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ABSTRACT

JUN ZHOU. Several Statistical Results under Multinomial Distribution with Infinite
Categories. (Under the direction of DR. ZHIYI ZHANG)

This dissertation discusses several statistical results under multinomial distribution

with infinite categories. Firstly, the discussion focuses on Simpson’s diversity index and

Turing’s formula. We established an unbiased estimate for the newly proposed Generalized

Simpson’s indices and the associated asymptotic properties and showed that the parameters

of a multinomial distribution may be re-parameterized as a set of Generalized Simpson’s di-

versity indices. Secondly, two-dimensional asymptotic normality of a non-parametric sample

coverage estimate based on Turing’s formulae was derived under a fixed underlying probabil-

ity distribution {pk; k = 1, 2, · · · } where all pk > 0. Thirdly, the dissertation also establishes

a previously unknown sufficient condition for the second order Turing’s formula. The newly

derived asymptotic results based on Turing’s formula paves a possible way to establish a

new estimating approach for Hill’s tail probability model.
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CHAPTER 1: GENERALIZED SIMPSON’S DIVERSITY INDEX

1.1 Introduction

Simpson’s diversity index is a measure of diversity. In ecology, it is often used to

quantify the biodiversity of a habitat. It takes into account the number of species present,

as well as the abundance of each species.

Consider a multinomial probability distribution with infinite categories indexed by a

positive integer s, i.e., {ps} = {ps; s = 1, 2, ...} where ps may be viewed as the proportion

of sth species in a population. Simpson (1949) defined a biodiversity index λ =
∑S

s=1 p2
s for

a population with a finite number of species S, which has an equivalent form

ζ1,1 = 1 − λ =
S
∑

s=1

psqs (1)

where qs = 1− ps. ζ1,1 assumes a value in [0, 1) with a higher level of ζ1,1 indicating a more

diverse population, and is widely used across many fields of study.

Simpson’s biodiversity index can be naturally and beneficially generalized in two di-

rections. First, the dimension of the underlying multinomial distribution may be extended

to infinity. Second, ζ1,1 may be considered as a special member of the following family:

ζu,v =
∑

pu
s qv

s (2)

where u ≥ 1 and v ≥ 0 are two arbitrarily fixed integers,
∑

=
∑

s≥1 as will be observed in

subsequent text of this chapter unless otherwise specified. (2) may be viewed as a weighted

version of (1), e.g., ζ1,2 loads higher weight on minor species (those with smaller ps’s), and

ζ2,1 loads higher weight on major species (those with larger ps’s), etc.

In the literature of biodiversity, there exists a vast collection of indices. While all are

designed to measure species richness in a population, these indices can roughly be classified

into two main categories: 1) the unknown number of species S with non-zero probabilities
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in the population; and 2) the distributional evenness of the species. The methodological

discussions on indices in the first category seem to rely on various additional parametric

structures of a prior distribution. Many important references can be found in Wang and

Lindsay (2005) among others. One of the key elements of estimating indices of this type

is the sample coverage which has many intriguing properties. Interested readers may refer

to Good (1953) for an introduction, and Robbins (1968), Esty (1983), Zhang and Huang

(2007), Zhang and Huang (2008) and Zhang and Zhang (2009) for its statistical properties.

In the second category, many different diversity indices have been proposed. Among the

most discussed are Simpson’s index λ =
∑

p2
s, Shannon’s index θ = −∑ ps ln(ps), and the

Rényi-Hill index Nα = (
∑

pα
s )1/(1−α) for α ≥ 0 proposed by Rényi (1961) and generalized

by Hill (1973). All these indices are defined only for populations with finite number of

species. There are a few functional relationships among these and other indices. For ex-

ample, λ = 1/N2 and θ = limα→1 ln(Nα). For a comprehensive discussion on the various

relationships among the indices, one may refer to Rennolls and Laumonier (2006). Among

the three indices mentioned above, only Simpson’s index may easily be extended to the

case of populations with infinite number of species with guaranteed convergence under un-

restricted {ps} while the series in the other two indices may diverge for some vector values

of {ps}.

However the focus on ζu,v in this paper is not only motivated by the fact that the

generalization of Simpson’s biodiversity index is natural both in extending the dimension

of the underlying multinomial distribution from finite to infinite and in adopting weighting

schemes on the population species. It is also motivated by the existence of a class of well-

behaving estimators. While many diversity indices have been proposed in the ecological

literature, surprisingly little is known about the associated estimators in terms of their

statistical properties. The general approach to the estimation problem seems to be simply

replacing the population proportions in the indices with the sample proportions p̂s. The

nonlinearity of the functions seems to, not surprisingly, cause a common but serious problem

in bias. Most of the proposed methodologies adopt some form of adjustment aiming at

reducing the bias by various techniques. As a result, the adjusted estimators become more

complex in form and their corresponding distributional characteristics become less tractable.
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In most of the applications, techniques such as jackknife and bootstrap are the norm, for an

example, see Fritsch and Hsu (1999). Even in the case of Simpson’s index ζ1,1, no convincing

asymptotic distributional characteristics were derived except in some naive approach (the

replicate approach) in which the iid sample of size rn is arbitrarily split into r iid sub-

samples of size n. The asymptotic normality was then achieved by allowing n to increase

to infinity. A description of the “replicate approach” may be found in Magurran (1988) or

Rogers and Hsu (2001).

In the next section, it is shown that the two parameterizations, {ps} and {ζu,v}, are

equivalent up to a permutation on the index set {s}. In Section 3, for each fixed pair of

integers u ≥ 1 and v ≥ 0, an unbiased estimator of ζu,v is proposed, and its asymptotic

normality is established for all {ps} when {ps} contains infinitely many species with positive

probabilities and for all non-uniform {ps} when {ps} contains finitely many species with

positive probabilities. It is also established that in the special case of S being finite, known

or unknown, the proposed estimator is uniformly minimum variance unbiased (umvu) for all

{ps} and asymptotically efficient for all non-uniform {ps}. In Section 4, results of several

simulation studies are reported to assess the adequacy of the asymptotic normality for

various sample size n.

1.2 Re-parameterization

Let P be the parameter space where {ps} resides. Let O be a mapping that maps each

{ps} ∈ P ⊂ R∞ to a non-increasingly ordered array {ps} ∈ R∞. Let P′ = O(P). For each

{ps} ∈ P′ and each positive integer u ≥ 1, let ζu = ζu({ps}) =
∑

pu
s and {ζu} = {ζu; u ≥ 1}.

Consider the mapping from P′ to Z′ = M(P′) ⊂ R∞:

M : {ps} → {ζu}. (3)

Theorem 1. M in (3) is injective.

Proof. For every {ps} ∈ P′, M({ps}) is unique. It suffices to show that, for every {ζu} ∈ Z′,

M−1({ζu}) is unique. Suppose that there existed two sequences, {ps} and {qs}, in P′



4

satisfying
∑

pu
s =

∑

qu
s for all u ≥ 1. Let s0 = min{s; ps 6= qs}. If s0 does not exist, then

{ps} = {qs}. If s0 existed, then
∑

s≥s0

pu
s =

∑

s≥s0

qu
s (4)

for all u ≥ 1. It can be easily shown that

1 ≤ rp = lim
u→∞

∑

s≥s0
pu

s

pu
s0

< ∞ and 1 ≤ rq = lim
u→∞

∑

s≥s0
qu
s

qu
s0

< ∞ (5)

where rp and rq are multiplicities of ps’s with the same value as ps0 and of qs’s with the

same value as qs0 respectively. But by (4),

∑

s≥s0
pu

s

pu
s0

=

∑

s≥s0
qu
s

qu
s0

(

qs0

ps0

)u

. (6)

the right side of (6) approaches 0 or ∞ as u → ∞ if ps0 6= qs0 , which contradicts (5).

Therefore s0 does not exist and {ps} = {qs}.

It is to be noted that the monotonicity condition on {ps} cannot be further relaxed.

This is because {ζu} is invariant under any permutation of the index set {s} and {ps} is not.

The one-to-one correspondence between P′ and Z′ via M is and can only be established

under the monotonicity condition.

Theorem 1 has an intriguing implication: the complete knowledge of {ps} up to a

permutation and the complete knowledge of {ζu} are equivalent. On the other hand, letting

Z = {ζu,v; u ≥ 1, v > 0}, each member of Z is a linear combination of finite members

of Z′. Therefore the complete knowledge of {ps} up to a permutation and the complete

knowledge of {ζu,v} are equivalent. In other words, all the Generalized Simpson’s diversity

indices collectively and uniquely determine the underlying distribution. This implication is

another motivation for Generalizing Simpson’s diversity index beyond ζ1,1.

1.3 Estimators

Let Xi, i = 1, · · · , n be an iid sample under {ps}. Xi may be written as Xi = (Xi,s; s ≥

1) where for every i, Xi,s takes 1 only for one s and 0 for all other s values. Let Ys =
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∑n

i=1 Xi,s and p̂s = Ys/n. Ys is the number of observations of the sth species found in the

sample. The following is the proposed estimator for ζu,v.

Zu,v =

(

n

u + v

)−1(u + v

u

)−1
∑

s≥1

[

1[Ys≥u]

(

Ys

u

)(

n − Ys

v

)]

. (7)

Zu,v is a function of {Ys; s ≥ 1} and hence of {p̂s} = {p̂s; s ≥ 1}. For a few special

pairs of u and v, Zu,v reduces to

Z1,1 = n
n−1

∑

[p̂s≥1/n] p̂s(1 − p̂s)

Z2,0 = n
n−1

∑

1[p̂s≥2/n]p̂s(p̂s − 1/n)

Z3,0 = n2

(n−1)(n−2)

∑

1[p̂s≥3/n]p̂s(p̂s − 1/n)(p̂s − 2/n)

Z2,1 = n2

(n−1)(n−2)

∑

1[p̂s≥2/n]p̂s(p̂s − 1/n)(1 − p̂s)

Z1,2 = n2

(n−1)(n−2)

∑

1[p̂s≥1/n]p̂s(1 − p̂s)(1 − 1/n − p̂s).

(8)

Zu,v is an unbiased estimator of ζu,v. This fact is established by a U -statistic construc-

tion of the estimator. Let m = u + v. For every sub-sample of size m, say {X1, · · · , Xm},

consider the number of species in the population that are represented exactly u times in

the sub-sample, i.e., Nu =
∑

1[
∑m

i=1 Xi,s=u].

E(Nu) =
∑

P

[

m
∑

i=1

Xi,s = u

]

=
∑

(

m

u

)

pu
s qv

s .

Therefore
(

u+v
u

)−1
Nu is an unbiased estimator of ζu,v. There are a total of K =

(

n
m

)

distinct

sub-samples of size m, and therefore

Z̃u,v =

(

n

u + v

)−1(u + v

u

)−1 K
∑

k=1

N (k)
u
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where k indexes a particular sub-sample is an unbiased estimator of ζu,v. On the other

hand,
∑K

k=1 N
(k)
u is simply the total number of times exactly u observations are found in

a same species among all possible sub-samples of size m taken from the sample of size n.

