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ABSTRACT 
 
 

IMAN NAZIRI MOGHADDAM.  Optimal Sizing and Operation of Energy Storage 
Systems to Mitigate Intermittency of Renewable Energy Resources. (Under the direction 

of PROF. BADRUL CHOWDHURY) 
 

Increased share of Renewable Energy Sources (RES) in the generation mix requires higher 

flexibility in power system resources. The intermittent nature of the RES calls for higher 

reserves in power systems to smooth out the unpredictable power fluctuations. Grid-tied 

energy storage systems are practical solutions to facilitate the massive integration of RES. 

The deployment of Battery Energy Storage Systems (BESS) on the power grids is 

experiencing a significant growth in recent years. Thanks to intensive research and 

development in battery chemistry and power conversion systems, BESS costs are reducing. 

However, much more advancements in battery manufacturing as well as additional 

incentives from the market side are still needed to make BESS a more cost-effective 

solution. Planning and operation of the BESS significantly influence its profitability. It is 

quite important to find optimal sizes of batteries and inverters. Sizing of the BESS for two 

different applications is addressed in this work. In the first application, the BESS is co-

located with Pumped Storage Hydro (PSH) to meet the Day-Ahead (DA) schedule of wind 

generation. In the second application, a method for BESS sizing in the presence of PV-

induced ramp rate limits is proposed. In this thesis, two methods based on Receding 

Horizon Control (RHC) for the optimal operation of the BESS are introduced. A co-located 

BESS and wind farm is considered in both methods. In one method, electricity market 

participation is not considered, and the goal is solely meeting the DA schedule utilizing the 
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BESS. A novel predictive control method is proposed in this part and the efficiency of the 

method is evaluated through long-run simulations using actual historical wind power.  

In the second scenario, market participation of the BESS is taken into account. The 

deviation from the DA schedule can be compensated through the BESS, or by purchasing 

power from the real-time electricity market. The optimization problem based on physical 

and operational constraints is developed. The problem is solved through an RHC scheme 

while using updated wind power and electricity price forecasts. In this thesis, a Ridge-

regression forecast model for electricity price and an ARIMA forecast model for wind 

power are developed. Simulation results using actual historical data for wind power and 

electricity price demonstrate that the proposed algorithm increases the average daily profit. 

In order to evaluate the impact of the BESS lifetime and price on average daily profit, 

different scenarios are defined and simulated. Although they increase the complexity of the 

problem, much more realistic result might be obtained when all details and constraints are 

considered.   
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CHAPTER 1: MOTIVATION AND PROBLEM OVERVIEW 

 

1.1 Motivation 

Wind power, as a valuable renewable energy resource, is experiencing an unprecedented 

surge in recent years.  The US government has set a national mandatory Renewable Energy 

Target (RET) of 20% by 2020 [1] . Nevertheless, many states have set higher renewables 

penetration as their individual targets. Similarly, the European Renewable Energy Council 

(EREC) has released its roadmap for increasing renewable energy penetration to 20% by 

2020 [2] . Presently, the contribution of renewable resources shows photovoltaics having 

the highest rate of growth and wind power having the larger share of generation.  

Large wind farms are mainly connected to transmission networks due to robustness of the 

high voltage transmission interconnected system. Although there are some concerns about 

the impact of wind variability on voltage imbalance on the distribution network, small wind 

turbines may connect at the distribution level. However, low X/R ratio and the radial 

structure of distribution networks prevent high penetration of distributed generation [3]. 

Variations in power generation cause voltage variations on distribution networks, and to 

some extent, on transmission systems. This voltage variation may lead to voltage instability, 

power loss increase, etc. Thus, as renewable energy penetration increases, the role of energy 

storage systems cannot be underestimated. Keeping the power output of wind farms within 

the scheduled limit may be done by adding energy storage to the system.   

The primary obstacle to deployment of BESS in power networks is the high cost of 

batteries. For instance, Li-ion and Sodium-Sulfur (NaS) batteries cost 300-500 $/kWh, 
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depending on the power rating. In addition, lead-acid types costs 150-250 $/kWh and Zinc-

Bromine batteries cost 200-400 $/kWh [4]- [5]. Li-ion and NaS batteries are capturing a 

larger portion of the market due to their fast response and life cycle model. Lead-acid 

batteries still encounter the sudden failure problem, which eliminate them from safe and 

reliable options. The following figure shows the trend of the battery price for Electric 

Vehicles (EV) [6] The trend is similar for batteries meant for stationary applications.    

 

Figure 1-1 Estimation and trend of battery price  

Finding an optimal power and energy capacity for a battery energy storage is a crucial 

concern. Various types of batteries are suitable for different applications. Some types can 

support high power rating, while others are suitable for high-energy rating. Fast acting 

batteries with high power capacity are a good fit for frequency regulation services 

(regulation up/down and responsive reserves). Conversely, high-energy capacity batteries 

may be utilized for energy arbitrage and balancing services. This main objective of this work 

is to find the optimal size of energy storage and optimal operation to facilitate high 

penetration of renewable energy resources in power networks. 
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1.2  Methods for Sizing of Energy Storage 

One of the major concerns in high penetration of renewable energy resources is the 

impact on frequency deviations on the grid [7]- [8]. The governor and rotor inertia of 

synchronous generators in conventional power plants can compensate for minor frequency 

deviations [9]. However, the increasing level of renewable energy resources calls for 

additional reserves and better coordination in the network. Energy Storage Systems (ESS) 

is such a solution to mitigate the adverse effects of the variability that accompanies 

renewable energy resources.      

In this chapter, different methods for sizing of energy storage for renewable energy 

integration are addressed. First, a simple method of battery and inverter sizing is reviewed 

for solar application based on simulation of historical data. Then, a generic method for 

sizing of BESS for smoothing out the power generation of large PV farms is introduced. 

Then it will be shown how control (charge/discharge) strategy of the BESS affects the 

required battery size to mitigate the solar farm’s output. Better performance of a BESS 

results in smaller size of battery and inverter.  

In the next part of this chapter, two or more energy storage systems coordinated together, 

as a more cost-effective solution, are considered to mitigate the intermittency of wind 

energy. A novel frequency-based method is used to optimally size two or more different 

types of energy storage systems.  

Different ESS technologies have varying performances over a time horizon. Some 

technologies such as Pumped Storage Hydro (PSH) and Compressed Air Energy Storage 

(CAES) are useful in slow cycles due to their ramp rates. On the contrary, a number of 
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technologies, like BESS and supercapacitors, are cost-efficient in small and frequent 

variations.     

The time horizon of imbalance power can be decomposed into intra-day, intra-hour, and 

real-time components using frequency domain components. Hence, ESSs can be employed 

based on their efficiency in the different time spans. The Discrete Fourier transform (DFT) 

is one of the methods to decompose time horizon data into high frequency and low 

frequency components. 

Mainly, energy storage sizing is about finding minimum power and energy capacity of ESS 

to mitigate wind power forecast error. Needless to say, a larger ESS results in smaller 

power forecast errors and higher ESS costs. Thus, there is a tradeoff between the ESS size 

and its capital cost. Most of the research work seen in the literature have addressed optimal 

ESS sizing for only one ESS technology. However, different ESS technologies can operate 

together to improve their performance. Hybrid Energy Storage Systems (HESS) refers to 

two or more ESS technologies with their schedule and operation coordinated to mitigate 

wind power fluctuations. 

In this work, PSH and grid-scale Battery Energy Storage System (BESS) are considered to 

operate and smooth out wind power variability.  The actual and day-ahead wind forecast 

data of the BPA area in 2014 is used in this work. Based on the BPA wind data, imbalance 

power is found from the forecasted and actual data. Imbalance power is decomposed into 

two separate signals (intra-day and intra-hour) to be used for HESS optimal sizing.  
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1.3  Predictive operation of battery energy storage with high wind penetration 

Since the main obstacle of battery energy storage systems (BESS) to be implemented in 

the grid is the high cost of power conversion systems and batteries, optimal sizing of 

batteries seems essential to find the minimum size of energy storage to mitigate the 

intermittency of wind or solar power output. Charge/discharge or control strategy of battery 

energy storage directly affect the required size of power conversion system (power rating) 

and batteries (energy rating). Better performance of battery energy storage significantly 

reduces the minimum required size of batteries. In the second chapter of this thesis, a novel 

control method is proposed for battery energy management to fulfill a wind production 

commitment. This method aims to minimize the error between the day-ahead scheduled and 

actual production of a wind farm. The proposed strategy, basically, works based on the 

updated forecast data (2-hour ahead update) and a feedback from State of Charge (SOC) of 

the batteries to optimally manage the charge/discharge of the BESS. Also, the proposed 

method prevents the batteries from deep discharge and as a result, the estimated lifetime of 

batteries increases by using the proposed method. A new method for lifetime estimation of 

a battery based on rain flow cycle counting is introduced. This new method is easy to 

implement and requires less processing time. 

The Sodium-Sulfur (NaS) type of battery is selected for simulation purposes.  The results 

show that the new adaptive controller increases availability of the battery energy storage 

without decreasing its lifetime. The simulations are compared to a simple (minute-by-

minute) controller. Ultimately, sizing for BESS is done in a scenario where there is a 4500 

MW wind farm (BPA area), and results support the fact that a BESS with adaptive controller 

needs less power and energy capacity.  
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1.4 Optimal sizing and operation of battery energy storage systems connected to wind 

farms participating in electricity markets 

In this chapter, the opportunities for the BESS to participate in electricity markets is 

reviewed. A BESS is a reliable resource to provide energy for various power system 

applications. The BESS can increase the flexibility and reliability of the renewable energy 

dispatch. Wind energy has the largest contribution among renewable energy resources and 

its control has become a research focus in power systems area.  

In fact, the main challenge for batteries to participate in a market is the high cost. Lifetime 

of batteries should be estimated and modeled as a constraint in the optimization model. 

A novel control strategy of a BESS is introduced thesisto increase its operating profit. 

An optimization problem based on RT and DA market clearing prices is developed to 

calculate the actual profit of the combined BESS and wind farm operation. Also, all physical 

and operational constraints are taken into account. Most of the papers in the literature 

consider the BESS as an active power source or sink. However, this thesis takes the 

advantage of the reactive power support of the BESS and proposes a new voltage control 

constraint of the coupling bus. Although there is no compensation by system operators for 

reactive power support at the present time, some incentives or regulations might become 

available in the near future for distributed energy resources. Some standards like IEEE 1547 

and ANSI C84.1 require distributed generators to maintain the voltage at the point of 

common coupling within specified limits.  

The focus of this thesis is on the maximization of the profit when the BESS is co-located 

with a wind farm. Thus, all related physical and operational constraints are modeled and the 

optimization problem is solved through a Receding Horizon Control (RHC) scheme. The 
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RHC require forecast of wind power and electricity price data. Therefore, wind and price 

data are comprehensively analyzed to obtain proper forecast models. 

The word cloud of the keywords in this thesis is shown in Error! Reference source not 

found. below which is made by free online tools in wordle.net. 

 

Figure 1-2 Word cloud of this thesis 
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CHAPTER 2: Literature Review 
 

 

In this chapter, a comprehensive review on existing work is provided. The literature review 

in this thesis covers two main areas: planning and operation. In the first part, existing 

solutions on the BESS sizing is reviewed. Then, a literature review on the BESS operation 

is provided in the second section.  

2.1 Existing work on ESS sizing 

The ESS sizing can be divided into two main categories. The first category includes the 

methods dealing with the ESS sizing in an analytical method. The second category deals 

with the problem by utilizing the historical data. 

In the literature, ESS sizing methods can be classified into two groups: (i) time domain 

approaches and (ii) frequency domain methods. Many papers have been published about 

ESS sizing with time domain approaches. The control strategy plays an important role in 

increasing the efficiency and decreasing the size of the ESS. In [10], simple, fuzzy, ANN, 

and advanced ANN control methods of battery energy storage are introduced and employed 

in time-series simulations to optimally size the BESS. Pre-compensation and post-

compensation control methods to minimize hourly forecast errors are proposed in [11]. 

Optimal storage sizing is formulated in [12] as a stochastic linear programming problem 

when load and wind generation is considered as two random variables. Also, references 

[13] [14] [15] [16] aim at solving ESS optimal sizing problem to smooth out the variability 
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of wind power. In particular, [13] [14] [15] represent stochastic optimization problems to 

find the minimum required size of ESS with maximum operating profit while considering 

transmission constraints. Also, statistical analysis can be used to derive a model to predict 

load and wind output. In [17], a coordinated operational dispatch of Li-ion battery is 

studied based on a statistical analysis.  

However, some papers have presented frequency domain approaches in ESS sizing. DFT 

method is used in [18] to decompose balancing power into real-time, intra-hour, and intra-

day components. In [19], frequency domain method is used to size both battery and a diesel 

generator in an isolated microgrid. In [20], DFT and wavelet are used to size battery (NaS) 

and CAES. In this work, different aspects of using DFT and wavelet are discussed and 

results show that size of the HESS using DFT is smaller. Also, wavelet based method 

results in more wind spillage and backup energy. In [21], wavelet method is used to size 

an ultra-capacitor bank and a battery energy storage. 

2.2 Existing work on the ESS operation 

The ESS is a promising solution for any kind of intermittent renewable energy resource. 

Various energy storage technologies for wind power application are reviewed in [5]. 

Authors have compared different storage technologies from conventional (like pumped 

storage hydro, or PSH) to different types of BESS. Several papers are published in the 

literature to address aspects of renewable energy resources on future generation, and 

highlight technical operational issues of the grid with high penetration of variable energy 

resources [22] [23] [24]. In particular, small signal stability of a system with high 

penetration of wind turbines is discussed in [22] . In [23], the restrictions of hybrid wind 

and hydro storage system for connecting to the conventional grid of the Canary Islands is 
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investigated. A decentralized control approach for active and reactive power injection in 

distribution network is addressed in [24].  

