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ABSTRACT

PENGCHENG LIU. A system for computational analysis and reconstruction of
3D comminuted bone fractures. (Under the direction of DR. ANDREW WILLIS)

High energy impacts at joint locations often generate highly fragmented, or com-

minuted, bone fractures. A leading current approach for treatment requires physi-

cians qualitatively to classify the fracture to one of four possible fracture severity

cases. Each case then has a sequence of best-practices for obtaining the best pos-

sible prognosis for the patient. It has been observed that qualitative evaluation of

fracture severity by physicians can vary signi�cantly which can lead to potential mis-

classi�cation and mis-treatment of these fracture cases. Major indicators of fracture

severity are (i) fracture surface area, i.e., how much surface area was generated when

the bone broke apart and (ii) dispersion, i.e., how far the fragments have rotated and

translated from their original anatomic positions. Work in this dissertation develops

computational tools that solve the bone puzzle-solving problem automatically or semi-

automatically and extract previously unavailable quantitative information for these

indicators from each bone fragment that are intended to assist physicians in making

a more accurate and reliable fracture severity classi�cation. The system applies novel

three-dimensional (3D) puzzle-solving algorithms to identify the fracture fragments in

the CT image data and piece them back together in a virtual environment. Doing so

provides quantitative values for both fracture surface area and dispersion that reduce

variability in fracture severity classi�cations and prevent mis-diagnosis for fracture

cases that may be di�cult to qualitatively classify using traditional approaches. This

dissertation describes the system, the underlying algorithms and demonstrates the

virtual reconstruction results and quantitative analysis of comminuted bone fractures

from six clinical cases.
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CHAPTER 1: INTRODUCTION

Accurately classifying the severity of highly comminuted bone fractures can be

challenging for orthopedic physicians and surgeons. Research in [1] states that ac-

curate determination of the initial fracture severity as a�orded by fracture severity

classi�cation is the single most important prognostic determinant of long-term joint

health subsequent to trauma. Due to the importance of fracture severity classi�cation,

many researchers [2, 3, 4, 5, 6] have investigated this problem where their common

goal is to de�ne methods capable of predicting fracture severity from quantitative

measurements derived from medical image data.

This dissertation de�nes a new system for 3D image and surface analysis that

enables users to perform a virtual 3D reconstruction of a comminuted bone fracture

from a 3D CT 1 image of the fractured limb. Our system accomplishes this task as a

sequence of three steps:

1. Fragment surfaces are extracted from CT images,

2. Each fragment surface is further decomposed into anatomically meaningful sub-

regions,

3. Fragments are pieced back together in a virtual space with a puzzle-solving

algorithm.

Using this process, the system produces a virtual reconstruction of an unbroken bone

from the 3D CT of the fractured limb. The work described in this dissertation develops

computational tools that solve the puzzle-solving problem automatically and semi-

automatically and extracts previously unavailable quantitative information from each

1See �CT� in Glossary
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bone fragment that is intended to assist physicians in making a more accurate and

reliable fracture severity classi�cations.

Accurate reconstruction of a patient's original bone anatomy is the desired out-

come for surgical treatment of a bone fracture. Treatment goals include achieving

expeditious reconstruction, and avoiding Post-Traumatic OsteoArthritis (PTOA2).

When there is involvement of an articulating joint such as the hip, knee, or ankle,

accurate reconstruction of the bone joint surface is critical to avoid PTOA. Yet, this

task can be quite challenging when dealing with highly comminuted fractures. This

is due to the fact that often dozens of individual fragments are involved and they are

sometimes displaced signi�cantly from their original anatomic position and scattered

in a complex geometric pattern.

This dissertation chooses to focus on clinical cases of tibial plafond fracture3(see

�gure 1.1c and �gure 1.1d). This type of fracture typically occurs as a result of

high-energy trauma such as ballistic penetrations, vehicular accidents, or falls from a

height. This dissertation chooses tibia fracture cases for several reasons:

1. The complex characteristics of this kind of fracture can often create di�culties

for physicians in making accurate and reliable fracture severity assessments,

2. Tibia fractures often involve the ankle joint which is typically di�cult to treat,

3. The quality of reconstruction is a critical factor for good prognosis,

4. PTOA is directly related to the accuracy of reconstruction,

5. Tibia fractures are important in military con�icts because it is a common com-

bat injury.

1.1 Structure of this Dissertation and Terminology

The content of this dissertation is organized as follows: Chapter 1 introduces the

dissertation topic, states the problem to be addressed (see 1.4) and describes the

2See �PTOA� in Glossary
3See �tibial plafond fracture� in Glossary
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contribution (see 1.5) of this work to the state-of-the-art. Chapter 1 also introduces

important background information on the current treatment of fractures (see 1.2)

and fracture severity metrics (see 1.3). Chapter 2 describes the system interface and

compares this system with other commercial products for image-based analysis of

orthopedic injuries. Chapter 3 details the underlying algorithms that are applied

by the system including a detailed description for their implementation and related

previous work (see 3.1 - 3.5). Chapter 4 details the implementation of the 3D puzzle

solving algorithm, which is the core contribution of this work. Chapter 5 describes 3D

reconstruction results produced by using the system for six clinical cases and provides

quantitative analysis of these results. Chapter 6 details a user study conducted to

evaluate the e�ectiveness of the current system. Chapter 7 summarizes the work

and the current state of the system and details future investigations needed that will

further improve the system.

Some terminology used throughout this document is de�ned here to simplify the

discussion. In this dissertation, we denote the 3D CT image obtained from patient's

fractured limb as the fracture CT image, and the 3D CT image obtained from the

patient's healthy limb as the intact CT image. We denote the outer surface of bone

excluding articular surface as the periosteal surface, the smooth surfaces at the end of

bones used for joint movement are articular surface, and the fracture surface of a bone

are the surfaces generated when the bone broke apart. Finally, we denote unbroken

bone surface extracted from the intact CT image as the intact template, and the bone

fragment surfaces extracted from the fracture CT image as bone fragments.

1.2 Current Treatment of Bone Fractures

Orthopedic surgery is concerned with conditions involving the musculoskeletal sys-

tem. Orthopedic surgeons use both surgical and non-surgical means to treat muscu-

loskeletal traumas, sports injuries, degenerative diseases, infections and tumors. In

many cases, developments in orthopedic disciplines were brought on by technological
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advances from other �elds including physics, chemistry, mechanical engineering, bi-

ological engineering, material engineering, and electrical engineering, etc. Examples

of new technologies include X-ray (see �gure 1.1d) and computed tomography (CT,

MRI4, PET5)(see �gure 1.1b) which provide means for obtaining an image of a sub-

ject's internal anatomy and empower orthopedic surgeons to perform less invasive and

more accurate surgical treatment. As imaging technology and computer algorithms

developed, computer-aided tools for surgical pre-operative planning became feasible.

When a patient is treated in the hospital, di�erent imaging equipment such as

X-ray, �uoroscopy 6, CT imaging and MRI, are used to obtain a detailed view of the

injury. Trained physicians use the image information and their experience to estimate

the severity of the fracture. This is accomplished by classifying the fracture to an

adopted fracture severity metric system. Given the severity classi�cation, surgical

treatment methods are planned and executed by experienced orthopedic surgeons.

After the surgery, patients receive physical therapy and rehabilitation to facilitate

recovery from the injury. In some cases, post-operative imagery is collected during

the recovery period. Surgeons and rehab specialists evaluate the collected information

and guide the patient through the healing process.

This dissertation introduces a software system that allows users to virtually re-

construct the patient's original bone anatomy from 3D CT images of the patient's

bone fracture. Using digital reconstruction, quantitative values for several key fac-

tors directly linked to fracture severity can be computed using the analysis tools of

the system. These quantitative values are intended to help physicians improve the

objectivity and accuracy their assessments of the fracture severity. The system also

provides 3D visualizations of the reconstructed bone anatomy which allows views of

the reconstruction not possible from CT images. Possible applications for the system

4See �MRI� in Glossary
5See �PET� in Glossary
6See ��uoroscopy� in Glossary
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(a) (b)

(c) (d)

Figure 1.1: (a) A diagram of the ankle joint anatomy. (b) a CT scan of a patient
is being performed, an imaging computer reveals a 3D image of the body's interior.
(c) is a CT image that shows an example of a tibial plafond fracture. (d) shows two
planar (2D) X-rays of a tibial fracture that have been reconstructed.
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include fracture severity assessment, fracture surgical planning and virtual training

for orthopedic surgeons.

1.3 Fracture Severity Metrics

Several methods exist for estimating fracture severity, their goal is to determine the

extent and type of fracture injury. Severity metrics for fractures allow physicians

to relate new cases to prior cases having similar attributes. This allows physicians

to draw upon past experience to determine a treatment that will provide the best

possible prognosis. Most metrics require the physician to classify new cases to a class

of similar cases. Using this classi�cation, surgeons determine their treatment plan,

estimate the recovery time and attempt to predict the likely level of function for the

injured limb after recovery.

Because the fracture severity classi�cation directly in�uences the surgeon's choice

of treatment and the patient's anatomical and functional outcome, quantifying the

severity of a fracture becomes a crucial step in the diagnosis and prognosis of an injury.

It can alter the surgery and treatment planning and is more likely to be advantageous

in di�cult cases such as highly comminuted fractures. Due to the importance of the

severity metrics, orthopedic surgeons and researchers have been pursuing methods to

improve their accuracy [4].

1.3.1 Observer-Based Approaches

This section describes several traditional observer-based approaches for fracture sever-

ity classi�cation in detail. Existing observer-based methods for assessing fracture

severity consist of four stages:

1. Choosing a fracture classi�cation system.

2. Capturing the images of the fracture.

3. Observing these images.

4. Based on the observations in step 3 and the training and experience of the

physician, the best-�t classi�cation for the fracture case is selected.
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In practice, severity metrics de�ne distinct fracture classes based on the bone, lo-

cation (part of the bone), number of fragments, skin wound over the break, and

orientation of fracture line. Numerous fracture classi�cation systems have been pro-

posed in orthopedics [7, 8, 9, 10], but only a small number of them have become

widely accepted in practice, such as the Müller AO Classi�cation of fractures [11],

Salter-Harris classi�cation [12], and Schatzker classi�cation [13]. Yet, none of them

have withstood rigorous validation tests [14]. The following sections describe these

three most popular classi�cation systems.

1.3.2 Müller AO Classi�cation System

The Müller AO classi�cation system describes the fracture pattern as characterized by

the location (bones and segments), degree of comminution and type of displacement.

It is thought to be the most comprehensive system for the classi�cation of fractures

[11]. The system de�nes a numbering scheme based on the anatomical location of

a fracture and bone segments, i.e, portion of the long bone, as is shown in �gure

1.2. Each major long bone and each speci�c anatomical region, as well as each bone

region, are named and numbered. The fractures of each bone segment are then

divided into three types (A, B, C) with a further sub-division into three groups and

sub-groups, therefore generating a three-tier hierarchical classi�cation system. The

classi�cation system consists of 27 sub-groups for each bone segment. Since each

long bone consists of three bone segments, this creates a total of 81 subgroups. See

�gure 1.3 for an example classi�cation of a fracture of the end segment into three

fracture groups. Figure 1.4 shows a step-by-step example that demonstrates how a

diaphyseal7 fracture can be classi�ed by answering a sequence of questions.

1.3.3 Salter-Harris Classi�cation System

The Salter-Harris classi�cation system targets growth plate fractures, i.e., fractures

that occur at the ends of long bones where cartilage tissue grows. This system includes

7See �diaphyseal� in Glossary
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Figure 1.2: AO classi�cation system: the image for numbering the anatomical loca-
tion of a fracture in three bone segments [11]. (proximal =1, diaphyseal =2, distal =
3)

�ve injury types (See �gure 1.5):

1. Slipped: a fracture through the physis8 without involvement of the bone of the

epiphysis9 or metaphysis10.

2. Above: a fracture that lies above the growth plate.

3. Lower: a fracture in the lower part of the growth plate.

4. Through: a fracture that extends through the growth plate.

5. Rammed: a growth plate that has been rammed or crushed.

This classi�cation system has seen widespread use since 1963. It was later re�ned

by physicians when they recognized that the original �ve types were insu�cient to

categorize all growth plate injuries. To address this issue the following four additional

rare types of growth plate injuries were added to the original �ve:

8See �physis� in Glossary
9See �epiphysis� in Glossary
10See �metaphysis� in Glossary
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Figure 1.3: AO classi�cation system: an example of AO classi�cation of the end
segment, nine fractures range from easy to di�cult are shown in the image. Hence,
A1 is considered as the fracture with the best prognosis and the one that is easiest to
treat clinically. C3 represents the fracture with the worst prognosis and the one that
is typically di�cult to manage. The image is taken from [11].

Figure 1.4: AO classi�cation system: a sequence of questions are shown that depict
the process of classifying a fracture case using the AO system [11].
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Figure 1.5: This image shows the �ve fracture types for the Salter-Harris classi�cation
system.

1. Injury to the peripheral portion of the physis which may cause the deformation

of the articular bone.

2. Isolated injury that occurs on the epiphyseal plate.

3. Isolated injury of metaphysis with possible impairment of endochondral ossi-

�cation, i.e., the formation of bone in which a cartilage template is gradually

replaced by a bone.

4. Injury extends to the periosteum, i.e., a specialized connective tissue covering all

bones and having bone-forming potentialities, which may impair the ossi�cation

that occurs in and replaces connective tissue.

1.3.4 Schatzker Classi�cation System

The Schatzker classi�cation system targets tibial plafond fractures and divides these

fractures into six di�erent types (see �gure 1.6) based on the fracture pattern. Each

type is associated with a suggested treatment method and injury-speci�c di�culties

with these treatments. The following list describes each type in detail:

1. Lateral split: A split fracture of the lateral tibial plateau without depression, it

often occurs in younger patients with stronger bones Typical treatment for this

fracture is lateral �xation, i.e., the process of holding or fastening fractures in

a �xed position.

2. Split with depression: The most common tibial plateau fracture and often occurs
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Figure 1.6: Schaztker classi�cation system: the image displays six fracture types
(from the Societe Francaise d'Arthroscopie).

in older patients because their bones do not resist depression. The treatment

for this fracture is also lateral �xation with the depressed fragments elevated.

3. Pure lateral depression: This fracture is often due to a fall in older patients, the

treatment is lateral internal �xation, i.e., an orthopedic operation that involves

the surgical introduction of implants for the purpose of repairing a bone.

4. Pure medial depression: This fracture is considered severe trauma because it

involves the anterior surfaces of the tibia. For this type of injury, simple �xation

is not enough. Instead medial plate �xation is used where a plate and screws

are surgically introduced to hold the fractured bones together.

5. Bicondylar: This fracture is a combination of a split medial and a lateral tibia

fracture. This type of injury is usually caused by pure axial impact and con-

sidered severe trauma. The treatment for this type is medial plate �xation

combined with lateral internal �xation.

6. Split extends to metaphysis: This type of fracture is considered high-energy

trauma, and may often involve articular surfaces. The treatment for this type

is medial plate �xation combined with lateral internal �xation.

1.3.5 Key factors in Fracture Severity Assessment

The three classi�cation systems discussed above are the most commonly used methods

for classifying fractures. The AO classi�cation system is the most comprehensive
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and re�nes the process of classi�cation once the bone and the bone segment have

been identi�ed. However, Salter-Harris and Schatzker classi�cation systems are more

focused on the tibial plafond fractures. There are some common key factors that

in�uence physicians' classi�cation judgment no matter what fracture classi�cation

system they are using:

• Fragment displacement,

• Angular dislocation,

• Number of fragments,

• Size of fragments,

• Soft tissue damage,

• Fracture surface area,

• Relative displacement of fragments,

• The volume of displaced soft tissue.

Fracture severity classi�cation systems attempt to integrate these factors into a single

metric which is a complicated problem because many di�erent key factors are involved.

Each key factor re�ects one fracture attribute that is linked to the level of severity.

Fracture severity classi�cations made by physicians can vary signi�cantly due to

the complexity of the fracture process and additional extenuating in�uences. Exten-

uating in�uences that e�ect physician classi�cations include the following:

• imperfect imaging data can create blurred images and make classi�cation di�-

cult,

• lack of standardized references, i.e., a fracture severity �gold standard� [14],

• observer-based fracture severity classi�cation depends signi�cantly upon physi-

cians' experience and skills.

This dissertation attempts to address some of the shortcomings of existing methods

for severity classi�cation by deriving quantitative values for many of the key factors

listed above from 3D CT imagery. It is hoped that physicians can use these values to
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generate more accurate and objective assessments of fracture severity.

1.3.6 Automatic Classi�cation Approaches

Since traditional observer-based approaches for quantifying fracture severity have

been found to depend upon the physician's visual assessment and experience [15],

several e�orts have been made by researchers to de�ne automated fracture severity

classi�cation processes [5, 2, 6]. These research e�orts target the key factors previously

listed that impact the fracture severity. Work in [5] uses fragment displacement

and the volume of displaced soft tissue. Work in [2] uses number of fragments, size

of fragments, and fracture surface area. Work in [6] uses soft tissue damage, and

fragment displacement, and fracture surface area.

Work in [2] proposed that fracture surface area is a major factor in determining

fracture severity. The rationale of this approach relies on fracture mechanics theory

for brittle solids which states that a monotonic relationship exists between the energy

absorbed by the bone due to the fracture impact and the fracture surface area gener-

ated when the bone fragmented. Work in [2] tested this hypothesis by using segments

of bovine bone and experimentally fracturing them with a controlled impact where

the energy of the impact was measured. Their results demonstrated, for the �rst time,

that fracture severity for impacted cortical bone can be characterized on a continuous

scale based on CT-apparent energy absorption. Although the tests in [2] are not solid

proof for the clinical domain, this approach introduced a physically justi�ed basis for

quanti�cation in an area which has been until now purely the domain of subjectivity.

Work in [5] considered the displaced soft tissue volume as a metric for fracture

severity. Here the mirror image of the healthy contra-lateral tibia is aligned with an

image of the fractured limb. Once aligned, a score for the fragment displacement

was computed by computing the volume of convex hull for the bone fracture. A

convex hull is the smallest convex polygon that contains the fracture bone fragment

tissue identi�ed within the CT image. The volume di�erence between the convex
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hull volume for the fractured bone fragments and convex hull volume for the intact

bone is considered to be an indicator for both fragment dispersion and the area of

newly generated fragment surface. From this measurement, a quantitative metric for

assessing the fracture severity was generated. Three experienced orthopedic clinicians

made the severity ranking for 20 clinical cases separately. Their ranking results were

compared with the severity ranking automatically made using their CT metric based

on fracture energy and displacement respectively. The average concordance value,

i.e., a quantitative statistical expression that re�ects as a score, the percentage of

cases have been ranked in the same order by two di�erent methods. In this case the

fracture energy based metric was shown to have a 77% agreement with clinician's

assessment. Inclusion of a fragment displacement metric o�ered an improvement to

the original metric to have an 86% agreement.

Work in [6] proposed a novel CT-based method to objectively measure fracture

energy and evaluated the utility of this measure for predicting fracture severity. In

addition to fracture surface area used in [2] and fragment displacement utilized in

[5], this work introduced soft tissue swelling as another quantitative variable related

to the fracture severity. The degree of fracture-associated soft tissue swelling was

quanti�ed by calculating the volume of non-osseous regions in the fractured limb and

then subtracting the analogous measure for the intact contra-lateral limb. Fracture

energy, fragment displacement, and soft tissue swelling were quanti�ed in 20 tibial

plafond fractures by analyzing injury CT scans. Three experienced clinicians then

independently performed a rank order analysis of fracture severity. The study de-

scribed in [6] demonstrates good agreement (fracture energy concordance from 73%

to 76%, fragment displacement from 82% to 89%, and soft tissue swelling from 61%

to 65%) between the CT-based metric and expert severity assessments. The semi-

automated technique physically links an injury severity metric to the energy absorbed

in the initial injury. Such work also provides a prototype platform for assessing the
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relationship between severity of an injury and its eventual clinical outcomes.

1.4 Motivation and Goals

This dissertation attempts to address shortcomings in existing methods for fracture

severity assessment. Currently, observer-based fracture classi�cation schemes are used

to determine for fracture severity. Yet, their value in guiding treatment has some po-

tential drawbacks [15]. High-energy injuries in which comminution and displacement

occur are di�cult for physicians to classify accurately. Current classi�cation systems

categorize fractures according to the key factors, but objective measures for these key

factors do not exist. Also, observer-based severity assessment can vary signi�cantly

which can lead to potential mis-classi�cation and mis-treatment of these high-energy

fracture cases. Among high-energy fractures, comminuted fractures that extend into

an articular joint are especially troublesome due to the di�culty in visualizing and

understanding the complex 3D anatomy of the fracture and limited visibility of im-

portant anatomic structures within the images [16, 4].

This dissertation introduces a system for computational analysis of comminuted

fractures. The system allows for quantitative severity analysis by estimating the key

factors that impact severity. Estimates are obtained by generating a complete 3D

reconstruction of the unbroken bone from the bone fragments. The reconstruction

process computes quantities for several key factors that impact the severity such

as fragment displacement, angular dislocation, number and size of fragments, and

fracture surface area. These quantities can be used for fracture severity analysis

via the system's analysis tools. Physicians may utilize this quantitative information

to potentially improve the accuracy of the fracture severity classi�cation which can

improve applied treatments and prognosis for these fractures.

1.5 Contribution

The contributions of this dissertation in the area of medical image processing and

3D puzzle-solving are discussed in this section. This dissertation has three main
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contributions as listed below:

1. A complete fracture analysis system was created that is capable of virtually

reconstructing a bone from a 3D CT image of the fractured bone.

2. A fully automatic computational puzzle solving algorithm that was developed

that pieces together bone fragment surfaces to reconstruct the unbroken bone.

