control for other potential liquidity effects on corporate bonds 

relative to Treasury bonds.   

Finally, we directly obtain corporate yield spread (Yield spread) from Datastream.  

Datastream calculates the difference between the bond yield and the yield of a 

comparable maturity treasury bond.  Table 9 shows the summary statistics of key 

variables (i.e. Yield spread, Liquidity, Short-term debt, Leverage, and Credit rating).  

Yield spread, liquidity, short-term debt, and leverage varies widely as evidence by the 

quartile distribution, and their standard deviations.  However, it is noticeable that the 

distribution of credit rating is clustered in investment grade region.  That is simply 

because majority of our bonds in the sample are investment grade bond.  Total number of 
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bond is 576, and 520 out of these bonds is investment grade bond, and the remaining is 

speculative grade bond.  The number of firms in our sample is 140. 

Table 10 shows key variables across each key variable.  Panel A in Table 10 

shows that yield spread and liquidity is positively related to credit rating, which is 

expected.  Intuitively, low rated bonds have higher yield and liquidity costs.  It also 

displays that fraction of debts that will mature in one or two years is negatively related to 

credit ratings, which is consistent with previous literature in debt maturity.  Diamond 

(1991) argues that speculative grade companies more likely use long-term debt because 

they cannot afford liquidity risk.  Later, Barclay and Smith (1995), Mark and Mauer 

(1996), and Johnson acquire this relationship.  Additionally, from panel B in Table 10, 

leverage is shown to be negatively related to the fraction of debts that matures in one or 

two years.  This is also consistent with previous literature in debt maturity.  According to 

Diamond (1991), speculative grade companies or companies that have a big growth 

opportunity are likely to have a high leverage ratio.  Moreover, those companies cannot 

afford liquidity risk, so they tend to avoid using short-term debts. 

However, there is no clear linear relation between the fraction of debts maturing 

in one or two year and liquidity cost or leverage from panel C and D in Table 10.  

Nevertheless, panel E exhibits negative relation between the yield spread and the fraction 

of debts.  This could be due to the negative relation between leverage and the fraction of 

debt.  
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Similarly, those observed in Table 10 can also be found in Table 11.  Liquidity 

cost, leverage, and credit rating is significantly positively correlated to corporate bond 

yield spreads.  On the other hand, the fraction of debts maturing in one or two year is 

significantly negatively correlated to the yield spread.  However, the correlation between 

the fraction of debt and yield spread or liquidity cost is not clear. 

Table 10 and 11 show that our sample data set to be valid, but they cannot answer 

our central question of whether bond investors require compensation for the liquidity risk.  

To answer this question, it is crucial to control the level of leverage, credit rating, and 

liquidity.  The next section seeks to answer our questions with regression. 



 
  

 

68 

Ta
bl

e 
10

: K
ey

 V
ar

ia
bl

es
 A

cr
os

s E
ac

h 
K

ey
 V

ar
ia

bl
e 

Te
rti

le
s 

Th
is

 ta
bl

e 
sh

ow
s 

ke
y 

va
ria

bl
es

 a
cr

os
s 

ea
ch

 k
ey

 v
ar

ia
bl

e 
te

rti
le

s. 
 T

he
 y

ie
ld

 s
pr

ea
d 

is
 th

e 
di

ff
er

en
ce

 b
et

w
ee

n 
th

e 
bo

nd
 y

ie
ld

 a
nd

 th
e 

yi
el

d 
of

 a
 c

om
pa

ra
bl

e 
m

at
ur

ity
 t

re
as

ur
y 

bo
nd

 a
s 

de
te

rm
in

ed
 f

ro
m

 D
at

as
tre

am
. 

  
Sh

or
t-t

er
m

 d
eb

t1
 o

r 
sh

or
t-t

er
m

 d
eb

t 
2 

in
di

ca
te

s 
fr

ac
tio

n 
of

 to
ta

l d
eb

t t
ha

t m
at

ur
e 

w
ith

in
 o

ne
 y

ea
r o

r t
w

o 
ye

ar
 re

sp
ec

tiv
el

y.
  B

oo
k-

le
ve

ra
ge

 o
r l

ev
er

ag
e 

in
di

ca
te

s 
to

ta
l d

eb
t d

iv
id

ed
 b

y 
bo

ok
 v

al
ue

 o
f 

to
ta

l a
ss

et
s 

or
 m

ar
ke

t v
al

ue
 o

f 
a 

fir
m

.  
M

ar
ke

t v
al

ue
 o

f 
th

e 
fir

m
 is

 c
al

cu
la

te
d 

by
 to

ta
l a

ss
et

s 
m

in
us

 to
ta

l e
qu

ity
 p

lu
s 

m
ar

ke
t v

al
ue

 o
f c

om
m

on
 e

qu
ity

 p
lu

s 
pr

ef
er

re
d 

st
oc

k 
liq

ui
da

tin
g 

va
lu

e.
  T

he
 d

ef
in

iti
on

 o
f m

ar
ke

t v
al

ue
 o

f e
qu

ity
 is

 s
to

ck
 p

ric
e 

tim
es

 
th

e 
nu

m
be

r 
of

 s
ha

re
s 

ou
ts

ta
nd

in
g.

 C
re

di
t r

at
in

g 
is

 n
um

be
re

d 
fr

om
 o

ne
 (

A
A

A
 r

at
ed

 b
on

d)
 to

 2
2 

(D
 r

at
ed

 b
on

d)
.  

bp
 s

ta
nd

s 
fo

r 
ba

si
s 

po
in

ts
. 

A
. V

ar
ib

le
s a

cr
os

s r
at

in
g 

te
rti

le
s 

 
 

 
 

 
C

re
di

t r
at

in
g 

te
rti

le
 

Y
ie

ld
 

sp
re

ad
(b

p)
 

Li
qu

id
ity

(%
) 

Sh
or

t-t
er

m
 

de
bt

1(
%

) 
Sh

or
t-t

er
m

 
de

bt
2(

%
) 

Le
ve

ra
ge

(%
) 

ra
tin

g 
1 

18
1.

58
35

 
0.

96
80

38
7 

21
.3

73
46

 
29

.0
46

42
 

15
.4

33
61

 
5.

32
05

47
 

2 
22

8.
67

89
 

0.
87

23
96

8 
13

.0
13

74
 

20
.8

01
12

 
20

.1
18

33
 

8.
36

28
25

 
3 

53
5.

90
21

 
2.

