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ABSTRACT

LALIT PRAKASH MANDAL. Methodology for on-line battery health monitoring.
(Under the direction of DR. ROBERT W. COX)

The growing demand for electric vehicles and renewable energy sources has in-

creased the need for safe, reliable, and cost-effective energy-storage systems, many

of which include batteries. The reliability and efficiency of these battery-based sys-

tems can be significantly improved using intelligent energy-management systems that

effectively indicate battery health in real time. On-line monitoring can be difficult,

however, because batteries are non-linear and time-varying systems whose charac-

teristics depend on temperature, usage history, and other factors. The key metrics

of interest in a battery are its remaining capacity and health. Most of the current

methods require off-line measurement, and even the available on-line methods are

only good in laboratory conditions. This thesis provides an enhanced streamlined

framework for on-line monitoring. In this methodology, a non-intrusive test signal is

superimposed upon a battery load which causes transient dynamics inside the battery.

The resulting voltage and current are used as test data and the estimation is done

in two parts. First, a non-linear least-squares routine is used to estimate the electri-

cal parameters of a battery model. Second, a state-estimation algorithm is used to

estimate the open-circuit voltage. Experimental results obtained at consistent tem-

peratures demonstrate that the open-circuit voltage and parameter values together

can combine to provide capacity and health measurements. This approach requires

minimal hardware and could form the basis for a robust on-line monitoring system.
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CHAPTER 1: INTRODUCTION

The battery market is rapidly growing and is expected to reach $50 billions by

2015 [1]. Most of the growth is driven by increasing use of batteries in automobiles,

portable electronics and medical devices, and renewable energy sources. As it becomes

one of the important sources of energy storage and back-up supply for the majority

of applications, it becomes imperative that the batteries are monitored continuously

and efficiently. Some of the prominent usages of battery are given below.

• Use of battery in automobiles

The increasing demand to improve fuel economy and reduce emission in present auto-

mobiles has accelerated the development of propulsion drives beyond the conventional

internal combustion engine (ICE). Such system combines ICE with other forms of en-

ergy storage most commonly with battery. A battery or a stack of batteries in a

hybrid and electric vehicle enables an electric motor to store braking energy in the

battery during regeneration. During driving, the electric motor utilizes the stored

energy in a battery to propel the engine in the absence of the ICE. Several kinds

of battery are used for automotive applications like lead-acid, nickel-cadmium, and

lithium-ion etc. Because of its usage in critical vehicle operation, it is important that

the batteries are monitored regularly to provide an analogous form to the ’fuel gauge’

of a conventional vehicle.
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• Use of battery in uninterruptible power supply (UPS)

The rise of internet and wireless communication has created thousands of data cen-

ters and uninterruptible power supply (UPS) system around the world, in which the

battery is used as a back-up power supply. Since the battery is one of the impor-

tant components in a UPS system, its reliable functioning is needed for the overall

functioning of the system. For example, as reported in [2], a single lead-acid battery

is used in each of the thousands of servers that Google uses for its operation. This

serves as an example of critical application of a battery. With the increasing trend

of computing over internet, and more data being stored online, the number of data

centers are only going to increase. The timely functioning of battery would be one of

the indispensable attributes for the UPS system in future and is a major concern for

companies around the world.

• Use of battery in electronic devices

Batteries are used to power most of the electronic and portable devices in use today. A

malfunctioning of the battery may cause such system to stop working. Furthermore,

a lack of accurate monitoring of the battery may cause a device to provide unreliable

information. Such an issue may create a lack of confidence among consumers and may

bring upon a huge loss to a company [3]. Because more devices are going wireless

and more people are using them, the importance of reliable monitoring of the battery

is only growing. One major question in such appliances is to find out the available

power from the battery on a continuous basis. An effective monitoring mechanism

can not only provide this information but also can yield the maximum power and

longest life to the device.
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In addition,the battery is one of the attractive options for energy storage for dis-

tributed energy sources like wind and solar in which the energy is required to be stored

for the period when the energy production in not on. For large scale production of

energy by such sources, equally large and reliable storage mechanism has to be put

in place for which a cost-effective and reliable battery monitoring mechanism would

be an important component.

Because of the diverse applications of batteries, an inexpensive and minimally in-

trusive monitoring system would be invaluable in terms of providing reliable power

and timely replacement. Any such monitoring system would have to be independen-

t in the sense of being self-contained, requiring minimal physical presence and no

reconfiguration of the automated system.

1.1 Battery Monitoring

The primary terminologies used to describe the battery capacity and health are

state-of-charge (SOC) and state-of-health (SOH) respectively [4, 5, 6]. The SOC

refers to the total charge stored in a battery relative to what is available immediately

after the battery is fully charged. In other words, it is the percentage of charge

available with respect to the stage when the battery is fully charged and the SOC is

considered a unity. In general, the SOC may be considered as the remaining capacity

or analogous to ”fuel gauge” in a vehicle. Similarly, the SOH is the measure of the

degree of degradation of a battery with respect to the condition of a fresh or good

battery. Generally, the purpose of SOH is to find out whether the battery needs to

be replaced. Most of the monitoring methods tend to assess either SOC or SOH or a
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combination of both.

The diverse applications of battery and hence the need to monitor it efficiently

requires a method which is simple to use and requires minimal inputs, and provides

lucid results. Moreover, a monitoring may be sought in diverse operating conditions.

Some of these conditions are given below [4].

1) The battery is only partially charged. In other words, the discharge may not start

from a fully charged stage or unity SOC.

2) The charging is done at different current rates for unequal durations. One instance

of charging may not bring the battery to its unity SOC. In addition, once the charging

is done, the settling time may vary depending upon the operation.

3) Discharge is done at different current rates with varying interval between dis-

charges. Also the duration of discharge may fluctuate.

4) Full discharge or the run-down discharge is performed by drawing a large current

for a long time.

5) The operating temperature is anywhere between -30C to 50C.

6) The process to initiate a test is easy and short.

7) The raw data obtained from the battery is processed and the result is presented

in a simple way.

The above cases are few of the conditions in which a monitoring method has to pro-

vide an assessment. Ideally, such method should also provide a mechanism to control

voltage and current, and charging status, and give an assessment of operating range of

SOC, temperature, and any indication of unwanted situation that may have adverse

impact on the battery life. The method should read available data like current and
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voltage easily, and also be flexible in terms of giving the prediction for near term,

medium term, or long term. Specifically, the two factors that such method has to

predict reliably are SOC and SOH. However, estimating SOC or SOH independently

may not be enough for a robust assessment because the measures of SOC and SOH

give different but complementing information about the battery. For example, a new

battery with high SOH can still be operated in low SOC range, and an old battery

with poor SOH can be acceptable if it is in high SOC range. Hence both measures in

combination may be required to provide a good assessment. A combination of SOH

and SOC can be used to calculate a figure of merit that would provide an unequivocal

measure and which is observable in all operating conditions [4].

1.2 Contribution

The tasks required for an effective battery monitoring, as outlined above, are broad

and dynamic. Because of their important and pervasive applications, a method that

would monitor the battery status in real time have been widely explored. However,

in the context of efficient nonintrusive battery monitoring, there are unique issues.

A primary problem is the lack of uniformity in modeling of the electrochemical

behavior of a battery. Batteries are extremely complex systems whose characteristics

are nonlinear, time-variant, changing with respect to aging, operating conditions,

charge/discharge rates, temperature and other structural and environmental based

factors. Conventionally, researchers have tried to model the electrochemical behavior

of a battery by an equivalent lumped element electrical circuit. However, most of the

models have been chosen arbitrarily under the constraints of the laboratory conditions
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at a fixed operating condition. Since the batteries are operated at various conditions

as outlined above, the ease of model specification is essential to make a nonintrusive

online battery monitoring working in a wide range of applications in a simplistic way.

Electrochemical impedance spectroscopy (EIS) is a powerful mathematical tool for

modeling the behavior of a system [7, 8, 9]. Since the concept and steps are wide-

ly understood and recognized, the researchers have long used it to study a battery.

Such methodology relies on the fact that there is resistance to flow of charge inside a

battery showing a resistive and a combination of capacitive and inductive character-

istics. However, the impedance spectrum over the full range of SOC merely changes

minimally and this makes it difficult to differentiate distinctly the different SOCs. In

addition, the variation in complex impedance may take place due to several external

factors such as temperature, aging and depth of discharge. Furthermore, an expert

understanding of EIS and detailed experimental setup used by researchers in the past

have made it impractical for the common method of battery monitoring.

The search of an effective method has led researchers to the use of non-linear

estimation techniques. However, one primary issue is that the iterative optimization

techniques often used to estimate parameters require a good initial guess. For an

online device designed to handle a range of operating conditions, this can be an

issue. Another aspect of the problem unique to the nonintrusive battery monitoring

is the availability of data for the pattern matching processes. A variety of batteries

with different capacity ratings and chemistries make it a daunting task practically.

Moreover, many such methods are computationally expensive and time consuming.

This thesis provides a new streamlined framework for enhanced battery monitoring
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based on modeling of its behavior and estimation of parameters, with a focus on sim-

plistic nonintrusive on-line methodology. This framework is designed with commonly

available batteries such as lead-acid and lithium-ion and is established with general

battery applications.

1.3 Organization

A detailed overview of prior works in the area of battery monitoring is present-

ed in Chapter 2. Chapter 3 presents the modeling of a battery behavior based on

an equivalent electric and simplistic model. Chapter 4 covers the nonlinear estima-

tion technique used for the estimation of parameters of the simplified battery model.

Chapter 5 provides an adaptive state-estimation technique used to measure the open-

circuit voltage of the battery. Chapter 6 provides experimental results and validation

tests and chapter 7 gives conclusion and recommendations for future works.



CHAPTER 2: BATTERY MONITORING

Several methods have been developed to determine the health of a battery in the

past two decades. These methods rely on various parameter measurements. Many

techniques, for instance, directly aim to determine the state-of-charge (SOC), while

others aim to determine explicit values for individual model elements. Using individ-

ual parameter values, researchers have been able to track both state-of-charge and

overall health or state-of-health (SOH). Almost all of the available health-monitoring

methods are time-consuming and require specific, off-line tests. Many other on-line

methods are only good in laboratory conditions under test data. This section reviews

the most popular health-monitoring methods in use today.

2.1 Background

Measurement of electrolyte specific gravity (SG) is the conventional approach used

to determine SOC . In this technique, the specific gravity of a battery’s electrolyte is

measured using a hydrometer [10]. The SG of a chemical solution is defined as the

ratio of the density of the chemical substance to the density of water available per

unit solution. A hydrometer is a common instrument that can be dipped inside the

chemical solution to measure the SG. Specific gravity readings can be translated into

SOC values using data tables. The advantage of the specific gravity method is its

simplicity. The procedure is easy to carry out, and anyone with limited training can
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do it. However, this method does have several important drawbacks. The first and

most important is the fact that measurements cannot be recorded while the battery

is in use as the electrolytic solution must be at rest for at least 3 hours before an

accurate reading can be taken. In addition, most batteries in use these days are

sealed, making SG measurements very difficult to obtain. Moreover, it is relatively

dangerous to draw some electrolyte from an open battery.

The other old method is the use of the stabilized float current for determining if a

battery is fully charged [11]. This technique, which is only usable during charging,

exploits the fact that most lead-acid battery chargers maintain a constant and stable

current into a battery once it approaches full charge. This method is commonly used

in generating stations and substations that feature batteries for back-up systems .

Although this method has been found extremely reliable, it is impractical in any

mobile situation in which the battery is not being constantly charged. Furthermore,

it does not provide a running indicator of SOC, only an indication that the battery

has returned to full capacity.

Yet in another method, the battery is left to rest for a long time in the range of

3 hours, and the open-circuit voltage is measured from the open ends of the battery.

The value of open-circuit voltage is subsequently tallied to its SOC value from a

pre-calibrated table [12].

Most of these old methods of SOC estimation are stationary ones. Such methods

like electrolyte specific gravity, stabilized float current, open circuit battery voltage

measurement etc. require a long testing time and the battery needs to be off-loaded.

Since the battery operation has to be interrupted before SOC estimation is done,
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such methods are not suitable for practical purposes in modern battery applications

and hence are not relevant in the review here. Only those methods that estimate the

SOC non-intrusively in a relatively short span of time are reviewed here.

All the attempted methods to model the battery behavior and estimate the SOC

can be broadly divided into four categories. Each of these methods with its advantages

and disadvantages is reviewed in details here.

2.2 Impedance Spectroscopy Method

Electrochemical impedance spectroscopy (EIS) is a well established mathematical

tool in which a small sinusoidal current signal superimposed on a larger direct current

is sent to a battery, and the resulting responses of voltage and phase are measured.

By the complex division of ac voltage by ac current, the impedance of the battery is

measured [9], and it is repeated for all meaningful frequencies. This is a useful tool

to measure the impedance of a battery and is quite prevalent among the researchers

[13, 14, 15, 16, 17, 18, 19, 20]. The first such experiment on a battery seems to

go back as far as 1941 [21] and the preliminary record of impedance data seems

to be given first by [22], in which the impedance measurement is performed at a

wide range of frequencies recording the variation among the impedances at different

frequencies. Although no apparent interpretation of impedance data was floated by

[22], it was clearly shown that the impedance varies with the depth of discharge

and in fact varies in greater magnitude than the corresponding change in the open-

circuit voltage of the battery. This paves the way for use of battery impedance as

a possible tool to predict the battery status. In another early work in [18], the
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kinetics of the electrochemical process inside the battery is modeled by equivalent

electrical components like inductor, capacitor and resistor. It was established that

the battery can be represented by an ideal voltage source in series with a combination

of a resistance and a reactance, mostly capacitive reactance. A continuous shift in the

impedance parameters in the frequency range 15 to 200 Hz with SOC was observed,

but the nature of the curves was shown to be parabolic which could not directly be

used to correlate with the SOC of battery due to the nonlinear nature.

Another attempt was made to measure the residual capacity of a lead-acid battery

by the use of EIS in [17, 19, 23]. First, an equivalent electrical circuit was established

to describe the impedance of the battery. Second, it was shown that the components

do not vary smoothly and consistently enough with residual capacity to provide a

basis for a test nor was it suitable to use a single frequency to measure the system

impedance. However, it was shown that the combination of charge-transfer resistance

and the double layer capacitance which makes the time-constant of the R-C network

in the battery model decreases sharply and smoothly between 50 and 100% SOC

range and could form a basis for a test. It was further found that there exists a basic

difference in the complex impedance of a battery with a differently aged and differ-

ently treated cell and this feature could form a basis for SOH of a battery. However,

an extensive requirement of circuitry needed to carry out the experiment was ac-

knowledged as the hindrance for the extensive use of this method. Following up with

similar experiment in [24], it was further supported that there exists a unique value

of combined charge-transfer resistance and double-layer capacitance, which could be

a basis for a test. However, it was acknowledged that the variations in the complex
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impedances of the battery at a different frequencies are not enough and unique in na-

ture to determine the SOC of a battery distinctively. A further analysis of impedance

spectroscopy of a battery was done by [14]. It was shown that the Nyquist plot of the

complex impedance at different frequencies of a battery is semi-circle in nature. The

values of basic circuit elements like the charge-transfer resistance and the double-layer

capacitance are subsequently estimated from the plot. However, it was agreed that

the variations in operating conditions and rated capacities of battery make it hard to

use impedance spectroscopy on a consistent basis for the battery assessment.

In contrast to many experiments in the preceding references which showed that the

parameters of a battery are non-linear in nature, a dynamic model for battery kinetics

was presented in [16]. Again the method of impedance spectroscopy was used to find

the parameters of the equivalent circuit model. However, it also showed the complex

circuit model comprising of several components when the varying kinetics inside bat-

tery is represented by equivalent circuit model. A review of the issues associated with

the use of impedance spectroscopy to assess the battery was further presented by [13].

They explained the challenges of this method into three categories. First, nonlinear-

ity is an issue when the batteries are operated at relative high current during which

the transport and reaction processes inside the battery are non-linear in nature and

cannot be neglected. Second, nonstationarity is another issue by which the structures

inside battery changes during charging or discharging processes. Nonideality is the

third issue which occurs because reaction kinetics and mass transport inside a battery

varies from one battery to the other making it hard to come up with a method that

works well for all operating conditions. These above issues were cited to limit the
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scope to EIS for most practical usages. A further attempt was made in [15] to model

the parameters of the porous electrode structure, the reaction kinetics, electrolyte

transport, and failure mechanism inside battery, but still the results do not show any

apparent consistent way by which SOH and SOC would be measured consistently

by this method. To match as closely as possible the varying complex impedances

at different frequencies, the author in [8] used an extended double-electrode lumped

electrical model of battery. In order to provide a quantitative measure of SOC and

SOH, the author in [8] used nonlinear estimation method. Similarly, an extended

modeling of complex impedance of battery was done by [25], but it was made more

computationally challenging to calculate the parameters of lumped electrical model

and it further showed the difficulty of modeling impedance spectrum of battery by

equivalent lumped electrical circuits. A similar attempt to do extending modeling

of complex impedance of battery was also done by [26]. However, only one lumped

equivalent parameter is ultimately considered for battery health measure. Such lim-

itation contained the use of this method and was further argued by [27], in which

the concluding argument seems to be that EIS is helpful only in certain operating

conditions for particular purpose and the overall assessment of battery health has to

combine EIS with some additional evaluation scheme. A similar conclusion is also

drawn by [20] in a recent paper.

