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ABSTRACT

MUHAMMAD AHMED. Integrated Active and Reactive Power Management of
Power Distribution System Considering Distributed Energy Storage and PV Farms.

(Under the direction of DR. SUKUMAR KAMALASADAN)

Modern electric distribution system with distributed Photo-Voltaic (PV) farms

and energy storage units have been facing technical challenges due to the difficulty

in managing them collectively. This dissertation presents new solutions for energy

management of PV farms integrated power distribution systems using energy storage.

First, a new local net active power management methodology for PV point of common

coupling (PCC) is discussed. Further, this approach is extended as an integrated net

active power management architecture based on an optimal ramp rate algorithm. The

approach considers the ramp rate and state-of-charge of the energy storage device

that can be used for resource allocation. Second, an integrated feeder level peak load

management methodology with a load prediction approach is illustrated with the

methodology applied to separated and decomposed load types. Third, a coordinated

volt-var control approach considering a fast and slow change in the active power

is illustrated. Fourth, a dynamic volt-var control approach with sensitivity based

algorithm is illustrated. The novelty in the volt-var control approach is that the

methodology coordinate with legacy devices and voltage source converters. Also,

a dynamically changing framework is designed based on active and reactive power

sensitivity. Finally, an integrated volt-var-watt control approach is illustrated. This

approach coordinates with active and reactive power in the feeder considering the

reactive and active power capability of the device.
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CHAPTER 1: INTRODUCTION

PV photovoltaic solar energy resource is one of the common distributed energy

resources (DER) that has been lately developed in modern power distribution net-

works [37]. It also has become more economical and clean for PV solar energy to

be utilized in higher penetration level throughout distribution networks. Neverthe-

less, technical issues remain rising with harmful effects on distribution feeders due to

DERs operation without any energy management (active and reactive power manage-

ment) [94]. Moreover, as solar energy usage expanded in many electricity grids, the

phenomenon of ”Duck Curve” emerged with multiple generation and grid operation

risks to be tackled [32]. Whereas energy storage systems (ESS) is substantial mean of

active power management in RER integrated distribution grids, feeder load prediction

plays a crucial role in generation management and operations in general and energy

storage ancillary services in particular. Solar energy high penetration level and long-

term feeder load prediction are the main motives for the research work presented in

this dissertation. This chapter discusses all technical related introductory literature

about methodologies developed in this dissertation.

This dissertation presents an integrated active and reactive power management so-

lution with the aid of distribution level day ahead active load prediction. The active

power management part incorporates three main ancillary services of energy storage

systems; PV output power smoothing, active power ramp rate control for distribu-
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tion system’s net-load locations, and energy time shift (ETS) application. Also, the

reactive power management part incorporates utilization of reactive power capability

of voltage source converters (VSC) of energy storage systems. The contribution of

reactive power management is the development of online voltage sensitivity analysis

so that all VSCs at their given locations are able to regulate the voltage level at any

chosen location of interest. Finally, integrated active and reactive power management

(VVWC) solution is developed so that the active and reactive power capability (PQ

curves) of the converter is taken into consideration. The weather forecasts based day

ahead active load prediction aids the ETS application. It is also discussed in the

future work to be used to aid net-load active power management.

1.1 PV Output Power Smoothing

Due to randomness in clouds patterns, sun irradiation profile tends to have some

severe fluctuations. These fluctuations, in turn, cause an intermittent output power

at the interface point with the grid (point of common coupling (PCC)). Fast changes

greatly affect voltage profile throughout the big part of the network and subsequently

cause unwanted actions by voltage regulation legacy equipment such as online load tap

changer (OLTC), line regulators and switched capacitor banks. PV output smooth-

ing is also called ”PV capacity firming,” and it is defined as the action of using an

intermittent power source as almost constant. Due to fast response, Battery energy

storage systems are commonly used, nowadays, to mitigate these output power fluc-

tuations. In this dissertation, the proposed algorithms provide an optimized energy

storage output that allows smoothing the PV output at various conditions. The
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key features of this algorithm are that the PV output changes are tracked, so that

reference curves get adjusted accordingly. The system under study is 1 MW solar

PV station tied with (250 kW/750 kWh) battery energy storage system BESS. Both

systems are connected to a distribution network of practical 720 nodes on medium

voltage level 12.475 kV. The system is already deploying real-time control architec-

ture for many energy storage applications such that PV smoothing, energy arbitrage,

and voltage support. The work proposed is simulation results on some historical data

of the PV station.

1.2 Power Distribution Network Net-Load Active Power Management

As presented by California Independent System Operator (CAISO) [32], grid’s

conventional generation units are expected to have a significant decrease during noon

time with a subsequent steep ramp rate due to increase in demand. A net-load profile

could be defined as all the generated power injected by all the conventional power

generation resources. It also has the name of Duck Curve. The so-called (Duck

Curve) is the result of subtracting all the renewable generated power connected to a

given system from the total load connected to this system. Fig. ?? shows net-load

profiles at given distribution network in North Carolina, it is also developed assuming

different penetration level of photo-voltaic solar farms. This phenomenon increases

the risk of over-generation during the day when the system’s supply outweighs the

demand. As in [37], the duck curve starts to get fatter which leads to an immediate

active power management solution. However energy storage technology costs are still

crucial, it is still one of the means to be considered to approach net-load active power
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management. Addressing the generation curve ”Duck Curve” as well as addressing

RER’s intermittent changes became two different types of active power management;

fast changes and ramp rate changes. Therefore, energy storage units are sought to be

placed differently than where it is usually placed for RER active power smoothing.

For medium scale power distribution network, a net-load profile is represented by

substation location. However, in larger systems, there shall be multiple locations to

be considered as system’s local net-load location.

06:00 12:00 18:00 00:00

T ime(hh : mm)

1500

2000

2500
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Net-Load Active Power (kW)

0

200

400
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Net− Load (PV − 3MW )
Net− Load (PV − 4MW )
PV − 1MW

Fig. 1.1. Distribution Feeder Net-Load profile at of PV penetration

Few work in the literature [43, 50, 74, 83, 86] discussed net-load management using

energy storage systems. Energy storage systems locations are not studied in details.

Also, due to steep ramp rates of duck curve, approached techniques are considered

as energy management more than active power management because energy storage

systems are expected to dispatch consistently for significant time duration. Besides,

managing PV active power smoothing and BESS state of charge (SoC) control is not

taken into full consideration. This dissertation addresses energy storage allocation for

RER active power management as well as an optimal approach to control large power

distribution networks’ local net-load locations. The proposed methodology provides

a significant decrease in active power ramp rate on the net-load side as well as voltage
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regulation benefit as it reduces power losses in the system as well as reducing taps

operations at all voltage regulators.

1.3 Long Term Feeder Load Prediction

Load prediction is the action of forecasting active power demand at a certain time

in the future [81]. Load prediction could be short term, medium term, and long

term. In the literature [41], load prediction methodologies are categorized based

on techniques; multiple regression, exponential smoothing, adaptive load forecasting,

iteratively reweighted least-squares, ARMAX models based on genetic algorithms,

fuzzy logic, and neural networks [89]. However, detailed load prediction methodologies

based on load types decomposition. Increased penetration of renewable energy based

generators throughout modern distribution networks makes it crucial to seek elevated

levels of accuracy in forecasting methods. First, energy time shift (ETS) application

relies on knowing the peak load time few hours beforehand so that state of charge

(SoC) could be controlled and adjusted to be at the maximum value possible at this

time. Second, having a complete pattern of anticipated feeder load gives quite an

accurate estimate of the expected net-load rate of change. This dissertation presents

an intelligent load forecasting method for residential distribution feeders. It uses, load

time series decomposition to distinguish between all types of loads and events on a

feeder. Then, back-propagation artificial neural network (BP-ANN) technique is used

to utilize the day ahead weather variables forecasting to predict weather dependent

load component. The proposed algorithm is evaluated on a residential feeder. Results

show the very accurate prediction for active power as well as the lighting load peak
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time.

1.4 Co-ordinated Voltage Control Utilizing Voltage Source Converters In

PV/BESS Hybrid Distribution Systems

Modern-day distribution systems (DS) is now hosting an increasing number of both

small and large-scale distributed energy resources (DERs). Even though these DERs

can support reactive power along with the active power they provide, practitioners

are still hesitant in utilizing the reactive power potential from these DERs. One of

the major concerns for the distribution system operator is the coordination between

the existing voltage regulators and the inverter based reactive power sources in the

DS. The utility-scale photovoltaic (PV) farm and battery energy storage are growing

in numbers with the continued growth and focus on the integration of large-scale

renewable energy resources (RERs) in the power grid as mandated by the Renew-

able Portfolio Standards (RPS) [57] in many states in the United States. However,

these RERs impose challenges in the control and operation of the distribution system,

mainly on feeder level voltage regulation. One source that can provide additional re-

active power support is the voltage source converters (VSCs). VSCs are primarily

connected to the distribution system to convert active power from the RERs and

feed generated power into the network. Recently, grid codes in many countries have

been modified such that the reactive power capability of the these grid-connected

VSCs can be utilized [78]. Even though using VSCs as additional voltage control

devices is promising, coordinating the existing legacy controllers in the feeder (such

as on-load tap changing transformers (OLTCs), voltage regulators, capacitor banks,
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etc.) with the VSCs is very challenging. Without proper coordination, the interaction

between these devices can lead to unwanted operations and switching of these legacy

controllers [60], which is undesirable for the utility regarding quality and economic

reasons. For example, a sudden shift of tap position of the OLTCs and line regula-

tors causes voltage transient in the feeder and also mechanical wear and tear of the

devices [53]. Also, unwanted reactive power support from the VSCs based RERs is

undesirable because of unwanted switching losses in the converters. Thus, there is a

need to intelligently provide reactive power support from the VSCs without affecting

the operation of legacy controllers. This dissertation presents a control strategy for

coordinating the operation of OLTC, line voltage regulators and VSCs of battery

energy storage. This technique aims to maintain the load end voltage of the feeder

within the allowed band while minimizing the operation of the line regulators. The

realization of the control depends on the broadcast of the voltage out of band warning

signal from the line regulators. Based on this, VSCs inject/absorb the reactive power

to/from the feeder, such that the feeder load end voltage is at the allowable voltage

band.

1.5 Voltage Sensitivity Based Volt-Var Control

One of the major concerns for the distribution system operator is the coordination

between the existing voltage regulators and the inverter based reactive power sources

in the DS. Besides, connected renewable energy resources (RERs) impose challenges

in the control and operation of the distribution system, mainly on feeder level volt-

age regulation. One source that can provide additional reactive power support is the
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voltage source converters (VSCs). VSCs are primarily connected to the distribution

system to convert active power from the RERs and feed generated power into the

network. Recently, grid codes in many countries have been modified such that the

reactive power capability of these grid-connected VSCs can be utilized [79]. Even

though utilizing VSCs as additional voltage control devices is promising, coordinating

the existing legacy controllers in the feeder (such as on-load tap changing transformers

(OLTCs), voltage regulators, capacitor banks, etc.) with the VSCs is very challeng-

ing. Without proper coordination, the interaction between these devices can lead to

unwanted operations and switching of these legacy controllers [61], which is undesir-

able for the utility concerning quality and economic reasons. For example, a sudden

shift of tap position of the OLTCs and line regulators causes voltage transient in the

feeder and also mechanical wear and tear of the devices [54]. Also, unwanted reac-

tive power support from the VSCs based RERs is undesirable because of unwanted

switching losses in the converters.

Fig. 1.2 presents an illustrative schematic that shows the connectivity between the

proposed methodology in this dissertation.

1.6 Research Contributions

This section presents the research contribution to the research as mentioned earlier

topics.

• A new error minimization based PV capacity firming methodology. The method-

ology is based off an optimization formulation that can follow the fast weather

changes in the level of clouds states such that battery energy storage units stay
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Fig. 1.2. Connectivity schematic diagram to show the connectivity between the
proposed methodologies.

functioning with operable state of charge (SoC). Also, the methodology problem

is formulated as an objective function with error minimization which allows the

control of the point of common coupling shape accurately.

• A new optimal active power management for local net-load locations in power

distribution networks. First, the approach incorporates Fast Fourier Transform

(FFT) / Inverse Fast Fourier Transform (IFFT) to historical local net-load

locations to generate local net-load reference curves. The methodology uses SoC

feedback based PI controller to calculates all threshold values for inequality and



10

equality constraints for the optimization problem. Based on assumed PV/BESS

sizing, the proposed simulation contributed to the significant control of duck

curve ramp rate as well as avoiding the risk of over-generation.

• An intelligent approach in day ahead feeder load prediction is developed. The

feeder load curve is decomposed into all types and different behaviors. Then, an

artificial neural network (ANN) to predict the weather-dependent component

of feeder load based on the day ahead weather forecasting. Also, the novelty

of the proposed methodology is it is accurately predicting peak time to aid

energy time shift (ETS) energy storage application. The proposed presents a

significant sample of implementation results as well as simulation results.

• An integrated volt-var control (IVVC) methodology which aims to maintain

the load end voltage of the feeder within the allowed band, while minimizing

the operation of the line regulators. The realization of the control depends on

the knowledge of the regulator voltage out of band warning signal from the

line regulators. Based on this, VSCs inject/absorb the reactive power to/from

the feeder, such that the feeder load end voltage is at the allowable voltage

band. The architecture is implemented using a communication network already

available at the utility.

• A novel online sensitivity analysis based coordinated volt-var control is devel-

oped. The algorithm is dynamically estimating the sensitivity indexes between

reactive power changes at the location of the utilized voltage source converters

(VSCs) and voltage changes at other locations of interests. The modernity of
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this methodology is not only splitting reactive power capability between two

locations regulation but also ability to set a target value for each location which

leads to almost avoiding a high number of taps actions at some of the feeder

line regulators.

• An integrated Volt-Var-Watt control (VVWC) is developed where optimal ac-

tive power management net-load control and sensitivity analysis based volt-var

control (VVC) are combined.

1.7 Dissertation Organization

This dissertation is organized as follows:

• Chapter 1: This chapter discusses an overview and introduction to energy stor-

age system active and reactive power applications and feeder load prediction.

It also summarizes the research contribution.

• Chapter 2: This chapter presents an error minimization based PV capacity

firming algorithm.

• Chapter 3: This chapter presents optimal net-load active power management

methodology to solve duck curve due to high PV penetration. It discusses

different PV penetration levels.

• Chapter 4: This chapter present weather forecasting based day ahead feeder

load prediction. The methodology is developed in Java, and it presents both

simulation and implementation results for a real feeder in North Carolina, USA.
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• Chapter 5: This chapter presents a coordinated voltage control strategy for

voltage regulators and voltage source converters for the distribution network.

• Chapter 6: This chapter presents a novel online sensitivity analysis based coor-

dinated volt-var control for power distribution networks. The methodology is

developed in Python and applied to IEEE 8500-Node large system.

• Chapter 7: This chapter presents a multi-objective optimization approach for

Volt-Var-Watt control (VVWC). The methodology combines both optimal ap-

proaches presented in chapter 3 and sensitivity analysis based volt-var control

methodology.



CHAPTER 2: LOCAL NET ACTIVE POWER MANAGEMENT BASED ON PCC
ERROR MINIMIZATION

This is chapter presents an error minimization based local active power manage-

ment for the intermittent out power of photovoltaic solar PV farms.

2.1 Introduction

Electrical grids tied with energy storage systems are gaining quantitative as well as

qualitative benefits for maintaining an economical and reliable system. As categorized

in [2], energy storage systems can serve in bulk energy supply using energy time shift

(arbitrage) application. Also, the energy storage system can support several ancil-

lary services such as output power smoothing (capacity firming) for renewable energy

resources (PV/wind), regulation, load following, and voltage support. Furthermore,

energy storage can be used for infrastructure deferral at both the transmission and

distributions levels. One important application for energy storage is the PV capacity

firming. Renewable capacity output firming is a method for utilizing the intermittent

renewable energy resources as almost constant and smoothed power source [35]. Gen-

erally, intermittency and unwanted fluctuations in the output power of a PV farm

must be compensated by the other dispatchable generation units in the grid which is

not quite achievable due to rapid changes. Energy storage can be used to mitigate this

intermittency by efficient charge/discharge cycles if these storage system work in con-

junction with the PV farms. The energy management system is the main controller
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which observes all the system states and generates the reference set point to be drawn

from the battery energy storage system (BESS) for smoothing the output power at

the point of common coupling. Thus a robust control system for energy storage is

necessary and significantly crucial for this application. Several works have focused

on developing control architecture for PV output smoothing. In [34, 49], control ar-

chitecture is presented to smooth out the high-frequency component of PV output

power based on a low pass filter (LPF), and the output of the LPF is subtracted from

the original PV data as a smoothing error. Then, based on the state of charge the

BESS reference power is calculated. A comparison between the moving average filter

and a filter based on optimal control formulation has been proposed in [82]. Results

show that the optimal control based filter had the lowest max ramp (MW/min) using

moderate BESS capacity compared with the moving average models. Reference [6,7]

presented a novel real-time controller BESS/PV applications such that PV capacity

firming (PVCF), energy time-shift (ETS) and voltage support. The intuition in the

proposed battery energy management system is that maximizing the state of charge

by the end of the day was a critical concern to let the battery do ETS at the peak de-

mand period. Real-time BESS-based smoothing control architectures for the hybrid

PV/wind hybrid power system were proposed in [65, 66, 91]. As in [65], the control

used SoC of the BESS as feedback as well as the power fluctuations rate. Recently,

ref. [58] presents an adaptive control based PV ramp control which utilizes the PV

power ramp rate as control feedback to the smoothing algorithm to prove a better

performance over the moving average based algorithms. Also, PV power smoothing

method was proposed in [48,98] using hybrid energy storage system (HESS) using su-



15

per capacitor bank (SCB) and vanadium redox battery (VRB). The primary goal was

to smooth the PV power as well as minimizing the power from the SCB to one fifth

the power from the VRB rating to increase its operational efficiency. This chapter

uses an error minimization based optimization technique to develop PCC smoothing

methodology to smooth the active power output of PV solar farm due to continuous

intermittent irradiation.