In counting the total number of such events, it is to be noted that, for a fixed u, only

for species that are represented in the sample u times or more can such an event occur.

Therefore
∑K

k=1 N
(k)
u =

∑

s≥1 1[Ys≥u]

(

Ys

u

)(

n−Ys

v

)

and hence Zu,v ≡ Z̃u,v.

The above U -statistic construction paves the path for establishing the asymptotic nor-

mality of Zu,v. Let X1, · · · , Xn be an iid sample under a distribution F , θ = θ(F ) be

a parameter of interest, h(X1, · · · , Xm) where m < n be a symmetric kernel satisfying

EF {h(X1, · · · , Xm)} = θ(F ), Un = U(X1, · · · , Xn) =
(

n
m

)−1∑

k h(X1k
, · · · , Xmk

) where

the summation
∑

k is over all possible sub-samples of size m from the sample of size n,

h1(x1) = EF {h(x1, X2, · · · , Xm)} be the conditional expectation of h given X1 = x1, and

σ2
1 = V arF {h1(X1)}. The following lemma is by Hoeffding (1948).

Lemma 1. If EF {h2} < ∞ and σ2
1 > 0, then

√
n(Un − θ)

d−→ N(0, m2σ2
1).

Let Cr
k = k!/[r!(k− r)!] for any two non-negative integers k and r satisfying k ≥ r. Let

m = u + v and h = h(X1, · · · , Xm) = (Cu
m)−1Nu. Let p = {ps}. Suppose u ≥ 1 and v ≥ 1.

Given X1 = x1,

Cu
mh1(x1) = Cu

mEP{h(x1, X2, · · · , Xm)} = EP{Nu|X1 = x1}

=
∑

1[x1s=1]C
u−1
m−1p

u−1
s qv

s +
∑

1[x1s=0]C
u
m−1p

u
s qv−1

s

=
∑

Cu
m−1p

u
s qv−1

s +
∑

1[x1s=1]C
u
m−1p

u−1
s qv−1

s

(

qs
u
v − ps

)

= Cu
m−1

∑

pu
s qv−1

s + Cu
m−1

∑

1[x1s=1]p
u−1
s qv−1

s

(

qs
u
v − ps

)

.
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(Cu
m)2σ2

1(u, v) = (Cu
m)2V arP{h1(X1)} =

(

Cu
m−1

)2
V arP

{
∑

1[x1s=1]p
u−1
s qv−1

s

(

qs
u
v − ps

)}

=
(

Cu
m−1

)2
{

EP

[
∑

1[x1s=1]p
u−1
s qv−1

s

(

qs
u
v − ps

)]2 −
[
∑

pu
s qv−1

s

(

qs
u
v − ps

)]2
}

=
(

Cu
m−1

)2
{

∑

p2u−1
s q2v−2

s

(

qs
u
v − ps

)2 −
[
∑

pu
s qv−1

s

(

qs
u
v − ps

)]2
}

= u2

v2

(

Cu
m−1

)2∑
p2u−1

s q2v
s − 2u

v

(

Cu
m−1

)2∑
p2u

s q2v−1
s +

(

Cu
m−1

)2∑
p2u+1

s q2v−2
s

−
(

Cu
m−1

)2 (u
v

∑

pu
s qv

s −∑ pu+1
s qv−1

s

)2

= u2

v2

(

Cu
u+v−1

)2
ζ2u−1,2v − 2u

v

(

Cu
u+v−1

)2
ζ2u,2v−1 +

(

Cu
u+v−1

)2
ζ2u+1,2v−2

−
(

Cu
u+v−1

)2 (u
v ζu,v − ζu+1,v−1

)2 ≥ 0.

(9)

The last inequality in (9) becomes an equality only when h(X1) is a constant which

occurs only when all the positive probabilities of {ps} are equal. Furthermore, since Nu is

bounded for every fixed m, E{ps}{h2} < ∞ is obviously true.

The following definition helps to simplify the subsequent presentation.

Definition 1. A multinomial distribution {ps} = {ps; s ≥ 1} is said to be uniform if all the

non-zero probabilities of {ps} are identical.

Definition 1 implies that {ps} must not be a uniform distribution if it has infinitely

many non-zero probabilities.

Suppose u ≥ 1 and v = 0, therefore Cu
m = 1. It is easy to see that h1(x1) =

∑

1[x1s=1]p
u−1
s and

σ2
1(u, 0) = V arP{h1(X1)} =

∑

p2u−1
s −

(

∑

pu
s

)2
= ζ2u−1,0 − ζ2

u,0 ≥ 0. (10)

The strict inequality holds for all cases except when {ps} is uniform.
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Thus the following theorem is established.

Theorem 2. If {ps} is a non-uniform multinomial distribution, then for any given pair of

positive integers u and v, Zu,v in (7), ζu,v in (2), σ2
1(u, v) in (9), and σ2

1(u, 0) in (10),

√
n(Zu,v−ζu,v)

d→ N(0, (u+v)2σ2
1(u, v)) and

√
n(Zu,0−ζu,0)

d→ N(0, u2σ2
1(u, 0)). (11)

Theorem 2 immediately implies consistency of Zu,v of ζu,v and the consistency of Zu,0

of ζu,0 for any u ≥ 1 and v ≥ 1 under the stated condition.

By the last expression of (9), (10) and Theorem 2, it is easily seen that when u ≥ 1

and v ≥ 1,

σ̂2
1(u, v) =

(

v
u+v

)2 [
u2

v2 Z2u−1,2v − 2u
v Z2u,2v−1 + Z2u+1,2v−2 −

(

u
v Zu,v − Zu+1,v−1

)2
]

, and

σ̂2
1(u, 0) = Z2u−1,0 − Z2

u,0

(12)

are consistent estimators of σ2
1(u, v) and of σ2

1(u, 0) respectively, and hence the following

corollary is established.

Corollary 1. If the condition of Theorem 2 is satisfied, then for any given pair of positive

integers u and v, Zu,v in (7), ζu,v in (2), σ̂2
1(u, v) and σ̂2

1(u, 0) in (12),

√
n(Zu,v − ζu,v)

(u + v)σ̂1(u, v)

d→ N(0, 1) and

√
n(Zu,0 − ζu,0)

uσ̂1(u, 0)

d→ N(0, 1). (13)

As a case of special interest when u = v = 1, the computational formula of Z1,1 is given

in (8) and √
n(Z1,1 − ζ1,1)

2σ̂1(1, 1)

d→ N(0, 1) (14)
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where σ̂1(1, 1) is such that 4σ̂2
1(1, 1) = Z1,2 − 2Z2,1 + Z3,0 − (Z1,1 − Z2,0)

2 and Z1,2, Z2,1,

Z3,0 and Z2,0 are all given in (8). (14) may be used for large sample inferences with

respect to Simpson’s index, ζ1,1, whenever the non-uniformity of the underlying multinomial

distribution is considered as reasonable.

Zu,v is an umvue of ζu,v when S is finite. Since Zu,v is unbiased, by the Lehmann-Scheffe

Theorem it suffices to show that {p̂s} is a set of complete and sufficient statistics under

{ps}. When S is finite and known, under the multinomial assumption, {p̂s} is complete and

sufficient. When S is finite but unknown, {p̂s} is obviously sufficient. The completeness

is established by the following argument: by the definition of complete statistics, it is to

be shown that for any function g({p̂s}) satisfying E[g({p̂s})] = 0 for each (S, {ps}) implies

P{g({p̂s}) = 0} = 1 for each (S, {ps}). If E[g({p̂s})] = 0 for each (S, {ps}) then for each

fixed S, E[g({p̂s})] = 0 for each {ps} since {p̂s} is complete for the multinomial distribution,

it follows that P [g({p̂s}) = 0] = 1 for each {ps}. Now S is arbitrary, thus one actually has

E[g({p̂s})] = 0 for each (S, {ps}) implies P{g({p̂s}) = 0} = 1 for each (S, {ps}).

Zu,v is asymptotically efficient when S is finite. This fact is established by recognizing

first that {p̂s} is the maximum likelihood estimator (mle) of {ps}, second that ζ̂u,v =

∑

p̂u
s (1 − p̂s)

v is the mle of ζu,v, and third that
√

n(Zu,v − ζ̂u,v) → 0 in probability. To see

the third fact, consider the following expression of Zu,v which may be obtained by a few

algebraic manipulations from (7).

Zu,v =
nu+v[n − (u + v)]!

n!

S
∑

s=1







1[p̂s≥u/n]

u−1
∏

i=0

(

p̂s −
i

n

)



1[v=0] + 1[v≥1]

v−1
∏

j=0

(

1 − p̂s −
j

n

)











.

(15)

Since the coefficient in front of the summation in (15) converges to 1 as n → ∞, it is only

to show that

√
n







S
∑

s=1







1[p̂s≥u/n]

u−1
∏

i=0

(

p̂s −
i

n

)



1[v=0] + 1[v≥1]

v−1
∏

j=0

(

1 − p̂s −
j

n

)











− ζ̂u,v







p→ 0,
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or letting ζ̂u,v =
∑

1[p̂s≥u/n]p̂
u
s (1 − p̂s)

v +
∑

1[p̂s<u/n]p̂
u
s (1 − p̂s)

v (
def
= ζ̂

(1)
u,v + ζ̂

(2)
u,v),

√
n







S
∑

s=1







1[p̂s≥u/n]

u−1
∏

i=0

(

p̂s −
i

n

)



1[v=0] + 1[v≥1]

v−1
∏

j=0

(

1 − p̂s −
j

n

)











− ζ̂(1)
u,v







−√
nζ̂(2)

u,v
p→ 0.

(16)

It is to show that each of the two terms in (16) converges to zero in probability.

First consider the case of v = 0.
∏u−1

i=0

(

p̂s − i
n

)

may be written as a sum of p̂u
s and

finitely many other terms each of which has the following form:

k1

nk2
p̂k3

s

where k1, k2 ≥ 1 and k3 ≥ 1 are finite fixed integers. Since

0 ≤ √
n

S
∑

s=1

1[p̂s≥u/n]
|k1|
nk2

p̂k3
s ≤ √

n
S
∑

s=1

1[p̂s≥u/n]
|k1|
nk2

p̂s <
√

n
|k1|
nk2

→ 0 as n → ∞,

the first term of (16) converges to zero in probability. The second terms of (16) converges

to zero when u = 1 is an obvious case since ζ̂
(2)
u,v = 0. It also converges to zero in probability

when u ≥ 2 since there are at most n terms in the sum and

0 ≤ √
n

S
∑

s=1

1[p̂s<u/n]p̂
u
s ≤ √

n
S
∑

s=1

1[p̂s<u/n][(u − 1)/n]u ≤ (u − 1)u√nn/nu → 0.