In summary, EIS was invariably the first mathematical tool adopted by researchers

with an expectation to model the battery kinetics. Since it has been an established

tool to study the behavior of a system for a long time, it was natural to look into

it. However, extremely complex kinetics of electrochemical processes inside a battery
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render the EIS method to have very limited use in practice. Apparently it is difficult

to determine SOC in all operating conditions based on its impedance spectra only.

However, the variation in the complex impedance through an entire SOC discharge

process can be a tool for SOH assessment. Yet it could still be a useful tool to study

the battery kinetics and especially use it to compare an equivalent electrical model

of battery.

2.3 Current Integration Method

Current integration or Coulometric measurement is the most commonly used method

to measure the SOC of a battery [7, 28, 29, 30, 31]. This method uses the dynamic

measurement of the battery current, and integrates it for a finite interval giving the

direct assessment of the remaining SOC. Although this method sounds intuitively

straightforward, it has a number of practical limitations. First, it requires the initial

level of SOC to be known before the current integration is performed. Any wrong

initial value of SOC keeps accumulating in the subsequent measurements of SOC.

Since SOC is a dynamic quantity which depends upon the temperature, operating

conditions, aging etc., it is a difficult task to calibrate SOC at regular intervals cor-

rectly. Moreover, there may arise error in the terminal measurement of current due

to noise, resolution, and rounding off. Furthermore, the available capacity depends

on the rate of discharge, and it also decreases with aging and the number of cycles in

use. Although it has been a popular method to estimate the remaining capacity of

battery, there is a good consensus that it is not the most effective one[29]. Especially

in electric vehicle operations, in which the recurrent cycles of charging/discharing is a
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norm, implementing this method would be more difficult. This method may work for

short charging/discharing load especially when the flow of current is unidirectional

and constant supported by accurate current reading and controlled temperature set-

ting. For the diverse applications of battery currently, this requirements can not be

fulfilled. For example, one practical problem that arises with this method is described

here from [29] and shown in Fig. 1. The top graph shows the SOC estimation based

Figure 1: Top:- SOC estimate by the current integration method; Middle:- terminal
current from the battery; Bottom:- battery terminal voltage [29].

on the current integration, assuming the starting SOC to be 100%. The center graph

shows the current drawn from the battery, and the bottom graph show the voltage
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drawn from the battery. Although the voltage has decreased substantially, and the

drawn-out current from the battery pack is very low, the estimated SOC level is stil-

l high, giving inaccurate assessment of battery capacity. In this sense, the current

integration method is analogous to open loop because the SOC estimation does not

take into account the battery parameters such as the open-circuit voltage [29]. The

method is also dependent upon accurate initial value of SOC and discharge rate which

varies by usage and time resulting into big mistake in the SOC estimation[?]. Such

problem is considered typical for this method.

In summary, the current integration method may work well for estimating SOC for

short charging/discharing profiles especially when the flow of current is unidirectional,

and constant and the accurate measurement of current is taken and the experiment

is done in a controlled environment. For diverse operating conditions of battery, this

may not be a suitable method. In addition, it does not provide any basis for the SOH

measure.

2.4 Kalman Filter Method

Another method is state-estimation technique such as Kalman Filter (KF), Extend-

ed Kalman Filter (EKF) etc. for real-time prediction of SOC and SOH [29, 32, 33,

34, 35, 36]. The Kalman Filter is a least squares optimal estimator for discrete time

linear systems, which may contain noise and are stochastic in nature. The algorithm

iteratively estimates the optimal state vector at each time step by estimating first the

state vector at the previous time step and covariance based on a state-space model

and then correcting this estimate in a least-square sense using the latest measurement
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of output from the actual system. The EKF extends this algorithm to the nonlinear

dynamic systems. The state variables are still estimated using a system model, but

to estimate covariance and correct state estimate, the model is linearized around the

latest estimate of the state variables [34].

Using this approach, the authors in [29] have presented a measure of state vari-

ables to indicate SOC. Using a non-linear time-varying state-space model, states are

modeled as first-ordered Markov color-noise processes. The system of equations is

then linearized, and the extended Kalman filter algorithm is used to implement a

state estimator for the resulting linear and time-varying equations. They show that

this method could be a feasible way to estimate SOC under constant-temperature

conditions, although the authors were not able to achieve accurate estimates of the

parameter values (i.e. Rd, Rb, and C). The authors in [33] used the same non-linear

time-varying state-space model and proposed a deterministic method for determining

the open-circuit voltage Voc by assuming that the state variables do not vary over

time. As a prerequisite, the authors assume that the current has a quadratic depen-

dence on time. The authors clearly show that the observability of the overall model

relies on this quadratic dependence. They do not show, however, whether or not

higher-order dependence will affect observability. In order to demonstrate that their

method is feasible, they determined Voc, but they arbitrarily reset their estimate to

the measured terminal voltage approximately 100 seconds after each discharge was

ended. The authors justify this resetting operation because they assume that the

states are constant. Note that this decision amounts to stating that the parame-

ters Rd, Rb, and C are constant. Since these parameters vary with other factors,
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such as temperature and age, the proposed estimation method could lead to arbi-

trary biases. Similarly, the authors in [32] have used the Kalman filter approach to

measure SOC, but their battery model does not seem to follow the output terminal

voltage completely. Moreover, the authors have used a pulse current to generate a

voltage profile from a battery for the testing purpose, but it is not supported for

diverse current profiles. In a similar use of this method in [37], extensive modeling

is done to represent the electrochemical phenomena of a battery. However, such an

extensive electrical model with several parameters are computationally challenging.

Furthermore, the use of EKF is poor in transients and it needs long time to adapt

the parameters to get small error[38]. Also, the SOC range used in [37] is from 50%

to 90% which seems to under-utilize the operating range of SOC. Since the accuracy

of the battery model is crucial for the accuracy of the estimator, a new battery model

was proposed by [34]. However, a model has to be widely accepted and applicable

in all practical conditions. Similarly, extensive modeling based on other variables of

the battery such as over-potential, concentrations and current distribution across the

electrodes is presented in [35]. Such a large set of parameters from a model may bring

a huge overhead, and may make the result analysis difficult. In another recent work

of [36], EKF is used along with neural networks, which works only in a controlled

environment and the performance may not be robust for all battery chemistries.

In summary, although KF and EKF are popular tools to estimate state variables, it

would require an accurate dynamic model of the battery. Since battery dynamics de-

pends upon several factors such as operating conditions, discharge rates, temperature,

electrochemical reaction etc., an effective model which will fit all operating conditions
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is difficult to implement. If modeling is extended with the addition of several lumped

electrical components, the estimates of parameters will be computationally more chal-

lenging. Accurate initial guess for these parameters are also important which may

pose a challenge too.

2.5 Miscellaneous Methods

The lack of a robust method for estimating the SOC of the battery has given rise

to several new ideas over the years. A number of these works are focused on modeling

battery with different lumped-electrical circuit, presenting a new algorithm, or using

statistical approach. One such early approach was coup de fouet method [39, 40] in

which the beginning sag in the open-circuit voltage of battery is used to assess the

battery capacity empirically. However, the battery SOC being dependent upon so

many variables, it makes it impractical for the majority of applications. In another

such work in [41], a simplified battery model is used along with voltage and current to

estimate parameters, which would form a basis for battery of monitoring. A similar

idea is presented by [42] in which one of the parameters in the form of a double-layer

capacitance is used to estimate the battery capacity. However, this method is shown

being used only at a constant current discharge. In [43], a method is presented in

which the reserve time with respect to the SOC of the battery is found out irrespective

of capacity, discharge rate, operating condition, and ambient temperature. In this

method, the initial open-circuit voltage of the battery is normalized with respect to

an assumed base voltage, and a unified characteristic curve is produced for the total

discharge at the given current. However, the normalization is not practical because
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the open-circuit voltage does not stay constant and any error in it would accrue over

time. Furthermore, the range of voltage change allowed for operations from a battery

is normally a small one close to about one volt for a battery with a nominal voltage of

12 V. Any wrong assumption about the base voltage can give an inaccurate estimation

of the reserve time. Moreover, it is not clear how to proceed when the discharge rate

is not constant. An analytical method is presented in [44], but it is only meant for

portable electronic devices with generally low battery capacity, and it is not clear how

it would function for the higher rating industrial batteries.

An early statistical method is presented in [45], in which the open-circuit voltage

is estimated by using a record of charging profiles. Since battery charge/discharge

depends upon many variables, any such method would be difficult to implement in

practice. Furthermore, rapid charging/discharging from a battery may not show the

full voltage profile for use in a statistical analysis. An effort to model other variables

like temperature is shown in [46], in which they present a temperature dependant

battery model, but they have only provided simulated results. SOC estimation from

the combination of impedance, open-circuit voltage and discharge current is presented

in [47]. However, the combination of all three factors may make it difficult for analysis,

and they also used an extended battery model which contains several parameters and

seems to have little support elsewhere in literature.

Presenting yet another new approach, the authors in [48] used an artificial neural

networks (ANN) to estimate SOC. However, the use of ANN may still have limitations

because of the dependency of SOC on various factors and the difficulty in giving

accurate input data. A nonlinear dynamic modeling of a battery is presented in
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[49] for NiMH battery. However, it is not clear whether it would support other

battery chemistries and operating conditions. In [50], they used an impulse response

to estimate the open-circuit voltage. However, an accurate impulse response from

a battery is always challenging and it may not be the optimal method for different

discharge currents. Nonlinear modeling for battery discharges is also presented in [51]

using few sets of discharge currents. However, they have not shown whether they are

valid when other variables like temperature is considered. A new model of a battery

based on partial differential equations is presented in [52]. However, how effective the

model is yet to be verified.

Similarly, a novel idea of applying the Bayesian theory for managing uncertainty

and complexity in battery modeling is floated by [53, 54, 55]. Bayesian tools like

Relevance Vector Machine (RVM), and particle filters (PF) are used to measure the

remaining useful life ( RUL) and SOH. However, most of these methods have been

used for batteries in space application, which are different in size, weight, capacity

and cost. It is yet to be supported for other batteries with larger capacity, discharge

rates and availability. In addition, they do not seem to present a direct method to

estimate SOC, but rather they focus estimating the remaining useful life (RUL).

2.6 Summary

The lack of a robust monitoring method has given rise to plenty of research and

experiments especially in the last several years. Researchers have tried to come up

with new methods to enhance the battery monitoring method. However, any new

method needs to be tested for all operating conditions and be easy to implement. The
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right approach may be a trade-off between the complexity in the battery modeling,

the parameter estimation process, and its simplicity to use and analyze the results.



CHAPTER 3: BATTERY MODELING

Numerous studies on the kinetics of electrochemical processes inside battery have

been reported in the literature [9, 21, 8, 42, 14, 56, 57]. Equivalent electrical circuits

have been developed to model these processes. Based upon several assumptions that

are applicable to battery characteristics, simplified electrical circuits are presented.

Subsequently, a simplified electrical circuit is derived and used for either lead-acid

or lithium-ion chemistries. Such an equivalent electrical model broadly supports the

characteristics a battery exhibits during discharge, charge or rest.

3.1 Detailed Electrical Equivalent Circuit

Fig. 2 shows a detailed model that has been widely reported [9, 21]. Note that this

model separately describes processes occurring at the individual electrodes, hence the

use of the subscripts p and n.

Rn

+
− VINT

iB

Cn

R1

vB

+

-

Zw,nRp Zw,p

Cp

LnLp

Figure 2: Detailed electrical equivalent circuit for a lead-acid battery.
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A physical explanation can be provided for each of the components in Fig. 2.

Lp and Ln, for instance, model the inductive behavior caused by the porosity of

the individual electrodes [9, 21]. R1, on the other hand, represents the combined

resistances of the electrolyte, the contacts, and the crystallized lead-sulphate layer on

the electrodes [9, 21]. The resistances Rn and Rp model losses due to charge transfer

at the electrodes, and Cp and Cn are the capacitances arising from space-charge

distribution in the electrochemical double layers [9, 21]. The terms Zw,p and Zw,n

represent the so-called Warburg impedances caused by ion diffusion in the electrolyte

and in the electrode pores. These impedances are of the form

Zw =
σ

ω1/2
+

σ

ȷω1/2
, (1)

where σ is a coefficient related to the various physical properties of the electrodes [21].

The model also includes an internal source VINT which is observable at the terminals

under open-circuit conditions.

3.2 Modified Electrical Circuit

The detailed equivalent circuit in Fig. 2 was developed from physical arguments and

validated using impedance spectroscopy [9, 21, 8, 42, 14]. With certain simplifying

assumptions, the model can be reduced to a simpler circuit having a similar impedance

spectrum. Because the impedances of the cathode and anode are nearly identical, for

instance, they cannot be clearly resolved experimentally [9, 21]. It is thus reasonable

to combine the electrode impedances into a single group. Similarly, the inductive

reactance is typically only noticeable at very high frequencies [9, 21]. Since we will
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ultimately avoid excitation in this range, these terms can be neglected. Fig. 3 presents

a simplified model. The composite termsR2, C, and Zw represent the combined effects

of the two electrodes.

R2

+
− VINT

iB

C
R1

vB

+

-

Zw

Figure 3: Modified lead-acid battery model with the electrode impedances combined
and the inductive effects neglected.

3.3 Simplified Electrical Circuit

The Warburg impedance in Fig. 3 can also be neglected in many cases. This circuit

component models the effects of the time-dependent diffusion layer created when a

low frequency AC signal is impressed upon the battery [21].

R2

vC

+
− VINT

C
R1

vB

+

-

+ -

iB

Figure 4: The simplified series-capacitor model of a battery.
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Empirical evidence has shown that this impedance is negligible for frequencies

above several hundred microHertz [16]. Because such frequencies correspond to pe-

riods much longer than those considered in this paper, the Warburg impedance is

removed and the circuit is further simplified as shown in Fig. 4.

Similar models have been reported throughout the literature [9, 21]. Parameter

estimation proceeds using this simplified equivalent circuit.

3.4 Model Simulation

The simulation of the battery model is performed by recording a sample discharge

from a lead-acid battery for an of-the-shelf load such as a headlight of a car. Fig. 5

shows such a discharge profile. Note that the current rises sharply at the outset and

then falls to a steady level. This rapid change in current is a result of the inner

physics of the lamp. Note that the battery voltage displays a sharp initial drop

and then falls exponentially. To obtain a result via simulation as shown in Fig. 6, a

constant set of parameters was selected, and the model was excited using the terminal

current shown in Fig. 5. Parameter values were selected by the grid search method,

and the set was chosen which had the minimum root mean squares (RMS) value

for the modeling error. The result in Fig. 6 closely matches the plot of Fig. 5, which

supports the battery model in use. Similarly, for a lithium-ion battery, Fig. 7 shows a

sample discharge curve when a heater is turned on by a 3.6 Volt nominal 18650-model

lithium-ion battery.

Using the terminal battery current from the same discharge on the battery model

of Fig. 4, the simulated voltage is obtained and the result is shown in Fig. 8. Note
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that the parameters R1, R2 and C used in the model are chosen by the grid search

method where the set was chosen based on the minimum root mean square (RMS)

value from the modeling error.

3.5 Model Validation by Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a powerful mathematical tool for

studying the behavior of a system. In general, this method involves determination

of a complex impedance by superimposing a small ac signal on top of a DC current

over a range of frequencies. The resulting voltage and current data are recorded,

and the complex division of voltage by current gives the impedance. Thus calculated

impedances in the form of real and imaginary components and phase angle over a

range of relevant frequencies are recorded, and plotted over x-y axis to obtain the

broad contour formed by the impedance profile. Such a contour may, in general

terms, support the chosen model of the battery in Fig. 4. However, note that the

EIS of a battery may reveal all the inner dynamics of a battery in a particular oper-

ating condition. For establishing a simplified model, the plot especially in the range

of frequencies of interest rather than the detailed plot from the complete range of

frequencies is scrutinized more closely to check whether the simplified battery model

makes sense. The method of EIS is nondestructive in nature since the polarization

applied through it is so low that the linear polarization conditions created by load

currents are not affected. With the ease of measurement processes made possible by

the advent of computer-controlled equipments over the years, EIS is comparatively

easier to implement now than it was in the past. EIS was performed on an automotive
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lead-acid battery to study the model behavior.

3.5.1 Electrochemical Impedance

The dynamic behavior of a battery can be explained by its electrochemical impedance,

which is obtained from the response of an excitation of small signal [9]. Although

any type of excitation signal like sine wave, step, noise etc. may be used, sine waves

are most commonly used signal for the system excitation. In one such scheme, an

experiment is performed in the galvanostatic mode in which the d.c. load current

from the battery is kept constant and a sinusoidal current in the form of

△I = Imax sin(2πft), (2)

at frequency f , is superimposed on the d.c. signal I, resulting in a sinusoidal voltage

response

△V = Vmax sin(2πft+ ϕ) (3)

around the d.c. voltage V at the terminals of the battery. Then the impedance of

the system is defined by

Z(f) =
Vmax

Imax

eȷϕ. (4)

Hence the electrochemical impedance of a battery is a frequency-dependant complex

number characterized by its real and imaginary parts, or by its modulus |Z| = Vmax

Imax

and its phase angle ϕ.
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3.5.2 Complex Impedance of the Battery Model

For the chosen equivalent electrical model of the battery as shown in Fig. 9, the

complex impedance is

Ztotal = R1 +R2|| 1

ȷωC
. (5)

Eq. 5 can be represented as

Ztotal = R1 +
R2.