2.2 Proposed Methodology I

Least squares minimization (LSM) has been applied in many applications and

different research fields. As introduced in [14], LSM is an approach to solving the

overdetermined set of equations as long as curve fitting applications. In the proposed

methodology, LSM will be used to minimize the sum of squared residuals (errors)

between the PCC power and another smooth reference value to mitigate all PV power

fluctuations by the help of the battery energy storage system which is commonly

connected to the point of common coupling. This section will present some terms

definitions and the first proposed least squares minimization methodology (LSM-

I). The first proposed LSM methodology uses the smoothed current PV power as

reference profile.

2.2.1 PV Characteristics Reference Power Curve

As proposed in [15], this curve represents the maximum PV output power for the

last few weeks. It provides the normal trend and shape of the maximum PV power at

this specific time in the year as shown in Fig. 2.1. The PVCF algorithm uses short

term historical PV station output to develop a characteristic maximum PV curve for
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Fig. 2.1. PV Characteristics Reference Power Curve

the PV station location at that time of year. For a daily output power of PV station

Pk(t) where k signifies the day; k = 1,2,3,4, ...n, the characteristic maximum and

minimum PV curve is given by equations 2.1,2.2.

Pmax(t) = max(PPV 1(t), PPV 2(t), ..., PPV n(t)) (2.1)

PPV Ref.(t) =



Pmax(t) for − 0.1 < RPV < 0.1

PPV Ref.(t−∆t)− 0.1 ∗∆ ∗ t for RPV > 0.1

PPV Ref.(t−∆t) + 0.1 ∗∆ ∗ t for RPV < −0.1

(2.2)

2.2.2 Point of Common Coupling (PCC) Reference set-point

It is assumed that the PCC reference set-point will be close to PV characteristic

reference curve during sunny days and a fraction of it during cloudy and overcast

days. On that basis, point of common coupling reference power PCC Ref. could be

derived as in 2.3. Since the PPCC Ref. is calculated, the battery energy storage
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reference power PBatt. Ref. will be calculated as in 2.4.

PPCCRef.(t) = m ∗ PPV Ref.
(2.3)

PBatt.Ref.(t) = PPCCRef.(t)− PPV (t) (2.4)

such that PPCCRef. is the targeted point of common coupling power, PPV is the

instantaneous PV power and finally PBatt.Ref. is the () reference power should be

drawn from the BESS.

2.2.3 Least Squares Minimization Method I

This proposed method will aim to minimize the error between the last minute

average PV power curve and the PCC generation power in such way of trying to

minimize the BESS output power for smoothing the output power. It is desired to

minimize the BESS output power to make it always capable of smoothing as its power

capacity is 250 kW and the intermittency level most of the time exceeds those limits.

Hence, the problem objective function will be as follows:

min U =
t−10∑
i=t

(1/2) ∗ (PPV i − PPCCRef.)
2 (2.5)

min U =
t−10∑
i=t

(1/2) ∗ (PPV i −m ∗ PPV Ref.)
2 (2.6)

As in 2.6, this is a linear least squares minimization method which chooses the optimal

value of the multiplication factor m to reduce this squared error as much as possible.

Explicitly, objective constraints are the 250 kW charging/discharging limits of the
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BESS which will be translated as upper and lower bounds of the multiplication factor

(m) as stated in 2.7.

PPV i + 250

PPV Ref.

≤ m ≥ PPV i − 250

PPV Ref.

(2.7)

2.3 Proposed Methodology II

Including the PV power in the objective function in LSM I has some drawbacks

because of the high stochastic nature of the PV power behavior. This section presents

next developed method which is based on assumed reference set-point to replace the

PV power term in last methodology.

2.3.1 Sinusoidal Pset Generation

To attain perfect firming level, the point of common coupling generation will be

compared with a smoothed set- point waveform which is assumed to be a half-cycle

sinusoidal waveform as in Fig. 2.2 It is clear that this selection is based on the simi-

larity between normal shape of PV power and sinusoidal waveform. Generation of the

PSet waveform is based on a developed algorithm that utilizes the PV characteristic

reference curve to detect the sunrise and sunset instants as well as using the weather

(cloud states) forecasting to determine its peak at the beginning of the day.

2.3.2 Last Minute PV Averaging

As the PV power level varies significantly across the day period, the peak of the

sinusoidal reference curve PSet should be controlled to be always following the PV

power level. To fulfill this target, the last minute PV power average is utilized to get

the appropriate positioning of the PSet waveform. As in 2.8, the average power is
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calculated based on the last 12 instantaneous PV power as the time step is 5 seconds.

Then, this value will be subtracted from the instantaneous value of PSet to get and

error as in 2.9. Based on 200 kW threshold values for this error, the sinusoidal

reference is being controlled.

PPV Avg.(i) = (
t−12∑
i=t

∗(PPV i(i))/12 (2.8)

error(i) = PPV Avg.(i)− PPSet(i) (2.9)

As a case study for this control algorithm, Fig. 2.11 shows firming results for a

partially cloudy day. By picking a constant PSet peak as 600 kW, it was not quite

suitable for getting a smooth PCC power because the BESS will get fully charged

before noon and will not operate properly for the rest of the day. By adaptively

controlling PSet position, the PCC profile will be smoothed throughout the whole

day as it can change to 700 kW peak.
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2.3.3 Least Squares Minimization Method II

This method will aim to optimally choose the value of the multiplication factor (m)

that reduces the error between the PSet and PPCCRef. as much as possible taking into

consideration last 10 time steps which represent last 50 seconds. Objective function

is as follows:

min U =
t−10∑
i=t

(1/2) ∗ (PSeti − PPCCRef.)
2 (2.10)

min U =
t−10∑
i=t

(1/2) ∗ (PSeti −m ∗ PPV Ref.)
2 (2.11)

where the system constraints are the same as previous method constraints in 2.7. In

this case, PV power does not exist in the objective function, but its effect is taken

care of by both the objective function constraints and the last minute PV averaging

control algorithm. Fig. 2.3 Shows simple description of method II from how the PV

power is memorized and processed till getting the battery reference power.

Last minute PV average

PV C/Cs Ref. Curve

LSM Method IIBattery Reference setpoint

Memory Sinusoidal Pset Generation

Pset Control

Pset Generation

PV Power

Fig. 2.3. LSM II function block diagram
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2.4 Simulation Results

This section shows the simulation results for both proposed PCC smoothing method-

ologies; LSM-I, and LSM-II. There are two metrics for performance evaluation for

both methods. The first metric is comparing the rate of change of the PV power and

the smoothed point of common coupling (PCC) power for the last time step which is

5 seconds as in 2.12,2.13. An initial state of charge (SoC) of the battery is adjusted

to 0.6 in both algorithms to possibly let the BESS equally charge and discharge from

the beginning of the day. The second power smoothing index is the 5 minutes PV

and PCC power differential (peak to peak) which measures how much the PV inter-

mittency is attenuated as shown in Fig. 2.4(d), Fig. 2.5 (d), and Fig. 2.6 (d). This

can be represented as follows:

RPV = (PPV (t)− PPV (t− 1))/∆t (2.12)

RPCC = (PPCC(t)− PPCC(t− 1))/∆t (2.13)

such that RPV and RPCC are the rate of change of PV and point of common coupling

power respectively in kW/5sec unit.

2.4.1 Methodology I Simulation Results Case-I

This subsection shows simulation results for methodology I for partly cloudy day

(Day-I). This case presents moderate level of intermittency that is almost equal to

active power capacity of energy storage unit. Fig. 2.4 (a) shows the optimal reference

curve for the point of common coupling as well as the firming limitations based on

charging and discharging limits of the energy storage unit. Also, Fig. 2.4 (b) shows
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the active power for the three active power profile; PV, PCC, and BESS. It is noticed

that the algorithm terminated around 12:00 PM due to reaching maximum allowable

state of charge (SoC), however, the methodology was able to attain high level of

firming as it is shown in Fig. 2.4 (d) where 5 minutes power differential for the PV

was reduced from 450 kW/5minutes to 250 kW/5minutes. Finally, the state of charge

is quite maintained at the average of the starting SoC at the beginning of the day as

shown in Fig. 2.4 (c).

2.4.2 Methodology I Simulation Results Case-II

This subsection shows simulation results for methodology I for half cloudy/half

clear day (Day-II). Day-II starts with cloudy condition and ends with clear condition.

Fig. 2.5 (b) shows the active power smoothing results. Also, the active power 5

minutes power differential is reduced from 500 kW/5minutes to 300 kW/5minutes as

shown in Fig. 2.5 (d).

2.4.3 Methodology I Simulation Results Case-III

This subsection shows simulation results for methodology I for mostly cloudy day

(Day-III). The results showed better performance due to balance in the PV intermit-

tency fluctuations as per Fig. 2.6 (a), and Fig. 2.6 (b). Moreover, state of charge

is also maintained in an average of 0.4 throughout all day as shown in Fig. 2.6 (c).

Finally, the 5 minutes power differential for PV was at the optimal level of reduction

as it is reduced from 600 kW/5minutes to 200 kW/5minutes.
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2.4.4 Methodology II Simulation Results Case-I

This subsection shows simulation results for methodology II for partly cloudy day

(Day-I). Fig. 2.7 (a) shows PSet control depends upon change in PV active power

level. Then, the smoothed PCC output power is shown in Fig. 2.7 (c), and finally

state of charge is depicted in Fig. 2.7 (d). Greatly, the 5 minutes power differential

metric is reduced significantly from 400 kW/5minutes to 60 kW/5minutes as shown

in Fig. 2.10 (a).

2.4.5 Methodology II Simulation Results Case-II

This subsection shows simulation results for methodology II for half cloudy/half

clear day (Day-II). Fig. 2.8 (a) shows PSet control depends upon change in PV

active power level. Then, the smoothed PCC output power is shown in Fig. 2.8 (c),

and finally state of charge is depicted in Fig. 2.8 (d). Greatly, the 5 minutes power

differential metric is reduced significantly from 500 kW/5minutes to 150 kW/5minutes

as shown in Fig. 2.10 (a).

2.4.6 Methodology II Simulation Results Case-III

2.4.7 Comparative Simulation Results

It is depicted in Fig. 2.5 (b) that the PCC power output is quite smooth except for

some point of time such as 12:00 PM when PCC power experienced around 300 kW

increase within almost one minute. However, it is noticed that the aforementioned

problem with LSM I at 12:00 PM has completely vanished and PPCCRef. is as smooth

as the corresponding PSet curve at this time. As overall improvement, all the indices
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reference power.; (d) State of Charge (SoC)
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above 100 kW/5mints in LSM I are driven down significantly below 50 kW/5mints

in LSM II results.
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Fig. 2.10. Smoothing index Scatter.(a) Day-1; (b) Day-2.; (c) Day-3.

In regards to the other firming performance index, the least time step (5 seconds)

rate of change for both PV and PCC power are just shown in table 2.1. As expected,

method II has the least RPCC for day 1 which is the mostly cloudy day. However,

Method I shows equal performance for day 2 which is moderate cloudy day.

As shown in Fig. 2.12, BESS state of charge for both methods results are plotted
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Fig. 2.11. Day 2 results comparison.(a) Constant PSet curve.; (b) Controlled PSet
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Table 2.1
PV and PCC 5 seconds time step rate of change

Day Method RPV kW/5sec RPCC kW/5sec

Day1
Method I 49.4327 28.9717
Method II 49.4327 21.176

Day2
Method I 57.8906 39.6021
Method II 57.8906 38.3261

Day3
Method I 29.8617 16.3094
Method II 29.8617 17.658

for both days of comparison. It is clear that method I SoC (0.799) at the end of the

day 1 is significantly greater than method II SoC (0.645) which means that without

SoC maximization being considered, method I could possibly take care of that more

than method II. Because method I is much more looking at the PV level in the

objective function itself, it preserves the SoC at higher level than method II does.

vspace-10mm
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2.5 Summary

This chapter presented a local net active power management for the local point of

common coupling (PCC) of utility-scale PV farms using energy storage systems. The

proposed methodology is based on least squares minimization (LSM) technique. Error

minimization technique aims to minimize the error between the total active power

at the PCC and an optimal PV reference curve. Further, the proposed methodology

uses the last minute average PV output feedback to adjust the positioning of the set-

point curve PSet. Results show a high level of PV firming to the very intermittent PV

output power as the 5 minutes smoothing index (SI) was reduced from 450 kW/5min

to 70 kW/5min.



CHAPTER 3: INTEGRATED NET ACTIVE POWER MANAGEMENT BASED
ON OPTIMAL RAMP RATE AND PCC ERROR MINIMIZATION

This chapter presents a novel ramp rate control and active power smoothing for net-

load profiles in large power distribution networks where high PV penetration levels

exist. The novelty is to break large systems into virtual local net-load locations where

energy storage systems (ESSs) technologies are installed to mitigate the severity of

the anticipated shapes of system net-loads ”Duck Curve.”

3.1 Introduction

High penetration of PV farms develops the risk of over-generation in conventional

generation units due to the timing imbalance between peak load and PV genera-

tion [4, 33]. PV penetration is expected to increase as the penetration level of dis-

tributed energy resources (DER) increases due to the inclusion of larger micro-grids

and (BTM) based PV farms. PV power and the load changes during the day is signif-

icant especially when there is a high penetration of PV in the power grid. So, having

the net-load (Load minus PV generation at a feeder location) ramp rate controlled in

the middle of the day is an important application for reducing PV intermittency and

load plus PV imbalances. With a moderate PV penetration level, combined-cycle

technologies are used to address network ramping control [5]. However, at higher

levels of PV penetration, these units are at the risk of shutdown due to steep change

in the PV generation. Therefore, ESS technologies are considered essential tools for
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controlling grid ramp rate and fluctuations of large-scale PV facilities. Active power

management is now a basic primary term of energy storage applications in modern

power distribution systems. This storage device can also help mitigate some of the

issues related to time imbalance between load and PV generation. One of the most

common active power management using energy storage systems is PV active power

smoothing [11, 17, 29, 87, 108]. Ref. [17] presented a novel approach for PV system

ramp rate control which used past time steps ramp rate control of PV to deduce

the required ESS’s ramp rate to achieve a certain level of smoothing at the point

of common coupling (PCC) interface bus. Also, authors in [16] developed an error

minimization based PCC active power smoothing using least squares minimization

(LSM) technique. In [29], an active power curtailment based PV power ramp rate

control (PRRC) was achieved utilizing short-term PV forecasting when the question

nevertheless arises whether the free excessive power should be saved or curtailed.

Similarly, given the applied restrictions on PV facilities ramp rate, authors in [88] de-

veloped PV ramp rate control by adjusting maximum power point tracking (MPPT)

algorithm and by curtailing part of available potential power from solar PV facility.

Nevertheless, most of the performed works considered installing the energy storage

system at the PV solar facility bus where it is utilized to smooth the fast fluctuations

generated during cloudy days. For system net-load active power to be controlled,

energy storage systems are to be installed at distribution networks’ substations. Ac-

tive power supplied by a substation is also called ”Net-load.” Similar to PV active

power smoothing, some research works are proposed for net-load smoothing and ramp

rate control purposes as in references [50, 74, 83, 86]. Ref. [62, 83] studied all of the
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Fig. 3.1. Distribution Feeder Net-Load profile at of PV penetration

anticipated effects on distribution networks with high PV penetration levels. Results

also raised the problem of net-load reduction and how energy storage systems us-

age along with conventional generation units are important to cope with this drastic

change. Ref. [50] proposed an energy management system for high penetrated power

grid with solar power plants, however fast changes active power were only consid-

ered. Besides, authors in [43] proposed an optimal unit commitment to solving the

problem of ’duck curve.’ However, as far as (UC) is concerned, there is still a signifi-

cant amount of energy storage system for smoothing PV active power during cloudy

days. Also, Ref. [74] proposed an economic dispatch optimization solution to solve

Security Constrained Economic Dispatch (SCED) problem. The methodology is to

optimize usage of all conventional power resources down- and up-ramping capability.

References [70, 71] proposed a flexibility-oriented micro-grid optimal scheduling to

control both hourly and intra-hour net-load variability. Using Plug-in Electric Vehi-

cles (PEV) as a mean of controlling system net-load variability is mentioned in the

literature as in [27, 38, 39, 69], because this form of energy storage is anticipated to

be more commonly used in the future. A detailed study has been introduced in [69]

where net-load variability was controlled by charging control strategy for PEV to
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mitigate unit ramp-cycling operations (URC). However, the study was proposed for

a high penetration level of wind power (WP). However, since wind generation does

not have a fixed pattern that could cause a significant sag the total system net-load,

it is more realistic to consider high penetration in PV power generation. Ref. [38]

used dual splitting and gradient ascent to develop an optimal charging/discharging

strategy for PEV to flatten the duck curve in California. In the current state-of-the-

art methods, though solutions were provided, energy storage control methodologies

were not addressed as an option for distributed control of net-load. In Ref. [39],

authors, proposed customer incentives for EVs to be placed in the stations to aid

load curve management. These swapping stations provide double discounts for those

who can contribute during on-peak and off-peak periods for discharging/charging

criteria. Ref. [18] presented two solutions for system net-load management; local

management, and central management which recommends new fast response genera-

tion units. Methodology in [18] runs an optimal power flow which limits the two hours

net-load change to certain value. This paper presents a methodology for system net-

load active power control by controlling local locations of the system where high PV

penetration is assumed to exist downstream those locations. The proposed method

performs two separate applications: 1) net-load active power smoothing which aims

to mitigate the fast fluctuations that happen due to the intermittent behavior of PV

active power as well as randomness behavior in load profiles. 2) net-load ramp rate

control over the short term and long term consideration to possibly minimize the ex-

pected steep ramp rate on conventional generators as well as avoiding over-generation

events. Many factors are to be considered when energy storage systems (ESSs) are
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used in such long-term applications. ESS sizing, optimal ramp rate during morning

and evening times, the degree of flattening of the duck curve, and ESSs state of charge

control schemes. Fast Fourier transform (FFT) based methodology is developed to

considerably determine the optimal net-load reference curve from the original curve

so that the existing energy storage system can bear charging/discharging schedule as

far as active power (kW) and energy (kWh) capabilities are considered. This chapter

is organized as follows: Section II explains the configuration of the system used to

test the methodology. Section III presents in details an error minimization based

active power control methodology for duck curve ramp rate control and associated

ancillary services. Section IV discusses the simulation results, and section V discusses

the summary and future work.

