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i
ABSTRACT

MIN CHUL PARK Corporate bonds: theoretical and empirical study (Under the direction
of DR. STEVEN P. CLARK)

This dissertation consists of three parts. The first chapter presents an analysis of
the structural difference between a make-whole callable and a traditional callable bond.
Based on the analysis, we construct a reduced-form model for the make-whole callable
bond. The second chapter empirically investigates validation of our model with the
extended Kalman filter. In this chapter, we show not only that our model is valid for the
sequence of the make-whole callable bond behavior, but also that our model outperforms
the model from Jarrow et al. (2010).

The third chapter examines the association between issuer’s debt structure and
yield spreads. Specifically, we investigate whether or not an investor requires
compensation for liquidity risk. Diamond (1991) introduces liquidity risk as the risk of a
borrower being forced into inefficient liquidation when refinancing is not available.
According to Diamond’s argument, the firm holding the larger proportion of short-term
debt to its debt structure is more vulnerable to the unforeseen negative event.
Consequently, it will increase firm’s risk. Through our tests in this chapter, we find that
for investment grade bonds, the results consistently show that the fraction of debt

maturing in one or two year is positively related to the yield spreads.
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CHAPTER 1: ANALYSIS OF A BOND WITH MAKE WHOLE PROVISON WITH
REDUCED FORM APPROACH

In this chapter, we demonstrate how to apply the reduced-form model to a bond
with a make-whole provision. First, we present the structural difference between a
callable bond with fixed call price and a bond with a make-whole provision. Based on
the structural differences, we develop a reduced-form model for the bond.

The call price of a bond with a make-whole call provision is given as the
maximum value between par value and the present value of the bond’s remaining
payments. The discount rate in the calculation of the present value is the prevailing
comparable maturity Treasury yield plus a spread specified in the contract of a bond,
which is called the make-whole premium. Therefore, this unique bond feature reduces
the interest rate risk that the traditional callable bond possesses.

For this reason, according to Mann and Power (2003), the make-whole callable
bond has been gaining popularity since its introduction in the U.S. in 1995. Power and
Tysyplakov (2008) develop a structural model for the make-whole callable bond, but
their model significantly underestimates the yield on the bond. The structural model, in
general, relies on a contingent claim. However, Mann and Power (2003) argue that the
make-whole callable bond is not structured as a refunding vehicle. Rather, it is structured
to enable a firm to retire debt without relying on a tender offer when the firm needs to
restructure its capital structure. Therefore, as Jarrow et al. (2010) note, the structural

model has limitations on capturing this sub-optimal call policy.



This chapter develops the reduced form model for the make-whole callable bond.
Performance and validation of our model is tested in Chapter 2 with two different
econometric tools (Kalman filter and Markov Chain Monte Carlo). This chapter is
organized as follows: Section 1 reviews related previous studies, Section 2 presents the
structural difference between the bond with fixed call price and the make-whole callable

bond, and develops a reduced model, and finally, Section 3 summarizes this chapter.



1.1 Literature Review

Theoretical models of credit spreads can be categorized as either structural or
reduced-form models of default. Often, practitioners or scholars compare structural
models with the reduced form-models for corporate bonds. Both approaches have
advantages and limitations in valuing risky bonds. In this section, a literature review of
structural models and reduced-from models is presented.
1.1.1 The Structural Models

The structural models that originated from Merton’s model (1974) directly relate
the price of equity to default probabilities and the price of corporate bonds. This model
applies the claims-based approach to valuing corporate debt by using option pricing
theory. This framework for valuing risk debt has been applied in a number of studies
including Geske (1977), Ingersoll (1977a, 1977b), Merton (1977), Smith and Warner
(1979), and many others. However, Jones, Mason, and Rosenfeld (1984) and Franks and
Torous (1989) show that the structural models based on Morten’s framework produce
credit spreads much smaller than the actual credit spreads. In addition, Longstaff and
Schwartz (1995) note that one of the drawbacks of this approach is that default is
assumed to occur only when the firm exhausts its assets. This assumption is not very
realistic because firms usually default long before the firm’s assets are exhausted.

In order to overcome this drawback, Longstaff and Schwartz (1995) extend the
Black and Cox (1976) model, which allows default to occur when the value of assets
reach a lower threshold. Their model assumes that this lower threshold could be obtained
exogenously from a minimum level of cash flows from assets requirement or from

minimum net worth or working capital requirements in the indenture. The advantage of
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the Longstaff and Schwartz model over previous models is that their model incorporates

both default risk and interest rate risk. In contrast to Longstaff and Schwartz (1995),
Leland and Toft (1996) construct a model with an assumption that the lower threshold is
determined endogenously. The endogenous threshold is derived with the view that
bankruptcy is an optimal decision by equity holders to give their control of a firm to bond
holders. The prominent achievement of this model is that it is able to show a tradeoff
between tax advantages, bankruptcy costs, and agency cost. However, unlike the
Longstaff and Schwartz model, the Leland and Toft model assumes a constant interest
rate, which implies that it does not consider interest rate risk.

Commonly, these models do not consider the effect of a stationary leverage ratio
on credit spreads. Opel and Titman (1997) provide empirical evidence for the existence
of target leverage ratios at the firm level within an industry. Furthermore, dynamic
models of optimal capital structure by Fisher, Heinkel, and Zechner (1989), and
Goldstein, Ju, and Leland (2001) find that firm value is maximized when a firm acts to
keep its leverage ratio within a certain band. Therefore, Collin-Dufresne and Goldstein
(2001) develop a structural model of default with stochastic interest rates that generates
stationary leverage ratios. In order to incorporate stationary leverage ratio, major
assumptions of this model is that a firm has the option to increase leverage at some
intermediate date between issuing date (or current date) and maturity date. It also
assumes that if the firm exercises this option, it does so by issuing a zero coupon bond
with the same maturity as previously issued debt. Furthermore, it assumes that the face
value of the newly issued debt is chosen to reset firm leverage back to its initial target

value. Finally, it assumes that the proceeds of new debt issuance are used to repurchase
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existing equity, leaving firm value unchanged. With these assumptions, the model is able

to incorporate a stationary leverage ratio, allowing the firm to deviate from its target
leverage ratio only over the short-run. Additionally, like the Longstaff and Schwartz
model, this model also incorporates interest rate risk. Compared to previous models,
their model generates larger credit spreads for firms with low initial leverage ratios,
which could partially overcome the problem that structural models of default are well
below those observed in practice (Jones, Mason, and Rosenfeld, 1984). Further, their
model generates term structure of credit spreads for speculative-grade debt that are
consistent with the empirical findings of Helwege and Turner (1999).

However, as documented by Lyden and Saraniti (2000), the structural models
above tend to underestimate yield spreads. The errors are systematically related to
coupon and maturity. As noted by Duffie and Lando (2001) and Lyden and Saraniti
(2001), these prediction errors are related to the estimates of unobservable asset and its
volatility. Duffie and Lando (2001) mention that, in practice, it is typically difficult for
investors in the secondary market for corporate bonds to observe a firm’s assets directly,
due to noisy or delayed accounting reports, or barriers to monitoring by other means.
Therefore, investors must conjecture value of a firm’s asset with publicly available
information such as accounting data or business-cycle data. In order to overcome this
shortcoming of the previous structural models, Duffie and Lando (2001) strive for
optimal capital structure and default policy, and then derive the conditional distribution
of the firm’s assets, given incomplete accounting information, along with the associated
default probabilities, default arrival intensity, and credit spread. By incorporating the

incomplete accounting information and default arrival intensity, their model is able to



generate large credit spread than the previous models in the case of short-term maturity.
The Duffie and Lando model is different from the traditional structural models in that the
model includes default arrival intensity which is a typical characteristic of the reduced-
form model. Thus, their model is rather a hybrid model than solely a structural model.

There are few empirical studies of comparing structural models. Anderson and
Sundaresan (2000) empirically compare the original Merton model with the structural
models that incorporate endogenous bankruptcy barriers, such as the Leland and Toft
model. They find that Leland and Toft type model is somewhat superior to the original
Merton model. Additionally, Lyden and Saraniti (2000) implement and compare two
structural models, the Merton with the Longstaff and Schwartz models. They find that
both models underestimate yield spreads, and that the errors are systematically related to
coupon and maturity. However, in the study of Eon et al (2003), they find that the
predicted spreads from the Morton model is too low, but that the other structural models
predict spreads that are too high on average. Although these structural models perform
reasonably well, the problems of using structural models are mathematical complexity
and difficulty in estimating unobservable value of firm’s assets. For these reasons, many
practitioners and scholars support an alternative approach, reduced-form models.
1.1.2 Reduced-Form Model

The Reduced-Form model has a relatively shorter history than the structural
model. The unique feature of the reduced-from model is the intensity-based framework.
The fundamental idea of the intensity-based framework is to model the default time as the

first jump of a Poisson process. Major issues in the reduced-form model are the



7
treatment of the recovery payment and the correlations between interest rates, intensities

and recoveries.

Jarrow and Turnbull (1995) consider that the recovery rate is an exogenous
fraction of the value of an equivalent default-free bond (Recovery of Treasury, RT).
Duffie and Singleton (1999a) note that estimating value of the bond is computationally
burdensome under RT. For this reason, Jarrow and Turnbull (1995) made assumptions
that simplify computation. For example, they assumed that the risk-neutral default
hazard rate process is independent of the short rate, and that the fractional loss process is
constant. Under these assumptions, Schénbuncher (2003) notes that coupon bonds can
recover more than their face value when the bonds have a high default risk, a long time to
mature, and trades close to their face value.! Lando (1998) develop a model that allows a
random hazard rate process to be dependent of the short interest rate process, but the
model adds substantially computational complexity.

The other specifications of recovery rates are the recovery of face value (RFV)
and the recovery of market value (RMV). Duffee (1998) introduced RFV under which a
recovery rate is an exogenous fraction of the face value of the defaultable bond, while
Duffie and Singleton (1999a) introduced RMV under which a recovery rate is equal to an
exogenous fraction of the market value of the bond just before default. Both RMV and
RFV have advantage and disadvantage over each other. Schonbuncher (2003) mentions
that small theoretical differences between these two will not make much difference in
many application scenarios. However, RMV is mathematically easier to apply because
standard default-free term-structure modeling techniques can be applied, while RFV is

more realistic when one assumes liquidation at default value and that absolute priority

! Schonbucher (2003) presents a numeric example for this particular case.



applies (Duffie and Singleton, 1999a). In this study, we adopt RMV, as Jarrow et al.
(2010) did.

Beside treatment of a recovery rate, the other issues are specifications of interest
rates and default intensities. Schonbucher (2003) lists ideal specifications of the interest
rates and the default intensities. First, both interest rate and default intensity should be
stochastic processes. Second, the dynamics of interest rate and intensity process should
include a correlation between them as Duffee (1998) found empirical evidence that credit
spreads are a decreasing function of interest rates. Third, a desirable property for interest
rates and default intensity processes is that they remain positive at all times. Finally,
simple application for pricing is always better. For this last reason, most reduced-form
models in the previous literature adopt the class of affine process (see Duffie and Kan
(1996) and Duffie, Pan, and Singleton (2000) for a detailed explanation).? Allowing for
correlation among the Brownian motions in the state variable processes is able to
incorporate a correlation between the interest rates process and the intensity process.

Lastly, there are three main different approaches to model the default dependence
between firms in the reduced-form approach. The first approach introduced in the
previous literatures is conditionally independent defaults (CID) models by Duffee (1999).
CID models make the firm’s default intensities dependent on common factors and a firm
specific factor variable. In CID models, firms’ default intensities are independent, which
is conditioned to the realization of common factors. In other words, the default
correlation is introduced only through the dependence of each firm’s intensity on random

common factors because a firm's specific factor is independent across firms. The major

% For an extensive review of the use of affine processes for credit risk modeling using intensity models, see
Duffie (2005)



drawback of this model is that it generates lower levels of default correlation than
empirical default correlations. For example, Hull and White (2001) suggest that the
range of default correlations that can be achieved is limited. Even when there is perfect
correlation between two hazard rates, the corresponding correlation between defaults in
any chosen period of time is usually very low. This is liable to be a problem in some
circumstances. Schonbucher and Schubert (2001) also comment that the default
correlations that can be reached with this approach are typically too low when compared
with empirical default correlations, and furthermore it is very hard to derive and analyze
the resulting default dependency structure.

However, Yu (2005) argue that low default correlation in reduced-form models
may have more to do with an inadequate common factor structure than the assumption of
conditional independence. In his study, he generates default correlations from the two
CID models, Duffee (1999) and Driessen (2005) models. Duffee’s model has two
common factors that are extracted from Treasury yields, while Driessen’s model has two
additional common factors that capture the co-movement of corporate credit yields. He
shows that the first case generates a default correlation much lower than empirical
observations, while the second case generates comparable, or even higher, values.

Duffie and Singleton (1999b) introduce the second approach in order to deal with
the low correlation problem. They proposed two ways. Their first proposal is to include
a pure jump process in the default intensity process. These jumps consist of two parts,
joint jumps and idiosyncratic jumps. Their second proposal is to include common credit
events that could trigger simultaneous defaults. Each common credit event is modeled as

a Poisson process. The last approach to model default correlation is called the contagion
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model. The basic idea of this model is that the default of one firm increases the default

probabilities of related firms (for more details, see Davis and Lo (2001) and Jarrow and
Yu (2001)). Although these last two approaches are theoretically sounding, they have
problems with calibration and implementation. For this reason, this study adopts the
Duffee’s model, as Jarrow et al. (2010) did®.

Often, researchers compare the structural model with the reduced-form model for
risky bonds. There are well-known differences between these two models. Unlike
structural models, reduced form models do not consider a link between default and firm
value explicitly. In the reduced form model, default time cannot be predicted through the
value of firm, rather it is the first jump governed by the exogenous jump process. The
parameters controlling the default hazard rate are inferred from market data. Thus,
reduced form models incorporate existing market data for a firm’s bond, while structural
models often ignore market data. This difference also implies that, unlike reduced form
models, structural models generate defaults endogenously because they provide a relation
between a firm’s credit quality and financial conditions. Another difference is that,
unlike the reduced form model, the structural model determines recovery rates
endogenously through the value of the firm’s assets and liabilities at default.