13
27

03
 

12
.4

88
05

 
19

.6
62

07
 

28
.3

82
27

 
11

.6
6 

B
. V

ar
ia

bl
es

 a
cr

os
s l

ev
er

ag
e 

te
rti

le
s 

 
 

 
 

 
Le

ve
ra

ge
 te

rti
le

 
Y

ie
ld

 
sp

re
ad

(b
p)

 
Li

qu
id

ity
(%

) 
Sh

or
t-t

er
m

 
de

bt
1(

%
) 

Sh
or

t-t
er

m
 

de
bt

2(
%

) 
Le

ve
ra

ge
(%

) 
ra

tin
g 

1 
16

5.
29

23
 

0.
89

17
 

22
.8

62
7 

31
.4

86
1 

8.
86

07
 

6.
71

17
 

2 
21

6.
22

37
 

0.
94

17
 

14
.0

10
1 

21
.7

40
7 

16
.6

51
5 

7.
61

99
 

3 
49

8.
63

82
 

1.
91

91
 

13
.0

18
8 

19
.4

49
2 

35
.0

47
8 

9.
34

43
 

C
. V

ar
ia

bl
es

 a
cr

os
s s

ho
rt-

te
rm

 d
eb

t t
er

til
es

 
 

 
 

 
Sh

or
t-t

er
m

 d
eb

t1
 

te
rti

le
 

Y
ie

ld
 

sp
re

ad
(b

p)
 

Li
qu

id
ity

(%
) 

Sh
or

t-t
er

m
 

de
bt

1(
%

) 
Sh

or
t-t

er
m

 
de

bt
2(

%
) 

Le
ve

ra
ge

(%
) 

ra
tin

g 
1 

27
2.

97
40

 
1.

24
65

 
4.

01
36

 
10

.2
91

0 
21

.7
34

4 
8.

39
61

 
2 

36
9.

60
97

 
1.

28
65

 
12

.5
27

5 
22

.2
56

0 
20

.7
91

4 
8.

15
63

 
3 

24
7.

64
33

 
1.

23
55

 
33

.2
70

8 
41

.5
79

5 
18

.4
79

2 
7.

21
46

 
  

 
 

 
 

 



 
  

 

69 

 Ta
bl

e 
10

 (c
on

tin
ue

d)
 

D
. V

ar
ia

bl
es

 a
cr

os
s l

iq
ui

di
ty

 te
rti

le
s 

Li
qu

id
ity

 te
rti

le
 

Y
ie

ld
 

sp
re

ad
(b

p)
 

Li
qu

id
ity

(%
) 

Sh
or

t-t
er

m
 

de
bt

1(
%

) 
Sh

or
t-t

er
m

 
de

bt
2(

%
) 

Le
ve

ra
ge

(%
) 

ra
tin

g 
1 

20
1.

74
84

 
0.

46
01

 
17

.2
47

3 
25

.4
80

8 
18

.2
23

5 
7.

45
47

 
2 

21
0.

18
74

 
0.

85
91

 
16

.1
14

1 
24

.1
79

8 
18

.6
63

5 
7.

90
36

 
3 

46
8.

37
06

 
2.

45
96

 
16

.4
53

9 
23

.1
45

5 
23

.5
70

0 
8.

61
47

 
E.

 V
ar

ia
bl

es
 a

cr
os

s 
yi

el
d 

sp
re

ad
 

te
rti

le
s 

 
 

 
 

 
Y

ie
ld

 sp
re

ad
 te

rti
le

 
Y

ie
ld

 
sp

re
ad

(b
p)

 
Li

qu
id

ity
(%

) 
Sh

or
t-t

er
m

 
de

bt
1(

%
) 

Sh
or

t-t
er

m
 

de
bt

2(
%

) 
Le

ve
ra

ge
(%

) 
ra

tin
g 

1 
11

3.
21

43
 

0.
73

74
 

20
.3

32
2 

28
.6

83
9 

13
.9

71
1 

6.
41

18
 

2 
19

8.
72

13
 

0.
96

74
 

14
.4

68
6 

21
.9

82
3 

18
.9

59
2 

7.
76

31
 

3 
56

8.
44

50
 

2.
07

37
 

14
.5

54
2 

21
.4

34
2 

29
.0

60
7 

9.
79

89
 

 
   



70 

  

Table 11: Pearson Correlation among Key Variables 

This table shows Pearson correlation among key variables.  The yield spread is the 
difference between the bond yield and the yield of a comparable maturity treasury bond 
as determined from Datastream.   Short-term debt1 or short-term debt 2 indicates fraction 
of total debt that mature within one year or two year respectively.  Book-leverage or 
leverage indicates total debt divided by book value of total assets or market value of a 
firm.  Market value of the firm is calculated by total assets minus total equity plus market 
value of common equity plus preferred stock liquidating value.  The definition of market 
value of equity is stock price times the number of shares outstanding. Credit rating is 
numbered from one (AAA rated bond) to 22 (D rated bond).  bp stands for basis points. 

  
Yield 
spread(bp) Liquidity(%) 

Short-term 
debt1(%) 

Short-term 
debt2(%) Leverage(%) 

Liquidity(%) 0.4262* 
    Short-term 

debt1(%) -0.0378* 0.0047 
   Short-term 

debt2(%) -0.0234 -0.0402* 0.9159* 
  Leverage(%) 0.2423* 0.3367* -0.1614* -0.2517* 

 Credit rating 0.4144* 0.3786* -0.1511* -0.1908* 0.4203* 
* indicates correlation is significantly different from zero at the 0.05 level or higher 
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3.3 Regression Models and Results 

 First, we generate results from the simple regression models as below: 

𝑌𝑖𝑒𝑙𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡    =  𝛽0 + 𝛽1𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖𝑡 + 𝛽2𝐿𝑖𝑞𝑢𝑑𝑖𝑡𝑦𝑖𝑡 + 𝛽3𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 +

𝛽4𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖𝑡 + 𝛽4𝐶𝑜𝑢𝑝𝑜𝑛𝑖𝑡 + 𝛽5𝑇-𝑛𝑜𝑡𝑒𝑖𝑡+𝛽6𝑇𝑒𝑟𝑚 𝑠𝑙𝑜𝑝𝑒𝑖𝑡 + 𝛽7𝐸𝑢𝑟𝑜𝑑𝑜𝑙𝑙𝑎𝑟𝑖𝑡 +

𝛽8𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝛽9𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑜 𝑆𝑎𝑙𝑒𝑖𝑡 + 𝛽10𝑆𝑖𝑧𝑒 + 𝛽11𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝐵𝑜𝑜𝑘𝑖𝑡 +

𝛽12𝐴𝑚𝑜𝑢𝑛𝑡 + 𝛽13𝑃𝑟𝑒-𝑇𝑎𝑥𝑖𝑡 + 𝛽14𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 + 𝜖𝑡                                                     (3.1)  

where the subscript “it” refers to bond i and year t and Short-term debt refers to the 

fraction of debts maturing in one or two year.   Liquidity indicates liquidity costs 

measured by the LOT model.  Credit rating is a bond’s rating that is numbered from one 

(AAA rated bond) to 22 (D rated bond).  Maturity is life remaining to a bond’s maturity 

date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year 

Treasury note rate respectively.  Term slope and Eurodollar are the difference between 

10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the 

3-month T-bill rate respectively.  Volatility is the equity volatility for each issuer, and 

Income to sale is operating income divided by sales.  Size is logarithm of each issuer’s 

total asset (based on 1980 dollar value).  Market to book is Market value divided by book 

value of each issuer.  Amount is logarithm of amount of bonds outstanding.  Pre-Tax 

indicates pre-tax interest coverage ratio that is group into one of four categories 

according to Blume et al. (1998).  Leverage is either book value of leverage (total 

debt/total asset) or market value of leverage (total debt/ market value of each issuer).  