3.2 Problem Formulation and Methodology

In this section, net-load and reference curves definitions are provided. Also, least

squares minimization based methodology to perform net-load ramp rate control, as

well as active power smoothing, is provided in details.

3.2.1 Local Net-load and Relation to Local Duck Curve

For a certain power distribution network, feeder net-load PNL is defined as the

active power generation supplied by the main feeder substation. PNL can also be

defined as the result of subtracting renewable energy resources generation from total

system feeder load as shown in Eq. (3.1). Similarly, local net-load PNLi is the power

generation at a local location in the distribution network such as the downstream

part includes interconnected loads, solar farm facilities and energy storage units. As
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PV penetration level increases, system net-load profile tends to have that shape of

duck neck with a significant sag during the day and a steep ramp rate around it. The

energy storage system is assumed to be installed at the net-load bus so that both fast

changes and ramp rate of both loads and solar units are being controlled.

PNLi(i = 1, 2, ..., n) = PLi − PPV i (3.1)

where PNL is the total net-load of the system, PL is the total feeder load, PPV total

generation power by PV photo-voltaic plants, PWG is all the generation supplied by

the wind power resources existing in the system and PESS is the generation power

supplied by energy storage systems installed in the system. Besides, active power

profiles sub-scripted with the index i refer to the electrical quantities with respect to

the ith local net-load in the system.

3.2.2 Historical Days Based Net-load Reference Curve PNL.Ref

To control ramp rate of local net-load locations of a distribution network, histor-

ical behavior and PV penetration level should be considered. Therefore, a smooth

Energy Storage 
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Fig. 3.2. Local Net-load and relation to local duck curve.
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Fig. 3.3. Historical representation of net-load reference curve generation for ramp
rate and active power smoothing purpose.

and controlled reference curve is required to the proposed optimization problem and

constraints. Net-load historical curve is defined as the past week of average active

power curve for all the downstream interconnected loads for a certain local net-load

location with no PV solar facilities considered yet in a certain sub-network as shown

in Fig. 3.3. One week selection is sufficient to capture the moving peaks according

to load peaks PV peaks times. As PV penetration level changes and energy storage

systems is selected, this reference curve requires control to manage changes due to

different PV penetration levels. Fast Fourier transform (FFT) is used to divide net-

load historical curve signal into its frequency components so that this curve is shaped

in such a way that meets with energy storage sizing as well as reduced ramp rate.

Net-load historical curve is expressed as follows:

PNLHist. = average(PNL1, PNL2, PNL3, ..., PNL7) (3.2)

where PNLHist. is historical representation of certain local net-load location. As shown

in Fig. 3.5., reducing the frequency components by certain coefficient (α) controls

level of the sag point in the net-load curve. Therefore, a frequency coefficient (α) is
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Fig. 3.4. Fast Fourier Transform based net-load reference curve generation flowchart

used to develop a reduced ramp rate reference curve based on the historical curves and

given energy storage active power capability as shown in Eq. (3.4. As energy capacity

of energy storage is a second important aspect in active power management energy

storage applications, Eq. (3.5 calculates the energy error between the charging area

(E2) and energy capacity of used energy storage system (EESS). Then, an average

power offset is calculated based on energy error and charging time (T2). An active

power coefficient (β) is developed to adjust reference curve position so that charging

and discharging areas are to be maintained within energy storage limits as shown in

Eq. (3.6. For example, Fig. 3.5. shows a given net-load location with energy storage

of [700kW/2100kWh]. Frequency coefficient is calculated as 0.6, whereas energy error

brings the signal peak and up- and down-ramping rates by certain limits. Also, the

correlation coefficient (α) has a direct proportionality with energy storage system

sizing as the curve’s sag points should only be brought up by the amount that the

energy storage system could reach to perform active power smoothing. Hence, both

wide span of (α) values, as well as corresponding controlled references curves, are
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fitted so that an optimal (α) could be determined based on a given ESS’s size. For

example, an energy storage system with 140 kW active power capability would be

enough to manage a controlled reference curve calculated by a correlation coefficient

(α = 0.7). Moreover, under the effect of PV intermittency level, the variable (α) could

be a bit reduced so that ESS is able to bear smoothing the level of intermittency.

FFT (f(k)) = F (ω) =

∫ ∞
−∞

f(t)ejωdx (3.3)

α = (PNL pk−pk − PESS)/(PNLpk−pk) (3.4)

e2 = (E2 − EESS) (3.5)

β = e2 ∗ T2 (3.6)

PNL.Ref (ω) = α ∗ PNL(ω) (3.7)

IFFT (F (ω)) =
1

N
conj(FFT (conj(F (ω)))) (3.8)

P
′

NLRef.(k) = IFFT [PNL.Ref (ω)] (3.9)

PNLRef.(k) = P
′

NLRef.(k)− β (3.10)

where α is the correlation coefficient between ESS active power capacity and the

frequency components magnitudes, and β is the correlation coefficient between ESS

energy capacity and the frequency components magnitudes.
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3.2.3 Ramp Rate Threshold Generation

One of the crucial parameters in the proposed methodology is the net-load ramp

rate threshold value. It is determined so that ramp rate of system net-load pro-

file is reduced enough to bring the duck curve’s sag point up to adequately prevents

over-generation and steep ramp rate on conventional power generation units. Besides,

ESS’s State of charge (SoC) is a critical key factor in active power control applications

as depleting or maximizing SoC at few hours of the day leads to algorithm termina-

tion which in turn stops the ESS from following the algorithm dispatch set-points.

Therefore, ramp rate threshold value ζ is to be determined under the guidance and

by the input of both net-load reference curve and energy storage system SoC status.
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To dynamically control the constraint parameter ζ, two types of errors are calculated

every time step; ramp rate error err and state of charge error eSoC . As shown in

(3.12), the ramp rate error is the difference between net-load reference curve ramp

rate and actual net-load profile ramp rate. Then, this ramp rate error is fed to a

proportional controller which tunes the value for ramp rate threshold value ζrr. Also,

  Determine ?rr
Eq(13) P controller

I controller  Determine ?SoC
Eq(15)

Cascaded PI 
Controller

Ramp Rate Threshold 
Generation

Feedback &  Error 
Calculations

+

_

+

_

S=0 (Ramp Rate Oriented Mode)

S=1 (SoC Oriented Mode)

Optimization

Fig. 3.6. Ramp rate threshold generation using cascaded PI controller

state of charge error eSoC is the difference between the current SoC and the targeted

SoC at time instant (k). In the regard of controlling SoC, ramp rate threshold value

is generated so that energy storage system charges/discharges in the direction of ap-

proaching the targeted SoC. Therefore, eSoC is then fed to an integral controller that

calculates the SoC based ramp rate threshold value ζSoC .

dP

dk
= (P (k)− P (k − 1))/∆k (3.11)

err(k) =
dPNLRef.

dk
− dPNL

dk
(3.12)

ζrr(k) = Kp ∗ err(k) (3.13)
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eSoC(k) = SoC(k)− SoCTarget(k) (3.14)

ζSoC = Ki

∫ k+t

k

eSoC dk (3.15)

where err(k) is ramp rate difference between both net-load and net-load reference

curves, eSoC(k) is difference between both current and targeted state of charge, Kp is

proportional controller parameter, Ki is integral controller parameter, ζrr(k) is ramp

rate based threshold value, and ζSoC(k) is SoC based ramp rate threshold value.

3.2.4 Optimal Power and Energy Management

As proposed by authors in Ref. [16], least squares minimization technique is proven

to be valuable for PV active power smoothing application. In this study, least squares

minimization performs the concept of reducing the error between the targeted power

curve and a reference power curve so that controlled net-load profile is smoothed to

prevent spread of intermittent solar PV power through the network. Also, based on

the net-load reference curve selection, certain degree of ramp rate reduction is also

achieved with a threshold value (ζ) which is discussed later in further details.
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Fig. 3.7. Block representation of proposed methodology.
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min U =
t−10∑
k=t

(1/2) ∗ (PNL(k)−m ∗ PNLRef.(k))2 (3.16)

PNLset−point(k) = m(k) ∗ PNLRef.(k) (3.17)

PESSset−point(k) = PNL(k − 1)− PNLset−point(k) (3.18)

Here m(k) is a multiplication factor that derives the net-load active power set-point

from the net-load reference curve such that all the following constraints are fulfilled.

PESSMax. ≥ PESS(k) ≥ PESSmin (3.19)

PESS(k) = PL(k)−m(k) ∗ PNLRef.(k)− PPV (k) (3.20)

m(k) ≤ PESSmin + PPV (k)− PL(k)

PNLRef.(k)
(3.21)

m(k) ≥ PESSmax + PPV (k)− PL(k)

PNLRef.(k)
(3.22)

Such that Eq. (4.2) is the algebraic inequality constraint for the energy storage

system active power capability, and Eq. (3.20)-(3.22) are the inequality constraints

for the multiplication factor m(k) that achieves that algebraic constraint through the

optimization formulation.

Also, net-load ramp rate control is controlled through an inequality constraint

which derives limits for the multiplication factor (m(k)) based on the required thresh-
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old value ζ for ramp rate of the net-load as shown in Eq. (3.23)-(3.26). Threshold

value, zeta, of the net-load ramp rate is the targeted ramp rate for the net-load pro-

file. This value depends upon season of the year, feeder capacity and PV Penetration

level. Normally, zeta ζ is selected as the average ramp rate of the load demand curve

at each certain location assuming that no PV generation exists. To cope with en-

ergy storage sizing and PV penetration level, zeta ζ is tuned and updated through

net-load reference curve control. For example, a net-load profile with the 20% PV

penetration level. The threshold ramp rate ζ is chosen as 20 kW/10 minutes which

is the normal ramp rate for the same local net-load without PV generation existing.

However, depending upon financial limitations with energy storage systems sizing,

zeta is subjected to an increase as well as PV penetration increase. Results section

presents a detailed study about trade-off between feeder capacity, PV penetration

level and energy storage sizing.

− ζrr ≤
PNL(k)− PNL(k − 1)

∆k
≤ ζrr (3.23)

PNL(k) ≥ −ζrr ∗∆k + PNL(k − 1) (3.24)

m(k) ≥ −ζrr ∗∆k + PNL(k − 1)

PNLRef.(k)
(3.25)

m(k) ≤ ζrr ∗∆k + PNL(k − 1)

PNLRef.(k)
(3.26)

ζSoC =
PNL(k)− PNL(k − 1)

∆k
(3.27)

PNL(k) = −ζSoC ∗∆k + PNL(k − 1) (3.28)

m(k) =
−ζSoC ∗∆k + PNL(k − 1)

PNLRef.(k)
(3.29)
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where ζrr is ramp rate based threshold value of zeta, ζSoC is SoC control based thresh-

old value of zeta, PNL(i) is the current value of net-load profile, m(k) is the least

squares minimization optimal coefficient.

Historical net-load curve 
generation Eq.(2)Energy storage sizing 

(kW/kWh)
Fast Fourier Transform 

(FFT) Eq.(3)

Generate frequency components correlation 
coefficients Eq.(4)-Eq.(6)

Generate net-load reference curve
Eq.(9)-Eq.(10)

Generate ramp rate threshold values 
(PI controllers)  Eq.(13), Eq.(15)

eSoC>0.1

Optimization equlaities 
constraints. 

Eq(27)- Eq(28)

S=0no

Optimization inequalities 
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Eq(23)- Eq(26)

 Generate ESS  active power 
set-point. Eq(18) 

Least squares minimization (LSM) objective 
function. Eq(16) 

System feedback and error calculations
Eq.(12),Eq.(14)

S=1 yes

Fig. 3.8. Least Squares Minimization (LSM) based net-load control flowchart

3.3 Performance Index for Evaluation

This section presents and evaluates simulation results for the proposed net-load ac-

tive power management methodology. The proposed methodology incorporates many

crucial aspects of power distribution networks with higher renewable energy penetra-
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tion levels. Results are discussed based on the following aspects:

Active Power Management Improvement: Active power management improvement in-

corporates active power smoothing, ramp rate improvement, and over-generation risk

prevention. Due to the energy storage system’s fast response, the proposed method-

ology incorporating active power smoothing for chosen local net-load locations. The

main advantage of smoothing active power profiles is it smooths both PV out power

intermittency and load profiles fluctuations. The smoothing index used in the pro-

posed study is one-minute power differential RNL as shown in Eq. (3.30). Also, as

one of the essential applications, ramp rate improvement (RRI) is the long-term ratio

of the overall controlled and uncontrolled net-load profile ramp rate which measures

minimization of the imposed steep ramp rate on conventional power generation units

as shown in Eq. (3.31) . Also, based upon selected energy storage system sizes, the

risk of over-generation is evaluated as far as local locations and main system net-load

location is concerned. Finally, system losses reduction is evaluated using power losses

index (ILP ) as shown in (3.32).

Voltage Profiles Improvement and Tap operations Savings: Another substantial met-

ric of evaluation is voltage deviation index (V DI) which is a measure of how the

system voltage span is reduced which in turns avoids voltage violations and voltage

regulators.

Energy Storage Full Capacity Utilization: Besides, the methodology is evaluated based

on how energy storage systems are utilized during the full day. ESS utilization is op-

timized so that full charge/discharge capacity is utilized taking into consideration



49

state of charge (SoC) within limits.

RNL =
PNL(k)− PNL(k − 1)

∆k
(3.30)

RRI =
RRcontrolled

RRbasecase

(3.31)

ILP =
P controlled
loss

P basecase
loss

(3.32)

V DI =
Vmax − Vmin

Vmean

(3.33)

where (RRI) is the ramp rate improvement index, RRcontrolled is the ramp rate for

the controlled local net-load profile, RRbasecase is the uncontrolled profile for the same

location, (ILP ) is the power loss index, V DI is the voltage deviation index.

3.4 Test Feeder models

Two test feeder models are used in the proposed study.

Distribution Feeder 1: The first test feeder uses is an aggregated 16 bus system that

includes substation, four load centers and two voltage regulators as shown in Fig.3.9.

The feeder is aggregated from a real 720 nodes distribution feeder in the US, and the

aggregated model is validated based on real measurements from the field. One PV

facility and one energy storage system is installed in this feeder, and the assumed

sizes are 300kW and 100 kW respectively. The load profile for one area is sized as

200 KW.

Distribution Feeder 2:The second benchmark distribution network for this study is

IEEE 8500-node test feeder [21]. In this feeder, net-load ramp rate control algorithm
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Non-aggregated 
Ditr ibution Feeder 

(720 Nodes)

Aggregated Power 
Distr ibution Feeder 

(16 Buses)

Fig. 3.9. Aggregated Power Distribution Feeder (16 Buses)

is applied independently on three different locations of local net-loads NL#1, NL#2

and NL#3. This feeder is selected as a more realistic feeder for testing the scalability

of the proposed methodology. The model is developed in CYME including one online

load tap changer (OLTC), three line voltage regulators, nine single phase and one

three-phase capacitor. Sizing of developed PV facilities and energy storage systems

is considered such that it is proportional to load percent of each zone of the whole

feeder load. For example, PV penetration of 50% is 5.5 MW of the total load which

is split between NL#1, NL#2 and NL#3 as 2500 kW, 1000 kW, and 2000 kW re-

spectively. Similarly, energy storage systems sizing is selected 30% of PV ratings.
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Hence ESS1/ESS2/ESS3 capacities are to be 750kW/2250kWh, 300kW/900 kWh,

and 600kW/1800kWh respectively. In both these feeders, first, an offline study is

performed to determine references curves. The results and analysis of the proposed

algorithm on these feeders are discussed next.

Substation

Sub-network1

Sub-network2

Sub-network3

PV Solar Facility

ESS &  NL locations

OLTC

OLTC and L ine Regulators

Fig. 3.10. IEEE 8500-Node test feeder

3.5 Simulation Results

3.5.1 Test-I: Distribution Feeder-I (Aggregated 16-Bus) Simulation Results

Fig. 3.11 shows results of active power smoothing and ramp rate control for net-

load#1 location in test feeder presented in Fig. 3.7. This study is used as a proof of

concept and to show the difference between using ramp rate based threshold value ζrr
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using inequality constraints and state of charge based dynamic constraints ζSoC using

equality constraints. Case-0 represents the original net-load profile without control

is on, whereas case-1 is simulation results with ζrr controlled but without controlling

ζSoC . Case-2 represents simulation with both thresholds applied and controlled, ζrr

and ζSoC . Using ramp rate based zeta allows the methodology to set the ramp rate

between ζrr and -ζrr through two inequalities constraints as shown in (3.25)-(3.26).

Setting a wide range of ζrr controls the net-load profile with no SoC consideration

which might make SoC hit any of maximum or minimum limit as shown in Fig.