1
ȷωC

R2 +
1

jωC

, (6)

which can be further simplified as

Ztotal = R1 +
R2

(1 + ȷωR2C)
. (7)

Simplifying the complex number in Eq. 5 yields to

Ztotal = R1 +
R2(1− ȷωR2C)

(1 + (ωR2C)2)
. (8)

The final equation can be further written as

Ztotal = R1 +
R2

(1 + ωR2C)2
− ȷ

ωR2
2C

(1 + ωR2C)2
, (9)

which is in the form of

Ztotal = {real part}+ ȷ {imaginary part}. (10)

To see how the complex impedance of the battery model varies over a range of fre-

quencies, A Nyquist plot for a full spectrum of frequencies is plotted and shown in

Fig. 10. As the figure shows R1 is the high frequency part with almost negligible
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imaginary part, and the R − C network of the battery model forms the shape of a

semi-circle with increasing impedance at decreasing frequencies. Note that the values

of the parameters used to plot the Fig. 10 is estimated by the nonlinear least squares

method described in this thesis in Chapter IV.

3.5.3 Battery EIS Plot

An Agilent function generator is used to send a series of ac signals superimposed on

a fixed dc current controlled by an electronic load. The resulting voltage and current

are recorded and such a sample data is shown in Fig. 11. Fig. 12 is the zoomed-in

version of the data of Fig. 11, in which the insets show the details of the voltage and

current data. Performing the Fast Fourier Transform (FFT) on the obtained voltage

and current data gives each component of voltage and current signals. Using the

equations from the section 3.5.2, the result for EIS is obtained, and Fig. 13 shows one

such plot for a 12 V lead-acid car battery. The plot is approximately close in nature

with the theoretical Nyquist plot of Fig. 10 especially in the range of frequencies of

interest and is also similar in nature to the diagram given in [9]. Note that the

inductive effect of the battery has started to show at the high frequencies which is

in line with the explanation of detailed battery model explained in above section.

Since the real impedance diagram shows the detailed model of the battery, and it

consists of more components than the simplified model of Fig. 4, the purpose here

is to show that the impedance diagram broadly supports the simplified model of the

battery especially in the range of frequencies of interest in which the test would be

conducted.
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Note that the parameters obtained from the EIS method may not necessarily be

equal to the parameters from other methods, because the polarization created by

an a.c. current is non-destructive and very small such that it does not disturb the

polarization created by a dc current, which increases the polarization linearly.

3.6 Summary

Fig. 4 is the most commonly accepted model of a battery. The key advantage is

that it represents approximately the chemical kinematics of a battery in its simpli-

fied form. It is a simple electrical equivalent circuit with few components which is

helpful for the system modeling and parameter estimation process. Electrochemical

impedance spectroscopy (EIS) still stands as one of the most reliable options to s-

tudy the behavior of a battery. EIS is performed on a lead-acid battery to study

its behavior and its plot broadly supports the simplified electrical model especially

in the range of frequencies of interest. However, to study the inner-dynamics of the

battery by EIS, low frequency signals need to be sent out, for which the measurement

time is long. Because of this reason, it may not be the quickest way to estimate the

impedance of a battery.
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Figure 5: The measured terminal voltage of the battery when connected to a head-
lamp. Upper trace: the voltage measured at the battery terminals. Bottom trace:
the measured terminal current.
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Figure 6: The simulated voltage from the battery model for the real battery current
in Fig. 5.
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Figure 7: The measured terminal voltage of a 3.6 Volt 18650-model lithium-ion bat-
tery when connected to a heater. Upper trace: the voltage measured at the battery
terminals. Bottom trace: the measured terminal current. Note that the current rises
sharply at the outset and then reaches to a steady level in a step-like manner. Note
that the battery voltage displays a sharp initial drop and then falls exponentially.
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Figure 8: The simulated voltage from the battery model for the real battery current.
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Figure 9: The chosen series-capacitor model of a battery.
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Figure 11: The sample voltage and current data used to estimate the complex
impedance from a 12 Volt lead-acid battery. The current signal has a.c. signals
in the range from 0.000761 Hz to 76.1 Hz superimposed on a 0.5 Ampere d.c. current
and the voltage data is response of the current signal. Note the phase shift between
the voltage and current data.
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Figure 12: The zoomed in version of voltage and current data of Fig. 11. The insets
shows the details of the data.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
5

6

7

8

9

10
x 10

−3

Real part

Im
ag

in
ar

y 
pa

rt

At 0.0076 Hz

At 0.1522 Hz

At 0.761 Hz

At 7.61 Hz

At 76.1 Hz

Figure 13: The impedance spectrum obtained for a 12V lead-acid battery.



CHAPTER 4: A TRANSIENT-BASED PARAMETER ESTIMATION

Nonlinear least squares methods are the popular tools used to estimate the pa-

rameters of dynamic models. Such a method may be an attractive option for the

estimation of parameters for a dynamic system like a battery. However, conventional

methods tend to be susceptible to local minima and may not converge to the global

minimum. Moreover, such a method may have unpredictable performances for initial

guesses that are far from the optimal values. Others may have high computational

overhead and can take a long time to converge. Therefore, it is essential to choose

the right method suitable for the applications at hand. The method chosen for this

thesis takes advantage of the structure of residuals in data fitting. Such a method is

an excellent choice because it tends to converge for a wide range of initial guesses to

the desired minimum than the standard techniques such as Levenburg-Marquardt or

Gauss-Newton methods do [58].
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4.1 Gauss-Newton Method with Linearization Approach

A nonlinear least squares problem involves finding an m dimensional vector esti-

mate µ̂ of µ satisfying in the least squared sense the n equations

f1(u1;µ) = y1

f2(u2;µ) = y2

...

fn(un;µ) = yn,

(11)

where uk is the k’th input, yk is the k’th observation, fk is the k’th function relating

these quantities, µ is the parameter vector, and n > m [58, 59]. The fk are considered

nonlinear by the way that µ are related to y. The use of semi-colon in Eq. 11 separates

parameters from inputs in the arguments of the function.

Then the objective of the nonlinear least squares problem is the minimization of a

loss function over parameter vectors µ

µ̂ = argmin
µ
V (µ). (12)

The notation in Eq. 12 implies that the final estimate µ̂ is the value of µ for which

the loss function V (µ) attains a minimum. For the least squares problem represented

by Eq. 11, the loss function may be defined as [58]

V (µ) =
1

2

n∑
k=1

(yk − fk(uk;µ))
2. (13)
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The loss function can also be written as

V (µ) =
1

2
r
′
r (14)

where r is the n dimensional residual

r = y − f(u;µ), (15)

where lack of subscripts is interpreted so that

rk = yk − fk(uk;µ). (16)

The Gauss-Newton method iteratively finds a solution to the nonlinear least squares

problem by updating µ̂ with a step δGN [58, 59]

ˆµ(i+1) = µ̂(i) + δ
(i)
GN , (17)

where µ̂(i) is the estimate of the parameters at the i’th iteration. At each iteration,

δGN is computed as the least-squares solutions to the linear problem

JδGN = r, (18)

where J is the n by m Jacobian evaluated at µ̂ with elements

Jk,i = − ∂rk
∂µi

∣∣∣∣
µ̂

, (19)

and r is the residual defined in Eq. 15. In the linearization approach, a linear Taylor

series approximation to f(u;µ) is considered. For simplicity, the dependence on µ is

neglected here. Then at each iteration, this linearization should be in the neighbor-
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hood of the current estimate µ̂ [58]

f(µ̂+ δ) ≈ f(µ̂) +▽f(µ̂)δ, (20)

where ▽f(µ̂) is the m dimensional row vector of partial derivatives

▽f(µ̂) =

(
∂f

∂µ1

∣∣∣∣
µ̂

∂f

∂µ2

∣∣∣∣
µ̂

· · · ∂f

∂µm

∣∣∣∣
µ̂

)
. (21)

Then the goal is to obtain a δ to compute the next parameter estimate (µ̂ + δ) by

combining the linearization of Eq. 20 with the constraints. Substituting Eq. 11 by

the proposed update (µ̂+ δ) gives

f1(µ̂) +▽f1(µ̂)δ = y1

f2(µ̂) +▽f2(µ̂)δ = y2

...

fn(µ̂) +▽fn(µ̂)δ = yn

(22)

where the term ▽fk(µ̂) is the k’th row of J defined by Eq. 19. Subtracting the fk’s

from both sides of equation, Eq. 22 can be written as the linear system

Jδ = r. (23)

Multiplying both sides by J ′ gives the Gauss-Newton step,

J ′JδGN = J ′r, (24)

which could be solved as

δGN = (J ′J)−1J ′r. (25)
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4.2 Parameter Estimation

The non-linear problem for the battery model is formulated in the following way.

4.2.1 Battery Nonlinear Problem

The model for the battery shown in Fig. 14 consists of the state equation

R2

vC

+
− VINT

C
R1

vB

+

-

+ -

iB

Figure 14: The simplified series-capacitor model of a battery.

dvC
dt

=
iB
C

− vC
R2C

(26)

and the output equation

vB = VINT − iBR1 − vC . (27)

For simplicity, the model is reformulated in terms of a vector of composite parameters,

i.e.

dvC
dt

= µ1iB − µ2vC (28)
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and

vB = VINT − µ3iB − vC , (29)

where µ1 = 1/C, µ2 = 1/(R2C), and µ3 = R1. Then the parameter estimates µ̂ solve

the equation

µ̂ = argmin
µ

rT r, (30)

where the residual vector r is the difference between the model response v̂B and the

measured values vB as given in Eq. 31

r = v̂B − vB. (31)

Note that vector notation has been used because we are considering a series of values

observed at discrete time steps. The model response is determined via simulation.

Parameter estimation proceeds in several steps. At the outset, initial guesses are gen-

erated from circuit considerations. A time-domain simulation then uses these guesses

to generate an estimated voltage vector v̂B. A modified Gauss-Newton method then

determines if the parameter values can be improved. If so, another simulation is

performed using the updated parameter values. This process repeats until Eq. 30 is

satisfied. The exact details are presented below.

Throughout this section, it is assumed that the data needed for parameter estima-

tion is obtained by connecting a small load that sufficiently excites the dynamics of

the battery. For convenience, off-the-shelf devices such as headlamps and resistance

heaters are used. Other more complicated loads could be considered, but the choice
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of loads are selected based on commonly used parts in vehicles and other battery-

powered systems.

It should be noted that the internal source VINT is not considered a parameter to

be estimated at this stage. That is the objective of the next chapter in this thesis.

The value of VINT is determined by measuring the open-circuit voltage prior to the

connection of the load (i.e. with iB = 0). Over time, the value of VINT will decrease,

but if the load connected to the terminals is small, the drop will not be significant

during the measurement interval. In this sense, loads such as the head lamp can be

viewed as ”small-signal” sources.

4.2.2 Pre-Estimation

To generate initial guesses for the parameters µ1, µ2, and µ3, the load is first

modeled as a current source connected across the battery terminals. Basic circuit

considerations are then used to determine initial values for R1, R2, and C. These

values are combined to obtain guesses for the composite parameters.

Pre-estimates for R1 and R2 are very easily determined by considering how the

capacitor steers current through the circuit under different conditions. A load with a

step-like behavior, for instance, causes a rapid initial change in terminal current. As

this happens, the voltage across the capacitor must remain continuous. The result

is that the capacitor appears as a short-circuit, forcing all of the terminal current to

flow through it. If the capacitor is initially discharged, an initial guess for R1 can

thus be obtained by solving the equation

VINT − iB(0
+)R1 = vB(0

+), (32)
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where iB(0
+) and vB(0

+) are measurements of the current and voltage immediately

following the connection of the load. In steady state, the capacitor’s behavior is quite

different. In that situation, the capacitor blocks the flow of DC current, thus forcing it

through R2. An estimate for this resistance is then generated by solving the equation

vfinal = VINT − ifinal(R1 +R2), (33)

where vfinal and ifinal are the steady-state values of the terminal voltage and current,

respectively. Note that Eq. 33 must be solved in combination with the value of R1.

To obtain a pre-estimate for the capacitance C, we begin with the notion that a

pure current step causes an exponential response of the form

vB = vinitial − (vinitial − vfinal)
(
1− e−t/R2C

)
, (34)

where vinitial and vfinal are the initial and final values of the terminal voltage. After

subtracting vfinal from both sides of Eq. 34, one obtains an expression of the form.

vB − vfinal = (vinitial − vfinal)e
−t/R2C . (35)

When the natural logarithm is applied to Eq. 35, one obtains an expression that is lin-

ear with respect to the unknown parameter 1/(R2C). Linear least-squares estimation

is then used to obtain an initial value for the time constant.

The theory underlying the calculation of the time constant can be somewhat ap-

proximate. Note, for instance, that the load current might contain an initial transient

caused by either thermal or electromechanical phenomena. As long as these transients

are negligible before the battery’s own homogeneous response has completed, then
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the general form of Eq. 34 can still be used to estimate the time constant. One must

be careful, however, to apply the least-squares approach to the appropriate section of

the data.

The values obtained for R1, R2, and C are ultimately combined to provide pre-

estimates for the composite parameters µ1, µ2, and µ3. It may ultimately be possible

to avoid a pre-estimation step by statistically tallying past data, but the process helps

to speed the estimation routine and thus reduce overall computational time.

4.2.3 Estimation

Final estimates for the parameter set µ are obtained using the nonlinear least-

squares method presented in [59]. That approach exploits residual structure to help

avoid local minima. To understand the method, one must begin by considering the

solution to Eq. 30. To obtain the minimum, the gradient of rT r must be zero. This

gradient can be written as

g(µ) = JT r, (36)

where J is the Jacobian matrix of the residuals with respect to the parameters. The

Gauss-Newton method can be applied to Eq. 36 to find a series of iterates µ(i) that

can be evaluated by computer to solve for g(µ(i)) = 0, i.e.

µ(i+1) = µ(i) − [JTJ]−1JT r, (37)

where J and r are evaluated at µ(i) [59].

Estimation problems are often difficult to solve because the gradient g(µ) can

vanish at local minima corresponding to poor parameter estimates. This problem can
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be overcome by performing minimization over telescoping intervals of data selected

by analysis of the residuals. To see this, consider the nature of the residual vector,

which is defined as

r = v̂B − vB. (38)

In Eq. 38, vB is a series of measurements recorded at a rate 1/T . v̂B, on the other

hand, consists of estimates generated at the same time increments. The residual

vector is thus a time series that can be written as r(t). Assuming that a Taylor

series exists for the system model, and that the measurements can be described by a

polynomial in t, the k-th element of the residual vector can be rewritten as

rk = v̂B(0) +
d

dt
v̂B(0)tk +

d2

dt2
v̂B(0)t

2
k · · ·

−(a+ btk + ct2k + · · · ), (39)

where tk = (k− 1)T . In this example, and in many other non-linear estimation prob-

lems, the parameters are simply embedded in the low-order coefficients of the series

consisting of the initial output v̂B(0) and the slope ( d
dt
)v̂B(0). These quantities are

analytically accessible for differential equation models, such as Eq. 119. Minimization

is performed over successively larger intervals, with each sub-problem selected so that

the initial terms of the Taylor series are a reasonable approximation. By ensuring

this, the likelihood of convergence to the global minimum is greatly improved [59].

For example, suppose for the identification problem at hand with the residual vector

of Eq. 38, let the set of target parameters be µ = [λ1;λ2;λ3] and the defined set of

parameters be µ = [µ1 =
1
C
;µ2 =

1
R2C

;µ3 = R1]. Then the vB and v̂B in Eq. 38 are
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defined as

vB = vB(0)− iBλ3 − iB
λ1
λ2

(1− e−λ2t), and

v̂B = v̂B(0)− iBµ3 − iB
µ1

µ2

(1− e−µ2t)

(40)

where µ1 = 1
C
;µ2 = 1

R2C
yields R2 = µ1

µ2
. Then the identification problem of Eq. 38

can be expanded as

rk = v̂B(0)− iBµ3 − iB
µ1

µ2

(1− e−µ2t)− {vB(0)− iBλ3 − iB
λ1
λ2

(1− e−λ2t)}. (41)

Since eax = {1− ax+ a2x2

2
− · · · }, Eq. 41 is further expanded as

rk = v̂B(0)− iBµ3 − iB
µ1

µ2

{µ2t} − {vB(0)− iBλ3 − iB
λ1
λ2

{λ2t}} (42)

where higher order terms in the exponential series are neglected. Then Eq. 42 can be

further simplified as

rk = {v̂B(0)− iBµ3 − iBµ1t} − {vB(0)− iBλ3 − iBλ1t}. (43)

The unconstrained loss function for this problem from Eq. 13 can be defined as

V(µ) =
1

2

K(1)∑
k=1

{(v̂B(0)− vB(0))− (µ3 − λ3)iB − (µ1 − λ1)iBt}2. (44)

The gradient vector for the loss function in Eq. 44 will be

g(µ) =
K(1)∑
k=1


{(v̂B(0)− vB(0))− (µ3 − λ3)iB − (µ1 − λ1)iBt}.{iBt}

0

{(v̂B(0)− vB(0))− (µ3 − λ3)iB − (µ1 − λ1)iBt}.{−iB}

 . (45)

In the initial step during the minimization process, the gradient g(µ) in Eq. 45 only
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tends to zero for µ1 = λ1 and µ3 = λ3. This forces the convergence for µ1 and µ3.