In sum, if there is clear data of bond prices in the market, the accuracy of the
reduced form model will be substantially increased, but obtaining clear data is not an
easy task®. Relatively speaking, structural models have better tractability and richer
economical interpretations because they determine default timed and recovery rated

endogenously, unlike reduced form models. However, the advantage of using the

® It is possible to adopt Driessen model at the cost of adding mathematical complexity.
* It is well stated in the study of Arora et al. (2005) in that they compare the performance of a reduced
model with a structural model.
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reduced form model is that it is relatively simpler than the structural model

mathematically because of the exogenous determination of default time and recovery rate.

Besides these differences, Jarrow and Protter (2004) point out that the major
difference between a structural and a reduced form model is the assumption of the
information set. Structural models assume complete knowledge of very detailed
information, which means that the market and managers, in firms, share exactly the same
information. Under this assumption, a firm’s default time is predictable. Unlike the
structural model, a reduced-form model assumes a relatively less detailed information set.
This assumption implies that the firm’s default time is inaccessible. Since asset value
process is not observable by the market, and the market determines the price of risk debts,
Jarrow and Potter (2004) argue that usage of reduced form models are more appropriate
for pricing debts than usage of structural models. Based on their argument, we believe
that using a reduced form model for pricing a bond with make-whole call provisions is
relatively more appropriate, which is explained in the following sub-section.
1.1.3 Make-Whole Call Provisions

A structural difference between fixed-call provision and make-whole call
provision is that the call price in the make-whole call provision floats inversely with risk-
free rates. In a bond with the make-whole call provision, the call price is obtained by
maximum value between par value and the present value of the bond’s remaining
payments. This present value is calculated by using the discount rate, that is the
prevailing comparable maturity Treasury yield plus a spread specified in the contract of a
bond, which is called the make-whole premium. As mentioned in the study of Power and

Tsyplakov (2008), the make-whole call provision has three distinctive advantages over
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fixed-call provision. First, because of the negative relation between the call price and

risk-free rates, the call price in a make-whole call provision eliminates interest rate risk.
Consequently, up-front costs for a make-whole call provision should be lower than a
fixed-priced call provision. Furthermore, because of absence of interest risk, Mann and
Powers (2003) state that unlike a fixed-call provision, make-whole call provision is not
structured as a refunding vehicle. Rather, the make-whole call provision is structured to
enable a firm to retire debt without relying on a tender offer when the firm needs to
restructure its capital structure. Second, most bonds with fixed-call provision have
several years of call or refund protection in their contracts in order to mitigate the interest
rate risk that bondholders are exposed to. Finally, there is possibility that fixed-price call
prices are greater than tender offer prices, if interest rates have risen since the bond was
issued. Power and Tsyplakov (2008) study costs of using bonds with a make-whole call
provision by developing structural frame models for those bonds. These costs are
incremental yields over yields on non-callable bonds. They argue that these costs are
costs of having additional financial flexibility from using make-whole call provisions
instead of using non-callable bonds because companies that use make-whole call
provisions can exercise this provision when they need to restructure their capital structure.
However, their estimated incremental yields from their model are significantly smaller
than observed incremental yields. They give one potential explanation for this disparity;
that the decision to incorporate a make-whole call provision is endogenous and this
endogeneity biases their estimated coefficients. Additionally, from previous literature, a
company might delay to exercise its call option on its bonds because of transaction costs

incurred when calling (Mauer, 1993), or because of concerns about wealth transfers
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resulting from temporary capital structure changes (Longstaff and Tuckman, 1994), or

because of a suboptimal call policy employed by the company (King and Mauer, 2000).
From these reasons, we can also apply Jarrow and Potter’s argument (2004). Since
market and managers in the firm do not share information about the firm’s call policy,
calling time is not predictable. This supports the usage of reduced form models for
pricing a callable bond.

Moreover, Nayar and Stock (2008) document an empirical study about the
relationship between a firm's abnormal stock return and different type (i.e. non-callable,
fixed callable and make-whole callable bonds) of bond issues. They find that a non-
callable bond issuance is associated with a significantly negative abnormal stock return,
but callable bonds do not have this negative effect. Specifically, their evidence shows
that long-run returns for make-whole call issuers are superior to that of both regular
callable and non-callable issuers. These results are consistent with their argument that
managers in a firm that issue make-whole callable bond have better information about
their firm's future aspects than investors in the market. Since the structure of make-whole
callable bond does not allow interest rate risk, rational callable situation occurs when
default risk premium is decreased. Therefore, managers who anticipate a decrease in their
default risk premium in the future would more likely issue make-whole callable bond.
Thus, Nayar and Stock (2008) argue that an issuance of a make-whole callable bond is a
clearer signal of brighter future prospects to investors in the market. From their argument,
it is clear that the reduced-form model is more suitable for make-whole callable bond
because firms that issue make-whole callable bonds have relatively more severe degree of

information asymmetry.



14
1.2 Reduced-Form Model for Bonds with Make-Whole Call Provisions

In this section, we develop a reduced-form model for bonds with make-whole call
provisions by extending the model that Jarrow et al. (2010) present. A closed-form
formula for this bond is also derived under affine model specification.

1.2.1 Structural Difference between Fixed Callable and Make-Whole Callable Bonds®

In this sub-section, we demonstrate the structural difference between fixed
callable (FX) and make-whole callable (MW) bonds, which will allow us to make
necessary modifications from the existing model for callable bond. For simplicity, we
assume that a perpetual life bond with fixed coupon payment (c) per period is issued, and
that the bond is priced at par (Po) with a discount rate (rp). We also assume that the
discount rate consists of two parts. One part is yield (ig) on an equivalent maturity
treasury bond, and the other part is the credit spread (go) based on market knowledge on
the issuing firm on the issuing date (t=0). Thus, price at the issuing date is:

Py =c/ry =c¢/(ip + q0) 1)

In the case of fixed callable bond, rationally, issuers buy back their bonds, when call
price (CFX) is less than current market price of the bonds. Therefore, a rational
condition for calling these bonds is:

CFX <P, = CFX <c/(ir+ q) = ¢/, + q) — CFX >0 (2)
Based on condition (2), we can infer that the probability of calling bonds is negatively
related to interest rates and credit spreads. Furthermore, it is positively related to coupon
rates. The call spread in the model of Jarrow et al. (2010) incorporates the interest rate
factor and coupon rates directly, but a credit spread factor is indirectly included through

the interest rate factor. This is due to Duffee (1998) finding empirical evidence that both

® An analysis in this section is an extension of Nayar and Stock (2008)
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callable and non-callable bond’s that spread over Treasury yields are inversely related to

the Treasury yields. He also finds that this inverse relation is much stronger for callable
bonds because of a consequence of variations in the value of the embedded call option.
On the other hand, unlike the call price of fixed callable bond, the call price
(CMW) of the make-whole callable bond is not constant over time. This is because the
call price is obtained by maximum value between par and present value of the bond’s
remaining payments. This present value is calculated by using the discount rate, that is
the prevailing comparable maturity Treasury yield plus a spread specified in the contract
of a bond, which is called the make-whole premium (M). Thus, if we assume that the
issuer exercises the call option on date (T=t), the call price of the make-whole callable
bond can be expressed as:
CMW, = max[c/(i; + M)P,]
CMW, = max[c/(ir + M), c/(iy + qo)] 3)
Since Mann and Power (2003) find that make-whole premiums in most bonds with make-
whole provision are set below prevailing credit spread, which makes the call option out-
of-the-money at issuing date, we can safely assume that:
M < q, 4)
Again, the rational condition for exercising this option is:
CMW, < c/(iy + q¢) = max[c/(i; + M), c/(ip + qo)] < ¢/(i¢ + q¢)
~max[1/(i; + M), 1/(io + qo)] < 1/(ic + q1) (5)
We can break into two cases. First case is:
If 1/ + M) > 1/(p + q0) = ir < qo— M+, (6)

then, from (5),1/(i, + M) <1/(i; +q.) = q: <M (7
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since (4),q: < qo (8)

When current interest rate is less than the difference between initial credit spread and
make-whole premium plus initial interest rate, condition (7) must be satisfied for the
option to be in-the-money. Since we assume that the initial credit spread is greater than
the make-whole premium, in order to satisfy condition (7), the current credit spread must
be less than the initial credit spread.
Second case is:

If 1/ + M) < 1/(p + qo) = is > qo— M+, ©)

then, from (5),1/(i, + qo) < 1/(i; + q¢) (10)

When current interest rate is greater than the difference between initial credit spread and
make-whole premium plus initial interest rate, condition (10) must be satisfied for the
option to be in-the-money. If condition (4) and (9) are true, we can infer that the current
interest rate is greater than the initial interest rate. Given that the current interest rate is
greater than the initial interest rate, in order for condition (10) to be satisfied, again,
current credit spread must be smaller than the initial credit spread.

In sum, from these two cases, whether interest rates go up or not, the option value
depends on the change in issuer’s credit risk. In other words, unlike the option values in
fixed callable bond, the option values on make-whole callable bond are independent of a
change in Treasury rates. Since a change in Treasury rates partially reflects the condition
of the market, the important factor for the option value in the make-whole bond could be
an issuer’s individual credit risk.

The model from Jarrow et al. (2010) is originally constructed for the fixed

callable bond. Given this structural difference, we argue that their model cannot directly
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apply to the make-whole callable bond. Therefore, we construct the reduced-from model

for the make-whole callable bond in the next sub-section.
1.2.2 Development of the Reduced-Form Model®
As usual, it is assumed that uncertainties in the financial markets are modeled by

a complete probability space (2, F,P)and a filtration F = (F,),_.., . We also assume that

there are three claims. The first claim is the obligation of the firm to pay X dollars at
maturity T. The second claim is that the investor gets Xy dollars at T, when the firm
defaults. It is assumed that Xy is a fraction (&) of the market value of the bond. The third
claim is that the investor receives call price (X) att., when the firm exercises its call
option on its bond. We also assume that a fraction (k) of the market value of the bond is
call price atr.. Under these settings, the payoff on the bond is:

zZ = Xcl{rc<rd,rc,<T} + Xa 1{Td<Tc,‘rd_<T} + X1ir<r, T<ty} (11)
where 143 presents an indicator function. Subsequently, the time t price of the zero
coupon make-whole callable bond can be expressed as:

EQ {Ze‘ff rutu]

VLT, 0,8, k) = - , i

IV IA
@

(12)
where 7 = min{z_,z,,T}. Where the instantaneous risk-free interest rate is r , and EQ is
the expectation operator under the equivalent martingale measure Q.

Since this study takes the reduced-form approach into consideration for analysis
of the make-whole callable bond, we need to have the dynamics of the call and default

intensities even though the study of Duffie and Singleston (1999) assume that firms

® The notation and procedure in this chapter follows the notation in Jarrow et al. (2010).
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exercise their call option on bonds in order to minimize the market value of the bonds.

However, as Jarrow et al. note, by introducing the call intensity, the reduced-form model
could include “suboptimal’” exercising strategies that could be caused by either market
frictions or firm-specific strategy. This feature is particularly important to the case of the
make-whole callable bond because, as Mann and Power (2003) argue, the prime purpose
of issuing make-whole bond could be restructuring the firm’s capital structure.

For this reason, we need to consider two independent (call and default) point

processes, N, =1,,,,and Ny, =1, ., that follows the Cox process, and that have
intensities, 4., and A, , respectively. With these point processes, the discounted gain

process can be:

G, = e~ ey (¢,T,0,8,k)(1 — Ne)(1 — Noo)

t u
+ f e o rud“kVC(u—, T,0,6, k)(l - Nd,t)dNC'u
0

t u
+ f e~ Jo rud“(?VC(u—, T,0,4, k)(l - NC.t)de'u
0

where V_(t,T,0,0,k) is the market value of the make-whole callable bond if there has

been no event of exercising the call option or default by time t. The first term is the
discounted price when there has been no default or exercising of the option. The second
term is the discounted strike price upon exercising the option, and the third term is the
discounted payoff upon default. By applying Ito’s formula to the discounted gain process,

we can see that for G to be a martingale, the necessary and sufficient condition is:

T
V.(t,T,0,8,k) = E2exp {— j (+ (1= k) Ay + (1= 8)Agn) du} (13)
t
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From (13), we can see that (1-0)4,, and (1-k)A,, are default spread and call spread,

respectively. Let the default and call adjusted discount rate be:

R, =1r,+ 1 —k)A,, + (1 —6)As,. Then the price of the callable coupon bond is:

T; T
‘/C(tl T’ c, 6, k) = EtQ Z Ce_ft Rydy + e_ft Rydy (14)

t<T;<T
where ¢ is coupon payments on Ty, T, Ts,...To=T. Furthermore, the price of the non-
callable coupon bond is:

Ti * T %
E;,? Z ce” Je ‘Rudu 4 o= J; Ridu (15)

t<T;<T
where R, =r, + (1-8)4,,is the default adjusted discount rate. Later, in chapter 2, we

use equation (14) and (15) to estimate yield to maturity for the make-whole callable bond
and non-callable bond.

In order to apply the above models of bond price, we need to specify the discount
rate that consists of interest rates, default and the call processes. For the spot interest rate,
as many studies (e.g. Duffee (1999), Duffie and Singleton (1997), Duffie et al. (2004),
Jarrow et al. (2010), etc.) use, we also consider two factors affine model:

Te =ap +S1:+ Syt (16)
where a,.is a constant, and the two state variables (s and s,;) indicate the slope and level
of the Treasury yield curve. It is assumed that each factor follows a square root process:

ds;r = ki (6; — s )dt + 0y [s;0dW;y, for i = 1,2
and under the equivalent martingale measure Q,

dsi,t = (Kiei — (Kfl' + T]l')Sl"t)dt + O-i'V/Si,tdWi,t’ fOT' I = 1,2 (17)
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where W, ., and V\A/i’t are independent Brownian motion under P and Q, respectively. n

indicates the market price of risk associate with V\A/i’t . It is well known that, with the
combination of (16) and (17), we can derive a closed-form solution for the default-free
zero coupon bond prices, in which the bonds’ yields are linear in s; s and sy;.
For the default spread ((1- )4, ), we assume that:
1- O-)Ad,t =ag + hg + ﬁdl(sl,t - §1) + Baz (Sz,t - §2) (18)
dhgr = 14(04 — hae)dt + og[ha AW,
dhg; = (kKq04 — (kg + N@hae)dt + og[hg AW, (19)

where 7, indicates the market price of risk associated with V\A/dvt. The constant term (ay)

is included to capture a situation where the default spreads for very high-quality firms are
positive, even at the short end of the yield curve. This situation could be caused by the

liquidity risk or incomplete accounting information. The second term (h; ) is included to
capture firm-specific risk that affects the default spread. More specifically, it possibly

captures fluctuation of the firm’s financial condition. The last component (ﬂm (Sl,t —

51) + Baz (Sz,t — §2)) is included to capture the dependence of corporate bond yields on

the variations in the default-free term structure factors.