Next consider the case of v ≥ 1.
∏u−1

i=0

(

p̂s − i
n

)
∏v−1

j=0

(

1 − p̂s − j
n

)

may be written as

a sum of p̂u
s (1 − p̂s)

v and finitely many other terms each of which has the following form:

k1

nk2
p̂k3

s (1 − p̂s)
k4

where k1, k2 ≥ 1, k3 ≥ 1, and k4 ≥ 1 are finite fixed integers. Since

0 ≤ √
n

S
∑

s=1

1[p̂s≥u/n]
|k1|
nk2

p̂k3
s (1−p̂s)

k4 ≤ √
n

S
∑

s=1

1[p̂s≥u/n]
|k1|
nk2

p̂s <
√

n
|k1|
nk2

→ 0 as n → ∞,

the first term of (16) converges to zero in probability. The second term of (16) converges to

zero when u = 1 is an obvious case since ζ̂
(2)
u,v = 0. It also converges to zero in probability
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when u ≥ 2 since there are at most n terms in the sum and

0 ≤ √
n

S
∑

s=1

1[p̂s<u/n]p̂
u
s (1 − p̂s)

v ≤ √
n

S
∑

s=1

1[p̂s<u/n]p̂
u
s ≤ (u − 1)un3/2/nu → 0.

Thus the asymptotic efficiency of Zu,v is established.

1.4 Simulation Results

Twelve cases of simulation studies, four distributions by three levels of sample size, are

conducted to examine the adequacy of the normal approximation in (14). The distributions

used in the simulations studies are:

a. Triangular with ps = 0.02(s − 0.5), s = 1, · · · , 10.

a. Finite Exponential with ps = ce−s/3/3, s = 1, · · · , 10, where c = (
∑10

s=1 e−s/3/3)−1.

b. Pareto with p1 = p2 = 1/3, and ps = 2/[4(s − 1)2 − 1] for s ≥ 3.

c. Exponential with ps = e−
s−1
10 − e−

s
10 for s ≥ 1.

Each distribution is crossed with three levels of sample size, n = 100, n = 500 and n = 1000.

Each simulation study is based on 1000 replications. Q-Q plots against N(0, 1) are given

in Figure 1, with each row corresponding to a distribution in the order of the list above.

The horizontal axis in each of the Q-Q plots is N(0, 1) and the vertical axis is the left-hand

side of (14). The range on each axis is from -3 to 3. Columns 1, 2 and 3 in Figure 1.1 are

corresponding to sample size levels 100, 500 and 1000 respectively.

Figure 1.1 indicates that the normality approximation of (14) is satisfactory within

the range of -3 to 3 when n = 500 and n = 1000. For the cases of n = 100, only in the

Pareto case which has a long thick right tail, the normality approximation is satisfactory.

In the other three cases, which all have short (either finite or very thin right tail) tails, the

sampling distributions of the left-hand side of (14) all seem to have thicker right tails than

the standard normal distribution.
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Figure 1.1: Q-Q plots for simulated data

1.5 Some Comments

The use of diversity indices is common but is not without doubts. One usual is that

a single index cannot effectively capture the diversity of a population. Such a statement is
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valid but is not a discredit to a particular index. The concept of diversity is not precisely

defined and therefore no index could possibly be expected to capture the somewhat arbi-

trarily and often subjectively perceived diversity. On this front, the class of Generalized

Simpson’s indices proposed in this chapter offers a panel of estimable indices, which could

potentially capture a wider range of diversity.

For (7) to be unbiased, m = u + v must be less or equal to the sample size n. However

for (13) to hold, m = u + v must satisfy 2u + 2v − 1 ≤ n or u + v ≤ (n + 1)/2. This is

indeed a restriction on the choices of u and v in practice. However it must be noted that

for sufficiently large n, any one ζu,v is estimable.

It is also to be noted that Theorem 2, and therefore Corollary 1, exclude the case when

the underlying multinomial distribution is uniform. This exclusion makes the asymptotic

normality somewhat incomplete. However this should not be taken as if Zu,v is less of an

estimator in that excluded case. On the contrary, Zu,v in this case is sometimes called a

super efficient estimator with a variance degenerating faster than n−1/2. The asymptotic

distribution of a properly normalized Zu,v exists and can be derived, but it would have little

or no practical value and therefore is omitted from this chapter.

Definition 2. A multi-dimensional parameterization of an underlying distribution, {θ} ∈ Θ,

is said to be sufficient iff {θ} uniquely determines the underlying distribution.

Definition 3. A multi-dimensional parameterization of an underlying distribution, {θ} =

{θβ ; β ∈ B} ∈ Θ for some index set B, is said to be minimally sufficient iff 1) {θ} is sufficient;

and 2) there does not exist a proper subset of B, B′ ⊂ B, such that {θ}′ = {θβ ; β ∈ B′} is

sufficient.

Definition 4. Two multi-dimensional parameterizations of an underlying distribution, {θ} ∈

Θ and {ω} ∈ Ω, are said to be equivalent, denoted by {θ} 
 {ω}, iff an one-to-one mapping

from Θ to Ω exists.

For the family of infinite dimensional multinomial distributions {ps}, {ps; s ≥ 1} is

sufficient but not minimally sufficient since {ps; s ≥ 2} is also sufficient. In fact, {ps; s ≥
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1, s 6= s0} for any s0 ≥ 1 is minimally sufficient; and {ps; s ≥ 1, s 6= s1, s 6= s2, s1 6= s2}

for any s1 ≥ 1 and s2 ≥ 1 is not sufficient. {pα
s ; s ≥ 1, s 6= s0} for any fixed α > 0 is also

minimally sufficient.

By Theorem 1, under P ′, {ζu; u ≥ 1} 
 {ps; s ≥ 1}. Since {ζu; u ≥ 1} ⊂ {ζu,v; u ≥

1, v ≥ 0}, {ζu,v; u ≥ 1, v ≥ 0} 
 {ps; s ≥ 1}. Similarly since {Nα; α ≥ 0} 
 {(Nα)1−α; α ≥

0} and {ζu; u ≥ 1} ⊂ {(Nα)1−α; α ≥ 0}, {Nα; α ≥ 0} 
 {ps; s ≥ 1}. This is to say that both

the generalized Simpson’s indices and the family of the Rényi-Hill indices are sufficient.

On the other hand, {ζu; u ≥ 1} is not minimally sufficient, which implies that {Nα; α ≥

0} is not minimally sufficient. The fact that {ζu; u ≥ 1} is not minimally sufficient can be

seen by the fact that any subsequence of {ζu} uniquely determines the underlying distri-

bution. The proof of that fact is identical to that of Theorem 1. Furthermore and more

interestingly, a minimally sufficient subsequence of {ζu} does not exist, since a subsequence

of any subsequence will uniquely determine the underlying distribution.



CHAPTER 2: ASYMPTOTIC PROPERTIES OF TWO DIMENSIONAL SAMPLE
COVERAGE ESTIMATORS

2.1 Introduction

Consider a multinomial distribution with countably infinite number of categories in-

dexed by K = {k; k = 1, 2, · · · } and category probabilities denoted by {pk}, satisfying

0 < pk < 1 for all k and
∑

pk = 1, where the sum without index is over all k as in all

subsequent text of this chapter unless otherwise stated. (In fact, in the subsequent text

of this chapter, we should observe the convention that
∑

Ki
=
∑

k∈Ki
,
∏

Ki
=
∏

k∈Ki
,

lim = limn→∞ and that
∫

=
∫ +∞
−∞ , unless otherwise indicated. We also use “∼” to indicate

equality in the limit.) Denote the category counts in an iid sample of size n from that

population by (x1, · · · ). Note that for a given sample, there are at most n non-zero xk’s.

Suppose the target of estimation is the “total probability of the categories not represented

in the sample”, or equivalently

π0 =
∑

pkI[xk = 0] (1)

where I[·] is the indicator function. It may be interesting to note that π0 is not a fixed

constant nor is it an observable random variable. This target is interesting because it

represents the probability that the (n + 1)th observation is from a previously unobserved

category.

An estimate described by Good (1953), but largely credited to Turing and hence known

as Turing’s formula, is given by

T =
N1

n
(2)

where N1 is the number of categories represented exactly once in the sample, i.e., N1 =

∑

I[xk = 1]. This simple formula has been used widely across many fields of study, fre-

quently in the form of C ′ = 1 − T estimating C = 1 − π0 which is often referred to as the

“coverage” problem.
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Many authors have discussed issues related to this problem in various settings. However

its asymptotic normality was not known for a long time until Esty (1983) who gave a set

of conditions for a
√

n-normalized convergence theorem for the case when {pk} is changing

with respect to sample size n. After 25 years since Esty, in 2008, Zhang and Huang derived

the asymptotic normality for the case when {pk} is fixed with respect to sample size n.

2.2 Motivation

Since Turing’s formula is an asymptotic unbiased estimator of π0. And π0 characterize

the tail probability when the sample size increases. It is natural to link the Turing’s formula

with the problems about tail probability. In 1975, Hill proposed a simple general approach

to make inference about the tail behavior of a distribution. It is not required to assume

any global form for the distribution function, but merely the parametric form of behavior

in the tail. However, Hill’s estimator is correct only for very large values in the sample. But

how large the values should be in order to make the estimator be valid? So far, there is no

clear answer in the literature. There are two possible ways can solve this problem. Either

we can try to find a way to determine this boundary value or we can avoid to determine

this boundary value explicitly. Since Turing’s formula exactly characterize the tail behavior

of a distribution when the sample size increases, it is natural to link the Turing’s formula

with Hill’s approach. The major advantage of this new approach is that we do not need

to explicitly determine how large the values should be in order to make Hill’s estimator

be valid. However there are two parameters need to be estimated in Hill’s approach. The

current one dimensional asymptotic property of Turing’s formula which derived by Zhang

and Huang (2008) is not enough to acquire the estimation of Hill’s approach. Therefore high

dimensional asymptotic results are expected. Motivated by this consideration, we derived

a two-dimensional asymptotic normality for Turing’s formula under certain conditions.

We split the categories from the original population into two sub-categories correspond-

ing to two sub-populations with infinite categories in each of them. Let the first and second

sub-populations with countable infinite categories indexed by K1 and K2 respectively where

K1 ⊂ K, K2 ⊂ K and K2 = K\K1. Suppose the targets of estimation are the “total prob-
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abilities of the categories of sub-populations not represented in the sample”, or equivalently

πi =
∑

Ki

pkI[xk = 0], i = 1, 2. (3)

According to Turing’s formula, we define

T1 =
N1

n
, T2 =

M1

n
(4)

where N1 and M1 are the number of categories in the first and second sub-populations

represented exactly once in the sample, i.e., N1 =
∑

K1
I[xk = 1] and M1 =

∑

K2
I[xk = 1].

Motivated by the Zhang and Huang (2008), we derived two dimensional asymptotic

normality for Z = (Z1, Z2)
′ where Zi = πi − Ti, i = 1, 2.

2.3 Asymptotic Results

Let K = {k; k = 1, · · · } be the index set of all the positive integers. K1 and K2 are

two subsets of K with infinite elements in each of them and K1 = K\K2. Let

fk(x) =























pk x = 0,

−1/n x = 1,

0 x ≥ 2.

Zi =
∑

Ki
fk(Xk) = πi − Ti, i = 1, 2. We are interested in the asymptotic behavior of

Zg(n), where g(n) is a function of n satisfying limn→∞ g(n) = ∞ and

g(n) = O(n1−2δ) (5)

for some δ ∈ (0, 1/4). Z = (Z1, Z2)
′.