Gants, et al, in [25], discuss the potential improvement in reliability of distribution 

networks by means of distributed energy storage systems as well as distributed generations 

(DG). Optimal placement of energy storage systems is attempted in order to reduce societal 

costs of outage. 

Energy storage systems can be installed to provide several services to distribution 

network operators including energy arbitrage, peak shaving, frequency and voltage control, 

outage mitigation, and distribution system equipment deferral [26], [27], [28], and [29]. 

Specifically, references [28] and [29] address peak shaving and energy balance applications, 

respectively. Reference [30] proposes a methodology to operate a battery for multiple 

applications. An economic dispatch problem including ancillary services, outage mitigation, 

and energy arbitrage are addressed and results show which service takes priority over other 

services.   

Many control methods have been proposed in order to mitigate fluctuations. In [31], the 

authors develop a control methodology based on feedback-based control scheme for optimal 

use of the battery energy storage system.  

In [32], an optimal ESS management together with a real-time control strategy is 

proposed where both aim to increase renewable energy penetration by means of energy 

buffering.  Two control methods (pre-compensation and post-compensation) are introduced 

in [10] to minimize hourly forecasting errors. Moreover, optimal BESS sizing assessment 

is investigated in that paper using some new control methods. In [10], four different control 

methods (simple, fuzzy, ANN, and advanced ANN) of BESS are compared for large wind 
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turbine applications. The authors have also attempted optimal sizing of Zinc-Bromine 

batteries from a cost-benefit perspective to supply as much power as forecasted in preceding 

day. The BESS sizing problems in many of the mentioned references are presented in a 

system including wind turbines and a grid-scale BESS by time-series simulations. 

Several studies including [33], [34], and [30] have assessed BESS economic viability 

and its impact on different markets. Specifically, [33] addresses technical performance and 

value propositions of Sodium-Sulfur (NaS) battery in NYISO and PJM markets. The BESS 

evaluation in CAISO market is discussed in [34]. Different services and their economic 

values of BESS deployment are reviewed in [30].  

The studies on BESS operation can be divided into two groups: first, those that aim at 

improving reliability or efficiency of the power system without participating in the market 

[35] and [36].  Stability, reliability, security, and efficiency of power systems in 

transmission [37] or distribution network [38] are covered in this group.  

Second, studies which consider market participation of BESS, such as [39], [40], [41], 

and [42]. In detail, [39] investigates benefits of BESS that is connected to a wind farm. 

Reference [40] introduces a framework for energy storage and demand response to 

optimally manage energy from demand response aggregator's perspective. On the other 

hand, the author in [41] and [42] study energy storage values as an independent asset. In 

[41], optimal bidding strategy of battery energy storage in day-ahead market is proposed. In 

this paper, battery as a price taker can submit bids to participate in California day-ahead 

market or it can be self-scheduled. Second life batteries can be a candidate of brand new 

batteries since they are quite cheaper but still can produce energy but for less duration. Using 
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the used or second life batteries in grid scale operation is also considered in [41]. A similar 

problem with a larger BESS while participating as a price-maker is addressed in [42]. 

Self-scheduling problem, basically, comprises an objective function (for example the 

profit that should be maximized) and couple of technical and physical constraints. In [43], 

a method for self-scheduling of individual pumped storage hydro is proposed to participate 

in energy and reserve (spinning reserve) market. At the end of self-scheduling time span, 

energy stored in upper reservoir is checked to have the same energy level prior to the start 

time of self-scheduling. In [44], self-scheduling of pumped storage hydro in energy and 

reserve market (spinning and frequency regulation market) with simplified technical 

constraints is addressed. A heuristic self-scheduling method with composition of Hydro 

plant and PSH in a competitive electricity market is proposed in [45]. Self-scheduling of 

PSH and NaS battery is formulated in [46]. In this thesis, co-optimization of energy and 

reserve in electricity market for both PSH and battery is addressed to economically compare 

profitability of batteries and PSH in electricity market. Authors showed traditional 

technologies like PSH has more economical merits than emerging technologies. However, 

in modern power grid with higher renewable energy penetration, demands for more fast-

acting energy storages like batteries is increasing. The fast fluctuation of renewable energy 

resources calls for fast regulation up/down among ancillary services.    

In [47], a structure for self-scheduling of PSH to increase the profit for integrated 

operation of wind and PSH is introduced. Planning and operation of combined wind power 

and pumped storage is addressed in [48], [49], [50]. In these papers, it is assumed that wind 

farm owner should must pay for energy storage, which is not realistic, and individual energy 

storages can participate in electricity and reserve market.      



6 

 

Authors, in [51], seek find an optimal operation of individual owned battery energy 

storage in energy and reserve market in a market similar to PJM 

An optimal real-time energy management for the BESS is introduced in [52] to increase 

the RES penetration. In [10], ANN and fuzzy control methods of the BESS are developed 

to mitigate wind power fluctuations and meet DA commitments. Reference [11] aims at 

minimizing the hourly forecast errors by introducing two control methods (pre-

compensation and post-compensation) to fulfill hour to hour commitment. Both [10] and 

[11] study optimal sizing of the BESS by means of long-run time series simulations. On the 

other hand, authors in [53] and [54] utilize probabilistic wind forecasts in their models to 

develop a RHC for the BESS to minimize the hourly scheduling errors. 

Few papers consider high-resolution information of the market to increase the 

profitability of the BESS. A forecast model to detect price spikes in the RT market is 

proposed in [55]. The forecast model is utilized in an optimization problem to increase the 

BESS profit while operating in Ontario's electricity market.    
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CHAPTER 3: OPTIMAL SIZING OF HYBRID ENERGY STORAGE 

SYSTEMS TO MITIGATE WIND POWER FLUCTUATION 

 

3.1 Introduction 

High renewable energy penetration levels may be adversely impacted by frequency 

deviations as a result of wind power fluctuations. Energy Storage System (ESS) can be a 

viable candidate for mitigating wind power fluctuations. However, economic 

considerations for ESS may cause significant limits in implementation. Therefore, 

effectiveness and optimal size of ESS are important to study. This chapter addresses 

methods to find an optimal size of sodium sulfur or Li-Ion battery energy storage to 

mitigate PV fluctuations. Two different methods for optimal sizing are introduced in the 

first section of this chapter. Also, a novel method for sizing of BESS and pumped storage 

hydro is proposed, in the second section of this chapter, to accommodate high penetrations 

of wind energy. The proposed method decomposes the imbalance power by using Discrete 

Fourier Transform (DFT) to fast and slow components. Hence, different ESS technologies 

can be dispatched based on their effectiveness in various time spans. For instance, the 

slower pumped storage hydro can compensate slow cycles, and the fast-acting batteries can 

be dispatched to balance smaller and more frequent cycles. This method can be used in the 

planning of different ESS technologies. The schematic of this method is presented in Figure 

3-1. Comparative studies on real wind data from Bonneville Power Administration (BPA) 

shows the efficacy of the proposed method. 
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Figure 3-1 Imbalance power decomposition schematic. 

3.2  Time Domain Approaches 

Each battery energy storage needs the power rating based on Power Conversion System 

(PCS) capacity and energy rating based on size of the batteries. In time domain approaches, 

energy and power ratings are calculated based on analysis is carried or simulation is 

performed in time domain. Generally speaking, there are two methods to find the optimal 

size of the battery energy storage system: 

- Analytical method based on worst case scenario  

- Simulation method based on control strategy 

In this part, the application of PV in finding the minimum size of batter is considered. It is 

worth noting that the requirements for size of the battery storage associates with: 

- Capacity of PV plant 

- Field size of PV plant (dimensions) 

- Average and worst rate of fluctuations (average and high cloud speed based on 

historical data) 
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- Acceptable ramp rate limit due to limits of grid interconnection    

3.2.1 Analytical method based on 90% power drop/rise 

In this scenario, it is assumed that the BESS is sized to support one worst fluctuation cycle. 

This fluctuation is dropping from 100% to 10% PV generation equal to 90% of nominal 

PV capacity. This method guaranties the best power sizing but it slightly underestimates 

the energy ratings. The reason would be because this method ignores the fact that PV 

generation can slowly rise without any charging of batteries and another significant 

fluctuation happens after a while and there is no energy stored in batteries to support the 

grid. More than that, it doesn’t take the charging/discharging efficiencies. The analytical 

method results in fully discharge of batteries; however, the recommended operational SOC 

is 30%-80% and this fact should be considered, too.  

Maximum PV generation reduction (increase) in a windy and cloudy day depends on the 

speed of wind and the geographical dimensions of the PV plant. The faster the clouds move, 

the faster the PV power falls (rises). Also, in a bigger PV plant, it takes more time for the 

land to be covered fully by clouds. The power drop of PV production can be explained with 

an exponential function based on a time constant [56]. Figure 3-2 illustrates how 

exponentially PV power production falls. In this figure also the expected ramp rate limit is 

shown. Battery energy storage can be good candidate to balance the deficit between ramp 

rate limit and actual power drop.   

In the following figures, the concept of 90% PV power drop and rise is depicted. The 

maximum/minimum of BESS output is the required inverter size and the hatched area 

shows the required energy capacity for a battery to mitigate PV fluctuations.  
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Figure 3-2 Output power of PV vs ramp rate limit and the required battery output to mitigate the PV power 

drop. Hatched area shows energy required to fulfill the ramp rate limit. 

 

 

Figure 3-3 Output power of PV vs ramp rate limit and the required battery output to mitigate the sudden PV 

power rise. 

 

BES
P  at each time can be derived as:  

 ( ) . t
BES PV

P t ramp P= −         (3.1) 

 90 10
t

PV
P e τ−= +     (3.2) 

Where τ is time constant for the exponential function in second and is defined as follows 

[56]: 
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.a b

v
τ =     (3.3) 

Where 

a, b  Length and Width of the plant (m) 

v   Wind speed (m/s) 

Then 
BES

P  can be written as:  

( )( ) 100 . 90 10
100 60

r
t

PV

BES

P t
P t ramp e τ− = − − + 

 
     (3.4) 

Where 

( )
BES

P t   Battery power (KW) 

r

PVP   PV plant power capacity (KW) 

τ   Cloud coverage time constant (s) 

maxr   Ramp up/down limit (%/min) 

Maximum required power capacity of the inverter can be found by maximizing the above 

function. 

max

90
( )

0
60100

r t
BES PVdP t P ramp

e
dt

τ
τ

− = − + = 
 

    (3.5) 

( )max
5400ln

.
t

ramp
τ τ=     (3.6) 

By plugging (3.6) into (3.4) maximum value of 
BES

P can be found: 
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5400
90 . 1 ln

100 .

r

PV
rated

P
P ramp

ramp
τ

τ
   

= − +   
    

    (3.7) 

Where  

ratedP is power rating (KW) of inverter. 

The energy function can be found by taking the integral of the power function.  Suppose 

Ts is the time that the PV output reaches 10% of the nominal power, then ( )
s

E t would be 

the maximum energy required to firm PV output fluctuations.  

5400
Ts

ramp
=     (3.8) 

T

0
2. ( )

s

rated BESE P t= ∫     (3.9) 

Note that, to cover both rising and falling fluctuations, twice the calculated energy rating 

is considered.  

5400
.0.9 2700

.
1800

r

rampPV

rated

P
E e

ramp

ττ τ
− 

= − − 
 

    (3.10) 

In the following figures, it is shown that a higher size of PV plant results in a smoother 

drop of PV output. Consequently, the required power and energy ratings for the BESS in 

smaller PV plants are relatively higher than larger PV plants.  
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Figure 3-4 Correlation between size of PV plant and speed of power drop. 

 

Figure 3-5 Correlation between size of PV plant and the relative size of BESS. 

 

The geographical area of 1 MW PV power plant in the Marshal power plant (operated by 

Duke Energy) is 10500m2. One can estimate the size of a 9 MW PV power plant by scaling 

from 1 MW. Also, 40 MPH is considered as high wind speed which is quite an overestimate 

for 95% of the time in a year. For a 9 MW solar plant with 10% ramp rate control, the 

power rating can be calculated by plugging the given numbers in (3.7): 
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 6500ratedP KW=     (3.11) 

Using the same numbers gives the energy ratings for batteries: 

1000ratedE KWh=     (3.12) 

Please note that, this size of battery is to support the worst PV generation fluctuation. 

However, it needs some maneuverability for more fluctuation and charge/discharge losses. 

This size of battery results in SOC=0% at lowest energy level and SOC=100% at the 

highest energy level. Double the size (2000KWh) may be needed to utilize half of the 

battery energy capacity to stick with 0.3<SOC<0.8 limit.  

3.2.2 Simulation method based on control strategy  

The size of the energy storage highly depends on the requirements from the grid side and 

the control strategy for charging/ discharging from the inverter side. Most o utilities prefer 

smooth power injection from PV plant; however, due to unpredictable nature of the solar 

irradiance, battery energy storage needs to be involved to make sure the PV fluctuations 

doesn’t affect the stability of the power grid. One of the main requirements from the grid 

side is to receive energy within a ramp rate limit. It means if the fluctuations doesn’t violate 

the ramp rate, the power injection from the PV plant is good enough. Otherwise, the battery 

should inject or absorb power to smooth out the power fluctuations and bring the combined 

power to the required standard.    

In this part, the simple ramp-rate control is implemented, and the optimal size of the battery 

and inverter from the power output of BESS can be found. This method should be able to 

validate the analytical method’s results. The schematic of the block diagrams for ramp-rate 

control is presented in Figure 3-6. 
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Figure 3-6 Schematic of ramp rate control. 

The results for combined output, BESS output, Battery energy level, and Battery SOC is 

shown in Figure 3-7. 

 

Figure 3-7 PV output for a day with a high fluctuations, BESS output, and combined PV and BESS output. 
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Figure 3-8 Finding the minimum power capacity from BESS output in a cloudy day. 

 

Figure 3-9 Finding the minimum energy rating from energy level of BESS in one cloudy day. 