Note that this step does not influence the remaining parameter µ2. After the initial

minimization step, the method will find K(2) so that the residual from K(1) to K(2)

grows linearly. For the second interval, the linear coefficients of the power series can

be found by taking the gradient with respect to interval, which is

∂rk
∂t

=
∂(v̂B − vB)

∂t
,

=
∂

∂t
[{v̂B(0)− iBµ3 − iB

µ1

µ2

(1− e−µ2t)} − {vB(0)− iBλ3 − iB
λ1
λ2

(1− e−λ2t)}],

= −iB
µ1

µ2

µ2e
−µ2t + iB

λ1
λ2
λ2e

−λ2t,

= {λ1e−λ2t − µ1e
−µ2t}iB .

(46)

The gradient in Eq. 46 will only be zero for µ2 = λ2 forcing the convergence of µ2 in

the second stage. Thus the minimization process over the k = 1 · · ·K(2) effectively

constraints µ1 and µ3 over the first K
(1) points and µ2 from K(1) to K(2) points. This

process repeats until the minimization is applied to the entire data set.

4.3 Simulation Result

The nonlinear least square estimation with structured residual method is used on

the simulated battery data so that the effectiveness of this method can be checked.

A laboratory generated current is sent to a 12 Volt lead-acid battery and the ter-

minal voltage out of the battery is plotted by the use of known parameters val-

ues. Subsequently, the generated terminal voltage and current are sent back to

the nonlinear algorithm and the final parameters are estimated. As expected, it

gives same parameter values within the allowed tolerance. For the battery model
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of Fig. 4, a sample unit current with transient dynamics as shown in the Fig. 15

is used in the algorithm. Assuming the parameter set for the battery model as
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Figure 15: Sample current used in simulation for the nonlinear least square with
linearization approach.

µ = {C = 40;R1 = 0.01;R2 = 0.025} and the battery open-circuit voltage at 12.6 V

, the terminal voltage is plotted. Taking this terminal voltage and sample current of

Fig. 15, data are sent to the nonlinear least squares with structural residual method

algorithm. When the set of estimated parameters is obtained, the battery terminal

voltage is re-plotted and the voltages are compared as shown in Fig. 16. Starting

with any kind of initial guesses gives the same final set of parameters, and the fitted

voltage completely follows the voltage from the battery.

4.4 Sample Result

The parameter estimation routine has been validated using the experimental setup

shown in Fig. 17. A picture of the real experiment at NC Laboratory for Energy
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Efficient System at the UNC Charlotte is shown in Fig. 18

The loads are connected to the battery using a solid-state relay. Both the terminal

voltage and current are sensed using Hall-effect transducers produced by LEM, and

the ambient temperature is measured using an LM35 temperature sensor. To resolve

small changes in the terminal voltage, a differential amplifier removes the offset and

amplifies the difference. All of the data streams are sampled at 100Hz using a PCI-

1710 data-acquisition card. For consistency, all tests are performed at approximately

24◦C. Several different loads have been used to excite the test battery. Each was

selected so that it provides what is effectively a “small-signal” excitation. Recall that
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Figure 16: The input and output voltage comparison by nonlinear least squares with
linearization approach method for parameter set of µ = {C = 40;R1 = 0.01;R2 =
0.025}. In the figure, the solid line is input voltage, and the asterisks are the the
output voltage.
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this constraint was imposed so that the internal source VINT would remain effectively

constant throughout the measurement interval. The use of small automotive loads

such as head lamps and resistive heaters has ensured that this condition is met.

Fig. 19 shows the response immediately following the connection of a standard

halogen head lamp. Note that the bulb has an initial thermally-induced transient

that decays within one second. The long-tailed transient in the terminal voltage is

primarily caused by the battery’s own homogeneous response.

The estimation procedure from above section is applied to data sets such as the

one shown in Fig. 19. Fig. 20 presents typical results. Note the close fit between the

measured data and the model estimates. Table. 1 shows the values of parameters at

different voltage levels from a NAPA-brand lead-acid batteries.

Current
Sensor

Voltage
Sensor

LoadBattery
+

-

Fuse Relay
Solid-State

Voltage
Reference

Sensor
Temp

Computer+

-

Figure 17: Block diagram of the measurement system.
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Table 1: Various Parameter Values for a NAPA 12 Volt Lead-Acid Battery
VINT (V) R1(Ω) R2(Ω) C (F) R2C (Sec)

12.79 0.0147 0.0771 362.3 27.93
12.69 0.0150 0.0635 364.00 23.13
12.60 0.0151 0.0527 323.00 17.02
12.49 0.0171 0.0483 288.29 13.93
12.39 0.0201 0.0436 259.83 11.32
12.30 0.0250 0.0465 228.26 10.62

4.5 Summary

This estimation technique has demonstrated the effectiveness of the proposed non-

linear least square parameter extraction process. It exploits the structure in its resid-

ual. Starting with a small interval and continuing with bigger intervals, it makes sure

Figure 18: A picture of the experimental setup at the NC Laboratory for Energy
Efficient Systems at the UNC Charlotte.
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that it converges to the global minimum.
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Figure 19: Top trace: The measured terminal voltage following the connection of a
halogen head lamp. Bottom trace: The current drawn by the lamp. Initial transient
details are presented in the inset plots.
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Figure 20: Experimental results. Solid line: Measured terminal voltage. Asterisks:
Estimated terminal voltage.



CHAPTER 5: STATE ESTIMATION BY H∞ FILTER

Popular methods of state estimation are Kalman Filter, and Extended Kalman

Filter etc. However, the performance of these methods in estimating state variable

within given constraints of measurements and models for different problems are de-

bated. Depending upon the availability of accurate system model, and measurement

of discrete noise, the accuracy of predicting state variable may vary. In the presence

of non-linearity within the real-time system model and the non-linear characteristic

of states, such methods may have limited uses in certain applications. A few of these

limitations are briefly discussed below.

• Kalman Filter

1.) It estimates a state variable with known measurement and system noise.

2.) It requires a finite model exhibiting all dynamics of the system.

3.) It is not very efficient if the system characteristics are nonlinear.

4.) The finite model for a dynamic system like a battery is difficult to

obtain as explained in Chapter 3 and it is hard to quantize uncertainty and

non-linearity associated with the battery characteristics.

• Extended Kalman Filter

1.) It is a modified Kalman Filter method of the state estimation for a

nonlinear system.
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2.) During estimation process, the state variable is linearized.

3.) It may not be the optimal estimator without detailed model of a system.

Hence it may not estimate the open-circuit voltage of the battery in the diverse

applications.

Researchers have used Kalman filters to estimate parameters and open-circuit voltage

of a battery [60, 33, 61, 62, 63]. A detailed investigation can be found in Chapter

2. In a more generalized state-space models of [61, 64, 65], SOC is modeled as a

state variable which requires an initial value, and poses an issue especially when SOC

is not unity. This may limit the efficiency of this method as it poses a challenge to

initialize SOC value. Using equivalent circuit models of [33, 29], the method seems

to have reasonable predictions of SOC although it takes a long time to converge.

Similarly, electrochemical models comprising of various parameters are presented in

[66]. However, such method could be computationally expensive and difficult to keep

track of all the parameters. All these works have shown the limitations of using

Kalman filter for state estimation of a battery model.

Extending their work, the state estimation by H∞ filter method is presented for

state estimation for a dynamic system like battery in this chapter. The proposed

method is still a modified Kalman filter tool, but one which gives the robust estimation

of state variable when the non-linearity and noise in the system can not be quantized

definitely. Some of the features of this method are given below.

• Proposed H-infinity filter method

1.) It takes into account the unknown noise in the system and measurement
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process. The non-linearity associated with battery would be analogous to noise.

2.) It compensates for the uncertainty in model itself, which may be the

case for a dynamic system like a battery.

3.) It provides the optimal estimation of open-circuit voltage along with

the use of other parameters of the battery model. In other words, it gives the

settled value of open-circuit voltage by using the measured terminal voltage for

the improved estimation of SOC.

Using H∞ filter algorithm along with the estimated parameters as explained in Chap-

ter 4, the open-circuit voltage of battery model would be estimated. To do so, first

the background on H∞ filter is presented [38, 67].

5.1 Constrained Optimization

The background of constrained optimization is required to develop the H∞ filter

fully. How to use Lagrange multiplier to a problem of static variables, inequality

constraints and dynamic variables are shown in this section [38].

Suppose a discrete-time dynamic system given by

xk+1 = Fkxk + ωk(k = 0, · · · , N − 1) (47)

where xk is an n-dimensional state vector.

Let’s assume the objective is to minimize some scaler function J(x, ω) with respect

to x and ω where x is an n-dimensional vector and a dependant variable and ω is a

m-dimensional vector and the independent variable. Suppose the constraint vector

is given as f(x, ω) = 0 and is the same dimension of x. Then the problem can be
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defined as

min
x,ω

J(x, ω) such that f(x, ω) = 0. (48)

Assume the solution of the constrained minimum of J(x, ω) occurs at x = x∗ and

ω = ω∗. This is called the stationary point of J(x, ω). Let’s choose the values of x

and ω such that x is close to x∗ and ω is close to ω∗ when the condition still holds

true for f(x, ω) = 0. Expanding J(x, ω) and f(x, ω) in a Taylor series around x∗ and

ω∗ gives

J(x, ω) = J(x∗, ω∗) +
∂J

∂x
|x∗,ω∗ △ x+

∂J

∂ω
|x∗,ω∗ △ ω

f(x, ω) = f(x∗, ω∗) +
∂f

∂x
|x∗,ω∗ △ x+

∂f

∂ω
|x∗,ω∗ △ ω

(49)

where higher-order terms of the series have been neglected with the assumption

that x is close to x∗ and ω is close to ω∗,△ x = x − x∗ and △ ω = ω − ω∗. Then

Eq. 49 can be further simplified by Eq. 50 which is

△ J(x, ω) = J(x, ω)− J(x∗, ω∗)

=
∂J

∂x
|x∗,ω∗ △ x+

∂J

∂ω
|x∗,ω∗ △ ω

△ f(x, ω) = f(x, ω)− f(x∗, ω∗)

=
∂f

∂x
|x∗,ω∗ △ x+

∂f

∂ω
|x∗,ω∗ △ ω

(50)

Since the values of x and ω are close to x∗ and ω∗, it can be deduced that △

J(x, ω) = 0. This is because the partial derivatives on the right side of the △ J(x, ω)

are zero at the stationary point J(x, ω). Furthermore, △ f(x, ω) = 0 are at the

stationary point of J(x, ω) because f(x∗, ω∗) = 0 at the constrained stationary point

of J(x, ω) and x and ω are also chosen such that f(x, ω) = 0. Hence the Eq. 50 can
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be rewritten as

∂J

∂x
|x∗,ω∗ △ x+

∂J

∂ω
|x∗,ω∗ △ ω = 0,

∂f

∂x
|x∗,ω∗ △ x+

∂f

∂ω
|x∗,ω∗ △ ω = 0.

(51)

These equations are true for arbitrary x and ω that are close to x∗ and ω∗ and that

satisfy the constraint f(x, ω) = 0. Eq. 51 can be solved for △ x as

△ x = −(
∂f

∂x
|x∗,ω∗)−1 ∂f

∂ω
|x∗,ω∗ △ ω (52)

Substituting Eq. 52 into Eq. 51 gives

∂J

∂ω
|x∗,ω∗ − ∂J

∂x
|x∗,ω∗(

∂f

∂x
|x∗,ω∗)−1 ∂f

∂ω
|x∗,ω∗ = 0. (53)

Eq. 53, combined with the constraint f(x, ω) = 0, gives (m + n) equations that can

be solved for the vectors ω and x to find the constrained stationary point j(x, ω).

Now consider an augmented cost function

Ja = J + λTf (54)

where λ is an n-element unknown constant vector called a Lagrange multiplier. Note

that

∂Ja
∂x

=
∂J

∂x
+ λT

∂f

∂x
,

∂Ja
∂ω

=
∂J

∂ω
+ λT

∂f

∂ω
,

∂Ja
∂λ

= f.

(55)
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If all the three equations in Eq. 55 are set to zero, it results into

λT = −∂J
∂x

(
∂f

∂x
)−1,

∂J

∂ω
− ∂J

∂x
(
∂f

∂x
)−1 ∂f

∂ω
= 0,

f = 0.

(56)

The first part in Eq. 56 gives the value of the Lagrange multiplier, the second equa-

tion is identical to Eq. 53, and the third equation forces the constraint to be satisfied.

Hence the original constrained problem can be solved by creating an augmented cost

function ja, taking the partial derivatives with respect to x, ω and λ, setting them

equal to zero, and solving for x, ω and λ. The partial derivatives equations gives

(2n +m) equations to solve for the n-element vector x, the m-element vector ω and

the n-element vector λ. Although the dimension of the original problem is increased

by introducing a Lagrange multiplier, the constrained optimization problem is trans-

formed into an unconstrained optimization problem, which can simplify the problem

considerably.

5.2 Dynamic Constrained Optimization

Extending the Lagrange multiplier method of constrained optimization to the op-

timization of dynamic systems, suppose we want to minimize the scaler function

J = ψ(x0) +
N−1∑
k=0

Lk (57)

where ψ(x0) is a known function of x0 and Lk is a known function of xk and ωk. This

is a common example of kind of constrained optimization problem that arises in a

dynamic system. Now we can solve this problem by introducing a Lagrange multiplier
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λ, creating an augmented cost function Ja, and then setting the partial derivatives

of Ja with respect to xk, ωk and λ equal to zero. For the N constraints of Eq. 47, N

Lagrange multipliers λ1, · · · , λN have to be introduced. Hence the augmented cost

function can be written as

Ja = ψ(x0) +
N−1∑
k=0

[Lk + λTk+1(Fkxk + ωk − xk+1)] (58)

Eq. 58 can be further written as

Ja = ψ(x0) +
N−1∑
k=0

[Lk + λTk+1(Fkxk + ωk)]−
N−1∑
k=0

λTk+1xk+1

= ψ(x0) +
N−1∑
k=0

[Lk + λTk+1(Fkxk + ωk)]−
N−1∑
k=0

λTk xk + λT0 x0

(59)

where λ0 is an additional term in the Lagrange multiplier sequence. Now let’s

define the Hamiltonian Hk as

Hk = Lk + λTk+1(Fkxk + ωk) (60)

Substituting the definition of Hk in Eq. 59 gives

Ja = ψ(x0) +
N−1∑
k=0

Hk −
N∑
k=0

λTk xk + λT0 x0

= ψ(x0) +
N−1∑
k=0

Hk −
N−1∑
k=0

λTk xk(Fkxk − λTNxN + λT0 x0

= ψ(x0) +
N−1∑
k=0

(Hk − λTk xk)− λTNxN + λT0 x0.

(61)
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The conditions that are required for a constrained stationary point are

∂Ja
∂xk

= 0 (k = 0, · · · , N),

∂Ja
∂ωk

= 0 (k = 0, · · · , N − 1),

∂Ja
∂λk

= 0 (k = 0, · · · , N).

(62)

The Eq. 62 can also be written as

∂Ja
∂x0

= 0,

∂Ja
∂xN

= 0,

∂Ja
∂xk

= 0 (k = 0, · · · , N − 1),

∂Ja
∂ωk

= 0 (k = 0, · · · , N − 1),

∂Ja
∂λk

= 0 (k = 0, · · · , N).

(63)

The fifth condition in Eq. 63 ensures that the constraints xk+1 = Fkxk + ωk is

satisfied. Based on the expression for Ja in Eq. 61, the first four conditions in Eq. 63

can be written as

λT0 +
∂ψ(x0)

∂x0
= 0,

−λTN = 0,

λTk =
∂Hk

∂xk
(k = 1, · · · , N − 1),

∂Hk

∂ωk

= 0 (k = 1, · · · , N − 1).

(64)

The result in Eq. 64 gives the necessary conditions for a constrained stationary

point for the dynamic optimization problem of Eq. 47.
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5.3 H∞ Filter Estimation

Using the above described concepts of constrained and dynamic constrained opti-

mization will be used to derive H∞ filter estimation technique [38].