For the call spread ((1-x)A4,,), we assume that:

1- k)Ac,t =ac+ he + ¢(M: S1,60S2,t hd,t) (20)
M
¢(M' S1,6:S2,t» hd,t) = Bt . (21)
dt

dhey = k. (0; — her)dt + op\[he AW,
dh., = (Kcec — (ko + Uc)hc,t)dt + e/ he e AW, ¢ (22)
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where 7 indicates the market price of risk associated with V\A/c't . The constant term (e, )

is included to allow a nonzero call spread, even for firms that have close to zero call risk.

The second term (h,,) is included to capture a firm-specific reason (e.g. restructuring

capital structure) to exercising the call option on the bond, and the third term (¢)
captures call spread because of the standard rational reasons for exercising the call option.
In the previous sub-section, we conclude that an issuer’s individual credit risk is the only

factor that affects the value of the embedded option.

For this reason, only ., (i> is involved in equation (21). The component (%)

ha,t dt
allows the effect of the make-whole premium on the call spread explicitly, and it also
allows for any possible nonlinear dependence of the call spread on firm-specific default
spread. Thus, this functional form <hi) implies a positive relation between the make-

d,t

whole premium and the call spreads, it also implies a negative relation between the firm-
specific default risk and the call spread. Further, unlike Jarrow et al. (2010), we do not
consider coupon rate because coupon rate in the make-whole callable bond is not likely to
affect the decision of exercising the option, as shown in the previous sub-section.

From the above model specification, the default and call adjusted discount rate is:

Ry=r,+0—-0)Agy + (1 —k)Ay

=ar t Syt St [ad + hgy + ﬁdl(sl,u - §1) + Baz (Sz,u - 52)]
M N N M

+ [ac + hc,u + Be1 h =A+ SiutSou Tt hd,u + Be1 h + hc,u
d,u du

where A = a, + ag + a, + Ba1S1 — BazS2 Sf,u =[1+ ﬂdl]sl,u

and s3,, = [1 + Bg2]s2,. We can have the dynamics of the translated factors;u :
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dsi, = Ki(Gl-* - sl-*,t)dt + o/ ’si*’tdWi,t
dsi,; = (k607 — (i; + Ui)SZt)dt + o/ /si",tdWi,t,fori =12

where 8 = 6;(1 + By4;) and o' = g;/1 + By;

The zero-coupon make-whole callable bond is:

T
V.(t,T,0,8,k) = EtQ Iexp (—f R, du)l
t

T T

= exp[—A(T —t)] EtQ lexp (—f s{,udu>l EtQ Iexp (—f sé‘,udu>l
T

-EtQ [exp <—j hz,udu>l -n(hd,u, t, T)

where (hg,, t,T) = E? [exp (— ftT (hd,u + B %) du)]
In standard analysis form,
Ve(t, T, 0,8,k) = exp[~A(T — )]exp{po (t) — Y1 ()57 0 = Y2 ()53, — e (e,
. n(hd,u, t, T)

where 1y (t) = o1 (t) + P2 (t) + Yo (1)

Z(eyi(T_t) — 1)
2y; + (k; + 1 + y) (eviT-9 — 1)

Yi(t) =

*

2K;0;
lpOi(t) = O_;zl 10g

1

2)/1 e%(Ki+17i+yi)(T—t)

2y + (i, + 1 + y)(e7iT-9 — 1)

] fori=1,2

2y, ekt ncHyoT-0 ]

2y. + (Kc + 1+ Vc)(eyC(T_t) -1)

2K.0,
l/)OC(t) = 0_2 lOg

C

Yi= J(Ki + ;)% + 2072andy, = /(K +1c)? + 202
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. R M .
There is no well-known close-form solution for z(h, ,,t,T) because hy, + B4 — s
' ! du

outside the standard affine family. However, Kimmel (2008) develops a method that
properly makes non-affine transformations of the time variable so that the power series
can be applied to derive close-form solutions. In our case, we can apply Kimmel’s

method allowing us to get a close-form solution for z(h, ,,t,T). The application of

Kimmel’s method is shown briefly in the Appendix A.
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1.3 Summary and Conclusion

First, this chapter analyzes the structural difference between a make-whole and a
traditional callable bond. From the analysis, the major difference between these two
bonds is that the value of the embedded option in the make-whole callable bond is
independent of Treasury rates. On the other hand, the value option in the traditional
callable bond is affected by Treasury rates and credit risk. This difference is due to the
unique feature of the option in the make-whole callable bond. Unlike the call price in the
traditional callable bond, the call price in the make-whole bond is not fixed. Itis
determined by the maximum value between par value and the present value of the bond’s
remaining payments. The discount rate in the calculation of the present value is the
prevailing comparable maturity Treasury yield plus a spread specified in the contract of a
bond, which is called the make-whole premium.

Second, based on the analysis, we construct a reduced form model for the make-
whole callable bond. Previously, Jarrow et al. (2010) develop a reduced form model for
the traditional callable bond; in which the option value is dependent on Treasury rates.
However, from our analysis, we argue that we cannot directly apply the model from
Jarrow et al. (2010) because of the unique structure of the make-whole callable bond.

The next chapter empirically investigates validation of our model with the
extended Kalman filter, and compares performance of our model with one of the model

from Jarrow et al. (2010).



CHAPTER 2: ANALYSIS OF A BOND WITH MAKE WHOLE PROVISION
CALIBRATION OF PARAMETERS: KALMAN FILTER

The main objective of this chapter is to see whether or not the reduced-form
model developed in Chapter 1 can be really fitted into real market data of make-whole
callable bonds. Additionally, we compare the performance of our model with the
performance of the model (hereafter JLLW model) from Jarrow et al. (2010). As stated
in Chapter 1, the major difference between our model and the JLLW model is that our
model assumes the embedded option value depends on the individual default factor,
while JLLW model assume the option value depends on the default-free interest rates.
Originally, the JLLW model is constructed for the callable bond whose purchase price in
embedded option is fixed. Therefore, we argue, that the JLLW model does not suit the
make-whole callable bond because the purchase price in the make-whole call option is
not fixed. Indeed, our analysis with the extended Kalman filter shows that JLLW does
not fit into make-whole callable bonds in our sample, while our model is reasonably fit
into the observed data of make-whole callable Bonds.

In order to investigate the validation of our model, we need a good estimation
methods. Our two candidates for econometric methods are the Kalman filter and the
Markov Chain Monte Carlo (MCMC). In Previous studies, Pearson and Sun (1994)
apply the Maximum Likelihood (ML) Method in order to estimate a two-factor CIR
model with the exact density that Cox et al. (1985) identify. State variables are inverted

from the pricing equation (Measurement system). The yield distribution can be obtained
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from the transition density and the Jacobian matrix of the transformation. One of the

restrictions in the ML method application is that the number of state variables should
match with number of securities with different maturities. It implies that the observations
are measured without an error. However, Jagannathan et al (2001) and Liu et al. (2000)
modify the ML process in order to deal with a situation where the number of securities is
greater than the number (N) of state variables. In their study, they assume that first N
yields are measured without error while the remaining measurement errors are joint
normal. Thus, the consequent disadvantage is that there is no clear way to choose certain
rates to be measured without noise. Another well-known drawback of this approach is
that the state variables could be negative, which is found in the study of Duffie and
Singleton (1997). This is a significant problem when it is dealing with non-Gaussian
Exponential Affine Model.

Another popular method used for estimating term-structural models is the Method
of Moments. Under the principle of GMM, Simulated Method of Moments (SMM) is
suggested by Duffie and Singleton (1993), and Efficient Method of Moment (EMM) is
defined by Gallant and Tauchen (1996). There are several advantages of using
SMM/GMM. First, moment estimates have the asymptotic properties of ML estimates.
Second, Moment methods are generally applicable for various non-linear multi-factor
models with high dimension parameters. Third, they allow a measurement error, which
implies that the number of securities can be greater than the number of state variables.
However, Duffee and Stanton (2004) show that EMM estimates are often seriously

biased for finite samples, or for the normal size of term-structure data observations. Even
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in a single-factor Vasicek setting, a Monte Carlo Simulation shows that EMM

performance diverges significantly from ML.

On the other hand, Kalam filter and MCMC methods have relatively less
restrictions. For this reason, they have gained popularity in the affine term-structure
literature. In this study, we compare the performance of these two methods in our case.
Our results on the performance of the two methods on risk-free term structure show that
the MCMC method does not work as well. The problem of using the MCMC method
arises from our risk-free term structure data. As Sogner (2009) demonstrates, this issue
with the MCMC method is that the parameter estimation becomes almost impossible, due
to ill conditioned transformation between the latent state variables process driving the
yields and the yield observed. Unfortunately, our Treasury data shows evidence of unit-
root behavior. Meanwhile, the extended Kalman filter works reasonably well on our risk-
free term structure data. Therefore, we apply the Kalman filter estimation to analyze the
make-whole callable Bonds in our sample. This chapter is organized as follows: section 1
contains a brief review of the Kalman filter and the MCMC methods, section 2 describes
our data set and procedures, section 3 compares our model with one from Jarrow et al.

(2010), and concludes with section 4.
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2.1 Kalman Filter and MCMC Method

2.1.1 Kalman Filter

The Kalman filter technique has recently gained popularity in the Affine Term-
Structure Literature as a result of the work by Chen and Scott (2003), de Jong (2000),
Lund (1997), Geyer and Pichler (1998), Duffee (1999), and Jarrow et al. (2010). This
approach is very useful in situations such as ours, where the underlying state variables are
not observable. The state-space form consists of the measurement system and transition
system. The measurement system represents the affine relationship (shown in Chapter 1)
between the zero-coupon rate and the state variables. On the other hand, the transition
system is an unobserved system of equations that describes the dynamics of the state
variables. By using this state-space form, the Kalman filter recursively form inferences
about the unobserved values of the state variables by conditioning on the observed
market zero-coupon rates. These recursive inferences are used to maximize a log-
likelihood function for searching the optimal parameter set. With the CIR model,
however, the transition density follows a non-central chi-squared distribution, which is
rather difficult to handle. Fortunately, Ball and Torous (1996) show that, over small time
intervals, diffusions arising from stochastic differential equations behave like the
Brownian Motions.

For this reason, in order to estimate the multi-factor CIR model, Chen and Scott
(2003) use this approach with quasi-maximum likelihood (QML) method by
approximating the transition density with normal density, where first and second
moments are given by those of the non-central Chi-square density. However, this

approximation often results in an inconsistent QML estimator. Duffee and Staton (2004)
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compare three methods (ML, EMM, and Kalman filter) for the term structural models.

Even though they found small biases in parameter estimation for the case of Kalman filter,
the degree of biasness is less, when compared to EMM. Therefore, they prefer to use the
Kalman filter over EMM in cases where the ML approach is not feasible to apply. In
addition to this inconsistent issue, there is another disadvantage to the Kalman filter in
that it could give negative state variables. In order to deal with this problem, Chen and
Scott (2003) propose to replace negative estimates of state variables with zero. In our
application of the Kalman filter, we also follow the proposal from Chen and Scott (2003).
2.1.2 Markov Chain Monte Carlo (MCMC)

This study also considers the MCMC approach, which not only achieves the
asymptotic efficiency of MLE, but also provides the finite-sample distribution. The
sampling-based MCMC method avoids the computation of a high-dimensional integral
necessary for obtaining the marginal distribution of parameters. At the meantime, it
retains the generality and simplicity of moment methods. It generates random samples
from complicated likelihood in any functional form. The random samples converge to
finite-sample distribution of MLE. Unlike other methods, MCMC provides a solution to
exact filtering of the unobserved state variables.

There are a number of sampling approaches in estimating marginal density. The
popular ones are Metropolis-Hastings (MH) Sampler and Gibbs sampler. The MH
sampler obtains the state of the chain at i+1 by sampling a candidate point yfrom a
proposal distribution g(.|X;) that depends only on the previous state X;and can have any

form, subject to regularity conditions ( Roberts, 1995). The most popular choice of the
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proposal distribution is normal with mean X; and fixed variance (i.e. Random Walk

proposal density).

The required regularity conditions for the proposal distribution are irreducibility
and aperiodicity. Irreducibility means that there is a positive probability that the Markov
chain can reach any nonempty set from all starting points. Aperiodicity ensures that the
chain will not oscillate between different sets of states. These conditions are usually
satisfied if the proposal distribution has a positive density on the same support as the
target distribution. The steps of the algorithm are outline below:

1. Set initial value for Xg

2. Generate a candidate point y from q(.|X;).

3. Generate U from a uniform (0,1) distribution

H(x)a(X; 17)

4. if U is less than min{l,
II(X;)ay | X)

}.then set Xi.1=y else set Xi+1= Xi.

5. Set i=i+1 and repeat steps 2 through 5.

In our application, we use MH with random walk proposal density because, as
commented by Liu (2007), there is no clear evidence of advantages using certain proposal
densities instead of random-walk process.