3. Quantitative information is provided about the bone fracture that is not avail-

able from any existing medical image analysis system.

The bone reconstruction system designed in this dissertation provides unique visual-

ization capabilities for fracture management by allowing users to view and edit their

fracture cases in both 2D (CT image) and 3D (fragment surface). The system in-

terface provides a structured process for reconstruction that enables users to control

and manage the data at each step of the reconstruction process. The system is a

unique combination of state-of-art 2D/3D image processing and surface processing

algorithms together with an interface appropriate for non-expert users. This integra-

tion allows users to solve bone fracture cases from the beginning, i.e., raw CT image

data, to the end, i.e., quantitative evaluation information about the fracture severity.

The system also provides tools that link the 2D CT imagery with 3D visualizations

of the bone surfaces inside a single interface. This helps users better understand both

of these representations (see Chapter 5). The 3D puzzle solving algorithm introduced

in this dissertation is the �rst automatic bone reconstruction tool for this purpose.

The quantitative fracture analysis is a valuable �nal product and may provide crucial

information for physicians to make fracture severity classi�cation better. Although

the system's ability of to assist orthopedic surgeons in pre-operative planning has not

been well studied yet, the work in this dissertation provides the �rst example of a

software system that enables physicians to visualize, assess, manipulate and recon-

struct bone fragments virtually, and includes a novel 3D puzzle-solving algorithm to

automatically reconstruct these bone fragments.
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Visualization of both the fractured displaced and virtually reconstructed joints

in 3D provides important information for treatment. In comparison to viewing CT

images in 2D, the degree of comminution and speci�c fracture characteristics may be

easier to understand using 3D renderings of the bone fragment surfaces extracted from

CT imagery. For tibia fractures, the amount of articular disruption usually cannot

be judged, since the joint surface is usually hidden by other bones such as the talus.

Puzzle solving results resolves this issue by restoring tibia anatomy and color coding,

i.e., segmenting the individual bones and bone fragments (see Chapter 5). In addition

to providing detailed positioning information, inspection of the 3D reconstruction and

alignment data enables one to analyze other fracture characteristics (see case 6 in 5.6).

As shown in the sections from 5.1 to 5.6, without special weighting for articular

surface alignment, the puzzle solution achieves sub-millimeter accuracies for non-

deformed articular bone fragments (see table 5.2). The e�ect of virtual bone recon-

struction on clinical fracture cases is not studied yet. In this regard, statistically

signi�cant conclusions can be made due to the lack of experimental data. However,

the successful application of the system to reconstruct a series of clinical comminuted

tibia plafond fractures shown in Chapter 5 demonstrate that the 3D puzzle solving

system represents a signi�cant advancement towards a clinically practical technol-

ogy. Injury characteristics such as fracture energy (in terms of fracture surface area),

fragment displacement (in terms of fragment rotation and translation), and angular

dislocation can now be precisely measured with puzzle-solving (see Chapter 5).



CHAPTER 2: THE SYSTEM INTERFACE

This chapter introduces the graphical interface of the system developed for this

dissertation. The system interface is implemented as a Java application that provides

3D visualizations to view results and an interface to control the algorithms that assist

in the reconstruction and analysis of the bone fracture (see �gure 2.1). The system

interface consists of three main windows:

1. The region outlined with a red line in �gure 2.1 is the 3D canvas. The system

displays 3D objects here for the user to view and manipulate.

2. The region outlined with a green line in �gure 2.1 is referred to as the image

panel. The system displays intact CT images and fracture CT images here for

the user to view and manipulate.

3. The region outlined with a yellow line in �gure 2.1 is referred to as the tree

panel. The system displays a tree representation of objects in 3D canvas here

for the user to operate on speci�c objects or groups of objects.

The 3D canvas provides a virtual environment where the user can transform and

view the individual object or group of objects. In addition, the user can also hide

objects in the 3D canvas. The image panel displays 2D CT images of the fractured

and intact limbs in two separate windows. The displayed 2D CT image is a slice

of the complete 3D CT image and di�erent slices can be viewed using a slider bar

below each displayed image. The system also supports three di�erent anatomic views

for both the fracture and intact CT images: (1) axial, (2) sagittal, and (3) coronal.

Fragments shown in the 3D canvas window are displayed as nodes in the tree panel.

Each fragment may be partitioned into one or more surface patches. There are four
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Figure 2.1: A screen capture of the system interface developed in this dissertation is
shown. This image was captured after the fracture fragments had been reconstructed.
Tabs in red at the top of the window access separate interfaces for each of the �ve
steps required to reconstruct and analyze fractures.

di�erent categories for surface patches: (1) unidenti�ed, (2) fracture, (3) periosteal,

and (4) articular. Each category is represented as a child node of the fragment node

in the tree panel. The position of a surface patch node in the tree panel indicates the

surface category to which it belongs. The category of a surface patch can be manually

speci�ed by moving the surface patch object in the tree panel into the appropriate

location such that the surface patch is as a child node of one of the four surface types

which are indicated as folders in the tree panel. The tree panel also allows users

to interactively classify fragment surface patches which is accomplished by selecting

objects (fragments or fragment surfaces) in the tree panel and moving these objects

to the appropriate folder. Users can also perform a number of useful actions on both

fragments and their surface patches such as delete fragment, select fragment, merge

and split surface patches, etc.



20

Fracture reconstruction using the system interface is accomplished by performing

a sequence of �ve interactive steps as follows:

1. Segment the 3D bone surfaces from the intact and fracture CT images to gen-

erate an intact template surface and a surface for each bone fragment,

2. Partition the 3D fragment bone surfaces into surface patches,

3. Classify each surface patch to determine its anatomic type and create a model

of the outer/periosteal surface of each fragment,

4. Reconstruct the bone by aligning the outer/periosteal surfaces of the bone frag-

ments with corresponding portions of the intact template surface,

5. Analyze the fracture severity by inspecting the values of several key factors that

relate to severity provide by the reconstruction.

In �gure 2.1, the interface for these steps is shown as �ve tabs on top of the 3D canvas.

Step 1 � Segmentation of 3D bone surface: This step takes 3D CT images as input

(see �gure 2.2 (a)) and outputs a collection of 3D bone surface meshes (see �gure 2.2

(d)). The parameters for the segmentation algorithm include (1) the minimum bone

intensity value, i.e., the minimum intensity value considered as bone tissue, and (2)

the minimum cortical intensity value, i.e., the minimum intensity value considered to

be cortical bone tissue. After the algorithm �nishes segmenting the 3D CT image,

the interface displays 3D CT images where pixels associated with each bone fragment

are marked with di�erent colors (see �gure 2.2 (c)). Bone fragment surfaces extracted

from the segmented 3D CT images and are visualized as a collection of 3D surface

meshes shown in the 3D canvas. These fragments are also added as objects in the tree

panel. A third parameter is the cube size (see �gure 2.2 (b)), i.e., the sampling density.

The cube size determines the resolution of the extracted 3D surfaces. Surfaces are

generated using the marching cubes algorithm on the segmented image data [17].

Alternatively, the user can segment the CT images and extract bone surfaces outside

the system and load the resulting surface meshes and medical (DICOM format) images
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Figure 2.2: This image shows the interactions that take place in step one.(a) a col-
lection of medical input images, (b) user speci�ed parameters for bone fragment
segmentation, (c) segmented images, and (d) 3D fragment surfaces.

into the system.

Step 2 � Partition bone surface into sub-regions: This step takes a fragment (see

�gure 2.3 (a)) as input and outputs a collection of surface patches (surface sub-regions)

(see �gure 2.2 (d)). The user can choose between two algorithms (see �gure 2.3 (b))

to partition fragment surfaces: (1) a ridge walking partitioning algorithm (see 3.2.1

for implementation details) or (2) a graph-based partitioning algorithm (see 3.2.2 for

implementation details). If the ridge walking method is chosen, the user provides a

percentage value (denoted as ρridge) between 0 and 1 to the system interface which

roughly controls the number of patches generated (higher values = more patches)

(see �gure 2.3 (c)). If the graph-based method is chosen, the user provides an integer

value which roughly controls the number of patches generated (higher values = less

patches) (see �gure 2.3 (c)). When the partitioning algorithm �nishes, each surface

patch on each fragment is shown as a separate color and surface patch boundaries

are also displayed. Each surface patch is added to the tree panel as a tree node that

is a child of the fragment node from which it came. The system interface provides

interactive tools to modify the partition results. These tools include a method to

subdivide surface patches into smaller patches by repeating the partitioning algorithm

on a surface patch (used when sensitivity is low) and a method to merge a collection

of surface patches into a single surface patch (used when a single surface is divided

into two or more surface patches). These operations are invoked by selecting the
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Figure 2.3: This image shows user interactions that take place in step two. (a) an
input fragment surface, (b) an interface window to choose a partitioning algorithm, (c)
an interface window to specify algorithm parameters, and (d) a partitioned fragment
surface.

corresponding tree nodes in the tree panel and running the split or merge functions.

Patches can only be merged when they are adjacent, i.e., they must share at least

one mesh edge on the 3D fragment model. Users may also delete surface patches by

deleting the corresponding node in the tree panel.

Step 3 � Classify each sub-region into anatomically meaningful regions: This step

takes as input a collection of surface patches (see �gure 2.4 (a)) and categorizes these

surface patches into three di�erent types (see �gure 2.4 (d)). The system interface

provides an automatic and a manual method to perform this step. There are three

stages for the automatic method:

1. Specify training data: Users provide training data to the system by selecting

surface patches extracted from the fragment and assigning an anatomic cate-

gory to the patch such as fracture, periosteal, articular, or unidenti�ed. This

step can be time-consuming since the user often needs to select many (~8-10)

di�erent surface patches on the fragment before there is su�cient data for ac-

curate classi�cation. Figure 2.4 (b) displays the window that allows the user to

assign labels to the surface patches.

2. Train classi�er: After the training data has been speci�ed, the user runs a train-

ing algorithm (see 3.3 for implementation details) which processes the training

data and generates a classi�er which is stored as a �le on disk. (see �gure 2.4
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Figure 2.4: This image shows the interactions that take place for step three. (a) a
fragment with a collection of partitioned surface patches, (b) an interface window for
assigning labels to surface patches, (c) an interface window for training and classifying
fragment surface data, (d) a fragment with classi�ed surface patches, and (e) a screen
shot of the tree panel showing the classi�ed surface patches.

(c))

3. Classify anatomy: The user loads the classi�er generated in step two from disk

and applies the classi�er to automatically classify all unidenti�ed surface patches

to their estimated categories (see 3.3 for details). As a result of this process,

tree nodes representing surface patches are moved from the �unidenti�ed� folder

to the appropriate category folder.

In the current system, the manual method is often more accurate and less time-

consuming. Here, users manually move the fragment surface patches into di�erent

category folders using the tree panel as the interface. Surface patches under same

category folder are then merged into a single patch. The system only allows one

surface patch to exist within each category folder. (see �gure 2.4 (e))

Step 4 � Reconstruction of the bone by aligning 3D bone surfaces: This step takes

classi�ed surface patches (see �gure 2.5 (a)) and the intact template (see �gure 2.5

(b)) as input and outputs a 3D reconstruction of bone fragments (see �gure 2.5 (f)).

There are two stages for this step: (1) initialize alignment, and (2) 3D bone fragment

reconstruction.
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For the �rst stage, users identify the base fragment. This is typically the largest

bone fragment in the fracture case and is often the easiest fragment to align during

reconstruction. This fragment is used to provide a gross alignment between the intact

template and all of the fragments of the fracture. The alignment is generated by

aligning the intact template to the base fragment which is accomplished by clicking

on the button �Align Limbs� as shown in �gure 2.5 (c). (see 3.4 for details). Figure

2.5 (d) shows an alignment result where the intact template has been aligned to the

base fragment (the light pink fragment in �gure 2.5 (a)).

For the reconstruction stage, the system interface provides an automatic solution

and a semi-automatic solution. Using the automatic solution, the user clicks the

�Automatic Reconstruction� button (see �gure 2.5 (e)) which initiates the 3D puzzle-

solving algorithm. If the automatic reconstruction fails to correctly position all of

the bone fragments, the user may adjust the solution to improve the alignment of the

misaligned fragments. Manually adjusting these fragments is often di�cult as they are

typically small. A custom alignment algorithm referred to as �jiggling� the fragments

is provided to assist users in correctly positioning such fragments (see �gure 2.5 (e)).

The goal of this algorithm is to assist users in correcting the position of misaligned

fragments. Details of its technical implementation are provided in section 4.4.4.

When the automatic reconstruction method fails, users may opt to manually re-

construct the fragments using the system. The manual reconstruction interface allows

users to align individual fragments with the intact template. The interface consists

of two 3D windows as shown in �gure 2.6. There are two interactive modes for this

interface: (1) point selection mode, where users specify corresponding points on the

two viewed surfaces by clicking on the surface, and (2) viewing mode, where users

translate and rotate the objects inside the 3D windows to obtain viewpoints of the

objects where correspondences can be speci�ed. These two interactive modes can

be toggled by pressing the keyboard keys �A�(view mode) and �S� (selection mode).
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Figure 2.5: This image shows the interactions that take place in step four. (a)
a collection of fragments, (b) an intact template, (c) an interface window for the
�rst stage of reconstruction, (d) the fragments and the intact template in the aligned
position after the initial alignment, (e) interface windows for stage two reconstruction,
i.e., automatic reconstruction, and (f) the reconstruction result.

To perform alignment, users can simply right-click mouse which starts the alignment

(when in the selection mode). Note that in order to align two surfaces, there should

be at least three pairs of corresponding points selected. When the initial rough align-

ment with selected point pairs is started, the fragment surface in the right 3D window

will be moved to the left 3D window and aligned to the intact template. A series of

pop-up messages which contain alignment information and questions guides users on

methods to re�ne the alignment. Once an alignment is complete, users can choose to

restart the process if they are not satis�ed with the result or accept the alignment.

If the user accepts the alignment, the manual reconstruction interface will disappear

and both surfaces will be moved to the main 3D canvas in their new aligned positions.
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Figure 2.6: This image shows a screen capture of the manual reconstruction interface.
The left part of the image displays a window which contains the 3D model of the intact
template (red), the right part of the image displays a window which contains a 3D
model of a bone fragment (green). On both surfaces, there are four pairs of user-
selected corresponding points shown as small 3D spheres on the surface. Each pair of
surface points are painted with same color.

Step 5 � Analysis of the fracture severity using quantitative estimates for key

fracture severity factors: Two types of alignment analysis information are available

after reconstruction. As shown in �gure 2.7: (1) overall alignment error between

the intact template and the fracture fragments, and (2) a histogram of alignment

error between points on each fragment surface and the surface of the intact template.

Overall alignment errors may be viewed by clicking the �Periosteal� button under the

�Error Analysis� tab. A histogram of local alignment errors may be viewed by selecting

target surface patch, clicking the �Periosteal� button and choosing the number of bins

for the displayed histogram. Details regarding the computation of these error values

are described in 3.5.
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Figure 2.7: This image shows the interactions that take place in step �ve. (a) recon-
structed fragments, (b) the intact template, (c) a sequence of interface components
for reconstruction analysis, (d) a histogram of the alignment error for one fragment,
and (e) a table of total alignment error information for a puzzle-solved fracture case.

The system also supports the generation of severity analysis reports which include

values for several important key factors that are known to be linked to fracture sever-

ity. Surgeons may want this information to assist them in making reliable fracture

severity classi�cation. As such, this is an essential part of the entire system. Severity

analysis reports include quantitative values for the following key factors: fragment

surface area, the total number of fragments, 3D volume of bone fragment surfaces,

fragment fracture surface areas, fragment displacements, and fragment angular dislo-

cations for each case. An example of a severity analysis report is shown in �gure 2.8.

It contains a table having these key factor values and can be generated by clicking

the button �Fracture Severity Report� under the �Error Analysis� tab.
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Figure 2.8: This image shows the interactions necessary in step �ve to generate
a report having values for several fracture severity key factors. (a) reconstructed
fragments, (b) the intact template, (c) the interface components used to generate a
severity analysis report, and (d) a severity analysis showing values for key factors
that impact the fracture severity for one case.

2.1 Previous Work: Digital Image Analysis Tools For Orthopedic Trauma

The literature regarding virtual bone fragment reconstruction systems is relatively

sparse in comparison to the very large body of research on bone segmentation, surface

alignment and medical image registration.

Work in [18] introduces a fracture surface reconstruction system for reconstructing

two-fragment femur bone fractures. In this work, they align the distal and proximal1

femur fragments based on the periaxial rotation angle, i.e., the angle between reference

plane and neck axis (see �gure 2.9 for a detailed description), computed from both

fractured femur and healthy femur. Like the system proposed in this dissertation,

they use the patient's symmetric healthy femur as a reference model. Their system

is designed to be used during surgery to provide the surgeon real-time values for the

periaxial rotation angle di�erence between fractured femur and the healthy femur.

However, their system is intended for use on simple two-fragment fractures and cannot

deal with highly comminuted fractures. The impact of this work is diminished by the

fact that these fractures tend to have good prognosis without computer aided tools.

1See �proximal� in Glossary
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Figure 2.9: De�nition of periaxial rotation: lateral (left) and frontal (right) views.
The XYZ orthogonal coordinate system in which the angle is measured is de�ned as
follows: the XZ plane is parallel to the table top plane, which is the plane containing
the condyle reference points (see the two points in the �gure) and parallel to the
femur long axis. The Z axis coincides with the long axis of the femur. The Y axis is
perpendicular to the XZ plane and is oriented upwards. The periaxial rotation angle
is the angle between the projection of the neck axis in the XY plane measured and
the XZ (table top) plane [18].

Recent work has focused on image-based reconstruction systems such as [19], or

puzzle-solving algorithms such as [20]. The application developed in [20] supports

volumetric collision detection in a virtual 3D environment and an optimization pro-

cess for repositioning the bone fragments. The approach segments bone surfaces out

from CT data, then users manually position fragments to be close together. At this

point, an automated alignment algorithm re�nes the fragment positions by moving

one fragment to the �xed fragment until a criterion that measures the gap between the

two fragments becomes maximum. The criterion is to maximize the number of voxels

in a volume of interest, i.e., a box-shaped region that has been manually speci�ed

to include the overlapping regions of each fragment pair. Since volumes of interest

must be manually speci�ed for each match, this system requires a signi�cant amount

of time-consuming user interaction to generate a correct reconstruction result. These

interactions include identifying matching pairs of fragments, and positioning each pair

of fragments to be close together such that their alignment algorithms can be applied.
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The system described in this dissertation requires less time and user interactions to

generate a correct reconstruction (see table 5.3 in Chapter 5). In particular, there

is signi�cant time savings a�orded since fragments are aligned automatically and do

not need to be manually manipulated.

Recent notable methods for virtually 3D reconstruction of displaced acetabular

fractures have been developed to aid surgical interventions [21]. The system intro-

duced in [21] consists of two tools: (1) a 3D viewing tool and (2) a surgical simulation

tool. In this case, the 3D CT image data must be manually segmented by expert

users. Surgeons then perform virtual reconstruction on the resulting 3D fragments.

Unfortunately, this approach also does not include an algorithm to automate or to

assist in the di�cult process of piecing the bone fragments back together. In order to

achieve an acceptable 3D reconstruction result, surgeons must manually make small

re�nements to fragment positions in their system. This process can be very time

consuming and frustrating to the surgeon for even simple fragment fracture cases. In

addition, due to the manual nature of the alignment process virtual reconstruction

results completed by surgeons in their system are not repeatable.

There are some e�orts [22, 23, 24] being made to automatically aid the assem-

bly problem with computer vision algorithms. [22] investigates the speci�c problem

of automated reconstruction of craniofacial fractures, i.e., fractures of the head and

facial structures. Unfortunately, the method speci�ed in [22] cannot be applied to

high-energy comminuted fractures where single fragment surfaces can match to more

than one fragment, because their method assumes that each fragment has only one

matching fracture surface. Recent work in [23] develops a method for semi-automatic

reconstruction of highly comminuted bone fractures to aid in treatment planning.

Work in [24] improves upon [23] by re�ning the alignment algorithm. This is ac-

complished by emphasizing geometric surface variations (ridges and valleys) during

the alignment to more heavily in�uence the �nal reconstruction solution, generating
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more visually encouraging results. However, their algorithm is only tested on simu-

lated bone material fabricated from a specialty high-density polymeric foam. Fracture

surfaces generated from these 3D fragments have less variation and are easier to match

than the fracture surfaces of fragments extracted from real-world clinical CT images

which is the focus of this dissertation.

2.2 Previous Work: Commercial Orthopedic Digital Image Analysis Systems

In addition to the systems generated through research, there are three commercial

orthopedic digital image analysis systems capable of analyzing bone fractures: (1) Or-

thoView (Orthopedic Digital Planning, USA), (2) TraumaCad (VoyantHealth,USA),

and (2) Mimics software system (Materialise, Belgium).

OrthoView and TraumaCad are two software systems for digital medical image

analysis that are designed especially for orthopedic applications. These systems allow

users to carry out virtual preoperative planning sessions on-screen with 2D digital

images. Both systems have some common bene�ts:

1. Users may make measurements of various anatomic features from the digital

images.

2. Users can easily access and share these images with PACS2 .

3. Users can visualize fracture patterns in 2D X-ray images.

4. Users can design custom implants in 2D to use in their surgeries.

5. Users can generate pre-surgical reports that specify the instruments needed and

a treatment plan.

6. Users can reconstruct simple fracture cases from 2-D images.

7. Users can plan and manage fracture cases in these systems.

The full spectrum of the OrthoView applications includes �ve planning modules: (1)

joint replacement, (2) limb deformity correction, (3) pediatrics, (4) fracture manage-

ment, and (5) spine. While TraumaCad consists of nine specialist modules: (1) adult

2See �PACS� in glossary.
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hip joint replacement, (2) pediatric hip joint, (3) deformity correction, (4) spine, (5)

foot and ankle, (6) adult knee joint replacement, (7) upper limbs, (8) trauma, and

(9) 3D implant visualization.