Finally, Yield spread is the difference between the bond yield and the yield of a 

comparable maturity treasury bond as determined from Datastream.
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Table 12: Yield Spread and Fraction of Debt Maturing in One or Two Year 
 
Yield spread is the difference between the bond yield and the yield of a comparable 
maturity treasury bond as determined from Datastream.  Short-term debt refers to the 
fraction of debts maturing in one or two year.   Liquidity indicates liquidity costs 
measured by the LOT model.  Credit rating is a bond’s rating that is numbered from one 
(AAA rated bond) to 22 (D rated bond).  Maturity is life remaining to a bond’s maturity 
date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year 
Treasury note rate respectively.  Term slope and Eurodollar are the difference between 
10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the 
3-month T-bill rate respectively.   is the equity volatility for each issuer, and Income to 
sale is operating income divided by sales.  Size is logarithm of each issuer’s total asset 
(based on 1980 dollar value).  Market to book is Market value divided by book value of 
each issuer.  Market value of the firm is calculated by total assets minus total equity plus 
market value of common equity plus preferred stock liquidating value.  Amount is 
logarithm of amount of bonds outstanding.  Pre-Tax indicates pre-tax interest coverage 
ratio that is group into one of four categories according to Blume et al. (1998).  Leverage 
is market value of leverage (total debt/ market value of each issuer), and Book leverage is 
total debt divided by total asset.  T-statistics are presented in parentheses. 
Variable                 
Short-term debt1 0.8473 * 

  
1.7068 *** 

 
 

(1.92) 
   

(3.59) 
   Short-term debt2 

  
0.4206 

   
0.7836 ** 

   
(1.35) 

   
(2.36) 

 Liquidity 22.948 *** 9.8608 *** 23.352 *** 9.0995 *** 

 
(10.05) 

 
(4.32) 

 
(9.98) 

 
(3.86) 

 Credit rating 40.4816 *** 27.700 *** 42.5819 *** 30.525 *** 

 
(13.95) 

 
(8.35) 

 
(14.19) 

 
(8.87) 

 Maturity -7.4237 *** -9.5086 *** -4.5404 *** -6.416 *** 

 
(-4.45) 

 
(-6.19) 

 
(-2.69) 

 
(-4.12) 

 Coupon 614.34 *** 637.7181 *** 618.09 *** 641.07 *** 

 
(15.36) 

 
(15.91) 

 
(15.3) 

 
(16.05) 

 T-note -97.466 *** -78.6782 *** -92.9458 *** -74.5560 *** 

 
(-8.44) 

 
(-7.68) 

 
(-7.9) 

 
(-7.11) 

 Term slope -119.26 *** -91.321 *** -101.49 *** -74.943 *** 

 
(-6.21) 

 
(-5.37) 

 
(-5.19) 

 
(-4.31) 

 Eurodollar 61.249 *** 60.797 *** 64.148 *** 63.9741 *** 

 
(10.01) 

 
(11.33) 

 
(10.31) 

 
(11.65) 

  6.8119 
 

14.9150 *** 8.8589 
 

17.58107 *** 

 
(1.13) 

 
(2.80) 

 
(1.44) 

 
(3.22) 

 Income to Sales -53.957 * -192.28 *** -23.7712 
 

-210.62 *** 

 
(-1.72) 

 
(-3.06) 

 
(-0.75) 

 
(-3.26) 
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Table 12 (continued) 
Size 7.9817 

 
-18.443 

 
14.3643 

 
-14.6874 

 
 

(0.51) 
 

(-1.29) 
 

(0.90) 
 

(-1.01) 
 Market to Book 56.998 *** 32.892 *** -1.8076 

 
-19.585 * 

 
(3.94) 

 
(2.58) 

 
(-0.13) 

 
(-1.66) 

 Amount -71.907 *** -62.972 
 

-77.5085 *** -68.064 *** 

 
(-2.80) 

 
(-2.46) 

 
(-2.99) 

 
(-2.67) 

 Pre-Tax D1 -330.576 *** -96.111 
 

-294.246 *** -86.4237 
 

 
(-4.65) 

 
(-1.11) 

 
(-4.06) 

 
(-0.97) 

 Pre-Tax D2 -314.137 *** -89.622 
 

-311.968 *** -109.557 
 

 
(-4.40) 

 
(-1.03) 

 
(-4.29) 

 
(-1.22) 

 Pre-Tax D3 -278.997 *** -58.384 
 

-299.690 *** -96.957 
 

 
(-3.90) 

 
(-0.66) 

 
(-4.12) 

 
(-1.07) 

 Pre-Tax D4 -257.411 *** -30.7576 
 

-297.310 *** -85.675 
 

 
(-3.50) 

 
(-0.34) 

 
(-3.96) 

 
(-0.92) 

 Leverage 9.5080 *** 8.1827 *** 
   

 
(10.00) 

 
(9.75) 

     Book-leverage 
    

1.6442 * 0.75098 
           (1.94)   (1.02)   

N 2953   2850   2953   2850   
R-square 0.1596   0.1180   0.1530   0.1143   
An *, **, or *** signifies significance at the 0.1, 0.5 or 0.001 level, respectively 
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 Table 12 shows statistical result from this model.  When the regression includes 

market value of leverage, only fraction of debts maturing in one year is significantly 

positively related to corporate yield spreads at 10% level.  However, when the book-

value of leverage is included, both fraction of debt maturing in one and two year is 

significantly related to the yield spreads at 1% and 5% level respectively.  On the other 

hand, compared with coefficients on the other key variables (leverage, credit rating, 

liquidity costs), the magnitude of the estimated coefficient on the short-term debt is 

relatively small.  According to Table 12, if a firm increases fraction of debt maturing in 

one year by 10 %, its corporate yield spread is increased by about 85 basis points. 

 The other coefficients on the other variables have, generally, expected signs 

except for the coefficient of maturity.  Campbell and Taksler (2003) note that, for 

investment grade bonds, longer maturities are often found to be associated with increased 

yield spreads, from which we expected positive sign.  However, Helwege and Turner 

(1999) argue that, for speculative grade bonds, better quality firms are able to issue bonds 

with longer maturities, from which we can expect negative sign.  For these reasons, we 

may expect that factors can have different effects on the yield spread from two different 

groups (i.e. speculative and investment grade bonds).  Therefore, we perform two 

regression separately based on two grade group, even though our sample for speculative 

bonds is very limited. 