On the other hand, Gibbs sampler is the other popular choice. Although it can be
shown to be a special case of the MH algorithm, there are two eminent differences
between the Gibbs sampler and MH. First, a candidate point is always accepted. Second,
the full conditional distribution should be recognized, which makes the algorithm less

applicable. For these reason, it is applied for estimating measurement errors in our case.
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Recently, MCMC had been getting a lot of attention in financial econometrics

because of the advantage mentioned above. For example, Eraker (2001) demonstrates the
analysis of a one-factor Gaussian Short rate model and stochastic volatility models,

where Gibbs sampler and MH algorithm are applied. Mikkelsen (2001) analyzes a one-
factor Vasicek model with a cross-sectional data of both bond and swap rate, where the
market price of risk is estimated. Aguilar and West (2000) use MCMC and sequential
filter to estimate dynamic factor models with international exchange rates data. Certainly,
it is interesting to see whether it could perform better than Kalman filter in our case,
although Jaquier et al. (1994) shows that the Bayesian Markove Chain estimators

outperform estimators from moment and QML methods on stochastic volatility models.
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2.2 The Data and Estimation Procedure

In this section, the data is described, and the procedure of the estimation is
introduced. If possible, it is idealistic to estimate the default free term structure jointly
with corporate bonds from all firms in the sample. However, Duffee (1999) points out
that it is computationally infeasible because of the huge dimension of the problem.
Alternatively, it is possible to estimate the default-free term structure jointly with
corporate bonds from each individual firm, but the drawback of using this estimation is
that we could have different estimates of the risk-free process for different firms.
Therefore, first, this study estimates the default-free term structure from observed yields
on Treasury securities, and then, with estimated risk-free, we estimate the default process.
Finally, the call process is estimated with using estimated risk free and default process.
2.2.1 The Data

In order to estimate the default-free term structure, spot rates for 6-month and 12-
month Treasury bills, and 2-, 3-, 5-, 10-, and 30-year Treasury bonds. We collect these
spot rates from Bloomberg terminal, where they estimate the derived zero coupon yields
by stripping the par coupon curve. The maturities of the Treasury securities cover the
maturity spectrum of all corporate bonds used in our analysis. Corporate bond data are
obtained from Bloomberg terminal and Datastream. First, we collect the bond data from
Datastream because, as Chen et al. (2007) note, it is used to provide prices, which in turn,
uses Merrill Lynch as the data source for the price across all market makers for the
bonds. The remaining bond data in our sample is obtained from Bloomberg Generic

Quote, which reflects the consensus quotes among market participants.
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As Duffee (1999) and Jarrow et al. (2010) impose restrictions on their collection

on bond data, we also require a firm to have at least one non-callable bond and one make-
whole callable bond. Furthermore, in order to control liquidity and maturity premium on
the bond, we require maturities difference of two bonds are at least 24 months. Finally,
historical price of the both bond should be available for at least 24 months. After
imposing these restrictions, we have 38 firms in our sample. Table 1 shows the list of
firms in our sample, and their credit ratings. Our sample companies’ S&P rating is
mostly greater than BBB-. Additionally, rating distribution shown in Table 2 is very
similar to the sample in the study of Power and Tsyplakov (2008). However, distribution
of make-whole premium in our sample is much lower than the one in the sample from the
study of Power and Tsyplakov (2008).

Notably, Table 2 exhibits that yield-to-maturity difference between a make-whole
callable and non-callable bond (yield-to-maturity on make-whole callable bond minus
yield-to-maturity on non-callable bond) from a same firm is -0.084 % on average without
considering maturity difference. However, Power and Tsyplakov (2008) demonstrate, by
using Bloomberg’s Fair Market Yield with linear interpolation technique, that the yield
spreads between these two bonds are 5-7 basis points. Although Power and Tsyplakov
(2008) note that this yield spread measure likely underestimate the true yield spread, they
state that there exist very thin yield spreads between these two bonds. Furthermore, Elton
et al. (2001) find evidence that coupon rates have a significantly effect on bond’s yield
spread over comparable treasury rates. Therefore, we believe that -0.084 % vyield-to-

maturity is reasonable.
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2.2.2 The Estimation Procedure’

First, we will present the state-space form that our two econometric methods

(Kalman filter and MCMC) are based on. Let Y, = (Yy,..., Yy) b€ the yields on N
Treasury bonds, and S, ={s,,,s, }be the unobservable state variables that drive the

default-free term structure. Thus, measurement and transition system can be obtained as
follows:
Yp = ©(Sp) + &, Ep1(gr6f) = X
St =p+ TS 1+ v, B (V) = Q(Se-1)

The function @(S,) maps the two state variables into seven yields of Treasury Bonds. £

and Q(S, ) are diagonal matrices corresponding to the variances of the measurement

errors of yields and state variables, respectively. Thus, the conditional variance depends
upon the unknown values for S, , , which makes the estimator based on the Kalman filter
inconsistent, even though the simulation experiments from Duan and Simunato (1999)
show that induced biases are very small. Since we use seven Treasury bonds with
different maturities, and we assume two state variables for default-free process, X and

Q(S, ;) are 7 by 7 diagonal matrix, and 2 by 2 diagonal matrix, respectively. x, I and

Q(S, ;) in the transition system are defined as:

. <91(1 _ e—x1/12)> Fe (e_K1/12 0 )

0,(1 — e~¥2/12) 0 o —K2/12

0.
0i(St-1) = ki 'of [Si,t—1(9_K1/12 —e 2a/12) 4 31(1 - e—x1/12)2] fori=12

" The notation in this chapter follows those in chapter 1, which also closely follows the notation in Jarrow
et al. (2010).
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From this state-space form, we can apply the Kalman filter with the QML suggested by

Chen and Scott (2003).

For the MCMC application, since there is no well-known full-conditional density
for parameters in our case, we cannot apply the Gibbs sampler for estimating parameters
except for variances in measurement error. Even though Friuhwirth-Schnatter and Geyer
(1998) adopt a normal proposal density that linearizes around the old value and use an
approximation to normal conditional density to propose the candidates for state variables,
as commented by Liu (2007), there is no clear evidence of advantages using certain
proposal densities instead of random-walk process. This is the reason why we apply the
MH algorithm with random walk density proposal to estimate the parameters.

Furthermore, Gelman et al. (1996) suggest that the optimal variance is to adjust the

variance-covariance matrix by a coefficient, ¢ ~ 2.38/+/d , where d is the dimension of
the parameter set. By this adjustment, the optimal rule has an acceptance rate of about
0.25 for high-dimensional models. In our application, we also consider the suggestion
from Gelman et al. (1996).

In order to apply MH algorithm, we need to have information about target
distribution up to the constant proportionality. For the CIR-model, the exact transition

densities are known to be non-central chi-square densities. It can be expressed as below:

2
p(SelSe—1) = np(sj,t|5j,t—1) (1)
j=1
qj
—cq: “Kjatg. Sj,t 2 —K:A
P(Sj,t|5j,t—1) = ¢e cilssete e (e-rc'jms. > Ig; (ch'\/si,fe IS5
i t—1
2K; 2K;0;
where ¢; = ] =217

Gj2(1_e—KjAt)’ a; = sz -



38
where Iqj (-) is the modified Bessel Function of the first kind of order q;. If we assume

that the state variables are independent a priori, the prior p(So) is:

p(sj,o) = pg (S]-,O; q; +1, %) where pg(.) indicates gamma distribution density function.
The target density should have as much information about the joint posterior distribution
as possible. The joint posterior distribution p(S",H |YT) is given by Bayes’ theorem:
P(ST,H|YT) o p(Y"|ST,H)p(ST |H)p(H), where H is the parameter vector.

It consists of three densities: "complete data likelihood", p(S' |H), and the marginal

prior of the model parameter H. The first part, p(Y" |ST,H) is called “complete data

likelihood” that is the product of the observation densities:

7
p(elSy) = npN(yi;j;i,tlzii,t)
i=1
where py(.) is the normal distribution density function, and y; is the estimated yield from
the measurement system. The second part, p(S' | H), is obtained by the product of
transition densities (1) times the prior p(s;,). The last part is the marginal prior of the
model parameter H, which we assume the following un-informative priors:
p(8y) x ¢,p(x;) e ¢, p(0f)  1/0f,p(n;) o ¢ j=12
p(a) «x 1/aZ; i=12..7
The full conditional densities, p(H; |.) and p(s;, |.) are proportional to p(ST,H|YT).

Thus, our target distribution function is:

p(H;|-),p(sjc]-) < p(YTIST, Dp(ST|H)p(H) 2)
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However, since the state variables vary with time, we have to sample the state variables

at each time. Therefore, we follow suggestion from Friihwirth-Schnatter and Geyer

(1998). The target distribution functions for p(s;, |.)is:

1<t<T-1
p(Ye|Se, (s ¢|Sje—1, H)P(Sj 41500 Hy)

p(sje|*) p(YTIST'H)p(Sj,T|Sj,T—1;Hj) =T
For variance of the measurement errors, full conditional posteriors can be driven with
their un-informative priors (see Frihwirth-Schnatter and Geyer (1998)). For this reason,

we apply the Gibbs samplers for the variance of the measurement errors. The full

conditional posterior is:

T
82
p(cZ| ) = pic (Gé: T/2,1/2 Z(yi,t —Pir) )
t=1

From the setting above, we generate 200,000 iterations. After discarding the first
199,000, we analyze the results.

Then we begin to tackle estimating parameters and the state variables in the
default-free process, as done by Duffee (1999) and Jarrow et al. (2010), we take

{5..,S,, }as true variables that determine the default-free process to estimates the default

process of a particular firm. The measurement system and transition system in our

second step are:

Yoe = (Dd(hd,t: S1,t0 §2,t) + &gt Et_T(sd t€4 t) = Z d
h’d,t = Ugq (T) + Fd (T)hd,t—T + U Et_T(utué) = ‘Qd (hd,t—Tl T)

®, is an implicit function that maps the state variables into defaultable bond yields. The

function is implicitly given by numerically solving for the yield corresponding to the
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coupon price. Thus, we first calculate the theoretical bond price using the equation from

Chapter 1, given the values of §,, §,,, and hy . Second, we solve for the theoretical

yield to maturity (\?d’t ).

For application of Kalman filter, we need to linearize the measurement equation

around a predicted value of h, as follows:

004(hay)

Yd,t =— h + q)d(hd,tlt—l) - ohy
Jt

hat=hqt)t-1

hd,tlt—l + Eat

hat=hqt)t-1

where h, ., is the predicted value from the information up to time t-1. However, for the

application of MCMC, there is no need for this linearization, and its procedure is similar
to the one in the first step.
Once the default parameters and intensity are estimated, they are used to estimate

the call process with the following measurement and transition systems:

Yer = q)c(hc,t' hd,t'§1,t'§2,t) + & Et_T(gCtgé t) = Z c
hee = () + Te(Dher + & Ee_r(§:8) = Qc(hee—r.T)
u;, Ty, Q4 and Q_ in the transition equation is given by:

_ﬂ _TKj
1=y (1 ) - e
TKZ]' TK]' 0] TKZ]' 2
Qj(hj,t_T, T)= Kj_lajz it (e_? - e’T> + ?<1 - e‘ﬁ> forj=c,d

Next section presents empirical results based on the procedure stated in this section.
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2.3 Empirical Results

This section presents empirical evidence on the performance of our model
developed in Chapter 1. In addition, we compare the performance of our model with that
of the JLLW model. However, we first compare performances of two econometric tools
(the extended Kalman filter and MCMC method) on our Treasury data.

2.3.1 Performances of the Kalman Filter and the MCMC Method on US Treasury Data

Table 3 reports performances of the Kalman filter and the MCMC methods on our
US Treasury rates data. For simplicity, we exclude a term in equation (13) in Chapter 1.
It shows that both methods tend to overestimate default-free term structure based on the
mean errors in Table 3. However, estimated parameters from these two methods are
quite different. Based on Root Mean Square Errors (RMSE) for two methods, the
Kalman filter works much better than MCMC method. It is obvious that, from RMSE,
MCMC cannot capture default-free term structure behavior in the sample.

A problem of using the MCMC method arises from these risk-free term structure
data. As Sogner (2009) demonstrates this issue with the MCMC method, parameter
estimation becomes almost impossible, due to ill conditioned transformation between the
latent state variables process driving the yields and the yield observed, especially when
all yields from a different maturity Treasury are observed with noise . This issue is also
recognized in Piazzesi (2005). Unfortunately, our Treasury data shows evidence of unit-
root behavior, which is shown in Table 4 that reports results of the augmented Dickey
Fuller test. On the other hand, the extended Kalman filter works reasonably well on our
risk-free term structure data. Therefore, we analyze make-whole callable bonds with the

extended Kalman filter.



Table 3: Comparison between Kalman Filter and MCMC Performance on US Treasury

Rates Data

The instantaneous interest rate is: 1, = s; ¢ + Sz .

The dynamics are

dsic = ki(6; — si¢)dt + 0y [s AW, fori = 1,2 (True measure)
dsie = (k;0; — (i + 1;)si )dt + 0 [s;. AW, for i = 1,2 (Martingale Measure)
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US Treasury rates data from January, 2002 to March, 2011 are used. The standard errors

(STD) are computed assuming the Kalman filter linearization is exact. The estimates

from MCMC are based on 200,000 MCMC steps and 199,000 burn-in,
A. Estimation from Kalman filter

i Ki 6. o A
1 0.3238 0.0361 0.1139 -0.0938
STD 0.1202 0.0136 0.0104 0.1150
2 0.1527 0.0016 0.0300 -0.1292
STD 0.0398 0.0005 0.0105 0.0442
Bond Mean error
maturity (actual-fitted) Root mean square error
6 months -0.0017 0.0059
1 year -0.0022 0.0060
2 years -0.0027 0.0056
3 years -0.0025 0.0053
5 years -0.0012 0.0050
10 years 0.0006 0.0052
30 years -0.0006 0.0049
B. Estimation from MCMC
i K 0. o A
1 2.3843 0.0489 0.7148 -0.0742
STD 0.1594 0.0164 0.0067 0.0539
2 2.7881 0.0358 0.7169 -0.0763
STD 0.1432 0.0094 0.0079 0.0599
Bond Mean error
maturity (actual-fitted) Root mean square error
6 months -0.0456 0.0530
1 year -0.0504 0.0537
2 years -0.0498 0.0513
3 years -0.0473 0.0485
5 years -0.0422 0.0431
10 years -0.0343 0.0348
30 years -0.0286 0.0290
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Table 4: Unit Root Test for Treasury Rate Data

This table presents results of Unit-root test from monthly US Treasury rates data from
January, 2002 to March, 2011. ACFu1 is the first order autocorrelation coefficient of the
corresponding rate time series. ADF is the augmented Dickey Fuller test. The p-values
are presented below the corresponding Unit-root statistic.
Bond 6
maturity months 1year 2vyears 3years 5years 10years 30 years
AFC1 0.9945 0.9933 0.9901 0.9890 0.9900 0.9943  0.9977
ADF -0.6976 -0.7955 -1.0472 -1.1583 -1.1276 -0.8327 -0.4462
p-value 0.3944 0.3586 0.2664  0.2258  0.2370  0.3450  0.4864
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2.3.2 Extended Kalman Filter Results

Table 5 reports the parameter estimates for default-free term structure. The
results are very similar to those from Duffee (1999). It shows that first factor has a
higher long-run mean and faster speed of mean-reversion than second factor has. The
major difference between our results and the results from Duffee (1999) is a term.
Duffee (1999) set a term equal to -0.01, because the improvement in fit given by a
substantially lower value of a term was minimal in his sample. However, in our sample,
results from setting « term equal to -0.01 was worse than the results shown in Table 5
although we did not include these results in the table.