Simulation results are close to the analytical results. To observe the SOC changes, 

E=2000KWh is selected and the results show that SOC remains between 30% and 80% 

and the deeper discharges doesn’t occur.  
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Figure 3-10 SOC track of battery for one day for 2000 KWh batteries 

 

3.3 Frequency Domain Approaches: Sizing of Two or More ESS  

Different ESS technologies have different response times. For example, batteries are fast 

responding equipment suitable for variety of applications, from frequency response to 

spinning reserves. However, the slower ESS are just suitable for applications which do not 

require fast-acting technologies (e.g. spinning reserve). In this section, a new method based 

on DFT is proposed to decompose the balanced error between the scheduled power and the 

actual wind power and assign to the slower PSH and the faster BESS. The schematic of 

this process is depicted in Figure 3-1. 
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3.3.1 System Modeling 

Energy storage systems are being used in power systems with high penetration of 

renewable energy resources. The key role of ESS is to smooth wind power fluctuations to 

allow higher penetration of wind power in the system.  

 Imbalance power (also known as forecast error) of a wind farm without ESS at any time 

can be defined by: 

  (t) (t) (t)Sch Wind imbalanceP P P− =      (3.13) 

Where (t)SchP is scheduled wind power based on 1-day ahead forecast for sample point t, 

(t)WindP is actual wind generation of wind farms at sample point t, and (t)imbalanceP is the 

imbalance power.  

In order to increase penetration of wind generation in a power system, imbalance power 

should be minimized. Adding energy storage helps to mitigate the imbalance. The ESS 

injects energy when scheduled wind power is more than actual wind power and absorbs 

energy to store the excess generation.  

( ) ( ) ( ) 0

( ) ( ) ( ) 0

Sch Wind imbalance

Sch Wind imbalance

P t P t P t ESS sources

P t P t P t ESS stores

> ⇒ > ⇒
 < ⇒ < ⇒

    (3.14) 

Figure 3-11 shows the imbalance power in 2014 for the BPA area. Actual wind generation 

and one day-ahead forecast data of BPA for different years can be found in [57]. 
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Figure 3-11 Forecast error of BPA in 2014. 

3.3.2 DFT Analysis 

DFT transforms equally spaced data into the coefficients of sinusoids which are ordered 

by their frequencies. The imbalance power can be decomposed into different frequency 

components by DFT. Different parts of a signal can be formed by slow and fast cycles. 

Low frequency signal represents intra-day errors and it corresponds to the slow PSH 

operation. Also, high frequency signal, which represents intra-hour errors, commands 

BESS operation. In this work, DFT is utilized to decompose imbalance data for the course 

of one year to determine required power and energy capacity that should be injected or 

absorbed. Therefore, DFT can be used in planning level for HESS sizing. It can be used 

for HESS operation as well. Imbalance power can be estimated based on updated forecast 

data for the window of 2-4 hours. Estimated imbalance power can be decomposed into high 

and low frequency components to command BESS and PSH.  
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where N is the number of sample data. DFT of a signal returns N components with different 

frequencies listed in monotonically increasing frequency order. The real parts in the Fourier 

transform of a signal are mirrored over half of the data points. In other words: 

*
1 1

N k
k

k NX X
−

< < −=      (3.17) 

Where operator (*) represents conjugation. Also frequency resolution is: 

1
r

s

f
NT

=        (3.18) 

 

Figure 3 -12 Imbalance power for a sample day in March 2014. 

where 
rf  is frequency resolution and 

sT  is the time interval of data points in seconds.  

As mentioned earlier, actual wind and forecast data for BPA area in 2014 is used in this 
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whole year (N) is 105,120, sampling frequency
sf  is 33e-4 Hz, and frequency resolution is 

3.2e-8 Hz. 

3.3.3 HESS Sizing Algorithm 

In this section, power (MW) and energy (MWh) sizing of two energy storage systems are 

discussed. First, two signals with high and low frequency components should be found 

from the imbalance power signal. Then, each signal is used to obtain an appropriate size of 

each ESS.  The algorithm to determine the assigned power for BESS and PHS is shown 

below: 

Algorithm for Applying DFT 

 

1- Find imbalance power ( (t)imbalanceP ) for 1 year using (1).  

2- Find the Fourier transform of imbalance power as discussed in the previous section. 

3- Use the high pass and low pass filters (based on desired cut-off frequencies) to 

extract high frequency and low frequency components. 

4- Take inverse Fourier transform from high-frequency and low-frequency signals to 

bring them back into time domain. 

5- Assign 
, ( )e hfP t to BESS where high frequency components correspond to BESS and 

assign 
, ( )e lfP t to PSH as slow cycles correspond to PSH. 
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The forecast error with its intra-hour and intra-day components for a day in March 2014 in 

the BPA area is shown in Figure 3 -12. After acquiring intra-hour and intra-day 

components, they can be used for power and energy sizing of HESS. 

A. Power sizing 

Minimum power capacity required to minimize imbalance power for BESS and PSH can 

be found from the following expressions: 

{ }
{ }

,

,

max ( )

max ( )

BESS e hf

PHS e lf

P P t

P P t

=

=
     (3.19) 

Where  

,e hfP  high and medium frequency components of imbalance power 

,e lfP  low frequency components of imbalance power 

BESSP
 rated power of BESS (MW) 

PHSP  rated power of PSH (MW) 

Typically, some reserve capacity for ESS should be considered to take care of unforeseen 

prediction errors of wind energy. This contingency concern, however, is not the focus of 

this thesis.  

 

B. Energy Sizing 

For determining energy capacity of BESS and PSH the following steps should be followed:   
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Step 1) Find the maximum and minimum accumulative energy function of decomposed 

signals. 

, ,
0

, ,
0

( ) ( )dt

( ) ( )dt

t

acc hf e hf

t

acc lf e lf

E t P t

E t P t

=

=

∫

∫
      (3.20) 

For 5-min interval data points, the above equations can be converted to: 
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 
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∑

     (3.21) 

Step 2) Determine SOC limits of BESS. 

low up
SOC SOC SOC< <      (3.22) 

Where 
low

SOC and 
up

SOC are, respectively, minimum and maximum limits of the state of 

charge. In this chapter, up
SOC for both BESS and PSH is selected 1 and 

low
SOC is 0.1 and 0 

for BESS and PSH, respectively.  

Step 3) Find the minimum energy storage for each signal (intra-day and intra-hour) from 

the following expressions: 

{ } { }

{ } { }

, ,

, ,

max ( ) min ( )

max ( ) min ( )

acc hf acc hf

BESS

up low

PHS acc lf acc lf

E t E t
E

SOC SOC

E E t E t

−
=

−

= −

    (3.23) 
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3.4 Simulation Results 

A spectrum analysis was done on the DFT of the 2014 wind speed imbalance data from 

BPA area. It is worth mentioning that frequency domain components will be sorted in 

frequency order. However, data points should be scaled in Hz by using  (3.18). Spectrum 

analysis of forecast errors are shown in Figure 3-13 and Figure 3-14. Data in the frequency 

domain is mirrored over half of the sampling frequency. Hence, low and high pass filters 

are designed symmetrically as depicted in Figure 3-15 and Figure 3-16. Table 3-1 contains 

specifications of frequency bands of the imbalance power.  

 

Figure 3-13 Frequency spectrum dot density map. 

 

Figure 3-14 Frequency spectrum curve. 
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Figure 3-15 Low pass filter schematic. 

 

Figure 3-16 High pass filter schematic. 

 

Table 3-1 

Specifications of Various Components of Imbalance Power 

Component Technology Response 
time 

Cut-off 
Frequencies 
[fl fu] 

Intra-hour BESS 10 minutes 
to 1 hour 

[2.78e-4     
0.0017] 

Intra-day PHS 1 hour to 12 
hours 

[2.31e-5    
2.78e-4] 

 

 

Typically, batteries can be used as a fast-acting energy storage and their response times are 

less than a minute. Nevertheless, in this work, the fastest response time of the battery is 
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limited to 10 minutes due to Nyquist-Shannon sampling theorem. According to the 

theorem, frequencies higher than half of the sampling frequency ( 0.5 sf ) cannot correctly 

be returned to time domain. Since imbalance power is decomposed into two signals, one 

cut-off frequency is enough, which is 2.78e-4 Hz. Slow components with bigger amplitude 

on the left hand side of the red line are assigned to PSH and smaller and more frequent 

components (right hand side of the red line) are linked to BESS.           

Power capacity (MW), energy capacity (MWh), efficiency, lifetime, capital cost, and ramp 

up/down rate are characteristics of energy storage technologies. Hybrid energy storage 

configuration is done in this chapter based on power and energy capacity. Efficiency, state 

of charge limits, and ramp up/ down limits are also considered in the HESS configuration. 

A NaS type of battery is selected for BESS with 15% loss during charging/discharging. 

When BESS is suitable for small fluctuations, PSH (with extremely high-energy capacity) 

is chosen to compensate slow cycles. Typical PSH ramp up/down rate is 100 MW/min and 

maximum ramp rate required in the simulation is 70 MW/min.   

Intra-hour and Intra-day signals are obtained by using inverse DFT of filtered components. 

Figure 3-17 and Figure 3-18 show intra-hour and intra-day imbalance power for the whole 

year of 2014 in the BPA area.  

Maximum intra-hour imbalance power is 760 MW. Considering 85% efficiency of battery, 

power capacity of BESS is 894 MW. Energy capacity is also obtained by (3.23). The energy 

rating of BESS along with power and energy ratings of the PSH is listed in Table 3-2. Also, 

required power and energy sizing for imbalance power shown in Figure 3-17 is provided 

in Table 3-2 (single configuration). In other words, by using a single ESS technology 



27 

 

(without considering ramp rate and efficiency), 1765 MW power and 25.3 GWh is required 

to entirely balance the forecast error.     

 

Figure 3-17 Intra-hour imbalance power for 2014 in BPA area 

 

Figure 3-18 Intra-day imbalance power for 2014 in BPA area. 
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Table 3-2 

BESS and PHS sizing results 

Configuration Technology Power  Energy  

Hybrid  BESS 784 MW 132 MWh 

PHS 1,297 MW 22.7 GWh 

Single  BESS or PHS 1,765 MW 25.3 GWh 

 

Nevertheless, some of the intra-hour errors seem off from the average, and they occur 

infrequently. Since the capital cost of the battery is so high, these errors can be ignored and 

it’s not cost-effective to keep the main portion of the power conversion systems (PCS) for 

some errors that happen only a few times in a year. Hence, it may be concluded that the 

reduced power rating of the battery may be enough to mitigate most of the errors. Figure 

3-19 shows that a 200 MW inverter (instead of 798 MW) mitigates more than 95% of the 

errors. 

 

Figure 3-19 Intra-day imbalance power for 2014 in BPA area. 
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PSH has a ramping limitation of 100 MW/5-min. Therefore, 30 minutes for ramping from 

idle time to maximum power generation would be enough. One can move the cut-off 

frequency (switch time between PSH and BESS) to see what the required sizes for batteries 

and PSH are. It is insightful to see the trend of the required capital cost by changing the 

switch time between PSH and BESS. The following capital cost is assumed: 

)(

0.4 $ / 0.1 $ /

0.2 $ / 0.2 $ /

BESS BESS BESS BESS PSH PSH BESS BESS

ESS E rated P rated E rated P rated

BESS PSH

E E

BESS PSH

P P

C K E K P K E K P

K Wh K Wh

K W K W

= + + +

 = =
 = = 

  (3.24) 

   

Figure 2.20 shows the tradeoff between capital cost and switching time. It seems that 

changing from 40 minute to 80 minutes does not dramatically change the capital cost.  

 

Figure 3-20 tradeoff of capital cost by changing the switching time 
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worst case scenario when PV generation drops (rises) 90%. Simulation of ramp rate control 

shows the trend of charging and discharging for a BESS connected to a PV plant. NREL 

historical data was used for simulation purposes.   

Then, a hybrid configuration of energy storage systems was proposed to mitigate wind 

energy fluctuations. Capital cost of energy storage systems is the main obstacle for them 

to be deployed. Much research has been conducted to increase efficiency and decrease the 

required size of ESS. Some types of ESS (like batteries) can respond rapidly and are suited 

to mitigate high frequency components of imbalance power. However, some other types of 

ESS are more efficient for slow cycles. DFT based method is used to break out slow and 

fast components of imbalance power. By using high and low pass filters, frequency domain 

signal of imbalance power is decomposed and is transformed to the time domain by inverse 

DFT. In this chapter, a DFT-based coordinated strategy is introduced to distribute power 

between BESS and PSH. A methodology to determine power and energy capacity of each 

type of ESS is discussed. To validate the effectiveness of the proposed method, actual data 

of BPA for 2014 is used in the simulations.        
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CHAPTER 4: PREDICTIVE CONTROL OF BATTERY ENERGY 

STORAGE WITH HIGH WIND ENERGY PENETRATION 

4.1 Introduction  

High penetration of wind energy requires fast-acting dispatchable resources to manage 

energy imbalances in the power grid. Battery Energy Storage Systems (BESS) are 

considered an essential tool to decrease the power and energy imbalance between the 

scheduled generation (day-ahead forecast) and the actual wind farm output. The control 

methodology or battery management strategy greatly impacts the performance of the 

energy storage system. Better performance of the BESS reduces the minimum required size 

of batteries for wind variability mitigation. This thesis proposes a novel control method for 

BESS to fulfill a production commitment. This method, called ‘predictive controller’ is 

based on updated forecast data to improve the performance of the energy storage system 

and consequently reduce the required size of the BESS. The Sodium-Sulfur (NaS) type 

battery is selected for simulation purposes. Results show that the predictive controller 

reduces the error (between scheduled generation and actual wind farm output) more than 

the simple method (also known as the minute-by-minute method) and other proposed 

methods in the literature. Also, a new formulation for the battery lifetime estimation is 

introduced, and it is used to analyze the impact of the proposed method on the battery 

lifetime depreciation. The schematic of the co-located BESS and wind farm is illustrated 

in Figure 4-1.  
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Figure 4-1 Combination of BESS and wind farm 

Optimal sizing of the BESS is about selecting the minimum required size of the battery 

to allow the combined output power (BESS and wind turbines) to match a day-ahead 

scheduled (forecasted) power within a tight tolerance (e.g. ±5% error for 90% of the time). 