Table 13 shows the statistical results based on the bond grade.  Indeed, 

coefficients on maturity have the expected signs.  For investment grade bonds, the 

fraction of debt maturing in one or two year is significantly positively related to the yield 

spread.  Like the magnitude of estimated coefficient on the fraction of debts from Table 
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12, the estimated one on the fraction of debts from Table 13 is relatively small, compared 

with those on leverage, liquidity, and credit rating.  On the other hand, for speculative 

grade bonds, the fraction of debt is significantly negatively related to the yield spread, 

which is unexpected.  Since speculative grade companies have relative higher degree of 

asymmetric information than investment grade companies.  If speculative grade firms 

rely on short-term debt, they need to refinance more often.  Whenever they refinance, 

they need to reveal the prospects of their projects.  This activity tends to reduce the 

problem of asymmetric information.  Therefore, choosing short-term debt can be a 

tradeoff between liquidity risk and asymmetric information.  From this interpretation, for 

speculative grade bonds, it could have the negative relationship.  However, later in this 

study, we also generate two-stage least square estimation, in which the fraction of debt is 

positively related to the yield spread for the speculative bonds.  In addition, we have so 

limited source of speculative grade bond data.  Therefore, we save speculative grade 

bond case for future research. 

 So far, at least, for investment grade bonds, evidence from our regression shows 

the positive relation between the fraction of debt and the yield spread.  However, it is 

possible that, if issuer’s bond has high yield spread or bid-ask spread, then the issuer 

might choose short-term debt to reduce cost of using debts.  For this reason, there might 

be endogeneity problems.  In order to control this problem, these three equations are 

considered: 

𝑌𝑖𝑒𝑙𝑑 𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑡    =  𝛽0 + 𝛽1𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖𝑡 + 𝛽2𝐿𝑖𝑞𝑢𝑑𝑖𝑡𝑦𝑖𝑡 + 𝛽3𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 +
𝛽4𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖𝑡 + 𝛽4𝐶𝑜𝑢𝑝𝑜𝑛𝑖𝑡 + 𝛽5𝑇-𝑛𝑜𝑡𝑒𝑖𝑡+𝛽6𝑇𝑒𝑟𝑚 𝑠𝑙𝑜𝑝𝑒𝑖𝑡 + 𝛽7𝐸𝑢𝑟𝑜𝑑𝑜𝑙𝑙𝑎𝑟𝑖𝑡 +
𝛽8𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝛽9𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑜 𝑆𝑎𝑙𝑒𝑖𝑡 + 𝛽10𝑆𝑖𝑧𝑒𝑖𝑡 + 𝛽11𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝐵𝑜𝑜𝑘𝑖𝑡 +
𝛽12𝐴𝑚𝑜𝑢𝑛𝑡 + 𝛽13𝑃𝑟𝑒-𝑇𝑎𝑥𝑖𝑡 + 𝛽14𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 + 𝜖𝑡                                                     (3.2) 
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Table 13:Yield Spread and Fraction of Debt Maturity Based on Bond Grade 

Yield spread is the difference between the bond yield and the yield of a comparable 
maturity treasury bond as determined from Datastream.  Short-term debt refers to the 
fraction of debts maturing in one or two year.   Liquidity indicates liquidity costs 
measured by the LOT model.  Credit rating is a bond’s rating that is numbered from one 
(AAA rated bond) to 22 (D rated bond).  Maturity is life remaining to a bond’s maturity 
date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year 
Treasury note rate respectively.  Term slope and Eurodollar are the difference between 
10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the 
3-month T-bill rate respectively.   is the equity volatility for each issuer, and Income to 
sale is operating income divided by sales.  Size is logarithm of each issuer’s total asset 
(based on 1980 dollar value).  Market to book is Market value divided by book value of 
each issuer.  Market value of the firm is calculated by total assets minus total equity plus 
market value of common equity plus preferred stock liquidating value.  Amount is 
logarithm of amount of bonds outstanding.  Pre-Tax indicates pre-tax interest coverage 
ratio that is group into one of four categories according to Blume et al. (1998).  Leverage 
is market value of leverage (total debt/ market value of each issuer), and Book leverage is 
total debt divided by total asset.  T-statistics are presented in parentheses. 
Variable Investment Grade Bonds   Speculative Grade Bonds   
Short-
term 
debt1 0.4645 *** 

  
-8.2338 *** 

  
 

(3.11) 
   

(-2.61) 
   Short-

term 
debt2 

  
0.3338 *** 

  
-4.6100 * 

   
(2.60) 

   
(-1.64) 

 Liquidity 16.5454 *** 15.4964 *** 9.6978 
 

-6.5086 
 

 
(7.09) 

 
(6.72) 

 
(1.55) 

 
(-1.06) 

 Credit 
rating 10.9805 *** 10.2857 *** 53.8570 *** 46.2926 ** 

 
(9.97) 

 
(9.21) 

 
(3.01) 

 
(2.45) 

 Maturity 0.1078 
 

0.1093 
 

-29.8936 *** -32.4168 *** 

 
(0.67) 

 
(0.66) 

 
(-3.25) 

 
(-3.29) 

 Coupon 5.7143 ** 4.5300 
 

1343.648 *** 1526.4 *** 

 
(1.96) 

 
(1.51) 

 
(11.55) 

 
(13.05) 

 T-note -82.9826 *** -76.306 *** -302.6150 *** -273.35 *** 

 
(-19.02) 

 
(-17.62) 

 
(-4.12) 

 
(-4.13) 

 Term 
slope -103.887 *** -92.0405 *** -401.0706 *** -342.6950 *** 

 
(-14.08) 

 
(-12.54) 

 
(-3.29) 

 
(-3.21) 

 Eurodollar 59.8164 *** 61.1238 *** 175.3504 *** 191.249 *** 

 
(24.08) 

 
(24.99) 

 
(4.15) 

 
(4.61) 
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Table 13 (continued) 
 15.9468 *** 18.0190 *** 13.6155 

 
-2.7878 

 
 

(7.08) 
 

(7.99) 
 

(0.32) 
 

(-0.07) 
 Income to 

Sales 76.5599 *** -130.121 *** 364.1044 
 

43.0817 
 

 
(-5.25) 

 
(-5.81) 

 
(1.48) 

 
(0.09) 

 Size -2.0062 
 

-4.6255 ** 178.3527 ** 318.20 *** 

 
(-0.90) 

 
(-2.03) 

 
(2.06) 

 
(3.37) 

 Market to 
Book -10.1889 ** -14.605 *** 18.4884 

 
152.75 

 
 

(-2.41) 
 

(-3.35) 
 

(0.14) 
 

(1.20) 
 Amount -6.2847 *** -5.3070 *** -209.4144 ** -152.04 * 

 
(-3.52) 

 
   (-2.89) 

 
(-2.44) 

 
(-1.75) 

 Leverage 3.9481 *** 3.3593 *** 18.6111 *** 15.9517 *** 

 
(12.43) 

 
(10.26) 

 
(4.24) 

 
(3.99) 

 Pre-Tax 
D1 658.451 *** 396.791 *** -29.5354 

 
115.6311 

 
 

(-11.06) 
 

(10.01) 
 

(-0.13) 
 

(0.49) 
 Pre-Tax 

D2 -647.955 *** 409.312 *** -16.6428 
 

115.0091 
 

 
(-10.91) 

 
(10.48) 

 
(-0.07) 

 
(0.46) 

 Pre-Tax 
D3 -641.612 *** 414.779 *** 203.1597 

 
300.8723 

 
 

(-10.88) 
 