Based on the estimated default-free process, we estimate the default risk
parameters. Table 6 summarizes the estimation results with non-callable bonds for each
of the 38 firms. It shows that estimated Sdiand Bd2 is generally negative, which supports
the negative relationship between default spread and risk-free interest rates. The results
shown in Table 6 are generally similar to those in Duffee (1999) or Jarrow et al. (2010).
The major difference, again, is that we allow a term to be a negative value, which results
in bigger magnitude of estimated parameters, compared to those in Duffee (1999) and
Jarrow et al. (2010).%2 However, distribution of the credit spreads is very similar to those
in Duffee (1999) and Jarrow et al. (2010).

Finally, based on the estimated default-free and defaultable term structures, we
estimate the call process using a make-whole callable bond with similar maturity from
the same firm. Panel A in Table 7 shows results with using our model in Chapter 1, and

Panel B reports results with using the JLLW model. Panel A in Table 7 shows that

& Even though we did not include results from restricting « term to be positive, in our sample data, allowing
a term to be negative give noticeable improvement in fit.
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estimated Sc1 has a positive value, which implies that an individual default factor is

positively related to the call spreads. Besides, the estimated call spread has mean
(median) 16 basis points (11 basis point), which is reasonable, based on the study of
Power and Tsyplakov (2008). Meanwhile, Panel B in Table 7 reports that the estimated
[c2 has a value closed to zero, which implies that the second factors from the default-free
process is not related to the call spreads. Furthermore, the estimated Sc1 in panel B is
positive, which indicates positive relationship between the first factor from the default-
free process and the call spread. However, the call spreads in panel B has mean (median)
as 13.13% (6.64 %). Moreover, mean errors and RMSE is relatively very high, compared
with those in panel A. Therefore, it is hard to see that the JLLW model fit into our make-
whole callable bond data.

Results in Table 7 shows evidence that the value of embedded option in the make-
whole callable bond is dependent on the individual default factor, but there is no evidence
that the value of the embedded option is dependent on risk-free rates. Consequently, in
order to apply reduced-form model to the make-whole callable bond, the JLLW model
is not suitable. This is due to the model originally being constructed for the regular
callable bond whose purchase price in the embedded option is fixed. On the other hand,
our model developed in Chapter 1 is reasonably fitted to our sample data, because our
model includes the effect of an individual default factor on the call spreads.

These findings are more prominent in Table 8 that reports out-of-sample analysis.
In this analysis, we have five firms each of that has another make-whole bond. In order

to produce results in panel B in Table 8, we first extract the estimated parameters for the
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Table 5: Extended Kalman Filter Estimates of Default-Free Model

The instantaneous interest rate is
Tt =&+ S1¢+ Syt
The dynamics are
dsye = k;(6; — 51 )dt + 0y,/s;, AW, fori = 1,2 (True measure)
dsye = (k;0; — (i, + 1)s;¢)dt + 03,[s;,dW; ., for i = 1,2 (Martingale Measure)

US Treasury rates data from January, 2002 to March, 2011 are used. The standard errors
(STD) are computed assuming the Kalman filter linearization is exact.

I @ Ki 0. o .
1 -0.0012 0.3347 0.0359 0.0755 -0.0909
STD 0.0010 0.0341 0.0045 0.0039 0.0410
2 0.1973 0.0015 0.0327 -0.1663
STD 0.0456 0.0003 0.0041 0.0400
Mean error  Root mean
Bond Measurement (actual- square
maturity error fitted) error
6 months 0.0037 -0.0013 0.0057
STD 0.0003
1 year 0.0041 -0.0018 0.0057
STD 0.0008
2 years 0.0009 -0.0023 0.0052
STD 0.0001
3 years 0.0015 -0.0021 0.0049
STD 0.0002
5 years 0.0032 -0.0009 0.0047
STD 0.0003
10 years 0.0037 0.0008 0.0051
STD 0.0002
30 years 0.0036 -0.0007 0.0048

STD 0.0002
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Table 6: Summary of Extended Kalman filter Estimates of 38 Firms’ Defaultable Model

The instantaneous default-free interest rate is given by
Tt =a+S1:+ Syt
where s, ., and s, .are independent square-root processes. Firm j’s instantaneous default
risk is given by
(1 —0)Aqe = aqg + hay + Par (51 — 51) + Baz(s2¢ — 52)
where h . follows a square-root process that is independent of the profess for s; ;, i=1,2:

dhqe = Kq(0a — hae)dt + ogy/hg AW, (True Measure)
dhgy = (kq8q — (kg + Na)has)dt + 644/ha AW, (Martingale measure)

The estimation period is from January, 2002 to March, 2011 are used. RMSE indicates
the square root of the mean of the squared differences between the actual and fitted yields
to maturity on firm j’s bond. Mean Error is estimated by actual minus fitted yields to
maturity on firm j’s bond.

First Third

Quiartile Median Quiartile Average

a -0.0206 -0.0183 -0.0069 -0.0223

0 0.0149 0.0261 0.0416 0.0344

K 0.1695 0.3044 0.4979 0.3086

o 0.1298 0.1606 0.2426 0.1847

n -0.1917 -0.1661 -0.1317 -0.1588

Bd1 -0.4396 -0.1824 0.0261 -0.2282

Bd2 -0.9784 -0.6260 -0.1454 -0.5366

Spread 0.0054 0.0141 0.0268 0.0176
Mean

Error -0.0006 0.0000 0.0006 -0.0003

RMSE 0.0046 0.0067 0.0081 0.0063



48

Table 7: Summary of Extended Kalman Filter Estimates of 38 Firms’ Make-Whole
Callable Model

The instantaneous default-free interest rate is given by
n=a + Sit + Syt
where s; ., and s, .are independent square-root processes. Firm j’s instantaneous default
risk is given by
(1—-0)Age =ag+ hge+ ﬁdl(sl,t - §1) + Baz (Sz,t - §2)
where h, . follows a square-root process that is independent of the profess for s; ,, i=1,2.
For Panel A, firm j’s instantaneous call spread is given by

M
(1 - k)lc,t =a.+ hc,t + 1801 A
d,t

For Panel B, firms j’s instantaneous call spread follows Jarrow et al. (2010), which is
given by

B C
(1—Kk)Ace =ac+ hee + .Bc1(51,t - 51) + Be2 o
2.t

where h, . follows a square-root process that is independent of the prbfess for s;, i=1,2:

dher = Ke(6c — her)dt + og\[he cdW,, (True Measure)
dhe; = (kc0: — (ke + 1 )he)dt + 044/ AW, . (Martingale Measure)

M and C indicate make-whole premium and coupon rate respectively. The estimation
period is from January, 2002 to March, 2011 are used. RMSE indicates the square root
of the mean of the squared differences between the actual and fitted yields to maturity on
firm j’s bond. Mean Error is estimated by actual minus fitted yields to maturity on firm
j’s bond.

A. Model Dependent on Individual Default Factor

First Quartile  Median Third Quartile Average

a -0.0099 -0.0077 -0.0020 -0.0060

0 0.0079 0.0175 0.0494 0.0355

K 0.0105 0.0384 0.1503 0.1104

o 0.4181 0.4462 0.4919 0.4559

n -0.0110 -0.0104 -0.0096 -0.0103

e 0.00005 0.00009 0.00011 0.0025
Spread -0.0032 0.0011 0.0057 0.0016
Mean Error -0.0019 -0.0005 0.0001 -0.0009
RMSE 0.0047 0.0061 0.0087 0.0066

B. Model Dependent on Risk-Free Rates

First Quartile Median  Third Quartile Average
-0.0074 0.0027 0.0058 0.0014

0 0.0169 0.0337 0.1325 0.0960

R



Table 7 (continued)

K 0.2961 0.3959 0.4309 0.3635

o 0.3370 0.3663 0.4409 0.3943

n -0.0116 -0.0108 -0.0105 -0.0111

e -0.0167 0.1085 0.2894 0.2318

Be2 0.0000 0.0000 0.0000 0.0000
Spread 0.0365 0.0664 0.1584 0.1313
Mean Error -0.0009 0.0040 0.0136 0.0052
RMSE 0.0087 0.0173 0.0286 0.0182

49
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make-whole callable bond from each of those five firms from Table 7. With the

estimated parameters, we estimate yields-to-maturity for another make-whole callable
bond from the same firm.

Panel B in Table 8 shows that, based on the mean errors and RMSE, our model
outperforms the JLLW model except for the Emerson Electric case. Additionally, Figure
1 shows how well our model can explicitly capture the sequence of observed yields-to-
maturity movement of the make-whole callable bond. In Figure 1, it is explicitly shown
that there is difficulty in predicting the sequence of the observed yields-to-maturity in the
JLLW model except in the case of Emerson Electric. On the other hand, our model
consistently gives reasonable prediction, relative to the JLLW model. Along with Figure

1, results in Table 8 confirm the findings from Table 7.
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Figure 1: Out-of-Sample Performance of Our Model vs. Model from Jarrow et al. (2010)
This figure provide time series plots of yields to maturity based on market prices and estimated yield to
maturity under the two models of callable bond of five companies. Yield to maturity based on market price
is solid line, estimated yield to maturity under the model in this study is solid line with star, and estimated
yield to maturity under the model from Jarrow et al. (2010) is dashed line.
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2.4 Summary and Conclusion

This chapter investigates whether or not the reduced-form model developed in
Chapter 1 really fits into the real market data of make-whole callable bonds. To
implement our test, we need econometric tools. So, we first make a comparison between
the performance of the Kalman filter and the MCMC method on our US Treasury data.
The MCMC method perform poorly, compared to the Kalman filter. This could be due to
the evidence of our US Treasury data having near unit-root behavior. As Ségner (2009)
demonstrates this issue with the MCMC method, parameter estimation becomes almost
impossible, due to ill conditioned transformation between the latent state variables
process driving the yields and the yield observed, especially when all yields from a
different maturity Treasury are observed with noise. For this reason, we use the extended
Kalman filter estimate parameter value.

The results from the Kalman filter estimation suggest that the value of the
embedded option in the make-whole callable bond is dependent on individual default
factors, but there is no evidence that the value of the embedded option is dependent on
the risk-free rates. Consequently, in order to apply the reduced-form model to the make-
whole callable bond, the JLLW model is not suitable. This is because this model,
originally constructed for the regular callable bond, contains a fixed purchase price in the
embedded option. On the other hand, our model developed in Chapter 1 is reasonably
fitted to our sample data, because our model includes the effect of an individual default

factor on the call spreads.



CHAPTER 3: DEBT STRUCTURE AND CORPORATE YIELD SPREAD

This study examines the relation between proportions of short-term debt to the
firm’s total debt and corporate yield spreads. The determinants of credit spread have
been the central issue in corporate finance. Since the seminal work of Black and Scholes
(1973) and Merton (1974), a large theoretical literature on pricing of corporate bonds has
been introduced. Theoretical models of credit spreads can be categorized as either
structural or reduced-form models of default. There are well-known differences between
these two models. Unlike structural models, reduced form models do not consider a link
between default and firm value explicitly. In the reduced form model, default time
cannot be predicted through the firm's value, rather it is the first jump governed by the
exogenous jump process.® Structural models assume that a firm defaults when the value
of its debt exceeds its value of assets.’® From this assumption, it is perceived that an
increase in a firm’s leverage ratio intensifies default risk, which consequently, increases
yield spread. This relationship has often been found in previous empirical studies by (e.g.
Colin-Dufresne et al. (2001), Campbell and Taksler (2003), and Chen et al. (2007) etc.).

However, Colin-Dufresne et al. (2001) and Huang and Huang (2003) indicate that
credit risk is not enough to explain corporate-Treasury yield spread. Subsequently, many

factors, other than credit risk, determine the spread, which have been introduced. Tax

° For more details on reduced-form models, see Jarrow and Turnbull (1995), Lando (1998), Duffie and
Singleton (1999), and Duffee (1999) etc.

19 For more details on structural models, see Geske (1977), Smith and Warner (1979), Longstaff and
Schwartz (1995), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001) etc.
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premium and Risk premium (Elton et al., 2001), idiosyncratic equity volatility (Campbell

and Taskler, 2003), liquidity premium (Longstaff et al., 2005, and Chen et al., 2007), and
firm-specific information (Kwan, 1996) are popularly recognized in this field. Among
these factors, firm-specific information has been left out in recent studies. It could be
because, as Campbell and Taksler (2003) notes, bond rating contemporaneously
incorporating observed firm-level accounting characteristics, and rating agencies may
also absorb market information through the observed yield spread when assigning a credit
rating.

Meanwhile, Diamond (1991) introduces liquidity risk as the risk of a borrower
being forced into inefficient liquidation when refinancing is not available.'! In Diamond's
(1991) model, choosing short-term debt over long-term debt has both benefit and cost.
Firms using short-term debt could successfully lower debt’s interest rate if positive
information is revealed at refinancing. However, these firms are also exposed to
refinancing risk if the revealed information is negative; lenders may refuse to refinance
and force a firm into premature liquidation. Sharpe (1991) and Titman (1992) also
suggest that unfavorable news about a borrower may arrive at the date of refinancing,
causing investors not to extend credit or to raise the default premium on new debt.
Barclay and Smith (1995) and Mark and Mauer (1996) find evidence in support of the
Diamond (1991) model.

According to Diamond’s argument, the firm holding the larger proportion of
short-term debt in its debt structure is more vulnerable to the unforeseen negative event.

Accordingly, bond investors should require more compensation for investing in bonds

1 In this paper, liquidity risk indicates the risk that Diamond (1991) introduces, and liquidity premium
indicates the premium that is caused by bond’s degree of liquidity costs in the market.
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from a company with higher proportion of short-term debt in its debt structure.

Furthermore, he also argues that a firm with unestablished credit history (an unrated
company) relies more on short-term debt because it has limitation to access the public
market. A firm with speculative grade is more likely to use long-term debt because it is
not able to afford liquidity risk. A firm with investment grade that has relatively less
growth opportunity is more likely to use short-term debt because it could lower its cost of
debt. Empirical evidence of this nonlinear relation between bond ratings and a company’s
proportional short-term debt is often found in the studies mentioned above. On the other
hand, Eom et al. (2004) studies the performance structural models. In their study, they
found that, generally, models tend to severely overstate credit risk of firms with high
leverage or volatility, but suffer from a spread under-prediction problem with safer bonds.
For this reason, we argue that, possibly, portion of unexplained spread from the structural
form is liquidity risk.