3.11.(c). On the other side, generating SoC based threshold value ζSoC using error

between current SoC and targeted SoC (which is incorporated through the set of

equality constraints) will allow us to control net-load profile in the direction that

adjusts SoC to the required level. Fig. 3.11.(a), case-2 shows better performance in

both smoothing and ramp rate control using dynamic constraints formulation where

ζSoC is controlled in steps from -5 to 5. Fig. 3.11.(c), SoC case 2 shows better control

of SoC as it was kept within an average of 0.5, whereas SoC case 1 state of charge hit

the limit of 0.9 and the algorithm is terminated.

3.5.2 Test-II: Distribution feeder II Multiple Net-load locations Management

Simulation Results

In this subsection, more detailed results are presented for IEEE 8500-node test

feeder [21]. System is divided into three sub-networks, where each sub-network in-

cludes a photo-voltaic PV solar facility, energy storage system unit at the net-load

location and the sub-network load spots. To show improvement for each location
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Fig. 3.11. Case-I simulation results with and without applying dynamic constraints.
(a) PNL Net-load profiles; (b) Ramp rate threshold values ζ.; (c) Energy storage
system SoC profile.

control, study is developed on four cases as follows:

Case-1: This case incorporates net-load control at only net-load location#1, whereas

both location#2 and location#3 remain uncontrolled. The purpose of controlling

net-load location separately is to show significant improvement of different locations

in the feeder.

Case-2: Also, as shown in Fig. 3.13, case-2 provides results for same tested feeder
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Fig. 3.12. Case-I simulation results. (a) Active power profile.; (b) state of charge
(SoC) and ramp rate threshold value ζSoC

load and PV profile but with only net-load location#2 is controlled. Net-load2 ramp

rate is successfully brought down by 31% which in turn prevented reverse power flow

at this location as shown in Fig. 3.13.(a). Besides, Fig. 3.13.(b) shows other two

uncontrolled net-load locations. Also, it could be seen in Fig. 3.13.(c) that state

of charge was kept within limits under the control of state of charge based ramp

rate threshold value ζSoC when ζSoC started decreasing around 10:00 AM when SoC
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reached 40% which is less than targeted SoC by 10%.

Case-3: Similarly, case-3 provides simulation results for net-load control for loca-
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Fig. 3.13. Case-2 simulation results. (a) Active power profile.; (b) state of charge
(SoC) and ramp rate threshold value ζSoC

tion#3 while keeping location#1 and location#2 uncontrolled as shown in Fig. 3.14.

It could be seen that controlled net-load profile deviates from the following the refer-

ence curve by following the equality constraints to attain certain ramp rate threshold
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value and hence targeted state of charge.

Case-4: Finally, case-4 presents simulation results for the system when all net-load
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Fig. 3.14. Case-3 simulation results. (a) Active power profile.; (b) state of charge
(SoC) and ramp rate threshold value ζSoC

locations are controlled. The results show overall ramp rate improvement and active

power smoothing. Primarily, controlled substation active power profile is shown in

Fig.3.15. The original ramp rate of the uncontrolled profile is reduced to 26.69% of
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its original value. Also, short-term fluctuations are successfully mitigated by three

installed energy storage systems. Performance indexes for this case are also presented

and explained later in Table 3.1.

Voltage Profile Improvement: Moreover, system voltage profiles are shown in Fig.
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Fig. 3.15. Substation (main network net-load) simulation results.

Table 3.1
Summarized results for feeder-II considering PV penetration level as 50%

Proposed methodology evaluation

Case
RRI VDI

ILP
NL#1 NL#2 NL#3 Substation NL#1 NL#2 NL#3

Case-1 33.81% - - 80% 90% - - 0.9338
Case-2 - 31% - 90% - 80% - 0.98
Case-3 - - 19% 63% - - 83% 0.96
Case-4 33.81% 31% 19% 26.69% 68.80% 48% 47% 0.93

3.16, where all of three net-load locations voltage profiles are considered as locations

of interest for evaluation purpose. It is noticeable that the farther the location from

the main substation, the smaller the voltage fluctuations are. For example, by con-

trolling all locations (case-4), VDI is significantly decreased to 47%, 48% and 68% for

Nl#1, Nl#2 and Nl#3 respectively. Nevertheless, the number of tap operations for

OLTC and three line regulators are insignificantly reduced by 5 taps operations for

case-4. However, OLTC and line regulator#2 have a significant improvement in tap
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operations for all control modes. It is also worth mentioning that reactive power flow

and switched capacitors have a higher effect on the voltage profile than active power

flow due to R/X ration of the system under study. Finally, the voltage profile has a

noticeable improvement due to smoothing application as well as significant ramp rate

reduction. Fig. 3.16. shows VrmsA for NL#2 location through three control modes.

Voltage deviation is minimized to (32.39%) of its original value. The results for 50%

Fig. 3.16. Net-load locations voltage profiles. (a) NL#1 location; (b) NL#2
location; (c) NL#3 location
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Table 3.2
Substation OLTC and line regulator #2 taps operations for IEEE-8500 test feeder simulation results.

Substation Regulator (OLTC)

Phase No Control All locations NL#1 control NL#2 control NL#3 control

A 7 5 5 5 7
B 5 5 5 5 4
C 6 3 5 3 5

Line Regulator#2

Phase No Control All locations NL#1 control NL#2 control NL#3 control

A 7 3 6 5 4
B 3 4 5 8 4
C 5 2 6 2 3

PV penetration level are summarized in Table 3.1. All indexes are developed on the

four cases as mentioned earlier to quantify the amount of savings and estimate the

improvement in all possible shapes of PV active power profiles. Total system RRI is

significantly reduced for all individual net-load locations 26% in case-4. Because of

R/X characteristics of distribution networks, active power is remarkably contribut-

ing to voltage profiles changes which could be noticed through the number of taps

operations savings. As shown in the table, voltage deviation index is decreased to

68%, 48% and 47% for net-load#1, net-load#2, and net-load#3 respectively. Also,

system losses are decreased the most by 7% for case-4 when all locations are con-

trolled. Losses savings are mainly due to mitigated intermittent active power flow

from substation through controlled locations, not to mention the losses savings during

the discharge period of ESS. Also, Table 5.1. shows the number of taps operations

for both OLTC and line regulator #2.
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3.6 Summary

This chapter proposed an active power control for local net-load location in dis-

tribution networks with high PV penetration levels. Fast Fourier Transformation

(FFT) is applied to historical net-load profiles are used to generate reference profiles

for each location. FFT is successful to generate reference curves that meet energy

storage systems capabilities as far as active power and energy capacity are consid-

ered. Furthermore, proportional and integral controllers are introduced to control

objective function constraints better. The main advantage of controlling local net-

load locations is it prevents all active PV output power fluctuations and resulting

voltage fluctuations to be propagated through the whole feeder. The methodology is

tested and proved successful till 50% of PV penetration level. Moreover, depending

up the degree of the resistive part in a particular distribution system, the proposed

methodology optimizes voltage profiles regulation as well as voltage regulators tap

operations reduction. The proposed method aims to optimally utilize the given en-

ergy storage system active power and energy capabilities by maintaining the state of

charge between 0.5 and 0.7 with a 15 minutes step control action for PI controller

so that ESS keep dispatching active power according to methodology set-points. Fu-

ture work incorporates very high penetration of renewable energy which leads to the

phenomena of ”Duck Curve.”



CHAPTER 4: INTEGRATED FEEDER LEVEL PEAK LOAD MANAGEMENT
BASED ON ACTIVE LOAD PREDICTION USING WEATHER FORECASTING

This chapter presents a day ahead feeder load prediction approach based on the

day ahead weather forecasts. The motivation is seeking an accurate estimate of feeder

load profile patterns as well as peak load times. The proposed methodology aims to

support energy storage ancillary services applications in power distribution networks.

4.1 Introduction

Several research works propose optimal management of renewable energy resource

with energy storage for a changing feeder load conditions. For example, [8] discusses

an energy time shift (ETS) application for energy storage systems to satisfy load shav-

ing goals. The technique is proved efficient; however, the accuracy of peak load time

prediction is critical for such applications. Therefore, it became necessary to utilize

accurate and robust load predictions tools to aid these applications. In [96], addi-

tive and multiplicative decomposition techniques are applied for load forecasting after

performing system identification on the load time series data. Similarly, [19] discusses

load forecasting by applying moving average (MA) on a monthly, weekly and daily

basis. In that work, load segmentation is performed by constructing contour lines

through the time series cyclical peaks and dips to divide it into similar regions. Em-

pirical Mode Decomposition (EMD) and Support Vector Regression (SVR) are also

applied in [40] where load pattern is divided into trend component and some local
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oscillations. Recently, [45] introduced the comparison between auto-regressive mov-

ing average (ARMA), the variation of exponential smoothing (DSHW) and echo state

network (ESN). Also, several works proposed short-term load forecasting methodolo-

gies using artificial neural networks (ANN) and how it exploits weather variables for

accurate forecasting. [30,95] performed a weather based-ANN load forecasting. Refer-

ence [95] uses weather ensemble prediction to predict from 1-10 days. The significance

of this methodology is that weather ensemble prediction has multiple scenarios rather

than what is produced by usual weather forecasting, whereas [30] uses ANN load fore-

casting taking human comfort index in consideration. This index is a function of three

weather variables: temperature, humidity, and wind speed. Reference [67, 76] uses

backpropagation for forecasting with different types of neural networks. The perfor-

mance of these NNs is compared in this work as well with all three types of back

propagation neural network (BP) considering temperature in the input layers. Com-

bined genetic algorithm (GA) with ANN are provided by [28,44,93,104], and results

showed that evolutionary algorithms (EA) could help in fast calculation times and

high precision which allow the ANN architecture and parameters to be easily opti-

mized. Combining EA with ANN for prediction shows significant improvement over

stand-alone ANN forecasting methods. The main disadvantage of all these methods

is that earlier works did not take into account feeder load changes considering all

the factors. This chapter presents weather forecasts and Artificial Neural Network

(ANN) based methodology of day ahead feeder load prediction. The goal is to predict

an accurate pattern of load profile for the day ahead as well as the load peak time

instant so that methodology could be utilized in energy time shift (ETS) application.
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Proposed prediction methodology uses load time series decomposition to distinguish

between all types of loads and events on the feeder. Then, Back-propagation Neural

Network (BPNN) technique is used to utilize the day ahead weather variables fore-

casting to predict weather dependent load component. The proposed algorithm has

been evaluated on a real residential distribution feeder data. Results show very accu-

rate prediction results for active power as well as the feeder peak load time instants.

Moreover, implementation results on a real distribution feeder in North Carolina,

USA are also provided.

This chapter is organized as follows: Section 4.2 discusses the proposed load decom-

position method. Then, section 4.3 analyses the correlation between the feeder load

and weather variables as well as back propagation neural network (BPNN) method-

ology to predict the weather-dependent portion of feeder load. Section 4.4 shows

simulation results as well as implementation results for the proposed methodology to

aid energy time shift (ETS) application on an existing controller in a real distribu-

tion feeder in North Carolina, USA. Finally, section 4.5 summarizes the methodology

contribution in day ahead load prediction literature works as well as potential future

work for accuracy improvement. In this chapter, an integral decomposition method

is designed for load prediction. In this approach, first, a load time series is employed

for load decomposition. This step removes all the constant and seasonal (weekly,

daily) components from the original dataset. Then, after performing the forecasting,

those components are added back. Also, a dynamic regression method is employed

for weather-dependent load forecasting. Results showed great accuracy.



64

4.2 Feeder Load Decomposition

Electric grids have many different load types and inconsistent customer’s behaviors

which makes predicting feeder load prediction easy to be achieved. Load prediction

methodology is based on time series decomposition of feeder load. As in (4.1), any

time series is decomposed into three main components; trend component, seasonal

component, and random term. Similarly, distribution feeders load profiles can be

segregated into similar components; the however variable dependent component is

added as it depends on feeder location weather conditions. Days are categorized into

two weather-based categories; comfort days and discomfort days. Comfort days are

the days when the temperature ranges from 65 to 70 ◦F and dew-point (DP) is less

than 65 ◦F, whereas the discomfort days are the days with over/under temperature

and air conditioning/heat devices are expected to be significantly loaded. This section

presents load components definitions as well as load decomposition approach that is

used in the proposed methodology.

4.2.1 Comfort Component (Pc)

Each distribution feeder usually has an almost constant average base load. This

base load differs from season to another. Mathematically, this component is the

trend component (mean value) of any given time series. For comfort component Pc

to be estimated for certain day/season, comfort day needs to be used so that all

weather dependent loads are almost negligible. Comfort day is defined as the day

when weather conditions are comfortable enough with an average temperature of (70

◦F) so that neither air conditioning (AC) or heating systems are expected to be in
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service. This component is the average value (trend) of load profile in a comfort day.

It could be determined for each season/month based on historical data analysis for

any feeder under study.

4.2.2 Lighting Component (Pl)

Similarly, light component is defined as the portion of the feeder load that is asso-

ciated with lighting loads at any given feeder load. Mathematically, this component

is the daily basis seasonal behavior of any given time series. Therefore, the lighting

component also represents the morning and evening peaks that appear in the feeder

due to lighting loads for all residential, industrial and commercial buildings. Since

weather discomfort causes a dominant peak load in the morning and the evening for

the winter and the summer respectively, it is advised to use comfort days to estimate

lighting component for each season/month.

4.2.3 Random Component (Pr)

This component represents the customers’ random behavior in turning different

loads on and off such as; lighting, kitchen equipment, and washing/drying equipment,

etc. The random component has a certain pattern depends on the day of the week.

It is also called plug loads. For accuracy, random components are also developed for

each month with its standard comfort day.

4.2.4 Weather Component (Pw)

This component represents the overloading on the air conditioning/heating equip-

ment due to over/under temperature. This component evaluation and prediction are

discussed in the next section in all required details.
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yt = Tt + St + It (4.1)

Ptotal = Pc + Pl + Pw + Pr (4.2)

Such as Ptotal is the total feeder load profile, Pc is the comfort component, Pl is

the lighting load component, Pw is the weather dependent component, and Pr is the

random (plug load) load component.

4.2.5 Load Decomposition Approach

To develop the first three components of any predicted load profile, an additive

load decomposition process is applied. First, time series the mean value of the load

profile is calculated. Then, small window moving average (MA) is applied to the de-

trended series to segregate the seasonal component from the random component. The

Develop time series data from two 
years, two minutes based historical data

Develop comfort days from time series 
data based on tepreature range

Develop comfort component
Pc = average(Ptotal)

+
_

Pc

Develop 5 minutes moving average 
Pl = MA(Ptotal - Pc )

Pl + Pr

Pl

Pr

_

+

Fig. 4.1. Feeder load decomposition flowchart.
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Fig. 4.2. Sample day load decomposition components.

moving average window aims to capture all short term fluctuations in the load profile,

therefore, it was selected as 5 minutes, whereas the data is provided as 2 minutes based

time series. Fig. 4.2 shows sample comfort day decomposed into comfort, lighting

and random component. Also, load decomposition approach is shown in flowchart in

Fig. 4.1 to show mathematical sequence of evaluation.

Pc =

n∑
i=1

Ptotali

n
(4.3)

Pl = MA(Ptotal − Pc) (4.4)

Pr = Ptotal − Pl − Pc (4.5)

4.3 Day Ahead Load Prediction Methodology

This section presents core part of the proposed methodology, which is weather

dependent load component prediction using Back-propagation feed-forward neural

network (BPNN).
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4.3.1 Active Power and Weather Variables Correlation

One year historical data of feeder load and weather variables underwent a detailed

correlation study to find out the real significance of relative humidity (RH)/dew-

point temperature in feeder load behavior especially during summer/winter days.

Dew-point serves as a measure of relative humidity and it is the temperature be-

low which water droplets start to condense. Table 4.1 shows correlation coefficients

Fig. 4.3. ASHRAE chart of comfort. [1]

between both temperature and dew-point and feeder load at different seasons. In
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such summer days when dew-point is greater than 65 ◦F, it is a measure of high

relative humidity such that atmospheric temperature would feel quite higher than it

is. Also, Fig. 4.3 shows the chart of comfort presented by The American Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [1]. This chart

plots dew-point, operative temperature and effective temperature all together on one

chart. The chart maps the effect of relative humidity (RH) to operative temperature

and calculates the effective temperature. Therefore, it is concluded that dew-point

Table 4.1
Feeder load and weather variables correlation

Day T-Correlation Dew-point-Correlation
Summer Day-1 0.8 0.2
Summer Day-2 0.9 0.9
Summer Day-3 0.7 0.9
Winter Day-1 0.9 0.1
Winter Day-2 0.7 0.2
Winter Day-3 0.9 0.4

has to be incorporated in predicting the weather dependent component of feeder load

and since temperature is the significant factor that impacts feeder load changes, it is

challenging to develop a technique that analyzes the non-linearity between temper-

ature, dew-point and feeder load. Findings showed a complex non-linearity between

any given feeder load, temperature and dew-point as the certain range of dew-point

values do not have any significant effect on feeder load. Fig. 4.4 shows how the feeder

load could be more dependent on dew-point than temperature because of the higher

level of relative humidity.
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Fig. 4.4. Weather variables correlation with feeder load.

4.3.2 Back-propagation Feed-forward Neural Network (BPNN)

In the literature [72]- [80], the back-propagation neural network was used in a day

ahead peak load forecasting, however, peak magnitude was only more of a concern,

not peak load time. Also, authors in [77], and [20] presented day ahead peak load fore-

casting based on the back-propagation neural network where the only temperature

was taken into consideration and all feeder’s load components are predicted using

one process which is not addressing the peak time very closely. Due to the com-

plexity of non-linearity between feeder load and weather variables, it proved efficient

that neural network regression applications are the best choice to fit this complex

relationship. This subsection presents a back-propagation feed-forward neural net-

work for regression purpose. Details of training and testing the network are also

discussed. Ultimately, the proposed neural network technique is used to predict the

weather-dependent load component Pw using day ahead weather forecasts (Tforecast,
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DPforecast) which are retrieved from weather service website. Details of the method-

ology are also explained later in this section. The feed-forward neural network is a

machine learning technique that is commonly used for classification and regression

purposes. Neural networks function based on learning methods that mimic the be-

havior of certain dataset (Training set) to be able to classify further or regress new set

of data (Testing set). As shown in Eq.(4.4), all neurons transfer function is selected

as tangent hyperbolic as it is recommended to be used for regression applications.