(10.67) 
 

(0.68) 
 

(1.07) 
 Pre-Tax 

D4 -633.581 *** 430.343 *** 264.1271 
 

325.1196 
   (-10.83)   (10.88)   (0.84)   (1.11)   

N 2535 
 

2488 
 

418 
 

362 
 R-square 0.5904   0.5705   0.4060   0.5175   

An *, **, or *** signifies significance at the 0.1, 0.5 or 0.001 level, respectively 
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𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖𝑡 =  𝛽0 + 𝛽1𝑌𝑖𝑒𝑙𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡 + 𝛽2𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 + 𝛽3𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 +
𝛽4𝑆𝑖𝑧𝑒𝑖𝑡 + 𝛽5𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝑏𝑜𝑜𝑘𝑖𝑡 + 𝛽6𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 + 𝛽7𝐴𝑠𝑠𝑒𝑡 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖𝑡 +
𝛽8𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖𝑡 + 𝛽9𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡𝑖𝑡 + 𝛽10𝐿𝑜𝑠𝑠 𝑐𝑎𝑟𝑟𝑦𝑓𝑜𝑤𝑎𝑟𝑑𝑖𝑡 +
𝛽11𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑖𝑟𝑚𝑖𝑡 + 𝜖𝑡                                                                                             (3.3) 
 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑌𝑖𝑒𝑙𝑑 𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑡 + 𝛽2𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 + 𝛽3𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖𝑡 +
𝛽4𝐴𝑚𝑜𝑢𝑛𝑡𝑖𝑡 + 𝛽5𝐵𝑜𝑛𝑑 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝜖𝑡                                                                      (3.4) 
 
Constructing equation (3.3) generally follows study of Johnson (2003).  Asset maturity is 

the book value-weighted measure of asset maturity.  The maturity of long-term assets is 

measured as gross property, plant, and equipment (PP&E) divided by depreciation 

expense, while the maturity of current asset is measured as current assets divided by the 

cost of goods sold.  Asset maturity is obtained by the weighted sum of these two maturity 

measures where the weight for the long-term asset is gross PP&E divided by total assets, 

and the weight for current assets is current assets divided by total assets.  Abnormal 

earning is the difference between operating income per share in current and previous year 

divided by the current share price.  We also include three dummy variables for this 

equation.  Investment tax credit or loss carryforward indicate whether an issuer has 

investment tax credit or net operating loss carryforwards.  Regulated firm refers to 

whether or not an issuer is regulated firm.  Finally, bond volatility is included in equation 

(3.4).  Like equity volatility, bond volatility is estimated using 252 daily bond prices. 

 Table 14 and Table 15 show the results from two-stage least square estimation.  

Table 14 shows results from all sample data, and Table 15 exhibits results from two 

sample groups (i.e. investment grade and speculative grade).  As the Table 14 and 15 

shows, the potential endogeneity bias does not affect the relation between the fraction of 

debt and the yield spread.  Still, the magnitude of coefficients on the fraction of debt is 

relatively small, compared with those on other key variables.  However, a notable result 
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is that, for speculative grade bonds, the fraction of debt is significantly positively related 

to the yield spread, unlike the results in Table 13.  Yet, given that the regression for the 

fraction of debt has low R-square and small sample size, and that the estimated 

coefficients for the fraction of debt in Table 13 and in Table 14 have different signs, we 

cannot draw a conclusion about speculative bonds.  Rather, we save speculative bond 

case for the future research.   

 Lastly, we also conduct regression tests to see whether or not change in the 

fraction of debts maturing in one or two year is one of determinants.  Furthermore, 

econometrically, possible benefit is that differencing the time series removes 

autocorrelative influence.  For this test, we exclude all dummy variables, coupon rate, 

amount of outstanding, and maturity.  Additionally, only investment grade bonds are 

considered in this test.  Specifically, the regression is stated as: 

∆𝑌𝑖𝑒𝑙𝑑 𝑠𝑝𝑟𝑒𝑎𝑑𝑖    =
 𝛽0 + 𝛽1∆𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖 + 𝛽2∆𝐿𝑖𝑞𝑢𝑑𝑖𝑡𝑦𝑖 + 𝛽3∆𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + 𝛽4∆𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖 +
𝛽5∆𝑇-𝑛𝑜𝑡𝑒𝑖+𝛽6∆𝑇𝑒𝑟𝑚 𝑠𝑙𝑜𝑝𝑒𝑖 + 𝛽7∆𝐸𝑢𝑟𝑜𝑑𝑜𝑙𝑙𝑎𝑟𝑖 + 𝛽8∆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 +
𝛽9∆𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑜 𝑆𝑎𝑙𝑒𝑖 + 𝛽10∆𝑆𝑖𝑧𝑒𝑖 + 𝛽11∆𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝐵𝑜𝑜𝑘𝑖 + 𝛽12∆𝑃𝑟𝑒-𝑇𝑎𝑥𝑖 +
𝛽13∆𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖 + 𝜖𝑡                                                                                                       (3.5)  
 
where ∆𝑃𝑟𝑒-𝑇𝑎𝑥 refers to yearly change in pre-tax interest coverage ratio. The results are 

presented in Table 16.   

As expected, the results in Table 16 are, generally, similar to those in Table 13.  

Notable difference is that changes in Market to book ratio and size have the biggest 

impact on the change in the yield spreads for investment grade bonds.  On the other hand, 

change in leverage is has a small impact on the yield spread change, compared with 

change in market to book ratio and size.  This could be that, for investment grade bonds, 
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along with volatility of an issuer’s equity, size and market to book ratio more precisely 

capture issuer’s risk change than the leverage does. 
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Still, Table 16 shows that the fraction of debt maturing in one or two year is 

significantly positively related to the yield spread change, but has a small impact on the 

yield spread change, compared with the other key variables. 

Additionally, to control for potential endogeneity bias, we also conduct a 

simultaneous equation model for investment grade bonds, which is given as: 

∆𝑌𝑖𝑒𝑙𝑑 𝑠𝑝𝑟𝑒𝑎𝑑𝑖    =
 𝛽0 + 𝛽1∆𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖 + 𝛽2∆𝐿𝑖𝑞𝑢𝑑𝑖𝑡𝑦𝑖 + 𝛽3∆𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + 𝛽4∆𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖 +
𝛽5∆𝑇-𝑛𝑜𝑡𝑒𝑖+𝛽6∆𝑇𝑒𝑟𝑚 𝑠𝑙𝑜𝑝𝑒𝑖 + 𝛽7∆𝐸𝑢𝑟𝑜𝑑𝑜𝑙𝑙𝑎𝑟𝑖 + 𝛽8∆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 +
𝛽9∆𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑜 𝑆𝑎𝑙𝑒𝑖 + 𝛽10∆𝑆𝑖𝑧𝑒𝑖 + 𝛽11∆𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝐵𝑜𝑜𝑘𝑖 + 𝛽12∆𝑃𝑟𝑒-𝑇𝑎𝑥𝑖 +
𝛽13∆𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖 + 𝜖𝑡                                                                                                       (3.6)   
         
∆𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡𝑖 =
 𝛽0 + 𝛽1∆𝑌𝑖𝑒𝑙𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖 + 𝛽2∆𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + 𝛽3∆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝛽4∆𝑆𝑖𝑧𝑒𝑖 +
𝛽5∆𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑜 𝑏𝑜𝑜𝑘𝑖 + 𝛽6∆𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖 + 𝛽7∆𝐴𝑠𝑠𝑒𝑡 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑖 +
𝛽8∆𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖 + 𝜖𝑡                                                                                        (3.7) 
 
  
∆𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖 =
𝛽0 + 𝛽1∆𝑌𝑖𝑒𝑙𝑑 𝑠𝑝𝑟𝑒𝑎𝑑𝑖 + 𝛽2∆𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + +𝛽3∆𝐵𝑜𝑛𝑑 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝜖𝑡           (3.8) 
 
 The results, presented in Table 17 exhibits, are similar as those in Table 16.   