Therefore, this study attempts to investigate whether or not this liquidity risk is
priced in the bond market with controlling generally accepted yield spread factors such as
credit rating, maturity, amount outstanding, tax effect, equity volatility, and liquidity
premium. In other words, an investor in the bond market realizes this liquidity risk, and
requires premium for taking this risk. Our study finds that, for investment grade bonds,
the issuers’ fraction of short-term debt has a positive effect on the cost of using their
bonds. However, for speculative grade bonds, we cannot conclude on any relationship
between liquidity risk and corporate bond yields. That could be partially due to the

limited data source for speculative grade bonds.
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This chapter is organized as follows: brief review of previous literatures in

Section 1, variables and data are presented in Section 2, statistical methodology and our

results are presented in Section 3, and Section 4 summarizes and concludes this chapter.
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3.1 Literature Review

Theoretical models of credit spreads can be categorized as either structural or
reduced-form models of default. Reduced form models do not explicitly consider a link
between default and firm value. In the reduced form model, default time cannot be
predicted through the value of a firm, rather it is the first jump governed by an exogenous
jump process. For this reason, the model is better for fitting observed credit spreads rather
than offering insight on the fundamental determinants of the credit spread.

On the other hand, the structural model explicitly relates default to firm value
through the contingent-claim approach, which is introduced by Merton (1974). Since the
introduction, many studies (e.g. Geske (1977), Smith and Warner (1979), Longstaff and
Schwartz (1995), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001) etc.)
have extended or upgraded the structural models. Under the structural form, changes in
credit spreads could be predicted by changes in spot rate, leverage, and volatility of firm
value. Additionally, changes in slope of the yield curve is often considered because
Litterman and Scheinkman (1991) find that the two most important factors driving the
term structure of interest rates are level and slope of the term structure. Therefore,
rationally, if changes in slope of the Treasury curve make the expected future short rate
change, it implies that changes in slope of the Treasury curve affect changes in credit
spread. Changes in macroeconomic condition is also often considered, as Fama and
French (1989) find that credit spreads widen when economic conditions are weak.

The empirical evidence of the negative relationship between corporate yield
spread and treasury yield is presented by Duffee (1998) even though this relationship is

weaker in the case of non-callable bond than callable bond. Furthermore, Collin-



60
Dufresne et al. (2001) generally confirm that factors mentioned above are significant in

determining changes in corporate yield spread except for the slope of Treasury curve.
However, their notable finding is that the residuals from their regression are highly cross-
correlated, and, from principal components analysis, they are mostly driven by a single
common factor. Although they cannot provide a sufficient explanation to the single
common factor, they do suggest that monthly spread changes are principally driven by
local supply/ demand shocks that are independent of both credit risk factors.

Additionally, with the use of information in credit default swaps, Longstaff et al.
(2005) find that the majority of the corporate spread is caused by default risk. They also
found a significant non-default component that is time varying and strongly related to
measures of bond-specific illiquidity. This liquidity premium is also found in the study
of Chen et al. (2007) with a relatively large bond dataset. Likewise, with the use of
structural models, Hung and Hung (2003) find that credit risk is only a small portion of
observed corporate yield spreads for investment grade bonds. Although credit risk
accounts for significantly higher portion of the observed yield for speculated grade bonds,
there is still a significant portion that cannot be explained by credit risk.

Thus, researchers have been looking for factors that the structural models could
not capture. One of the popular factors is bond-specific liquidity, as mentioned above.
The other factors could be firm-specific information and tax effect. Kwan (1996)
examines the correlation between the returns on individual stocks and the yield changes
of individual bonds issued by the same firm. In this study, he empirically finds a
negative and contemporaneous correlation. From this finding, he concludes that

individual stocks and bonds are driven by the same firm-specific information. This
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negative correlation is also confirmed by the study of Campbell and Taskler (2003).

However, a notable finding in their study is that idiosyncratic firm-level volatility can
explain as much cross-sectional variation in yields as can credit ratings while controlling
for liquidity premium and factors from the structural form.

On the other hand, Elton et al. (2001) introduce tax premium and risk premium in
order to explain the portion of the corporate yield spread that default premium alone
cannot capture. They argue that tax effects occur because the investor in corporate bonds
is subject to state and local taxes on interest payments, whereas government bonds are
not subject to these taxes. Consequently, investors should require more compensation for
investing in corporate bonds because they have to pay extra expenses (i.e. tax expenses).
They also argue that there could be risk premiums for systematic risk, if changes in the
required compensation for risk affect both corporate bond and stock market. They found
empirical evidence that a significant portion of the unexplained yield spread is caused by
tax and risk premium.

As mentioned in the introduction, this paper attempts to make a linkage between
Diamond’s liquidity risk and the corporate yield spread. According to Diamond’s
argument, a firm with a larger proportion of short-term debt to its debt structure is more
vulnerable to the unforeseen negative event. We believe that investors should require
additional compensation for this liquidity risk. Therefore, this paper examines the effects
of proportion of short-term debts to its debt structure on the corporate yield spread with
controlling factors previously considered. To the best of our knowledge, no one has
investigated this relationship directly. Next section presents data and variables used in

this study.
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3.2 Data and Variables®?

3.2.1 Data

Data for monthly yield spreads and bond characteristics is collected from
Datastream. If Datastream has the available Standard and Poor’s rating for a bond, this
is where we collect the rating information, otherwise, the rating information is from the
Fixed Income Securities Database. Furthermore, the bonds that do not have any credit
rating information from either Datastream or Fixed Income Securities Database are
excluded. For all firm-level data, Compustat Annual Industrial database is used. In order
to minimize any survivorship bias in the yield spread, data for both active and inactive
firms is collected. The firm-level data is collected in the year prior to the yield spread
measurement. Finally, in order to measure liquidity costs for bonds, we use the modified
LOT model proposed by Chen et al. (2007). The most popular measure of liquidity costs
is the bid-ask quotes for an individual security, but in bond data, these bid-ask quotes are
very limited. Therefore, in this study, we use an alternative method, the LOT model.
Appendix C shows how we measure the liquidity costs from the LOT model. In addition,
statistically insignificant estimation is excluded. The time frame of our data set is from
2003 to 2010, because of the availability of bond data beginning from 2003.
3.2.2 Variables

Since this study examines the effect of proportional short-term debt on corporate
yield spread, our main variable is proportional short-term debt (Short-Term Debt). In this
study, short-term debt is the amount of debt that will mature within a short-period (one or

two years) of time. As stated above, if a firm has a higher proportion of short-term debt,

12 procedure of collecting data the choice of yield spread determinants in this study closely follow one in
Chen et al. (2007), Elton et al. (2001) and Campbell and Taksler (2003).
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it means that the firm is more vulnerable to unforeseen, negative, future shock. For this

reason, the expected relation between proportion of short-term debt and corporate yield is
positive.

Additionally, in order to control the tax effect in the study of Elton et al. (2001),
coupon rate (Coupon) is used. According to Elton et al. (2001), an investor of a bond that
pays higher coupon is subject to a larger tax expense. We also include equity volatility to
control a firm’s systematic and idiosyncratic risk. The equity volatility (k) is calculated
using 252 daily returns for the year prior to the corporate yield measure. Moreover, size
of a firm (Size) based on 1980 dollar value and market to book value of a firm (Market to
book) are included in our regression. We take the logarithm of total assets to obtain a
firm’s size. Market to book ratio is the market value of a firm divided by book value.
Market value of the firm is calculated by total assets minus total equity plus market value
of common equity plus preferred stock liquidating value. The definition of market value
of equity is stock price times the number of shares outstanding. We also include four
accounting variables (Pre-Tax, Income to sale, Book-leverage, and Leverage). The
variable, Pre-Tax, indicates pretax interest coverage ratio, and Income to sale is operating
income divided by net sales. We have two different leverage measures: book-leverage
and leverage. Book-leverage is total debt divided by book value of total assets, and
leverage is total debt divided by market value of a firm. It is generally perceived that a
high level of the first two variables means healthy firms, and that leads us to conclude
that these variables are negatively related to corporate yield spread. High levels of the
second two variables indicate that firms are highly levered, so an investor requires more

compensation for bonds issued by the firms.
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For pretax interest coverage ratio variable, four groups are used following the

procedure outline in Blum et al. (1998) in order to capture the possibility that particularly
low pretax interest coverage convey more information about the risk of an issuer than
high interest coverage. For this reason, dummy variables are created for each group to
indicate whether pretax interest coverage is less than 5, between 5 and 10, between 10
and 20, or greater than 20. In addition, bond-specific information (Credit rating,
Maturity, and Amount) is also included. The variable, credit rating, is numbered from
one (AAA rated bond) to 22 (D rated bond). Maturity is life remaining to a bond’s
maturity date, which is expressed in years. Amount is a logarithm of amount of bonds
outstanding. Furthermore, we consider three macroeconomic variables associated with
yield spread. The variables are the one-year Treasury rate (T-note), the difference
between the 10-year and 2-year Treasury rates (Term Slope) for the slope of the yield
curve, and the difference between the 30 days Eurodollar and 3-month Treasury bill rate
(EuroDollar) that is the control for other potential liquidity effects on corporate bonds
relative to Treasury bonds.

Finally, we directly obtain corporate yield spread (Yield spread) from Datastream.
Datastream calculates the difference between the bond yield and the yield of a
comparable maturity treasury bond. Table 9 shows the summary statistics of key
variables (i.e. Yield spread, Liquidity, Short-term debt, Leverage, and Credit rating).
Yield spread, liquidity, short-term debt, and leverage varies widely as evidence by the
quartile distribution, and their standard deviations. However, it is noticeable that the
distribution of credit rating is clustered in investment grade region. That is simply

because majority of our bonds in the sample are investment grade bond. Total number of
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bond is 576, and 520 out of these bonds is investment grade bond, and the remaining is

speculative grade bond. The number of firms in our sample is 140.

Table 10 shows key variables across each key variable. Panel A in Table 10
shows that yield spread and liquidity is positively related to credit rating, which is
expected. Intuitively, low rated bonds have higher yield and liquidity costs. It also
displays that fraction of debts that will mature in one or two years is negatively related to
credit ratings, which is consistent with previous literature in debt maturity. Diamond
(1991) argues that speculative grade companies more likely use long-term debt because
they cannot afford liquidity risk. Later, Barclay and Smith (1995), Mark and Mauer
(1996), and Johnson acquire this relationship. Additionally, from panel B in Table 10,
leverage is shown to be negatively related to the fraction of debts that matures in one or
two years. This is also consistent with previous literature in debt maturity. According to
Diamond (1991), speculative grade companies or companies that have a big growth
opportunity are likely to have a high leverage ratio. Moreover, those companies cannot
afford liquidity risk, so they tend to avoid using short-term debts.

However, there is no clear linear relation between the fraction of debts maturing
in one or two year and liquidity cost or leverage from panel C and D in Table 10.
Nevertheless, panel E exhibits negative relation between the yield spread and the fraction
of debts. This could be due to the negative relation between leverage and the fraction of

debt.
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Similarly, those observed in Table 10 can also be found in Table 11. Liquidity

cost, leverage, and credit rating is significantly positively correlated to corporate bond
yield spreads. On the other hand, the fraction of debts maturing in one or two year is
significantly negatively correlated to the yield spread. However, the correlation between
the fraction of debt and yield spread or liquidity cost is not clear.

Table 10 and 11 show that our sample data set to be valid, but they cannot answer
our central question of whether bond investors require compensation for the liquidity risk.
To answer this question, it is crucial to control the level of leverage, credit rating, and

liquidity. The next section seeks to answer our questions with regression.
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Table 11: Pearson Correlation among Key Variables

This table shows Pearson correlation among key variables. The yield spread is the
difference between the bond yield and the yield of a comparable maturity treasury bond
as determined from Datastream. Short-term debtl or short-term debt 2 indicates fraction
of total debt that mature within one year or two year respectively. Book-leverage or
leverage indicates total debt divided by book value of total assets or market value of a
firm. Market value of the firm is calculated by total assets minus total equity plus market
value of common equity plus preferred stock liquidating value. The definition of market
value of equity is stock price times the number of shares outstanding. Credit rating is
numbered from one (AAA rated bond) to 22 (D rated bond). bp stands for basis points.

Yield Short-term  Short-term
spread(bp)  Liquidity(%) debt1(%) debt2(%)  Leverage(%)

Liquidity(%)  0.4262*

Short-term

debt1(%) -0.0378* 0.0047

Short-term

debt2(%) -0.0234 -0.0402* 0.9159*

Leverage(%) 0.2423* 0.3367* -0.1614* -0.2517*
Creditrating 0.4144* 0.3786* -0.1511* -0.1908*  0.4203*

* indicates correlation is significantly different from zero at the 0.05 level or higher
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3.3 Regression Models and Results

First, we generate results from the simple regression models as below:
Yield Spread;; = fo + piShort-term debt;, + [,Liqudity;; + f3Credit rating;; +
BaMaturity;, + B,Coupon;, + BsT-note, +BsTerm slope;; + B,Eurodollar; +
PgVolatility;, + Polncome to Sale;; + f1oSize + f11Market to Book;; +

BizAmount + Bi3Pre-Tax; + BisLeverage;: + €; (3.1)
where the subscript “it” refers to bond i and year t and Short-term debt refers to the
fraction of debts maturing in one or two year. Liquidity indicates liquidity costs
measured by the LOT model. Credit rating is a bond’s rating that is numbered from one
(AAA rated bond) to 22 (D rated bond). Maturity is life remaining to a bond’s maturity
date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year
Treasury note rate respectively. Term slope and Eurodollar are the difference between
10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the
3-month T-bill rate respectively. Volatility is the equity volatility for each issuer, and
Income to sale is operating income divided by sales. Size is logarithm of each issuer’s
total asset (based on 1980 dollar value). Market to book is Market value divided by book
value of each issuer. Amount is logarithm of amount of bonds outstanding. Pre-Tax
indicates pre-tax interest coverage ratio that is group into one of four categories
according to Blume et al. (1998). Leverage is either book value of leverage (total
debt/total asset) or market value of leverage (total debt/ market value of each issuer).
Finally, Yield spread is the difference between the bond yield and the yield of a

comparable maturity treasury bond as determined from Datastream.
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Table 12: Yield Spread and Fraction of Debt Maturing in One or Two Year

Yield spread is the difference between the bond yield and the yield of a comparable
maturity treasury bond as determined from Datastream. Short-term debt refers to the
fraction of debts maturing in one or two year. Liquidity indicates liquidity costs
measured by the LOT model. Credit rating is a bond’s rating that is numbered from one
(AAA rated bond) to 22 (D rated bond). Maturity is life remaining to a bond’s maturity
date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year
Treasury note rate respectively. Term slope and Eurodollar are the difference between
10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the
3-month T-bill rate respectively. ok is the equity volatility for each issuer, and Income to
sale is operating income divided by sales. Size is logarithm of each issuer’s total asset
(based on 1980 dollar value). Market to book is Market value divided by book value of
each issuer. Market value of the firm is calculated by total assets minus total equity plus
market value of common equity plus preferred stock liquidating value. Amount is
logarithm of amount of bonds outstanding. Pre-Tax indicates pre-tax interest coverage
ratio that is group into one of four categories according to Blume et al. (1998). Leverage
is market value of leverage (total debt/ market value of each issuer), and Book leverage is
total debt divided by total asset. T-statistics are presented in parentheses.