The major contribution of these two systems is that they replace traditional X-

ray image planning by performing this process digitally. Typically, aspects of this

process include editing, marking, and measuring X-ray images which may now be

done digitally, using a method is more convenient as one can store, archive and share

these results more easily. Unlike the system in this dissertation, these applications

exclusively use 2D images to help surgeons plan their cases, no 3D objects and recon-

struction solutions are supported. The 3D displays are perceived to be more natural

and possibly require less mental integration than 2D displays. In some fracture cases

such as highly comminuted fractures, the limited view in 2D images can prevent sur-

geons from identifying fracture patterns and can adversely impact surgical treatment

planning. Their systems are not designed for solving these complex fractures.

The Mimics software system (Materialise, Belgium) allows users to process and

edit 2D image data and construct 3D models for fractures. The underlying image

segmentation tools enable users to segment digital medical images, and take mea-

surements directly on 3D models. From their system, one can export generated 3D

data to a wide range of output formats so that downstream applications such as im-

plant design software or surgical simulation software can use the result as input. The

goal of the Mimics system is to bridge the gap between 2D image data and these

downstream 3D software products. However, while their system can generate 3D

models, no further e�orts are made to reconstruct these 3D models automatically

or semi-automatically. The work described in this dissertation is distinct from the

Mimics system in several ways:

1. This dissertation provides a complete analysis and reconstruction process from

CT images.
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2. This dissertation supports automated 3D virtual fragment reconstruction.

3. This dissertation provides a user-friendly interface to view, modify and manip-

ulate both 2D and 3D data and includes speci�c tools needed for bone fracture

reconstruction.

4. This dissertation integrates several state-of-the-art image and surface segmen-

tation tools into the system that saves users time.

These attributes set the software discussed in this dissertation apart from all existing

tools in industry or academia. The specialized tools for bone reconstruction and frac-

ture analysis are unprecedented in either of these contexts and represents a substantial

contribution in the area of medical image analysis for complex bone fractures.

The system described in this dissertation includes several improvements over pre-

viously proposed systems. It provides unique visualization capabilities for both 2D

and 3D fracture management. It supports a structured process for 3D bone recon-

struction. It is an unique combination of state-of-art 2D/3D image processing and

surface processing algorithms together with an interface that is appropriate for non-

expert users. It also enables users to perform a complete analysis of a fracture case

from beginning, i.e., the raw CT image data, to the end, i.e., the quantitative severity

analysis information for the fracture case. The system also provides tools that link

the 2D CT imagery with 3D visualizations of the bone surfaces inside a single inter-

face. This can help users better understand the complex information in these images

(see examples in Chapter 5 ).



CHAPTER 3: ALGORITHMS TECHNICAL SPECIFICATION

Implementation of the bone reconstruction system requires application-speci�c

solutions for �ve distinct areas of ongoing research on 3D images analysis and 3D

surfaces. In some cases, the proposed solutions also have an impact beyond medical

image and surface analysis and e�ect related problems in generic image and surface

processing. The �ve speci�c research areas of interest for this work are:

1. 3D CT image segmentation (see 3.1 section)

2. 3D surface partitioning (see 3.2 section)

3. Appearance-based 3D surface classi�cation (see 3.3 section)

4. 3D puzzle-solving (see 3.4 section)

5. Post analysis (see 3.5 section)

These steps also specify the sequence of algorithms through which the data �ows as

each algorithm requires results computed from the previous one. Users interactively

invoke these algorithms through the system interface as described in Chapter 2. The

steps, (2) (4) and (5) (those highlighted in bold), are the focus areas of the research

e�ort described in this dissertation. In order to provide a complete description of the

system, the other two steps, (1) and (3), are brie�y discussed. Figure 3.1 shows a

diagram of the algorithmic sequence for the system which consists of �ve steps:

1. 3D CT Image Segmentation: The image segmentation algorithm takes as input

3D volumetric CT images and user-speci�ed parameter values (described in

Chapter 2), and provides as output a collection of fragment surfaces. The CT

images provide data for both the injured, i.e., fractured, limb and the unbroken

or intact limb.
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2. 3D Surface Partitioning: The surface partitioning algorithm takes as input 3D

surfaces generated from (1) and user-speci�ed parameters (described in Chapter

2), and provides as output a collection of surface patches that describe seman-

tically distinct regions of bone fragment surface needed for the reconstruction.

3. Appearance-Based 3D Surface Classi�cation: This algorithm takes as input a

collection of surface patches generated from (2) and a collection of user-speci�ed

training data (described in Chapter 2), and provides as output a classi�cation for

each surface patch into one of the following anatomically meaningful categories:

{fracture, periosteal, articular}.

4. 3D Puzzle-Solving: This algorithm takes as input the classi�ed surface patches

from (3) and the intact template from (1), and provides as output an alignment

between each fragment and the intact template to produce a 3D reconstruction

of the unbroken bone from its fragments.

5. Post Analysis: This algorithm evaluates the 3D reconstruction result from (4)

and generates quantitative information as a severity report which includes values

for several key factors which are known to be linked to fracture severity (listed

in 1.3).

Mathematically, We denote generic 3D CT image data as I(x, y, z), fracture CT

image data as If (x, y, z), and intact CT image data as Ii(x, y, z). The bone fragment

surface is denoted as S(v,g), where v is a collection of 3D points and g is a collection

of polygons. The variable v is a vector containing surface point coordinates(x, y, z).

The variable g is a vector of polygons (triangles) indicated as a triplet of indices which

refer to the three surface points in v used to construct the triangle. The mth surface

point on the fragment is denoted as vm, the n
th polygon of the fragment is denoted

as gn. The intact template is denoted as St(v,g) and the kth fragment is denoted

as Sk(v,g). Each bone fragment surface consists of three types surface patches: the

periosteal surface, Sp(v,g), the articular surface, Sa(v,g), and the fracture surface,
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Figure 3.1: A brief overview of a system proposed in this dissertation. This system
takes as input a 3D CT image of the fractured limb and a 3D CT image of the
undamaged (intact) limb, and provides as output a virtual reconstruction of bone
fragments which estimates the anatomy of the patient's original bone. Each block
denotes a step and the associate algorithm name is shown inside the block (in blue).
Images show how the data has been changed in each step of the 5-step reconstruction
process. Gray blocks show interim results at each step and also denote instances
where the user can interact with the result as discussed in �2.
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Sf (v,g). In this dissertation, the union of the periosteal surface and the articular

surface are referred to as the outer surface and denoted as So(v,g). To simplify the

discussion, we refer to the intact and fragment surfaces without (v,g) parameters

as the speci�c values for the points and polygons are irrelevant to most discussion

topics.

3.1 CT Image Segmentation

Reconstruction of a 3D solid from its fragments is a geometric problem where the

geometry of the fragments must be known in order to piece them back together. For

this reason geometric models for each bone fragment in the 3D CT image must be

computed. This is the goal of the CT image segmentation process. The segmentation

algorithm used transforms the CT image I(x, y, z) into I
′
(x, y, z) where image inten-

sity for all pixels in I(x, y, z) are either -1 or 1 where -1 indicates the background and

1 indicates the presence of bone tissue. The goal of the surface segmentation algo-

rithm is to estimate the correct label for every pixel in I(x, y, z). Fragment surfaces

may be extracted from the labeled image I
′
(x, y, z) by estimating the locations where

the image changes value from -1 to 1, or equivalently, solving for the locations where

I
′
(x, y, z) = 0. This dissertation adopts the approach described in [25] to segment

the image which uses a modi�ed watershed algorithm [26]. Bone fragment surfaces

are then extracted using the matching cubes algorithm [17]. There are two major

challenges for this segmentation problem:

1. Bone fragment boundaries are especially di�cult to demarcate when fragments

are abutting other fragments.

2. Intensities for some bone tissues, i.e., cancellous tissue, are the same as that for

some soft tissues which makes them di�cult to identify (see �gure 3.2.c).

The watershed segmentation approach can be explained using an analogy between

the shape of an image and the topographic relief of terrain. Here, image intensity

values de�ne the topographic relief, i.e., the intensity of a pixel is interpreted as the
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(a) (b) (c)

Figure 3.2: Illustrative CT data for a comminuted tibial plafond fracture. (a) a 3D
front (coronal) view of tibial plafond fracture. (b) a 3D rear (ventral) view of the
tibial plafond fracture. (c) two 2D CT images from two di�erent locations of the
fracture as indicated in (b) [25].

altitude of a point. Using this analogy the basins and valleys of the relief correspond

to the dark areas of the image, whereas the mountains and crest lines correspond to

the bright areas of the image. If one were to pour water onto the topographic relief,

the water will collect into the valleys of the relief. The locations where di�erent

pools of water settle is referred to as the watersheds of the relief. The watershed

algorithm uses this concept as a technique for image segmentation, where watersheds

in the image are distinctly segmented objects. Our modi�ed version of the watershed

algorithm [25] proceeds as described in the following steps:

1. De�ne a region of interest within the CT image for each bone fragment.

2. Interactively modify the image data: Each bone and bone fragment in the image

is marked to have separate region of interest that is not connected to any other

bone or bone fragment region. The intensities of the image are then made to

be locally monotonic in the vicinity of each region of interest. This is referred

to as imposing a regional minima in each fragment region.

3. Extract the distal tibia from the 3D CT image: A watershed algorithm is ap-

plied, and, due to steps 1 and 2, each bone fragment is typically segmented into

one or more objects. These objects are automatically classi�ed based on their
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locations in the image to be portions of the �bula, talus, or tibia. All objects

corresponding to the �bula and talus are removed and the remaining objects

(tibia) are merged.

4. Segment the tibia into discrete bone fragments: The watershed algorithm is

applied a second time by restarting the algorithm on only the tibia regions, this

generates many small regions which cover the tibia bone fragments..

5. Merge adjacent fragment regions to generate bone fragments: In order to iden-

tify and correct the over-segmented cortical fragments, an automatic detection

and merge algorithm was developed. The algorithm detects regions that should

be merged by �nding boundaries that are �at/convex.

6. Export meshes: The segmented image volume is processed to generate meshes

of the bone fragment surfaces as a collection of triangular facets.

As output, the segmentation process provides bone fragment surface meshes which

may be saved to disk in PLY (Stanford's Polygon File Format).

3.1.1 Previous Work

Image segmentation refers to the process of partitioning a digital image into multi-

ple regions. For 2D applications these regions consist of groups of pixels. For 3D

applications these regions consist of 3D pixels or voxels. Segmentation algorithms

seek to automatically or semi-automatically compute these regions with the intent

of generating regions that are semantically meaningful and of interest to the user

[27]. In medical imaging, imaging modalities such as MRI and CT provide means

for measuring the internal anatomy of a subject. These technologies have become a

critical component in diagnosis and treatment planning. Therefore, image segmen-

tation algorithms for the delineation of anatomical structures and other regions of

interest within these images are important tools that assist by partially or completely

automating these tasks. Segmentation techniques applied on CT images for extract-

ing bone geometries can be categorized into two types: region-based approaches and
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boundary-based approaches.

Boundary-based segmentation approaches intend to identify bone boundaries in

the image. Normal image analysis methods such as active contours [28], graph cut

[29], level sets [30], adaptive thresholding [31] and edge detection [32] are adopted

by researchers to identify the bone boundaries. Work in [28] modi�ed the traditional

snake method for segmentation to segment out tibia and �bula bone structures from

a set of CT images. Classical energy functions in the snake model do not hold enough

information to tackle the generic bone segmentation problem for CT images. To

improve the result a new external energy function was introduced that combines region

and gradient information in order to make the snake model more robust to noise.

Work in [29] de�nes a graph over the image by connecting all pairs of neighboring

image pixels by weighted edges. With a prior identi�ed object and user speci�ed

background seed pixels, the algorithm cuts the edges in the graph with minimum

cost so that the objects are separated from the background. Work in [30] adopts

the level set segmentation approach for segmenting bone structures from CT scans

of the knee joint. Their method is based on intensity pro�les along the normal to

the evolving contour. The segmentation process is guided by the similarity of image

intensity pro�les to the manually generated pro�le model. Work in [31] introduced

an automated segmentation algorithm of mid-sagittal brain MR images with two

phases of thresholding. The �rst threshold serves to convert the MR images to binary

images which substantially simpli�es the subsequent operations. The second threshold

is connectivity-based and identi�es boundaries between two regions using a path

connection algorithm. Work in [32] proposes a multiscale approach to estimate the

normal direction of bone edges. The optimal scale at each image location is obtained

while estimating the normal direction and then a simple edge detector is applied

at this scale for segmentation. Their algorithm improves the segmentation quality

by decreasing the number of spurious or noisy edges and decreasing the number of
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discontinuities for the object contours.

Region-based image segmentation approaches focus on extracting a region of the

image that is connected based on some prede�ned criteria. Region growing is a tech-

nique that falls into this category [33]. It requires a seed point that is manually

selected by a user and extracts all pixels connected to the initial seed that satisfy a

pre-de�ned compatibility condition. This technique is applied on medical images to

delineate small, simple structures such as tumors and lesions [34, 35]. Clustering algo-

rithms are another set of techniques which fall into the region-based category. Three

commonly used clustering algorithms are K-means [36], the fuzzy c-mean [37], and

the expectation-maximization (EM) [38]. The K-means algorithm [36] clusters data

by iteratively computing a mean intensity for each class and segmenting the image

by classifying each pixel in the class with the closest mean. The fuzzy c-mean algo-

rithm [37] generalizes the K-means algorithm, allowing for soft segmentation based on

fuzzy set theory. The EM algorithm [38] applies the same clustering principles with

the underlying assumption that the image intensity data follows a Gaussian mixture

model.

The watershed segmentation can be classi�ed as a region-based segmentation ap-

proach. It was originally proposed in [39], and later improved in [40]. There are

two types of concepts for the watershed idea. One uses a landscape or topographic

relief which is �ooded by water, watersheds being the dividing lines of the domains of

attraction of rain falling over the region [41]. The other uses a landscape immersed

in a lake with holes pierced in the local minima. Water �lls up the landscape starting

at these local minima, and dams are built where the water from di�erent basins meet

[26]. Using either approach, the landscape is partitioned into regions by dams and the

regions are called watersheds. When simulating this process for image segmentation,

these two concepts motivate two di�erent approaches for segmentation: (1) immer-

sion, where one �rst �nds local minima then computes watersheds by taking a set
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complement [42, 41, 43], and (2) topographical distance, where one computes a com-

plete partition of the image into basins and subsequently computes the watersheds

by boundary detection [44, 26, 45, 46]. The detailed discussion of di�erent watershed

segmentation algorithms is outside the scope of this dissertation, see the watershed

algorithm survey [47] for more details.

3.2 Surface Partitioning

Each segmented bone fragment model must be partitioned into a collection of surface

patches to allow portions of the fragment surface to be geometrically matched for

3D reconstruction. There are two approaches to achieve 3D bone reconstruction: (1)

matching the outer surface of bone fragments to a model of the intact bone, referred

to as the template model, and (2) puzzle-solving by matching the break surfaces,

i.e., the surfaces generated when two fragments break apart [23]. Both approaches

require the fragment to be sub-divided into anatomically meaningful surface patches.

In addition, by dividing the fragment surface into anatomically di�erent regions the

amount of searching to �nd correct surface matches is signi�cantly reduced which

improves the matching algorithm performance. The task of surface mesh partitioning

is to divide bone fragment meshes, Sk(v,g), into a collection of surface patches,

{S1, S2 · · · } , such that Sk = ∪{S1, S2 · · · }. Each of the generated surface patches

are intended to consist of surface points from only one anatomical category.

This dissertation introduces two surface partitioning algorithms: (1) a �ridge walk-

ing� algorithm [48], and (2) a graph-based algorithm. Due to the complex geometry

of human bone structures, current existing surface partitioning algorithms cannot

e�ciently partition bone surfaces into anatomically meaningful sub-regions. The al-

gorithm heavily used in this dissertation, [48], addresses this problem by dividing the

bone surface along 3D contours that traverse high-curvature ridges. The second par-

titioning algorithm introduced in this dissertation draws inspiration from the idea in

[49], which implements an e�cient graph-based image segmentation. Speci�cally, the
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proposed approach uses the graph idea from [49] to produce a new graph-based 3D

surface mesh partition algorithm (see 3.2.2 for implementation details). The overview

of the ridge walking algorithm is described in 3.2.1.

3.2.1 Partitioning Surfaces Using The Ridge Walking Algorithm

The ridge walking surface partitioning algorithm [48] works directly from the 3D

mesh of the bone surface which consists of 3D surface points and a set of edges

that connect these points. The approach de�nes a graph over the polygonal mesh

where graph edges are the mesh edges and graph nodes are the mesh vertices. For

each edge of the graph, an attribute is computed that is referred to as the edge

salience, w(oij). The edge salience de�nes a weight for each graph edge that is large

for edges that de�ne lines on the surface that are �salient�, and small for all other

edges. The salience of an edge is determined by one of three possible functions: (1)

a �ridge� salience function, (2) a �valley� salience function and (3) a �curvature �

salience function. The di�erent functions are used to partition the surface in di�erent

ways. The �ridge� salience function tends to follow convex ridge-like surface edges.

The �valley� salience function tends to follow concave valley-like surface edges. The

�curvature� salience function tends to follow both convex and concave surface edges.

This dissertation uses the �ridge� salience function to partition the bone fragment

surfaces. This function is used because di�erent bone anatomical regions are usually

separated by convex edges see �gure 3.3. The output of the partitioning method

is a collection of disjoint surface patches, each of which is a subset of the fragment

surface mesh. The system displays these patches as a part of each fragment surface

as di�erent colors and colored boundaries and shows them in the tree panel see �gure

2.4. Figure 3.3 shows several results generated by the ridge walking algorithm.

3.2.2 Partitioning Surfaces Using A Graph-Based Algorithm

This new partitioning approach represents a fragment surface as a graph and then

applies the segmentation criterion from [49] on the resulting graph. This results in
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(a) (b) (c) (d)

Figure 3.3: Ridge walking surface partition results for four di�erent fragment surfaces.

a partitioning of the surface into di�erent surface patches. This graph-based parti-

tioning algorithm is a 3D generalization of the well known 2D image segmentation

approach [49].

The goal of the graph-based image segmentation is to partition the image into dif-

ferent components such that elements in same component are similar and elements in

di�erent components are dissimilar. This is achieved by evaluating if there is evidence

for a boundary between a pair of components. The approach in [49] constructs the

image as graph denoted G = (V,E) where V denotes graph vertices and E denotes

graph edges. Each pixel in the image is taken to be a vertex in the graph, vi, and two

neighboring pixels (vi,vj), form an edge, oij, in the graph that connects the corre-

sponding vertex pair. The weight of an edge oij is denoted w(oij) and is determined

by the dissimilarity of the neighboring two pixels, i.e., intensity di�erence between

the two pixels. A collection of vertices is called a component, C. A score is given

for any boundary in the image. It consists of two parts: (1) the internal di�erence

of a component, Int(C), which is the largest weight in the minimum spanning tree

1 of the component C, and (2) the di�erence between two components, Dif(C1, C2),

which is the minimum weight edge connecting the components C1 and C2. The task

of �nding the component boundaries reduces to checking if Dif(C1, C2) is large or

small relative to the internal di�erences, Int(C1) or Int(C2).

1see �minimum spanning tree� in Glossary
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The input of the algorithm is a graph G = (V,E), with n vertices and m edges.

The output is a segmentation of G into components S = (C1, C2, . . . Cr). This is

accomplished by following the steps shown below in [49]:

1. Sort the edges E into π, a collection of m edges, by non-decreasing edge weight.

2. Start with a segmentation S0, where each vertex vi is in its own component.

3. Repeat step 4 for q = 1, . . . ,m.

4. Construct Sq given Sq−1 as follows: Let vi and vj denote the vertices connected

by the qth edge in the ordering, i.e., oq = (vi,vi). If vi and vj are in disjoint

components of Sq−1 and w(oq) is small compared to the internal di�erence of

both those components (Int(C1), Int(C2)), then merge the two components,

otherwise do nothing.

5. Return S = Sm.

When components stop merging, each component groups a collection of vertices (im-

age pixels) and forms a segmented region in the image. Vertices in the graph that do

not belong to any component are grouped together to form a separate image region

referred to as the background.

The new partitioning approach proposed in this dissertation modi�es the above

approach by replacing the constructed image graph with a graph representation for

a 3D surface mesh. Two di�erent methods were explored for constructing the new

graph, each of which includes its own dissimilarity functions and provides di�erent

partitioning results. One method is referred to as the vertex-based approach which

constructs the graph by letting the mesh vertices de�ne the graph nodes, V , and

mesh edges de�ne the graph edges, E (see 3.2.2.1 for details). Another method is

referred to as the face-based approach which constructs a graph by letting the mesh

faces (polygons) de�ne the graph nodes, V , and mesh edges that are shared by two

faces de�ne the graph edges, E (see 3.2.2.2 for details ).
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Figure 3.4: Vertex-based graph surface partitionings for two fractured bones in two
di�erent views.

Figure 3.5: Face-based graph surface partitionings for two fractured bones in two
di�erent views.