Also, Eq. (4.6)-(4.7) show the process of back-propagation of feeding the error back

into the network to estimate the participation factor of each weight in the training

error, and hence, updating all network’s weights correspondingly. Batch learning is an

iterative offline learning process on the training dataset. It was considered sufficient

to be selected in the proposed study since the methodology is developed to predict

feeder load profile at each day’s midnight.

neth1 = w1 ∗ i1 + w2 ∗ i2 + b1 ∗ 1 (4.6)

outh1 =
eneth1 − e−neth1
eneth1 + e−neth1

(4.7)

Etotal =
∑

(1/2) ∗ (target− output)2 (4.8)

∂Etotal

∂w7

=
∂Etotal

∂outo1

∗ ∂outo1

∂neto1

∗ ∂neto1

∂w7

(4.9)

Neural network training phase has been developed through three versions as follows:
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4.3.3 Recent Days Historical Data Based Learning V − 0

This version of the methodology determines the day type based on the day ahead

weather forecasts. Then, it extracts historical data for same day type for training

purpose. As shown in Fig. 4.6, training process starts with random weights, then

weights get updated at each iteration till certain stopping criterion converges to the

optimal weights that fit the training batch. The drawback of this approach is that

some days types are not experienced yet at the beginning of each season which causes

an under-fitting issue.

4.3.4 Past Year Historical Data Based Learning V − 1

Under-fitting neural network training exists due to the lack of comprehensive and

inclusive training data set. Therefore, relying on past few weeks of historical feeder

load profiles is not enough especially during the period in between seasons changes.

Hence, one year of historical data underwent training process on a monthly basis,

which successfully generated a set of optimal weights that entail all days weather/load

fitting features for each month during the year. These optimal weights are expected

to be used by itself for moderately accurate results. Nevertheless, this approach

is missing load growth and all possible changes that might happen to any existing

distribution feeder.

4.3.5 Combined Recent Days and Past Year Based Learning V − 2

Instead of assigning random weights at the beginning of the learning process, this

improved version of the methodology starts the first iteration with optimal weights
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obtained from V-1 results for the same month during previous year. Then, recent

days historical data is used to fine-tune the network weights, and adequately train

the network on any new behavior. Intuitively, this approach adds all new fitting

features from recent days historical data with all past year fitting features remained

exist. Moreover, V-2 learning approach optimizes the number of epochs the stop-

ping criterion needs for convergence. Fig. 4.5 shows pseudo-code algorithm for V-2

learning process. Prediction accuracy is also improved by developing categories con-

cerning weather conditions (temperature range). Table. 4.2 shows day’s categoriza-

tion developed for this methodology. Summer categorization is based on maximum

temperature, whereas winter categorization is based on minimum temperature.

Table 4.2
Temperature ranges based days categories

Bucket Mean Temperature Category
1 T 100 EX H
2 90-100 V H
3 80-90 M H
4 75-80 H
5 60-75 C
6 50-60 L
7 40-50 M L
8 30-40 V L
9 T30 EX L

4.4 Real Feeder Implementation and Simulation Results

This section provides both simulation and field implementation results for the pro-

posed day ahead feeder load prediction. The proposed methodology is developed using

Java programming. Both historical and day ahead weather forecasts data is retrieved

through API protocol from a reliable weather service website (weather-underground),

and then data is parsed using Java to extract temperature and dew-point data points
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Fig. 4.5. Algorithm for weather dependent load component prediction.
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Fig. 4.6. Neural network layers layout.

in two minutes time stamp. By having access to recent days feeder load, weather

variables, and historical comfort days, the methodology is run every midnight to pre-

dict 24 hours ahead feeder load profile. To evaluate the methodology performance,
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Fig. 4.7. Proposed day ahead load prediction methodology flowchart.

metrics are evaluated as follows:
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4.4.1 Mean Absolute Percentage Error (MAPE %)

The mean absolute percentage error is the difference between the actual and pre-

dicted values divided by the actual values. Then, the outcome is divided by the

number of data points to evaluate the mean value of the error value.

4.4.2 Peak-Load Time Error

The peak-load time error is a measure of the difference between the time of the

predicted peak-load and the time of actual peak. This metric aims to evaluate the

efficiency of the energy time shift (ETS) application as shown below in the imple-

mentation results.

4.4.3 Simulation Results

As a proof of concept, 2014 historical data of feeder load and weather variables are

developed to test the algorithm using actual weather variables. Fig. 4.9 demonstrates

day ahead load prediction for sample days of different seasons in 2014. Markedly,

results indicate predicted feeder load profiles that follow the pattern of the actual

feeder load with less MAPE 5.83%. Our methodology is also successful in minimizing

peak-load time error to 6 minutes and maximum value as 30 minutes. Moreover,

Fig. 4.10 shows the results of day 4 prediction results using day ahead weather.

Remarkably, weather forecasts inaccuracy is recognized in Fig. 4.10.(b) which led

to an error in the prediction during the same period of the day. It is seen that

the temperature went more comfortable which, in turn, leads to less usage of air

conditioning/heat load. Table. 4.3 shows summarized results for four days simulation
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results.

Fig. 4.8. Simulation results based using day ahead weather forecasts retrieved from
weather-underground. Day-5, November 2015

4.4.4 Implementation Results

This subsection presents the implementation results of the proposed methodology.

The methodology is integrated with an existing battery energy management system

(BEMS) that manages a PV/BESS facility which is installed in a real distribution

feeder. The day ahead load prediction is used to aid energy time shift (ETS) appli-

cation by optimizing the time to initiate the energy storage active power set-point to

dispatch with full capacity during load peak time. The main advantage of sending

anticipated peak load time every midnight is that BEMS coordinate with state of

charge (SoC) control algorithm. Also, weather forecasts accuracy level is a crucial

factor in the load prediction results. Therefore, part of this methodology’s inaccuracy
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Fig. 4.9. Simulation results based on actual weather variables for historical days
with no weather forecasts available. (a) Day-1, June 2014; (b)Day-2, August 2014,
(c) Day-3, June 2014
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is due to weather forecasts inaccuracy which could be easily addressed by addressing

the forecasting error according to prediction errors. Fig. 4.11. shows implementation

results for day-5 in November 2015. Fig. 4.11.(a) depicts actual feeder load profile

versus predicted profile as well as point of common coupling active power profile. It

is noticeable how energy storage system is dispatching with a full capacity around the

anticipated peak time. Also, due to weather forecasts errors shown in Fig. 4.11.(b),

there is an error offset between actual and predicted load profile. nevertheless, offset

errors are not inversely affecting ETS application since peak time is the main con-

cern. Similarly, Fig. 4.12. shows implementation for another in winter day when ETS

application is initiated in the morning to cover the morning peak. It is also worth

mentioning that MAPE is 7.8%. Finally, day 7 results are presented in Fig. 4.13 with

as low MAPE as 4.3% due to the high level of accuracy in weather forecasting. Table

Fig. 4.4. summarizes methodology evaluation as far as MAPE and peak time offset

is considered.

Table 4.3
Historical days simulation results

Simulation Results
Day Day-1 Day-2 Day-3 Day-4

MAPE (%) 6.19% 5.83% 9.1% 7.2%
Time Error(Morning Peak) - - - 20 minutes
Time Error(Evening Peak) 6 minutes 10 minutes 31 minutes 0 minutes

Table 4.4
Real feeder implementation results

Implementation Results
Day Day-5 Day-6 Day-7

MAPE (%) 11.5% 7.8% 4.3%
Time Error(Morning Peak) - 32 minutes 16 minutes
Time Error(Evening Peak) 16 minutes - 18 minutes



80

0 4 8 12 16 20 24

Time (hours)

1000

1500

2000

2500

3000

3500

4000

k
W

(a) Day-5, November 2015

-200

-100

0

100

k
W

Actual Load (kW )

Predicted Load (kW )

PCC (kW )

0 5 10 15 20
Time (hours)

40

50

60

F

(b) Day Ahead Weather Forecasts Validation

Actual − T

Forecasted − T

Weather forecasts error

Fig. 4.11. Implementation results and weather forecasts validation. (a) Day-5,
November 2015 feeder load prediction and point of common coupling (PCC) active
power; (b) Weather forecasts versus actual weather variables validation (Day-5)

Fig. 4.12. Implementation results and weather forecasts validation. (a) Day-6,
December 2015 feeder load prediction and point of common coupling (PCC) active
power; (b) Weather forecasts versus actual weather variables validation (Day-6)

4.5 Summary

This chapter presented an intelligent day ahead feeder load prediction methodology

to mainly aid energy storage applications in hybrid PV/BESS distribution networks.

First, historical feeder load profiles are decomposed into certain distinct types of
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load types/behaviors so that they could be further predicted separately. Then, the

back-propagation neural network technique is used to predict the weather-dependent

portion of the load using day ahead weather forecasts. BPNN training stage is de-

veloped and improved in three different phases as follows: the first version trains the

network based on past three weeks historical data, whereas the second version utilizes

past year historical data of the same feeder, and finally the third version is fine-tuning

past year’s historical data weights with recent few weeks. The methodology was on

some historical data and was implemented on an existing BMS controller, and both

results showed high level of accuracy as far as load peak time as well as load full

day load pattern are concerned. Methodology contribution is the ability to predict

all types of load types/behavior separately so that both patterns and peak time are

accurately predicted to fulfill battery management systems applications. Also, the

state of charge could be better managed and more optimal dispatch during the day.



CHAPTER 5: CO-ORDINATED VOLTAGE CONTROL UTILIZING VOLTAGE
SOURCE CONVERTERS IN PV/BESS HYBRID DISTRIBUTION SYSTEM

It is well known that most of distribution feeders have significant effect due to

lines reactance over resistances. This fact mostly depends on medium voltage level,

main feeder/lateral feeder proportionality and types of loads. These factors keep

volt-var control (VVC) algorithms still exist for power distribution networks voltage

support application. It became more vital and attractive since those feeders are now

connected to such distributed energy resources (DER) with power conversion systems

that are also capable of injecting/absorbing reactive power. This chapter presents an

engineering solution to power distribution feeder in NC utilizing PV solar power

plant/BESS converter system. Proposed methodology is looking at fast changes as

well as slow changes in feeder load at different locations of interest.

5.1 Introduction

The voltage control coordination in the distribution feeder among various devices

has been discussed and researched in the literature. Many volt-var control (VVC) al-

gorithms are developed utilizing heuristic multi-objective optimization methodologies

using feeder power losses and voltage regulators taps operations as objectives formu-

lations. In [59], a co-ordinated control approach is presented to response coordination

of DERs and substation OLTCs. However, the technique requires changing the com-

pensation settings of the OLTC. Ref. [92] aimed to minimize power losses, average
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voltage deviation for all buses and voltage collapse proximity indicator (VCPI) using

Genetic Algorithms (GA). Similarly, [92,107] presented different volt-var optimization

(VVO) techniques to maintain all buses voltages within limits. Also, [14] presented

reactive power control methodology based on system voltage sensitivity analysis. The

reactive power is dispatched in such a way to compensate for the voltage fluctuations

due to active power changes from PV farms. References [47,84,90] discussed different

VVC algorithms utilizing sensitivity analysis along with objectives functions based

formulations. Ref. [84] presented dynamic adjustment of OLTC parameters (Line

Drop Compensators LDC) for algorithm improvement. In references [46, 55, 56, 97]

the importance of coordination between OLTC, Line regulators and distributed gen-

eration sources are discussed in detail. In [46], a distributed method for the coordi-

nation of these sources is shown based upon multi agent system (MAS) architecture.

But implementation of the methods require communication between different devices

which requires extension of the current architecture of distribution system costing util-

ity large sum of money which makes them less attractive for industrial application.

Other optimization based VVC algorithms do not target certain weak locations in

the feeders since they consider all feeder voltages as constraints. Also the approaches

are model dependent making the implemented architecture not giving desired results.

Integrated volt-var control (IVVC) methodologies which use heuristics based adaptive

control are proven to be successful in such distribution systems with large penetra-

tion of DERs as using optimal power flow to generate DMS control actions is complex

with DERs. Reference [102] applied signal processing and adaptive control volt-var

optimization methodology where distribution system operation decisions were made
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based on system measurements observation and processing rather than depending on

the circuit models. Reference [103] presented 11 different distribution voltage opti-

mization projects using measurement and verification method. In references [9,10,12]

field measurements have been used to implement active power control for performing

applications like peak load shaving and photo-voltaic active power smoothing. This

work is along the similar direction of using feeder measurements and being aware

about the feeder voltage situation for a better control and operation of distribution

system without adding new variables to the conventional optimization problem used

for distribution system management.

5.2 Co-ordinated Voltage Regulation

This section discusses the proposed co-ordinated control strategy for the various

voltage regulation devices and reactive power sources in the distribution system. The

primary focus is to utilize the reactive power capability of VSCs in the distribution

feeder to support the operation of the existing legacy controllers such as line volt-

age regulators and substation OLTCs. Fig. 6.1 illustrates the voltage regulation

approach in the distribution system. In general, as it can be seen in fig. 6.1, the volt-

age regulation in the distribution system is currently achieved by using on-load tap

changers (OLTCs), Line Regulators (LRs) and SCADA based Distribution Manage-

ment System (DMS) (this varies from utility to another) along with the reactive power

supporting devices like static and switched capacitors. These controllers are placed

in various location in the distribution feeder based on the design criteria and once

in operation, there is no direct co-ordination among these devices. This can lead to
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voltage regulation problem, when the components and power flow in the distribution

system is changing at a fast pace especially with the increase in DERs integration.

Modern distribution system, thus needs changes in the voltage regulation approach.

Voltage Regulation in 

Distribution System

Feeder wide

Voltage changes

Legacy Controllers

Line Regulators

Load Tap Changers

Distribution 

Management

System

Reactive Power 

Support

Static & Switched 
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Voltage Source 

Converters

Local/remote 

reactive power flow

changes

Communication

For co-ordination

Fig. 5.1. Voltage regulation paradigm for the distribution system.

These changes could be achieved using DMS and VSCs as shown in green in fig. 6.1

while the components in red are the ones that are the part of the legacy system. In

general, utility does not appreciate major changes in the legacy systems because:

• They are still the major devices which can regulate both voltage and reactive

power demand of the consumers and the technology is mature.

• Cost involved in un-installing these devices are a critical factor and the un-

certainty about the reliable operation of the distribution system without these

legacy devices is a major concern.

5.2.1 Proposed Approach

The proposed algorithm utilizes the information from the line regulators about

the current status of voltage of the load end of the feeder and then supplies/absorbs
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reactive power from the VSCs in order improve the voltage profile in the feeder. The

information gathered is based on the line regulator warning status. As the warning

from line regulator is a pre-cursor for actual regulator operation (it may take few

seconds for regulator to operate after the warning is issued), the approach can co-

ordinate well with the actual regulator operation. During the time period between

a warning and actual regulator operation, the VSCs in the distribution feeder can

supply/absorb the reactive power from the feeder so that the voltage in the feeder

can be improved. In many cases, line regulators operations are no longer needed.

This helps in increasing the overall lifetime of the line regulators, while minimizing

operational and maintenance cost to the utilities. This faster reactive power control

from the VSCs also regulates the voltage in the load end of the feeder and reduces

the chances of damaging the voltage sensitive devices as the transients caused by the

tap changes is minimized. The algorithm is presented in fig. 5.2. Fig. 5.3 shows the

Fig. 5.2. Algorithm for proposed co-ordinated linear voltage regulation.

flowchart for the proposed voltage regulation algorithm designed to co-ordinate the

substation regulators, line regulators and the battery SMS deployed in the feeder. The

substation LTC regulates the overall voltage profile in the feeder and is dependent on

the load profile variation throughout the day (which is assumed to be periodic with

time period of 24 hrs- slow frequency changes) whereas line regulators are primarily

controlling voltage on their load ends which may vary at faster frequency than the

overall load profile and do not directly impact on the voltage upstream. Based on the

above mentioned assumption about load in the feeder, two components of reactive
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Fig. 5.3. Voltage regulation framework for coordinated volt/var control.

power is generated from the battery SMS that co-ordinates the regulators with the

battery SMS. The first component of reactive power Q1
ref is generated based on the

instantaneous demand of load centers which are downstream of line regulators. These

instantaneous demand of load centers after line regulators are determined based on

the voltage warnings of the line regulators. If the high voltage warnings is detected, it

is assumed that the load demand is dropping downstream and if low voltage warning

is detected the assumption is that the load downstream is increasing and reactive

power is to be supplied to maintain the voltage. Q2
ref , however is determined based

on the forecasted load for next day (if available) or based on the measurement of

substation OLTC load side voltage. In the following subsections, a brief explanation

about the rationale of each of the steps in the algorithm is discussed.
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5.2.2 Line Regulator Warning Acquisition

Fig. 5.4 shows the high voltage (HV) and low voltage (LV) warning data collected

from the utility feeder. The warning signals are issued by the line regulators whenever

the load-side voltage of line regulators goes out of the preset voltage band. If the

voltage is lower than the lower limit of the allowed band, a low voltage warning signal

is issued and if higher than the upper limit of allowed band, a high voltage warning

is issued. These warnings are good indicators of the voltage status in the load end.