5.3.1 Definition

For the standard linear discrete-time system of Eq. 47, the H∞ filter objective is

to estimate a state variable zk such as

zk = Lkxk (65)

where Lk is a user-defined matrix of full rank. For other standard linear estimator

like Kalman filter, Lk = I would be the case, but it could be any linear combination

of the states. The cost function for the given problem is defined by

J1 =

∑N−1
k=0 ∥zk − ẑk∥2Sk

∥x0 − x̂0∥2P−1
0

+
∑N−1

k=0 (∥ωk∥2Q−1
k

+ ∥υk∥2R−1
k

)
(66)

in which the goal is to find an estimate ẑk that minimizes J1. The estimate of zk

is to be found from measurements up to and including time (N − 1) and x0 is the

initial state of the state variable. Moreover, P0, Qk, Rk and Sk in above equation are

symmetric positive definite matrices chosen for the problem at hand. For example,

if the objective is to estimate the third element of zk accurately, then the element

Sk(3, 3) should be chosen to be larger relative to the other elements of Sk. Similarly,

if the user knows a priori that the second element of ωk disturbance is small, then

Qk(2, 2) is chosen smaller in comparison of other elements of Qk.

Since the direct minimization of J1 is not tractable, it is obtained within user
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specified bound θ by satisfying the estimating strategy of Eq. 67 [38].

J1 <
1

θ
. (67)

Rearranging Eq. 67 results into

J1 =
−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[∥zk − ẑk∥2Sk
− 1

θ
(∥ωk∥2Q−1

k
+ ∥υk∥2R−1

k
)] < 1. (68)

The H∞ filter problem is given by

J∗ = min
x̂k

max
ωk,υk,x0

J. (69)

Since x0, ωk, υk completely determine the observation matrix yk, the υk in Eq. 69 can

be substituted by yk, which gives

J∗ = min
x̂k

max
ωk,yk,x0

J. (70)

Since yk = Hkxk + υk, it follows that

∥υk∥2R−1
k

= ∥yk −Hkxk∥2R−1
k
. (71)

Since zk = Lkxk and ẑk = Lkx̂k, we also have

∥zk − ẑk∥2Sk
= (zk − ẑk)

T (zk − ẑk),

= (xk − x̂k)
TLT

k SkLk(xk − x̂k),

= ∥xk − x̂k∥2S̄k

(72)
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where S̄k = LT
k SkLk. Substituting the values of Eq. 72, 71 in Eq. 68 yields

J1 =
−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[∥zk − ẑk∥2Sk
− 1

θ
(∥ωk∥2Q−1

k
+ ∥yk −Hkxk∥2R−1

k
)],

= ψ(x0) +
N−1∑
k=0

Lk

(73)

where ψ(x0) = and Lk represents the full equation. Then the H∞ filter solution for

the problem in Eq. 47 is given by finding a stationary point of J with respect to x0

and ωk and then finding a stationary point of J with respect to x̂k and yK .

5.3.2 Stationarity with Respect to x0 and ωk

To find the stationary point of J with respect to x̂k and yK of Eq. 73, let the

Hamiltonian for this problem is defined as

Hk = Lk +
2λTk+1

θ
(Fkxk + ωk) (74)

where
2λT

k+1

θ
is the time-varying Lagrange multiplier that must be computed for (k =

0, · · · , N − 1). Note that the Lagrange multiplier is multiplied by 2 here which does

not change the solution of the problem. It simply scales the Lagrange multiplier by a

constant to simplify the calculation. As derived in Eq. 64, the constrained stationary

point of J with respect to x̂k and yK is solved by

2λT0
θ

+
∂ψ(x0)

∂x0
= 0,

2λTN
θ

= 0,

∂Hk

∂ωk

= 0,

2λTk
θ

=
∂Hk

∂ωk

.

(75)
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From the first expression in Eq. 75, it follows

2λT0
θ

+
2

θ
P−1
0 (x0 − x̂0) = 0,

P0λ0 − x0 + x̂0 = 0,

x0 = x̂0 + P0λ0.

(76)

Similarly, from the first expression in Eq. 75, it follows

λN = 0. (77)

Similarly, from the first expression in Eq. 75, it follows

−2

θ
Q−1

k ωk +
2

θ
λk+1 = 0,

ωk = Qkλk+1

(78)

Substituting the expression of ωk in Eq. 47 gives

xk+1 = Fkxk +Qkλk+1. (79)

Similarly, from the first expression in Eq. 75, we get

2λk
θ

= 2S̄k(xk − x̂k) +
2

θ
HT

k R
−1
k (yk −Hkxk) +

2

θ
F T
k λk+1,

λk = F T
k λk+1 + θS̄k(xk − x̂k) +HT

k R
−1
k (yk −Hkxk).

(80)

From Eq. 76, we know that x0 = x̂0 + P0λ0, so we make the assumption that

xk = µk + Pkλk (81)
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for all k, where µk and Pk are some functions to be determined, with P0 given, and

the initial condition µ0 = x̂0. Substituting the value from Eq. 81 in Eq. 79 yields

µk+1 + Pk+1λk+1 = Fkµk + FkPkλk +Qkλk+1. (82)

Also substituting Eq. 81 in Eq. 80 gives

λk = F T
k λk+1 + θS̄k(µk + Pkλk − x̂k) +HT

k R
−1
k [yk −Hk(µk + Pkλk)]. (83)

Rearranging Eq. 83 gives

λk − θS̄kPkλk +HT
k R

−1
k HkPkλk = F T

k λk+1+

θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk).

(84)

Eq. 84 can be solved for λk as

λk = [I − θS̄kPk +HT
k R

−1
k HkPk]

−1 × [F T
k λk+1+

θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk)].

(85)

Substituting the expression of λk into Eq. 82 gives

µk+1 + Pk+1λk+1 = Fkµk + FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1×

[F T
k λk+1 + θS̄k(µk − x̂k) +HT

k R
−1
k (yk −Hkµk)] +Qkλk+1.

(86)

The Eq. 86 can be rearranged as

µk+1 − Fkµk − FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1×

[θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk)] = [−Pk+1 + FkPk

[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk]λk+1.

(87)
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Eq. 87 is satisfied if both sides are zero. Setting the left-side equal to zero gives

µk+1 = Fkµk + FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1×

[θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk)]

(88)

with the initial condition µ0 = x̂0. Similarly, setting the right hand side in Eq. 87

equal to zero gives

Pk+1 = FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk

= FkP̃kF
T
k +Qk

(89)

where P̃k is substituted as a new term in the above equation. That is,

P̃k = Pk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1,

= [P−1
k − θS̄kPk +HT

k R
−1
k Hk]

−1.

(90)

From Eq. 90, it is clear that if Pk, S̄k and Rk are symmetric, then P̃k will be symmetric.

We also notice from Eq. 89 that ifQkis symmetric, then Pk+1 will be symmetric. Hence

if P0, Rk, Qk and Sk are symmetric for all k, then P̃k and Pk will be symmetric for all

k. The values of x0 and ωk that provide a stationary point of J are summarized in
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Eq. 91.

x0 = x̂0 + P0λ0

ωk = Qkλk+1

λk = [I − θS̄kPk +HT
k R

−1
k HkPk]

−1 × [F T
k λk+1+

θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk)]

Pk+1 = FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk

µ0 = x̂0

µk+1 = Fkµk + FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1×

[θS̄k(µk − x̂k) +HT
k R

−1
k (yk −Hkµk)]

(91)

Eq. 91 provides the stationary point of J with respect to x0 and ωk.

5.3.3 Stationarity with Respect to x̂ and y

The next step is to find a stationary point with respect to xk and yk for the cost

function of Eq. 73 subject to the constraints of Eq. 47. From Eq. 81 and x0 = µ0, we

get

λk = P−1
k (xk − µ̂k),

λ0 = P−1
0 (x0 − x̂0).

(92)

Hence it gives us

∥λ0∥2P0
= λT0 P0λ0,

= (x0 − x̂0)
TP−T

0 P0P
−1
0 (x0 − x̂0),

= (x0 − x̂0)
TP−1

0 (x0 − x̂0).

(93)
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Therefore, Eq. 73 becomes

J =
−1

θ
∥λ0∥2P0

+
N−1∑
k=0

[∥xk − x̂k∥2S̄k
− 1

θ
(∥ωk∥2Q−1

k
+ ∥yk −Hkxk∥2R−1

k
)]. (94)

Substituting for xk from Eq. 81 becomes

J =
−1

θ
∥λ0∥2P0

+
N−1∑
k=0

[∥µk + Pkλk − x̂k∥2S̄k

−1

θ
(∥ωk∥2Q−1

k
+ ∥yk −Hk(µk + Pkλk)∥2R−1

k
)].

(95)

Considering the term ωT
kQ

−1
k ωk in Eq. 95 and substituting for ωk from Eq. 78 gives

ωT
kQ

−1
k ωk = λTk+1Q

T
kQ

−1
k Qkλk+1

= λTk+1Qkλk+1

(96)

where Qk is taken as symmetric matrix. Hence Eq. 95 can be written as

J =
−1

θ
∥λ0∥2P0

+
N−1∑
k=0

[∥µk + Pkλk − x̂k∥2S̄k

−1

θ
∥yk −Hk(µk + Pkλk)∥2R−1

k
)]− 1

θ

N−1∑
k=0

∥λk+1∥2Qk
.

(97)

Note that (
∑N

k=0λ
T
kPkλk−

∑N−1
k=0 λ

T
kPkλk) = 0 because λN = 0 from Eq. 77. Therefore,

the last term in the first summation is equal to zero and the two summations are equal

in Eq. 97. Hence Eq. 97 can be written as

0 = λT0 P0λ0 +
N∑
k=0

λTkPkλk −
N−1∑
k=0

λTkPkλk,

= λT0 P0λ0 +
N−1∑
k=0

λTk+1Pk+1λk+1 −
N−1∑
k=0

λTkPkλk,

−1

θ
∥λ0∥2P0

− −1

θ

N−1∑
k=0

(λTk+1Pk+1λk+1 − λTkPkλk).

(98)
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Subtracting the Eq. 98 from the cost function of Eq. 97 gives,

J =
N−1∑
k=0

[∥µk + Pkλk − x̂k∥2S̄k
− 1

θ
∥λk+1∥2Qk

−

1

θ

N−1∑
k=0

(λTk+1Pk+1λk+1 − λTkPkλk)−
1

θ
∥yk −Hk(µk + Pkλk)∥2R−1

k
)],

=
N−1∑
k=0

[(µk − x̂k)
T S̄k(µk − x̂k) + 2(µk − x̂k)

T S̄kPkλk + λTkPkS̄kPkλk+

1

θ
λTk+1(Pk+1 −Qk)λk+1 −

1

θ
λTkPkλk −

1

θ
(yk −Hkµk)

TR−1
k (yk −Hkµk)+

2

θ
(yk −Hkµk)

TR−1
k HkPkλk −

1

θ
λTkPkR

−1
k HkPkλk].

(99)

For the term λTk+1(Pk+1 −Qk)λk+1 in Eq. 99, substituting for Pk+1 from Eq. 89 gives

λTk+1(Pk+1 −Qk)λk+1 = λTk+1(Qk + FkP̃kF
T
k −Qk)λk+1,

= λTk+1FkP̃kF
T
k λk+1.

(100)

However, Eq. 82 gives

F T
k λk+1 = λk − θS̄k(µk + Pkλk − x̂k)−HT

k R
−1
k [yk −Hk(µk + Pkλk)]. (101)

Substituting the value of Eq. 101 in Eq. 100 yields

λTk+1(Pk+1 −Qk)λk+1 = {λk − θS̄k(µk + Pkλk − x̂k)−HT
k R

−1
k [yk −Hk(µk + Pkλk)]}T

P̃k{λk − θS̄k(µk + Pkλk − x̂k)−HT
k R

−1
k [yk −Hk(µk + Pkλk)]},

= {λTk (I − θPkS̄k + PkH
T
k R

−1
k Hk)− θ(µk − x̂k)

T S̄k−

(yk −Hkµk)
TR−1

k Hk}P̃k{λTk (I − θPkS̄k + PkH
T
k R

−1
k Hk)− θ(µk − x̂k)

T S̄k−

(yk −Hkµk)
TR−1

k Hk}T

(102)

Note from Eq. 90 that [(I−θPkS̄k+PkH
T
k R

−1
k Hk) = PkP̃k

−1
]. Substituting this value



71

in Eq. 102 gives

λTk+1(Pk+1 −Qk)λk+1 = {λTkPkP̃k
−1 − θ(µk − x̂k)

T S̄k − (yk −Hkµk)
TR−1

k Hk}

P̃k{λTkPkP̃k
−1 − θ(µk − x̂k)

T S̄k − (yk −Hkµk)
TR−1

k Hk}T

= λTkPkP̃k
−1
Pkλk − θ(µk − x̂k)

T S̄kPkλk − (yk −Hkµk)
TR−1

k HkPkλk−

θλkPkS̄k(µk − x̂k) + θ2(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k)+

θ(yk −Hkµk)
TR−1

k HkP̃kS̄k(µk − x̂k)− λTkPkH
T
k R

−1
k (yk −Hkµk)+

θ(µk − x̂k)
T S̄kP̃kH

T
k R

−1
k (yk −Hkµk)+

(yk −Hkµk)
TR−1

k HkP̃kH
T
k R

−1
k (yk −Hkµk).

(103)

Since the expression in Eq. 103 is a scalar, it can also be written as

λTk+1(Pk+1 −Qk)λk+1 = λTkPkP̃k
−1
Pkλk − 2θ(µk − x̂k)

T S̄kPkλk−

2(yk −Hkµk)
TR−1

k HkPkλk + θ2(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k)+

2θ(µk − x̂k)
T S̄kP̃kH

T
k R

−1
k (yk −Hkµk)+

(yk −Hkµk)
TR−1

k HkP̃kH
T
k R

−1
k (yk −Hkµk).

(104)

Note that Eq. 90 also gives

P̃k
−1

= [I − θS̄kPk +HT
k R

−1
k HkPk]P

−1
k

= P−1
k [P−1

k − θS̄k +HT
k R

−1
k Hk]P

−1
k

= P−1
k [I − PkθS̄k + PkH

T
k R

−1
k Hk].

(105)

Hence we get the expression

λTkPkP̃k
−1
Pkλk = λTk [I − θPkS̄k + PkH

T
k R

−1
k Hk]Pkλk,

= λTkPkλk − θλTkPkS̄kPkλk + λTkPkH
T
k R

−1
k HkPkλk.

(106)
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Substituting the value of Eq. 106 in Eq. 104 gives

λTk+1(Pk+1 −Qk)λk+1 = λTkPkλk − θλTkPkS̄kPkλk + λTkPkH
T
k R

−1
k HkPkλk−

2θ(µk − x̂k)
T S̄kPkλk − 2(yk −Hkµk)

TR−1
k HkPkλk+

θ2(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k) + 2θ(µk − x̂k)

T S̄kP̃kH
T
k R

−1
k (yk −Hkµk)+

(yk −Hkµk)
TR−1

k HkP̃kH
T
k R

−1
k (yk −Hkµk).

(107)

Substituting the value of λTk+1(Pk+1 − Qk)λk+1 from Eq. 107 in Eq. 99 gives the

augmented cost function

J =
N−1∑
k=0

[(µk − x̂k)
T S̄k(µk − x̂k)−

1

θ
(yk −Hkµk)

TR−1
k (yk −Hkµk)+

θ(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k) + 2(µk − x̂k)

T S̄kP̃kH
T
k R

−1
k (yk −Hkµk)+

1

θ
(yk −Hkµk)

TR−1
k HkP̃kH

T
k R

−1
k (yk −Hkµk)],

=
N−1∑
k=0

[(µk − x̂k)
T (S̄k + θS̄kP̃kS̄k)(µk − x̂k)+

2(µk − x̂k)
T S̄kP̃kH

T
k R

−1
k (yk −Hkµk)+

1

θ
(yk −Hkµk)

T (R−1
k HkP̃kH

T
k R

−1
k −R−1

k )(yk −Hkµk)].

(108)

To find the stationary point of J with respect to x̂k and yk, we take the partial

derivative of the expression in Eq. 108 and equate it to 0, which gives

∂J

∂x̂k
= 2(S̄k + θS̄kP̃kS̄k)(x̂k − µk) + 2S̄kP̃kH

T
k R

−1
k (Hkµk − yk) = 0,

∂J

∂yk
=

2

θ
(R−1

k HkP̃kH
T
k R

−1
k −R−1

k )(yk −Hkµk) + 2R−1
k HkP̃kS̄k(µk − x̂k) = 0.

(109)

The equations in Eq. 109 are satisfied for the values of x̂k and yk as

x̂k = µk,

yk = Hkµk.

(110)
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The values of x̂k and yk in Eq. 110 are the solutions for the cost function of Eq. 73.

To find out whether these values constitute a local minima or maxima, the second

derivative of J with respect to x̂k is computed as

∂2J

∂x̂2k
= 2(S̄k + θS̄kP̃kS̄k) (111)

which gives a minima if (S̄k + θS̄kP̃kS̄k) is positive definite. Note also from the

definition of P̃k in Eq. 90, the condition required for x̂k to minimize the cost function

J is that (P−1
k − θS̄k +HT

k R
−1
k Hk)

−1 is always positive definite. Similarly, we would

like the value of yk to provide the maximizing value of J . The second derivative of J

with respect to yk is computed as

∂2J

∂y2k
=

2

θ
(R−1

k HkP̃kH
T
k R

−1
k −R−1

k ),

=
2

θ
R−1

k (HkP̃kH
T
k −Rk)R

−1
k

(112)

which requires RK to be positive definite to make the function J negative definite

and that would be maximizing value of J with respect to yk.