This criterion depends on the size of the wind farm and the characteristics of the connected 

network. A novel battery management strategy is introduced in this thesis. It is based on a 

predictive scheme to manage charging, discharging, and idle modes so as to increase the 

flexibility of the system to keep the energy balanced between the generation and the 

demand. Battery charging/discharging strategies directly affect sizing requirements for a 

hybrid power system with wind and energy storage. Therefore, the size of the battery can 

be reduced with a better battery management strategy without compromising the quality of 

performance. A battery control method is a key factor in life-time analysis. To be more 

precise, in a specific operational and environmental situation, battery control algorithm 

plays a crucial role in increasing/reducing battery lifetime. In this thesis, the lifetime of a 

battery energy storage system is estimated to evaluate the performance of the proposed 

control method and ensure that it does not degrade battery lifetime. Most of the proposed 

control methods of BESS in the literature decrease battery lifetime to even less than affected 

by the simple (or minute-by minute) controllers. Therefore, the contributions in this chapter 

can be summarized as follows: 
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• A novel control strategy for battery energy storage based on updated forecasted data is 

proposed. This increases availability of the battery in the long run to ensure meeting the 

reserve commitments in various scenarios. 

• The proposed method minimizes the required size of the battery for a specific system. 

In this work, optimal sizing of the battery is determined and compared with the existing 

research to show the effectiveness of the proposed control method. 

• Lifetime estimation based on cycle counting is used to evaluate the impact of the 

proposed method on battery degradation. Results show that the predictive control 

method, unlike other existing control methods, does not reduce the expected lifetime of 

the battery and it works as well as a simple controller. However, using the proposed 

method results in a higher range of availability, rather than the simple controller.      

In contrast with [31] and [52], the focus of this work is on the control of the BESS to 

increase the balanced energy in a minute-to-hour timeframe. Hence, the focus is not on the 

power quality of the battery output. As a result, this work is partially comparable with [10]- 

[11].  

This chapter is organized as follows. The combined wind farm and BESS power balance 

formulation and BESS modeling are presented in Section II. Simple (minute-by-minute) 

controller and the proposed predictive controller are introduced in Section III. Simulation 

results are discussed in Section IV and conclusions are presented in Section V. 

 Let us introduce the following nomenclatures for this chapter: 

Indices 

,k T  Time step and horizon time 
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LI  Life index in lifetime estimation algorithm 

n  Number of total cycles  

Variables and Parameters 

B

ratedP  BESS rated power  

B

rated
E  BESS rated Energy capacity  

pC  Power conversion costs  

EC  Battery cost 

,c dη η  Charge and discharge efficiencies  

dη′   Auxiliary parameter for discharge efficiency 

K  Control Coefficient 

BESSL  Battery lifetime in years 

CF  Number of cycles to failure at specific Depth of Discharge (DoD) 

Time Series Data 

( )WP k  Wind turbines output power 

SOC(k)  BESS state of charge 

( )BP k  BESS output power 

( )
Sch

P k  Scheduled wind power generation (1-day ahead forecasted wind output 

power) 

( )Sch
errorP k  Scheduling error (difference between 1-day ahead forecasted output and 

actual wind farm output) 
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( )errorP k  Final error or difference between 1-day ahead predicted output and 

combination of wind farm and BESS 

ˆ ( | )
W

P i k  Estimated forecast of wind for time i, issued at time k  

ˆ ( | )errorE k T k+  Estimated energy deficiency or excess for next T time step, issued at time k 

All power and energy units in this thesis are in per unit. 

4.2  Problem Statement for Predictive Control of BESS 

The main purpose of using BESS in conjunction with a large wind farm is to mitigate 

wind power fluctuations. Although there are no incentives for wind farm owners to install 

BESS, there will be some constraints with increased renewable energy penetration. In this 

chapter, it is assumed that there is a constraint, which only allows the error between the 

wind farm output and the day-ahead forecasted power to be within a specific limit. 

Discussions on this constraint are covered in section III.  

In the first part of this section, modeling of a wind farm combined with BESS is 

discussed.  

4.2.1 System Modeling   

The typical combination of wind farms with battery energy storage is shown in Figure 

3-1. Power balance of a wind farm without BESS referring to the generic Kth sampling time 

can be expressed as: 

 ( ) ( ) ( )Sch Sch W

errorP k P k P k= −     (4.1) 

By adding a BESS, Eq. (4.1) can be improved as follows: 

( ) (k) ( ) ( )Sch W B

errorP k P P k P k= − −     (4.2) 
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Generally speaking, the objective of adding grid size energy storage is to have the 

minimum error between predicted output and actual wind farm output. Therefore, energy 

storage should either compensate for energy shortage or store any extra wind energy that 

would otherwise be curtailed. 

( ) 0

( ) (k) ( )

error

B Sch Sch W

error

P k

P k P P P k

=

⇒ = = −
    (4.3) 

It is worth noting that PB(k)  is negative when battery sinks (charging mode) and positive 

when battery sources energy into the grid (discharging mode).  

(k) ( ) ( ) 0

(k) ( ) ( ) 0

Sch W B

Sch W B

P P k P k

P P k P k

 > ⇒ >


< ⇒ <
     (4.4)    

 

Figure 4-2 shows information and power flows between wind turbines, grid, and BESS. 

 

Figure 4-2 Interaction of BESS with network, operator, and wind farm 

4.2.2 BESS Modeling 

Many papers about BESS modeling have been published to include battery and inverter 

characteristics. For example, reference [58] investigates stability analysis of converter-

connected BESS. In this thesis, a simple modeling of BESS without any filter and static 
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compensator is addressed, whereas this work focuses on battery charging/discharging 

management; power quality is not a concern at this stage.  

The battery state of charge (SOC) can be derived as follows: 

( 1) ( 1)
SOC(k) SOC(k 1)

12

B

B

rated

k K P k

E

η − ⋅ ⋅ −= − −   and  
( ) 0

( ) 1 ( ) 0

Bc

B
d

d

P k
k

P k

η
η η η

 ≤=  ′ = >

   (4.5)   

min maxSOC(k)SOC SOC≤ ≤      (4.6) 

Note that  and 
c d

η η  denotes charging and discharging efficiencies, respectively. In the 

case of NaS, c
η is 85% and d

η is 87% [10]. In this work, an auxiliary parameter ( dη′ ) is used 

instead of d
η  for the sake of simplifying the above equations. Equation (4.5) shows that 

SOC of a battery at each time depends on initial SOC and amount of energy injected or 

withdrew from the battery during the last time interval. The 1/12 factor in (4.5) is due to the 

5-minute sample time of the time series data. 

It is worth noting that the efficiency of batteries is not constant, it varies with current 

flow, temperature, state of charge, etc. For instance, due to internal resistive losses in 

batteries, the efficiency improves when current goes down and it deteriorates with higher 

current. In this thesis, SOCmin and SOCmax are 0.2 and 0.9, respectively. 

Note that per unit values are used for all power and energy variables because it will be 

easier to scale the size of BESS for different wind farms. More discussions on per unit and 

absolute values are provided in section IV. Charging and discharging constraints, imposed 

by battery and inverter limitations, are described in Equation(4.7).  
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ESS
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d ESS
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ESS c ESS

rated
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ESS

SOC P
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E

P P k
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E

P P P SOC

P P P SOC

P else

η
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= >

= <
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








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



     (4.7)   

These constraints simply imply that batteries cannot have any power output when 

SOC(k)= SOCmin, and cannot charge when the battery state of charge is full (SOC(k)= 

SOCmax). The third limitation in equation (4.7) describes that BESS cannot source power 

into the grid when the commanded power is more than the energy that remains in the battery. 

Similarly, the fourth constraint does not let BESS get charged to more than its capacity. The 

fifth and sixth constraints state that the output or the input power of BESS cannot exceed its 

rated power. 

4.2.3 Battery Lifetime Estimation 

In most types of batteries, lifetime and performance highly depend on the depth of 

discharge (DoD) of charging/ discharging cycles. Also, there are some environmental 

factors (like temperature and humidity) that affect the battery’s performance. Accurate 

analysis of battery lifetime and its chemical degradation requires prolonged laboratory 

experiment verification, which is not the focus of this work.  
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Figure 4-3 Number of cycles to failure at each DoD for NaS battery (data from [34]).  

Nonetheless, DoD of cycles and SOC limits are two manageable factors in control 

algorithms. Although accurate lifetime analysis of batteries is not the focus of this work, a 

lifetime estimation based on cycling numbers and depth of discharge is described. In order 

to estimate battery lifetime, the DoD of each cycle and the total number of charging/ 

discharging cycles in a specific time should be counted. Consequently, the battery lifetime 

can be estimated as follows [34]: 

1

BESS m
i

i i

T
L

N

CF=

=
∑

      (4.8)   

where T is the duration of simulation in years, CFi is the number of cycles to failure at 

corresponding DoD, Ni is the number of cycles at each DoD, and m is number of DoD 

ranges. The number of cycles to failure for each DoD is shown in Figure 3-3. Based on 10 

data points provided in [59], a curve is fitted and a model for CFi is extracted in Figure 4-3.  
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Figure 4-4 Lifetime estimation algorithm based on cycles counting and calculating equivalent lifetime for 

incomplete cycles. 

 
Fig 3- 1 An example to show incomplete cycles and finding DoD from SOC diagram. 

It worth mentioning that the DoD in Figure 4-3 represents depth of discharge of complete 

cycles. Due to wind farm output variability, the BESS switches between 

charging/discharging modes frequently. Therefore, in real operations, more incomplete 

cycles happen. Various methods of cycle counting are addressed in [11], [59] , and [60]. In 

this section, a simple algorithm for battery lifetime modeling based on cycle counting is 

developed. The flowchart in Figure 4-4 shows how to simply estimate battery life 

depreciation.  

1 2 3 4 5 6 7
0.70

0.75

0.80

0.85

0.90

0.95

1

Sample times

S
O

C

D(1)=0

D(2)=0.2

D(3)=0.1

D(4)=0.2

D(6)=0

D(5)=0.3



41 

 

 

The flowchart in Figure 3-4 shows how to simply estimate battery life depreciation for 

different charging/ discharging curves. LI is an auxiliary accumulative index that 

corresponds cycles to failure, and LBESS is an estimated lifetime of battery based on cycles 

curve. The algorithm aims at estimating a battery’s lifetime using a battery’s SOC diagram 

which is recorded for a specific time (T). Local min/maxes of the SOC diagram is found. 

Then, according to the flowchart, a vector comprising DoD of the local max/mins is 

constructed. Initial values are set and LI is calculated and updated in the loop. Iterations are 

stopped when the last point in the SOC diagram is reached and then LBESS is calculated. In 

order to illustrate the concept of the flowchart, a sample SOC diagram is depicted in Figure 

4-8. Also, six local min/maxes (e.g. j=6) with associated Di values are shown in this figure.   

In order to better understand the concept, one has to know what the complete cycle 

means. When a discharge starts from full State of Charge (meaning SOC=1), and it follows 

with a full charge back to SOC=1, one may call it a complete cycle. Otherwise cycles are 

considered as incomplete. There are some references showing how an incomplete cycle can 

be written as subtraction of two complete cycles. Our battery lifetime estimation algorithm 

calculates equivalent complete cycles in order to estimate battery degradation. To elaborate 

the idea, refer to the example in Figure 4-8.  This SOC trend can be decomposed into two 

different trends.  
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Figure 4-5 Example of complete cycle [0.7-1]     

 

Figure 4-6 Example of incomplete cycle [0.8-0.9] 

Let us define cycle [a-b] as follow: 

Cycle [a-b] means that a variation in SOC starts from point a, increases/decreases to 

reach point b, and returns to point a. 

If a or b is equal to one, the cycle would be considered as a complete cycle. Otherwise, 

the cycle would be incomplete.  

Incomplete cycle [0.8-0.9] is equal to incomplete cycle [0.9-0.8] for battery lifetime 

calculations.  

According to [61], one can calculate incomplete cycles: 

 Incomplete cycle [0.8-0.9]= incomplete cycle [0.9-0.8]= complete cycle[0.8-1] – 

complete cycle[0.9-1] 

Therefore, Fig. 3-5 can be converted to: 

Total cycles= Complete cycle [0.7-1] + complete cycle [0.8-1] - complete cycle [0.9-1]  
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Also, note that current rate (power rate) may impact some types of batteries. The current 

rate is interpreted as the DoD divided by the cycle duration. Two complete cycles with 

similar DoD and different current rates are depicted in the following figure: 

 

Figure 4-7 Two different SOC trends: One with higher current rate (green) and the other one with lower 

current rate (red) 

The green cycle has a higher current rate than the red cycle for charge and discharge. 

Lithium-ion is relatively sensitive to the current rate and its lifetime depends not only on the 

DoD, but also on the current rate [62]. However, the NaS battery is not sensitive to the 

current rate and thus, it was not considered in the formulations and algorithm presented in 

the thesis.  

In order to estimate the battery’s lifetime, one needs to find complete cycles. However, 

in most cases, one may not see complete cycles in the SOC diagram of a battery. Suppose, 

there is an SOC diagram like Figure 3-5. One may use the lifetime estimation algorithm 

presented in Figure 3-4. Different steps of the algorithm are explained in the following 

statements: 

a- According to the first block from the top, a vector that includes the DoD of max/mins 

is constructed. In other words, the local min /maxes of SOC diagram (e.g. Figure 4-8) are 

found. Then, the correlated DoD are easily calculated.  
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b- In the second block, set i=1, LI=0, and j=6. Let us introduce LI as an auxiliary variable 

to simplify our calculations. 

c- Then, move forward to the loop.   

i=1 

1- Is D2 greater than D1? Yes. Go to the next block.  