Utilizing warnings as an indicator of voltage status and reactive power needs of the

system makes the proposed control scheme situational aware. i.e. the controller acts

only if a situation where it needs to act arises. Utilization of warnings for reactive

power control also eliminates the need to place the voltmeters to measure the load

end voltages in the feeder. As line regulators tend to isolate the load downstream

of it from the feeder upstream, it is crucial to determine the upstream side voltage

of the feeder when reactive power is dispatched from VSCs to support the load. To
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Fig. 5.4. LV/HV warnings for proposed feeder real measurements.

illustrate the above mentioned situation, consider fig. 6.3. Consider a case, where the

primary side voltage of the line regulator is close to the upper limit of the allowed
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band, whereas due to a lower tap position used in the line regulators and increasing

load, the secondary side voltage now reaches close to its lower band, which then starts

to generate low voltage warning. If the reactive power injected from the VSCs do not

consider the primary side voltage of the line regulator on its control action and inject

reactive power solely based on warnings, the primary side voltage might go higher,

which might trigger operation of substation OLTC, which is regulating the primary

side voltage of the line regulators. Thus injection/absorption of reactive power from

the VSCs based on the warnings should also consider the source side voltage of the

line regulators.

V

Load1
Loadn1

DG1
Loadm

DGm

DGn

Loadn2OLTCSubstation Line

Regulator n

Line

Regulator m

Fig. 5.5. Simplified model of distribution system.

5.2.3 Local Load Fast Changes based Q1
ref Generation

This reactive power reference is generated based on fast changes in feeder voltage

in the vicinity of line regulator 2. When the line regulator warnings are received, the

proposed controller first access the line regulator source side voltage and compares in

which of the range it falls as shown in fig. 5.6. For example, if the line regulator source

side voltage lies within 119.5 V to 120 V, which is the lower range of the substation

OLTC regulation, more emphasis is given to reactive power generation as compared

to reactive power absorption. A large quantity of reactive power if absorbed in that
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range due to high voltage warning can cause the substation OLTC to act which is not

desired. The reactive power ranges for other voltages is also shown in fig.5.6. Also,

it should be noted that, the controller should regulate the rate at which the reactive

power is injected to the feeder. A faster change in reactive power in the feeder causes

steep changes in voltage which is not desirable in the DS operation and may result

in voltage flickers. So, a ramp rate controller is also placed in this control scheme to

limit at the rate of change of voltage occurs in the field. The reactive power reference
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0.8 p.u.

-0.8 p.u.

119.5 120 120.5 121 121.5 122 122.5

0.5334 p.u.
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-0.5334 p.u.

0.2667 p.u.

Fig. 5.6. Plot showing region for reactive power generation based on voltage.

Q1
ref can be mathematically considered in the form shown in 5.1 where a is -1 for

High Voltage warning and 1 for Low Voltage warning, t is time and the k is the ramp

rate at which the reactive power is injected.

Qref = Qref + a ∗ k ∗ t (5.1)

Note: limit with the Q1
ref range shown in fig. 5.6
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5.2.4 Line Regulators Voltages Warnings Based Q1
ref Ramp rate Correction

As mentioned, line regulators warnings issue voltage violations at the regulator ter-

minal point in the form of binary signal. Also, Q1
ref generates reactive power reference

points according to only fast changes in voltage. Consequently, voltage warnings are

being used to ramp up/down Q1
ref to mitigate voltage profiles fast changes as well

as going out of band. In this work we have considered a fixed ramp rate for the

reactive power injection in the feeder. If we assume K1 = ∆V
∆t

to be rate of change

of line regulator source side voltage and K2 = ∆V
∆Qvsc

to be the sensitivity of the line

regulator source voltage with respect to reactive power from VSC, the optimal ramp

rate for reactive power injection can then be obtained by (5.2).

k =
K1

K2
(5.2)

For field implementation of sensitivity based technique, it might be easier to find the

rate of change of voltage, K1, based on measurements, however, computing sensitivity

coefficient online is a daunting task. The feeder topology is constantly changing

with load variations and a real world feeder has large number of variables which

make computing online sensitivity a difficult task. This can still be achieved with

large number of measurements and line admittance’s information of the feeder, but

such methods are computationally expensive and may not be feasible for real world

applications as of now.
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5.2.5 Slow changing local load Based Q2
ref Generation

Load profiles generally have a certain periodic pattern throughout the days and

seasons. To exploit such predictable behavior of load, another reactive power com-

ponent Q2
ref is generated by applying a second volt-var curve considering LTC load

side voltage as a point of interest.Q2
ref in this work is generated using the substation

OLTC secondary side voltage which changes in inverse proportion of the load incre-

ment in the feeder. The purpose of generating Q2
ref is also to limit the line regulator

source side voltage as close to the middle of the allowed band of the substation OLTC

so that during the case of HV and LV warnings, a larger range of reactive power can

be utilized to avoid the tap operation of line regulators.

5.3 Test system Modeling

This section explains characteristics of the distribution feeder which is used for eval-

uating the proposed co-ordinated voltage control methodology. The non-aggregated

model of the distribution feeder consists of 720 nodes of 12.47 kV medium voltage

level. The feeder has three capacitor banks, two line voltage regulators and one on-

load tap changer (OLTC) on the substation side. The feeder is connected with 250

kW/750 kWh battery energy storage system (BESS) integrated with 1-MW PV solar

plant. The voltage source converters from battery energy storage and PV farm are

both rated at 1 MVA capacity. The maximum reactive power absorption/generation

capacity of the VSC used for the battery is limited to 800 kVAR. The non-aggregated

model of the system was aggregated and modeled in PSCAD/EMTDC platform (see

Fig.5.7). The aggregation of the model into different load centers was done based on
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the power flow measurements at each of the line regulators, RER’s point of common

coupling and the substation power flow readings. The power flow and voltage data

was provided by the utility on a 5 sec basis which was utilized to compute the effective

line impedances for the aggregated model. Further the aggregated model is validated

with the field data measurements available from the utility. The aggregated model

uses a voltage source modeled as the substation and consists of all the legacy systems

in the actual feeder. The substation voltage is fed based on the field data which varies

in time as per the overall changes in the load in all of the feeders supplied by the

substation. The loads are modeled by variable resistive and inductive components

that provides same load profile obtained from the field data. The substation OLTC

is modeled using an ideal transformer with provision to change its transformer ratio

using an external signal which is computed based on the tap position. The OLTC has

a potential transformer (PT) with a ratio of 60:1 and operates at a nominal voltage

of 120V which corresponds to 7.2 kV phase voltage. The OLTC is also equipped with

a current transformer with ratio of 500:1. The substation OLTC is working based

on line drop compensation (LDC) settings which R and X compensation of 5. This

means if the substation source side voltage is at its nominal value of 120 V and sup-

plies the load at the nominal value of 500 A, the load end voltage perceived by the

LTC is equal to 120 - 5 = 115 V. The OLTC has provision for correcting the voltage

in the range of ± 10%, and by adjusting the tap positions from -16 to +16 with each

tap change resulting in 0.625% change in voltage. The time delay for the substation

OLTC tap operation is 50 s. The voltage band used for the substation OLTC is 119.5

to 122.5 V. The voltage regulators use the same model as the OLTC, however the line
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Fig. 5.7. Aggregated Power Distribution Feeder (16 Buses)

voltage regulators have R and X settings of zero, meaning they regulate the voltage

based on their secondary side voltage, not based on a point in the downstream. Also,

the time delay for the line regulators is 45 s and the voltage regulation band used for

the line regulators is between 123 to 125 V. These settings for the substation LTC

and the line regulators are based on the utility data.

5.4 Simulation Results

This section presents simulation results which is performed using five seconds inter-

vals based real time measurements from utility feeder collected through server-based

communication technology (PI System). The utility provides the research team with
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data such as warnings from the line regulators and substation OLTC, associated cur-

rent tap positions, voltages at the primary and secondary side of line regulators and

OLTCs, active and reactive power flowing from the line regulators and OLTCs and

PCC point, voltages at the point of common coupling (PCC) point where both energy

storage system and solar PV facility are installed. Based on the available data from

the utility and the feeder information from the utility, the PSCAD/EMTP model

was first validated. The system inputs to the validated model are: substation volt-

age profile, substation active and reactive power, line regulators locations active and

reactive power and initial tap positions for all voltage regulators (all obtained from

utility data). Fig. 5.8 shows the field obtained load and substation source voltage

profile used for the simulation study. In the study that follows :Case − 0 is the

case with no reactive power support from the VSCs and Case − 2 is the case with

co-ordinated voltage control using the VSCs. Aggregated model for the feeder is de-

veloped on PSCAD/EMTDC platform. Full days simulations are run on PSCAD with

and without proposed co-ordinated voltage regulation. The proposed methodology

is evaluated based on total number of taps operations for three voltage regulators as

well as weak locations voltage profiles improvement. Fig. 5.8 also shows the periodic

characteristics of the load as previously explained. The proposed controller exploits

such periodicity in the load behavior for a better voltage regulation as well as reduc-

tion in voltage fluctuations at the locations of interest. As it can be seen from fig.

5.8, the substation voltage obtained from the field data varies in inverse proportion

with the load supplied from the substation. The sharp changes in the voltages in

fig.5.8 is due to tap changes in the upstream side of the substation (DMS).
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Fig. 5.8. Feeder measurements data. (a) Feeder load active and reactive power; (b)
Summer real measurement LTC source side voltage and real DMS actions.

5.4.1 Case-I: Summer Day Simulation Results

Fig. 5.10 shows voltage regulators tap operations with and without using the

proposed co-ordinated control. It can be observed that a significant number of tap

operations is avoided due to the use of proposed co-ordinated control to dispatch

reactive power from VSCs. Since substation voltage is constant throughout both

cases durations, OLTC had less taps savings and delays than other line regulators.

Intuitively, having both line regulators warnings observed by the control algorithm,

the proper amount of reactive power was being injected/absorbed accordingly to bring

the voltage back to normal level and prevent such real taps operations.
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Fig. 5.9. Case-I: Summer day feeder voltage profiles and PCC reactive power
dispatch. (a) LReg1 source side voltage - Phase A; (b) LReg2 source side voltage -
Phase A; (c) PCC reactive power.

5.4.2 Case-II: Winter Day Simulation Results

Also, Fig. 5.12 shows taps operations results for simulating a winter day which has

big number of taps in the morning due to demand peak.

5.4.3 Comparative Simulation Results

Table 5.1 shows the comparison of the total number of tap operations for substation

OLTC, Line Regulator 1 and Line Regulator 2 within 24 hours with/without the use of
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Fig. 5.10. Case-I: Summer day taps operations savings.(a) LTC taps - Phase A; (b)
LReg1 taps - Phase A; (c) LReg2 taps - Phase A.

proposed voltage regulation for another summer day. As the proposed methodology is

Table 5.1
Summer day total number of tap operations for three voltage regulators.

- OLTC LReg1 LReg2

Case-0 Case-2 Case-0 Case-2 Case-0 Case-2

Phase-A 20 18 35 7 32 12
Phase-B 23 17 30 9 31 9
Phase-C 20 14 29 5 31 7

acting to reduce the number of tap operations, both line regulators source side voltage

is always kept within limits which results in decreasing number of taps operations as
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Fig. 5.11. Case-II: Winter day feeder voltage profiles and PCC reactive power
dispatch.(a) LReg1 source side voltage - Phase A; (b) LReg2 source side voltage -
Phase A; (c) PCC reactive power.

in feeder base case. Fig. 5.9 and Fig. 5.11 show line regulator 1 and line regulator 2

source side voltages and dispatched reactive power from point of common coupling.

As it can be seen, with the proposed co-ordinated control, the overall voltage variation

of source side of line regulator 1 and 2 is narrowed down as compared to the case with

no regulation. Also, from the reactive power profile injected from PCC point, it can

be seen that the proposed control helps in regulating the voltage better by absorbing

reactive power during light load conditions, when tendency is to have high voltage in
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Fig. 5.12. Case-II: Winter day taps operations savings.(a) LTC taps - Phase A; (b)
LReg1 taps - Phase A; (c) LReg2 taps - Phase A.

the feeder and supply reactive power during peak load conditions, when feeder tends

to have lower voltage. Finally, point of common coupling voltage span of fluctuations

is also narrowed down by applying the proposed voltage regulation methodology as

in Fig. 5.13. It can be observed that the overall band of voltage changes throughout

the day has been narrowed down in the feeder suggesting a more stricter regulation

of voltage.
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Fig. 5.13. PCC Voltage for both summer and winter test cases. (a) Summer test
case.; (b) Winter test case.

5.5 Summary

The chapter proposed a coordinated control approach to co-ordinate the operation

of currently used legacy control devices along with the newly integrated VSCs in the

distribution system. The proposed technique is generic, situationally aware and can

be utilized in any utility system as the method is based on real-time feeder measure-

ments as opposed to the system model based on an operating point. The proposed

method reduces the need for adding DER components as another variable in the dis-

tribution system management optimization problem, which means the complexity of

the distribution system management is not worsened. The proposed technique has

economic benefits as well as power quality benefits due to the significant number of

tap operation savings they provide. The proposed control technique is being devel-
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oped in a micro-controller framework for the test in the real world feeder for which

the study presented in performed and the cost benefits of the proposed technique is

being performed in terms of improvement of power quality, the number of tap savings

and reduction in system losses etc.



CHAPTER 6: DYNAMIC VOLTAGE PROFILE MANAGEMENT OF POWER
DISTRIBUTION SYSTEM BASED ON ONLINE SENSITIVITY BASED

VOLT-VAR CONTROL

This chapter presents a situational awareness, data-driven, and agnostic coordi-

nated control methodology for voltage regulation in the active distribution systems

(DS). Considering voltage source converters (VSCs) as reactive power sources that

work in conjunction with the existing legacy controllers.

6.1 Introduction

The approach uses time-scale coordination based on regulator warnings such that

the voltage support from regulators is time separated from the reactive power support

using VSCs. Two types of voltage changes are considered; a slow changing one based

on the feeder load and a fast-changing one based on sudden changes in load or PV

output. The reactive support for both these changes is then designed based on the

voltage to reactive power sensitivities. The combined reactive support is then used

as a set-point to dispatch reactive power from the VSCs. The proposed control

technique is tested in the field verified model of a real feeder. Results show that

the proposed coordination approach has major economic values as well and power

quality benefits in the operation of distribution systems. It also shows that this

can be achieved without major changes in the existing communication framework

currently utilized by the utility. The utility-scale photovoltaic (PV) farms and battery
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energy storage are growing in numbers, as the integration of large-scale renewable

energy resources (RERs) has become a mandate initiated by the Renewable Portfolio

Standards (RPS) [57]. However, these RERs impose challenges in the control and

operation of the distribution system, especially on voltage profile management. One

source that can provide additional reactive power support is the VSCs. VSCs are

primarily connected to the distribution system to convert active power from the RERs

and feed generated power into the network. Recently, grid codes in many countries

have been modified such that the reactive power capability of grid-connected VSCs

can be utilized to support the grid [78]. Even though utilizing VSCs as additional

voltage control devices is promising, coordinating the existing legacy controllers in

the feeder (such as on-load tap changing transformers (OLTCs), voltage regulators,

capacitor banks, etc.) with the VSCs is very challenging. Thus, there is a need

to intelligently provide reactive power support from the VSCs without affecting the

operation of legacy controllers.

State-of-the-art work in this direction mainly focuses on either a fully model base

or a fully measurement-based approach. For example, [51] proposed a multi-timescale

based coordinated VVC algorithm which aimed to schedule reactive power dispatch

for a given distribution system on two-time horizons; an hourly and 15-minute interval

basis. Conventional voltage regulation devices like OLTC and capacitor banks (CBs)

are controlled on an hourly basis, whereas RERs integrated voltage source converters

(VSCs) are compensating reactive power in a 15-minute basis, based on the fast

changes in voltage profiles due to renewable resources output power intermittencies.

However, it is practically proven that fast fluctuations in voltage profiles could exist in
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the order of a few seconds. Ref. [26] presents a distributed control of voltage profiles

using both active and reactive power compensation, where the required reactive power

dispatch is a function of the PV output power ramp rate change in the opposite slope.

As the main application of system losses reduction, [73, 105] applied coordinated

reactive power control to significantly reduce capacitor banks switching and system

losses.

Much volt-var control (VVC) algorithms are developed utilizing heuristic multi-

objective optimization methodologies. With [59], a coordinated control approach

is presented to coordinate DERs and substation OLTCs. However, the technique

requires changing the compensation settings of the OLTC. Similarly, [107] presented

different volt-var optimization (VVO) techniques to maintain all buses voltages within

limits. Ref. [47,84,90] discussed different VVC algorithms utilizing sensitivity analysis

along with objectives and functions based formulations. Ref. [84] presented dynamic

adjustment of OLTC parameters (Line Drop Compensators LDC) for algorithm im-

provement. In [46, 55, 56, 97] the importance of coordination between OLTC, line

regulators and distributed generation sources are discussed in detail. In [46], a dis-

tributed method for the coordination of these sources is shown based upon multi-agent

system (MAS) architecture. But implementation of the methods requires extensive

communication links between different devices.

Integrated volt-var control (IVVC) methodologies which use heuristics based adap-

tive controls are proven to be successful. In such distribution systems with large

penetration of DERs, using optimal power flow to generate DMS control actions

is complex with the DERs. Ref. [102] applied signal processing and adaptive con-
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trol volt-var optimization methodology, where distribution system operation decisions

were made based on system measurements, observations, and processing rather than

depending on circuit models. In ref. [9, 10, 12] field measurements have been used to

implement active power controls for performing applications like peak load shaving

and photovoltaic active power smoothing.