Table 17 supports that our tests on changes in the fraction of debts maturing in one or two 

year are robust to potential endogeneity bias. 
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Table 16: Yield Spread Change Determinants 

Annual changes in all variables are examined. Yield spread is the difference between the 
bond yield and the yield of a comparable maturity treasury bond as determined from 
Datastream.  Short-term debt refers to the fraction of debt maturing in one or two year.   
Liquidity indicates liquidity costs measured by the LOT model.  Credit rating is a bond’s 
rating that is numbered from one (AAA rated bond) to 22 (D rated bond).  Coupon and T-
note refers to coupon rates and 1-year Treasury note rate respectively.  Term slope and 
Eurodollar are the difference between 10-year and 2-year Treasury rates, and the 
difference between 30-day Eurodollar and the 3-month T-bill rate respectively.   is the 
equity volatility for each issuer, and Income to sale is operating income divided by sales.  
Size is logarithm of each issuer’s total asset (based on 1980 dollar value).  Market to 
book is Market value divided by book value of each issuer.  Market value of the firm is 
calculated by total assets minus total equity plus market value of common equity plus 
preferred stock liquidating value.  Pre-Tax indicates pre-tax interest coverage ratio.  
Leverage is market value of leverage (total debt/ market value of each issuer), and Book 
leverage is total debt divided by total asset. T-statistics are presented in parentheses. 

Variable Yield spread    Yield spread   
Short-term debt1 0.8771 *** 

 
 

(3.30) 
   Short-term debt2 

  
0.4523 ** 

   
(2.31) 

 Liquidity 17.6155 *** 12.7272 *** 

 
(7.78) 

 
(5.84) 

 Credit rating 5.9304 * 2.5435 
 

 
(1.93) 

 
(0.86) 

 T-note -41.49289 *** -37.4717 *** 

 
(-8.83) 

 
(-8.33) 

 Term slope -37.6882 *** -31.0768 *** 

 
(-4.91) 

 
(-4.22) 

 Eurodollar 25.7260 *** 27.4225 *** 

 
(9.06) 

 
(10.09) 

  16.9727 *** 17.5494 *** 

 
(6.72) 

 
(7.27) 

 Income to sales 31.18222 
 

-181.5882 *** 

 
(1.37) 

 
(-3.56) 

 Size -109.1593 *** -75.9436 *** 

 
(-6.18) 

 
(-4.36) 

 Market to book -113.6548 *** -116.5531 *** 

 
(-12.16) 

 
(-13.24) 

 Leverage 1.5110 ** 1.0271 
 

 
(2.03) 

 
(1.50) 

 Pre-tax interest -0.6575 
 

0.1459 
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Table 16 (continued) 

 
(-1.44)   (0.32)   

N 2159 
 

2159 
 R-square 0.3581   0.3725   

An *, **, or *** signifies significance at the 0.1, 0.5 or 0.001 level, respectively 
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3.4 Summary and Conclusion 

 This chapter examines the association between issuer’s debt structure and yield 

spreads.  Previous literatures in debt structure ( Barclay and Smith (1995), Mark and 

Mauer (1996), and Johnson (2003) etc.) study relationship between the fraction of debt 

maturing in short-period and level of firm’s leverage.  Most of the previous studies 

attempt to see evidence whether or not choice of debt structure mitigates firm’s under-

investment.  An underlying assumption of the studies is that choice of debt structure is a 

manager’s decision.  However, to the best of our knowledge, no one has investigated that 

investor’s reaction to the manager’s decision. 

 Specifically, we investigate whether or not an investor requires compensation for 

the liquidity risk.  Diamond (1991) introduces liquidity risk as the risk of a borrower 

being forced into inefficient liquidation when refinancing is not available.  According to 

Diamond’s argument, the firm holding the larger proportion of short-term debt in its debt 

structure is more vulnerable to the unforeseen negative event.  Consequently, it will 

increase the firm’s risk. 

 Through our tests in this chapter, we find that, for investment grade bonds, the 

results consistently show that the fraction of debt maturing in one or two years is 

positively related to the yield spreads.  Although the magnitude of its impact on the yield 

spreads are relatively smaller, compared with the other key factors (e.g.  leverage, credit 

rating, and liquidity cost), we argue that this positive relation is evidence of liquidity risk.  

 However, for speculative grade bonds, we cannot draw any conclusion because 

the sign of the relationship is not consistent through the tests, and because our sample 
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data for the speculative bond is very limited.  Therefore, we save speculative bond case 

for future research.   
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APPENDIX A: APPLYING KIMMEL MODEL (2008) 
 
 

Kimmel (2008) shows how to approximate conditional moments and contingent 

claim prices in a large class of non-affine diffusion models with the usage of power series.  

However, the convergence properties of such power series could be poor for long time 

horizons, which means that a power series representation of asset prices may converge 

for short time period, and then diverge for longer time period.  Therefore, in order to 

avoid this issue, he also develops the method of time transformation, in which variable 

representing time is replaced by a non-linear function of itself.   His method uses three 

techniques.  We begin by applying change of independent variable and change of 

dependent variable to derive a simplified PDE form, which he calls “Canonical Form”.  

Then, we need to apply change of time variable to ensure that there are no occurrences of 

divergence.  In this section, we will show how to apply Kimmel’s method to evaluate: 

𝜋�ℎ𝑑,𝑢, 𝑡,𝑇� = 𝐸𝑡
𝑄 �𝑒𝑥𝑝 �−� �ℎ𝑑,𝑢 + 𝛽𝑐3

𝑀
ℎ𝑑,𝑢

� 𝑑𝑢
𝑇

𝑡
�� 

We can also express the above equation as partial differential form: 

𝜕𝜋
𝜕𝑡

= [𝜅𝑑𝜃𝑑 − (𝜅𝑑𝜂𝑑)ℎ𝑑]
𝜕𝜋
𝜕𝑡𝑑

+
1
2
𝜎22ℎ𝑑

∂2𝜋
𝜕ℎ𝑑2

− �ℎ𝑑 + 𝛽𝑐3
𝑀
ℎ𝑑
� 𝜋 

With the terminal condition,𝜋(ℎ𝑑 ,𝑇,𝑇) = 1. 