2- LI(1)=LI(0)+1/CF(0.2)-1/CF(0) 

Suppose CF(0.2) ≅  45,000 and CF(0)=inf which can be found from Figure 4-3.  

3-  Is i<j? Yes. Increment i and go to step 1 and repeat. 

i=2 

1- Is D2 greater than D1? No. Go to step 3. 

3- Is i<j? Yes. Increment i and go to step 1 and repeat.  

i=3,4,5, and 6 is omitted for brevity. 

 

d- After 5 iterations, LBESS can be found from below: 

( )
BESS

T
L

LI i
=

 

Where T is the time of simulation in year. For example, if Figure 4-8 is the trend of SOC 

and it is repeated every 12 hours, LBESS can be obtained from the following: 

3

3 4 4

1/ 2 / 365 1.37
29 ( )

1 1 1 1 1 1 1 1
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4.2.4 Cost-benefit Analysis 

The following cost model represents the capital cost of the BESS with consideration of 

battery cells and power conversion system. 

. .

0.22 ($ / )

0.35 ($ / )

P rated E rated

P

E

Cost C P C E

C W

C Wh

= +
=

 =

     (4.9) 

This cost model does not include installation and O&M. Costs of power conversion 

system and battery cells are selected based on some papers (like [4]- [5]) and some 

manufacturer prices. 

The wind farm combined with the BESS is paid for providing energy, based on Market 

Clearing Price (MCP), in addition to the tax return and federal credits. It is assumed that 

wind turbines can curtail the wind excess, and the penalty for deviation is just applied for 

wind energy deficiency. The BESS gains profits as follows:  

1- During the excess of wind power, the BESS would get charged and this allows the 

investor to collect the tax return and federal credits for the absorbed energy by the BESS. 

Also, charging with the excess of wind means that the BESS investor does not need to pay 

for energy in the real-time market, based on Locational Marginal Prices (LMP). 

2- During the wind energy deficiency, the BESS would be paid for the delivered energy 

based on day-ahead MCP together with the tax return and federal credits. 

4.3  Control Algorithm  

Frequency is typically controlled through three different steps: primary control, 

secondary control, and tertiary control. The generator governors, the frequency responsive 

loads, and fast acting energy storages (like flywheel and some types of batteries) are 
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responsible for primary control of the second-to-second power mismatch. In this chapter, 

the focus is on compensating imbalance error in a minute-to-hour timeframe. Satisfying 

(4.3) in the presence of high penetration of variable energy resources requires a large amount 

of reserves. The balancing authority computes the Area Control Error (ACE) in an area from 

(4.10). This utilizes contingency reserves to minimize the error [63].    

 ( ) 10 ( )
a s a s

ACE T T f fβ= − − −     (4.10) 

Where Ta is actual interchange power in MW, Ts is scheduled interchange power in MW. fa 

and fs represent actual and scheduled frequency, respectively. Also, β  is the frequency bias 

constant in MW/0.1Hz.   

The main purpose of adding the BESS is to minimize the ACE which meets the 

requirements imposed by authorities. For instance, the North American Electric Reliability 

Corporation (NERC) enacted the Balancing Area ACE Limit (BAAL) as a short term ACE 

metric [64]. Changing rate of second term in ACE calculation is less than the first term (Ta-

Ts). Therefore, it can be inferred from Equation (4.10) that there is no need for a complete 

match between scheduled power and actual power to have zero ACE, because actual 

frequency is also a key factor in ACE calculation. Severity of frequency deviations caused 

by power mismatch highly depends on the characteristics of the connected power system. 

The main concern of this work is to increase the availability of the battery to reduce the 

imbalance error for most of the times power mismatch happens.  ±5% error for 90% of the 

time as the strict criteria is selected in this chapter for simulations. However, this criteria 

may be modified with respect to the connected system’s structure and characteristics.    

In this section, minute-by-minute or simple controller is introduced, and then, a novel 

predictive control strategy is proposed.  
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4.3.1 Minute-by-minute Control 

Minute-by-minute or simple controller is a typical controller type in existing BESS 

(minute-by-minute and simple controller can be used interchangeably). This controller does 

not require any additional information.  

Battery energy storage system will sink to the grid if the error between 1-day ahead 

forecasted power (scheduled power) and actual wind generation exceeds 0.05 per unit. 

Likewise, the BESS will charge if the wind generation exceeds the scheduled power by 0.05 

per unit. Since there is no penalty for scheduling errors between (-0.05, 0.05), no action for 

BESS is required for this mismatch. 

0 ( ) 0.05

( ) ( ) 0.05

Sch

Error

ESS Sch Sch

Error Error

P k
P

P k P k

 <= 
>

                    (4.11)  

Currently, renewable energy is traded in electricity market even if wind farms produce more 

than their scheduled power. 

 

 However, as renewable energy gains higher penetration, new standards and market policies 

will likely be issued in order to maintain the stability and reliability of the network.   

4.3.2 Predictive Control 

As shown in (4.3), the total output error will be zero if ( )BP k  is equal to ( )Sch

errorP k . However, 

in many cases, due to lack of wind power generation, the battery discharges all its energy 

into the grid, in which case, the battery gets depleted and cannot provide more energy. 
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Figure 4-8 Predictive control schematic 

Therefore, the corresponding bus voltage will drop leading to additional issues. To 

overcome this problem and to maintain the bus voltage within 0.95 and 1.05 per unit, the 

BESS rate of charge/ discharge should be managed better. To put it differently, the BESS 

should be allowed to discharge into the grid to adjust the voltage of connected bus back to 

the range [0.95-1.05] pu. Based on network configurations and specifications, this charging/ 

discharging rate may differ. Therefore, a criteria on Perror (k) should be defined based on the 

characteristic of the connected network. In this chapter, 5% error of power is chosen for 

simulation.  

It is not possible to optimally manage BESS charging/ discharging, unless there is some 

information about wind production in the following hours. Updating forecasted data allows 

BESS to observe the wind profile for the next few (2 ~ 3) hours, known as prediction 

horizon, and then compare them with 1 day-ahead data. Predictive control in this thesis is 

based on receding horizon, which repetitively solves a control problem using prediction of 

future states of variables, constraints, and disturbances over a moving time horizon. The 

basic concept of this predictive control is shown in Figure 4-9. At each time step, the control 

problem is solved over a fixed time horizon, and the first control input from this horizon is 
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applied. At the next step, the prediction horizon is shifted and the same procedure is 

repeated. 

 

Figure 4-9 Model predictive scheme using receding horizon 

If the required energy for the next few hours is more than the energy capacity of BESS, 

the controller should reduce the output power of BESS to save some energy for the next 

time steps. The BESS output can be restrained by a control coefficient (K) which as shown 

in (4.12):  

Sch

error
) <0.05P (k0 if error is small ( )

( ) ( ) enough energy in battery

. ( ) ,0 1 not enough energy in battery

B Sch

error

Sch

error

P k P k

K P k K


= 
 ≤ ≤

  (4.12)  

Abundance or shortage of energy for the next 2~3 hours can be calculated by using 

updated predicted data. This calculation can be done every 5, 10, or 20 minutes depending 

on the update intervals. More updates give more precise forecast about the future wind 

profile and wind generation. Based on the calculated energy for the next few hours, K can 

be defined at each time step to save energy as much as possible. This controller uses minute-

by-minute strategy for the usual times when the charge of the battery is enough for the next 

few hours. The schematic of the proposed method in a block diagram is depicted in Figure 
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4-10. Note that, the “payoff and penalty” block does not provide a direct feedback to the 

controller. However, this block can be used in an economic assessment of the BESS.  

 

Figure 4-10 Block diagram of using predictive control in wind production commitment. The controller uses 

SOC, updated wind data, and the error between the scheduled power and the combined wind and BESS 

output power. 

To decide whether BESS should limit its discharge rate, a variable should be defined, as 

follows: 

( )
1

ˆ( ) ( | )

ˆ ( | )
12

k T

i k

error

Sch W
P i P i k

E k T k

+ −

=

−
+ =

∑
  (4.13) 

The 1/12 factor in (4.13) is used because of the 5-minute sampling time of the time series 

data. Please note that the 1/12 factor should be modified for other sampling times. The 

algorithm for the controller is shown as follows: 

 

Algorithm (run every 5 minutes): 

1- Calculate ˆ ( | )
error

E k T k+  for the next two hours 

2- Calculate SOC(k)  

3- If ( ) 0Sch

errorP k >  ⇒Discharge:  

a. ˆ ( | ) ( ( ))
error

B

ratedE k T k E SOC k+ < ⋅  

( ) ( )B Sch

errorP k P k⇒ =  
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b. ˆ ( | ) ( ( ))
error

B

ratedE k T k E SOC k+ > ⋅  

( ) ( )B Sch

d errorP k K P k⇒ = ⋅  

4- If ( ) 0Sch

ErrorP k < ⇒Charge: 

a. ˆ ( | ) 0
error

E k T k+ >  

( ) ( )B Sch

errorP k P k⇒ =  

b. ˆ ( | ) ( (1 SOC(k)))
error

B

ratedE k T k E+ < − −  

                             ( ) ( )B Sch

c ErrorP k K P k⇒ = ⋅  

 

In order to find the best possible battery management strategy, K should be calculated 

based on the power mismatch between scheduled generation and the availability of the wind 

for the next predictive horizon (2~3 hours). At any time interval, it can be assumed that 

there is either an abundance or a shortage of wind energy in the upcoming prediction 

horizon. Therefore, there is either charging or discharging for the rest of the horizon. This 

assumption is acceptable, because if wind generation fluctuates up and down around the 

scheduled generation, the BESS would easily handle the fluctuations and it would not 

require calculating K. The main problem happens when there is a shortage (or abundance) 

of wind generation for the entire prediction horizon. Consequently, the battery is fully 

discharged (or charged) before the end of the horizon. In this case, the controller should 

manage the stored energy by calculating and applying K. First, it is assumed that there is a 

shortage of wind generation and the BESS should discharge. According to (4.5), the state 

of charge can be written for various time steps as shown in (4.14):  
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  (4.14) 

By summing the above equations together, many terms cancel out and (4.15) can be derived.  
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Assuming full discharge of BESS in T time step periods yields: 

1
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  (4.16) 

Note that Kd is assumed to be constant at each time step and should be recalculated in the 

next time step. Equation (4.16) has a term that includes Kd in itself. Hence, equation (4.17) 

can be derived from (4.3) as: 

1 1

( ) ( )
k T k T

B Sch

d error

i k i k

P i K P i
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= =
=∑ ∑   (4.17) 

Finally, Kd can be calculated by applying (4.17) in (4.16): 
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    (4.18) 

By using cη instead of dη′  and setting final SOC in the horizon equal to the maximum 

allowable SOC (SOC(k+T)=0.9), a similar expression can be derived for the charging 

scenarios: 
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    (4.19) 
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The calculation for charging scenario is omitted for brevity. Needless to say, the square root 

expression remains positive, since both numerator and denominator are negative.    

4.4 Simulation Results and Discussions 

It is assumed that a BESS is combined with a large wind farm to mitigate variability of 

wind output. One simulation scenario is considered with the aim of showing effectiveness 

of the proposed control method. For this scenario, an arbitrary power and energy capacity 

is used.  In the second and third parts of this section, optimal sizing and lifetime estimation 

of the battery is covered.  

The results are compared to the performance of a minute-by-minute controller, and the 

probability of balanced energy of each control strategy is calculated. The persistence model 

forecasting with some modification is used for updated predicted data. Actual wind 

production and one day-ahead forecast data with 5-min intervals for the year 2013 is used 

for the simulation. The installed capacity of wind power in Bonneville Power 

Administration (BPA) territory in 2013 was 4.5 GW [65]. 

Note that per unit values are used in this thesis simplicity in scaling the solution. Thus, 

4.5 GW wind capacity at BPA is taken as the base value to convert all wind data ( ( )WP k ) 

into per unit. However, absolute values can be used in all formulations. In this case, B

ratedP

should be W, kW, or MW and B

ratedE  should be Wh, KWh, or MWh, respectively. Also, 

sampling intervals should be in hours. 24T =  is selected which shows that the forecast period 

for the predictive controller is 2 hours. Needless to say, each hour has 12 time steps due to 

the 5-minute sampling time. 
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4.4.1 Sample Scenario ( 0.15 , 0.55B B

rated ratedP pu E pu= = ) 

Simulations for one year’s worth of actual wind data are performed for three separate 

cases: (i) no BESS, (ii) BESS using predictive control, and (iii) BESS using a simple 

controller. Figure 4-11 shows the histogram of Perror, which demonstrates the probability of 

various errors. Results show that 23% of wind production is out of the range of ±0.05 pu 

error without using BESS. However, devoting the simple controller reduces the out of range 

error probability (±0.05 pu) to approximately 9% and the predictive control method can 

bring the error probability down to 7%. Therefore, it can be inferred that the selected battery 

reduces the imbalance error by 13.5% using the simple control strategy, and by 12% using 

the proposed method. Hence, with the same size of the battery, one may reach around 12% 

improvement with only a better control strategy.   The sample period of discharging scenario 

is shown in Figure 4-12.  

 

Figure 4-11 Histogram of error for the first scenario. 
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Figure 4-12 Performance comparison of different controllers during long underproduction period (positive 

scheduling error). 

 

Table 4-1 

Statistics of errors for the sample scenario 

Method Mean Variance MAE RMSE 

No BESS -0.006 0.0023 0.0327 0.0482 

Proposed -0.002 0.0009 0.0179 0.0297 

Simple -0.002 0.0008 0.0178 0.0312 

 

In Figure 4-12, positive Perror (solid blue line) indicates that the BESS should deliver 

energy to the grid. The simple controller (dotted black line) maintains the error at zero as 

much as possible by discharging the battery. Meanwhile, the predictive controller (dashed 

red line) maintains the error within ±5% and saves some energy for the end of this period 

when updated forecast data gives some estimates about future time steps. At t=500 min, the 

battery SOC with the simple controller reaches the minimum level; however, with the 

predictive controller, around 50% of the battery SOC still remains. Table 4-1 presents 

statistics of the forecast error for the aforementioned three cases. These statistics comprise 

P
er

ro
r 

(p
u

)
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mean, variance, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). 