3.2.2.1 Vertex-Based Graph Partitioning Algorithm

The vertex-based graph is constructed by de�ning each 3D surface point to be a graph

node, vi, and each surface mesh edge connecting vertices (vi,vj) is de�ned to be a

graph edge, oij. The edge weight, w(oij) is de�ned in equation (3.1):

w(oij) =

∣∣∣∣ ui + uj
|ui + uj|

· oij
|oij|

∣∣∣∣ |kmax| (3.1)

Where ui is the direction of the minimum principal curvature at vi and uj is the

direction of the minimum principal curvature at vj. The quantity
ui+uj

|ui+uj | represents

the average minimum curvature direction between the vertex vi and vj, and
oij

|oij | is the

mesh edge direction as a unit vector and kmax is the average of the maximum curvature

values at the vertex vi and vj. Applying the algorithm steps introduced above on

this graph partitions the surfaces into di�erent components where each component is

a collection of 3D surface points. Figure 3.4 shows bone surface partitioning results

for two bone fragments using this algorithm.
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3.2.2.2 Face-Based Graph Partitioning Algorithm

The face-based graph is constructed by de�ning: each 3D surface polygon (triangle)

to be a graph node, vi, and each mesh edge that is shared by two surface poly-

gons, (vi,vj), is de�ned to be a graph edge. The edge weight, w(oij), is de�ned in

equation(3.2):

w(oij) = arccos(ni · nj) (3.2)

Where, ni and nj denote surface normals for polygons vi and vj respectively.

The edge weight is then simply the dihedral angle between the polygons that share

the edge. Applying the algorithm steps introduced above on the face-based graph

partitions the surfaces into di�erent components where each component is a collection

of 3D surface polygons. Figure 3.5 shows bone surface partitioning results for two

bone fragments.

There is a di�erence in the computational logic of these two algorithms. The

vertex-based graph partitioning algorithm divides surfaces into di�erent components

by grouping together surface points while the face-based algorithm divides surfaces

into components by grouping together surface polygons. Therefore, results from

vertex-based graphs will result in a collection of surface vertices that don't belong to

any components which are used to separate the components (shown in red in �gure

3.5 ). An extra step is needed to classify these vertices which assigns these vertices as

members of both of their neighboring components. The performance of graph-based

partitioning algorithm is determined by the number of edges in the constructed graph.

For the case of a fragment surface graph, the face-based partitioning algorithm tends

to have more nodes and edges than those constructed using the vertex-based parti-

tioning algorithm. For this reason, the vertex-based algorithm is often faster than

the face-based algorithm when running on the same fragment.

Although two partitioning algorithms are available for partitioning bone frag-

ments, there are cases where both algorithms cannot divide the fragment surface into



48

the desired set of surface patches. This can occur when the bone fragment surface

is under-segmented. In this case, partitioned surface patches contain surface geome-

tries having di�erent anatomical types. In these cases, further partitioning of these

surface patches is required. In other cases the surface is over-partitioned and includes

many small surface patches that share the same anatomical type and must be merged.

To overcome these problems, the system provides interactive tools to merge and to

subdivide surface patches (see Chapter 2 for details).

3.2.3 Previous Work

As mentioned earlier, a 3D surface mesh partitioning algorithm decomposes a sin-

gle 3D surface model into a collection of surface patches, where each surface patch

is intended to carry some semantic meaning. Recent surveys [50, 51, 52] provide

comparative analysis between leading contemporary algorithms. These algorithms

[53, 54, 55] are often an extension of well-established algorithms for 2D image segmen-

tation that have been generalized to 3D surfaces. 3D surface partitioning algorithms

can be grouped into two general categories: (1) those that group surface regions, and

(2) those that divide surfaces via boundaries.

One popular approach from the category that groups surface regions is the re-

gion growing approach in [56]. This approach selects a collection of polygons on the

surface as �seeds�. A region then forms around each seed by a region merging neigh-

boring polygons into each seeded region using a similarity function and a threshold

which jointly de�ne a compatibility criterion that determines if the merge occurs, e.g.,

the angle between two surface normals. Region growth stops when all neighboring

polygons do not satisfy the compatibility criterion. [57] improves the region growing

method of [56] by introducing multi-scale surface smoothing, user interactivity and a

stochastic �lter to speed up growth in �at areas. [58] adapts the well-known water-

shed segmentation algorithm typically used for images for use on 3D surface meshes.

Graph-based cut method described in [59] was also adapted for use on 3D surfaces as
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described in [60].

Other approaches solve the partitioning problem by solving for surface contours

that divide the surface into di�erent regions. The mesh scissoring approach described

in [61] generalizes the snake model of [55] such that the boundary curves that divide

the surface into parts propagate into concave surface regions. But, as known for

snake models in general and also explicitly noted in [50], such methods can sometimes

converge to local minima of the curve-evolution performance function which can result

in an undesirable surface segmentation. [62] proposes a 3D surface segmentation

technique based on level set methods that seek concave surface contours which are

solutions to a geodesic curvature �ow di�erential equation. However, user interactions

are needed to help the contours to demarcate the surface in a satisfactory way. The

randomized cut method described in [60] tries to extract partition boundaries using

a statistical approach. First, it generates a random set of mesh segmentations using

graph cut algorithms and then measures how often each edge of the mesh lies on a

segmentation boundary in the resulting set. The partition function de�ned on edges

seeks to �nd the set of most consistent cuts which provide a continuous measure of

where natural part boundaries might occur in a mesh.

The ridge walking algorithm [48] adopted in this dissertation is related to [61] since

they both directly solve for contours on the surface that satisfy salience criteria. The

approach in [61] performs well only on CAD models2 where their geometries follow

the minima rule. The criteria for distinguishing anatomic parts of bone fragments are

di�erent than those for distinguishing parts of models partitioned using the minima

rule. This make the ridge walking algorithm particularly well-suited to the application

of bone fragment surface partitioning because one can guarantee that the boundary

of the partitioned bone fragment surface patches will satisfy speci�c salience criterion

such as following the convex-like ridges.

2see �CAD models� in Glossary
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3.3 Appearance-Based 3D Surface Classi�cation

The surface classi�cation process takes as input surface patches extracted by par-

titioning the bone fragment surfaces and seeks to estimate a single anatomic label

for each surface patch. The anatomic labels are critical to reconstruction as they

determine which surface patches can be matched and how to match them. In this

dissertation, the anatomic labels are (1) �fracture surfaces� (surfaces generated when

bone fragment broke apart), (2) �periosteal surfaces� (surfaces that were part of the

outer bone surface before the fracture occurred), (3)�articular surfaces� (surfaces of

bones that facilitate the articulation of joints). Classi�cation of these surface patches

is useful for bone reconstruction for the following reasons: (1) periosteal surfaces can

be used to facilitate template-based reconstruction (the approach used in this dis-

sertation), (2) fracture surfaces facilitate reconstruction via fragment matching, (an

approach used in [23]), and (3) articular surfaces are sub-regions of the periosteal sur-

face especially important in reconstruction. Accurate reconstruction of the articular

surfaces are critical for achieving a good outcome for fractures at joint locations. The

work in [1] has shown that high accuracy of the surgical bone reconstruction for the

articular surfaces is critical in avoiding future onset of PTOA.

The goal of the surface classi�cation step is to classify each surface patch to one

of three anatomic surface categories : (1) the periosteal surface, Sp(v,g), (2) the

fracture surface, Sf (v,g), and (3) the articular surface, Sa(v,g). After classi�cation

surface patches having the same type are merged into one surface patch. Mathe-

matically, the surface classi�cation algorithm takes in a collection of surface patches

Sk = ∪{S1, S2 · · · } and outputs a classi�ed bone fragment Sk = ∪{Sf , Sp, Sa}. In

this dissertation, we only use the periosteal surface, Sp, and the articular surface,

Sa, for reconstruction which jointly de�ne the outer (intact) surface, So. The outer

(intact) surface of the kth fragment is denoted as Sko .

The surface classi�cation approach is based on the idea that di�erent regions of a
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Figure 3.6: CT appearance of the distal tibia anatomy. Relative to the tibia's outer
surface, the CT intensities vary with characteristic pro�les along the inward surface
normals for each anatomic region (diaphysis, metaphysis and epiphsis).

bone consist of di�erent tissues and the appearance of these tissues in medical images

have distinct properties as one traverses both up and down (proximally and distally)

and as one traverses from the outer bone surface into the interior. As shown in �gure

3.6, the diaphysis is made up of solid dense cortical bone having high intensities.

The metaphysis is made up of an outer cortical shell having high intensities and a

less dense and porous cancellous bone on the interior having lower intensities. The

epiphysis is at the end of the long bone in the vicinity of the articular surface and

consists of relatively dense subchondral bone having intensities that lie in between

cortical and cancellous bone tissues. The proposed approach uses these intensity

variations present in the 3D CT images to classify the partitioned surface patches to

the di�erent anatomic labels.

Surface patch classi�cation starts by classifying the surface vertices of each patch.

This is done by associating each bone fragment surface vertex with a collection of

intensities as attributes. Since these intensity attributes are derived from the appear-

ance of the bone tissues in the CT image that are in the vicinity of the surface patch,

we refer to these attributes as appearance attributes. Each surface patch vertex is
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(a) (b) (c)

Figure 3.7: (a) Shows the process of �drilling down� into the green fragment surface
along the negated direction of the surface normal, N, of the surface point, p0. Note
that these positions are actually inside the fragment and surface geometries are reg-
istered with CT scans. (b) Shows how to compute the intensity of each position.(c)
Plots the computed intensity values as a function of distance along the inward point-
ing surface normal.

assigned with a sequence of appearance attributes that are taken as the sequence of

intensities that occur as one traverses the CT image by following the vertex surface

normal from the surface patch vertex into the bone interior. The sequence of the

CT intensity values recorded along this path is referred to as a CT-pro�le. Each

CT-pro�le describes a distinct sequence of CT intensity values generated by taking

measurements at a set of prescribed distances as one moves at constant increments

into the bone interior from the outer surface. It is computed by interpolating the

CT intensities at each of these positions, pk, for each surface point. The sequence

starts at the surface vertex itself, p0, by interpolating the CT intensity at that point,

I (p0). M additional intensities values are computed by moving along the direction

of the negated (inward pointing) surface normal at that point in equal amounts, 4s,

the value of 4s is computed from the resolution of the provided CT data. The CT

intensity value at the kth position, I (pk), is computed by performing trilinear in-

terpolation within the registered 3D CT volume. This creates a vector of M+1 CT

intensity values for each surface patch vertex which is referred to as CT-pro�le for

that surface point. Equation (3.3) describes the CT-pro�le vector for the ith surface
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vertex, vi, and requires the surface normal at that vertex denoted ni:

X = (I (p0) , I (p1) , I (p2) , · · · , I (pM))t; (3.3)

where pk = vi − k4sni and k = 0, 1, 2 . . .M . Figure 3.7 shows graphically how a

CT-pro�le is computed. For the measurements in the �gure 4s = 1mm and M = 4.

The CT-pro�le encodes the anatomical tissue variations present in the bone as

a function of depth along the surface normal as a sequence of computed intensity

values. Physiological variations in typical bone anatomy allow for these intensities to

be used to detect the approximate anatomic type and location of the surface vertex

within the bone. CT-pro�les from the proximal tibia, i.e., the diaphysis, generate

curves that have the largest intensity peak which typically occurs about 1-2 mm

from the fragment surface. CT-pro�les from the medial tibia, i.e., the metaphysis,

also typically have a peak after 1-2 mm however this peak is approximately 25% of

the magnitude of the diaphyseal intensity peak. CT-pro�les from distal tibia, i.e.,

the articular region, have a pro�le that typically lies in-between the diaphyseal and

metaphyseal pro�les. Figure 3.8 shows the behavior of CT-pro�les as one traverses

from the diaphysis to the articular regions of the bone (from top to bottom).

The speci�c intensity variations that occur within a given image can vary widely

due to several factors: (1) patient age/gender, (2) the imaging equipment, and (3)

patient height/weight. In fact, the studies [63, 64] have shown that bone intensity

of human beings can signi�cantly vary due to these factors. Typically, men tend to

have more dense bone tissues than women, and young people tend to have stronger

and harder bones than older people. In addition, bone intensities recorded with

di�erent imaging equipment can also vary signi�cantly. Due to these e�ects, the

classi�cation systems must be trained on each patient and CT machine to provide

reliable classi�cation outputs.

The classi�cation process is described in the following sequence of steps:

1. The user speci�es training data,
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(a) (b)

Figure 3.8: (a) Shows the CT-pro�le appearance models for intact, fracture, and
articular surface regions which consist of a collection of eight di�erent CT-pro�les. (b)
Shows a collection of surface regions interactively selected as training data necessary
to form the CT-pro�le appearance models in (a).

Figure 3.9: Two views of the surface mesh classi�cation results for two fragments.
Red surface patches denote the periosteal surface. Green patches denote the fracture
surface, and blue patches denote the articular surface.

2. A classi�er is constructed from the training data,

3. The classi�er classi�es the surface points of each surface patch and assigns an

anatomic label to each surface patch,

4. Adjacent surface patches having the same anatomic label are merged.

Since the surface classi�cation is not a contribution of this dissertation, the details

of its implementation is not discussed here. Figure 3.9 shows classi�cation results for

two bone fragments using this approach.
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3.3.1 Previous Work

Other appearance-based classi�cation systems [65, 66, 67] are widely used for match-

ing and tracking faces and for medical image segmentation. Work in [65] proposed

a generic appearance-based classi�cation algorithm that uses a spectral representa-

tion for images. They partition the frequency domain of an image into small disjoint

regions and derive a set of �lters for these regions. A �lter selection algorithm is pro-

posed to maximize the classi�cation performance over the training data. The main

idea of this algorithm is to extract translation invariant statistical features using the

frequency domain representation which can be used to classify objects in images based

on their appearance. Work in [67] introduced a technique for frontal face detection in

color images based on facial feature extraction and appearance-based classi�cation.

This algorithm �rst performs skin detection using a statistical skin model to derive a

bounding box region for human face area in the image. Then mouth and eye feature

points are detected within this region using the statistical, geometrical, and structural

properties of eyes and mouth in frontal face images. Their �nal step of detecting a

face in the image uses a multivariate normal distribution as a model for facial features

as originally proposed by [68] for face detection in gray-scale images. Work in [66]

extends the idea of modeling shape and local appearance to locate �exible objects

in the images. This approach proposes a novel method for interpreting images that

uses an Active Appearance Model (AAM). During training phase, the relationship

between the model parameter displacements and the residual errors between a train-

ing image and a synthesized model example is derived. To match to an image they

measure the current residuals and use the model to predict changes to the current

parameters, leading to a better �t. Their approach can be used to do object tracking

and recognition in various applications.

Due to the speci�city and di�culty of the problem, there are few examples of

standard algorithms that segment and classify fragmented bone surfaces. Existing
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reconstruction approaches rely on manual segmentation as provided by manually

identifying the 2D contour that bounds the bone tissues of each fracture fragment in

each slice of a 3D CT image [69]. Work such as that in [23], perform automatic surface

extraction by using a threshold to segment bone fragments from the CT images.

Unfortunately, such a simple method for segmentation of the bone fragment surfaces

fails for almost all fragments especially those fragments which include cancellous or

subchondral bone tissue. These fragments have subtle intensity variations and often

have intensities similar to other image structures that are not bone tissue such as

cartilage and soft tissue. For this reason one cannot use simple thresholding for bone

fragment classi�cation.

3.4 3D Puzzle-Solving

The 3D puzzle-solving algorithm takes as input a collection of bone fragments which

have been partitioned into surface patches where each surface patch has been clas-

si�ed as an intact surface or a fracture surface. As output, it provides a 3D virtual

reconstruction of the bone fragments which approximate the anatomy of the unbro-

ken bone. The intact contra-lateral bone, as represented in the intact CT image, is

taken as a reasonable approximation of the unbroken bone. Bone fragment surfaces

are matched with this surface to reconstruct the fracture [70]. Speci�cally, this dis-

sertation assumes that aligning the kth fragment's intact surface, Sko , to the intact

template, St, will restore the kth fragment to its original position in the unbroken

bone anatomy. Since the development of the 3D puzzle solving algorithm is the main

contribution of this dissertation, the introduction and background details for the 3D

puzzle solving algorithm are discussed in Chapter 4.

3.5 Post-Reconstruction Analysis

The post-reconstruction analysis is the �nal output of the system. The analysis

tools are integrated into the system and allow users to analyze the reconstruction

result and help users better understand the fracture case. The analysis consists of
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Figure 3.10: This �gure describes the computation of the point-to-plane distance.
Let Q denote a point on the surface of a fragment. Let P denote the closest point
on the surface of the intact template and n denote the surface normal at that point.
The �gure shows a geometric representation for the point-to-plane distance from Q
to P , given as d in the �gure.

two components: (a) analysis of the geometric accuracy of the aligned fragments

and (b) analysis of the severity of the bone fracture. The �rst component provides

a table containing alignment information and a histogram of alignment error for

each fragment. The second component is a fracture severity report which contains

quantitative values for several key factors for each fragment which are known to be

indicators of fracture severity. Although visual assessment of 3D reconstruction result

is valuable to users, these analysis tools provide quantitative information which can

help users objectively interpret the fracture case.

The geometric accuracy of the aligned fragments is one aspect of the reconstruction

of interest. Analysis of the geometric accuracy of the reconstruction is accomplished

by measuring the distance metric between the outer surfaces of the reconstructed

fragments and the surface of the intact template. These distances are averaged to

compute alignment error for each fragment. Each distance is computed as the point-

to-plane distance, i.e., the Euclidean distance from a vertex on the fragment outer

surface to the plane of the closest triangle on the surface of the intact template as

shown in �gure 3.10. The post-reconstruction analysis report consists of a table of

global alignment information and a table of histograms that show the distribution of
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Figure 3.11: The �gure shows a table displaying a list of alignment analysis parame-
ters and their values for a speci�c fracture case.

the point-to-plane of alignment errors for each fragment.

Figure 3.11 shows an example of the global alignment analysis table. In the table,

numerical values are given for the following quantities:

1. Number of points on the intact surface model (samples).

2. Number of matched points on the intact surface model (samples).

3. Number of unmatched points on the intact surface model (samples).

4. Percentage of unmatched surface points as a proportion of the total number of

points on the intact model (%).

5. Surface area of the intact model (mm2).

6. Matched surface area of the intact model (mm2).

7. Unmatched surface area of the intact model (mm2).

8. Percentage of unmatched surface area as a proportion of the total surface area

of the intact model (%).

9. Average global alignment error for this fracture (mm).

These quantities assist users in understanding the reconstruction quality in terms

of the geometric accuracy. The �rst four quantities allow the user to understand

the global matching relationships between the intact template and all of the bone

fragments. The reconstruction hypothesis assumes the fragment outer surfaces, when

reconstructed, will �cover up� the entire surface of the intact template. If true, any
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surface patches on the intact template left �uncovered� indicate possible locations for

fragment mis-alignment, fragment surface deformations or missing fragments. See

4.4.2 for details about the �covered� region on the intact template is computed.

Figure 3.12: The �gure shows a histogram of alignment error for one fragment in a
fracture case.

(a) (b)

Figure 3.13: (a) shows a histogram of alignment errors where the bin of vertices
having an error of approximately 0.25 mm has been selected (green). (b) shows a
visualization of the spatial distribution surface points (blue spheres) which have these
errors on the fragment surface.

The �gure 3.12 shows an example of an alignment error of the histogram for

fragment A10 in fracture case one (see Chapter 5). The value of the x-axis is the

observed values of the alignment error (in mm) and the value of the y-axis is the
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Figure 3.14: A severity assessment report is shown which includes values for several
quantities that are known to be key factors in determining fracture severity.

number of fragment surface points whose alignment error falls into this range. Below

the plot of the histogram, the statistical information indicating the mean and standard

deviation of the observed alignment errors are also provided. The histogram of the

alignment error provides users more detailed statistical information that relate to

the quality of the fragment alignment. Moreover, the system makes it possible to

visualize the location and magnitude of the alignment errors as a spatial distribution

on the fragment surface. Interactions are available from the histogram plot which

allow the user to select a range of error values. Once selected, the errors associated

with these values are visualized spatially across the surface of the fragment as shown

in �gure 3.13. These tools are valuable for understanding the quality of the geometric

reconstruction results and understanding the complex geometric inter-dependencies

of a highly-fragmented bone fracture.

As mentioned in 1.3, severity assessment for bone fractures is heavily in�uenced

by a number of related key factors. One contribution of this dissertation is to provide

quantitative values for some of these key factors which are heretofore unavailable in

any other fracture analysis software. Figure 3.14 shows an example of the severity

assessment report which includes computed values of key factors for each fragment in

case one. The following list describes the values provided in the severity assessment
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report in detail:

1. Fragment Volume: This is 3D volume of the region enclosed by the fragment

surface (shown as �Size� in the severity report table). This information is use-

ful in determining if the fragment is structurally stable and useful in clinical

reconstruction, i.e., can it be used for �xation, or is too small to be used in

reconstruction.

2. Fragment Fracture Surface Area: The area of the fragment fracture surface is

a major factor in determining fracture severity as shown in [2]. As discussed in

1.3, the area of the fracture surface generated is directly related to the energy

that the fractured bone absorbed during the fracture event.

3. Fragment Displacement: The fragment displacement is the 3D translation vec-

tor that moves the centroid of the fragment, i.e., the average of all surface

points, from the fragments original position to its reconstructed position. Frag-

ment displacement indicates how far a fragment has moved or dispersed during

the fracture event.

4. Angular Dislocation: The angular dislocation of the fragment is the angle be-

tween the principal axis of the bone fragment in its original position and the

principal axis of the bone fragment in its reconstructed position.

These quantities are closely linked to fracture severity and the displayed values may

allow users to more accurately and objectively estimate fracture severity. Computa-

tion of fracture surface areas from 2D or 3D CT images are di�cult and the results

are often unreliable. Here, the total fracture surface area can be calculated more

accurately after the 3D fragment surfaces are segmented and anatomically classi�ed.

Physicians have no way to quantitatively estimate fragment displacement and angu-

lar dislocation from image data. Current approaches rely upon the physician's visual

assessment and experience. For high energy fracture cases, accurately assessment of

these values are di�cult. Since the proposed system has unique capabilities to com-



62

pute the original and reconstructed position for each bone fragment, the key factors

shown are inaccessible from any other source. Values uniquely available from the

proposed software are fragment displacement, angular dislocation, and the surface

area for the fragment outer surface and fracture surfaces.