In order to acquire the asymptotic normality of this two-dimensional random vector, we

need to show that any linear combination of elements of this vector asymptotically follows

one dimensional normal distribution as n → ∞.
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For any real constants, a and b, satisfying a2 + b2 6= 0, consider

Z = aZ1 + bZ2

= a
∑

k∈K1
fk(xk) + b

∑

k∈K2
fk(xk)

Zg(n) = ag(n)
∑

k∈K1
fk(xk) + bg(n)

∑

k∈K2
fk(xk)

We are interested in the asymptotic behavior of Zg(n) in terms of the limit of its

characteristic function, E[exp(isZg(n))].

Lemma 2. Let {Xk} be the counts of observations in category k, k = 1, 2, · · · , in an iid

sample under the multinomial model with probability distribution {pk}. Then

P (Xk = xk; k = 1, 2, · · · ) = P (Yk = xk; k = 1, 2, · · · |
∑

Yk = n)

where Yk are independent possion random variables with mean npk.

Lemma 3. Let (U, V ) be a two-dimensional random vector with U integer valued. Then

E(exp(ivV |U = u)) = (2πP (U = n))−1

∫ π

−π
E(exp(iu(U − n) + ivV ))du.

The Lemma 2 is a well-known fact and lemma 3 is due to Bartlett (1938). Based on

these two lemmas,

E(exp(isZg(n))) = (2πP (
∑

K

Yk = n))−1

∫ π

−π
E[exp(iu

∑

K

(Yk − npk) + isZg(n))]du.

We want to evaluate limn→∞ E(exp(isZg(n))). Toward this end, we first note that,

by Stirling’s formula, (2πn)1/2P (
∑

K Yk = n) → 1. Therefore we need only to evaluate the

limit of

Hn(s) =

√
n√
2π

∫ π

−π
E[exp(iu

∑

K

(Yk − npk) + isZg(n))]du, (6)
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or letting t = un1/2,

Hn(s) =
1√
2π

∫ +∞

−∞
I[|t| < π

√
n]E[exp(i(n)−1/2t

∑

K

(Yk − npk) + isZg(n))]dt. (7)

Writing

hn = I[|t| < π
√

n]E[exp(i(n)−1/2t
∑

K(Yk − npk) + isZg(n))]

= I[|t| < π
√

n]E[exp(i(n)−1/2t
∑

K1
(Yk − npk) + isag(n)

∑

K1
fk(Yk)

+i(n)−1/2t
∑

K2
(Yk − npk) + isbg(n)

∑

K2
fk(Yk))]

(8)

According to lemma 2, {Yk} are independent Poisson random variables with mean npk.

Therefore,

hn = I[|t| < π
√

n]E[exp(i(n)−1/2t
∑

K1
(Yk − npk) + isag(n)

∑

K1
fk(Yk))]

×E[exp(i(n)−1/2t
∑

K2
(Yk − npk) + isbg(n)

∑

K2
fk(Yk))].

(9)

Let,

A1 = E[exp(i(n)−1/2t
∑

K1
(Yk − npk) + isag(n)

∑

K1
fk(Yk))]

A2 = E[exp(i(n)−1/2t
∑

K2
(Yk − npk) + isbg(n)

∑

K2
fk(Yk))]

(10)

Our first task is to allow the limit operator to exchange with the integral operator. By

definition of A1 and A2, hn = I[|t| < π
√

n]A1×A2. Let’s define two index sets K11 and K12

where K11 only contains one element from K1, let’s call it r, and K12 = K1\K11. Writing

A11 = I[|t| < π
√

n]E[exp(i(n)−1/2t(Yr − npr) + isafr(Yr)g(n)]

A12 = I[|t| < π
√

n]E[exp(i(n)−1/2t
∑

K12
(Yk − npk) + isa

∑

K12
fk(Yk)g(n))],

(11)
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Hn(s) =
1√
2π

∫ +∞

−∞
hndt =

1√
2π

∫ +∞

−∞
I[|t| < π

√
n]A11A12A2dt. (12)

Since |A2| ≤ 1 and |A12| ≤ 1, |hn| ≤ |A11|. On the other hand,

E[exp(iu(Yr − npr) + isafr(Yr)g(n))]

= exp(iu(−npr) + isaprg(n)) exp(−npr) + exp(iu(1 − npr) − isan−1g(n))npr exp(−npr)

+
∑∞

j=2 exp(iu(j − npr))P (Yr = j)

=
∑∞

j=0 exp(iu(j − npr))P (Yr = j)

− exp(−iunpr) exp(−npr) − exp(iu(1 − npr))npr exp(−npr)

+ exp(iu(−npr) + isaprg(n)) exp(−npr) + exp(iu(1 − npr) − n−1isag(n))npr exp(−npr)

= [exp(−iunpr) exp(i sin(u)npr) exp(npr(cos(u) − 1))]

− exp(−iunpr) exp(−npr) − exp(iu(1 − npr))npr exp(−npr)

+ exp(iu(−npr) + isaprg(n)) exp(−npr) + exp(iu(1 − npr) − n−1isag(n))npr exp(−npr).

Therefore (recall t = u
√

n),

|A11| ≤ I[|t| < π
√

n]
[

exp(npr(cos(tn− 1
2 ) − 1)) + 2[exp(−npr) + npr exp(−npr)]

]

(= A11).

It is clear that, for any t, by Taylor’s formula for cos(x),

lim
n→∞

A11 = lim
n→∞

I[|t| < π
√

n] exp(npr(cos(tn−1/2) − 1)) = exp(−prt
2/2) (= A1).
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∫ +∞
−∞ |A11|dt =

∫ +∞
−∞ I[|t| < π

√
n]
[

exp(npr(cos(tn− 1
2 ) − 1))

]

dt

+2
∫ +∞
−∞ I[|t| < π

√
n] exp(−npr)dt + 2

∫ +∞
−∞ I[|t| < π

√
n]npr exp(−npr)dt

=
∫ +∞
−∞ I[|t| < π

√
n]
[

exp(npr(cos(tn− 1
2 ) − 1))

]

dt

+2 × 2π
√

n exp(−npr) + 2 × 2π
√

nnpr exp(−npr).

Since the last two terms vanish to zero as n → ∞, we have, letting δ be a constant in

(0, 1/2),

limn→∞
∫ +∞
−∞ |A11|dt = limn→∞

∫ +∞
−∞ I[|t| < π

√
n]
[

exp(npr(cos(tn− 1
2 ) − 1))

]

dt

= limn→∞
∫ +π
−π

√
n [exp(npr(cos(u) − 1))] du

= limn→∞
∫

|u|< 1

n(1−δ)/2

√
n [exp(npr(cos(u) − 1))] du

+ limn→∞
∫

1

n(1−δ)/2
≤|u|<π

√
n [exp(npr(cos(u) − 1))] du

(= limn→∞ η1 + limn→∞ η2).

The second term of the last expression above is zero. To see this, we note that for any
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u satisfying 1
n(1−δ)/2 ≤ |u| < π, cos(u) − 1 ≤ cos(1/n(1−δ)/2) − 1, and hence

limn→∞ η2 ≤ limn→∞
∫

1

n(1−δ)/2
≤|u|<π

√
n
[

exp(npr(cos(1/n(1−δ)/2) − 1))
]

du

= limn→∞ 2π
√

n
[

exp(npr(cos(1/n(1−δ)/2) − 1))
]

= limn→∞ 2π
√

n
[

exp
(

−npr

(

1 − cos(1/n(1−δ)/2)
))]

= limn→∞ 2π
√

n
[

exp
(

−npr

(

sin2(1/n(1−δ)/2)

1+cos(1/n(1−δ)/2)

))]

= limn→∞ 2π
√

n exp
(

−nprO( 1
n1−δ )

)

= limn→∞ 2π
√

n exp
(

−prO(nδ)
)

= 0.

For u satisfying |u| < 1
n(1−δ)/2 , consider the Taylor expansion of

cos(u) − 1 = −u2

2! + u4

4! − u6

6! + · · · + (−1)mu2m

(2m)! + · · ·

≤ −u2

2 + (u4 + u8 + · · · + u4m + · · · )

= −u2

2 + u4

1−u4 .
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Therefore,

limn→∞ η2 ≤ limn→∞
∫

|u|< 1

n(1−δ)/2

√
n exp

(

npr

(

−u2

2 +
1

n2−2δ

1− 1

n2−2δ

))

du

= limn→∞
∫

|u|< 1

n(1−δ)/2

√
n exp

(

−npru2

2 + npr

1

n2−2δ

1− 1

n2−2δ

)

du

= limn→∞

[(

∫

|u|< 1

n(1−δ)/2

√
n exp

(

−npru2

2

)

du

)

exp
(

O( 1
n1−2δ )

)

]

( letting t = u
√

n)

= limn→∞
[(

∫

|t|<nδ/2 exp
(

−prt2

2

)

dt
)

exp
(

O( 1
n1−2δ )

)

]

=
∫ +∞
−∞ exp

(

−prt
2/2
)

dt.

Since cos(u) ≥ −u2

2 for all u satisfying |u| < 1
n(1−δ)/2 , it is easy to establish limn→∞ η2 ≥

∫ +∞
−∞ exp

(

−prt
2/2
)

dt, and hence limn→∞ η2 =
∫ +∞
−∞ exp

(

−prt
2/2
)

dt.

Now that we have established

lim
n→∞

∫ +∞

−∞
|A11|dt =

∫ +∞

−∞
lim

n→∞
|A11|dt,

by the Dominated Convergence Theorem. We have the following lemma.

Lemma 4. Let hn and Hn be as defined in (7) and (8) respectively. Then

lim
n→∞

Hn =
1√
2π

∫ +∞

−∞
lim

n→∞
hndt.

We now turn to evaluate limhn. Since hn = I[|t| < π
√

n]A1 × A2, we will firstly

evaluate A1 and A2 seperately. For each k1 ∈ K1 and k2 ∈ K2, it can be verified that,
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letting

Bk1 = exp(−itpk1n
1/2)[exp(npk1(exp(itn−1/2) − 1))]

Ck1 = exp(−itpk1n
1/2)[exp(isapk1g(n)) − 1] exp(−npk1)

Dk1 = exp(−itpk1n
1/2) exp(itn−1/2)[exp(−isan−1g(n)) − 1]npk1 exp(−npk1)

B
′

k2
= exp(−itpk2n

1/2)[exp(npk2(exp(itn−1/2) − 1))]

C
′

k2
= exp(−itpk2n

1/2)[exp(isbpk2g(n)) − 1] exp(−npk2)

D
′

k2
= exp(−itpk2n

1/2) exp(itn−1/2)[exp(−isbn−1g(n)) − 1]npk2 exp(−npk2)

Ek1 = Ck1 + Dk1

E
′

k2
= C

′

k2
+ D

′

k2
,

(13)

then, A1 =
∏

K1
(Bk+Ek) and A2 =

∏

K2
(B

′

k+E
′

k). And hn ∼∏K1
(Bk+Ek)

∏

K2
(B

′

k+E
′

k).

We are interested in evaluating lim
∏

K1
(Bk + Ek) and lim

∏

K2
(B

′

k + E
′

k).