Variable

Short-term debtl 0.8473 * 1.7068 il
(1.92) (3.59)

Short-term debt?2 0.4206 0.7836 fakad

(1.35) (2.36)

Liquidity 22.948 *** 0.8608 **% 23.352 ***09.0995 falahed
(10.05) (4.32) (9.98) (3.86)

Credit rating 40.4816 *** 27.700 **%k 425819 *** 30.525 falahed
(13.95) (8.35) (14.19) (8.87)

Maturity -7.4237  *** 95086 *** -45404 *** -6.416 falahed
(-4.45) (-6.19) (-2.69) (-4.12)

Coupon 614.34 ***  637.7181 *** 618.09 ***  641.07 falaied
(15.36) (15.91) (15.3) (16.05)

T-note -97.466  *** -78.6782 *** -02,9458 *** 745560 ***
(-8.44) (-7.68) (-7.9) (-7.11)

Term slope -119.26  *** -01.321  *** -101.49 *** 74,943  ***
(-6.21) (-5.37) (-5.19) (-4.31)

Eurodollar 61.249 ***60.797 *** 64,148 **k 63.9741  ***
(10.01) (11.33) (10.31) (11.65)

OE 6.8119 14,9150 *** 8.8589 17.58107 ***
(1.13) (2.80) (1.44) (3.22)

Income to Sales -53.957 * -192.28  *** 23,7712 -210.62  ***

(-1.72) (-3.06) (-0.75) (-3.26)
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Size 7.9817 -18.443 14.3643 -14.6874
(0.51) (-1.29) (0.90) (-1.01)
Market to Book  56.998 Fxk o 32.892 *x% - -1.8076 -19.585 *
(3.94) (2.58) (-0.13) (-1.66)
Amount -71.907  *** -62.972 -77.5085 *** -68.064  ***
(-2.80) (-2.46) (-2.99) (-2.67)
Pre-Tax D1 -330.576 *** -96.111 -294.246  *** -86.4237
(-4.65) (-1.11) (-4.06) (-0.97)
Pre-Tax D2 -314.137 *** -89.622 -311.968 *** -109.557
(-4.40) (-1.03) (-4.29) (-1.22)
Pre-Tax D3 -278.997 *** -58.384 -299.690 *** -96.957
(-3.90) (-0.66) (-4.12) (-1.07)
Pre-Tax D4 -257.411  *** -30.7576 -297.310 *** -85.675
(-3.50) (-0.34) (-3.96) (-0.92)
Leverage 9.5080 *x*x - 8.1827 kel
(10.00) (9.75)
Book-leverage 1.6442 * 0.75098
(1.94) (1.02)
N 2953 2850 2953 2850
R-square 0.1596 0.1180 0.1530 0.1143

An *, ** or *** signifies significance at the 0.1, 0.5 or 0.001 level, respectively
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Table 12 shows statistical result from this model. When the regression includes

market value of leverage, only fraction of debts maturing in one year is significantly
positively related to corporate yield spreads at 10% level. However, when the book-
value of leverage is included, both fraction of debt maturing in one and two year is
significantly related to the yield spreads at 1% and 5% level respectively. On the other
hand, compared with coefficients on the other key variables (leverage, credit rating,
liquidity costs), the magnitude of the estimated coefficient on the short-term debt is
relatively small. According to Table 12, if a firm increases fraction of debt maturing in
one year by 10 %, its corporate yield spread is increased by about 85 basis points.

The other coefficients on the other variables have, generally, expected signs
except for the coefficient of maturity. Campbell and Taksler (2003) note that, for
investment grade bonds, longer maturities are often found to be associated with increased
yield spreads, from which we expected positive sign. However, Helwege and Turner
(1999) argue that, for speculative grade bonds, better quality firms are able to issue bonds
with longer maturities, from which we can expect negative sign. For these reasons, we
may expect that factors can have different effects on the yield spread from two different
groups (i.e. speculative and investment grade bonds). Therefore, we perform two
regression separately based on two grade group, even though our sample for speculative
bonds is very limited.

Table 13 shows the statistical results based on the bond grade. Indeed,
coefficients on maturity have the expected signs. For investment grade bonds, the
fraction of debt maturing in one or two year is significantly positively related to the yield

spread. Like the magnitude of estimated coefficient on the fraction of debts from Table
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12, the estimated one on the fraction of debts from Table 13 is relatively small, compared

with those on leverage, liquidity, and credit rating. On the other hand, for speculative
grade bonds, the fraction of debt is significantly negatively related to the yield spread,
which is unexpected. Since speculative grade companies have relative higher degree of
asymmetric information than investment grade companies. If speculative grade firms
rely on short-term debt, they need to refinance more often. Whenever they refinance,
they need to reveal the prospects of their projects. This activity tends to reduce the
problem of asymmetric information. Therefore, choosing short-term debt can be a
tradeoff between liquidity risk and asymmetric information. From this interpretation, for
speculative grade bonds, it could have the negative relationship. However, later in this
study, we also generate two-stage least square estimation, in which the fraction of debt is
positively related to the yield spread for the speculative bonds. In addition, we have so
limited source of speculative grade bond data. Therefore, we save speculative grade
bond case for future research.

So far, at least, for investment grade bonds, evidence from our regression shows
the positive relation between the fraction of debt and the yield spread. However, it is
possible that, if issuer’s bond has high yield spread or bid-ask spread, then the issuer
might choose short-term debt to reduce cost of using debts. For this reason, there might
be endogeneity problems. In order to control this problem, these three equations are

considered:

Yield spread;; = o+ BiShort-term debt;, + [,Liqudity;; + f;Credit rating;; +
PaMaturity; + foCoupon;, + fsT-note,+P¢Term slope; + f7Eurodollary +
PBsVolatility;: + Polncome to Sale;s + f10Size; + f11Market to Book;, +
BizAmount + Bi3Pre-Tax; + f14Lleverage; + €; (3.2)
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Table 13:Yield Spread and Fraction of Debt Maturity Based on Bond Grade

Yield spread is the difference between the bond yield and the yield of a comparable
maturity treasury bond as determined from Datastream. Short-term debt refers to the
fraction of debts maturing in one or two year. Liquidity indicates liquidity costs
measured by the LOT model. Credit rating is a bond’s rating that is numbered from one
(AAA rated bond) to 22 (D rated bond). Maturity is life remaining to a bond’s maturity
date, which is expressed in year. Coupon and T-note refers to coupon rates and 1-year
Treasury note rate respectively. Term slope and Eurodollar are the difference between
10-year and 2-year Treasury rates, and the difference between 30-day Eurodollar and the
3-month T-bill rate respectively. o is the equity volatility for each issuer, and Income to
sale is operating income divided by sales. Size is logarithm of each issuer’s total asset
(based on 1980 dollar value). Market to book is Market value divided by book value of
each issuer. Market value of the firm is calculated by total assets minus total equity plus
market value of common equity plus preferred stock liquidating value. Amount is
logarithm of amount of bonds outstanding. Pre-Tax indicates pre-tax interest coverage
ratio that is group into one of four categories according to Blume et al. (1998). Leverage
is market value of leverage (total debt/ market value of each issuer), and Book leverage is
total debt divided by total asset. T-statistics are presented in parentheses.

Variable Investment Grade Bonds Speculative Grade Bonds

Short-

term

debtl 0.4645 ook -8.2338 ok
(3.11) (-2.61)

Short-

term

debt2 0.3338 koK -4.6100 *

(2.60) (-1.64)

Liquidity — 16.5454 *** 154964  *** 9.6978 -6.5086
(7.09) (6.72) (1.55) (-1.06)

Credit

rating 10.9805 ***  10.2857  *** 53.8570 **k 46.2926 ok
(9.97) (9.21) (3.01) (2.45)

Maturity 0.1078 0.1093 -29.8936  *** -32.4168  ***
(0.67) (0.66) (-3.25) (-3.29)

Coupon 5.7143 ok 4.5300 1343.648 *** 1526.4 ok
(1.96) (1.51) (11.55) (13.05)

T-note -82.9826 ***  -76.306 ok -302.6150 *** -273.35 ok
(-19.02) (-17.62) (-4.12) (-4.13)

Term

slope -103.887 ***  -92.0405 *** -401.0706 *** -342.6950 ***
(-14.08) (-12.54) (-3.29) (-3.21)

Eurodollar 59.8164 *** 6£1.1238  *** 175.3504  *** 191.249 R

(24.08) (24.99) (4.15) (4.61)



Table 13 (continued)
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OE 15.9468 *** 18.0190  *** 13.6155 -2.7878
(7.08) (7.99) (0.32) (-0.07)

Income to

Sales 76.5599 ***  .130.121 *** 364.1044 43.0817
(-5.25) (-5.81) (1.48) (0.09)

Size -2.0062 -4.6255  ** 178.3527 **  318.20 *kk
(-0.90) (-2.03) (2.06) (3.37)

Market to

Book -10.1889 ** -14.605 Hokk 18.4884 152.75
(-2.41) (-3.35) (0.14) (1.20)

Amount -6.2847  *** 53070 ok -209.4144 ** -152.04 *
(-3.52) (-2.89) (-2.44) (-1.75)

Leverage 3.9481 *Ax o 3.3593 oAk 18.6111 **k% 159517 *oAx
(12.43) (10.26) (4.24) (3.99)

Pre-Tax

D1 658.451 *** 396.791 *okk -29.5354 115.6311
(-11.06) (10.01) (-0.13) (0.49)

Pre-Tax

D2 -647.955 ***  409.312 *k**k  .16.6428 115.0091
(-10.91) (10.48) (-0.07) (0.46)

Pre-Tax

D3 -641.612 ***  414.779 *k*%k - 203.1597 300.8723
(-10.88) (10.67) (0.68) (1.07)

Pre-Tax

D4 -633.581 ***  430.343 k*k o 264.1271 325.1196
(-10.83) (10.88) (0.84) (1.112)

N 2535 2488 418 362

R-square  0.5904 0.5705 0.4060 0.5175

An * ** or *** gignifies significance at the 0.1, 0.5 or 0.001 level, respectively
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Short-term debt;; = [, + pYield Spread;; + B,Credit rating;; + 3Volatility;, +
B4Size, + PsMarket to book;, + fgLeverage;; + [;Asset maturity;, +
BsAbnormal earning;; + Bolnvestment tax credit; + [1oLoss carryfoward;; +
BiiRegulated firm; + €; (3.3)

Liquidity;; = fo + p1Yield spread;; + B,Credit rating;; + f3Maturity; +
BsAmount;; + BsBond volatility;: + €; (3.4)
Constructing equation (3.3) generally follows study of Johnson (2003). Asset maturity is
the book value-weighted measure of asset maturity. The maturity of long-term assets is
measured as gross property, plant, and equipment (PP&E) divided by depreciation
expense, while the maturity of current asset is measured as current assets divided by the
cost of goods sold. Asset maturity is obtained by the weighted sum of these two maturity
measures where the weight for the long-term asset is gross PP&E divided by total assets,
and the weight for current assets is current assets divided by total assets. Abnormal
earning is the difference between operating income per share in current and previous year
divided by the current share price. We also include three dummy variables for this
equation. Investment tax credit or loss carryforward indicate whether an issuer has
investment tax credit or net operating loss carryforwards. Regulated firm refers to
whether or not an issuer is regulated firm. Finally, bond volatility is included in equation
(3.4). Like equity volatility, bond volatility is estimated using 252 daily bond prices.
Table 14 and Table 15 show the results from two-stage least square estimation.
Table 14 shows results from all sample data, and Table 15 exhibits results from two
sample groups (i.e. investment grade and speculative grade). As the Table 14 and 15
shows, the potential endogeneity bias does not affect the relation between the fraction of
debt and the yield spread. Still, the magnitude of coefficients on the fraction of debt is

relatively small, compared with those on other key variables. However, a notable result



79
is that, for speculative grade bonds, the fraction of debt is significantly positively related

to the yield spread, unlike the results in Table 13. Yet, given that the regression for the
fraction of debt has low R-square and small sample size, and that the estimated
coefficients for the fraction of debt in Table 13 and in Table 14 have different signs, we
cannot draw a conclusion about speculative bonds. Rather, we save speculative bond
case for the future research.

Lastly, we also conduct regression tests to see whether or not change in the
fraction of debts maturing in one or two year is one of determinants. Furthermore,
econometrically, possible benefit is that differencing the time series removes
autocorrelative influence. For this test, we exclude all dummy variables, coupon rate,
amount of outstanding, and maturity. Additionally, only investment grade bonds are
considered in this test. Specifically, the regression is stated as:

AYield spread; =
Bo + f1AShort-term debt; + B,ALiqudity; + [3ACredit rating; + f,AMaturity; +
BsAT-note;+fsATerm slope; + [,AEurodollar; + BgAVolatility; +

PoAlIncome to Sale; + [19ASize; + f11AMarket to Book; + [1,APre-Tax; +
BiszALeverage; + €; (3.5)

where APre-Tax refers to yearly change in pre-tax interest coverage ratio. The results are
presented in Table 16.

As expected, the results in Table 16 are, generally, similar to those in Table 13.
Notable difference is that changes in Market to book ratio and size have the biggest
impact on the change in the yield spreads for investment grade bonds. On the other hand,
change in leverage is has a small impact on the yield spread change, compared with

change in market to book ratio and size. This could be that, for investment grade bonds,
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along with volatility of an issuer’s equity, size and market to book ratio more precisely

capture issuer’s risk change than the leverage does.
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Still, Table 16 shows that the fraction of debt maturing in one or two year is

significantly positively related to the yield spread change, but has a small impact on the
yield spread change, compared with the other key variables.