CHAPTER 4: 3D PUZZLE SOLVING

3D computational puzzle solving, as it pertains to this dissertation, describes the

generic research problem that seeks to use computer algorithms to facilitate recon-

structing 3D broken objects from their fragments. In general, puzzle-solving ap-

proaches fall into two categories: (1) boundary matching, i.e., algorithms that match

together fragments by comparing their boundaries, and (2) template matching, i.e.,

algorithms that match fragments into an a-priori known template that is used as a

reference shape for the broken fragments. Approaches from both categories require

algorithms for curve and surface matching and surface alignment. For boundary

matching, boundary curves from the broken fragments are matched to piece together

the fragments. For template matching, surfaces on the fragment are matched to the

corresponding surfaces on the template so that fragments can be aligned into the

template to accomplish reconstruction.

The computational 3D puzzle solving typically consists of three steps: (1) hy-

pothesize geometric matches between fragmented pieces, (2) test these hypotheses by

examining how well the geometry of the pieces match, (3) classify these hypotheses

and �nd the best match as the puzzle solving solution. The �rst step usually involves

a searching problem: in order to generate the hypothesized geometric matches, one

has to search all geometric shapes in the data. This searching process could be done

exhaustively by testing every possible combination of matches. More e�cient search

methods choose to search matches by selecting pieces that have high probability of

generating distinctive matches. The second step typically involves alignment, i.e.,

the famous alignment algorithm is Iterative Closest Point [71] (ICP 1 ). By aligning

1See �ICP� in Glossary
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surfaces or boundaries based on the hypothesized geometric match, one can deter-

mine whether the hypothesis is true or not. The �nal puzzle solution is typically

the collection of hypotheses that produces the minimum alignment error for all the

pieces.

Many researchers have developed algorithms for matching objects based on their

boundary shapes to assemble 2D jigsaw puzzles [72, 73]. However, in this case the

jigsaw pieces share similar sizes and have distinctly identi�able shapes that need to be

matched. In this case one can also assume that all of the jigsaw pieces are complete

and intact, and no pieces are missing. Puzzle solving 3D fragments is a much harder

problem than the jigsaw re-assembly problem due to the di�culties one faces when

identifying and matching the shapes of the fragments. See �gure 4.1 for a detailed

description.

The puzzle solving approach in this dissertation seeks to piece together bone

fragments to reconstruct the original unbroken bone using the second mentioned

method for reconstruction: template matching. There are two reasons for choosing

this template matching method: (1) boundary matching for 3D bone fragments is

a di�cult geometric matching problem, (2) the geometry of the template, i.e., the

intact bone, is a-priori known. Work in [70] shows that the intact contra-lateral bone,

i.e., the unbroken bone in the other limb of the patient, is an adequate template

against which to reconstruct the fracture. This template is generated by �mirroring�

its geometry, i.e., having its geometry re�ected across the plane of symmetry for the

human skeletal system. It is assumed that aligning each fragment's outer surface to

the surface of the mirrored template, the original bone anatomy will be restored.

4.1 Previous work

A recent survey [74] discusses systems capable of automatically reconstructing 3D

objects from their fragments: The survey categorizes existing puzzle-solving sys-

tems into 2D reconstruction approaches [75, 76] and 3D reconstruction approaches
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(a) (b)

Figure 4.1: The di�erence between reassembling commercial jigsaw puzzles and re-
constructing broken artifacts. (a) Jigsaw pieces have readily identi�able corners (red
dots) allowing programs to easily separate portions of the boundary (shown as di�er-
ent color curves) that will match with some other unique puzzle piece. Additionally,
each boundary segment is a smooth planar curve having an isthmus, or neck, that is
highly indicative for �nding that unique matching puzzle piece. (b) Two hypothetical
fragment boundaries. Note here that the problem is made much more di�cult as cor-
ners are not easily identi�able and may not indicate the beginning or end of a curve
that will uniquely match some other fragment. Worse, any portion of a boundary
curve may match to any other fragment and the curve itself may match equally well
with numerous similar boundaries from other fragments. (Used with permission from
[74]. )



66

(a) (b)

(c)

Figure 4.2: In (a), the outer contour of the square ceramic tile, i.e., the intact bound-
ary, Ωouter is shown in red, in this dissertation it is equivalent to ,Si, the outer surface
of bone fragments; fracture boundary, Ωinner, is shown in blue, it is equivalent to ,Sf ,
the fracture surface of bone fragments; vertices, Ωinner⊥, are shown as green points;
and outer vertices, Ωouter⊥, are shown as yellow points. (Used with permission from
[74].)

[77, 78, 79, 80]. The survey uni�es all types of reconstruction approaches by categoriz-

ing the geometric variables that must be used by all geometry-based puzzle-solving al-

gorithms. These variables are grouped into four sets as shown in �gure 4.2: (1) Ωouter,

variables that characterize the outer boundary of the object before being fractured,

i.e., outer boundary, (2) Ωinner, variables that characterize the boundaries generated

when the object was fractured, i.e., fracture boundaries, (3) Ωinner⊥, variables that

characterize locations where three or more fragment boundaries have broken apart,

i.e., fracture junctions, (4) Ωouter⊥, variables that characterize special junctions be-

tween outer boundary and the fracture boundary, i.e., outer-surface junctions.

Work in [76, 75] converts the broken 3D objects, i.e., thin stone tablets into 2-D

curves by using the tablet fragment outlines as viewed from either top or bottom. Be-
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cause the tablets are thin, this simpli�cation reduces the computational complexity

without signi�cantly impacting the reconstruction results. In [76], curvature signa-

tures are extracted as features from these 2D fragment fracture curves and used to

match up pairs of fragments. In contrast to [76], [75] uses fracture curves and vertices,

i.e., boundary points lie in locations where multiple fragments were broken apart, to

match fracture curve segments. Both [75] and [76] use a robust elastic curve matching

instead of traditional cross correlation and least squares techniques, and a multi-scale

approach to improve the performance by quickly reducing the search space for com-

patible matches. The work in [75] uses a best-�rst strategy which looks at junctions

and seeks to match fragment boundaries at open vertices, i.e., where less than three

pieces have been matched. Their reconstruction results are promising, but these sys-

tems cannot be used to piece together broken bone fragments. This is due to the fact

that the geometry of bone fragments are irregular and complex and converting 3D

bone fragment surfaces into 2D boundary curves would lose information critical to

computing the solution.

[80, 81] attempt to compute the geometry of the pot as a maximum likelihood

estimation problem where they seek to �nd the collection of matched outer surface

break curves, i.e., the edges of the surfaces along which the fragments physically broke

apart, and global axis/pro�le-curve geometry that maximizes the probability of all

the measured fragment data. Pair of fragments are aligned by aligning vertices, i.e.,

high curvature points on the fragments outer boundary, of each fragment. The search

algorithm starts with all possible pairwise fragment matches and arranges them in

a stack sorted by the match probability. Large con�gurations of fragments such as

triplets and quadruplets are built up by merging elements in the stack and inserting

the merged objects back into the stack ordered by their probability. However, the

computational complexity of the search problem limits this method to problems in-

volving a small number of fragments. [80] modi�es this approach by using compact
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probability distributions for the fragment geometry rather than repeatedly using the

raw data which speeds up the matching process. In addition, [80] aligns axis/pro�le-

curves for groups of fragments instead of aligning break-curve vertices �rst which is

much faster. Unfortunately, these approaches are not feasible for reconstruction of

broken bone fragments for two reasons: (1) bone fragment surfaces tend to be more

highly irregular and are usually not symmetrical, and (2) fracture surfaces of bone

fragments are di�cult to accurately measure and reliably match.

[77] uses scanned data points of the fracture surface and a curvature and torsion

representation of the outer fracture space curves as features to reconstruct 3D objects.

The matching algorithm in [77] uses a similarity matrix whose content at index (i, j)

is the sum of squared di�erences between the curvature and torsion at sample i from

one curve and the curvature and torsion at sample j from another curve to identify

similar boundary curve segments. Then the algorithm applies a brute force search

to �nd matching break curves and re�nes fragment alignments by matching fracture

surfaces adjacent to these curves. The basic idea of [77] is that, given two 3D models,

the best �t is likely to occur when the spatial arrangement of the fragments minimizes

the point-to-point distance between the mutually visible, i.e., spatially close, faces of

the objects. Towards this end, they introduce an error measure to match two objects,

based on this point-to-point distance which is optimized to align fragments. The idea

of matching break curves and fracture surfaces is repeated in [23] which puzzle-solves

high-energy fracture bone fragments by matching the fracture surfaces of di�erent

fragments. However, identi�cation of the fracture surface from CT image data is

di�cult and often results in inaccurate fragment surfaces which can adversely impact

the reconstruction. In addition, the method of [23] relies on a signi�cant amount of

user interaction, i.e., one manually selects sub-regions on the fragment surface and

matches these surface sub-regions.

Work in [78] uses integral invariant features of fracture surface patches and break
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curves for reconstruction. These features are computed at a surface point by integrat-

ing spatial functions over the region contained within a sphere of radius r centered at

the surface point. The matching algorithm in [78] is done by clustering similar inte-

gral invariant features for di�erent fracture surface patches and their adjacent break

curves over a sequence of scales. Initial pairwise fragment matching is accomplished

by performing principal component analysis (PCA) on the augmented feature vector.

A second matching criterion checks geometric consistency by ensuring that distances

between corresponding points on corresponding surfaces have approximately the same

point-to-point distance. This geometric consistency idea is adopted by puzzle-solving

in this dissertation to �lter generated feature matches as discussed in 4.3.3. After

those criteria are checked, a search algorithm computes a graph where each node is

a fragment and each edge represents a candidate match between two fragments. The

task of the puzzle-solving algorithm is to search for the appropriate sub-graph that

speci�es the correct collection of fragment matches.

In [82, 83] some e�orts are made to improve the matching performance by including

information obtained from patterns on the outer fragment surface. They use in-

painting and texture synthesis methods to extend the patterns on the boundaries

of the outer surface of the fragments to predict those patterns that they expect to

�nd on matching pieces. The mean and variance of the predicted pixel values within

small windows around the image boundary are computed as the fragment features

and these are used for fragment matching. There are no texture patterns on the bone

fragment surface, that can be used as additional features to incorporate in matching.

4.2 Generic template matching as a puzzle solving approach

The template matching puzzle solving approach for bone fracture reconstruction

works as follows: (1) hypothesize geometric matches, i.e., each match hypothesizes a

point on the surface of the intact template corresponds to a point on the outer surface

of a fragment to create a hypothesized pair of points, (2) test these hypotheses, i.e.,
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each hypothesis is tested by computing the alignment error between the two surfaces

when matched using the hypothesized point pair, (3) take the collection of hypotheses

having smallest alignment error as the �nal puzzle solution.

The ICP algorithm [71] is a popular non-linear minimization technique used to

do generic surface alignment and surface matching. The algorithm takes as input a

�oating surface and a �xed surface and then iteratively improves the alignment by

moving the �oating surface to the �xed surface. Each iteration of the ICP algorithm

consists of two steps: (1) establish a set of pairwise point correspondences between

points on the �oating surface and points on the �xed surface, and (2) compute the

3D rigid-body transformation that transforms the �oating surface points such that

the sum of the squared distances between corresponding points is minimized. Corre-

sponding points at each iteration are taken as the closest point on the other surface.

The algorithm recomputes the corresponding point pairs in the beginning of each

iteration, and it typically converges to a meaningful alignment position. However,

when the �oating surface starts in a pose far away from the correct pose the ICP

algorithm can converge to local minima and generate a poor alignment result.

The intact template, St, de�nes the surface into which we seek to place the bone

fragments. The template-based puzzle solving approach seeks to �nd a mapping of the

bone fragment surfaces onto the surface of the template. The mapping is provided by

geometrically matching the kth bone fragment outer surface, Sko , to the corresponding

part of the intact template, St. The surface matching problem requires computation

of the Euclidean transformation, T = {R, t}, where R is 3x3 matrix that denotes a

3D Euclidean rotation and t denotes a 3D translation vector. The chosen alignment

metric seeks to determine the best value of these variables for minimizing the sum

of squared distances between the corresponding points of the bone fragment outer

surface and the surface of the intact template. Let vki denote the ith surface point

on the outer surface of the kth fragment, and vtj denote the j
th surface point on the
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intact template, the set χ contains the index pairs (i, j) for the corresponding points

pair (vi,vj). Equation (4.1) computes the alignment error for the alignment given by

the transformation Tk :

e(Tk) =
∑

(i,j)⊂χ

∥∥(Tkv
k
i + t

)
− vtj

∥∥2 (4.1)

By minimizing e(Tk) over all values of Tk, we can obtain the best possible alignment.

The brute-force approach for puzzle solving bone fractures is computationally

prohibitive. The computational cost is determined by the number of hypotheses

(matches) and the computational cost associated with testing or evaluating the like-

lihood that each hypothesis is true, i.e., this is equal to the computational cost of the

ICP algorithm for each such test. Assume nicp denotes the number of ICP iterations

to compute a solution, and Nk denotes the number of corresponding pairs for each

iteration. Then the computational cost of the ICP algorithm alone is O(nicpN
2
k ). The

number of corresponding surface point pairs between the fragment surface and the

intact template surface may make Nk very large, e.g., Nk > 20000. Given the very

large number of possible point-pair hypotheses which can be (20000)2 for the ear-

lier example this approach becomes computationally prohibitive for even very small

puzzles. The puzzle solution approach introduced in this dissertation addresses this

problem by reducing the computational cost for each hypothesis test by replacing the

surface matching problem with a less computationally costly surface matching metric.

4.3 Feature-Based Puzzle Solving

Feature-based puzzle solving approaches extract features from surfaces and use these

features to build hypothesis matches and to test these matches. The approach to

puzzle-solve the kth fragment, Sko , with respect to intact template, St, consists of �ve

steps:

1. Feature Extraction: This step takes in Sko and St as input and outputs a col-

lection of features for each point on the fragments and intact template. These

features are a compact representation of the geometry of the surface in the
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vicinity of each point. (see 4.3.1)

2. Generate Matched Features: This step takes in as input the computed features

from (1) and outputs a list of matched feature pairs: Linitial. (see 4.3.2)

3. Remove Incorrect Matches: This step takes Linitial as input and removes sus-

pected false matches from the initial list and outputs a list of candidate matches

in a new list: Lcandidate. (see 4.3.3)

4. Test Candidate Matches: This step takes in the previously generated list Lcandidate

and outputs a 3D transformation matrix for each match which aligns the bone

fragment to the surface of the intact template.(see 4.3.4)

5. Select The Best Matches: This step determines which of the alignments from

the previous step provide the best result and use these to provide the �nal

puzzle-solved solution. (see 4.3.5)

Before we puzzle solve a clinical fracture case, an extra initialization step is required.

This step is needed to provide a gross/coarse alignment between the intact surface

and the bone fragment. This is accomplished by aligning the intact template to the

base fragment, which is usually taken to be the uppermost (proximal) bone fragment

in the fracture. The resulting alignment for the base fragment is then applied to

all fragments in the fracture case. This initial gross movements of all the fracture

fragments serves to bring the surfaces of the fragments which were extracted from the

fracture CT images into coarse alignment with the intact surface extracted from the

intact CT images. Figure 4.3 shows a graphical overview of the proposed method for

puzzle-solving a clinical bone fracture case.

4.3.1 Feature Extraction

This section discusses the features used to represent the geometry of a local surface

patch around a chosen surface point. In order to simplify the discussion, let's de�ne

some notation. The problem is to match the kth fragment outer surface, Sko , to the

intact template, St. Let f tm denote the feature extracted for mth surface point on the
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Figure 4.3: Puzzle solving process: initialization, matching and alignment.

intact template. Let fkn denote the feature extracted for the nth surface point on a

fragment surface patch. We denote the collection of all features extracted from the

intact template as f t and the collection of all features extracted from the kth fragment

outer surface patch as fk.

This dissertation adopts the spin image representation [84, 85] as the feature for

representing local bone surface geometries around a surface point. The approach con-

verts this geometry into a 2-D image called the spin image. Using this representation

two local surface patches with the same geometry produce the same spin images. This

reduces the surface matching problem to the less-complex problem of matching similar

images. The spin image for an oriented surface point, p, having surface normal n is

depicted in �gure 4.4a. Here, the point x is a point in the local vicinity of p that also

lies on the fragment surface. Spin images are computed by projecting x into the spin

image at the location (α, β) where α is the closest distance between x and the normal

line n, and β is the closest distance between x and the tangent plane of surface point

p. α is always positive and β is positive when x is above the plane passing through

p with normal n and negative when x is below this plane as shown in �gure 4.4a.

Plotting the (α, β) values of all the points in the vicinity of the point p generates a

2D image as shown in �gure 4.4c. A spin image is generated by imposing a grid over
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(a) (b) (c) (d)

Figure 4.4: (a) Oriented surface point p with its normal n and the tangent plane p,
one of its neighbor point x on the fragment surface and (α,β) are computed values for
point x respect to point p ; (b) shows point p on the bone surface and its neighbor
points; (c) Plotted neighbor points on the (α, β) grid; (d) Computed spin image for
out of (c) [84].

this image and setting the spin image intensity to the number of (α, β) points that

lie inside each box of the grid. (see �gure 4.4d). The spin image is a description of

the local shape of the object surface because it is a function of the projection of the

relative positions of 3D points that also lie on this surface. Since the results is a 2D

image some of the 3D metric information is lost in this transformation. Speci�cally,

the angular position of the 3D surface point relative to the point p. Hence, it can

be used as a compact, yet, imperfect, representation of the shape of a bone fragment

surface which is Euclidean invariant, i.e., the spin image does not change when the

object is transformed.

4.3.2 Generate Matched Features

Matching the spin images from f t and fk generates a list of hypothesized correspon-

dences between the fragment surface points and the surface points of the intact tem-

plate. Let Linitial denote this list of initial hypothesized point pairs. The normalized

linear correlation coe�cient, Rsp(P,Q), is used to compute a score for each hypoth-

esized match where a score of 1 is a perfect match and scores can come from the

interval (-1, 1). Given two spin images P and Q with Nbin bins (number of pixels in

the image ), denote pi = I(α, β) as the ith image intensity value for spin image P ,

similarly, denote qi = I(α, β) as the ith image intensity value for spin image Q. With

this notation the linear correlation coe�cient, Rsp(P,Q), is computed as shown in
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equation (4.2):

Rsp(P,Q) =

Nbin

∑
i

piqi −
∑
i

pi
∑
i

qi√√√√(Nbin

∑
i

p2i −
(∑

i

pi

)2
)(

Nbin

∑
i

q2i −
(∑

i

qi

)2
) (4.2)

Rsp lies between -1 (negatively-correlated) and 1 (positively correlated), and it

provides a basic criteria for the comparison of two spin images. When Rsp is close

to 1, the images are similar, when Rsp is close to -1 the images are di�erent. If we

use the normalized correlation to score matched spin images the resulting scores are

biased by the overlap of the matched images. For example, there might be a case

where two matched spin images have a small area of overlap. The score for such

images may indicate that the images are very similar with a high Rsp value. On the

other hand, two spin images with a large area of overlap may be assigned a lower Rsp

value but exhibit widespread similarities. To address this problem, we consider the

number of overlapping pixels as part of the �nal matching score. Let's denote Noverlap

as the number of overlapping pixels, i.e., pixels where spin images P and Q both have

values. The adjusted similarity function Csp(P,Q) is introduced by modifying the

linear correlation Rsp(P,Q) as shown in equation (4.3).

Csp (P,Q) = (arctan (Rsp (P,Q)))2 − λ
(

1

Noverlap − 3

)
(4.3)

This similarity function weights the correlation Rsp against the variance intrinsic

to the correlation coe�cient which increases as the amount of overlap in the two

spin images increases. The parameter λ is used to control the relative weight of the

correlation coe�cient and the variance of this statistic to produce a �nal similarity

score. [84, 85] mention that λ controls the point at which the overlap between spin

images dominates the value of the similarity metric for two spin images. When the

overlap is much larger than λ, the second term in equation (4.3) becomes negligible.

In contrast, when the overlap is much less than λ, the second term dominates the

similarity measure. Therefore, λ should be the expected overlap between spin images.

In this dissertation, λ is automatically computed for each fragment by computing
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average number of none-black pixels for all the spin images generated from that

fragment and setting λ to half of the average value. Note that the parameter λ is

estimated dynamically for each fragment surface.

4.3.3 Remove Incorrect Matches

This section describes method using geometric consistency to remove matches in the

initial list that are suspected to be incorrect hypothesized surface correspondences.

Due to the noise from image data and errors from segmentation and classi�cation

algorithms, the initial list of matches Linitial often contains many false hypothesized

surface point correspondences. Since careful analysis of these matches is done com-

putationally expensive, a quick method for removing these hypotheses is necessary.

Assume we have two hypothesized correspondences (matches) [fk1 , f
t
1] and [fk2 , f

t
2] from

the list Linitial and their corresponding surface points are [vk1 ,v
t
1] and [vk2 ,v

t
2]. If they

are both true matches, then the surface point pairs should be geometrically consis-

tent, i.e., the distance between vk1 and vk2 should be equal to the distance between

vt1 and vt2. We validate this constraint using spin image coordinates in a geometric

consistency test. If the two matches satisfy equation (4.4), we consider them to be

geometrically consistent matches which means both of them may be true matches.∣∣∣ξvk
1

(
vk2
)
− ξvt

1

(
vt2
)∣∣∣ < Dgc,

∣∣∣ξvk
2

(
vk1
)
− ξvt

2

(
vt1
)∣∣∣ < Dgc (4.4)

ξvk
1

(
vk2
)
represents the 2D coordinates (α1, β1) which are computed by considering

vk1 as oriented point and vk2 as its neighbor point, similarly, ξvt
1

(vt2) represents the 2D

coordinates (α2, β2) which are computed by considering vt1 as oriented point and vt2

as its neighbor point. This test evaluates the distance between (α1, β1) and (α2, β2).