The facts of the following two lemmas are given by Esty (1983).

Lemma 5. Let {βk} and {εk} be two sequences of complex numbers, and Mn be a sequence

of subsets of K, indexed by n. If

1.
∏

Mn
βk ∼ β,

2. (
∑

Mn
εk) ∼ ε,

3. βk ∼ 1 uniformly,

4. εk ∼ 0 uniformly,

5. there exists a constant, δ1 such that,
∑

Mn
|βk − 1| ≤ δ1,
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6. there exists a constant, δ2 such that,
∑

Mn
|εk| ≤ δ2;

then
∏

Mn

(βk + εk) ∼ βeε

where β and ε may also depend on n.

Lemma 6. For all k ∈ K, Bk = exp[(−t2/2)pk + O(t3pkn
−1/2)].

The next lemma includes three useful facts.

Lemma 7. 1. For any complex number x satisfying |x| < 1, | ln(1 + x)| ≤ |x|
1−|x| .

2. For any real number x ∈ [0, 1), 1 − x ≥ exp(− x
1−x).

3. For any real number x ∈ (0, 1/2), 1
1−x < 1 + 2x.

Let us consider partitions of the index sets K1 = I1
⋃

II1 and K2 = I2
⋃

II2

I1 = {k : k ∈ K1, pkg(n) ≤ n−δ} and II1 = {k : k ∈ K1, pkg(n) > n−δ}

I2 = {k : k ∈ K2, pkg(n) ≤ n−δ} and II2 = {k : k ∈ K2, pkg(n) > n−δ}

where δ is as in (5).

Lemma 8. (a)
∑

II1
|Ek| → 0 and (b)

∏

II1
(Bk + Ek)/

∏

II1
Bk → 1.

Proof. (a)
∑

II1
|Ek| ≤ 2

∑

II1
(e−npk +npke

−npk). Since the derivative of (e−npk +npke
−npk)

for any k ∈ II1 is negative with respect to pk. It attains its maximum at pk = 1/(g(n)nδ)

with value e−n/(g(n)nδ)(1 + n/(g(n)nδ)). The total number of indices in II1 is less than or

equals to g(n)nδ. Therefore,

∑

II1

|Ek| ≤ 2
(

g(n)nδ
)(

e−n/(g(n)nδ)(1 + n/(g(n)nδ))
)

= 2e−O(nδ)O(n) → 0
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(b) By lemma 6, |Bk| is bounded away from zero, and by the fact that lim |Ek| = 0 and by

applying the first part of lemma 7 with x = Ek/Bk, we can get

∣

∣ln[
∏

II1
(Bk + Ek)/

∏

II1
Bk]
∣

∣ =
∣

∣

∑

II1
ln(1 + Ek/Bk)

∣

∣ ≤∑II1
|ln(1 + Ek/Bk)|

≤ ∑

II1

(

|Ek|
|Bk|−|Ek|

)

= O(
∑

II1
|Ek|) → 0.

(14)

The following conditions are the sufficient conditions to get many subsequent results.

Condition 2.3.1. As n → ∞,

1.
∑

K1
(g2(n)/n)pke

−npk → c1 ≥ 0,

2.
∑

K1
g2(n)p2

ke
−npk → c2 ≥ 0,

3. c1 + c2 > 0,

4.
∑

K2
(g2(n)/n)pke

−npk → d1 ≥ 0,

5.
∑

K2
g2(n)p2

ke
−npk → d2 ≥ 0, and

6. d1 + d2 > 0.

Lemma 9. Under Condition 2.3.1, all the conditions of lemma 5 are satisfied with Mn = I1,

βk = Bk, β = B, εk = Ek and ε = E.

Proof. We need to check all six conditions in Lemma 5.

For 3), it is true because from lemma 6, Bk = exp[(−t2/2)pk + O(t3pkn
−1/2)], and

pk, pk/
√

n are uniformly bounded by 1
g(n)nδ and 1

g(n)
√

nnδ respectively. As n → 0, Bk ∼ 1

uniformly in Mn.

For 1), since
∑

I1
pk → 0,

∏

I1

Bk = exp(−(t2/2)
∑

I1

pk) exp(O((t3/n−1/2)
∑

I1

pk) → 1.
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For 2), 4) and 6),

Ek1 = e−npk1e−itpk1

√
n{isag(n)pk1 −

s2a2g2(n)p2
k1

2 + O(s3a3g3(n)p3
k1

)

+npk1 [1 + it√
n
− t2

2n + O( t3

n3/2 )][− isag(n)
n − s2a2g2(n)

2n2 + O( s3a3g3(n)
n3 )]}

= e−npk1e−itpk1

√
n{isag(n)pk1 −

s2a2g2(n)p2
k1

2 + O(s3a3g3(n)p3
k1

)

+[npk1 + itpk1

√
n − t2pk1

2 + npk1O( t3

n3/2 )][− isag(n)
n − s2a2g2(n)

2n2 + O( s3a3g3(n)
n3 )]}

= e−npk1e−itpk1

√
n{isag(n)pk1 −

s2a2g2(n)p2
k1

2 + O(s3a3g3(n)p3
k1

)

−isag(n)pk1 − s2a2

2 (
g2(n)pk1

n ) + npk1O( s3a3g3(n)
n3 )

+stag(n)√
n

pk1 − is2ta2

2n3/2 g2(n)pk1 + itpk1

√
nO( s3a3g3(n)

n3 )

+ ist2a
2

g(n)
n pk1 + s2t2a2

4
g2(n)

n2 pk1 −
t2pk1

2 O( s3a3g3(n)
n3 )

−isag(n)pk1O( t3

n3/2 ) − s2a2

2
g2(n)

n pk1O( t3

n3/2 ) + npk1O( t3

n3/2 )O( s3a3g3(n)
n3 )}

= e−npk1e−itpk1

√
n{− s2a2g2(n)p2

k1
2 − s2a2

2 (
g2(n)pk1

n )

+stag(n)√
n

pk1 + s2t2a2

4
g2(n)

n2 pk1 − is2ta2

2n3/2 g2(n)pk1 + ist2a
2

g(n)
n pk1

+O(s3a3g3(n)p3
k1

) + O( s3a3g3(n)
n2 pk1) + iO(ts3a3 g3(n)

n5/2 pk1) − O( s3t2a3

2
g3(n)

n3 pk1)

−iO(st3a g(n)

n3/2 pk1) − O( s2t3a2

2
g2(n)

n5/2 pk1 + O( s3a3t3

2
g3(n)

n7/2 pk1)}.
(15)

For all k ∈ I1, e−itpk
√

n → 1 uniformly since pk
√

n ≤
√

n
g(n)nδ . And it is easy to check

that every additive term in Ek converges to zero uniformly for all k ∈ I1. Therefore (4) is
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checked.

It is easy to check that for every term within the curly brackets in (15), denoted by

τ(s, t, n, pk), except the first two terms,

∣

∣

∣

∣

∣

∣

∑

I1

e−npkτ(s, t, n, pk)

∣

∣

∣

∣

∣

∣

≤
∑

I1

e−npk |τ(s, t, n, pk)| → 0

uniformly by Condition 2.3.1.

The uniform convergence of
∑

I1
e−npkg2(n)p2

k and
∑

I1
e−npk g2(n)

n pk are directly guar-

anteed by Condition 2.3.1. Therefore (2) is checked. The uniformity of convergence for

∑

I1
Ek and hence for

∑

I1
|Ek| guarantees (6).

For 5), since Bk = exp[(−t2/2)pk + O(t3pkn
−1/2)] and (−t2/2)pk + O(t3pkn

−1/2) → 0

uniformly, we have

|Bk − 1| ≤ |(−t2/2)pk + O(t3pkn
−1/2)|

1 − |(−t2/2)pk + O(t3pkn−1/2)| = O((−t2/2)pk + t3pkn
−1/2)

and hence
∑

I1

|Bk − 1| ≤ O(
t2

2

∑

I1

pk +
|t3|√

n

∑

I1

pk) < O(t2 + |t3|).

Corollary 2. Under Condition 2.3.1, all the conditions of lemma 5 are satisfied with Mn = I2,

βk = B
′

k, β = B
′
, εk = E

′

k and ε = E
′
.

The proof of corollary 2 is similar to the proof of lemma 9 except changing the I1, Bk,

B, Ek and E to I2, B
′

k, B
′
, E

′

k and E
′
respectively.

Corollary 3. Under Condition 2.3.1,
∏

I1
(Bk + Ek) ∼ ∏

I1
Bk exp(

∑

I1
Ek) and

∏

I2
(B

′

k +

E
′

k) ∼
∏

I2
B

′

k exp(
∑

I2
E

′

k).

Lemma 10. Under Condition 2.3.1,
∏

K1
(Bk + Ek) → BeE , where B = lim

∏

K1
Bk, E =

lim
∑

K1
Ek and

∏

K2
(B

′

k + E
′

k) → B
′
eE

′

, where B
′
= lim

∏

K2
B

′

k, E
′
= lim

∑

K2
E

′

k.
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Proof.
∏

K1
(Bk + Ek) =

∏

I1
(Bk + Ek)

∏

II1
(Bk + Ek)

∼ ∏

I1
(Bk + Ek)

∏

II1
Bk

∼ ∏

I1
Bk exp(

∑

I1
Ek)

∏

II1
(Bk)

∼ ∏

K1
Bk exp(

∑

K1
Ek).

∏

K2
(B

′

k + E
′

k) =
∏

I2
(B

′

k + E
′

k)
∏

II2
(B

′

k + E
′

k)

∼ ∏

I2
(B

′

k + E
′

k)
∏

II2
B

′

k

∼ ∏

I2
B

′

k exp(
∑

I2
E

′

k)
∏

II2
(B

′

k)

∼ ∏

K2
B

′

k exp(
∑

K2
E

′

k).

(16)

Theorem 3. Let g(n) be as in (5). Under condition 2.3.1,

g(n)Z
d−→ N

(

0, (a2(c1 + c2) + b2(d1 + d2))
)

.
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Proof. Since lim
∏

Bk = e−
t2

2 and

lim
∑

K1
Ek = − s2a2

2 (lim
∑

K1

g2(n)
n pke

−npk + lim
∑

K1
g2(n)pke

−npk)

lim
∑

K2
E

′

k = − s2b2

2 (lim
∑

K2

g2(n)
n pke

−npk + lim
∑

K2
g2(n)pke

−npk)

limHn = ( 1√
2π

∫

e−
t2

2 dt) exp(− s2a2

2 (lim
∑

K1

g2(n)
n pke

−npk + lim
∑

K1
g2(n)pke

−npk)

− s2b2

2 lim
∑

K2

g2(n)
n pke

−npk + lim
∑

K2
g2(n)pke

−npk))

= e−
s2

2 (a2(c1+c2)+b2(d1+d2))

(17)

which is the characteristic function of a normal distribution with mean zero and variance

a2(c1 + c2) + b2(d1 + d2).

Lemma 11. Let g(n) be as in (5). Under Condition 2.3.1,

g(n)Z1
d−→ N(0, c1 + c2),

g(n)Z2
d−→ N(0, d1 + d2).