5.4 Battery Open-Circuit Voltage Estimation by H∞ Filter

State estimation of open-circuit voltage VINT is still an open question although it

has been explored much in past. Most of the used methods are the popular state

estimation tools such as Kalman Filter, and Extended Kalman Filter. However, the

performances in predicting the subsequent SOC has not been satisfactory [60, 33, 61].

Because of the inherent non-linearity within the battery model and the hysteresis-

like characteristic of open-circuit voltage, many methods have limited performances.

Considering these limitations, H∞ filter method is introduced here which is still a
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modified Kalman filter tool, but is robust in estimating a state variable when the

non-linearity of a system is unpredictable and the measurement noise is difficult to

quantify. Although modeling of battery kinetics has been done in details [68] and

Fig. 4 is the most commonly used model, it may not necessarily represent all the

changes that may happen inside the battery. In fact, how the battery dynamics

change with respect to temperature, usage, and other state-based factors is a subject

to debate. However, the use of Kalman filter is robust only when the system has

accurate models [38]. For example, the Kalman filter estimates the state of a linear

dynamic system defined by the equations

xk+1 = Fkxk + ωk

yk = Hkx+ υk

(113)

where ωk and υk are stochastic processes with covariance Qk and Rk respectively.

Then the Kalman filter equations are given by Eq. 114 [38].

x̂−k+1 = Fkx̂
−
k + FkKk(yk −Hkx̂

−
k )

Kk = P−
k (I +HT

k R
−1
k HkP

−
k )−1HT

k R
−1
k

P−
k+1 = FkP

−
k (I +HT

k R
−1
k HkP

−
k )−1F T

k +Qk

(114)

The Kalman filter works well, but only under certain conditions.

• The mean and correlation of the noises {ωk} and {υk} need to be known at each

time step.

• The covariances Qk and Rk of the noise processes are determined at each time

step. The Kalman filter uses Qk and Rk as design parameters.
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• It is an estimator which yields the smallest possible standard deviation of the

residual error. In other words, the Kalman filter is the minimum variance esti-

mator if the noise is Gaussian, and it is the linear minimum variance estimator

if the noise is not Gaussian. If it is required to minimize a cost function such

as the worst-case estimation error, it may not be able to estimate the states

optimally.

• The system model matrices Fk and Hk have to finite for all cases.

If the above assumptions about the Kalman filter do not hold true, it may not estimate

state variable optimally. Even with the use of Extended Kalman filter (EFK), the s-

tate variable is approximated and linearized which compromises the performance [64].

For the problem of estimating the open-circuit voltage of battery, the non-linearity

associated with it can be hard to measure. In such scenario, a new filter called H∞

filter or minimax filter may be an attractive option as it enjoys the following advan-

tages [38, 67].

• It does not require the covariances Qk and Rk of the noise processes at each

time step.

• It compensates for the uncertainty in the model itself, which may be the case

for the battery model.

• It is an estimator which minimizes a cost function in a worst-case estimation

error, and hence may provide the optimal estimation.
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5.4.1 Review of H∞ Filter

The detailed description has been provided early in this chapter. For the standard

linear discrete-time system of Eq. 113, the H∞ filter objective is to estimate a state

variable zk such as

zk = Lkxk (115)

where Lk is a user-defined matrix. The cost function to be optimized is given by

Eq. 116

J1 =

∑N−1
k=0 ∥zk − ẑk∥2Sk

∥x0 − x̂0∥2P−1
0

+
∑N−1

k=0 (∥ωk∥2Q−1
k

+ ∥υk∥2R−1
k

)
(116)

in which the goal is to find an estimate ẑk that minimizes J1. The estimate of zk is

to be found from measurements up to and including time (N −1) and x0 is the initial

state of the state variable. Moreover, P0, Qk, Rk and Sk in Eq. 116 are symmetric

positive definite matrices chosen for the problem at hand.

Since the direct minimization of J1 is not tractable, it is obtained within user

specified bound θ by satisfying the estimating strategy of Eq. 118 [38].

S̄k = LT
k SkLk

Kk = Pk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1HT
k R

−1
k

x̂k+1 = Fkx̂
−
k + FkKk(yk −Hkx̂

−
k ) (117)

Pk+1 = FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk
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At each step of estimation, the condition of Eq. 118 must hold true.

P−1
k − θS̄k +HT

k R
−1
k Hk > 0 (118)

5.4.2 Formation of State Equations

The model for the battery circuit shown in Fig. 21 consists of the state equation

R2

vC

+
− VINT

C
R1

vB

+

-

+ -

iB

Figure 21: The simplified series-capacitor model of a battery.

dvC
dt

=
iB
C

− vC
R2C

(119)

and the output equation

vB = VINT − iBR1 − vC . (120)

For simplicity, the model is reformulated in terms of a vector of composite parameters,

i.e.

dvC
dt

= µ1iB − µ2vC (121)
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and

vB = VINT − µ3iB − vC , (122)

where µ1 = 1/C, µ2 = 1/(R2C), and µ3 = R1.

Let the state variables be defined as x1 = vC and x2 = VINT , and the observable

output variable y represents vB. Then from the above equations, it follows that

dx1
dt

= µ1iB − µ2x1,

dx2
dt

= 0,

y = −x1 + x2 − iBµ3

(123)

where the assumption is that the state variable x2 = VINT does not change with

respect to time t during the short test interval.

Eq. 123 can also be represented in matrix form asdx1

dt

dx2

dt

 =

−µ2 0

0 0


x1
x2

+

µ1

0

 iB,

y =

[
−1 1

]x1
x2

+

[
−µ3

]
iB.

(124)

Substituting the terms as F =

−µ2 0

0 0

, B =

µ1

0

, H =

[
−1 1

]
and D =

[
−µ3

]
in Eq. 124 gives the continuous state equation of the form

ẋ = F x+B iB

y = H x+D iB.

(125)
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Applying the results from Appendix A, the continuous-time equations of Eq. 125 are

converted to its equivalent discrete-time as ,

Fk = eFT

= I + FkT +
Fk

2T 2

2
+ · · ·

=

1 0

0 1

+

−µ2T 0

0 0



=

1− µ2T 0

0 1



(126)

where higher order terms of the exponential series are neglected and

Bk =

∫ T

0

eFsdsB

=

∫ T

0

1− µ2s 0

0 1


µ1

0

 ds

=

∫ T

0

µ1 − µ1µ2s

0

 ds

=

µ1T − µ1µ2T 2

2

0



(127)

and Hk = H, Dk = D. Hence the discrete-time state equations for the battery

model have the final form of

xk+1 = Fk xk +Bk iB + ωk

yk = Hk x+Dk iB + υk

(128)

where {ωk} and {υk} are stochastic noise added to the system. These noise represents
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the uncertainty associated with the parameters and open-circuit voltage of the battery

and may account for varying characteristics due to temperature, discharge/charge

rates, waiting periods, aging, and other structural and environmental based factors.

5.4.3 System Observability

For the battery state equation of Eq. 128, the observability matrix is

W0 =

 Hk

HkFk



=

 −1 1

−1 + µ2T 1


(129)

Since the matrix of Eq. 129 has full rank for nonzero unique values of µ2, the system

model is observable.

5.4.4 State Estimation

Using H∞ filter described above for the state equations of Eq. 128, the estimation

proceeds as follows.

S̄k = LT
k SkLk

Kk = Pk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1HT
k R

−1
k

x̂k+1 = Fkx̂k +BkiB,k + FkKk(yk −Hkx̂k −DkiB,k) (130)

Pk+1 = FkPk[I − θS̄kPk +HT
k R

−1
k HkPk]

−1F T
k +Qk

where Fk =

1− µ2T 0

0 1

, Bk =

µ1T − µ1µ2T 2

2

0

, Hk =

[
−1 1

]
and Dk =
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−µ3

]
. At each step, the condition of Eq. 131 is made sure to hold true.

P−1
k − θS̄k +HT

k R
−1
k Hk > 0 (131)

5.5 Simulation Result

A test data at VINT = 4 Volt, µ = {0.0005; 0.1; 0.020} and a load current of iB = 0.2

A is generated in which a test is initiated 30 seconds after the discharge has started

and is shown in Fig. 22. Note that the open-circuit voltage has gone through change

in its dynamics because of the load discharge. In absence of any external noise, the

correct open-circuit voltage would still be 4V as no noise has been added to the data.

However, the voltage level at which the test is triggered is different from the correct

open-circuit voltage. The H∞ filter task is to estimate the correct open-circuit voltage

which could subsequently form the basis for correct SOC estimation.

From the test data of Fig. 22, the voltage and current data are extracted for H∞

algorithm and is shown in Fig. 23 Using the H∞ filter algorithm of Eq. 131, VINT is

correctly estimated to be 4.0V. The convergence of H∞ filter is shown in Fig. 24.

5.6 Sample Result

Fig. 25 shows a discharge curve from lithium-ion battery during which a test has

been completed. Note that the test is started while the battery is under a stead-state

condition and it triggers a change in voltage and current.

First, the nonlinear parameter estimation procedure of chapter IV is applied on the

extracted test data of Fig. 26 and the estimation yields the set of parameter values as

µ̂ = {0.0017; 0.1227; 0.0273}. Fig. 27 shows the nonlinear fit of the voltage data. Note
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the close fit between the measured data and the model estimates. For open-circuit

voltage estimation by H∞ filter, the current and voltage data is separated as shown

in Fig. 28.

The H∞ filter estimation of Eq. 131, VINT is found out to be 3.422 V whereas the

measured open-circuit voltage is 3.4211 V, which yield the error of 0.01 %. Such a

low error can be considered within excellent bound for such a non-linear problem.

The convergence of H∞ filter is shown in Fig. 29.
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Figure 22: The generated test data for simulation in which a test is initiated 30
seconds after the discharge has begun. A parameter set of µ = {0.0005; 0.1; 0.020} is
used in this test discharge. Top trace: The simulated current data. Bottom trace: The
resulting voltage data for the simulated current data for the chosen set of parameters.
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5.7 Summary

This chapter presents an effective means to estimate the state variable by H∞ filter

especially when there is uncertainty in system model and noise in the measurement

process. This method is especially suitable for the estimation of open-circuit voltage

VINT of the battery, which is inaccessible for direct measurement and varies with re-

spect to several factors. The method is supported by simulation and the experimental

results.
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Figure 23: The test data extracted for the H∞ filter algorithm from Fig. 23. Upper
trace: Total current drawn from the battery during the test. Bottom trace: The
change in voltage triggered by the test.
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Figure 24: The H∞ filter convergence for simulated voltage data.
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Figure 25: Top trace: The measured terminal voltage during a discharge from a 3.6
Volt nominal, 18650-type lithium-ion battery. Note the test starts at a chosen instant
during the discharge. Bottom trace: The current drawn from the battery.



86

0 50 100 150
3.395

3.4

3.405

3.41

3.415

Time, Sec

V
ol

ta
ge

, V

0 50 100 150
0

0.05

0.1

0.15

0.2

Time, Sec

C
ur

re
nt

, A

Figure 26: Top trace: The extracted voltage data for estimation. Bottom trace: The
extracted current data.
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Figure 27: Nonlinear estimation result. Note the close fit between the measured data
and the model estimate.
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Figure 28: Top trace: The extracted voltage data for estimation. Bottom trace: The
extracted total current data.
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Figure 29: H-infinity convergence of the experimental data.



CHAPTER 6: EXPERIMENTAL RESULTS

This chapter presents the experimental setup, measurement, and tabulations of

results. It combines together the nonlinear least square estimation methodology of

Chapter IV and the H∞ filter of the state estimation methodology of Chapter V to

form a streamlined test procedure for the SOC and SOH analysis of a battery. It also

presents validation tests to support the proposed methodology and results.

6.1 Test Procedure

The general procedure to conduct a test is shown in Fig. 30.

Turn on the
small signal

test

Measure the
current 

& voltage

Do impedance
parameter
estimation

Estimate the
open-circuit

voltage

SOH SOC

Figure 30: The combined procedural steps to estimate impedance parameters and
open-circuit voltage forming the basis for SOC and SOH analysis.

As the figure shows, a small test signal is sent to a battery load, which would

trigger transient dynamics inside the battery. The resulting voltage and current

are measured. First, impedance parameter estimation is performed to find out the

parameters of the battery model. Second, the open-circuit voltage is estimated with

the use of impedance parameters and test data. The combination of parameters and
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open-circuit voltage forms the basis for SOC and SOH analysis.

6.2 Experimental Results

The estimation routine has been validated using the experimental setup shown in

Fig. 31. The battery used is 18650-type lithium-ion cell, and loads are connected to

it using a solid-state relay. Both the terminal voltage and current are sensed using

Hall-effect transducers produced by LEM, and the ambient temperature is measured

using an LM35 temperature sensor. To resolve small changes in the terminal voltage,

a differential amplifier removes the offset and amplifies the difference. All of the

data streams are sampled at 100Hz using a PCI-1710 data-acquisition card. For

consistency, all tests are performed at approximately 24◦C.

Current
Sensor

Voltage
Sensor

LoadBattery
+

-

Fuse

Voltage
Reference

Sensor
Temp

Computer+

-

Solid-State Solid-State

Signal
Test

Relay Relay

Figure 31: Block diagram of the measurement system.

Several different loads have been used to excite the test battery. Each was selected
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so that it provides what is effectively a “small-signal” excitation. Recall that this

constraint was imposed so that the internal source VINT would remain effectively

constant throughout the measurement interval. The use of small loads such as power

resistors are used for the experiments.

Fig. 32 shows a discharge curve during which a test has been completed. Note that

the test is started while the battery is under a stead-state condition and it triggers a

change in voltage and current.
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Figure 32: Top trace: The measured terminal voltage during a discharge from a
18650-type lithium-ion battery. Note the test starts at a chosen moment during the
discharge. Bottom trace: The current drawn from the battery.

Once the data of Fig. 32 is recorded, the required voltage and current data for the

estimation of parameters are extracted as shown in Fig. 33.

The estimation procedure from chapter IV is applied to data sets such as the one
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shown in Fig. 33. Fig. 34 presents typical results. Note the close fit between the

measured data and the model estimates.

After parameters are estimated through the non-linear least square estimation, the

obtained parameters, voltage and current data are sent to H∞ filter module for the

estimation of open-circuit voltage V̂INT .

Experiments and estimations have been performed at various SOC levels, and the

results have been compared to expectations. Parameters have been correlated with
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Figure 33: Top trace: The extracted voltage data for estimation. Bottom trace: The
extracted current data for estimation.
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SOC using a two-step process. First, an initial experiment is performed in which SOC

is related to open-circuit voltage. The 3.6 V nominal LG brand lithium-ion battery is

discharge at a rate of C
55

so that the open-circuit voltage does not show any memory

effect. The open-circuit voltage generated at such a slow discharge should correlate

with SOC directly. Fig. 35 shows a full discharge of a freshly charged battery until the

voltage is cut-off at 3 V. Fig. 36 shows the estimated open-circuit voltage VINT versus

SOC. The results match closely to published expectations for 18650 cells [69], with an

approximately linear relationship over most of the useable range of the cell [70, 33, 69].

In subsequent tests, the parameter values were obtained and the open-circuit volt-

age was estimated to determine the corresponding state-of-charge. Table 2 summa-
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Figure 34: Experimental results. Solid line: Measured terminal voltage. Asterisks:
Estimated terminal voltage.
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Figure 35: The full discharge of a freshly charged 3.6 V nominal LG lithium-ion
battery at C

55
rate. The open-circuit voltage relates directly with the SOC, and it has

almost negligible memory effect at such a low discharge rate.
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Figure 36: The relationship between SOC and the open-circuit voltage. Note that
the open-circuit voltage is equivalent to the internal source VINT .
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rizes the results of several different tests. vB(0) in Table 2 is the starting steady-state

voltage under battery load when the test is initiated. Note the clear relationships

between SOC and the parameters. In addition, one should be aware that each test

was performed following a pre-determined waiting period at a fixed temperature.

Table 2: Test Results Showing Estimates of Parameters and SOCs

Test No. vB(0) (V) R̂1(Ω) R̂1 + R̂2(Ω) R̂2C (Sec) V̂INT (V) ŜOC (%)

Test I 3.5947 0.0189 0.0249 12.71 3.600 40
Test II 3.5436 0.0215 0.0287 10.96 3.5498 24.5
Test III 3.4801 0.0221 0.0316 9.52 3.4879 17
Test IV 3.4101 0.0273 0.0409 8.15 3.4207 10
Test V 3.1948 0.0433 0.0868 5.78 3.3146 2.75

Particular emphasis has been given to the relationships between SOC and the re-

sistance R1 and the time constant R2C. Fig. 37, for instance, shows that R1 increases

as SOC decreases. This result is consistent other published findings [9, 21]. Fig. 38

shows the relationship between SOC and the time constant R2C. Note that this result

is also consistent with the literature [9, 19].