Here Dgc = 2γintact where γintact is the resolution of the intact template, i.e., average

edge length of the edges from the intact template surface mesh.

When the initial match list is constructed the elements are sorted by decreasing

similarity score, Csp. Inconsistent elements are removed by splitting the list Linitial

into two parts at its midpoint. The �rst list will contain matches that have higher
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similarity scores and the second will contain matches that have lower similarity scores.

One match from each of the two lists respectively is taken from the top of the list

to form a collection of two hypothesized correspondences. The geometric consistency

condition is evaluated for the pair of correspondences. If they both satisfy the con-

sistency condition, we keep both matches. Otherwise, we keep the match that has a

higher similarity score and discard the other match. After evaluating all matches in

both lists, the remaining matches are placed in the sorted list referred to as Lcandidate.

4.3.4 Test Candidate Matches

A novel surface alignment technique uses hypothesized surface point matchesM(vki ,v
t
j)

to compute the transformation matrix Tk that aligns the fragment, Sk, to the intact

template, St. Because the computational cost of the ICP algorithm is high (see 4.2

), it is ine�cient to use the ICP algorithm to evaluate every match in the list. This

dissertation develops a hybrid surface alignment solution. It proceeds by using the

hypothesized corresponding surface points to compute an accurate estimate of the

initial starting position for the fragment surface. For a given surface point match,

the surface-to-surface alignment proceeds in three steps:

1. Initial Surface Alignment: This step takes in a point match M(vki ,v
t
j), outputs

an initial transformation matrix, Tk
init (see 4.3.4.1 ).

2. Coarse Surface Alignment : This step takes in the point match M(vki ,v
t
j) and

the initial transformation matrix Tk
init and outputs a new transformation ma-

trix, Tk
coarse, which repositions the fragment to reduce its alignment error (see

4.3.4.2).

3. Re�ned Surface Alignment: This step takes in as input the surface points of

the fragment,vk, and the surface points of the intact template, vt, and the

transformation Tk
coarse and outputs a �nal transformation matrix Tk

re�ne which

aligns the fragment surface with the surface of the intact template (see 4.3.4.3).



78

Note that the �nal step uses the ICP algorithm. This allows the points of the initial

match to change as the correspondence in ICP is computed as the closest points after

each movement of the �oating surface. In this way hypotheses can be used that may

not be exactly correct and in cases where the hypothesis is �close�, the ICP algorithm

is still likely to converge to the correct alignment.

4.3.4.1 Initial Surface Alignment

The initial transform matrix Tk
init is computed by moving the surface point of the

fragment to coincide with the corresponding surface point on the intact template and

by aligning the two surface normal vectors at these points. For correspondences which

are nearly or exactly correct, the resulting transform matrix Tk
init typically brings the

fragment into good alignment with the intact template. Let the point pair (vki ,v
t
j)

denote the hypothesized corresponding surface points having normals (nki ,n
t
j). Then

the translation vector; tinit = vtj − vki . The rotation matrix is computed by rotating

the fragment around a �xed axis, naxis, by an angle φr. The axis of rotation, naxis, is

the cross product of template surface normal, ntj, and the fragment surface normal,

nki ; naxis = ntj×nki . The angle of rotation is the angle between the two normal vectors;

φr = arccos(ntj · nki ). The Rodriguez formula (4.5) illustrates how to compute a 3-

dimensional rotation vector from the normal vector, nki , the axis of rotation, naxis,

and the rotation angle, φr. The rotation vector, vrot, can then be converted to a

rotation matrix Rinit using equation (4.6) [86] .

vrot =nki cosφr + (naxis × nki ) sinφr + naxis(naxis · nki )(1− cosφr) (4.5)

Rinit = I cosφr + Rx sinφr + (1− cosφr)naxisn
t
axis (4.6)

Where I is the 3x3 identity matrix and Rx is a cross-product matrix for the vector

naxis = (xa, ya, za) as shown in equation (4.7).
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Rx =


0 za ya

za 0 −xa

−ya xa 0

 (4.7)

4.3.4.2 Coarse Surface Alignment

The coarse surface alignment seeks to �nd the best orientation for the fragment

as a rotation around the hypothesized corresponding surface normal and point. As

mentioned in 4.3.1 spin images lose this information when they are computed and

recovering the value of this unknown angle requires solving an one-dimensional error

minimization problem. Consider the transformation matrix Tk
r which aligns the kth

fragment with the intact template. Let Tk
r be a function of six-parameters transfor-

mation vector, {x, y, z, θ, ϕ, ψ}. If the hypothesized correspondence between the two

surfaces is correct, the transformation matrix Tinit computes the correct value for �ve

of the variables in the vector. Three of them, {x, y, z}, are computed from aligning

two point coordinates, i.e., tinit = {x, y, z}. Two of remaining three angles, {θ, ϕ}, are

computed by aligning the two normals nki and naxis resulting in the rotation matrix

Rinit , i.e., Rinit = {θ, ϕ}. The last parameter, the rotation angle ψ, is the free pa-

rameter we seek to compute in the one-dimensional error minimization problem. This

is accomplished by rotating the �oating fragment surface around the aligned surface

normals using the corresponding surface points as the origin. The angle, ψ, is taken

as the rotation angle that produces the minimum local alignment error between two

surfaces.

LetR(ψ) denote the one parameter rotation around the corresponding surface nor-

mal, ntj, or equivalently, Rinitn
k
i . Since the rotation matrix R(ψ) is a rotation around

this surface normal we can compute it using equation (4.5) and (4.6) and substituting

ntj for naxis and ψ for φr. Candidate values for the coarse alignment are computed

by updating the rotation matrix of the transformation T
′
init = {R(ψ)Rinit, tinit} for
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values of ψ ∈ [0, 2π). Estimation then reduces to solving equation (4.8):

ψ̂ = argmin
ψ

(
∑

(i,j)∈χ

(
∥∥∥(T′

initv
k
i

)
− vtj

∥∥∥2)); (4.8)

Where vki denotes the transform fragment point from the the kth fragment. The re-

sulting transformation, Tcoarse, includes the new transformation matrix, i.e., Tcoarse =

{R(ψ̂)Rinit, tinit} computed by minimizing local alignment error between two surfaces

and is the output of this step.

4.3.4.3 Re�ned Surface Alignment

The re�nement step utilizes the ICP algorithm on two surfaces to �nalize the align-

ment. Since the fragment is nearly aligned to the intact template: the point-to-plane

error metric is used for this step. As stated in [87], the point-to-plane metric tends

to converge faster than the point-to-point metric and it is more stable provided that

the angular misalignment between the two point sets is small. The transformation

matrix Tk
re�ne is computed by the ICP algorithm and is considered to be �nal solution

for the kth fragment alignment.

4.3.5 Select The Best Matches

Figure 4.5 illustrates how the alignment process uses a hypothesized surface corre-

spondence to align a fragment to the intact template. For a given fragment, each

hypothesized surface correspondence is evaluated in the sequence given by the match

score from (4.3.3) starting at the highest score. Each evaluation aligns a fragment

to the intact template using the three alignment steps speci�ed in the three previous

section. However, if the algorithm goes through all three steps for every match, the re-

construction process is very time-consuming. To reduce computation each alignment

step includes pre-de�ned conditions to determine whether the system should continue

to evaluate the match or discard the match and try a new hypothesized match. The

local alignment error is used to control the process. Because the computational cost

increases in each step, the alignment error threshold values are smaller (stricter) for

each step. In this dissertation, the threshold values are 4γintact for step one, 2γintact
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Figure 4.5: An example of alignment using the surface alignment engine. The red
bone is the intact template, the green bone is one of the fracture fragment. The two
black points on both surfaces are matched surface points.

for step two, and γintact for step three. Finally, when one match is accepted by all

three steps the output position from step three is considered as the �nal alignment

for the fragment.

4.4 System Enhancements

Several software enhancement tools are introduced to help improve the quality of the

3D puzzle-solved solutions and to help reduce the time necessary to compute these

solutions. These enhancement tools include:

1. Surface Sampling.

2. Mean Curvature Histogram Biased Search.

3. Using Occupied Regions.

4. Improving Fragment Alignment By �Jiggling�.

The following sections ((4.4.1), 4.4.2, 4.4.3, 4.4.4) discuss each tool in detail.

4.4.1 Surface Sampling

The intact template and the fragment surfaces often consists of a large number of

surface points. Computing spin images for every point on these surfaces is a time-

consuming task. In order to improve the speed of the puzzle-solving algorithm, uni-

form sub-sampling is applied on both the intact template and the fragment surfaces.

Surface points are randomly selected on the fragment with a constraint that the dis-
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tance between any two sampled surface points are greater than a pre-de�ned sampling

distance4s. The larger4s value computes fewer sampled points on the fragment sur-

face and smaller value computes more sampled points on the fragment surface. Spin

images are only computed for those sampled surface points on the intact template

and the fragment surfaces. In this dissertation, the sub-uniform sampling distance

for each fragment is set to 4s = 1.5γintact, and γintact is the average edge length of

edges on the intact template.

4.4.2 Using Occupied Regions

The concept of occupied regions allows for signi�cant performance improvements.

The intact template usually contains a large number of surface points. It is time-

consuming to compute spin images for each of these surface points on the intact

template. Since part of the intact template surface has already been aligned to the

base fragment, these points should be excluded from the matching. We mark these

surface points on the intact template surface as �occupied�, and spin images are only

computed for surface points inside the �unoccupied� regions of the intact template.

This signi�cantly reduces the search space for the matching process. Occupied points

on the intact template are �agged using the following condition: the intact surface

point, vt
j , is marked as �occupied� if its distance to the closest aligned fragment surface

is less than 2γintact.

4.4.3 Mean Curvature Histogram Biased Search

To improve the performance of the spin image matching, an approach called � Mean

Curvature Histogram Biased Search� is used which reduces the number of spin im-

ages computed for both the intact template surface and the fragment surfaces. This

signi�cantly reduces the computational cost of searching for the correct spin image

matches. Intuitively, for the bone fragment matching problem, points from planar

surfaces should not be considered as candidate feature points for matching, while dis-

tinctive points such as those on ridges or alleys should be selected as feature points.
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Likewise, surface regions around high curvature points have more distinctive geomet-

ric shape than other more typically surface regions. As such these surfaces are less

common and more easily identi�ed and matched. Information theory supports this

intuition as it assigns events with low probability (high entropy) a higher informa-

tion value (in bits). The goal in this approach is to identify the surface points on

each surface that encode more information (distinguishable geometric shape). These

points should have fewer candidate correspondences and should provide more accurate

alignments.

To accomplish this goal, a histogram of mean curvature values is computed that

includes curvatures for all points on the intact template (see �gure 4.6 for an exam-

ple). For each bin in the histogram, a probability value is computed by dividing the

number of points falling into the bin by the total number of points on the intact tem-

plate to generate an �empirical� probability distribution. The distribution provides a

probability value for each bin. Points falling into bins with probability lower than a

de�ned threshold are selected as feature points. Using this enhancement, spin images

are computed for surface points only if when their associated probability in the em-

pirical curvature distribution is less than 0.005. This drastically reduces the number

of spin images computed for both the intact template and the fragment and results

in signi�cant improvements in the speed of the automatic reconstruction algorithm.

The search space for surface matching is further reduced using a simple curvature-

based matching technique. When matching a spin image from each fragment with

spin images from the intact template, the algorithm �rst computes the surface mean

curvatures at the surface point and then �nds surface points on the intact template

having similar mean curvature values. The fragment spin image is only compared

with those spin images on the intact template found to have similar surface curvature.

This enhancement enforce the constraint that two surface points are true matched

points only if their surface mean curvature values are also similar. This improvement
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greatly reduces the computational cost for generating spin images by limiting the

total number of spin images computed and stored for both fragment surfaces and

the intact template surface, and also reduces the number of hypothesized surface

correspondences by limiting the hypotheses to small number of candidate matches

based on the surface mean curvature values at the hypothesized corresponding points.

Figure 4.6: This �gure shows an example of a mean curvature histogram of the intact
template of case one.

4.4.4 Improving Fragment Alignment By �Jiggling�

The jiggling algorithm is used to correct the position of misaligned fragments in the

�nal 3D bone reconstruction results. After automatic reconstruction �nishes, users

visually assess the reconstruction results and can choose fragments that they consider

to be mis-aligned. For these fragments, the user may apply the �jiggling� algorithm

on those fragments. The jiggling algorithm relies on the unoccupied regions of the

intact template to assist in improving the alignment of the misaligned fragments.

The �jiggling� algorithm consists of three steps: (1) determining the neighboring

fragments for the fragment which needs to be �jiggled�, (2) determining the jiggling

distance between the target fragment and the neighboring fragment, (3) �jiggling� the

fragment to �nd the best position which is de�ned to be the position that minimizes
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the �unoccupied� region on the intact template as de�ned in 4.4.2.

Two fragment surfaces are considered neighbors if they share common boundaries,

i.e., some portion of their boundaries lie close to each other. The boundary of a

fragment is the set of surface points that lie on the edge of fragment surface meshes.

Let vbk denote the boundary point set from one fragment surface and let vbt denote

the boundary point set from another fragment surface. If the minimum Euclidean

distance between these two point sets is less than 2γobj , where γobj is the resolution

of one of the fragments, then these two fragments are neighbors, otherwise they are

not neighbors.

The �jiggling� distance between two neighboring fragments is computed as the

average distance between the two shared boundary point sets. Consider a point, vbk1 ,

from the point set, vbk, if the boundary point set on another fragment surface, vbt,

contains a point that its distance to vbk1 is less than 4γobj, then the boundary point,

vbk1 , is considered as a shared boundary point in the point set vbk. Identifying all the

shared boundary points on both point sets, vbk and vbt to form two subset, vsk, and

vst. Then establish point pairs between those two sets using closest point-to-point

distance metric. The �jiggling distance� is computed as the average distance between

these point pairs.

For each neighboring fragment, the target fragment moves toward to that neigh-

boring fragment by the �jiggling� distance and then starts the ICP algorithm to fur-

ther re�ne the alignment. When the fragment is aligned, the total surface area of the

�unoccupied� region on the intact template is computed. The �nal solution for the

�jiggled� fragment is the aligned position which produces the minimum �unoccupied�

region on the intact template.



CHAPTER 5: RESULTS

The bone reconstruction system was used to reconstruct six clinical fracture cases

which range from low energy fracture events such as 1.5 foot fall, to high energy

fracture events such as a 50 mph car accident. The patient data, injury cause, and

the Orthopedic Trauma Association (OTA) classi�cation for each case is shown in

Table 5.1. Since these are real clinical cases, the patient names have been removed

to protect their privacy. All of the six cases were assigned a numerical severity score

ranging from (1-100) by three well-trained surgeons based on their personal experience

and subjective inference shown in column C1,C2, and C3 of Table 5.1.

The following sections (from 5.1 to 5.6) discuss the reconstruction results for each

case. The discussion for each case follows the steps of the interactive reconstruction

process discussed in the Chapter 2. For all six cases, the fragment and intact sur-

faces were segmented by the Orthopedic Biomechanics Laboratory of The University

of Iowa outside the system using the method introduced in [88] and which is also

discussed in 3.1. The fragment surfaces are then partitioned by the ridge walking

algorithm as described in 3.2.1 and in [48]. All of the surface patches are manually

Table 5.1: This table shows patient data, injury cause, OTA classi�cation, and sever-
ity scores by three surgeons for each case. The higher severity scores indicate higher
fracture severity.

Case # Sex Age OTA classi�cation Injury mechanism C1 C2 C3 Avg

1 F 38 C32 MVA (50 mph) 60 55 60 58
2 M 21 B13 Fall (30 ft) 50 60 58 56
3 F 42 C21 MVA (30 mph) 62 80 79 74
4 M 20 C13 ATV 6 15 32 18
5 M 24 C23 Fall (12 ft) 55 57 62 59
6 M 34 C11 Fall (18 ft) 70 65 77 71
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classi�ed by users during the reconstruction as described in Chapter 2. Users also

performed a manual initial alignment of the base fragment to the intact template as

described in 3.4.

Each case is discussed in a separate section. These sections describe the unique

aspects of each case and adhere to a �xed structure for clarity. This structure consists

of six �gures, one table, and a discussion. The discussion details some information in

these �gures and tables and also mentions the distinctive aspects of the case and its

reconstruction using the system. The following list de�nes the elements in each case

analysis section in detail:

1. CT Images: This �gure shows a set of six 2D images from axial, coronal and

sagittal views. They have been selected to depict distinctive aspects of the

geometry of the fracture fragments and intact template.

2. Segmented Intact & Fracture Surfaces: This �gure shows the segmented frag-

ment surfaces and the surface of the intact template from the axial, coronal and

sagittal views.

3. Fragment Views: This �gure shows each fracture fragment and its outer surface

from axial, coronal, and sagittal views.

4. Fragment Outer Surfaces: This �gure shows the outer surface patch for each

fracture fragment from axial, coronal, and sagittal views.

5. Fragment Mesh Analysis Table: This table provides quantitative values for each

fragment mesh and the fragment outer surface patch mesh.

6. Mixed Image & Surface Data: This �gure shows two screen captures of the

fracture case, one before reconstruction and one after reconstruction in both

2D and 3D. These images show how the fragments move due to reconstruction

within a single 2D slice of the 3D CT data and also as a collection of 3D surfaces.

7. Fracture Severity Analysis Report: This �gure shows a table containing quanti-

tative values for key factors that impact the fracture severity for each fragment.
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These values include the following attributes for each fragment: size, outer sur-

face area, fracture surface area, displacement angle, and displacement vector

(see 3.5 for details of these attributes).

8. A discussion accompanies each collection of the �gures and tables that discusses

this information and the distinctive aspects of the case and its reconstruction

using the system.

The Mixed Image & Surface component to each case analysis section requires further

explanation. Each instance of this �gure contains four images which are taken from

windows within the system interface before and after the case was reconstructed. Im-

age (a) is a screen capture of the fracture image window before reconstruction, the

colored fragment boundary lines show the boundaries of each fragment in the 2D im-

age. Image (b) is a screen capture of the 3D fragment surfaces before reconstruction.

The 2D CT image in �gure (a) is also shown in (b) as an image in a 2D plane which

intersects with the 3D fragment surfaces. Images (c) and (d) show the same infor-

mation as that within (a) and (b), but, in this case, the fragment boundaries and 3D

fragment surfaces are shown in their reconstructed positions. This provides a visual

representation depicting the fragments and how they were moved to reconstruct the

bone.

Figure 5.1 shows the displaced positions and three di�erent views of reconstructed

fragments for all six clinical fractures. By visual assessment of the reconstruction

results, all cases were reconstructed successfully with the exception of case three.

Some large fragments such as fragment A17 in case one and fragment A8 in case six

are mis-aligned by the automatic puzzle-solving algorithm and had to be subsequently

�xed by the �jiggling� algorithm. Some small fragments in some of the cases such as

fragment A8, A12 in case one and fragment A5, A3 in case three were not correctly

puzzle-solved by the automatic algorithm and the �jiggling� algorithm. Manually

repositioning these fragments is required. See following sections for detailed discussion
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Figure 5.1: Six clinical tibia plafond fractures are puzzle-solved. The original frac-
tured positions for the fragments are shown in the left column and three di�erent
views of reconstructed fragments are shown in the remaining columns.



90

Table 5.2: Global alignment error, i.e., the average local alignment error of all frag-
ments, is recorded for each case in this table.

Case ID Global Alignment Error (mm)

1 0.23
2 0.27
3 0.32
4 0.34
5 0.33
6 0.27

Table 5.3: Puzzle solving performance: the time needed to run puzzle-solving algo-
rithm for the fracture case. This includes time for computing spin images on the
intact template and on the fragment surface, time spent matching and �ltering spin
images, and time spent aligning fragment surfaces.

Case ID Completion time (sec) Number of points on intact

1 140 24935
2 220 45529
3 272 50539
4 90 33630
5 430 68160
6 650 117549

about the reconstruction results.

Figure 5.2 shows alignment error histograms for individual fragments and statis-

tical error analysis for all six cases. Local alignment error histograms for individual

fragments in each case are shown in left column. Statistical error analysis for these

errors are shown in right column which include the mean and standard deviation of

each histogram. Also provided are each fragment's displaced distance as an (x, y, z)

vector, T (mm), and the angular displacement as a single angle (degrees) between

broken position and the reconstructed position. The pairs exploited value indicates

how many point pairs were tried before the accepted �correct� match was found.

Table 5.2 summarizes the global alignment errors for all six cases. From the table,

we can see that global alignment error after the construction for all six cases are

relatively small (< 1mm) and they are considered to be successful. Table 5.3 shows



91

Figure 5.2: (left column) Local alignment error histograms for individual fragments
in each case are shown. (right column) Statistical error analysis for these errors
are shown which include the mean and standard deviation of each histogram. Also
provided are each fragment's displaced distance as an (x,y,z) vector, T (mm), and
the angular displacement as a single angle (degrees) between broken position and the
reconstructed position. The pairs exploited value indicates how many point pairs
were tried before the accepted �correct� match was found.
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the time needed to run the puzzle-solving algorithm. Also shown are the number of

surface points in the intact surface mesh for each case which e�ects this time as shown

in �gure 5.39c. The reconstruction time recoded for each case includes time spent

for computing spin images, matching spin images, and aligning fragment surfaces.

The time spent for surface partitioning, surface patch classi�cation, and initialization

of puzzle-solving are not include here, see Chapter 6 for these system performance

variables. From the table we can see that as the number of points on intact template

increases more completion time of reconstruction. This is reasonable because more

points result in more hypotheses in the puzzle solving process. Indeed, the recorded

reconstruction time is in�uenced by several variables such as the number of spin

images computed from the intact template and the fragment surfaces, number of

fragments, number of iterations of the ICP algorithms, etc. See 5.7 for more detailed

discussion.