(18)

Proof. Refer to Zhang and Huang (2008).

Theorem 4. Let g(n) be as in (5). Under Condition 2.3.1,

g(n)







Z1

Z2







d−→ N













0

0






,







c1 + c2 0

0 d1 + d2












.

Now, two dimensional asymptotic normality of sample coverage estimators based on

Turing’s formula was derived. It provides us with one more degree of freedom in distribution
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compared with one dimensional case which will be greatly helpful to deal with the case with

more than one parameter, such as Hill’s model, need to be estimated.



CHAPTER 3: A SUFFICIENT CONDITION FOR THE SECOND ORDER TURING’S
FORMULA

3.1 Motivation

Asymptotic normality of Turing’s formula has been discussed by Esty (1983) and Zhang

and Huang (2008) in different multinomial distribution with infinite categories settings.

They both focused on one of the major formula, which is used to estimate the total pop-

ulation proportion of species that are not represented in a sample, in a series of Turing’s

formulae. For simplicity, let’s call it the first order Turing’s formula T1. However it is also

useful to discuss the asymptotic properties of another member of Turing’s formulae which

focus on the estimation of the total population proportion of categories which only contains

one sample point. Let’s call it the second order Turing’s formula T2. Since both Turing’s

formula T1 and T2 describe the tail behavior of the probability distribution from different

aspects. The study on Turing’s formula T2 will help us to acquire more information on the

tail behavior besides the Turing’s formula T1. So in this chapter, we derived the asymptotic

properties for Turing’s formula T2.

Consider a multinomial distribution with its countably infinite number of categories

indexed by K = {k; k = 1, · · · } and its category probabilities denoted by {pk}, satisfying

0 < pk < 1 for all k and
∑∞

k=1 pk = 1. In the subsequent text, the convention that

∑

=
∑∞

k=1,
∏

=
∏∞

k=1, lim = limn→∞ and that
∫

=
∫ +∞
−∞ , unless otherwise indicated is

observed. The symbol “∼” is also used to indicate equality in the limit. Let the category

counts in an iid sample of size n from the underlying population be denoted by {Xk; k ≥ 1}

and its observed values by {xk; k ≥ 1}. For a given sample, there are at most n non-zero

xk’s. Let, for every integer s, 1 ≤ s ≤ n,

Ns =
∑

1[Xk=s], Ts =

(

n

s − 1

)(

n

s

)−1

Ns, and πs−1 =
∑

pk1[Xk=s−1].

Ns and πs−1 may be thought of as, respectively, the number of categories in the population
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that are represented exactly s times in the sample and the total probability associated with

all the categories that are represented exactly s−1 times in the sample. Ts may be thought

of as an estimator of πs−1.

Consider s = 2,

T2 =
2N2

n − 1
and π1 =

∑

pk1[Xk=1].

The objective is to show that, under certain conditions, for some g(n) > 0,

g(n)(π1 − T2)
d−→ N(0, σ2)

where σ2 is a function of {pk}.

3.2 Preliminary Results

Let K1 = {1} and K2 = {2, 3, · · · }. For any k ∈ K = K1 ∪ K2, let

fk(x) =























pk x = 1,

−2/(n − 1) x = 2,

0 x = 0 or x ≥ 3.

Z =
∑

fk(Xk). We are interested in the asymptotic behavior of Zg(n), where g(n) is a

function of n satisfying

g(n) = O(n1−2δ) (1)

for some δ ∈ (0, 1/4), in terms of the limit of its characteristic function, E[exp(isZg(n))].

To begin, we note that Z = Z1 + Z2, where Z1 =
∑

K1
fk(Xk) and Z2 =

∑

K2
fk(Xk).

Lemma 12 below is a well-known fact and Lemma 13 is due to Bartlett (1938).

Lemma 12. Let {Xk} be the counts of observations in category k, k = 1, 2, · · · , in an iid

sample under the multinomial model with probability distribution {pk}. Then

P (Xk = xk; k = 1, · · · ) = P (Yk = xk; k = 1, · · · |
∑

Yk = n)
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where {Yk} are independent Poisson random variables with mean npk.

Lemma 13. Let (U, V ) be a two-dimensional random vector with U integer valued. Then

E(exp(ivV |U = n)) = (2πP (U = n))−1

∫ π

−π
E[exp(iu(U − n) + ivV )]du.

Thus E(exp(isZg(n))) is

(2πP (
∑

Yk = n))−1

∫ π

−π
E[exp(iu

∑

(Yk − npk) + isZg(n))]du.

We want to evaluate limE(exp(isZg(n))). Toward that end, we first note that, by

Stirling’s formula, (2πn)1/2P (
∑

Yk = n) → 1. Therefore we need only to evaluate the limit

of

Hn(s) =

√
n√
2π

∫ π

−π
E[exp(iu

∑

(Yk − npk) + isZg(n))]du,

or letting t = un1/2,

Hn(s) =
1√
2π

∫ +∞

−∞
1[|t| < π

√
n]E[exp(i(n)−1/2t

∑

(Yk − npk) + isZg(n))]dt. (2)

Our first task is to allow the limit operator and integral operator to be exchangeable.

The key element to support this exchange is (4).

Let

hn = 1[|t| < π
√

n]E[exp(i(n)−1/2t
∑

(Yk − npk) + isZg(n)]

hn1 = 1[|t| < π
√

n]E[exp(i(n)−1/2t(Y1 − np1) + isZ1g(n)]

hn2 = 1[|t| < π
√

n]E[exp(i(n)−1/2t
∑

K2
(Yk − npk) + isZ2g(n)],

(3)

Hn(s) =
1√
2π

∫ +∞

−∞
hndt =

1√
2π

∫ +∞

−∞
hn1hn2dt.
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Since |hn2| ≤ 1, |hn| ≤ |hn1|. On the other hand,

E[exp(iu(Y1 − np1) + isf1(Y1)g(n))]

= exp(iu(−np1) + 0) exp(−np1) + exp(iu(1 − np1) + isp1g(n))np1 exp(−np1)

+ exp(iu(2 − np1) − is 2
n−1g(n)) (np1)2

2 exp(−np1)

+
∑∞

j=3 exp(iu(j − np1))P (Y1 = j)

=
∑∞

j=0 exp(iu(j − np1))P (Y1 = j)

− exp(iu(1 − np1))np1 exp(−np1) − exp(iu(2 − np1))
(np1)2

2 exp(−np1)

+ exp(iu(1 − np1) + isp1g(n))np1 exp(−np1) + exp(iu(2 − np1) − is 2
n−1g(n)) (np1)2

2 exp(−np1)

= [exp(−iunp1) exp(i sin(u)np1) exp(np1(cos(u) − 1))]

− exp(iu(1 − np1))np1 exp(−np1) − exp(iu(2 − np1))
(np1)2

2 exp(−np1)

+ exp(iu(1 − np1) + isp1g(n))np1 exp(−np1) + exp(iu(2 − np1) − is 2
n−1g(n)) (np1)2

2 exp(−np1).

Therefore (recall t = u
√

n),

|hn1| ≤ 1[|t| < π
√

n]

[

exp(np1(cos(tn− 1
2 ) − 1)) + 2[np1 exp(−np1) +

(np1)
2

2
exp(−np1)]

]

(= hn1).

It is clear that, for any t, by Taylor’s formula for cos(x),

limhn1 = lim 1[|t| < π
√

n] exp(np1(cos(tn−1/2) − 1)) = exp(−p1t
2/2) (= h1).
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∫

|hn1|dt =
∫

1[|t| < π
√

n]
[

exp(np1(cos(tn− 1
2 ) − 1))

]

dt

+2
∫

1[|t| < π
√

n]np1 exp(−np1)dt + 2
∫

1[|t| < π
√

n] (np1)2

2 exp(−np1)dt

=
∫

1[|t| < π
√

n]
[

exp(np1(cos(tn− 1
2 ) − 1))

]

dt

+2 × 2π
√

nnp1 exp(−np1) + 2 × 2π
√

n (np1)2

2 exp(−np1)

Since the last two terms above vanish to zero as n → ∞, we have, letting θ be a

constant in (0, 1/2),

lim
∫

|hn1|dt = lim
∫

1[|t| < π
√

n]
[

exp(np1(cos(tn− 1
2 ) − 1))

]

dt

= lim
∫ +π
−π

√
n [exp(np1(cos(u) − 1))] du

= lim
∫

|u|< 1

n(1−θ)/2

√
n [exp(np1(cos(u) − 1))] du

+ lim
∫

1

n(1−θ)/2
≤|u|<π

√
n [exp(np1(cos(u) − 1))] du

(= lim η1 + lim η2).

The second term of the last expression above is zero. To see this, we note that for any u
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satisfying 1
n(1−θ)/2 ≤ |u| < π, cos(u) − 1 ≤ cos(1/n(1−θ)/2) − 1, and hence

lim η2 ≤ lim
∫

1

n(1−θ)/2
≤|u|<π

√
n
[

exp(np1(cos(1/n(1−θ)/2) − 1))
]

du

≤ lim 2π
√

n
[

exp(np1(cos(1/n(1−θ)/2) − 1))
]

= lim2π
√

n
[

exp
(

−np1

(

1 − cos(1/n(1−θ)/2)
))]

= lim2π
√

n
[

exp
(

−np1

(

sin2(1/n(1−θ)/2)

1+cos(1/n(1−θ)/2)

))]

= lim2π
√

n exp
(

−np1O( 1
n1−θ )

)

= lim2π
√

n exp
(

−p1O(nθ)
)

= 0.

For u satisfying |u| < 1
n(1−θ)/2 , consider the Taylor expansion of

cos(u) − 1 = −u2

2! + u4

4! − u6

6! + · · · + (−1)mu2m

(2m)! + · · ·

≤ −u2

2 + (u4 + u8 + · · · + u4m + · · · )

= −u2

2 + u4

1−u4 .
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Therefore

lim η1 ≤ lim
∫

|u|< 1

n(1−θ)/2

√
n exp

(

np1

(

−u2

2 +
1

n2−2θ

1− 1

n2−2θ

))

du

= lim
∫

|u|< 1

n(1−θ)/2

√
n exp

(

−np1u2

2 + np1

1

n2−2θ

1− 1

n2−2θ

)

du

= lim

[(

∫

|u|< 1

n(1−θ)/2

√
n exp

(

−np1u2

2

)

du

)

exp
(

O( 1
n1−2θ )

)

]

( letting t = u
√

n)

= lim
[(

∫

|t|<nθ/2 exp
(

−p1t2

2

)

dt
)

exp
(

O( 1
n1−2θ )

)

]

=
∫

exp
(

−p1t
2/2
)

dt.

Since cos(u)− 1 ≥ −u2

2 for all u satisfying |u| < 1
n(1−θ)/2 , it is easy to establish lim η1 ≥

∫

exp
(

−p1t
2/2
)

dt, and hence lim η1 =
∫

exp
(

−p1t
2/2
)

dt.

Now that we have established

lim

∫

|hn1|dt =

∫

lim |hn1|dt, (4)

by the Dominated Convergence Theorem, we have the following lemma.