6.3 Validation Tests

Tests are performed to check the effectiveness of the proposed methodology in

dynamic operations of battery. The impedance parameter estimation would form the

basis for SOH analysis whereas the estimation of open-circuit voltage would form the

basis for SOC estimation. Comparing the results obtained from this methodology

with known value of SOC, the effectiveness of the proposed methodology is found.
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6.3.1 Continuous On-Off Discharge Operations

First, validation of the proposed methodology is done for applications in which the

battery goes in continuous on-off conditions. During a discharge, a test is performed

and immediately the battery is turned off so that it settles to its correct open-circuit

voltage. For the battery to settle down to its correct value, sufficient rest-time is

given. It is helpful to know the correct value of open-circuit voltage so that it can be

compared with the estimated open-circuit voltage by the proposed methodology.

Fig. 39 shows one of such experiments in which several tests are performed at

increasing time during on-off operations. The instants that the tests are performed

are marked, and it also allows the open-circuit voltage to settle to its correct values by

resting it for sufficiently long time. For the tests of Fig. 39, the current drawn from the

battery is shown in Fig. 40. Note the steady-state current during discharge, a step-

5 10 15 20 25 30 35 40

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

SOC, %

R
1, Ω

Figure 37: The relationship between R1 and SOC.
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like test signal during the test period, and zero current during off periods. By using

the proposed methodology, the open-circuit voltages for different tests are estimated

and shown in Table 3. Note the small errors in estimating the open-circuit voltage

which should be within the allowed tolerance for most of the battery applications.

Table 3: Validation Tests during Continuous On-Off Operations

Test No. (vB(0)) V̂INT Vsettled (%) Error SOC

Test I 4.1102 V 4.1457 V 4.1538 V 0.19 % 97.5 %
Test II 4.0682 V 4.1026 V 4.1123 V 0.23 % 95 %
Test III 4.0171 V 4.0727 V 4.0641 V 0.21 % 93 %
Test IV 3.9645 V 4.056 V 4.0612 V 0.13 % 91 %
Test V 3.9092 V 3.9562 V 3.9663 V 0.25 % 83 %
Test VI 3.8603 V 3.9250 V 3.9189 V 0.15 % 80.5 %
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Figure 39: Various tests performed during on-off operations from a battery. The inset
shows the starting, ending and settling value of the battery voltage.

6.3.2 UDDS Cycle Test

Second, how effectively the proposed methodology would be able to estimate SOC

in a dynamic operation such as during urban dynamometer driving schedule (UDDS)

cycle is studied. One cycle of UDDS is taken as the sample driving speed from sup-

posedly an electric vehicle for urban driving conditions [71]. Performing simulation

on an electric vehicle model presented in [72], the simulated power drawn by the

battery pack is shown in Fig. 41.

Approximating the continuous change in the current profile from the Fig. 41 and

neglecting the negative current, an equivalent dynamic current profile is generated
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Figure 40: The current discharge profiles for the validation tests in Fig. 39.

as shown in Fig. 42. The profile is an approximation of the current discharge that

may occur during UDDS cycle, and is not the exact result from a live test. Using the

sample current profile from the Fig. 42, a discharged is performed from a nominal

3.6 V Li-ion cell during which several tests are performed as shown in Fig. 43. After

extracting voltage and current data for each test, a nonlinear least square estimation

is performed to extract the parameters and subsequently open-circuit voltages are

estimated. The results are shown in Table 4 in which the estimated voltage and SOC

is compared with the calculated SOC and its corresponding open-circuit voltage by

the current integration method. The close matches in the open-circuit voltages show

the effectiveness of the proposed methodology.
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Figure 41: The speed vs. power profile for UDDS cycle. Top trace: The speed from a
UDDS cycle driving. Bottom trace: The simulated power drawn from a battery pack
for an electric vehicle model.

Table 4: Validation Tests for the Simulated Current Profile for a UDDS Cycle

Test No. vB(0) V̂INT
ˆSOC SOCCalculated Error

Test I 4.0101 V 4.0147 V 87.8 % 88.19 % 0.34 %
Test II 4.0091 V 4.0131 V 87.7 % 88.06 % 0.41 %
Test III 4.0078 V 4.0101 V 87.5 % 87.96 % 0.52 %
Test IV 4.0000 V 4.0061 V 87.2 % 87.6 % 0.46 %
Test V 3.9992 V 4.0042 V 87.0 % 87.46 % 0.45 %

6.3.3 Analysis of SOC Estimation Based on Temperature

Experiments are performed upon the same lithium-ion battery at two different tem-

peratures of 22◦C and 40◦C to observe the effectiveness of the proposed methodology
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Figure 42: The simulated dynamic current profile per cell for the UDDS drive cycle.

for the estimation of SOC. Table 5 and Table 6 present the results of several tests

taken at 22◦C and 40◦C respectively. The temperature for the tests in Table 6 are

kept constant by the use of a temperature control chamber. Note the small percent-

age error in the SOC estimation at the largely different temperatures, showing the

effectiveness of the proposed methodology at varying temperatures. The correlation

measures between the SOC and the open-circuit voltage are used from the table in

Appendix C. However, note the difference between the parameter values for almost

same SOC level at the two different temperatures. The information can be further

exploited for the SOH analysis.

It is a known fact that the impedance parameters and open-circuit voltage of a

battery is highly susceptible to external factors such as temperature, discharge rate,
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Figure 43: Discharge curve for the simulated current profile for UDDS drive cycle.
Several tests are performed. The proposed methodology is used to estimate the open-
circuit voltage of the battery. Top trace: The voltage drawn from the battery. Bottom
trace: The corresponding current profile from the cell.

aging, and other environmental and structure-based factors. Hence the values of

parameters at two different temperatures may be different, and that might give the

basis for SOH analysis. In order to study this point, estimations are performed at two

different temperatures and the difference in the values of the parameters are studied.

The tests are taken one after another immediately so that the SOC level of the battery
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Table 5: Experimental Results at 22◦C Temperature

Test No. vB(0) V̂INT
ˆSOC VINT,Calculated (%) Error

Test I 4.0503 V 4.1833 V 99.50 % 4.1675 V 0.38 %
Test II 3.8845 V 4.0340 V 89.50 % 3.9995 V 0.86 %
Test III 3.7348 V 3.8863 V 77.50 % 3.8515 V 0.90 %
Test IV 3.6234 V 3.7687 V 65.50 % 3.7355 V 0.90 %
Test V 3.5308 V 3.6557 V 53.50 % 3.6335 V 0.61 %
Test VI 3.3194 V 3.444 V 12.75 % 3.4384 V 0.16 %
Test VII 2.9386 V 3.245 V 1.75 % 3.279 V 1.03 %

Table 6: Experimental Results at 40◦C Temperature

Test No. vB(0) V̂INT
ˆSOC VINT,Calculated (%) Error

Test I 4.0170 V 4.212 V 100 % 4.179 V 0.79 %
Test II 3.8435 V 4.0455 V 94.50 % 4.0085 V 0.92 %
Test III 3.7211 V 3.9238 V 84.50 % 3.8835 V 1.13 %
Test IV 3.6191 V 3.8244 V 74.50 % 3.7881 V 0.95 %
Test V 3.5281 V 3.7298 V 63.50 % 3.6969 V 0.89 %
Test VI 3.4405 V 3.6034 V 46.50 % 3.5948 V 0.24 %
Test VII 3.2407 V 3.3963 V 9.50 % 3.3913 V 0.15 %

does not change. A test is performed at 24◦C room temperature, and immediately

after the first test, a second test is performed inside a controlled temperature chamber

of 40◦C. The results obtained are shown in Table 7. Note the difference in almost all

the parameters value despite the same SOC level.

Table 7: Parameters Values for Tests at 24◦C and 40◦C at a Constant SOC
Parameters At 24◦C At 40◦C

R̂1 0.0725 Ω 0.0780 Ω

R̂2 0.8937 Ω 0.5145 Ω

R̂2C 110.36 Sec 107.64 Sec

V̂INT 4.0791 V 4.0124 V

6.4 Summary

This chapter has summarized the results of parameter extractions and the state es-

timation of open-circuit voltage of a battery. In this methodology, a non-intrusive test
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signal is superimposed on the battery load which triggers transient dynamics inside

the battery. The resulting terminal voltage and current are measured and the estima-

tion is done in two parts. First, a non-linear least-squares routine is used to estimate

the lumped electrical parameters of the battery model. Second, a H∞ filter is used to

estimate the open-circuit voltage as a dynamic state variable which compensates for

its non-linear nature and the uncertainty in the battery model. Experimental results

obtained at consistent temperatures demonstrate that the open-circuit voltage and

parameter values together can combine to provide state-of-charge and state-of-health

measurements.



CHAPTER 7: CONCLUSIONS

Unique challenges of a battery monitoring method are to estimate SOC and SOH

accurately in dynamic operating conditions. Such conditions may be cases like the

battery is charged, is discharged, has varying charge/discharge rates, is turned-off

and turned-on immediately etc. Moreover, characteristics of a battery depend upon

temperature, aging, gassing, electrode structures etc. Any monitoring method is still

required to provide SOC and SOH despite the battery conditions. Such requirement

is a challenge for any methodology unless it is made bulky and computationally

expensive. For estimation of SOC and SOH, a thorough analysis of battery kinetics

in different operating conditions posits the following key points:

• Open-circuit voltage of a battery is directly proportional to SOC. Any monitor-

ing method has to estimate it dynamically and then the value of SOC can be

regressed with available data based on temperature, aging, and charge/discharge

conditions. The open-circuit voltage VINT is a dynamic state variable, and es-

timating it adaptively should be a key target for an effective assessment.

• A robust method to estimate parameters of a battery model can establish a basis

for SOH quantitative analysis. Any such method should use easily available data

such as voltage and current from a simple load and converges parameters to the

global minimum. Comparing parameters from one good cell to those of bad
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ones and similarly based on other factors, SOH analysis can be done.

This thesis accomplish the above objectives by presenting an integrated methodology

combining a simplified battery model, a transient-based parameter extraction pro-

cess and adaptive estimation of open-circuit voltage dynamically. The methodology

presented in this thesis is done on both lead-acid and lithium-ion battery chemistries

with simple battery loads like automobile head lamp, and heater.

7.1 Conclusions

The thesis accomplishes the following key tasks.

• A detailed investigation into chemical kinetics of a battery and its equivalent

electrical models is done [68]. The objective of an equivalent lumped circuit

is to model the electrochemical behavior of a battery in such a way that it-

s qualitative analysis can be done easily. However, it is difficult to represent

entire dynamics exhibited by battery by equivalent electric circuits because of

its complex, nonlinear, non-stationary, time-variant and temperature dependent

behavior. By approximating most of the dynamics especially in the range of fre-

quency interests, a simplified battery model is presented. The trade-off involved

in presenting such a model is among battery discharge/charge characteristics,

its transient and steady-state behavior, and an electrical circuit with fewer re-

sistors and capacitors so that it is easy to understand the battery behavior with

minimal components. The model is supported by the conventional method of

electrochemical impedance spectroscopy.

• A transient based approach to estimation of parameters of equivalent electrical
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circuit of a battery model is presented [68, 73]. The method exploits the fact

that the battery shows transient dynamics when a load is turned on. This infor-

mation in the form of voltage and current data is used to estimate parameters of

a lumped equivalent electrical model. A non-linear estimation algorithm in the

form of Gauss-Newton method with linearization approach is used in this thesis

[59]. The method makes sure that the non-linear estimation does not fall into

local minima which is an issue with such method. By simulating the residual

error by a Taylor-series expansion, the method takes advantage of the fact that

the parameters of a non-linear problem are mostly embedded into low order

coefficients and hence can be linearized for a small interval. Such arrangement

makes sure the optimization achieves the global minimum and runs it repeat-

edly for entire range of data. Parameters obtained by this method varies with

respect to state-of-charge (SOC) of a battery. This could also establish a basis

for state-of-health SOH measurements.

• Estimation of a state variable by H∞ filter is done for dynamic estimation of

open-circuit voltage of the battery model. In this procedure, a non-intrusive test

signal is superimposed on the battery load which triggers transient dynamics

inside the battery. The resulting terminal voltage and current are measured

and a non-linear least-squares routine is used to estimate the lumped electrical

parameters of the battery model. These parameters along with input data are

subsequently sent to a H∞ filter algorithm to obtain the open-circuit voltage

VINT . This method is especially suitable as it compensates for the non-linear

nature of the open-circuit voltage and the uncertainty in the battery model.
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The estimated VINT could form a basis for estimation of SOC in real time.

7.2 Directions for Future Work

The directions of future work can go in several ways.

• An automated system comprising of data collection module, nonlinear estima-

tion of parameters, and open-circuit voltage estimation and thereby measure of

SOC and SOH can be done.

• Estimation of parameters and open-circuit voltage can be performed for live

data from currently available electric vehicles such as Chevy Volt.

• A detailed analysis of battery parameters with respect to temperature, aging,

and discharge rates can be done.

• A calibrated SOC vs open-circuit voltage with respect to aging of the battery

can be prepared.

• The methodology can be tested for various battery chemistries in varying sizes.
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APPENDIX A: SAMPLING OF A CONTINUOUS-TIME SYSTEM

How to represent a continuous-time system in digital domain connected to a com-

puter via analog-to-digital converter (ADC) and digital-to-analog converter (DAC) is

an important issue. Consider a system shown in Fig. 44.

Clock

DAC System ADC
y(tk)u(tk) u(t) y(t)

Figure 44: Block diagram of a continuous-time system connected to ADC and
DAC [74].

The signals in the computer are the sequences u(tk) and y(tk). The key problem is

to find the relationship between these sequences. To find the discrete-time equivalent

of a continuous-time is called sampling a continuous-time system. To obtain desired

descriptions, it is necessary to describe the converters and the system. Assume that

the continuous-time system is given in the state-space by the Eq. 132.

dx

dt
= Ax+Bu(t)

y(t) = Cx(t) +Du(t)

(132)

The above equation represents a continuous-time system in the state-space form in

which the system has r inputs, p outputs, and is of the order n.

The component DAC is so constructed that it holds the analog signal constant until

a new conversion is commanded. This is called zero-order hold circuit. At sampling
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instants, tk, the control changes. Because the control signal is discontinuous, it is

necessary to specify its behavior at discontinuities. The convention that the signal is

continuous from the right is adopted. The control signal is thus represented by the

sampled signal {u(tk) : k = ....,−1, 0, 1, ....}. Given the state at the sampling time tk,

the state as some future time t is obtained by solving the Eq. 132. The state at time

t, where tk ≤ t ≤ tk+1 is thus given by Eq. 133.

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s′)Bu(s′)ds′

= eA(t−tk)x(tk) +

∫ t

tk

eA(t−s′)Bds′u(tk)

= eA(t−tk)x(tk) +

∫ t−tk

0

eAsdsBu(tk)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

(133)

The second equality follows because u is constant between the sampling instants. The

state vector at time t is thus a linear function of x(tk) and u(tk). If the ADC and

DAC in Fig. 44 is perfectly synchronized and if the conversion times are negligible, the

input u and the output y can be regarded as being sampled at the same instants.The

system equation of the sampled system at the sampling instants is then

x(tk+1) = ϕ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)

y(tk) = Cx(tk) +Du(tk)

(134)

where Φ(tk+1, tk) = eA(tk+1−tk) and Γ(tk+1, tk) =
∫ tk+1−tk
0

eAsdsB.

The relationship between the sampled signals thus can be expressed by the linear

difference equation of Eq. 134 and it does not involve any approximations. It gives

the exact values of the state variables and the output at the sampling instants. The
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model in Eq. 134 is therefore called a zero-order-hold sampling of the system in Eq.

132.

For periodic sampling with period T , we have tk = kT and the model of Eq. 134

simplifies to the time invariant system

x(kT + T ) = Φ x(kT ) + Γ u(kT )

y(kT ) = C x(kT ) +D u(kT )

(135)

where Φ = eAT and Γ =
∫ T

0
eAsdsB.

For example, consider a first-order system of state equation of the form

dx

dt
= αx+ βu (136)

with α ̸= 0. Applying Eq. 134, we get Φ = eαT and Γ =
∫ T

0
eαsdsβ = β

α
(eαT − 1).