5.1 Case 1 Reconstruction Analysis

Figure 5.3: Case 1: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.
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Figure 5.4: Case 1: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.

Figure 5.5: Case 1: Fragment Overviews: Naming conventions for each case fragment
and three views of each fragment and the outer surface of each fragment.



94

Figure 5.6: Case 1: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.

Table 5.4: Case 1: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment #
fragment fragment outer

surface
%
outer
area#

points
# tri-
angles

area
(mm2)

#
points

# tri-
angles

area
(mm2)

A5 16359 32718 6487.6 9336 18293 3524.7 35.9%
A7 5312 10620 2104.2 2602 4927 990.1 10.1%
A8 223 442 85.4 65 132 34.6 0.4%
A10 8987 17970 3554.8 4395 8481 1688.6 17.2%
A11 2373 4742 938.6 1183 2196 428.5 4.3%
A65 1515 3026 597.6 796 1483 292.4 3%
A17 6186 12340 2420.22 1607 3011 616.4 6.3%
A15 732 1460 287.3 406 726 139.1 1.4%
A12 594 1184 232.77 594 1184 232.77 2.7%
A13 9595 19160 3755.81 3263 6241 1216.5 12.4%
Intact 24935 49367 9825.1 24935 49367 9825.1 100%
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Figure 5.7: Case 1: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.

Figure 5.8: Case 1: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case contains 10 di�erent fragments whose sizes range from large pieces like

fragment A5 and A7 to small pieces like fragment A8. Since bone fragments and
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the intact template bone segmentations are performed outside the system, the time

required for this step is not discussed. After each fragment was partitioned, gen-

erated surface patches were manually merged and classi�ed using the system inter-

face. Some fragments such as A5 and A10 were easy to process, i.e., outer surfaces

were partitioned quickly and correctly without any further user interaction neces-

sary. Fragments A17 and A13 were problematic and required multiple runs of the

surface partitioning algorithm with di�erent parameters and additional user interac-

tion to cope with over-segmentation and under-segmentation. All of the fragments

were partitioned using the default parameter value (ρridge = 0.2) for the ridge-walking

algorithm as discussed in 3.2.1 with the exception of fragment A13 whose parameter

value was ρridge = 0.4.

The 3D reconstruction results for case one is shown in row one of �gure 5.1 and the

statistical analysis of the surface alignment errors for each fragment are shown in row

one in �gure 5.2. The reconstruction for this case used the automatic puzzle solving

algorithm introduced in Chapter 4. The fragments were assembled successfully by

algorithm with the exception of fragment A17 which required the use of the jiggle

algorithm to �x mis-alignment. The total time spent to complete the automatic

fragment alignment algorithm for case one is 140s as recorded in row one in table

5.3. Fragments, A11, A7, A17 required the majority of the processing time to align

as shown by the Pair Exploited values of 5, 4, 5, for these fragments shown in row

one of �gure 5.2. At least four matched pairs were required for all fragments before

the good alignment positions were discovered by the puzzle solving algorithm. The

average global alignment error was 0.23 mm for case one as shown in table 5.2, which

is relatively small and is considered to be a successful reconstruction.
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5.2 Case 2 Reconstruction Analysis

Figure 5.9: Case 2: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.

Figure 5.10: Case 2: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.
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Figure 5.11: Case 2: Fragment Overviews: Naming conventions for each case frag-
ment and three views of each fragment and the outer surface of each fragment.

Figure 5.12: Case 2: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.

Table 5.5: Case 2: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment
#

fragment fragment outer
surface

%
outer
area# points # tri-

angles
area
(mm2)

#
points

# tri-
angles

area
(mm2)

A1 87845 175318 11709.4 42296 83427 5721.8 46.3%
A2 34120 68200 4389.7 18813 36993 2348.1 19%
A3 17971 35936 2277.7 10701 21052 1318.3 10.7%
A4 2717 5428 338.8 640 1178 103 0.8%
A5 4300 8594 754.2 646 1171 73.6 0.6%
A6 326 646 138.9 121 200 44.8 0.5%

Intact 45530 91098 18081.2 30903 61619 12367.2 100%
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Figure 5.13: Case 2: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.

Figure 5.14: Case 2: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case contains six di�erent fragments with widely ranging sizes including large

pieces like fragment A1 to small pieces like fragment A6. Some fragments such as

A2 and A3 were easy to process, i.e., outer surfaces were partitioned quickly and

correctly without any further user interaction necessary. Fragments A1 and A4 were

problematic and required multiple runs of the surface partitioning algorithm with

di�erent parameters and additional user interaction to cope with over-segmentation

and under-segmentation. All of the fragment surfaces were partitioned using the



100

default value ρridge = 0.2, with the exception of fragments A1 and A4. Their best

outcome values were obtained using ρridge = 0.4 and ρridge = 0.5 respectively.

The 3D reconstruction results for case two are shown in row two in �gure 5.1 and

the statistical analysis of the surface alignment errors for each fragment are shown

in row two of �gure 5.2. The reconstruction for this case used the automatic puzzle

solving algorithm introduced in Chapter 4. Most of the fragments were assembled

successfully by the automatic algorithm with the exception of fragments A4 and A5

which required the use of the jiggle algorithm. The jiggle algorithm also fails to

align these two fragments, and manual positioning is required to reconstruct them.

Fragments A4 and A5 have outer surfaces that are articular surfaces. These surfaces

can be di�cult to match because they contain many planar surface areas. These

fragments are also far away from their original positions. These two factors make

fragments A4 and A5 di�cult to accurately reconstruct using the proposed recon-

struction algorithm. The manual reconstruction interface as described in Chapter 2

is necessary to address fragments such as these e�ciently. The total time spent by

the automatic algorithm for case two is 220s as recorded in row one of Table 5.3.

Most of this time is spent building the spin image stack of the intact template. As

shown in Table 5.5, fragments in this case contain many surface points. Although

it only has six fragments, the high density of the surface points on these fragments

make the automatic surface alignment process a time-consuming task. However, as

shown in row two of �gure 5.2 fragments A2 and A3 exploited only two pairs before

�nding a successful match. This indicates that time spent to align fragment surfaces

for these fragments is less. The global alignment error for this fracture is an average

of 0.27 mm for case two as shown in table 5.2.
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5.3 Case 3 Reconstruction Analysis

Figure 5.15: Case 3: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.

Figure 5.16: Case 3: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.
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Figure 5.17: Case 3: Fragment Overviews: Naming conventions for each case frag-
ment and three views of each fragment and the outer surface of each fragment.

Figure 5.18: Case 3: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.

Table 5.6: Case 3: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment #
fragment fragment outer

surface
%
outer
area#

points
# tri-
angles

area
(mm2)

#
points

# tri-
angles

area
(mm2)

A1 29007 57837 8193.2 17853 35152 5001.2 33.9%
A2 3106 6206 844.7 1765 3384 463.9 3.1%
A3 956 1906 244.3 781 1448 196.6 1.3%
A4 23780 47558 6419.9 14672 28895 3966.4 26.9%
A5 946 1886 252.7 483 873 119.4 0.8%
A6 11653 23288 3181.7 4674 9034 1233.7 8.3%

Intact 71696 139984 20136.5 37043 73873 14755.5 100%
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Figure 5.19: Case 3: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.

Figure 5.20: Case 3: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case consists of six di�erent fragments whose sizes range from large pieces like

fragment A1 to small pieces like fragment A3 and A5. The surfaces of all fragments

were partitioned using the ridge walking algorithm with default value, ρridge = 0.2,

which generated a segmentation of the outer surfaces quickly and correctly without

any additional need for user interaction.
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The 3D reconstruction results for case three are shown in row three of �gure

5.1 and the statistical analysis of the surface alignment errors for each fragment are

shown in row three of �gure 5.2. As shown in the �gure 5.2, fragments A4 and A6

required 9 di�erent pairs to be tried before a successful match was found. Fragments

such as these are considered di�cult for the puzzle-solving algorithm to correctly

match. One interesting aspect of these two fragments is that they both include high

curvature ridges and valleys on their outer surfaces. Such structures are typically

distinctive and often are quickly matched by the puzzle-solving algorithm. This is

caused by the rough surfaces on the intact template (CT image segmentation errors)

which makes surface matching step �nding many false matches. The puzzle-solving

algorithm matched together fragments A2 and A3 after trying only one pair. In this

case, the match was incorrect and as a result, these fragments were mis-aligned in

the automatic reconstruction result. These two fragments are di�cult to reconstruct

because their outer surfaces are non-distinctive and �at. The total time spent by

the automatic algorithm for case three is 272s as recorded in row three of Table 5.3.

Most of this time was spent aligning the di�cult fragments: A4 and A6. The average

global alignment error for this fracture was 0.32 mm as shown in table 5.2.
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5.4 Case 4 Reconstruction Analysis

Figure 5.21: Case 4: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.

Figure 5.22: Case 4: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.
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Figure 5.23: Case 4: Fragment Overviews: Naming conventions for each case fragment
and three views of each fragment and the outer surface of each fragment.

Figure 5.24: Case 4: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.

Table 5.7: Case 4: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment #
fragment fragment outer surface %

outer
area

#
points

# tri-
angles

area
(mm2)

#
points

# tri-
angles

area
(mm2)

A1 36046 72100 14311.2 16536 32407 6713.7 E4.5%
A2 15194 30384 5991.5 8649 16915 3272.5 26.6%
A3 8324 16644 3287.2 4729 9245 1810.3 14.7%

Intact 89863 179710 35940.4 23408 46618 12324.5 100%
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Figure 5.25: Case 4: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.

Figure 5.26: Case 4: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case contains three large fragments. Because of the small number of frag-

ments and the large size for these fragments, this case is considered to be a low energy

fracture case that is easy to puzzle-solve automatically. The 3D reconstruction re-

sults for this case are shown in row four of �gure 5.1 and the statistical analysis of the

surface alignment errors for each fragment are shown in row four of �gure 5.2. Figure

5.2 shows that the rotation angle and translation vector for each of the two fragments

are relatively small which supports the hypothesis that this is a low energy fracture
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case. All the fragments were assembled successfully by the automatic puzzle-solving

algorithm. The total time spent by the automatic algorithm to reconstruct case four

is 90s as recorded in row four in table 5.3. Figure 5.2 shows that fragments A2 and

A3 required at least 4 matches before they were correctly aligned. Despite the fact

that only two fragments were puzzle-solved their large size and high point density

make this reconstruction task relatively time-consuming. This is due to the fact that

the individual fragment matching algorithm is not optimized for performance. The

average global alignment error for this fracture was 0.34 mm as shown in table 5.2.

5.5 Case 5 Reconstruction Analysis

Figure 5.27: Case 5: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.
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Figure 5.28: Case 5: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.

Figure 5.29: Case 5: Fragment Overviews: Naming conventions for each case fragment
and three views of each fragment and the outer surface of each fragment.

Figure 5.30: Case 5: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.
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Table 5.8: Case 5: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment #
fragment fragment outer

surface
%
outer
area#

points
# tri-
angles

area
(mm2)

#
points

# tri-
angles

area
(mm2)

A1 20299 40598 8054.9 11064 21440 4337.2 23.2%
A2 36385 72834 14352.9 20109 39441 7796.7 41.7%
A3 14388 28780 5679.9 7027 13559 2688.4 14.4%
A4 18255 36422 7090.2 8145 15854 3101.8 16.6%

Intact 68160 136240 26833.5 47411 94351 18692.9 100%

Figure 5.31: Case 5: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.
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Figure 5.32: Case 5: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case contains four di�erent large fragments. All of the fragments were par-

titioned using the ridge walking algorithm with the default value, ρridge = 0.2, for

this algorithm. The resulting outer surfaces were correctly partitioned by the system.

The 3D reconstruction results for this case are shown in row �ve of �gure 5.1 and

the statistical analysis of surface alignment errors for each fragment are shown in row

�ve of �gure 5.2. All four fragments were successfully reconstructed by the automatic

algorithm, no jiggle algorithm or manual positioning was needed. The total time

spent by the automatic algorithm to reconstruct case �ve was 430s as recorded in

row �ve in table 5.3. There were only four fragment pieces to align for this case and

all of them were correctly aligned after trying only one pair. However, since each

fragment has a large number of surface points (see table 5.8), the reconstruction was

time-consuming. The average global alignment error was 0.33 mm for this fracture

as shown in table 5.2.
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5.6 Case 6 Reconstruction Analysis

Figure 5.33: Case 6: CT images: (a, b, c) show CT images of the fractured limb
from the axial, sagittal, and coronal views after segmentation. The fragment surface
boundaries are shown as di�erent colors in each image. (d, e, f) show CT images of
the intact limb from the axial, sagittal, and coronal views.

Figure 5.34: Case 6: Segmented Intact & Fragment Surfaces: (a, b, c) show axial,
sagittal, and coronal views of the intact template bone surface. (d, e, f) show axial,
sagittal, and coronal views of the fragment surfaces before reconstruction.
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Figure 5.35: Case 6: Fragment Overviews: Naming conventions for each case fragment
and three views of each fragment and the outer surface of each fragment.

Figure 5.36: Case 6: Fragment Outer Surfaces: (a, b, c) axial, sagittal, and coronal
views of the segmented fragment outer surfaces.

Table 5.9: Case 6: Fragment Mesh Analysis Table: This table shows the number
of points, triangles, and the total surface area of each fragment and each fragments
outer surface. The ratio of the area of the outer surface to the entire fragment surface
area is also provided.

Fragment #
fragment fragment outer

surface
%
outer
area#

points
# tri-
angles

area
(mm2)

#
points

# tri-
angles

area
(mm2)

A1 39160 78344 9817.7 18052 35019 4693.9 23.7%
A2 20307 40614 5333.5 7380 14248 2026.1 10.2%
A3 33586 67044 7695.9 9196 17732 2182.6 11%
A4 7045 14086 1638.9 2434 4632 559.9 3%
A5 5548 11092 1229.2 892 1645 132.7 0.6%
A6 30430 60886 6898.8 14198 27768 3025.4 15.2%
A7 16476 32956 3590.4 7587 14823 1659.7 8.3%
A8 4305 8606 964.2 679 1238 144 0.7%

Intact 117549 235106 30450 75974 151575 19835.1 100%
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Figure 5.37: Case 6: Mixed Image & Surface Data: (a, b) show the fracture case before
reconstruction. (a) shows a CT image of the fracture fragments (outlined in color).
(b) shows the CT image from (a) in 3D together with the fragment surfaces. (c, d)
show the fracture case after reconstruction. (c) shows the CT image from (a) where
the fracture fragment (outlined in color) are shown in their reconstructed positions.
(d) shows the same CT image from (c) in 3D together with the reconstructed fragment
surfaces.

Figure 5.38: Case 6: Fracture Severity Analysis Report: A screenshot of the table
containing values for several key factors computed for each fragment from the 3D
reconstruction. The units for the key factors shown in the table are as follows: mm3

for size, mm2 for surface area, degrees for the displacement angle, and mm for the
displacement vector.

This case contains eight di�erent fragments whose sizes range from large pieces

like fragment A1 and A3 to small pieces like fragment A5. Fragments A1 and A2

were easy to partition using the ridge walking algorithm with the default parameter,

ρridge = 0.2. Yet fragment A5 was problematic and required multiple runs of the ridge
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Table 5.10: This table shows quantitative values for the performance improvements
observed for each case. Using the system enhancements discussed in �4.4.3.

Case ttotal
before
(min)

ttotal
after
(min)

Avg
matching
before
(sec)

Avg
matching
after (sec)

nintact
before

nintact
after

# Points On
Template

1 3 1.5 11 0.3 3750 1125 24935
2 6 4.5 15 0.8 5065 802 45529
3 8 5 16 1.2 5320 1913 50539
4 2.5 1 10 0.2 2509 897 33630
5 20 6 34 2.4 8890 4135 68160
6 31 16 52 3.5 16829 3120 117549

walking algorithm with di�erent parameters and additional user interaction to cope

with over-segmentation and under-segmentation to generate an acceptable surface

partitioning was produced for this fragment.

The 3D reconstruction results for case six are shown in row six of �gure 5.1 and

the statistical analysis of surface alignment errors for each fragment are shown in row

six of �gure 5.2. Most of the fragments were assembled successfully by the automatic

puzzle-solving algorithm with the exception of fragments A5 and A8. Fragments A5

and A8 have outer surfaces that are articular surfaces. These surfaces can be di�cult

to match because they contain small planar surface areas. This make these fragments

di�cult to accurately reconstruct using the proposed reconstruction algorithm. The

total time spent by the automatic algorithm for case six was 650s as recorded in row

six of table 5.3. This case has a lot of densely sampled fragments and the matching

and alignment of these fragments was time-consuming. The average global alignment

error was 0.27mm for this fracture as shown in table 5.2. There are also voids in the

solution, i.e., empty regions where no fragment has been matched, as shown in the

bottom view of this reconstruction in �gure 5.1. It is suspected that this voids is a

missing fragment or from fragment deformation.
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(a) (b) (c)

Figure 5.39: (a,b,c) show three metrics related to the computational cost of the puzzle-
solving algorithm. For each metric, the value of the metric is shown with and without
the enhancement discussed in �4.4.3 for each of the six clinical cases (the x-axis). The
metrics are as follows: (a) shows improvements of the total reconstruction time for
the puzzle-solving algorithm, (b) shows improvements of the average matching time
for the puzzle-solving algorithm, and (c) shows the number of spin images computed
on the intact template.

5.7 Performance Improvement Results

As mentioned in 4.4.3, the mean curvature histogram biased search algorithm signi�-

cantly improves the speed of the automatic puzzle-solving algorithm by reducing the

number of spin images computed for both the intact template surface and the frag-

ment surfaces. The puzzle-solving algorithm is a complex process which consists of

many steps, and the time spent for the reconstruction is a�ected by several sub-steps

such as computing the spin images for the intact template and the fragment surfaces,

matching spin images, and aligning fragment surfaces to the intact template. In order

to better understand the improvements, the following equation (5.1) details the time

spent for reconstruction for each step.

ttotal = toverhead + nintacttspin + (tspinnfrag + tmatchspin + tfilter + talign)Mfrag (5.1)

In this equation, toverhead denotes the time spent for processing the intact template

before computing the spin images on the intact template such as surface sampling,

computing occupied regions and computing the mean curvature histogram for the

intact template. The term nintacttspin denotes the time spent to identifying feature
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points on the intact template and compute their spin images. The term tspinnfrag de-

notes the time spent identifying feature points on the fragment surfaces and comput-

ing their spin images. The term tmatchspin denotes time spent generating hypothesized

surface correspondences which is a�ected by nfrag and nintact. The term tfilter denotes

the time spent removing false matches. The term talign denotes time spent aligning

the fragment surface to the intact template which is a�ected by number of hypothe-

sized correspondences being tested. The termMfrag denotes the number of fragments

in the fracture case. The major factors that impact the total reconstruction time are

nfrag, the number of spin images computed on the fragment surface, and nintact, the

number spin images computed on the intact template. The mean curvature histogram

approach in 4.4.3 reduces the total reconstruction time by reducing both nintact and

nfrag signi�cantly as shown in �gure 5.39c. Table 5.10 shows the quantitative values

for total reconstruction time, ttotal, average time spent for matching spin images and

�ltering matches, tmatchspin + tfilter, and nintact for each case. Figure 5.39 shows plots

that graphically depict the performance improvements for each of these factors. Note

that all reconstruction times were running on a laptop computer with 2.4GHz dual

core CPU with 4GB memory.

5.8 Summary of Results

Figure 5.1 shows the reconstructed results for the six clinical cases using the auto-

mated puzzle-solving algorithm. Visually, one can see that the articular surfaces of

the reconstructed fractures are smooth across fragment boundaries with the exception

of case two and case six. Other errors can be seen in some reconstructions such as

the yellow and the blue fragments of case three which are mis-aligned by the algo-

rithm. This can be explained, in part, by their large initial displacement and �at and

indistinct outer surfaces. Matching �at surfaces such as these is di�cult as there are

many candidate matches which have similar geometric alignment error. This fact, in

conjunction with the large initial displacement of some fragments present di�culties
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to the puzzle-solving algorithm as it searches for the true correspondences within the

large group of similar candidates. From table 5.2, it can be seen that the overall

global alignment error is small. This can be explained by the fact that the majority

of the bone fragments are not plastically deformed and they can be accurately �t

into the intact template and to other adjacent fragments. Figure 5.2 provides more

information and some important quantitative values for each individual fragment in

each case. An alignment error histogram for each fragment is given and the statistical

mean and standard deviation of each histogram are shown. The provided quantitative

information for each fragment's translation and rotation is hoped to provide users an

objective measure for the fragment dispersion and displacement which may improve

the accuracy and reliability for estimating fracture severity.



CHAPTER 6: USER STUDY

Because the system has not been used by anyone other than its developer, the

usability of it by a generic user is still unknown. This chapter discusses a user study

conducted to evaluate the usability of the system. The user study examines how

several bone reconstruction tasks are accomplished by a select group of untrained

users. Measurements from the study and user feedback allow a better understanding

of key issues regarding the e�ectiveness of the system. The user study seeks to answer

the following questions: (1) does the automatic reconstruction tools bene�t users? If

yes, how do users bene�t from it, and which aspects are most bene�cial? (2) Is there

any di�erence between the reconstruction results using manual fragment alignment

and automatic fragment alignment? If yes, how signi�cant is the di�erence? (3) Is the

software interface acceptable to users? and (4) What things can be done to improve

the system interface?

The content of this chapter is organized as following: 6 describes the experimental

set up for the user study, including user selection, scope of the study, and speci�c

design tasks; 6.1 shows the results and feedback from each user; 6.2 draws conclusions

from the gathered results and feedback.