Lemma 14. Let hn and Hn be as defined in (2) and (3) respectively. Then

limHn =
1√
2π

∫

limhndt.

Let,

hn(s) = 1[|t| < π
√

n]E[exp(i(n)−1/2t
∑

(Yk − npk) + isZg(n)]
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For each k, it can be verified that, letting

Bk = exp(−itpkn
1/2)[exp(npk(exp(itn−1/2) − 1))]

Ck = exp(−itpkn
1/2) exp(itn−1/2)[exp(ispkg(n)) − 1]npk exp(−npk)

Dk = exp(−itpkn
1/2) exp(2itn−1/2)[exp(−is 2

n−1g(n)) − 1] (npk)2

2 exp(−npk),

and Ek = Ck + Dk, hn ∼∏(Bk + Ek). We are interested in evaluating lim
∏

(Bk + Ek).

The facts of the following two lemmas are given by Esty (1983).

Lemma 15. Let {βk} and {εk} be two sequences of complex numbers, and Mn be a sequence

of subsets of K, indexed by n. If

1.
∏

Mn
βk ∼ β,

2. (
∑

Mn
εk) ∼ ε,

3. βk ∼ 1 uniformly,

4. εk ∼ 0 uniformly,

5. there exists a constants, δ1 such that,
∑

Mn
|βk − 1| ≤ δ1, and

6. there exists a constants, δ2 such that,
∑

Mn
|εk| ≤ δ2;

then
∏

Mn

(βk + εk) ∼ βeε

where β and ε may also depend on n.

Lemma 16. For all k ∈ K,

Bk = exp[(−t2/2)pk + O(t3pkn
−1/2)].
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The next lemma includes three useful facts.

Lemma 17. 1. For any complex number x satisfying |x| < 1, | ln(1 + x)| ≤ |x|
1−|x| .

2. For any real number x ∈ [0, 1), 1 − x ≥ exp
(

− x
1−x

)

.

3. For any real number x ∈ (0, 1/2), 1
1−x < 1 + 2x.

Proof. 1) By Taylor’s formula, | ln(1+x)| = |∑∞
j=1(−1)j+1xj/j| ≤∑∞

j=1 |x|j = |x|/(1−|x|).

2) The function y = 1
1+te

t is strictly increasing over [0,∞), and has value 1 at t = 0.

Therefore 1
1+te

t ≥ 1 for t ∈ [0,∞). The desired inequality follows the change of variable

x = t/(1 + t).

3) The proof is trivial.

Let us consider a partition of the index set K = I ∪ II where

I = {k; pk ≤
√

2

n1−δ
} and II = {k; pk >

√
2

n1−δ
}

where δ is as in (1).

Lemma 18. (a)
∑

II |Ek| → 0; and (b)
∏

II(Bk + Ek)/
∏

II Bk → 1.

Proof. (a)
∑

II |Ek| ≤ 2
∑

II(npke
−npk + (npk)2

2 e−npk). Since the derivative of (npke
−npk +

(npk)2

2 e−npk) for any k ∈ II, with respect to pk, is negative. (npke
−npk + (npk)2

2 e−npk) attains

its maximum at
√

2
n1−δ , with value

√
2nδe−

√
2nδ

+ n2δe−
√

2nδ
. The total number of indices in

II is less or equal to n1−δ√
2

. Therefore

∑

II

|Ek| ≤ 2(
n1−δ

√
2

)(
√

2nδe−
√

2nδ
+ n2δe−

√
2nδ

) =
√

2e−
√

2nδ
(
√

2n + n1+δ) → 0. (5)

(b) By Lemma 16, |Bk| is bounded away from zero, and by the fact that lim |Ek| = 0

(and hence lim |Ek|/|Bk| = 0), and by applying the first part of Lemma 17 with x = Ek/Bk,
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we have

|ln [
∏

II(Bk + Ek)/
∏

II Bk]| =
∣

∣

∣

∑

II ln
(

1 + Ek
Bk

)∣

∣

∣ ≤
∑

II

∣

∣

∣ln
(

1 + Ek
Bk

)∣

∣

∣

≤∑II

(

|Ek|
|Bk|−|Ek|

)

= O(
∑

II |Ek|) → 0.

Now let us state the condition under which many of the subsequent results are estab-

lished.

Condition 3.2.1. As n → ∞,

1.
∑

g2(n)p2
ke

−npk → c2 ≥ 0,

2.
∑

g2(n)np3
ke

−npk → c3 ≥ 0 and

3. c2 + c3 > 0.

Lemma 19. Under Condition 3.2.1, all the conditions of Lemma 15 are satisfied with Mn = I,

βk = Bk, β = B, εk = Ek, and ε = E.

Proof. We need to check all six conditions in Lemma 15.

3) is true because

Bk = exp(−(t2/2)pk) exp(O((t3/
√

n)pk))),

and pk and pk/
√

n are uniformly bounded by
√

2
n1−δ and

√
2

n1−δ
√

n
respectively for k ∈ I.

For 1), since
∑

I pk → 0,

∏

I

Bk = exp(−(t2/2)
∑

I

pk) exp(O((t3/
√

n)
∑

I

pk))) → 1.
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For 2), 4) and 6),

Ek = npke
−npke−itpk

√
n
{[

1 + it√
n
− t2

2n + O( t3

n3/2 )
] [

ispkg(n) − s2p2
kg2(n)
2 + O(s3g3(n)p3

k)
]

+npk
2

[

1 + 2it√
n
− 4t2

2n + O( t3

n3/2 )
] [

−2isg(n)
n−1 − 4s2g2(n)

(n−1)2
+ O( s3g3(n)

(n−1)3
)
]}
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= npke
−npke−itpk

√
n
{

ispkg(n) − stpkg(n)√
n

− ist2pkg(n)
2n + O( ist3pkg(n)

n3/2 )

− s2p2
kg2(n)
2 − its2p2

kg2(n)

2
√

n
+

s2t2p2
kg2(n)
4n + O(

s2t3p2
kg2(n)

2n3/2 )

+O(s3p3
kg

3(n)) + it√
n
O(s3p3

kg
3(n)) − t2

2nO(s3p3
kg

3(n)) + O( t3

n3/2 )O(s3p3
kg

3(n))

− isnpkg(n)
n−1 + 2tnpksg(n)√

n(n−1)
+ 2ispkt2g(n)

n−1 + O(−2isg(n)t3pk

2
√

n(n−1)
)

−4npks2g2(n)
2(n−1)2

− 4itnpks2g2(n)√
n(n−1)2

+ 4pkt2s2g2(n)
(n−1)2

+ O(4s2g2(n)t3pk

2
√

n(n−1)2
)

+npk
2 O( s3g3(n)

(n−1)3
) + itnpk√

n
O( s3g3(n)

(n−1)3
) − pkt

2O( s3g3(n)
(n−1)3

) + O( t3pk

2
√

n
)O( s3g3(n)

(n−1)3
)
}

= npke
−npke−itpk

√
n
{(

ispkg(n) − isnpkg(n)
n−1

)

− stpkg(n)√
n

− ist2pkg(n)
2n

− s2p2
kg2(n)
2 − its2p2

kg2(n)

2
√

n
+

s2t2p2
kg2(n)
4n

+2t
√

npksg(n)
n−1 + 2ispkt2g(n)

n−1 − 2npks2g2(n)
(n−1)2

−4it
√

npks2g2(n)
(n−1)2

+ 4pkt2s2g2(n)
(n−1)2

+O( ist3pkg(n)

n3/2 ) + O(
s2t3p2

kg2(n)

2n3/2 ) + O(s3p3
kg

3(n))

+O(
is3tp3

kg3(n)√
n

) − O(
s3t2p3

kg3(n)
2n ) + O(

s3t3p3
kg3(n)

n3/2 )

+O( ist3pkg(n)√
n(n−1)

) + O(2s2t3pkg2(n)√
n(n−1)2

) + O(ns3pkg3(n)
2(n−1)3

)

+O( is3t
√

npkg3(n)
(n−1)3

) − O( s3t2pkg3(n)
(n−1)3

) + O( s3t3pkg3(n)
2
√

n(n−1)3
)
}

(6)
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Now we observe the following:

1. For all k ∈ I, exp(−itpk
√

n) → 1 uniformly since pk
√

n ≤
√

2
√

n
n1−δ → 0.

2. It is easily checked that every additive term of Ek converges to zero uniformly for all

k ∈ I. Therefore 4) is checked.

3. It is easily checked that, for every term within the curly brackets in (6), denoted by

τ(s, t, n, pk), except the fourth and ninth terms,

∑

I

e−npk |τ(s, t, n, pk)| ≤
∑

e−npk |τ(s, t, n, pk)| → 0

uniformly by Condition 3.2.1.

The uniform convergence of
∑

I np3
kg

2(n)e−npk and
∑

I
n2

(n−1)2
p2

kg
2(n)e−npk are directly

guaranteed by Condition 3.2.1. Therefore 2) is checked. The uniformity of the convergence

for
∑

I Ek and hence for
∑

I |Ek| guarantees 6).

For 5), since Bk = exp
(

− t2

2 pk + O(t3pkn
−1/2)

)

and − t2

2 pk + O(t3pkn
−1/2) → 0 uni-

formly, we have

|Bk − 1| ≤ | − t2

2 pk + O(t3pkn
−1/2)|

1 − | − t2

2 pk + O(t3pkn−1/2)|
= O

(

− t2

2
pk + t3pkn

−1/2

)

and hence
∑

I

|Bk − 1| ≤ O

(

t2

2

∑

I

pk) +
|t3|√

n

∑

I

pk

)

< O(t2 + |t3|).

Lemma 15 and Lemma 19 give immediately the following corollary.

Corollary 4. Under Condition 3.2.1,
∏

I(Bk + Ek) ∼
∏

I Bk exp(
∑

I Ek).

Lemma 20. Under Condition 3.2.1,
∏

(Bk + Ek) → BeE , where B = lim
∏

Bk and E =

lim
∑

Ek.
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Proof.

∏

(Bk + Ek) =
∏

I(Bk + Ek)
∏

II(Bk + Ek) ∼
∏

I(Bk + Ek)
∏

II Bk (by Lemma 18)

∼ ∏

I Bk(exp
∑

I Ek)
∏

II Bk (by Lemma 19)

∼ ∏

Bk(exp
∑

Ek) (by Lemma 18).

Remark 1. At this point, one may see the reason why it is imposed that g(n) = O(n1−2δ)

for some small positive δ. If g(n) is let to be a sequence increasing to infinity in the order of

n or faster,
∑

II Ek → 0 cannot be established using the current method. The proof for (a)

of Lemma 18 will break down. Consequently, the partition of K = I ∪II will not effectively

support the subsequent proofs.

3.3 Main Results

Theorem 5. Let g(n) be as in (1). Under Condition 3.2.1,

g(n)(π1 − T2)
d→ N(0, 4c2 + c3).