Additionally, to control for potential endogeneity bias, we also conduct a
simultaneous equation model for investment grade bonds, which is given as:

AYield spread; =
Bo + f1AShort-term debt; + B,ALiqudity; + [3ACredit rating; + f,AMaturity; +
BsAT-note;+fsATerm slope; + [;AEurodollar; + BgAVolatility; +

PoAlIncome to Sale; + [19ASize; + f11AMarket to Book; + [1,APre-Tax; +
BiszALeverage; + €; (3.6)

AShort-term debt; =
Bo + B1AYield Spread; + [,ACredit rating; + [3AVolatility; + [,ASize; +
PsAMarket to book; + fgALeverage; + f,AAsset maturity; +

PsAAbnormal earning; + €; (3.7)
ALiquidity; =
Bo + B1AYield spread; + f,ACredit rating; + +f3;ABond volatility; + €, (3.8)

The results, presented in Table 17 exhibits, are similar as those in Table 16.
Table 17 supports that our tests on changes in the fraction of debts maturing in one or two

year are robust to potential endogeneity bias.
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Table 16: Yield Spread Change Determinants

Annual changes in all variables are examined. Yield spread is the difference between the
bond yield and the yield of a comparable maturity treasury bond as determined from
Datastream. Short-term debt refers to the fraction of debt maturing in one or two year.
Liquidity indicates liquidity costs measured by the LOT model. Credit rating is a bond’s
rating that is numbered from one (AAA rated bond) to 22 (D rated bond). Coupon and T-
note refers to coupon rates and 1-year Treasury note rate respectively. Term slope and
Eurodollar are the difference between 10-year and 2-year Treasury rates, and the
difference between 30-day Eurodollar and the 3-month T-bill rate respectively. ok is the
equity volatility for each issuer, and Income to sale is operating income divided by sales.
Size is logarithm of each issuer’s total asset (based on 1980 dollar value). Market to
book is Market value divided by book value of each issuer. Market value of the firm is
calculated by total assets minus total equity plus market value of common equity plus
preferred stock liquidating value. Pre-Tax indicates pre-tax interest coverage ratio.
Leverage is market value of leverage (total debt/ market value of each issuer), and Book
leverage is total debt divided by total asset. T-statistics are presented in parentheses.

Variable Yield spread Yield spread
Short-term debtl 0.8771 il
(3.30)
Short-term debt2 0.4523 wx
(2.31)
Liquidity 17.6155 faleka 12.7272 Fxk
(7.78) (5.84)
Credit rating 5.9304 * 2.5435
(1.93) (0.86)
T-note -41.49289 ikl -37.4717 faleka
(-8.83) (-8.33)
Term slope -37.6882 ikl -31.0768 kel
(-4.91) (-4.22)
Eurodollar 25.7260 faleka 27.4225 falahed
(9.06) (10.09)
OE 16.9727 faleka 17.5494 falahed
(6.72) (7.27)
Income to sales 31.18222 -181.5882 kel
(1.37) (-3.56)
Size -109.1593 faleka -75.9436 falahed
(-6.18) (-4.36)
Market to book -113.6548 faleled -116.5531 fakalel
(-12.16) (-13.24)
Leverage 1.5110 e 1.0271
(2.03) (1.50)

Pre-tax interest -0.6575 0.1459



Table 16 (continued)

(-1.44) (0.32)
N 2159 2159
R-square 0.3581 0.3725

An * ** or *** gignifies significance at the 0.1, 0.5 or 0.001 level, respectively
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3.4 Summary and Conclusion

This chapter examines the association between issuer’s debt structure and yield
spreads. Previous literatures in debt structure ( Barclay and Smith (1995), Mark and
Mauer (1996), and Johnson (2003) etc.) study relationship between the fraction of debt
maturing in short-period and level of firm’s leverage. Most of the previous studies
attempt to see evidence whether or not choice of debt structure mitigates firm’s under-
investment. An underlying assumption of the studies is that choice of debt structure is a
manager’s decision. However, to the best of our knowledge, no one has investigated that
investor’s reaction to the manager’s decision.

Specifically, we investigate whether or not an investor requires compensation for
the liquidity risk. Diamond (1991) introduces liquidity risk as the risk of a borrower
being forced into inefficient liquidation when refinancing is not available. According to
Diamond’s argument, the firm holding the larger proportion of short-term debt in its debt
structure is more vulnerable to the unforeseen negative event. Consequently, it will
increase the firm’s risk.

Through our tests in this chapter, we find that, for investment grade bonds, the
results consistently show that the fraction of debt maturing in one or two years is
positively related to the yield spreads. Although the magnitude of its impact on the yield
spreads are relatively smaller, compared with the other key factors (e.g. leverage, credit
rating, and liquidity cost), we argue that this positive relation is evidence of liquidity risk.

However, for speculative grade bonds, we cannot draw any conclusion because

the sign of the relationship is not consistent through the tests, and because our sample
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data for the speculative bond is very limited. Therefore, we save speculative bond case

for future research.
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APPENDIX A: APPLYING KIMMEL MODEL (2008)

Kimmel (2008) shows how to approximate conditional moments and contingent
claim prices in a large class of non-affine diffusion models with the usage of power series.
However, the convergence properties of such power series could be poor for long time
horizons, which means that a power series representation of asset prices may converge
for short time period, and then diverge for longer time period. Therefore, in order to
avoid this issue, he also develops the method of time transformation, in which variable
representing time is replaced by a non-linear function of itself. His method uses three
techniques. We begin by applying change of independent variable and change of
dependent variable to derive a simplified PDE form, which he calls “Canonical Form”.
Then, we need to apply change of time variable to ensure that there are no occurrences of

divergence. In this section, we will show how to apply Kimmel’s method to evaluate:

Q ! M
t U

We can also express the above equation as partial differential form:

on or 1 0°m

M
3 [Ka64 — (Kdnd)hd] + 502 tha— onZ [hd + Bes E] T

With the terminal condition,m(hy, T,T) = 1.

Following Kimmel (2008), the changes of variables are:

y(ho) = (22), 70, he) = () 5 (8, y )

where Ais (T-t).

The canonical form PDE is:
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The equation (A.1) is the standard affine form from Kimmel (2008), so we can apply the

theorem 5 in his study with 7 = 1 — e =22 andz = v/Zbeb2y.

Finally, we can obtain:

1—/1+8a 1+V/1+8a
b zZ \ 2 -2z

h(A,y) = e ~(z+a) [(E) : w,(1,2) + (%) : w, (1, Z)]

owq(t,z) _ 1-V1+8adwy(r,2) | 1 9%w,(1,2)

where ot 2 0z 2 0z2

d 0w, (1,2) _ 1+V1+8a dw,(1,2) lazwz(‘r,z)

an ot 2 0z 2  0z2

According to Kimmel (2008), w,(z,z) is everywhere zero. Therefore, power series is

applied to only w,(z, z). The first few terms of this series are:
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where y =
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APPENDIX B: PERFORMANCES OF THE EXTENDED KALMAN FILTER

In this section, performance of the extended Kalman filter is investigated using
data generated by Monte Carlo simulation. For simplicity, we exclude a from each
equation (from (16) to (22)) in Chapter 1. First, we generate simulated data from the
default-free, defaultable, and make-whole callable models that are found in Chapter 1.
We apply the extended Kalman filter to estimate parameters for each model. Our
estimated parameters are much closer to the true parameters that are used for Monte
Carlo simulation, which lead us to conclude that the extended Kalman filter works well
for term structure models.

For the default-free model (equations (16) and (17) in Chapter 1), estimated
parameters in Table 11 in Chapter 2 is considered true parameters, when we generate 100
monthly observations. Like our sample data in Chapter 2, 0.5, 1, 2, 3, 5, 10, and 30 year
zero coupon Treasury rates are considered. We also add random observation errors that
are normally distributed with a zero mean and a constant variance to the zero coupon
yield. We apply the Kalman filter to data generated from each iteration of Monte Carlo
simulation, and repeat this procedure 500 times. Therefore, we obtain 500 sets of
estimated parameters. Panel A in Table B shows the performance of the extended
Kalman filter on the default-free model. The mean values of the estimated parameters
are much closed to the true values. However, root mean square errors (RMSE) for ¢; and
o, are unacceptably large.

For the defaultable model (equations (18) and (19) in Chapter 1), an average value
of each parameters in Table 12 in Chapter 2 is considered true parameters, when we

generate 100 monthly observation. Additionally, average value of coupon rate in Table
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12 is used. As we assume in the empirical analysis (Chapter 2), we also assume that both

state variables and the parameters of the default-free model are known. The rest of the
procedures are basically same as the procedures of the default-free model. Panel B in
Table B shows the performance of the extended Kalman filter on the defaultable model.
The mean values of the estimated parameters are close to the true values, but RMSE for
Baz 1s very large.

For the make-whole callable model (equations (20)-(22) in Chapter 1), we also
assume that both the state variables and the parameters of the default-free and defaultable
models are known. Average value of coupon rate and make-whole premium is used. The
rest of the procedures are same as the procedures of the defaultable model. Panel C in
Table B exhibits the performance of the extended Kalman filter on the make-whole
callable model. Again, then mean value of the estimated parameters are closed to the true
value. However, RMSE for ¢ is a little large.

From Table B, even though, for each case, it shows one or two large RMSE for
estimated parameters, the extended Kalman filter performs well. This results supports

that the extended Kalman filter suits our study.
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APPENDIX C: LOT MODEL PROPOSED BY CHEN, LESMOND, AND WEI (2007)

In this study, due to the limited availability of bid-ask spread data, we use the
alternative liquidity measure suggested by Chen et al. ( 2007). Originally, Lesmond et al.
(1999) introduce this LOT model for estimating liquidity for equity markets. In addition,
Lesmond et al. (2004) show that this method works well, as evidenced by an 80%
correlation between the LOT estimation and the bid-ask spread plus commissions. In
2007, Chen et al. extend this model to corporate bonds to test for the influence of bond
liquidity on corporate yield spreads.

An underlying assumption of this model is that the marginal informed investor
trades when his value of information exceeds transaction costs. In other words, there is
no trade when the value of information is less than the transaction costs. Therefore, we
observe zero returns. Furthermore, from the assumption, measured return (i.e. observable
return) does not reveal the true return (i.e. unobservable return) of the marginal trader
until transaction costs are exceeded. In like manner, since the investor must be
compensated for his transaction costs, the measured return partially reflects the true value
of the information.

From these logics, there must exit thresholds for buy-side or sell side traders.
Chen et al. (2007) assert that a difference between buy-side and sell-side threshold be
able to capture transaction costs for an individual security. To estimate these costs, it
starts with the return generating process that is given as:*®

R+ = Bj1Duration;; * ARs; + fBj;Duration; , * AS&PIndex; + € ; (C.1)

3 For more detail about theoretical derivation of the return generating process, please see Chen et al.
(2007).
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where the term R;’, represents the unobserved “true” bond return for bond j and day t, the

term ARy, is the daily change in the 10-year risk-free interest rate, and the term
AS&PIndex; is the daily return on the Standard & Poor’s 500 index. Following Jarrow
(1978), all risk coefficients are scaled by duration. In addition, from the assumption, the
relation between the measured return and the true return can be stated as:

Rjt =Rj: — i (C.2)
where R; . is the measured return, a, ; is the effective buy-side cost, and a ; is effective

sell-side cost for bond j. With combining (C.1) with (C.2), we have:

R+ = Bj1Duration;; * ARs; + fBj;Duration; . * AS&PIndex; + € ; (C.3)
where:
Rj,t = R;,t — 0(1‘]- ............................................. |f R]*,t < 0(1‘]- and 0(1‘]- < 0
Rj,t S | R UPRTRR if al,]- < R;,t < 0(2,]-
Rj,t = R;,t — 0(2,]- ............................................. if R;,t > 0(2,]- and 0(2,]- >0

The log-likelihood function for this model can be stated as:

LnL =Y, Ln 2)1/2 21 2 > (Rjt+ay,j — Bj1Duration; , * AR¢ — fj;Duration;;
AS&Plndext)2 + an Zz% (Rjt+ay; — BjsDuration; * ARg, —
Bj;Duration; , x AS&PIndex;)* + Yo Ln(®,; — ®y ), (C.4)

where ®; jindicates the cumulative distribution function for each bond-year evaluated
at(a; j — Bj1Duration;, x AR¢, — Bj;Duration;, * AS&PIndex,)/o;. ¥,(regionl),
Y..(region2), or Y.o(region0) represents the negative nonzero measured returns, the
positive nonzero measured returns, or zero measured returns respectively. By using
maximum likelihood estimation, we estimate two risk coefficients, buy-side and sell-side
costs. The difference between a, ; and «; ; is the round-trip transaction costs that is

used as liquidity measure in chapter 3.
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LOT model requires only daily price of bonds, so it is a great alternative to

measure liquidity costs, especially when bid-ask data is limited. However, LOT model
has a practical limitation. If the sequence of bond prices does not have any zero returns or
if more than 85 % of the daily returns over the year are zero, the LOT model cannot be
used to estimate liquidity costs.

For the purpose of validation of these estimated liquidation costs, we exclude
statistically insignificant values of estimated parameters. The distribution of the two risk
coefficients are summarized in Table C. As shown in Table C, the interest rate
coefficient is negative on average, which is expected. However, some positive values of
this coefficient could be explained in that, moving from high-grade to low-grade bonds,
this relationship is expected to become weaker (Schultz (2001)). Additionally, from our
sample period, the coefficient on the market return factor is negative on average.
Generally, we can expect a positive value of this coefficient if positive equity returns
have a positive effect on the bond return. However, if positive equity returns are caused
by capital flows from the corporate bond market, negative coefficient value is expected.

Therefore, there is no clear interpretation on the value of this coefficient.
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Table C: Distribution of Coefficients from Liquidity Measure

This table summarizes the distribution of coefficients on the risk-free rate factor, Br_pona.
and market return factor, Srqy,ity,. The coefficients are estimated using Maximum

Likelihood Estimation.

,BT—bond ,BEquity
Mean -0.0003 -0.0015
Standard
Deviation 1.8405 0.0206
Min -40.6396 -0.5205
First Quartile -22.3591 -0.0081
Median -0.0182 -0.0041
Third Quartile 0.3292 0.0185
Max 24.2783 0.3712

N 5087 5087