User Study Experimental Set Up

This section discusses the set up for the user study experiments. There are four

major aspects addressed: (1) selection of users, (2) methodology, (3) tasks, and (4)

results. The following paragraphs will describe each aspect in details.

Selection of users: Ideally, these users should be trained radiological technicians.

However, such expertise was unavailable for user studies. Three untrained users were
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selected for this user study. Users are referred as user A, user B, and user C. User A

is a stay-at-home mother with no prior virtual 3D experience. User B is a software

engineer having signi�cant prior experience with virtual 3D environments. User C is

an electrical engineering student with limited experience on 3D virtual environments.

Methodology: Two clinical cases were selected from Chapter 5: case one (a di�cult

case to puzzle-solve) and case four (an easy case to puzzle-solve). Users were given

a brief introduction to the software. Then the less di�cult case (case four) was

reconstructed for them by the dissertation author as an example of how to perform

3D bone reconstruction using the software. After the demonstration, users were asked

to perform the bone reconstruction on the same case. Once they �nished, they were

asked to reconstruct the more di�cult case (case one). After completing these tasks,

users were asked to complete the survey (shown in �gure 6.1). This survey collected

the user's feedback on speci�c functions, interactions, interface design and additional

comments or suggestions about the software system.

Tasks: The bone reconstruction process consists of four main tasks and each task

is broken into smaller sub-tasks in the following list:

1. Surface partition and classi�cation:

(a) Load intact CT and fracture CT images.

(b) Load intact template and fracture 3D fragment surfaces.

(c) Run the �Ridge Walking� algorithm which partitions the 3D fragment sur-

faces.

(d) Manually classify the resulting 3D fragment surface patches as periosteal,

fracture, or articular surfaces.

(e) Save workspace.

2. Initialization:

(a) Select periosteal patches from the intact 3D bone model and a periosteal

patch from the base fragment.
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Figure 6.1: This �gure shows a screen capture of the survey.



122

(b) Run the �Align Limb� function.

(c) Save workspace.

3. Automatic reconstruction:

(a) Run the �Automatic Reconstruction� algorithm.

(b) Run the �Key Severity Factors � function to generate a severity report.

(c) Run the �Error Analysis�.

(d) Save workspace.

4. Manual reconstruction:

(a) Load workspace saved at the end of step 2.

(b) Manually align each fragment to the 3D surface of the intact template.

(c) Run the �Key Severity Factors � function to generate a severity report.

(d) Run the �Error Analysis� function.

(e) Save workspace.

Results: The results of the user study include 3D reconstruction results, feedback and

notes. The results are as follows:

1. Time spent accomplishing task 1- 4 for each case.

2. Visual and quantitative measures for automatic reconstruction results for each

case.

3. Visual and quantitative measures for manual reconstruction results for each case

4. Survey feedback.

5. Notes recording any unusual activities, failure or system crash.

Experimental values were recorded and analyzed to answer the questions posed as

the goals of the user study. Since users were untrained, if they could not proceed

because of some unexpected errors or confusion, assistance was provided. In each

case where assistance was necessary, the context and reason was recorded. During the

experiments users did not receive any assistance in solving the fracture case and made

their own decisions on how to execute the reconstruction process. All experiments



123

were executed on a laptop computer with 2.4GHz dual core CPU with 4GB memory.

6.1 User Study Results

The study results are presented and discussed in this section. The following para-

graphs show the compiled results from all three users. Each �gure is followed by a

short explanation. Additional notes taken during the experiments are discussed in

section 6.1.1, 6.1.2, and 6.1.3.

Table 6.1: This table shows the time spent by each user on each of the four main
tasks for each case.

Users
Easy Case (minutes) Di�cult Case (minutes)

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4
User A 20 7 2 7 40 4 2 16
User B 15 3 1.5 3 25 3 2 27
User C 5 4 1 7 20 4 1.5 20
Avg 13.3 4.67 1.5 5.67 28.3 3.67 1.8 21

Table 6.1 shows the time spent by each user on each of the four main tasks for

each case. From the table, Task 1 and Task 4 are the most time-consuming tasks

for all users since these tasks involve a lot of user interaction. Task 2 and Task 3

are the least time consuming tasks for all users, since automatic algorithms did most

of the computation and decisions. From this table, we can �nd that tasks involving

signi�cant user interaction tend to be more time-consuming, and the time spent on

tasks can vary signi�cantly between users. User C outperforms user B and user

A on most tasks. User A is slow on Task 1 for both cases (surface partition and

classi�cation) and User B is slow on Task 4, the Di�cult Case. Based on the time

table, it is clear that the automatic algorithm saves a lot of time for users. Total time

saved by the automatic puzzle-solving algorithm for three users are 12.9 minutes for

case four and 57.5 minutes for case one.
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Figure 6.2: Three views of the automatic and manual reconstruction results for the
easy case are shown for each user.

Figure 6.2 shows three views of reconstructed bone for the easy case by the three

users. Automatically reconstructed solutions are shown in the left column and man-

ually reconstructed solutions are shown in the right column. The �gure shows that

reconstructed results between di�erent users are very similar, and for each user there

are noticeable di�erences between the automatic approach and manual approach for

reconstruction. As marked with the green box in �gure 6.2, the reconstructed result

using the automatic approach by User B is slightly di�erent than other users. This

is due to the fact that User B generated di�erent periosteal surfaces in Task 2 than

other users. In this case, the periosteal patch generated for the dark yellow fragment

by User B represents only a part of the periosteal surface for that fragment. This ad-

versely impacts User B's reconstruction result using the manual approach and results
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in a slight mis-alignment for this fragment.

Figure 6.3: This �gure shows three anatomic views of the users automatic and manual
reconstruction results for the di�cult case.

Figure 6.3 shows three views of the users automatic and manual bones recon-

structions for the di�cult case. One can see that the reconstruction results are quite

di�erent for both automatic and manual solutions. A fragment marked with the green

box in the �gure denotes one problematic fragment that is the most di�cult fragment

to align for both automatic and manual approach. This fragment is called A13 and is

shown in dark red in the green box. A13 is di�cult to align because its periosteal sur-

face has a lot of noise and segmentation error. The �Ridge Walking� algorithm could
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not successfully segment the correct periosteal surface for this fragment. As a result,

users had to manually select the periosteal patch using on their own judgment and

without any assistance. In the experiment, users created di�erent periosteal surface

patches for the A13 fragment and this resulted in di�erent automatic reconstruction

results. This also posed problems during manual reconstruction. Because A13 has a

bumpy and rough periosteal surface, users had di�culty in identifying corresponding

points between the A13 fragment and the intact template. This caused reconstructed

position for this fragment to be quite di�erent between users when using the manual

reconstruction approach. There are also some problematic �at surface fragments in

this fracture case as shown in the blue box of �gure 6.3. All users failed to accurately

align these fragments using either the automatic or manual approach.

Table 6.2: This �gure shows the average alignment error for the bone fragments of
the easy and di�cult cases.

Users
Easy Case (mm) Di�cult Case (mm)

Automatic Manual Automatic Manual
User A 0.38 0.21 0.27 0.37
User B 0.28 0.31 0.40 0.65
User C 0.28 0.26 0.28 0.42

Table 6.3: This �gure shows the percentage of unmatched area on the intact tem-
plate. High numbers indicate less surface area was matched between the template and
fragments. This often implies that higher number are associated with less-accurate
solutions.

Users
Easy Case (%) Di�cult Case (%)

Automatic Manual Automatic Manual
User A 4.99 6.39 14.67 29.20
User B 4.61 6.40 19.34 38.57
User C 3.82 5.41 20.22 23.32

Table 6.2 shows the average or global alignment error for each case and Table

6.3 shows percentage of unmatched area on the intact template. The above statis-

tics con�rm the observations made previously and support the conclusion that the
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reconstruction results of the easy case are generally similar in accuracy, while the

reconstruction results of the di�cult case are signi�cantly di�erent in accuracy. Note

that the intact template used in the di�cult case contains a limb part that does not

belong to any of the fragments. Even if all fragments are perfectly aligned with the

intact template, the unmatched area percentage will not be zero.

Table 6.4: This table shows the result of survey from User A, B, and C. Users rate
the software for a list of items using a 1-10 scale with 1 = poor and 10 = excellent.

Items User A User B User C
Overall Fxredux Software 8 8.5 7.5

3D canvas interactions 5 7.5 9.5
Tree panel interactions and design 10 8 8

Menus and Buttons 8 7 9
Patch selection interaction 10 8 8
�Ridge Walking� function 7 9 9
�Align Limb� function 7 8.5 8.5

�Automatic Reconstruction� function 8 7.5 8.5
Manual Reconstruction Interface 10 8.5 8.5

Save and load workspace functionality 10 7 8
Results from automatic approach for easy case 8 7.5 7.5
Results from manual approach for easy case 8 8 7

Results from automatic approach for di�cult case 10 9 8.5
Results from manual approach for di�cult case 6 6 7.5

Table 6.4 shows the survey results from the three users. From the survey, we

found that the software meets the usability requirement. All users gave scores above

7 for most interface actions. However, there are a few exceptions. For example, User

A gave 5 rating for the 3D canvas interactions because she was not able to rotate

fragments to the desired position. She was also not comfortable with her manual

reconstruction results as re�ected by the score of 6 for the manual reconstruction

results for the di�cult case (see 6.1.1 for additional details).

6.1.1 Additional Notes For User A

During the experiment, User A had a lot of failures. In the reconstruction experiment

of the easy case, User A had trouble during the �rst 15 minutes with the 3D inter-
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actions, and found it di�cult to move objects in 3D to a desired view. Afterward,

she started to gain better control of the 3D objects using the interface. She was also

confused by the di�erences between camera selection and object selection at �rst, and

often forgot to select fragments from the tree panel to run algorithms. User A also

made some interesting interactions during the experiments. She attempted to view

selected fragments by double-clicking the fragment item from the tree panel. She also

attempted to use the manual reconstruction interface to align the intact bone model

to the base fragment model instead of using the initialization step for this purpose.

However, within a few minutes, she abandoned this idea because it is di�cult to de-

�ne correspondences between these two objects. When User A was performing the

last main task, manual reconstruction, she was very precise with the correspondence

selection and repeated the re�ne alignment (ICP) to get a smaller alignment error.

Every time she repeated the re�nement she increased the number of sample points,

and she �gured out that using more sampling points on the surface would give her

better results. This is why it took about 11 minutes to align only two fragments.

In the reconstruction experiment of the di�cult case, User A became familiar with

the software and started to identify some bugs or places to need improvement. She

found the redo and undo functions were only applicable to fragment movements and

complained about it. She also found that if she ran the �Ridge Walking� algorithm

again, she had to delete previously generated patches manually, which was annoying to

her. She suggested these issues should be resolved by the system. When she performed

manual reconstruction, the time spent on viewing and learning the geometric shape

of both the fragment and the intact template to identify correspondence surfaces

was signi�cantly increased. She found it very di�cult to make a decision on selecting

correspondences. For fragment A17 in the di�cult case, she claimed that there was no

correspondence between this fragment and the intact template. In this case, external

help was provided that allowed the user to use the relative positions of all fragments
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to infer the correct surface correspondences necessary to complete the task.

For additional comments and suggestions, User A suggested that the view selected

fragments function should be added as a part of the tool bar since it was a frequently

used function. She also commented on the rotation interaction in 3D canvas that

the overall control of object was acceptable but the precise rotational movement

are di�cult. She liked the workspace functionality and the usability of the manual

reconstruction interface. She also thought the patch selection interface was user

friendly with the exception of the visible selection which is too slow.

6.1.2 Additional Notes For User B

In the reconstruction experiment for the easy case, User B expected a visible response

from the 3D canvas when he made selections on the tree panel. He also attempted

to move items in the tree panel by dragging them. During Task 1, User B refused to

use the surface selection tool because of the slow speed and long wait for selections

which can take more than ten seconds. When the user performed the last main task

in manual reconstruction, he was very quick with the correspondence selection and

didn't use re�ne alignment (ICP) to get a smaller alignment error. The method by

which he selected pairs of points on surfaces was quite di�erent from User A. He

proceeded by selecting all points on one surface then selecting their corresponding

points on the other surface. He attempted to slide middle mouse button to zoom in

and out, although he had been instructed to press down the middle mouse button.

After he failed several times, he thought the zoom in and out was very hard to use

because he was not accustomed to using the zoom operation in this way.

In the reconstruction experiment of the di�cult case, User B became familiar with

the software, and started to �nd ways to reduce the time needed for each task. Since

he decided not to use the surface patch selection tool, he reduced the time spent

on Task 1 by running the �Ridge Waking� algorithm for all fragments at the same

time. Afterward, he searched the fragments for periosteal surface patches one by one.
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He found that small patches generated by the algorithm always need to be deleted

manually, and he thought this issue should be resolved by the algorithm automatically.

When he was performing manual reconstruction (Task 4), he accidentally closed the

software, and lost all previous aligned results. He had to start over again, and this is

why his time spent on this task was longer than other users though he didn't use any

re�nement.

For additional comments and suggestions, User B suggested that when he selected

item on the tree panel, something should appear in 3D canvas indicating the object

selected in the tree panel. He also commented that a progress bar for the �Ridge Walk-

ing� algorithm should be added, otherwise he had no idea what was happening when

this algorithm was working. Regarding the menu items and buttons, he suggested

that these items should be ordered alphabetically or properly categorized so that users

can easily �nd their desired functions. He thought the automatic reconstruction was

helpful and would be his �rst choice to reassemble the fracture case.

6.1.3 Additional Notes For User C

During the experiment, User C was very comfortable using the 3D interactions such

as rotation, zoom in and out, which allowed her to �nish all tasks quickly. In the

reconstruction experiment of the easy case, User C often forgot to select tree items

before clicking the right mouse key, but she managed to change that habit when

solving the next case. Because User C had great control over the 3D interactions, she

could view and understand the fracture case better than the other two users. However,

she had trouble making decisions on whether the alignment was good or not. Also she

was confused between the selection of a fragment and a patch. In the reconstruction

experiment of the di�cult case, User C faced the same di�culty the other users

faced as she could not use the manual reconstruction interface to align small �at

fragments. However, she found a work-around quickly by using the original 3D canvas

as a reference window and utilizing the relative position between fragments and the
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intact template to locate the corresponding surface areas. For additional comments

and suggestions, User C suggested that the manual reconstruction interface should

include another reference window where users could view all fragments simultaneously

along with the intact template. She thought this improvement would bene�t users

when specifying corresponding points during the manual alignment.

6.2 User Study Conclusions

From this user study, we not only get answers to the set of questions put forward in

the beginning of the Chapter, but also discover unexpected interesting things. From

the reconstruction results shown in Figure 6.2 and Table 6.2, for the easy case, recon-

struction results are quite similar between di�erent users and di�erent approaches,

but for the di�cult case, the results are quite di�erent. Deviation of results between

di�erent users is attributed to di�erent levels of understanding for the fracture case

and di�erent levels of abilities for handling the 3D interactions. The results also show

that manual reconstruction doesn't provide better results than automatic reconstruc-

tion in terms of quantitative alignment error and visual assessment. All results from

the manual approach seem inferior to the automatic approach. There are several

reasons for this: (1) User B didn't fully utilize the functions provided by the manual

interface, (2) User A didn't understand the fracture case, and (3) User A and User

C were limited by the current functionality of the manual reconstruction interface.

From the time recorded in table 6.1, it is clear that Task 4 (manual reconstruction)

is the most time-consuming task. It is also clear that the automatic puzzle-solving

algorithm saves a lot of time. Among all three users, User C outperformed other two

users because she had better control over the 3D interactions and she could study and

learn the fracture geometry pattern quicker. We believe that with proper training,

users will achieve better performance and reconstruction results.

In conclusion, the �ndings of the user study show that the automatic reconstruc-

tion tool bene�ts users for both time e�ciency and spatial accuracy. Comparative
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results between manual reconstructions and automatic reconstructions are quite dif-

ferent for the di�cult case and similar for the easy case. The user's di�erent levels

of understanding about fracture cases and di�erent abilities for controlling the sys-

tem have the major impact on the variation of results. Overall, the usability of the

software interface is acceptable to users. However, several parts of the interface can

be further improved for a better user experience. For example, providing a refer-

ence 3D window in the manual reconstruction interface, categorizing the menu items

and organizing them in alphabetical order, adding a progress bar to �Ridge Walking�

algorithm.



CHAPTER 7: CONCLUSIONS & FUTURE WORK

The proposed system is capable of virtually reconstructing broken bone fragments

for complex bone fracture cases, which is heretofore unsolved problem in automatic

puzzle-solving algorithms and di�cult to achieve using manual methods. The bone

reconstruction system designed in this dissertation enables users to understand frac-

ture cases from both 2D (CT image) and 3D (fragment surface) imagery. The system

represents a unique combination of state-of-the-art 2D/3D image processing and sur-

face processing algorithms. The software is a comprehensive reconstruction tool that

guides users from the �rst step, i.e., segmenting raw CT image data, to the last step,

i.e., generating quantitative evaluation information about the fracture's severity. Fi-

nally, 3D visualization of fragments surface can provide important information for

surgical treatment, especially for articular fractures which often have a poor progno-

sis.

While it is intuitive that detailed pre-operative reconstruction plans provided soft-

ware like this could improve surgical treatment, this has not been proven as a clinically

e�ective tool. [88] e�orts to design and execute a surgical simulation experiment for

quantifying the utility of this tool in a well-controlled environment. However, due to

the limited number of experiments, solid conclusive statements about clinical utility

of the puzzle-solving software cannot be made. Both the puzzle-solving algorithm

and the software system are signi�cant advancements toward improving the treat-

ment of comminuted tibial plafond fractures. The computational 3D puzzle solving

framework provides a heretofore unavailable patient-speci�c blueprint for fracture re-

construction planning. Having a suitable blueprint for restoring the original anatomy,
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it becomes possible for the surgeon to pre-operatively explore less extensive surgical

approaches, and to attempt new intra-operative approaches and may eventually re-

sult in improving how surgeons determine fracture severity and they puzzle-solve bone

fractures.

7.1 Future Work

Although the proposed 3D puzzle solving application and algorithms o�er a powerful

new tool for improving surgical reconstruction of complex tibial plafond fractures,

there are some limitations that need to be taken into account for future research

before the system can be used in a clinical setting. The most important limitation

is the assumption that a patient's healthy bone template is available as a reference.

In reality we cannot always have a healthy bone template. This may occur when

only the fractured limb is scanned to reduce cost or when the patient has broken

both of their legs. In order for this technology to be clinically embraced, future work

might investigate how to automatically generate a generic 3D template bone for each

fracture case. The generated templates will need to take biological information of

the patient such as age, sex, height and weight into account. Another limitation of

the current system is that it does not consider the soft tissue around the bone in

reconstruction process. Consideration of this information is complicated by the fact

that soft tissue is di�cult to segment within CT images. As a result, the system

cannot provide quantitative information about several severity key factors that relate

to soft tissue such as soft tissue damage and displaced soft tissue volume. In order to

solve this problem, future work would seek to develop methods for segmenting soft

tissues within CT images. Additionally, the puzzle-solving algorithm only provides

the �nal aligned positions for each bone fragment, while physicians are also interested

in knowing the speci�c trajectory each fragment must take in order to arrive at the

�nal reconstructed position. The system will be more valuable to physicians and

surgeons when these trajectories for each fragment can be computed such that the
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soft tissue damage due to reconstruction is minimized. Finally, survey feedback and

suggestions for improving the system interface from the user study should be taken

into consideration as the system evolves to suit these needs.



136

GLOSSARY

CAD models: Computer-Aided Designed is the use of computer technology for the

process of design and design-documentation. The CAD models refers to 2-D

and 3D models that are desinged using this technology.

CT: Computed Tomography, a medical imaging method employing tomography cre-

ated by computer processing.

diaphyseal: Relating to a shaft of a long bone.

epiphysis: The end of long bone that is originally separated from the main bone by

a layer of cartilage but that later becomes united to the main bone through

ossi�cation.

�uoroscopy: Fluoroscopy is an imaging technique commonly used by physicians to

obtain real-time moving images of the internal structures of a patient through

the use of a �uoroscope. In its simplest form, a �uoroscope consists of an X-

ray source and �uorescent screen between which a patient is placed. However,

modern �uoroscopes couple the screen to an X-ray image intensi�er and CCD

video camera allowing the images to be recorded and played on a monitor.

ICP: Iterative Closest Point is an popular algorithm employed to minimize the dif-

ference between two clouds of points. ICP is often used to reconstruct 2-D or

3D surfaces from di�erent scans, to localize robots and achieve optimal path

planning, to co-register bone models, etc.

metaphysis: The zone of growth between the epiphysis and diaphysis during devel-

opment of a bone.

minimum spanning tree: In graph theory, a spanning tree of a graph is a tree com-

posed of all the vertices and some of the edges pf the graph. A minimum

spanning tree is minimum weighted edges that forms the spanning tree.

MRI: Magnetic Resonance Imaging is a medical imaging technique used in radiology

to visualize detailed internal structures.
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PACS: Picture Archiving and Communication System is a medical imaging technol-

ogy which provides economical storage of images from multiple modalities.

PET: Positron Emission Tomography is nuclear medicine imaging technique that

produces a three-dimension image or picture if functional processes in the body.

physis: The segment of a bone that is responsible for lengthening.

proximal: segments of long bone close to the middleline of body.

PTOA: Post-Traumatic OsteoArthritis which is the increased wear that occurs in a

joint as the direct and indirect result of injury. Arthritis is a general term for

painful in�ammation of a joint. Osteoarthritis is the most common form and is

due to wear of the joint surface. It is a process more than a disease and takes

place slowly in all joints in all of us. It is complex in its details but the overall

concept is simple.

tibial plafond fracture: A tibial plafond fracture occurs at the end of the shin bone

and involves the ankle joint.
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