References [42, 63] and [13, 23, 64, 99] used a utility-scale distribution feeder to

design a centralized volt-var control to keep voltage profiles within tight ranges, as

well as for conservation voltage reduction (CVR). In ref. [22] the impact of bulk volt-

var control on transmission systems by using a co-simulation framework with tight

coupling control is designed and illustrated. Also, [31] presented fuzzy logic combined

with the heuristic algorithm to implement volt-var coordination to minimize voltage

violations, and [100] presented an assessment for both volt-var and volt-watt controls

to avoid energy curtailment from renewable resources. All of the above work has

demonstrated centralized control actions not coordinated with both OLTC and line

regulators.

In [15], a control strategy is presented for coordinating the operation of OLTC,

line voltage regulators and VSCs of battery energy storage. This technique aims to

maintain the load end voltage of the feeder within the allowed band while minimizing

the operation of the line regulators. The realization of the control depends on the

knowledge of the regulator voltage out of band warning signal from the line regulators.

Based on this, VSCs inject/absorb the reactive power to/from the feeder, such that

the feeder load end voltage is at the allowable voltage band. The architecture is

implemented using a communication network already available at the utility.
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6.2 Problem Formulation

Conceptual representation of an active distribution system for volt-var profile man-

agement with both legacy and inverter based controllers is shown in Fig. 6.1.

Co-ordinated Voltage Management of Power Distr ibution System

Feeder wide
voltage control

Conver ter Based Controllers

Local/remote 
reactive power control

Communication
For co-ordination

Voltage Source 
Conver ters

Static &  Switched 
Capacitors

 

OLTC
Line Regulators

Distr ibution 
Management System 

Legacy Controllers

Fig. 6.1. Voltage regulation paradigm for the distribution system.

As illustrated, voltage regulation in the legacy power distribution system is achieved

using on-load tap changers (OLTCs), Line Regulators (LRs) and static/switched ca-

pacitors. The location and the size of these devices are designed in the planning stage.

A Supervisory Control and Data Acquisition System (SCADA) based Distribution

Management System (DMS), is used to control the source side voltage of OLTCs.

When voltage source converter (VSC) based systems are integrated, coordination

between VSCs and DMS legacy system controllers are required. This coordination

can be achieved using DMS and VSCs (marked in green) based on the information

extracted from the legacy controllers (marked in red).

The proposed approach is a data-driven based methodology utilizing distribution

feeder data obtained at regular time intervals. In the proposed algorithm, meter and

controller information from line regulators, OLTCs and VSC based devices are utilized
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(see Fig. 6.2). Specifically, load and source side voltage of line regulators, regulator

tap information and warnings, OLTC tap information, DMS initiated OLTC source

side voltage, active and reactive power from the regulators, VSC driven devices, and

the substation, are measured at regular intervals.

For time scale separation, regulator warnings are used. The warning from line

regulator is a pre-cursor for actual regulator operation (it may take few seconds for a

regulator to operate after the warning is issued). The approach can coordinate well

with the actual regulator operation. During the time period between a warning and

actual regulator operation, the VSCs in the distribution feeder can supply/absorb the

reactive power from the feeder so that the voltage can be improved. This approach

can reduce the line regulator operation, thus saving the asset life and minimizing

maintenance cost and time. Also, this faster reactive power control from the VSCs

can regulate the voltage at the load end of the feeder and reduces the chances of

damaging the voltage sensitive devices as the transients caused by the tap changes is

minimized. The details are as follows.

6.2.1 Sensitivity Calculations

Consider a generic and simplified power distribution system represented in Fig. 6.3.

Let us consider bus j for analysis purpose. From Fig. 6.3, Vj could be represented

as:

Vj = Vi +
PjRth +QjXth

Vj
(6.1)

where Pj and Qj are the active and reactive power at bus j.
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Fig. 6.3. Simplified model of distribution system.

Therefore, voltage rate of change with respect to both active and reactive power

could be represented as follows:

∂Vj
∂Pj

=
Rth

Vj
(6.2)

∂Vj
∂Qj

=
Xth

Vj
(6.3)
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This can be extended to single phase and three phase loads as

Vj = ajVi + bjIi (6.4)

Ij = cjVi + djIi (6.5)

Vi = AVj +BIj (6.6)

and thus

Rth = −Re(Bj) (6.7)

Xth = −Im(Bj) (6.8)

It has been discussed and proved in [106] that if the reactive power source is at

bus-k instead of bus-j and if it is a single phase load, then (Bj) can be replaced as

[Aij[Bj]phase]. A similar representation can be made for other phases as well.

In order to find effective reactive power contributions from the VSC device point

to maintain the voltage profile optimal, we should calculate the voltage to reactive

power sensitivity of the feeder. Consider a power distribution radial feeder model as

represented in Figure. The voltage at node j can be represented as [106]

∂Vj
∂qj

=
Xeq

Vj
(6.9)

For a voltage sensitivity of the change of taps in a line regulator, we can represent
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that

∂Vssr
∂Vlsr

= Tr (6.10)

where Vssr represents the source side voltage of the regulator, Vlsr represents the load

side voltage of the regulator and Tr represents the tap ratio. For a total of 32 steps

tap with a 10% regulation of voltage Tr can be represented as 1/(1+0.00625n) where

n is the regulator tap. From (6.10) it can be derived that

∂Vr
∂n

= ∆Vr ∗ [−0.00625/(1 + 0.00625 ∗ n)2] (6.11)

From the above discussion, for a given feeder, the change in the voltage can be derived

as

∆Vj = KQj
∆Q+Knj

∆n+KPj
∆P (6.12)

where ∆Vi is the change in the voltage at the ith node, KQi
is the ith row of the

reactive power sensitivity matrix which is
∂Vj
∂qj

for a measurement period of 5 seconds,

∆Q is the reactive power changes vector, Kni
is the ith row of tap position sensitivity

matrix which is
∂Vr
∂n

for a measurement period of 5 seconds and ∆nsbs represents the

deviation of substation tap position, KPi
is the ith row of the active power sensitivity

matrix which is
∂Vj
∂pj

for a measurement period of 5 seconds,∆P is the active power

changes vector .

In this work, we do not consider the active power sensitivity matrix separately,



112

as the control variable under consideration is reactive power from inverters. But,

the effect of active power on voltage changes are captured through the measured

values. Also, because of the slower time scale of OLTC action, only the reactive

power sensitivity at the various locations in the feeder is considered. The first term

in (6.12) represent the changes in the voltage due to reactive power support and

second terms consider the changes in voltage due to tap operation of regulators. As

mentioned before, we can separate this as a two-time scale problem as the tap change

occurs at a slower rate than reactive power support, especially if the support is from

VSC based devices. Considering this, we can rewrite (6.12) as

∆Q = (KQj
)−1(∆Vj −Knj

∆n−KPj
∆P ) (6.13)

such that KQj
is the online sensitivity index between reactive power of VSC and

voltage of location of interest, ∆Vj is the step change in voltage at that location,

Knj
is the sensitivity index of voltage change due to taps operations changes, and

∆nisthenumberofchangedtapspertimestep.

From the generic formulation in (6.13) it can be seen that the change in reactive

power at PCC is a function of sensitivity between the voltage at bus j to the DG in

bus j or bus k, voltage deviation at bus j, voltage change because of active power

and, the tap operation of the regulator. Let us assume that the regulator-1 taps are

set based on a specific rate of voltage change at the load-side, and a tap operation

has happened. Then (6.13) can be written as
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∆Q =
∆V new

j

KQj

(6.14)

where V new
j is the new voltage at the bus j after a tap operation which includes the

change in voltage because of both active and reactive power changes.

Let us assume that the rate of change of voltage on the regulator is set based on

the number of tap positions and the volt-var curve is designed using the controller

setting. Then (6.14) will be

∆Q = [

∆V new
j

∆t
∆t

KQj

] (6.15)

6.2.2 Fast Changing PV/Load Based Q1
ref Generation

As mentioned, line regulator warnings issue voltage violations at the regulator

terminal point in the form of binary signal. The first reference point generated at the

PCC terminal is termed as Q1
ref . This reactive power reference dynamically changes

due to fast changes in voltage. The voltage warnings are also used to ramp up/down

Q1
ref and to mitigate fast voltage profile changes. From (6.15), let us assume that

∆V new
j is the load-side voltage of the line regulator-1, then we can represent the

optimal ramp rate for reactive power injection as

k =
K1

K2
(6.16)
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where K1 =
∆Vreg1

∆t
is the rate of change of line regulator source side voltage (which

can be determined from the data obtained from the field) and K2 =
∆Vreg1

∆Qvsc

to be

the sensitivity of the line regulator source voltage with respect to reactive power from

VSC, the optimal ramp rate for reactive power injection can then be obtained by

(6.16).

For field implementation first the equivalent reactance is calculated as discussed

previously. Once an equivalent reactance is obtained, the sensitivity of the voltage

at one particular node with respect to the reactive power injection from another

node can be obtained. Once the sensitivity is obtained for that particular instant of

time, the ramp rate for reactive power dispatch can be obtained as well using (6.16).

Substituting (6.16) in (6.15), and considering two time steps t and t−1 we can derive

the reactive power reference Q1
ref in the form shown in (6.17) where a is -1 for High

Voltage warning and 1 for Low Voltage warning, ∆t is time elapsed after the warning

has been received, which is t − (t − 1)and k is the ramp rate at which the reactive

power is injected/absorbed obtained from (6.16).

Q1
ref (t) = Q1

ref (t0) + a ∗ k ∗∆t (6.17)

6.2.3 Slow changing local load Based Q2
ref Generation

Load profiles generally have a certain periodic pattern throughout the days and

seasons. The substation OLTC changes normally consider the load change based on

the DMS calculations every 15 minutes either through power flow or state estimation.

OLTC secondary side voltage changes in inverse proportion to the load increment in
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the feeder. The load-side voltage of the OLTC can be computed as follows.

Vldsd = Vsec − If ∗ (R + jX) (6.18)

where Vldsd is the OLTC load-side voltage, Vsec is OLTC secondary side voltage, If is

the current flowing towards the feeder from substation and (R, X) are the line drop

compensation settings. From (6.18), current If can be represented in terms of active

power P and reactive power Q. The magnitude of the substation load-side voltage

can thus be computed as shown in (6.22). In (6.22), Tp is the tap position, CTR is

the current transformer ratio, PTR is the potential transformer ratio, and P and Q

are the active and reactive power flowing through the substation respectively.

a = (
Vp

1− 0.000625 ∗ Tp
) (6.19)

b =
(P ∗R +Q ∗X) ∗ (1− 0.000625 ∗ Tp)

Vp ∗ CTR ∗ PTR
)2 (6.20)

c = (
(P ∗X −Q ∗R) ∗ (1− 0.000625 ∗ Tp)

Vp ∗ CTR ∗ PTR
)2 (6.21)

Vldsd =
√
a− b+ c (6.22)

By utilizing (6.22), based on the forecasted load profile and OLTC source side
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voltage from DMS, the voltage profile for load-side of OLTC can be obtained for any

tap position. Representing the sensitivity of OLTC load side voltage Vldsd with the

∆Qvsc as KQi
similar equation for reference reactive power as in (6.17) can be derived

for slow load changes supported by OLTC

Q2
ref (t) = Q2

ref (t0) + a ∗ k1 ∗∆t (6.23)

where k1 = K3/K4 and K3 =
∆Vldsd

∆t
is the rate of change of load-side voltage of

OLTC (which can be determined from the data obtained from the field) and K4 =

∆Vldsd
∆Qvsc

to be the sensitivity of the line regulator source voltage with respect to reactive

power from VSC, the optimal ramp rate for reactive power injection can then be

obtained by (6.16).

From ((6.17)) and ((6.23)) the output reactive power from VSCs can be calcuated

as follows.

QBESS(t) = Q1
ref (t) +Q2

ref (t) (6.24)

6.2.4 Line Regulator Warning Acquisition

Line regulator warning signals are issued by the line regulators whenever the load-

side voltage of line regulators goes out of the preset voltage band. If the voltage

is lower than the lower limit of the allowed band, a low voltage warning signal is

issued, and if higher than the upper limit of an allowed band, a high voltage warning

is issued. These warnings are good indicators of the voltage status at the load end.

Utilizing warnings as an indicator of voltage status and reactive power needs of the
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system makes the proposed control scheme situational aware. i.e., the controller acts

only if a situation where it needs to act arises. Utilization of warnings for reactive

power control also eliminates the need to place the voltmeters to measure the load

end voltages in the feeder. As line regulators tend to isolate the load downstream of

it from the feeder upstream, it is crucial to determine the upstream side voltage of the

feeder when reactive power is dispatched from VSCs to support the load. To illustrate

the above mentioned situation, consider Fig. 6.3. Consider a case, where the primary

side voltage of the line regulator m is close to the upper limit of the allowed band,

whereas due to a lower tap position used in the line regulators and increasing load,

the secondary side voltage now reaches close to its lower band, which then starts to

generate low voltage warning. If the reactive power injected from the VSCs do not

consider the primary side voltage of the line regulator on its control action and inject

reactive power solely based on warnings, the primary side voltage might go higher,

which might trigger operation of substation OLTC, which is regulating the primary

side voltage of the line regulators. Thus injection/absorption of reactive power from

the VSCs based on the warnings should also consider the source side voltage of the

line regulators.

6.2.5 Local Load/PV Fast Changes based Ramp Rate Limits

This reactive power reference generated is modified with the limits based on regula-

tor warnings. When the line regulator warnings are received, the proposed controller

first access the line regulator source side voltage and compares in which of the range

it falls. For example, if the line regulator source side voltage lies within 119.5 V to
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120 V, which is the lower range of the substation OLTC regulation, more emphasis is

given to reactive power generation as compared to reactive power absorption. A large

quantity of reactive power if absorbed in that range due to high voltage warning can

cause the substation OLTC to act which is not desired. Also, it should be noted that

the controller should regulate the rate at which the reactive power is injected into

the feeder. A faster change in reactive power in the feeder causes steep changes in

voltage which is not desirable in the DS operation and may result in voltage flickers.

So, a ramp rate controller is also placed in this control scheme to limit the rate of

change of voltage occurs in the field. The ramp rate of reactive power generation in

this paper is time varying and is dependent on the sensitivity as well as the rate of

change of voltage variation.

6.3 Test System Modeling

The second benchmark distribution network for this study is IEEE 8500-node test

feeder. This feeder is selected as a more realistic feeder for testing the scalability and

showing the methodology contribution to the existing methodologies in the literature.

The model is developed in CYME including one online load tap changer (OLTC),

three line voltage regulators, nine single phase and one three-phase capacitor. There

is one PV facility installed in the middle of the feeder, whereas energy storage system

is installed at two different locations for two different case studies as shown in Fig.7.3.
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Fig. 6.4. Proposed approach flowchart.

6.4 Simulation Results

Using historical data of a certain feeder from North Carolina, IEEE 8500-node

model is used to test the performance of the proposed volt-var control. The pro-

posed sensitivity analysis based volt-var coordination is developed in Python pro-



120

Substation

PV Solar Facility

ESS 

OLTC

OLTC and L ine Regulators

LReg3

LReg2

LReg4

ESS  location-1 
Case-1

ESS  location-2 
Case-2

Fig. 6.5. IEEE 8500-Node model used for methodology validation.

gramming language and interfaced with Long-Term Dynamics (LTD) simulations

through CYME platform. The advantage of using CYME for such study is that the

feeder is represented in more details as far as load spots, line regulators locations,

capacitors locations, and finally all lines parameters. Therefore, outcome results are

quite realistic and most similar to what would happen in a real feeder circumstance.

It is worth mentioning that communication time delay between PI server and the

energy storage management system (SMS) is insignificant enough (< 1s) to cause

conflict between SMS reactive power set-points and regulators operation times after
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warnings have already been issued. The controller generates reactive power set points

every 5 seconds, whereas voltage regulators take 45 seconds to change the tap posi-

tions. Therefore, as far as implementation is considered, the communication delay is

not expected to be a technical issue needing to be addressed. A summer day real data

measurements are considered for the performed simulations in this section as shown

in Fig. 6.6. This section is mainly analyzing the proposed methodology results as well

as comparing the newly developed methodology with the volt-var curve based VVC

methodology. Also, the energy storage system’s location is being analyzed through-

out three different locations; close to the substation, in the middle of the feeder, and

at the furthest end of the feeder. Also, an additional case is added to analyze the

contribution of the active power voltage changes that reactive power could possibly

mitigate. For each case to be studied, four scenarios are plotted against each other;

base case (no control), only volt-var curve control, sensitivity analysis based control

without ramp rate control on reactive power reference points, and sensitivity analysis

based control with ramp rate control. Results are evaluated based on a number of

saved taps operations as well as the voltage profiles improvement comparing the base

case with each control case. Figure. 6.6 shows system feeder load for a summer day

used in methodology validation. Also, PV solar photovoltaic active power profile is

depicted in Figure. 6.7

6.4.1 OLTC Load Side Voltage Analysis

In order to present more conclusive results for the proposed methodology, each

subsection discusses certain location/feeder equipment for all performed cases and
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Fig. 6.7. PV active power profile.

scenarios. This subsection presents the OLTC load side location’s voltage improve-

ment and reactive power quantities for all cases. Figure. 6.8. shows OLTC load

side voltage Voltc−ld for four cases/four scenarios. It is quite noticeably observed that

Voltc−ld is better controlled and maintained at a constant targeted level (1.015 p.u.)

by the improved sensitivity analysis based volt vat control methodology. However,

results for case 2 shows more accurate control of average targeted voltage which is

(1.015 p.u.) as shown in Figure. 6.8.(b). Even though volt var curve based methodol-

ogy seems to improve voltage profiles in most cases, the voltage profile tends to have

swings following swings due to load changes. This is due to volt-var curves are equa-
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Fig. 6.8. OLTC load side voltage for four scenarios; base case, volt-var curve control
based and sensitivity analysis based control without and with reference point ramp
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tion oriented rather than being targeted oriented. It is also clear that the farther the

energy storage unit is from the substation, the less the volt-var curve based method-

ology could control Voltc−ld. Furthermore, Figure. 6.9. shows OLTC taps operations

for Phase-C where taps positions were fixed at (-5). This is due to having a constant

voltage source from the substation side, therefore OLTC taps positions tend to be

quite stable throughout the simulation duration.