Following Kimmel (2008), the changes of variables are: 

𝑦(ℎ𝑑) = �2�ℎ𝑑
𝜎
�, 𝑓(∆,ℎ𝑑) = �4ℎ𝑑

𝜎2
�
1
4−

𝜃𝜅
𝜎2 𝑒

ℎ𝑑�𝜅𝑑+𝜂𝑑�
𝜎2 ℎ�Δ,𝑦(ℎ𝑑)� 

where ∆ is (T-t). 

The canonical form PDE is: 
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𝜕ℎ
𝜕Δ

(Δ,𝑦) =
1
2
𝜕2ℎ
𝜕𝑦2

(∆,𝑦) − �
𝑎
𝑦2

+
𝑏2

2
𝑦2 + 𝑑� ℎ(∆,𝑦) (A.1) 

with final condition, ℎ(0,𝑦) = 𝑦∝𝑒−
𝜅𝑑𝜂𝑑
4 𝑦2, 

𝑎 ≡ 2𝜃𝑑
2𝜅𝑑

2

𝜎𝑑
2 − 2𝜎𝑑𝜅𝑑−4𝛽𝑐3𝑀

𝜎𝑑
2 + 3

8
, 𝑏 ≡

�(𝜅𝑑𝜂𝑑)2+2𝜎𝑑
2

2
, 𝑑 ≡ −𝜃𝑑𝜅𝑑(𝜅𝑑+𝜂)

𝜎𝑑
2 , and 𝛼 ≡ 2𝜃𝑑𝜅𝑑

𝜎𝑑
2 − 1

2
. 

The equation (A.1) is the standard affine form from Kimmel (2008), so we can apply the 

theorem 5 in his study with 𝜏 = 1 − 𝑒−2𝑏∆ and𝑧 = √2𝑏𝑒−𝑏∆𝑦. 

Finally, we can obtain: 

ℎ(∆,𝑦) = 𝑒−
𝑏
2𝑦

2−�𝑏2+𝑑�∆ ��
𝑧

√2𝑏
�
1−√1+8𝑎

2
𝑤1(𝜏, 𝑧) + �

𝑧
√2𝑏

�
1+√1+8𝑎

2
𝑤2(𝜏, 𝑧)� 

where 𝜕𝑤1(𝜏,𝑧)
𝜕𝜏

= 1−√1+8𝑎
2

𝜕𝑤1(𝜏,𝑧)
𝜕𝑧

+ 1
2
𝜕2𝑤1(𝜏,𝑧)

𝜕𝑧2
  

and 𝜕𝑤2(𝜏,𝑧)
𝜕𝜏

= 1+√1+8𝑎
2

𝜕𝑤2(𝜏,𝑧)
𝜕𝑧

+ 1
2
𝜕2𝑤2(𝜏,𝑧)

𝜕𝑧2
. 

According to Kimmel (2008), ),(2 zw τ is everywhere zero.  Therefore, power series is 

applied to only ),(1 zw τ .  The first few terms of this series are: 

𝑤1(𝜏, 𝑧) = �
𝑧

√2𝑏
�
𝛼−𝛾

𝑒
𝑧2
4 �1−

𝜅𝑑+𝜂𝑑
2𝑏 �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 + 𝜏 �

(𝛼 − 𝛾)(𝛼 + 𝛾 − 1)
2𝑧2

+ �
2𝛼 + 1

4 � �1 −
𝜅𝑑 + 𝜂𝑑

2𝑏 � +
𝑧2

8 �1 −
𝜅𝑑 + 𝜂𝑑

2𝑏 �
2
�

+
𝜏2

2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(𝛼 − 𝛾)(𝛼 − 𝛾 − 2)(𝛼 + 𝛾 − 1)(𝛼 + 𝛾 − 3)
4𝑧4

+
(2𝛼 − 1)(𝛼 − 𝛾)(𝛼 + 𝛾 − 1)

4𝑧2
�1 −

𝜅𝑑 + 𝜂𝑑
2𝑏 �

+ �
(2𝛼 + 3)(2𝛼 + 1)

16 +
(𝛼 − 𝛾)(𝛼 + 𝛾 − 1)

8
��1 −

𝜅𝑑 + 𝜂𝑑
2𝑏 �

2

+
(2𝛼 + 3)𝑧2

16 �1 −
𝜅𝑑 + 𝜂𝑑

2𝑏 �
3

+
𝑧4

64 �1 −
𝜅𝑑 + 𝜂𝑑

2𝑏 �
4

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ ∙∙∙∙

� 

where 𝛾 ≡ 1−√1+8𝑎
2
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APPENDIX B: PERFORMANCES OF THE EXTENDED KALMAN FILTER 
 
 

 In this section, performance of the extended Kalman filter is investigated using 

data generated by Monte Carlo simulation.  For simplicity, we exclude 𝛼 from each 

equation (from (16) to (22)) in Chapter 1.  First, we generate simulated data from the 

default-free, defaultable, and make-whole callable models that are found in Chapter 1.  

We apply the extended Kalman filter to estimate parameters for each model.  Our 

estimated parameters are much closer to the true parameters that are used for Monte 

Carlo simulation, which lead us to conclude that the extended Kalman filter works well 

for term structure models. 

 For the default-free model (equations (16) and (17) in Chapter 1), estimated 

parameters in Table 11 in Chapter 2 is considered true parameters, when we generate 100 

monthly observations.  Like our sample data in Chapter 2, 0.5, 1, 2, 3, 5, 10, and 30 year 

zero coupon Treasury rates are considered.  We also add random observation errors that 

are normally distributed with a zero mean and a constant variance to the zero coupon 

yield.  We apply the Kalman filter to data generated from each iteration of Monte Carlo 

simulation, and repeat this procedure 500 times.  Therefore, we obtain 500 sets of 

estimated parameters.  Panel A in Table B shows the performance of the extended 

Kalman filter on the default-free model.  The mean values of the estimated parameters 

are much closed to the true values.  However, root mean square errors (RMSE) for 𝜎1 and 

𝜎2 are unacceptably large.   

 For the defaultable model (equations (18) and (19) in Chapter 1), an average value 

of each parameters in Table 12 in Chapter 2 is considered true parameters, when we 

generate 100 monthly observation.  Additionally, average value of coupon rate in Table 
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12 is used.  As we assume in the empirical analysis (Chapter 2), we also assume that both 

state variables and the parameters of the default-free model are known.  The rest of the 

procedures are basically same as the procedures of the default-free model. Panel B in 

Table B shows the performance of the extended Kalman filter on the defaultable model.  

The mean values of the estimated parameters are close to the true values, but RMSE for 

𝛽𝑑2 is very large.  

 For the make-whole callable model (equations (20)-(22) in Chapter 1), we also 

assume that both the state variables and the parameters of the default-free and defaultable 

models are known.  Average value of coupon rate and make-whole premium is used.  The 

rest of the procedures are same as the procedures of the defaultable model.  Panel C in 

Table B exhibits the performance of the extended Kalman filter on the make-whole 

callable model. Again, then mean value of the estimated parameters are closed to the true 

value.  However, RMSE for 𝜎 is a little large. 