Utilizing the BESS with any controller decreases both MAE and RMSE. 

Although errors associated with both simple and proposed controller have similar MAEs, 

RMSE of the proposed method is less than the simple controller. This implies that the 

proposed method is more successful in reducing the occasional large errors, where RMSE 

is more sensitive to large quantities. Figure 4-13 indicates the forecast error of the BPA 

wind system without using any energy storage. Figure 4-14 shows the forecast error of BPA 

system when BESS (Prated=0.15 pu, Erated=0.55 pu) is used. 

 

Figure 4-13 Forecast Error of BPA in 2013. 

 

Figure 4-14 Forecast Error of BPA using BESS in 2013. 
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4.4.2 BESS Sizing 

The probability of balanced energy with various power and energy ratings is depicted in   

Figure 4-15. It can be inferred that the energy capacity has more impact on battery 

availability than power rating. This statement is correct, since the amplitude of error is less 

than 0.15 pu 98.7% of the time. Therefore, increasing power rating affects the battery 

availability slightly. Keeping B

ratedP =0.15 pu as constant, Figure 4-16 demonstrates how the 

probability of balanced energy in a system with BESS depends not only on the energy rating 

of the battery, but also on the operation strategy. In order to meet the defined criteria in 

Section III, the BESS should be sized to have the balanced energy, at least, 90% of the time. 

In this case, the minimum required size of the battery with the simple controller is 0.44 pu. 

This energy rating is reduced to 0.37 pu for the battery by using the proposed method. A 

comparison between the proposed controller and 3 existing controllers (fuzzy, simple ANN, 

advanced ANN) in [10] is provided in Table 4-1. Note that, sizing comparison with the 

preceding research can be attained if the test case scenarios are similar.  Allowable min and 

max limits of the SOC are set to 0 and 1 (SOC ∈ [0,1]), in the mentioned reference. Thus, 

the same limits are for the SOC, and the simulations and sizing procedure are repeated.  The 

cost function (4.9) is used to calculate the capital cost. It may be assumed that the BESS is 

connected to a 50-MW wind farm and all sizes and costs may be scaled to have a better 

sense for the real project. In this case, base values for power and energy are 50 MW and 50 

MWh, respectively. It should be noted that this cost does not include base values for power 

and energy are 50 MW and 50 MWh, respectively. This cost does not include details like 

installation, commissioning, etc.    
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Figure 4-15 Probability of balanced energy for different power and energy ratings. 

 

Figure 4-16 Probability of balanced energy with different energy capacity of BESS connected to a wind 

farm 

Table 4-1 

Sizing results with SOC between [0,1] 

  proposed simple fuzzy ANN Adv. ANN 

  
p
u
 

Prated 0.15 0.15 0.29 0.24 0.18 

Erated 0.26 0.31 0.51 0.3 0.285 

cost 0.124 0.141 0.242 0.157 0.139 

  
 5

0
-M

W
 

Prated (MW) 7.5 7.5 14.5 12 9 

Erated(MWh) 13 15.5 25.5 15 14.5 

cost(M$) 6.2 7.05 12.1 7.8 6.97 
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Table 4-2 

Lifetime estimation for simple and proposed methods  

Erated 0.2 0.25 0.3 0.35 

Lifetime using proposed (yrs) 24.2 26.5 28.1 30.9 

Lifetime using simple (yrs) 24.4 26.6 28.3 31.5 

 

4.4.3 Battery Lifetime Analysis 

The lifetime of the battery with the simple and proposed control strategy with different 

energy capacities is estimated by the algorithm presented in Figure 4-4 and results are given 

in Table 4-2. As expected, the battery lifetime analysis shows that the proposed method does 

not deteriorate battery depreciation. Typically, new methods of control can reduce battery 

lifetime when the number of charge/discharge cycles increases and deep discharging occurs 

more frequently. The expected lifetime of the battery with the control methods described in 

[10]- [11] is significantly reduced compared to the simple controller. However, the proposed 

method in this thesis tends to prevent unnecessary deep discharging and even has slightly 

better expected lifetime compared to the simple controller. 

 

4.5 Conclusion 

High penetration of wind energy increases reserve requirements to compensate voltage 

and power variations. Utilizing battery energy storage systems along with large wind farms 

provides higher reliability, and reduces back-up energy requirements. Furthermore, various 

controls and coordination of BESS result in different levels of power availability. This 
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chapter presented a novel control method for charging/discharging to increase the power 

availability of BESS. This method reduces the required size of the battery where the BESS 

is assigned to maintain the output power of the wind/BESS combination within a specific 

tolerance (i.e. ±0.05 pu of error for 90% of the time). The predictive control method reduced 

the capital cost of the required battery for wind applications. Various control methods may 

result in various trends of charging/ discharging, and they tend to increase or decrease 

battery lifetime. A new method for battery lifetime assessment is introduced in this chapter 

to evaluate the impact of the proposed control method on battery lifetime depreciation. 

Battery lifetime analysis is performed for both scenarios, and results show that the proposed 

control strategy does not degrade battery lifetime when compared to the simple controller. 

Therefore, the proposed control method of battery not only provides more availability to 

deliver/absorb additional power, but also helps prevent reduction in expected lifetime of 

battery due to overuse.  

 

  

 

 

 





62 

 

CHAPTER 5: Optimal Sizing and Operation of Battery Energy Storage 

Systems connected to Wind Farms Participating in Electricity Markets 

 

5.1 Introduction 

Due to intermittency nature of Renewable Energy Sources (RES), their integration into 

power systems has become quite challenging. The need for higher reserves in presence of 

the RES to smooth out the unpredictable power fluctuations is inevitable. Researchers 

generally agree that developing grid-tied energy storage systems is a practical solution to 

facilitate the massive integration of RES. Deployment of Battery Energy Storage (BESS) in 

power systems is experiencing a significant growth in recent years. 

Energy storage systems, depending on the technology, can play different roles in power 

systems including frequency regulation, peak shaving, voltage control, transmission and 

distribution system equipment deferral, and energy arbitrage [66] and [67]. Much research 

has been conducted to demonstrate the suitable services for each type of energy storage 

[68]- [69], out of which the BESS has been found to be the most promising type with the 

capability to participate in multiple services. This stems from the fact that BESS produces 

a fast response and has a high energy density. Moreover, it has the potential to be expanded 

from home- to grid-scale.  

Presently, among the different RES technologies, wind power has the largest share of 

generation, and can participate in day-ahead (DA) markets. Should wind farms be equipped 

with energy storage systems, they may fulfill their production commitment in the DA 

market and buy/sell energy from/in the real time (RT) energy markets. RT markets are 

designed to balance the deviations between DA 2commitments and the actual power 
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demands [70]. RT market participants should be paid or charged for generation that exceeds 

or falls behind the DA commitments [71], in which case those transactions are based on 

real-time Locational Marginal Prices (LMP). 

The real-time price is significantly influenced by various factors. In fact, excess of 

generation can result in very low - even negative - prices. On the hand, lack of generation 

or a congestion in the system can lead the price to be extremely high. 

Short-term wind and price forecasts can be employed to efficiently manage battery 

energy exchange with the grid for the sake of profit maximization. Since wind generation 

and RT prices are best with uncertainties, no operation strategy can guarantee the global 

optimal solution. However, in order to effectively tackle this problem, e. In contrast with 

deterministic optimization methods, the RHC uses prediction of future states of variables, 

constraints, and inputs over a moving time horizon to repetitively solve the problem. This 

method has been utilized in different fields, such as supply chain management, economics 

and finance, mechatronics, microgrid control, to mention a few [72], [73], and [74]. 

The wind power and electricity price data are comprehensively analyzed to obtain proper 

forecast models. In some papers (e.g. [75]), Monte Carlo simulations have been performed 

using probabilistic models to generate wind data. Although there are reliable probabilistic 

wind models, there is a lack of appropriate models to address RT electricity prices. Actual 

historical data (DA and RT) for wind and electricity price for MISO is used in this work. 

An ARIMA model is developed for wind power forecast and a Ridge-regression for RT 

price forecast. In order to train, evaluate, and test the price forecast model, a 1-year historical 

data is utilized to increase the accuracy of the model. 

The following nomenclature is used: 
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Indices and parameters  

,t Tτ ∈   Index of time step. 

H     Number of samples in prediction horizon. 

b

totalC    BESS capital investment [$]. 

,b b

P EC C   Inverter and battery costs [$/W, $/Wh]. 

,b bE E  maximum and minimum allowed battery energy level [MWh]. 

b

ratedE  Rated BESS energy level [MWh]. 

bP     Rated BESS power [MW]. 

V

PS  Sensitivity of voltage respect to active power. 

V

QS  Sensitivity of voltage respect to reactive power. 

, ,c dβ η η  Battery self-discharge, charge, and discharge efficiencies. 

t∆      Time resolution [hour]. 

 Variables 

b

tE  BESS energy level at time t [MWh].  

b

tP  BESS power at time t [MW]. 

cur

tP  Curtailed wind power at time t [MW]. 

pur

tP  Amount of power should be purchased from day-ahead market at time t [MW]. 

sch

tP  Committed energy production at time t [MW]. 
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W

tP  Wind generation at time t [MW]. 

b

tQ  BESS reactive power at time t [MVAR]. 

,c d

t tu u  Auxiliary binary variables for charging and discharging at time t. 

,DA RT

t tπ π  Day-ahead and real-time prices in energy market at time t [$/MWh]. 

Operator 

f  Generic operand. 

|
ˆ

tfτ  Estimate of $f$ for time $\tau$, issued at time t. 

5.2 System Description 

A general optimization problem is formulated, and all constraints are discussed in detail. 

Then, the BESS lifetime estimation is presented as a model for the battery degradation. 

5.2.1 Formulation 

The objective function is to maximize the profit of the operation of the BESS connected to 

the wind farm. The objective function should contain two elements to represent DA and 

RT terms. The objective function and the relevant constraints are presented as follows. 

 

   

 
, ,
Max ( ) ( )

b cur pur

w cur b DA pur RT

t t t t t t
P P P

t

P P P Pπ π− + ⋅ − ⋅∑     (5.1) 

subjectto
t∀

 

 ( )sch w cur b pur sch

t t t t t tP P P P P Pα− − + + ≤ ⋅     (5.2) 
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 0pur

tP ≥      (5.3) 

 0 cur w

t tP P≤ ≤                        (5.4) 

  
b c b

t tP u P−≥ ⋅     (5.5) 

 b d b

t tP u P≤ ⋅     (5.6) 

      1c d

t tu u+ ≤          (5.7) 

    ( 1) /b b c b c d b d

t t t t t tE E u P t u P tβ η η+ = − ∆ − ∆    (5.8) 

 b b b

tE E E≤ ≤     (5.9) 

In the formulation, constraint (5.2) guarantees that the DA schedule is met. The combined 

wind and BESS may buy energy from the RT market when needed. This means the BESS 

is not discharged when the RT price is relatively cheap. The BESS can be also charged 

through the excess of the wind generation or through purchasing power from the grid 

during low-priced times. Also, α is the allowable power deviation from the scheduled 

power. When α is equal to 0, no deviation from the DA schedule is allowed. In this thesis 

±5% of error is considered acceptable, and therefore, α= 0.05 is selected. Constraints (5.3) 

- (5.6) represent the limits on purchased power, curtailed power, and the BESS output. The 

BESS cannot charge and discharge at the same time and this is represented by (5.7). Energy 

level update of the BESS and its limits are represented in (5.8) and (5.9), respectively. 

Please note that c

tu  and d

tu is used in (5.8) to apply charge or discharge efficiency. 

5.2.2 Voltage Constraint 

The voltage sensitivity analysis in a power system can be calculated based on the well-

known Jacobian Matrix. The matrix connects the magnitude and phase of the nodal 

voltages to the nodal active and reactive power injections. It can be formulated as follows: 

  



67 

 

1 2

3 4

J JdP d

J JdQ dV

θ    
=     

    
  (5.10) 

 

1 2

3 4

P P
J J

V

Q P
J J

V

θ

θ

∂ ∂= =
∂ ∂
∂ ∂= =
∂ ∂

     (5.11)  

  

Where dP and dQ are vectors representing changes of injected active and reactive power 

in various buses. Also, dθ and dV are, respectively, phase and magnitude changes of bus 

voltages. To find the voltage magnitude sensitivity with respect to injected active power, 

dQ should be maintained zero. 

   ( ) 1
1

2 1 3 40 V

P

dV
Q S J J J J

dP

−−∆ = ⇒ = = −    (5.12) 

Table 5-1 

Results of the sensitivity analysis 

V

Ps   
V

Qs  
b

baseP  ˆ ( 0)inj

tP limit Q∆ =  

0.12 12.6 250 MW 20.8 MW 

 

Where dP and dV are in per units and V

PS  is unitless. In a similar way, voltage sensitivity 

with respect to injected reactive power is: 

( ) 1
1

4 3 1 20 V

Q

dV
P S J J J J

dQ

−−∆ = ⇒ = = −    (5.13) 
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By applying the superposition principle at the point of common coupling, the total voltage 

change, because of the changes in the active and reactive power, can be found from the 

following equation: 

V V

P QV P S Q S∆ = ∆ ⋅ + ∆ ⋅     (5.14) 

It is worth noting that this sensitivity analysis does not include the transformer tap-changer 

positions. Although this is a standard sensitivity analysis in transmission networks, it is not 

practical to apply on distribution networks, where there are numerous nodes and the size 

of the Jacobian matrix is extremely large.  

The IEEE 118-bus standard system is selected as the test case and it is assumed that the 

wind farm is connected to bus 110. MATPOWER [76] is utilized in MATLAB to find 

Jacobian matrices and calculate sensitivities of the voltage at bus 110 with respect to the 

injected active and reactive powers at the same bus, 
110

110

V

P
S  and 

110

110

V

Q
S . Table 5-1 provides 

these sensitivities and required information to utilize equation (5.14). The intent is to keep 

voltage variations within 1% per unit (|Vt−Vt-1| ≤0.01). The following set of equations can 

be added to the aforementioned optimization problem in order to account the voltage 

constraint. 