The sampled system thus becomes

x(kT + T ) = eαT (kT ) +
β

α
(eαT − 1)u(kT ). (137)

The above relationship can be used to convert a continuous-time system into the

equivalent discrete-time system.
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APPENDIX B: MATLAB CODE

B.1: Conversion.m

% The following module converts the raw input data into prepared data.

x = load(’test10’);

n = length(x);

delvol = 2.5 *2/power(2,12);

delcur = 0.625 *2/power(2,12);

deltemp = 1.25 * 2/power(2,12);

deldiffvol = 0.625*2/power(2,12);

vol = -2.5 + delvol * x(:,1);

cur = -0.625 + delcur * x(:,2);

temp = -1.25 + deltemp * x(:,3);

surgvol = -0.625 + deldiffvol * x(:,4);

%for voltage signal SecCurrent = vol/100;

PriCurrent = SecCurrent/2.5;

SensedVoltage = PriCurrent * 1438;

% for current signal SecCur = cur/98.1;

SensedCurrent = SecCur * 1000;

% for temperature rating SensedTemp = temp/0.01; % for surge voltage DiffVoltage

= surgvol/4.03; % Gain of diff. amplifier is 4.03

SecSurgeVoltage = DiffVoltage/2; % Gain of op amp is 2

SecCurrent = SecSurgeVoltage/100;
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PriCurrent = SecCurrent/2.5;

SurgeVoltage = PriCurrent * 1438;

%for plotting with respect to time fsampling = 100;

t = [0:1:length(x)-1];

t = t * 1/fsampling; % in second

subplot(4,1,1);

plot(t,SensedVoltage),ylabel(’Voltage,V’),xlabel(’Time,Sec’),title(’Channel 1’)

subplot(4,1,2);

plot(t,SensedCurrent),ylabel(’Current,A’),xlabel(’Time,Sec’),title(’Channel 2’)

subplot(4,1,3);

plot(t,SensedTemp),ylabel(’Temp,Celcius’),xlabel(’in second’),title(’Channel 3’)

subplot(4,1,4);

plot(t,SurgeVoltage),ylabel(’Voltage,V’),xlabel(’Time,Sec’),title(’Channel 4’)

B.2: Chrismethod.m

% Module for nonlinear least-square estimation

if (exist(’v’) == 0)

load v.mat;

end

if (exist(’t’) == 0)

load t.mat;

end

if (exist(’i’) == 0)
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load i.mat;

end

N = length(v);

%the pre-estimate of parameters are as follow:

Mu = [0.0073;0.0143;0.0704];

K = 1; Kvec = [];iter = [];

mu = Mu;

while(K¡N)

yhat = battery-model(mu,t,N,zeros(size(t)),i);

interval = findk(v(K:N),yhat(K:N),0.2);

K = min([N K+interval]);

Kvec = [Kvec; K];

mu = GNL(’battery-model’,mu,t,K,v,i);

end

B.3: battery-model.m

% Module for giving residual vector

function err = battery-model(mu,t,N,v,i)

t = t(1:N);

v = v(1:N);

i = i(1:N);

Vc = diff45(mu,N,t,i);

R1 = mu(3);

Vb0 = 3.9397; % The starting value of Vb0 for the given estimation problem
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yhat = ( 3.9397 - Vc - i* R1);

err = (yhat - v);

B.4: diff45.m

% Module for sending right data for solving differential equations.

function Y = diff45(mu,N,it,i)

Tspan = it;

Vc0 = 0;

[T, Y ] = ode45(@(t,y) myode(t,y,it,i,mu),Tspan,Vc0);

B.5: myode.m

% Module solving the differential equations

function dydt = myode(t,y,it,i,mu)

alp1 = mu(1);

alp2 = mu(2);

f = interp1(it,i,t);

dydt = alp1* f - y* alp2;

B.6: GNL.m

% Module for Gauss-Newton update

function [theta] = GNL(theta0,t,k,v,i)

theta = theta0;

% limiting tolerances

xtol = 1e-4;

ftol = 1e-4;
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gtol = eps;

maxiter = 100*length(theta);

% initializing stuff

fvec = feval(f,theta,varargin:);

oldnorm = norm(fvec);

info = ’ ’;

iter = 0;

while(info==’ ’)

[fjac, fvec] = fdjac2(theta,t,k,v,i);

fjac = [fjac; .1 ∗ eye(length(theta))];

fvec = [fvec; .1 ∗ (theta(:)− theta0(:))];

iter = iter + 1;

[u, s, v] = svd(fjac,0);

utf = u’* fvec;

% eliminates the almost zero singular values

s = diag(diag(s) .* ( 1 - ( diag(s)¡ sqrt(eps))));

dx = diag(s)==0;

delta = -v * diag((1 -dx)./(diag(s) + dx)) * utf;

jcnorms = sqrt(diag(v * s * s * v’));

theta = theta + delta;

%compute norm of the scaled gradient

gnorm = 0;

if ( oldnorm ̸= 0)
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dx = delta/oldnorm ;

gnorm = max(abs(dx .* (jcnorms u 0)./(jcnorms + (jcnorms==0))));

end

% is gradient norm less than gtol?

if( gnorm < gtol)

info = sprintf(’gradient norm = %.3e, less than gtol = %.3e’,gnorm,gtol);

return

end

% too many iterations?

if (iter ≥ maxiter)

info = sprintf(’number of funcion evaluation exceeds %d’,maxiter);

return

end

% is step in parameter space less than xtol * norm(theta)?

if (norm(delta) ≤ xtol * norm(theta))

info = sprintf(’maximum relative step less than %.3e’,xtol);

return

end

end

B.7: fdjac2.m

% Module for calculating the Jacobian matrix

function [fjac, fvec] = fdjac2(f,theta,varargin)
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small = sqrt(eps);

fvec = feval(f,theta,varargin:);

fjac = zeros(size(fvec,1),size(theta,1));

maxstep = 0.1;

for i = 1:size(fjac,2)

smu = theta(i);

h = sign(theta(i)) * min([max(abs(smallsmall ∗ smu)) maxstep]);

theta(i) = theta(i) + h;

fjac(:,i) = (feval(f,theta,varargin:) - fvec)/h;

theta(i) = smu;

end

B.8: findk.m

% Module for finding the largest linear growth in the residual

function [K,mu] = findk(yobs,yhat,ltol)

N = length(yhat);

if(N < 4)

K=N;

return

end

for K = 4:N

t = linspace(0,1,K)’;

A = [ones(K,1) t t.*t];
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err = yobs(1:K) - yhat(1:K);

mu = A \ err;

if(abs(mu(2))>sqrt(eps) && abs(mu(2))*ltol ≤ abs(mu(3)))

K = min([K N]);

return

end

end

B.9: Hinffilter.m

% This module estimates the open-circuit voltage. function [K,V int, V c] =Hinf-

Filter(v,t,i,mu)

N = length(v);

T = t(2) - t(1);

%For the given problem, the related functions are

Fk = [1−mu(2) ∗ T 0; 0 1];

Bk = [mu(1) ∗ T −mu(1) ∗mu(2) ∗ (T 2)/2; 0];

Hk = [−1 1];

Dk = -1* mu(3);

%Let’s choose the positive definite symmetric metrices for cost function

% P0 is the estimation error x0 - x0-cap, which keeps getting updated.

P0 = diag([1;1]);

% Qk is based on user’s known if any ’a priori’. Suppose if the second element of

noise’s smaller, then Qk(2,2) should be chosen smaller.
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Qk = diag([.0017,.0017]);

% Rk is chosen based on any priori for measurement noises.

Rk = 0.0010;

% Sk is based on the user’s interest in obtaining a particular accurate state

Sk = diag([3,3]);

Lk = diag([1,1]);

%Let’s choose the performace bound as follow

theta = .28;

Gain = [];

%Let’s define the initial states

Vc0 = 0;

Vint0 = v(1) - i(1)*mu(3);

x = [Vc0; Vint0];

xhat = x;

xhatarray = [];

for k=1:1:N

Sk-bar = Lk’*Sk*Lk;

K = P0 * inv( 1 - theta * Sk-bar * P0 + Hk’ * inv(Rk) * Hk * P0 )* Hk’* inv(Rk);

xhat = Fk * xhat + Bk * [i(k)] + Fk * K * [v(k) - Hk * xhat - Dk * i(k)];

Pk-new = Fk * P0 * inv( 1 - theta * Sk-bar * P0 + Hk’ * inv( Rk) * Hk * P0 )* Fk’

+ Qk;

Hinf-cond = eig(inv(P0) - theta * Sk-bar + Hk’ * inv(Rk) * Hk);

for num =1:2
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if(Hinf-cond(num) < 0)

disp([’Hinfinity filter condition fails. Hinf condition is ’, num2str(Hinf-cond(num)),’

The index is ’, num2str(k)]);

return;

end

end

xhatarray = [xhatarray xhat];

P0 = Pk-new;

Gain = [Gain K];

B.10: ConvertSOC.m

% This module is used to find SOC vs open-circuit voltage table

function [SOC,Vint] = ConvertSOC(v,t,i)

Qtotal = trapz(t,i);

soc = [1:-.01:0]’;

Qspent = Qtotal *(1-soc);

N = length(t);

SOC = [];

Vint =[];

nextnum=2;

for j=1:101

Qtemp = Qspent(j);

for k = nextnum:1:N
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z = trapz(t(1:k),i(1:k));

if((z == Qtemp)p (abs(z-Qtemp) <0.001))

SOC=[SOC soc(j)];

Vint = [Vint v(k)];

nextnum=k;

break;

end

end

end

NewVint = Vint(end:-1:1);

plot(fliplr(100*SOC),NewVint)

set(gca,’XDir’,’reverse’);

B.11: FindSOC.m

% Module used to find SOC from coulumb counting method

function [SOC,Volt] = FindSOC(t,v,i)

%The total charge in Ah of a freshly charged 100% soc value is

Qtotal = 3.0560;

soc = [1:-.0001:0.76]’;

% SOC from 100% to 76 %

Qspent = Qtotal *(1-soc);

Volt =[v(1)];

NextRank =1;
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SOC =[.885];

%For the CarSim-3 Data, the begining Voltage Vint = 4.016 and hence the correpond-

ing SOC = 88% and Qspent = 0.3667 and the remaining charge Qbegin = 2.6893;

Qarray = [.3667 ];

for k = 2:1:length(i)

z = trapz(t(1:k),i(1:k))/3600; %in Ah

NetQ = 0.3667 + z;

Qarray = [Qarray NetQ];

for j=NextRank:1:length(Qspent)

Qtemp = Qspent(j);

if((NetQ == Qtemp)p (abs(NetQ - Qtemp)<.01))

SOC=[SOC soc(j)];

Volt = [Volt v(k)];

NextRank =j;

break;

end

end

end

figure(1),plot(t,100*SOC), ylabel(’SOC ’), xlabel(’Time, Sec’);

figure(2),plot(t,Qarray - 0.3667),ylabel(’Cumulative Charge’), xlabel(’Time, Sec’);
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B.12: udds-power.m

% Module for simulating power for UDDS cycle

function [PosInd,Ifinal]=udds-power(t,v)

%t is in seconds for the acceleration calculation

V = v*1610/3600; % Velocity in m/s

%Input Data for Simulation

M = 1700; %Mass in kg

fr = 0.01; %Rolling resistance coefficient

g= 9.81; % gravity (m/s2)

row-a = 1.205; % Air mass density (kg/m3)

C-D = 0.3; % Aerodynamic drag coefficient of the vehicle

A-f = 2.2; % Front area of the vehicle (m2)

delta = 1.05; % Rotational inertia factor

i = 0; % Grade of the road. For the flat road, i = 0

a = [0];

Pt = [0];

PosCur = [];

NegCur = [];

PosInd =[];

NegInd =[];

for j=2:length(v)

accel = v(j) - v(j-1);
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% The traction power of a vehicle measured on drive wheels can be expressed

Pow = V(j) * ( M*g*fr + 1/2*row-a*C-D*A-f*V(j)*V(j) + M*delta*accel + M*g*i

); % In Watt. Based on IEEE Journal (Ref:Ehsani2010).

Pt = [Pt Pow];

a = [accel a];

end

% Let the efficiency from the motor shaft to motor drive be 90%

%Then the required motor power would be given by

Pm = Pt/0.9;

% LEt the efficiency of the motor be 85%, then

Pmore = Pm/.85;

% LEt the efficincy of the power electronics system be 90%, then the final battery

power would be

Pbatt = Pmore/.9;

%Taking the example of Chevy Volt, suppose the voltage of the battery module is

at 42 V, and 8 modules is used, keeping one as a spare of total 9 modules, the total

current in the module will be

Itotal = Pbatt/(8*42);

% For the above design criteria, the combination of batteries would be 12 in series

with 3 parallel strings. Hence the the current from each string would be

Ib = Itotal/3;

%This would be output

figure(1)
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plot(t,Ib)

figure(5)

plot(t,Pbatt/1000)

for k=1:length(Ib)

if(Ib(k) ≥ 0)

PosCur = [PosCur Ib(k)];

PosInd = [PosInd t(k)];

else if(Ib(k) < 0)

NegCur = [NegCur Ib(k)];

NegInd = [NegInd t(k)];

end

end

end

PosPow =[PosCur(1)];

NegPow =[NegCur(1)];

TimeInt = [PosInd(1)];

for k=2:1:length(PosCur)

TempPower = trapz(PosInd(1:k),PosCur(1:k));

PosPow = [PosPow TempPower];

TempTime = trapz(PosInd(1:k));

TimeInt = [TimeInt TempTime];

end

for k=2:1:length(NegCur)
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TempPower = trapz(NegInd(1:k),-1*NegCur(1:k));

NegPow = [NegPow TempPower];

end

figure(2),plot(PosInd,PosPow),hold on, plot(NegInd,NegPow)

% Assume that only 20% of regenerative power is converted and charged back into

battery, the final profile of energy consumed by the UDDS speed profile per Li-ion

cell would be

RegPow = linspace(NegPow(1),NegPow(end),length(PosPow) - 20);

Ebatt = [PosPow(1:20) (PosPow(21:end) - 0.15*RegPow)]; % Ebatt is the total charge

consumed by the current profile in Coulumb

figure(3),plot(PosInd,Ebatt)

Ifinal = Ebatt(2:end)./TimeInt(2:end);

figure(4),plot(PosInd(1:end-1),Ifinal)

csvwrite(’udds-test.csv’,Ifinal’);



134

APPENDIX C: SOC VS VINT TABLE

The Table 8 shows VINT vs SOC values for freshly charged 18650-type lithium-ion

battery. The discharge was performed at C/55 rate. Table 8 is generated at room

temperature of 22◦C. Similarly, Table 9 presents the results at 40◦C.
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Table 8: SOC vs VINT Chart for 18650-type Li-ion battery at C/55
SOC (%) VINT (V) SOC (%) VINT (V) SOC (%) VINT (V)

100 4.1988 66 3.7705 32 3.5739
99 4.1708 65 3.7635 31 3.5739
98 4.1567 64 3.7495 30 3.5669
97 4.1357 63 3.7425 29 3.5669
96 4.1216 62 3.7354 28 3.5599
95 4.1076 61 3.7214 27 3.5529
94 4.0935 60 3.7144 26 3.5529
93 4.0795 59 3.7073 25 3.5529
92 4.0654 58 3.6933 24 3.5458
91 4.0584 57 3.6863 23 3.5388
90 4.0374 56 3.6793 22 3.5318
89 4.0303 55 3.6652 21 3.5248
88 4.0163 54 3.6582 20 3.5178
87 4.0022 53 3.6512 19 3.5107
86 3.9882 52 3.6442 18 3.5037
85 3.9812 51 3.6442 17 3.4897
84 3.9671 50 3.6371 16 3.4827
83 3.9531 49 3.6301 15 3.4686
82 3.9391 48 3.6301 14 3.4546
81 3.932 47 3.6231 13 3.4475
80 3.918 46 3.6161 12 3.4335
79 3.911 45 3.6161 11 3.4265
78 3.8969 44 3.6161 10 3.4195
77 3.8829 43 3.609 9 3.4124
76 3.8759 42 3.609 8 3.4054
75 3.8618 41 3.602 7 3.3984
74 3.8548 40 3.602 6 3.3914
73 3.8408 39 3.595 5 3.3844
72 3.8267 38 3.595 4 3.3633
71 3.8197 37 3.595 3 3.3212
70 3.8127 36 3.588 2 3.2509
69 3.7986 35 3.588 1 3.1597
68 3.7916 34 3.581 0 3.0052
67 3.7776 33 3.581
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Table 9: SOC vs VINT Chart for 18650-type Li-ion battery at 40◦C
SOC (%) VINT (V) SOC (%) VINT (V) SOC (%) VINT (V)

100 4.1392 66 3.7425 32 3.5616
99 4.1269 65 3.7389 31 3.5570
98 4.1041 64 3.7337 30 3.5523
97 4.0865 63 3.7214 29 3.5476
96 4.0760 62 3.7056 28 3.5476
95 4.0619 61 3.6968 27 3.5388
94 4.0461 60 3.6863 26 3.5336
93 4.0374 59 3.6793 25 3.5265
92 4.0251 58 3.6740 24 3.5195
91 4.0093 57 3.6635 23 3.516
90 3.9987 56 3.6529 22 3.5125
89 3.9935 55 3.6424 21 3.509
88 3.9847 54 3.6336 20 3.502
87 3.9706 53 3.6284 19 3.4932
86 3.9531 52 3.6231 18 3.4853
85 3.9320 51 3.6161 17 3.4774
84 3.9233 50 3.6134 16 3.4669
83 3.9180 49 3.6108 15 3.4511
82 3.9039 48 3.6082 14 3.4423
81 3.8881 47 3.6055 13 3.430
80 3.8811 46 3.6029 12 3.4177
79 3.8671 45 3.6003 11 3.4037
78 3.8478 44 3.5976 10 3.3966
77 3.8443 43 3.5950 9 3.3896
76 3.8355 42 3.5924 8 3.3808
75 3.8302 41 3.5897 7 3.380
74 3.8197 40 3.5871 6 3.3791
73 3.8004 39 3.5845 5 3.3668
72 3.7951 38 3.5818 4 3.3475
71 3.7898 37 3.5792 3 3.3124
70 3.7828 36 3.5766 2 3.2509
69 3.7705 35 3.5739 1 3.1737
68 3.760 34 3.5704 0 3.0649
67 3.7442 33 3.5616