 From Table B, even though, for each case, it shows one or two large RMSE for 

estimated parameters, the extended Kalman filter performs well.  This results supports 

that the extended Kalman filter suits our study.
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APPENDIX C: LOT MODEL PROPOSED BY CHEN, LESMOND, AND WEI (2007) 
 
 

In this study, due to the limited availability of bid-ask spread data, we use the 

alternative liquidity measure suggested by Chen et al. ( 2007).  Originally, Lesmond et al. 

(1999) introduce this LOT model for estimating liquidity for equity markets.  In addition, 

Lesmond et al. (2004) show that this method works well, as evidenced by an 80% 

correlation between the LOT estimation and the bid-ask spread plus commissions.  In 

2007, Chen et al. extend this model to corporate bonds to test for the influence of bond 

liquidity on corporate yield spreads. 

An underlying assumption of this model is that the marginal informed investor 

trades when his value of information exceeds transaction costs.  In other words, there is 

no trade when the value of information is less than the transaction costs.  Therefore, we 

observe zero returns.  Furthermore, from the assumption, measured return (i.e. observable 

return) does not reveal the true return (i.e. unobservable return) of the marginal trader 

until transaction costs are exceeded.  In like manner, since the investor must be 

compensated for his transaction costs, the measured return partially reflects the true value 

of the information. 

From these logics, there must exit thresholds for buy-side or sell side traders. 

Chen et al. (2007) assert that a difference between buy-side and sell-side threshold be 

able to capture transaction costs for an individual security.  To estimate these costs, it 

starts with the return generating process that is given as:13

𝑅𝑗,𝑡
∗ = 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑅𝑓𝑡 + 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡 + 𝜖𝑗,𝑡 

 

(C.1) 

                                                 
13 For more detail about theoretical derivation of the return generating process, please see Chen et al. 
(2007). 
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where the term 𝑅𝑗,𝑡
∗  represents the unobserved “true” bond return for bond j and day t,  the 

term ∆𝑅𝑓𝑡 is the daily change in the 10-year risk-free interest rate,  and the term 

∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡 is the daily return on the Standard & Poor’s 500 index.  Following Jarrow 

(1978), all risk coefficients are scaled by duration. In addition, from the assumption, the 

relation between the measured return and the true return can be stated as: 

𝑅𝑗,𝑡 = 𝑅𝑗,𝑡
∗ − 𝛼𝑖,𝑗 (C.2) 

where 𝑅𝑗,𝑡 is the measured return, 𝛼2,𝑗 is the effective buy-side cost, and 𝛼1,𝑗 is effective 

sell-side cost for bond j.  With combining (C.1) with (C.2), we have: 

𝑅𝑗,𝑡
∗ = 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑅𝑓𝑡 + 𝛽𝑗2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡 + 𝜖𝑗,𝑡 (C.3) 

where: 

𝑅𝑗,𝑡 = 𝑅𝑗,𝑡
∗ − 𝛼1,𝑗 ............................................. if 𝑅𝑗,𝑡

∗ < 𝛼1,𝑗  and 𝛼1,𝑗 < 0 
𝑅𝑗,𝑡 = 0 ........................................................... if 𝛼1,𝑗 < 𝑅𝑗,𝑡

∗ < 𝛼2,𝑗 
𝑅𝑗,𝑡 = 𝑅𝑗,𝑡

∗ − 𝛼2,𝑗 ............................................. if 𝑅𝑗,𝑡
∗ > 𝛼2,𝑗 and 𝛼2,𝑗 > 0 

 
The log-likelihood function for this model can be stated as: 
 
𝐿𝑛𝐿 = ∑ 𝐿𝑛 1

(2𝜋𝜎2)1/21 − ∑ 1
2𝜎21 (𝑅𝑗,𝑡+𝛼1,𝑗 − 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑅𝑓𝑡 − 𝛽𝑗2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗

∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡)2 + ∑ 𝐿𝑛 1
(2𝜋𝜎2)1/22 − ∑ 1

2𝜎22 (𝑅𝑗,𝑡+𝛼2,𝑗 − 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑅𝑓𝑡 −

𝛽𝑗2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡)2 + ∑ 𝐿𝑛�Φ2,𝑗 − Φ1,𝑗�,0                                             (C.4)  
 
where Φ𝑖,𝑗indicates the cumulative distribution function for each bond-year evaluated 

at(𝛼𝑖,𝑗 − 𝛽𝑗1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑅𝑓𝑡 − 𝛽𝑗2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑡 ∗ ∆𝑆&𝑃𝐼𝑛𝑑𝑒𝑥𝑡)/𝜎𝑗.  ∑ (𝑟𝑒𝑔𝑖𝑜𝑛1)1 , 

∑ (𝑟𝑒𝑔𝑖𝑜𝑛2)2 , or ∑ (𝑟𝑒𝑔𝑖𝑜𝑛0)0  represents the negative nonzero measured returns, the 

positive nonzero measured returns, or zero measured returns respectively.  By using 

maximum likelihood estimation, we estimate two risk coefficients, buy-side and sell-side 

costs.  The difference between 𝛼2,𝑗 and  𝛼1,𝑗 is the round-trip transaction costs that is 

used as liquidity measure in chapter 3. 
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  LOT model requires only daily price of bonds, so it is a great alternative to 

measure liquidity costs, especially when bid-ask data is limited.  However, LOT model 

has a practical limitation. If the sequence of bond prices does not have any zero returns or 

if more than 85 % of the daily returns over the year are zero, the LOT model cannot be 

used to estimate liquidity costs. 

For the purpose of validation of these estimated liquidation costs, we exclude 

statistically insignificant values of estimated parameters.  The distribution of the two risk 

coefficients are summarized in Table C.  As shown in Table C, the interest rate 

coefficient is negative on average, which is expected.  However, some positive values of 

this coefficient could be explained in that, moving from high-grade to low-grade bonds, 

this relationship is expected to become weaker (Schultz (2001)).  Additionally, from our 

sample period, the coefficient on the market return factor is negative on average.  

Generally, we can expect a positive value of this coefficient if positive equity returns 

have a positive effect on the bond return.  However, if positive equity returns are caused 

by capital flows from the corporate bond market, negative coefficient value is expected.  

Therefore, there is no clear interpretation on the value of this coefficient.
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Table C: Distribution of Coefficients from Liquidity Measure 
 
This table summarizes the distribution of coefficients on the risk-free rate factor, 𝛽𝑇−𝑏𝑜𝑛𝑑, 
and market return factor, 𝛽𝐸𝑞𝑢𝑖𝑡𝑦. The coefficients are estimated using Maximum 
Likelihood Estimation. 

  T-bond Equity
Mean -0.0003 -0.0015 

Standard 
Deviation 1.8405 0.0206 

Min -40.6396 -0.5205 
First Quartile -22.3591 -0.0081 

Median -0.0182 -0.0041 
Third Quartile 0.3292 0.0185 

Max 24.2783 0.3712 
N 5087 5087 

 