, ,
Max ( )  ( )

b cur pur

w cur b DA pur RT

t t t t t t
P

t
P P

P P P Pπ π− + ⋅ − ⋅∑    (5.15) 

subject to Eqs. (2), (3), (4), (5), (6), (7), (8), (9), and 

( ) ( )1 1 0.01inj inj V b b V

t t P t t QP P S Q Q S− −− ⋅ + − ⋅ ≤    (5.16) 

  
2 2 2b b b

t tP Q S+ ≤        (5.17) 
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inj w cur b

t t t tP P P P= − +       (5.18) 

     Where inj

tP  is the injected power at the point of common coupling (PCC) and 
bS  is 

the BESS rated apparent power. 

 

A. Battery Cost and Degradation Model 

The battery degradation of Lithium-ion batteries is highly dependent on the Depth of 

Discharge (DoD) of each cycle. An accurate lifetime analysis and battery degradation 

modeling are not the focus of this thesis. Hence, a linear approximation of the per cycle 

battery degradation is used to account in the optimization model. The SOC of the battery 

is limited to avoid any deep discharge or overcharging during the operation. The objective 

function which includes the degradation term is presented as follows. 

, ,

( )( )Max
b cur pur

b
w cur b DA pur RT b total

t t t t t t t cycle b
tP P P

C t
P P P P P

n E
π π ⋅∆− + ⋅ − ⋅ − ⋅

⋅∑   (5.19) 

Where the time resolution (∆t) is 1/12 of an hour and ncycle is 5000 and defined as the 

number of complete charge/discharge cycles that the battery can experience before its 

capacity falls below the minimum expected level. In this thesis, an assumption is made that 

the battery degradation is not correlated with the Depth of Discharge (DoD), defined as the 

percentage of the battery that has been discharged during a cycle. Also, Cb is calculated as 

below. 

b b b b b

total P E ratedC C P C E= ⋅ + ⋅      (5.20) 
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Where b

PC  and b

EC  are selected 0.22 ($/W) and 0.35 ($/Wh), respectively. It should be 

noted that this cost model does not include miscellaneous costs, such as installation and 

maintenance. 

5.3 METHODOLOGY 

In this section, a methodology based on a RHC is proposed for BESS operation to 

maximize its profit. In the first section, the basics of the RHC is reviewed and the proposed 

formulations is introduced. In the next section, new constraints are sought to represent 

voltage control at the point of common coupling (PCC). Finally, forecast methods for wind 

power and RT price are discussed in the last section. 

5.3.1 Receding Horizon Control (RHC) 

RHC or model predictive control can be considered as a type of feedback control [77]- 

[78]. The RHC shows a good performance for stochastic and nonlinear problems. However, 

the RHC is an inappropriate control method for real-time applications, where it increases 

the size of an optimization problem, and requires data estimations. Therefore, the RHC can 

be considered as a viable options to control systems with sample times, at least, in seconds. 

The basic concept of the RHC is depicted in Figure 5-1.  The optimization problem, at each 

time step, is solved over a fixed time horizon. Then, the first decision variables from this 

horizon is used. The prediction horizon, consequently, moves forward and the same 

procedure is repeated. It is worth noting that all previous wind and price information is 

available for the optimization problem at each iteration. Then, wind power and RT price 

data is forecasted over the prediction horizon. 
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Figure 5-1 Schematic of Receding Horizon Control (RHC) 

The optimization problem is solved based on the forecasted data, DA price, and committed 

wind production to maximize the profit. All constraints should be satisfied at each iteration 

to guarantee the feasibility of the solution. The objective is to maximize the profit in the 

current horizon with the following constraints: 

| | | | |
, ,

11

ˆ ˆ ˆ ˆ ˆMax ( )( )
b cur pur

t H
w cur b DA pur RT

t t t t t
P P P

t

T

t

P P P Pτ τ τ τ τ τ
τ

π π
+

= +=
− + ⋅ − ⋅∑ ∑     (5.21) 

[ 1,..., ]

subject to
t t Hτ∀ ∈ + +

 

( )| | | |
ˆ ˆ ˆ ˆsch w cur b pur sch

t t t tP P P P P Pτ τ τ τ τ τα− − + + ≤ ⋅     (5.22) 

|
ˆ 0pur

tPτ ≥       (5.23) 

| |
ˆ ˆ0 cur w

t tP Pτ τ≤ ≤       (5.24) 
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| |
ˆ ˆb d b

t tP u Pτ τ≤ ⋅       (5.25) 

| |
ˆ ˆb c b

t tP u Pτ τ≤ − ⋅       (5.26) 

| |
ˆ ˆ 1c d

t tu uτ τ+ ≤       (5.27) 

( 1)| | | | | |
ˆ ˆ ˆ ˆˆ ˆ /b b c b c d b d

t t t t t tE E u P t u P tτ τ τ τ τ τβ η η+ = ⋅ − ⋅ ⋅ ∆ ⋅ − ⋅ ⋅∆     (5.28) 

|
ˆb b b

tE E Eτ≤ ≤       (5.29) 

1| 1
ˆ b b

t t tE E+ +=       (5.30) 

Constraint (30) guarantees the continuity of the state of charge of the battery while the 

optimization horizon moves forward. It is worth noting that 
1

b

tE +  is obtained from (5.8). 

The flow chart of the proposed algorithm is presented in Figure 5-2. In order to limit the 

voltage variations at the PCC, the following set of equations should be solved. 

| | | | |
, ,

11

ˆ ˆ ˆ ˆ ˆMax ( )( )
b cur pur

t H
w cur b DA pur RT

t t t t t
P P P

t

T

t

P P P Pτ τ τ τ τ τ
τ

π π
+

= +=

− + ⋅ − ⋅∑ ∑     (5.31) 

subject to Eqs. (5.22)-(5.30) and     

( ) ( )| 1| | 1|
ˆ ˆˆ ˆ 0.01inj inj V b b V

t t P t t QP P S Q Q Sτ τ τ τ− −− ⋅ + − ⋅ ≤     (5.32) 
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Where the total injected power at point of common coupling can be found from the 

following: 

| | |
ˆ ˆ ˆ ˆinj w cur b

t t t tP P P Pτ τ τ= − +       (5.34)  
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Figure 5-2 Flowchart of the proposed algorithm for BESS sizing and operation 

5.3.2 Short-term Wind and Price Forecasts 

Accurate wind power and electricity price forecasting can significantly influence the 

efficient operation of the BESS. Although the wind and price forecasting is not the main 

contribution of this thesis, workable approaches are developed to perform the forecasting 

tasks.  
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Wind and electricity are essential elements of short-term operations, as well as long-term 

planning. As a matter of fact, the efficient operation of a BESS depends on accurate short-

term wind and price forecasts. Sampling resolution for wind in MISO is one hour and the 

prediction horizon is assumed to be 2 hours. Therefore, it is required to forecast two more 

data points. Traditional linear point forecast methods, such as auto regression-based 

models, does not provide the BESS models representing the non-stationarity of the wind 

[79]. Alternatively, probabilistic forecast methods account the uncertainties by quantifying 

them [80], [81], and [82].   

Nevertheless, Auto Regression Integrated Moving Average (ARIMA) is used in this work 

where it is needed to forecast two data points and this is considered as a very short-term 

forecast. ARIMA models shows a good performance for a short-term wind forecast [83]. 

On the other hand, sampling resolution for RT price in MISO is 5 minutes. The prediction 

horizon is 2 hours and 24 data points should be forecasted in each step. According to [84], 

short-term price forecast includes forecasts from a minute up to a few days ahead. Most of 

the research in the literature focus on DA market and not RT market. Price forecast in RT 

market is basically Local Marginal Price (LMP) forecast which highly dependent on the 

network operations model and the congestion patterns [85]- [86] . In [86], LMP and 

network congestion forecast is considered from a system operator’s perspective where 

there is an access to the power system operating conditions. In contrast, in this thesis, the 

problem is tackled from market participant’s perspective is who does not have access to 

the private data and utilizes only publicly available historical data, such as LMP, zonal 

loads, wind, generation, DA market price, etc. A Ridge regression model is developed to 

forecast the RT price. Performance of a forecast method can be assessed through different 
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measures which are widely used in the literature such as Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), Mean Squared Error (MSE), or Mean Absolute 

Percentage Error (MAPE). The first two aforementioned indices are used to evaluate the 

performance of the forecast over a horizon at each step. The following equations represent 

MAE and RMSE, respectively, for wind power forecast at time step t: 

|
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1 ˆ
H

w w

t tMAE P P
H

τ τ
τ =

= −∑       (5.35) 
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τ τ
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Where H denotes the samples in each horizon. In this thesis, H would be 2 for wind forecast 

and 24 for RT price forecast. In order to generalize the indices for the total simulation time, 

they can be redefined as follows: 
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Where T denotes the total time intervals RHC is being performed in the simulation. 

In this chapter, a time series model for wind power forecasting is developed. However, a 

detailed forecast approach for RT electricity price is provided in Appendix.  

Wind Power Forecasting: Time series models (ARIMA, ARMA, ARX, etc) utilize the 

patterns of the previous points and movements over the time to forecast its future 

movements. General model of ARIMA is typically denoted by ARIMA (p,d,q) where p is 
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the order of lags in autoregressive model, d is the degree of differencing, and q is the order 

of lags in moving average model. In ARIMA, unlike ARMA, one can take the periodic 

difference between two data points and use them instead of the original data points to 

eliminate non-stationarity. It is worth mentioning that performance of time series forecast 

methods are acceptable once a series is stationary. The process of taking differences 

between two data points can be repeated until a stationary model is achieved. 

The resolution of wind power data for MISO market is 1-hour and our prediction horizon 

is 2 hours. Although wind power data is non-stationary, its first degree of differencing 

becomes stationary. A general model of ARIMA (p,d,q) and the procedures of selecting its 

parameters are presented in [87]. In this thesis, ARIMA (3,1,3) is selected as the forecast 

model.  

5.4 RESULTS 

In this case study, wind power, DA and RT electricity price data for MISO are used. It is 

assumed that wind power is scheduled in the DA market and 5% deviation from scheduled 

power is acceptable at any time. If the actual wind power exceeds the scheduled power, 

and it deviates from the 5% tolerance, the excess energy should be either stored in the 

BESS or curtailed. Similarly, when the actual wind power is less than the scheduled power, 

the difference should be compensated by the BESS or the RT market. In this section, first 

the optimal size of an individual BESS connected to a 250-MW wind farm is found. Then, 

the operation of the BESS using RHC is assessed. The profitability of the BESS is 

compared to the no-BESS scenario and the best-case scenario with the perfect forecast. In 

the next part, the voltage constraint is taken into consideration and reassess the 
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performance of the BESS. In the last part of this section, the impact of the BESS price on 

its profitability is studied. 

 

5.4.1 BESS Sizing 

The historical wind power, DA and RT price data over a year is used, in this thesis, to find 

the optimal BESS size (power and energy ratings) with the aim of maximizing the profit. 

relatively long-term data (1 year) is used in order to avoid any biases in price or wind power 

due to seasonality issues. Figure 5-3 depicts the average daily profit of the BESS operation 

with different power and energy ratings. The BESS costs and degradation are considered 

in this process, where (5.19) is used as the objective function. Therefore, the higher size of 

the BESS does not necessarily increase the profit in long term. 40 MW and 120 MWh are 

selected, as power and energy ratings, respectively. 

 

Figure 5-3 average daily profit for different energy and power ratings.  
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5.4.2 Average Daily Profit of BESS using RHC 

In this thesis, the following items are assumed at any time step: 1) It is assumed that all 

publicly available historical data is accessible. 2) MCP cleared in DA market is available 

for the whole day. 3) There is no access to future actual wind power and RT price. 

The optimization problem discussed in section III-A is implemented to calculate average 

daily profit from the operation of the BESS. At each iteration, the convex MILP problem 

is solved in Gurobi 7.5 [88], called by CVX [89] in MATLAB. Using a personal computer 

with a core i7 2.80-GHz CPU and8 GB of RAM, on average, it takes less than 2 seconds 

for each iteration. 

Figure 5-4 shows the actual and scheduled wind power during the week. Also, the curtailed 

and purchased power are presented in Figure 5-5and the BESS operation results (output 

power and SOC) are presented in Figure 5-6. These figures demonstrate that the BESS 

absorbs some power between 24 and 48 hours and becomes fully charged. Therefore, the 

BESS cannot help with charging between 48 and 64 hours, and all excess of wind power 

is curtailed. 

 

Figure 5-4 Actual and scheduled wind power.  
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Figure 5-5 Purchased and curtailed power.  

 

Figure 5-6  BESS active power output (a) and SOC (b) for a week. 
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5.4.3 Impact of Voltage Constraint 

In this section, the performance and profitability of the BESS are evaluated in the presence 

of the voltage control constraints. For this reason, equations (5.26), (5.27) , and (5.28) shall 

be added to the previous optimization problem. It should be noted that this constraints keep 

the problem convex and tractable. The square function is convex for real values and it is 

supported in CVX. As mentioned, the IEEE 118-bus system is selected as the test case and 

use the results presented in Table 5-1. Also, Figure 5-7 demonstrates the BESS active and 

reactive power output when the voltage control is in effect. The results show that the 

reactive power is mostly limited to -4 and 4 MVAR and does not significantly affect the 

active power. Figure 5-7 illustrates the active and reactive power of the BESS with voltage 

control during the week. Results presented in Table 5-2 in section IV-C demonstrates that 

the average daily profit with voltage control is slightly less than the case without it. 
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Figure 5-7  BESS active (a) and reactive (b) power output when voltage control is in effect. 