Proof. Since lim
∏

Bk = e−
t2

2 and

lim
∑

Ek = −s2

2

(

lim
∑

np3
kg

2(n)e−npk + lim
∑

4
n2

(n − 1)2
p2

kg
2(n)e−npk

)

,

limHn =

(

1√
2π

∫

e−
t2

2 dt

)

e
− s2

2

(

lim
∑

np3
kg2(n)e−npk+lim

∑

4 n2

(n−1)2
p2

kg2(n)e−npk

)

= e−
s2

2
(c3+4c2)

which is the characteristic function of a normal distribution with mean zero and variance

c3 + 4c2.

Given a g(n) satisfying (1), Condition 3.2.1 imposes a rate of convergence for {pk}. To

see that and that the condition of Theorem 5 describes a non-empty class of distribution,
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we consider the following example.

Example 3.3.1. Let pk = c
(k+1)2

, k = 1, · · · , where c = 1
(π2/6)−1

. Then g(n) must be of order

O(n3/4) for Condition 3.2.1 to hold.

To see this, we have

g2(n)
∫∞
1

c2

(x+1)4
e
− cn

(x+1)2 dx = c2g2(n)
∫ 1/2
0 t2e−cnt2dt

= c2g2(n)
∫

√
2cn
2

0
t2

2cne−
t2

2
1√
2cn

dt

= O(g2(n)
n
√

n
).

(7)

The last expression goes to a non-zero constant if and only if g(n) = O(n3/4).

Similarly,

g2(n)
∫∞
1 n c3

(x+1)6
e
− cn

(x+1)2 dx = c3g2(n)n
∫∞
1

1
(x+1)6

e
− cn

(x+1)2 dx

= c3g2(n)n
∫

1
2

0 t6e−cnt2 1
t2

dt

= c3g2(n)n
∫

1
2

0 t4e−cnt2dt

= c3g2(n)n
∫

√
2cn
2

0
t4

4c2n2 e−
t2

2
1√
2cn

dt

= O(g2(n)
n
√

n
).

(8)

The last expression goes to a non-zero constant if and only if g(n) = O(n3/4).

Let us consider the following condition:

Condition 3.3.1. As n → ∞,

1. g2(n)
n2 E(N2) → c2

2 ≥ 0,

2. g2(n)
n2 E(N3) → c3

6 ≥ 0, and
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3. c2 + c3 > 0.

Lemma 21. Condition 3.2.1 and Condition 3.3.1 are equivalent.

Proof. Let us again consider the partition of K = I ∪ II. First we note that p2e−np has

a negative derivative with respect to p on interval (2/n, 1] and hence on (
√

2/n1−δ, 1] for

large n. Therefore, since there are at most n1−δ√
2

terms in II,

0 ≤ g2(n)
n2 C2

n

∑

II p2
k(1 − pk)

n−2 ≤ g2(n)
n2 C2

n

∑

II p2
ke

−(n−2)pk ≤ g2(n)
n2 C2

n

∑

II(
√

2
n1−δ )2e

− (n−2)
√

2

n1−δ

≤ g2(n)
n2 C2

n
n1−δ√

2
(

√
2

n1−δ )2e
− (n−2)

√
2

n1−δ = O(n1−3δ)e−O(nδ) → 0.

Thus we have

lim
g2(n)

n2
E(N2) = lim

g2(n)

n2
C2

n

∑

I

p2
k(1 − pk)

n−2 (9)

and

lim g2(n)
∑

p2
k exp(−npk) = lim g2(n)

∑

I

p2
k exp(−npk). (10)

On the other hand,

g2(n)
n2 C2

n

∑

I p2
k(1 − pk)

n−2 ≤ g2(n)
n2 C2

n

∑

I p2
ke

−(n−2)pk ≤ g2(n)
n2 C2

n exp(2 supI pk)
∑

I p2
ke

−npk .

Furthermore, applying 2) and 3) of Lemma 17 in the first and the third steps below

respectively, we have

g2(n)
n2 C2

n

∑

I p2
k(1 − pk)

n−2 ≥ g2(n)
n2 C2

n

∑

I p2
k exp

(

− (n−2)pk

1−pk

)

≥ g2(n)
n2 C2

n

∑

I p2
k exp

(

− npk
1−supI pk

)

≥ g2(n)
n2 C2

n exp(−2n(supI pk)
2)
∑

I p2
ke

−npk .

Noting the fact that lim exp(2 supI pk) = 1 and lim exp(−2n(supI pk)
2) = 1 by the
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definition of I,

lim
g2(n)

n2
C2

n

∑

I

p2
k(1 − pk)

n−2 = lim
g2(n)

n2
C2

n

∑

I

p2
ke

−npk ,

and hence by (11) and (12), we have the equivalence of the first parts of Condition 3.2.1

and Condition 3.3.1:

lim
g2(n)

n2
E(N2) =

1

2
lim
∑

g2(n)p2
k exp(−npk).

The equivalence of the second parts can be established similarly.

Let us again consider the partition of K = I ∪ II. First we note that p3e−np has a

negative derivative with respect to p on interval (3/n, 1] and hence on (
√

2/n1−δ, 1] for large

n. Therefore, since there are at most n1−δ√
2

terms in II,

0 ≤ g2(n)
n2 C3

n

∑

II p3
k(1 − pk)

n−3 ≤ g2(n)
n2 C3

n

∑

II p3
ke

−(n−3)pk ≤ g2(n)
n2 C3

n

∑

II(
√

2
n1−δ )3e

− (n−3)
√

2

n1−δ

≤ g2(n)
n2 C3

n
n1−δ√

2
(

√
2

n1−δ )3e
− (n−3)

√
2

n1−δ = O(n1−2δ)e−O(nδ) → 0.

Thus we have

lim
g2(n)

n2
E(N3) = lim

g2(n)

n2
C3

n

∑

I

p3
k(1 − pk)

n−3 (11)

and

lim g2(n)n
∑

p3
k exp(−npk) = lim g2(n)n

∑

I

p3
k exp(−npk). (12)

On the other hand,

g2(n)
n2 C3

n

∑

I p3
k(1 − pk)

n−3 ≤ g2(n)
n2 C3

n

∑

I p3
ke

−(n−3)pk ≤ g2(n)
n2 C3

n exp(3 supI pk)
∑

I p3
ke

−npk .

Furthermore, applying 2) and 3) of Lemma 17 in the first and the third steps below
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respectively, we have

g2(n)
n2 C3

n

∑

I p3
k(1 − pk)

n−3 ≥ g2(n)
n2 C3

n

∑

I p3
k exp

(

− (n−3)pk

1−pk

)

≥ g2(n)
n2 C3

n

∑

I p3
k exp

(

− npk
1−supI pk

)

≥ g2(n)
n2 C3

n exp(−2n(supI pk)
2)
∑

I p3
ke

−npk .

Noting the fact that lim exp(3 supI pk) = 1 and lim exp(−2n(supI pk)
2) = 1 by the

definition of I,

lim
g2(n)

n2
C3

n

∑

I

p3
k(1 − pk)

n−3 = lim
g2(n)

n2
C3

n

∑

I

p3
ke

−npk ,

and hence by (11) and (12), we have the equivalence of the first parts of Condition 3.2.1

and Condition 3.3.1:

lim
g2(n)

n2
E(N3) =

1

6
lim
∑

g2(n)np3
k exp(−npk).

Lemma 21 allows us to re-state Theorem 5:

Theorem 6. If there exists a g(n) satisfying (1) and Condition 3.3.1, then

n(π1 − T2)
√

8E(N2) + 6E(N3)

d→ N(0, 1). (13)

As a consequence of Theorem 5, we have the following theorem:

Theorem 7. If there exists a g(n) satisfying (1) and Condition 3.3.1, then

n(π1 − T2)√
8N2 + 6N3

d→ N(0, 1).

The proof of Theorem 7 is similar as in Zhang and Huang (2008). (omitted)
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We note that the conditions of Theorems 6 and 7 requires no further knowledge of g(n)

other than its existence.

Theorem 7 leads to an approximate (1 − α)-level confidence interval for π1:

T2 ± zα/2

√

8N2/n2 + 6N3/n2. (14)



51

REFERENCES

Bartlett, M.S. (1938), The characteristic function of a conditional statistic, Journal of the
London Mathematical Society, 13, pp.62-67.

Chao, A. (1981), On estimating the probability of discovering a new species, Annals of
Statistics, 9, pp.1339-1342.

Chao, A. (1984), Nonparametric estimation of the number of the classes in a population,
Scandinavian Journal of Statistics, 11, pp.265-270.

Chao, A. and Lee, S. (1992), Estimating the number of classes via sample covergae, Journal
of American Statistical Assciation, 87, pp.210-217.

Efron, B. and Thisted, R. (1976), Estimating the number of unseen species: how many

words did Shakespeare know?, Biometrika, 63, pp.435-447.

Esty, W.W. (1982), Confidence intervals for the coverage of low coverage samples, Annals
of Statistics, 10, pp.190-196.

Esty, W.W. (1983), A normal limit law for a nonparametric estimator of the coverage of

a random sample, Annals of Statistics, 11, pp.905-912.

Esty, W.W. (1985), Estimation of the number of classes in a population and the coverage

of a sample, Mathematical Scientist, 10, pp.41-50.

Esty, W.W. (1986a), The size of a coinage, Numismatic Chronicle, 146, pp.185-215.

Esty, W.W. (1986b), The efficiency of Good’s nonparametric coverage estimator, Annals
of Statistics, 14, pp.1257-1260.

Fritsch, K.S. and Hsu, J.C. (1999), Multiple Comparison of Entropies with Application to

Dinosaur Biodiversity, Biometrics, 55, pp.1300-1305.

Good, I.J.(1953), The population frequencies of species and the estimation of population

parameters, Biometrika, 40, pp.237-264.

Good, I.J.and Toulmin, G.H. (1956), The number of new species, and the increase in

population coverage, when a sample is increased, Biometrika, 43, pp.45-63.

Harris, B. (1959), Determining bounds on integrals with applications to cataloging problems,
Annals of Mathematical Statististics, 30, pp.521-548.

Harris, B. (1968), Statistical inference in the classical occupancy problem unbiased estima-

tion of number of classes, Journal of American Statistical Assciation, 63, pp.837-847.

Hellmann, J.J. and Fowler, G.W. (1999), Bias, precision, and accuracy of four measures

of species richness, Ecological Applications, 9(3), pp. 824-834.

Hill, M. Bruce (1975), A simple general approach to inference about the tail of a distribu-

tion, The Annals of Statistics, 3, pp. 1163-1174.

Hill, M.O. (1973), Diversity and evenness: a unifying notation and its consequences, Ecol-
ogy, 54, pp. 427-431.



52

Holst, L. (1981), Some assymptotic results for incomplete multinomial or Poisson samples,
Scandinavian Journal of Statistics, 8, pp.243-246.

Magurran, A.E. (1988), Ecological diversity and its measurement, Princeton University
Press, Princeton New Jersey, USA.

Mao, C.X. and Lindsay, B.G. (2002), A Poisson model for the coverage problem with a

genomic application, Biometrika, 89, pp.669-681.

Rennolls, K. and Laumonier, Y. (2006), A new local estimator of regional species diversity,

in terms of ‘shadow species’, with a case study from Sumatra, Journal of Tropical Ecology,
22, pp. 321-329.
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