5.4.4 Impact of the Battery Price and Degradation 

The high cost of batteries is considered as the main obstacle for deployment of the BESS 

in power networks. However, battery costs have come down within the past decade, and is 

expected to be as low as 200 $/KWh for Li-ion in the next few years [90]. 

Impacts of the battery price and degradation on the profitability of the BESS are evaluated, 

in this section. Simulations with the objective function described in section II-C is 

performed and results are presented in Table 5-2. These results, as expected, show that the 

profit with the degradation model drops when the BESS operates less frequently. However, 

this results in lower battery degradation and higher lifetime expectancy. When the per cycle 
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value of the BESS operation is considered in the optimization problem, the higher profit in 

the long-term operation of the BESS can be expected. 

Table 5-2 

Average daily profit of various studies (p=40mwande=100mwh) 

 

Scenario 

 

Degradation 

 

Voltage 

Control 

Profit ($1000) 

Total Wind BESS 

1 - - 608 573 35 

2 -  �   607 573 34 

3 � - 601 573 28 

4 � � 600 573 27 

 

5.5 CONCLUSION 

The main challenge in power systems with high share of RES is to increase the flexibility 

of the system to maintain its balance. The BESS is an excellent candidate for mitigating 

adverse effects imposed by the RES. In this chapter, it is assumed that the BESS is co-

located with the wind farm while participating in both DA and RT markets. When the wind 

power exceeds the DA scheduled power, the extra power must be curtailed or utilized to 

charge the BESS. On the contrary, if there is a lack of wind power, the difference between 

the actual and the scheduled power should be provided by the BESS or purchased from the 
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RT market. An optimization problem with the aim of maximizing the profit with all 

physical and operational constraints were formulated. First, the optimization problem was 

solved for 1-year historical wind power and electricity price data from MISO, to achieve 

the optimal size of the BESS. However, at the operation stage, it was assumed that the 

future wind power and RT electricity price values were not available. Therefore, the new 

RHC scheme using the forecasted data was proposed as an effective solution to deal with 

uncertainties. An ARIMA model for the wind power forecast and a ridge regression model 

for the RT electricity price forecast was developed and utilized in this chapter. Several 

scenarios were presented to assess the impact of the voltage control, the BESS lifetime, 

and the BESS price on the average daily profit. 

 



84 

 

 

1.  

CHAPTER 6: Conclusion and Future Work 
 

In this thesis, the operation and sizing of single and hybrid energy storage systems in 

various scenarios were addressed. First, the interconnection requirements and the minimum 

power and energy requirement of energy storage systems in different cases were briefly 

addressed in this thesis. An analytical method for BESS sizing in presence of PV-induced 

ramp rate limits was proposed. In this method, locational impacts of the PV site have been 

considered, too. Moreover, a method for utilizing two or more energy storage technologies 

was introduced.  

Control of the BESS has a great impact on its profitability. In this thesis, two scenarios 

were reviewed: 1- the wind farm does not participate in real-time market; 2- the wind farm 

participates in electricity market. In the first scenario, excess of wind power cannot be sold 

in the market and is counted as missed opportunity. In addition, the BESS is assumed to 

provide energy during times wind power is less than the DA scheduled power. However, 

in the second scenario, energy deficiency can be provided by the BESS or purchased from 

the RT market. Similarly, energy excess can be used to charge the batteries or sold into the 

RT market.  

Each scenario is discussed in details and the physical and operational constraints were 

formulated. Each problem is solved through a Receding Horizon Control (RHC) or model 

predictive control scheme. A new method is proposed for the first scenario, which can be 

used in real-time applications.      
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The RHC based on updated wind and price forecast is proposed for the second scenario. 

The detailed conclusions and final remarks were provided in 6.1. The directions for future 

work on these topics were summarized in 6.2.     

6.1 Concluding remarks and discussions  

In chapter 3, different methods for sizing of energy storage systems has been discussed. It 

is worth noting that different utilities and regulators have different standards for integration 

of distributed generations. Different standards and requirements for high wind and PV 

integrations were reviewed. The minimum BESS size should be found based on the 

interconnection requirements in each system. In first part of Chapter 3, the requirements 

for the BESS to mitigate adverse effects of high PV penetration were reviewed.  

Next, two methods to find the minimum power and energy required by grid were addressed. 

The analytic method is based on the worst-case scenario when PV generation drops (rises) 

90%. Simulation of ramp rate control shows the trend of charging and discharging for a 

BESS connected to a PV plant. NREL historical data for simulation purposes is used.   

Then, hybrid configuration of energy storage systems was proposed to mitigate wind 

energy fluctuations. Capital cost of energy storage systems is the main obstacle for them to 

be deployed. Much research has been conducted to increase efficiency and decrease the 

required size of ESS. Some types of ESS (like batteries) can respond rapidly and were suited 

to mitigate high frequency components of imbalance power. However, some other types of 

ESS are more efficient for slow cycles. DFT based method was used to break out slow and 

fast components of imbalance power. By using high and low pass filters, frequency domain 
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signal of imbalance power is decomposed and is transformed to the time domain by inverse 

DFT. In this chapter, a DFT-based coordinated strategy is introduced to distribute power 

between BESS and PSH. A methodology to determine power and energy capacity of each 

type of ESS was discussed. To validate the effectiveness of the proposed method, actual 

data of BPA for 2014 were used in the simulations. 

Researchers may extend this work and use Discrete Fourier Transform (DFT) for 

operation of hybrid energy storage systems. One can forecast the few hours ahead using the 

past 24 hours’ data. Then, the next few hours window can be divided into high frequency 

and low frequency components. One can assign low frequency components to PSH and then 

the amount combined PSH and wind output fall short of day-ahead schedule can be 

compensated by BESS.     

In chapter 5, the opportunities for the BESS to participate in electricity market were 

reviewed. A BESS is a reliable resource to provide energy for various power system 

applications. The BESS can increase the flexibility and reliability of the renewable energy 

dispatch. Wind energy has the largest contribution among renewable energy resources and 

its control has become a research focus in power systems area.  

In fact, the main challenge for battery to participate in a market is the high cost. Lifetime 

of batteries should be estimated and modeled as constraint in the optimization model. 

In this chapter, it is assumed that the combined output power of the BESS and wind 

turbines should match with a DA scheduled power. If the wind power exceeds the 

scheduled power at any time interval, the extra wind power can be simply curtailed or 

used to charge the BESS. Meanwhile, during a wind energy deficiency, the deviated 
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power can be provided by the BESS or purchased from the RT market. It is assumed that 

±5% is the allowable tolerance for deviation from the scheduled power. 

A novel BESS control to manage the net energy exchange between a wind farm and the 

grid in an electricity market is introduced in this chapter. A Receding Horizon Control 

(RHC) scheme is proposed for optimal operation of the BESS in the presence of operational 

constraints.  The proposed method seeks a decision policy to manage operation of the BESS 

to increase daily profits. Utilizing short-term wind and price forecasts provide valuable 

information for the BESS controller to obtain the best times to charge batteries, discharge 

the stored energy, or purchase energy from the DA market. An optimization problem is 

formulated considering BESS costs and operational constraints. This optimization problem, 

at each time step, was solved using the RHC scheme. All wind and electricity price data and 

case studies in this thesis are based on MISO energy market data.  

6.2 Future Work 

Interesting research directions for future work are recommended in this section. In what 

follows, detailed recommendations were discussed: 

1- In Chapter 3, the planning stage of utilizing two or more energy storage technologies 

were addressed. The main challenge in this chapter is the issue of operation for 

hybrid energy storage systems. A good research direction could be operational 

concerns of hybrid energy storage systems. The balanced power can be forecasted 

and decomposed by algorithms proposed in chapter 3. The slower components can 

be assigned to PSH (or any slow ESS). The remaining error can be compensated by 

the BESS. However, deep research and detailed simulations are required to verify the 
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performance of the method and clarify possible challenges of utilizing this hybrid 

energy storage scheme.     

2- In chapter 4, second life batteries can be considered as a cheaper option. Used 

batteries from EVs can be recycled and operated in other applications. Some repair 

and justifications should be done to make sure the used batteries can work properly 

in other applications. The second life batteries can support inverters with good 

amount of DC power. However, their energy capacity may be diminished after the 

first few years of use in EVs. 

3- Chapter 5 could be extended by adding battery lifetime degradation into the 

constraints. The semi-empirical model of degradation, which is introduced in [10], 

can be utilized together with other sets of constraints in optimization problem. It 

should be noted that the model is not linear, but can be linearized within different 

sections. This constraints might be written and solved by a Mixed Integer Linear 

Programming MILP) solver.   

4- In chapter 5, it was assumed that the power flow results of IEEE 118-bus system is 

maintained constant at each iteration. In other words, the voltage of the 

interconnected bus varies by the power injected or withdrew by the Wind-BESS. A 

detailed simulation could be done by putting wind farms at different buses. 

Therefore, power flows could be performed at each iteration and the results could 

be used in the optimization constraints. In actual systems, the current voltage of each 

bus can be read from the meter and utilized in the system. 

5- Impact of location and seasonality could be an interesting factor to evaluate the 

profitability of the BESS in an electricity market. Different locations in a market 
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have different trends of electricity prices. First, the DA electricity price in an area 

can be higher or lower, on average, than another area. The average price in central 

California is less than that in southern California. Moreover, RT price can increase 

or decrease in different seasons. For example, the average southern California RT 

electricity price in the winter is less than in the summer. This is because southern 

California power system is more congested in the summer due to very high air 

conditioning loads [41].  
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Appendix 

 

RT Electricity Price Forecasting: In order to carry out a thorough data analysis for RT 

electricity price forecast, our work is split into four main categories. In what follows, each 

category and its necessary components are provided. 

1) Data gathering and pre-processing: all historical price (DA and RT), load, and weather 

data are gathered for anode in Riverside, Missouri. Then, missing values are imputed, and 

outliers are replaced with the previous bounded data. 

2) Feature engineering: In this step, several features for analyzing the data are created such 

as DA price, load, temperature, renewable generation, and their seasonal features (hour, 

day, weekday/weekend, and month). 

3) Historical DA and RT prices, historical load and demand forecast, imports/exports, 

historical reserve calls, renewable generations, calendar effects (day, hour, month) 

influence the electricity price . Some features like historical reserve calls are not publicly 

available. In this thesis, features are created based on the available data. In order to select 

the BESS features, the correlation between each feature and the actual RT price is evaluated 

in the first stage. Some features are highly correlated and carries a high level of dependency 

to the target variable (RT price). These relevant features include temperature forecast, 

historical DA and RT prices, historical load, and demand forecast. However, some features 

are not highly correlated with the RT price (e.g. calendar effects, renewable generation, 

generation types, etc.), which should be eliminated. In the next stage, redundant features 

should be detected and filtered, while working on the remaining relevant features from the 
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first stage. The correlation of every two features should be examined to evaluate whether 

a set of two features carry similar information about the target variable. For instance, 

temperature and load are highly correlated. This means one of them can be eliminated 

4) Exploratory analysis: In this step, it is required to evaluate different characteristics of 

data sets. Exploratory analysis is typically applied before model developments to eliminate 

or sharpen hypotheses about the data. Univariate statistical analysis techniques applied in 

this thesis include outlier detection, central tendency and spread statistics (e.g. mean, 

median, distribution, interquartile range, etc.), and seasonality assessment. Moreover, 

multivariate statistical analysis techniques are applied to highlight the relationship between 

two or more variables. For instance, simple correlations are used to rank the importance of 

different features in feature selection stage. Figure A-1 demonstrates the correlation 

between RT price and some features, such as 5-minute lag, 120-minute lag, and load. 
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(a) 

 

(b) 

 

(c) 

Figure A-1 Illustration of correlation between RT electricity price and last 5-minute (a), 

last 120-minute (b), and load (c) features. 
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5) Data-driven forecast model development: It is needed to perform the forecast process 

every 5 minutes. At each iteration, it is intended to forecast 24 values, which are RT prices 

for the next two hours with 5-minute resolutions. The forecast model maps input values 

from the selected features to outputs (RT prices). Much research has been conducted in the 

area of DA price forecast and numerous approaches have been introduced. A 

comprehensive review of various forecasting models for DA electricity price is provided 

in [4]. However, only a published studies consider the short-term RT price forecasting 

problem. Since, the RT price forecasting is not the main focus of this thesis, a simple ridge 

regression model is selected to implement in this work. The standard form of multiple 

linear regression can be written as follows. 

Where 
1nY ×  represents target variables (RT price), 

1nX × with the rank of m represents 

independent variables, 
1mβ ×  represents regression coefficients. Also, e is the vector of the 

residual errors with E[e] = 0 and E[ee′] =
2

nσ , where E[.] is the expected value operator. It 

is worth noting that 
1mβ ×  is unknown and should be estimated through the historical 

training data (06/01/2016 to08/15/2016). The ridge regression estimates the coefficients by 

solving a problem in the following form: 

Where α≥0 is the regularization parameter, which imposes a penalty on the size of the 

coefficients and reduces the variance. The best regularization parameter (α) is selected by 

performing the Leave-One-Out cross-validation technique. 

2-6) Performance evaluation: the data is divided into three sets to use in training, validation, 

and forecast periods. The historical data from June 1 until August 15, 2016, is used for 

training. Also, the historical data from August 15 until August 22, 2016, is used in the 
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validation stage. Finally, the forecast process is performed on the historical data from 

August 23 until August 29, 2016. It is worth mentioning that the forecast process is 

performed every 5 minutes for a two-hour prediction horizon. The price forecast results for 

5, 60, and 120 minutes ahead are presented in Fig. A.1.  

 

Figure A.2 Price forecast for three different lags (5, 60, and 120 minutes ahead). 

In order to assess the performance of the adopted forecasting approach, the Root Mean 

Square Error (RMSE) as a well-established statistical metric is utilized and results are 

presented in Fig. A-3. 
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Figure A.3 RMSE  of  errors  for  various  lags  (lag  1  represents  5-minute  ahead, lag 2 represents 10-

minute ahead, and etc.). 
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