6.4.2 Line Regulator-2 Source Side Voltage Analysis

In this section, line regulator2 source side voltage Vlreg2−src is analyzed. As shown in

Figure. 6.10.(b) and Figure 6.10.(d), Vlreg2−src is better controlled due to being placed

in the middle of the feeder. It was more achievable for the energy storage converter

system to control this location whether it is placed in the middle of the feeder or at

the end of the feeder. Additionally, Table. 6.1 presents a conclusive summary for

the number of taps operations for LReg2. It is observed that line regulator 2 taps

operations has the least number of taps operations - 2 taps - during case-1 whether

with or without ramp rate limiter applied. Nevertheless, other cases seem to run

within the same average of number of taps.

Table 6.1
Number of taps operations for line regulator 2.

LReg2 Taps Operations

- Case-1 Case-2 Case-3 Case-4

Base Case 15 15 15 15

Volt Var Curve 9 4 4 4

Sensitivity Index Based 2 6 3 6

SI with Ramp Rate Limiter 2 5 5 6
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6.4.3 Line Regulator-3 Source Side Voltage Analysis

Similarly, line regulator3 source side voltage Vlreg3−src shows similar results com-

pared to Vlreg2−src as shown in Figure. 6.14. Furthermore, Table. 6.2 shows minimal

taps operations that could possible takes place during with SI based control with

ramp rate limiter applied.

Table 6.2
Number of taps operations for line regulator 2.

LReg3 Taps Operations

- Case-1 Case-2 Case-3 Case-4

Base Case 10 10 10 10

Volt Var Curve 6 5 5 5

Sensitivity Index Based 5 6 5 6

SI with Ramp Rate Limiter 5 4 6 7

6.4.4 Reactive Power and Voltage Correlation

This subsection presents the scatter diagram (correlation) between both the voltage

and reactive power profile at the locations of interest; source side of line regulator-3

and load side of OLTC. As shown in Fig. 6.18 (a), the V-Q curve for source side of

line regulator-3 for sensitivity analysis based Volt-Var control. The curve is developed

based on the simulation measurements which are linearly fit to calculate the estimate

of the volt-var curve settings for this case. Fig. 6.18 (b) is, however, showing the

V-Q curve for source side of line regulator-3 for sensitivity analysis based Volt-Var

control.Similarly, both V-Q curves are depicted for load side voltage of OLTC as per

Fig. 6.18 (c), and Fig. 6.18 (d).
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6.5 Summary

This chapter presented online sensitivity analysis based Volt-Var control methodol-

ogy for power distribution networks using system’s legacy systems and voltage source

converter (VSC) of energy storage systems. First, locations of interests are deter-

mined, they are usually OLTC load side voltage and source side voltage for all line

regulators due to the availability of measurements at all of these locations. Then, an

online sensitivity analysis calculation is performed between reactive power changes

at the point of common coupling (PCC) location and voltage changes at these lo-

cations. The proposed methodology then aims to maintain these targeted locations

at a tentative constant value (1 p.u.) such that voltages violations are mitigated as

well as unwanted taps operations are less likely to occur. Furthermore, maintaining

the OLTC load side voltage at a narrow band of changes proves the ability of the

proposed algorithm to better coordinate with the distribution management system

(DMS).
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Fig. 6.9. OLTC taps operations for four cases - Phase (C); base case, volt-var curve
control based and sensitivity analysis based control without and with reference
point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.11. LReg2 taps operations for four cases - Phase (A); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.12. LReg2 taps operations for four cases - Phase (B); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.13. LReg2 taps operations for four cases - Phase (C); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.14. LReg3 source side voltage for four scenarios; base case, volt-var curve
control based and sensitivity analysis based control without and with reference
point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.15. LReg3 taps operations for four cases - Phase (C); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.16. LReg3 taps operations for four cases - Phase (C); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control.(a) Case-1; (b) Case-2; (c)Case-3. (d)Case-4
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Fig. 6.17. LReg3 taps operations for four cases - Phase (C); base case, volt-var
curve control based and sensitivity analysis based control without and with
reference point ramp rate control. (a) Case-1; (b) Case-2; (c) Case-3. (d) Case-4
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CHAPTER 7: COORDINATED VOLT-VAR-WATT CONTROL (VVWC)
APPROACH FOR ACTIVE POWER DISTRIBUTION SYSTEM CONSIDERING

FEEDER LEVEL PEAK LOAD

Active and reactive power management became essential parts of each power dis-

tribution networks with high PV penetration level. Depending upon each network’s

scale and voltage level, R/X ratio tends to be changeable between different types

of feeders. So, either Volt-Var Control (VVC) or Volt-Watt Control (VWC) is in

a position of supremacy in some networks, or both would have an equal contribu-

tion in voltage regulation application in other networks. Nevertheless, active power

management is imperative ancillary service due to the severe and fast fluctuations in

PV output power. This chapter presents multi-objective optimization Volt-Var-Watt

Control (VVWC). The main goal is to evaluate the contribution of each individual

control methodology, as well as the outcome of incorporating both controls.

7.1 Introduction

Authors in [101], and [85] proposed performance assessment for the smart inverter

volt-var and volt-watt function in power distribution network. The main goal is to

avoid PV active power curtailment as a solution to mitigate the over-voltage due to

high PV penetration levels. Results show that volt-var is more efficient in regulating

the voltage limits when X/R is high, however in cases with lower X/R ration. Also,

this research uses volt-watt control as a function of PV inverter in the form of active
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power curtailment. Also, [25] presents an instability study between volt-watt and volt-

var for PV inverters when volt-var is sought to interfere to reduce voltage profile due to

high penetration level. Recently, authors in [52] used established active power linear

voltage sensitivities to curtail for PV inverter for power curtailment to mitigate over-

voltage. Nevertheless, in regards to volt-var-watt control, power curtailment is mainly

used to mitigate over-voltage due to high PV penetration level. Also, reference [24]

presented voltage stability for grid-connected inverter using volt-var and volt-watt

control. It was concluded that more vulnerability is added to the system by having

both volt-var and volt-watt functions in operations and volt-watt is taking precedence

over volt-var. Nevertheless, over-voltage mitigation is not addressed in the literature

by active and reactive power management of energy storage units located at local net-

load locations of power distribution networks. This chapter presents a multi-objective

optimization approach to evaluate utilizing both sensitivity analysis based volt-var

control as well as error minimization based local net-load control. The contribution

of this chapter is it controls the system’s duck curve at high PV penetration level

while in the meantime it mitigates over-voltage. The main purpose of incorporating

sensitivity analysis based VVC is not only to regulate the voltage profiles at certain

targeted values but also prevent the risk of over-generation and steep ramp rate on

conventional generation units. This chapter is organized as follows: Section 7.2.

explains the details of the proposed methodology. Section 7.3. discusses test feeder

used in the performed case study. Section 7.4. discusses the simulation results for

five potential scenarios which elaborate in methodology evaluation, and section 7.5.

summarizes the results and conclusions.
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7.2 The Proposed Methodology

This section discusses the both active and reactive power management parts of

the proposed methodology and the impacts on reactive power management due to

PQ-Curves limitations of voltage source converters.

7.2.1 Net-Load Active Power Management

This section presents the details of the active power management part in the pro-

posed methodology. First, Fast Fourier Transform (FFT) is applied to historical

net-load profiles at certain PV penetration level. Then, these frequency components

are multiplied by active power and energy-related parameters 7.2-7.8.

PNLHist. = average(PNL1, PNL2, PNL3, ..., PNL7) (7.1)

FFT (f(k)) = F (ω) =

∫ ∞
−∞

f(t)ejωdx (7.2)

α = (PNL pk−pk − PESS)/(PNLpk−pk) (7.3)

e2 = (E2 − EESS) (7.4)

β = e2 ∗ T2 (7.5)

PNL.Ref (ω) = α ∗ PNL(ω) (7.6)

IFFT (F (ω)) =
1

N
conj(FFT (conj(F (ω)))) (7.7)
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P
′

NLRef.(k) = IFFT [PNL.Ref (ω)] (7.8)

PNLRef.(k) = P
′

NLRef.(k)− β (7.9)

Then, an inverse fast Fourier transform (IFFT) is applied to these frequency com-

ponents to generate net-load reference curve 7.8-7.9. Given the starting (SoC) and

net-load reference curve, least squares minimization based objective function is devel-

oped as shown in 7.10 and it aims to calculate the optimal active power set-point for

the energy storage unit that maintain both ramp rate as well as SoC within certain

limits through set of equality and inequality constraints 7.13-7.16.

min U =
t−10∑
k=t

(1/2) ∗ (PNL(k)−m ∗ PNLRef.(k))2 (7.10)

PNLset−point(k) = m(k) ∗ PNLRef.(k) (7.11)

PESSset−point(k) = PNL(k − 1)− PNLset−point(k) (7.12)

PESSMax. ≥ PESS(k) ≥ PESSmin (7.13)

PESS(k) = PL(k)−m(k) ∗ PNLRef.(k)− PPV (k) (7.14)

m(k) ≤ PESSmin + PPV (k)− PL(k)

PNLRef.(k)
(7.15)

m(k) ≥ PESSmax + PPV (k)− PL(k)

PNLRef.(k)
(7.16)
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such that Eq. (7.13) is the algebraic inequality constraint for the energy storage

system active power capability, and Eq. (7.14)-(7.16) are the inequality constraints

for the multiplication factor m(k) that achieves that algebraic constraint through the

optimization formulation. The proposed methodology incorporates energy time shift

(ETS) application where energy storage unit aims to dispatch the maximum active

power capability during the predicted peak load time. Equations (7.17)-(7.18) show

integral control for ramp rate threshold value based on the optimal SoC at certain

time.

eSoC(k) = SoC(k)− SoCTarget(k) (7.17)

ζSoC = Ki

∫ k+t

k

eSoC dk (7.18)

7.2.2 Sensitivity Analysis Based Reactive Power Management

This section presents the details of the reactive power management part of the

proposed methodology (VVC). The main purpose is to regulate the voltage profile

throughout a given distribution network using available measurements. Therefore,

source side voltage for line regulators is selected to be locations of interest for the pro-

posed methodology. The main concept of the proposed reactive power management

is utilizing reactive power capability of distributed energy storage systems’ VSCs to

regulate voltage profile based on sensitivity analysis and targeted values rather than

volt-var curve settings. Equations (7.19)-(7.20).

∆Q = (KQj
)−1(∆Vj −Knj

∆n) (7.19)
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such that KQj
is the online sensitivity index between reactive power of VSC and

voltage of location of interest, ∆Vj is the step change in voltage at that location, Knj

is the sensitivity index of voltage change due to taps operations changes, and ∆n is

the number of changed taps per time step.

Q1
ref (t) = Q1

ref (t0) + a ∗ k ∗∆t (7.20)

Q2
ref (t) = Q2

ref (t0) + a ∗ k1 ∗∆t (7.21)

From ((7.20)) and ((7.21)) the output reactive power from VSCs can be calculated

as follows:

QBESS(t) = Q1
ref (t) +Q2

ref (t) (7.22)

The main purpose for each VSC is to maintain the source side voltage of the nearest

line regulator at 1 p.u. such that the voltage violations are prevented as well as taps

operations are avoided.

7.2.3 Active and Reactive Power Capability Limitations

Nevertheless, PQ curves, or capability curves [36] which represent the inverter’s

operating ranges, are the anticipated limitations to this methodology, especially with

voltage source converters operated at high power factor (P.F. = 0.9). Also, since

installing oversized VSCs is not the most economical choice, after calculating the

active power set-point, maximum reactive power reference point is calculated based

on the PQ curve and kVA ratings of the converter system. For example, an inverter

with 100 kVA ratings operating at unity power factor (100 kW) has no reactive power
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capability at this operating point. However, using an oversized inverter (110kVAR)

allows using 45% of reactive power with 100% of active power capacity as discussed

in [68]. Therefore, by assuming that active power management is taking precedence

Fig. 7.1. Inverter capacity with reactive power capability range [36].

over reactive power management, reactive power constraints are calculated based on

the power triangle of the kVA ratings of the VSC as shown in equations (7.23), (7.24)

Q2
max ≤

√
S2 − P 2

Set
(7.23)

−Qmax ≤ QSet ≤ Qmax
(7.24)

such that Q2
max is the maximum allowed reactive power dispatch from VSC, S is the

kVA ratings of the VSC, PSet is the active power set-point from active power control

(VWC), and finally Finally, Figure 7.2 shows flowchart of the proposed methodology,
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where QSet is the reactive power set-point for reactive power management (VVC).

Calculate online sensitivity indexes for 
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net-load location reactive power 

Read OLTC load side 
voltage and line regulators 

source side voltages

Read  energy storage system's 
location active and reactive power 
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Historical net-load curve 
generation
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Generate frequency components correlation 
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Evaluate Qref Max. using PQ 
circle.

Fig. 7.2. Multi-objective optimization Volt-Var-Watt Control (VVWC)
methodology flowchart.

7.3 Test Feeder Model (IEEE 8500-Node)

The test network used for this study is IEEE 8500-node test feeder. This feeder is

selected as a more realistic feeder for testing the scalability and showing the method-

ology contribution to the existing methodologies in the literature. The model is

developed in CYME including one online load tap changer (OLTC), three line volt-

age regulators, nine single phase and one three-phase capacitor. There are three PV

units installed throughout the feeder in the downstream part of the three local net-



145

load locations; NL#1, NL#2, NL#3 where three energy storage units are installed to

perform both active and reactive power management. Test network details are shown

in Fig.7.3.

Substation

Sub-network1

Sub-network2

Sub-network3

PV Solar Facility

NL locations

OLTC

OLTC and L ine Regulators

PV1

PV2

PV3

Fig. 7.3. IEEE 8500-Node test feeder

7.4 Simulation Results

This section evaluates the proposed Volt-Var-Watt-Control (VVWC) methodology

and the substantial benefits from using either VVC, VWC or VVWC. Evaluation

metrics are set as follows: Voltage deviation improvement (VDI): It is defined as

percentage maximum voltage deviation of the mean value of the any given voltage
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profile as shown in equation (7.27). Net-load ramp rate improvement (RRI): Ramp

rate improvement (RRI) is the ratio of each local net-load ramp rate with volt-watt

VW control on and without VW control on as shown in equation (7.25). Power losses

index (ILP ): Power losses index is the ratio between system losses with and without

the control is applied as shown in equation (7.26). Besides, system’s number of taps

operations for OLTC and three voltage regulators are also compared to find out which

control architecture contributes more to actions savings Finally, system’s over-voltage

is analyzed separately to evaluate levels of PV Penetration this given system could

operate with.

RRI =
RRcontrolled

RRbasecase

(7.25)

ILP =
P controlled
loss

P basecase
loss

(7.26)

V DI =
Vmax − Vmin

Vmean

(7.27)

In this chapter case studies are performed using CYME and sorted into 5 cases:

• Scenario-1: CYME Long-Term Dynamics (LTD) Simulation of the given feeder

load without solar PV units or control added.

• Scenario-2: CYME Long-Term Dynamics (LTD) Simulation of the given feeder

load with three installed PV units, whereas no is control added.

• Scenario-3: CYME Long-Term Dynamics (LTD) Simulation of the given feeder

load with all installed PV units and volt-var (VVC) is applied. In this case,
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Fig. 7.4. Solar PV profiles for installed three PV facilities in test feeder
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Fig. 7.5. Active and reactive power profiles for feeder load.

each voltage converter system (VCS) at each net-load location aims to regulate

source side voltage of the nearest line regulator as well as considering load slow

changes at OLTC load side voltage.

• Scenario-4: CYME Long-Term Dynamics (LTD) Simulation of the given feeder

load with all installed PV units and volt-watt (VW) control is applied such that

each energy storage system aims to smooth and ramp down the steep ramp rate

at each local net-load locations.
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• Scenario-5: CYME Long-Term Dynamics (LTD) Simulation of the given feeder

load with all installed PV units and both VW and VVC are applied. This

control scheme is defined as VVWC such that each energy storage system aims

to optimally manage both active and reactive power so that all PV penetration

effects are mitigated.

7.4.1 Feeder Load and Net-Load Active and Reactive Power Profiles

This section presents feeder load and PV active power profiles used in this case

study. It also discusses active power management results for all net-load locations.

Figure 7.5 shows active and reactive power profiles for the system’s feeder load,

whereas Figure 7.4 shows the active power profiles for three PV units used in this

study. Also, Figure 7.6 depicts net-load active power profiles with and without active

power control. PV penetration is 60% is 3 MW of the total load which is split between

NL1, NL2 and NL3 as 1000 kW, 1000 kW and 1000 kW respectively. Similarly, energy

storage systems sizing is selected 30% of PV ratings, hence ESS1/ESS2/ESS3 capac-

ities are to be 300 kW/300 kW/300 kW respectively. It is clear in Figure 7.6 that

net-loads ramp rate considerably decreased such that RRRNL1 is 37.06%, whereas

RRRNL3 is 34.53%.

7.4.2 OLTC and Line Regulators Source Side Voltages

This section presents voltage analysis for all targeted voltage profiles throughout

the feeder under all 5 cases. Figure. 7.9 present source side voltage profile for both

line regulator#2 and line regulator#3. There is a significant over-voltage at both

locations after adding three solar PV units as well as considerable fast fluctuations



149

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time hh:mm

-1000

-500

0

500

1000

1500

A
c
ti

v
e
 P

o
w

e
r 

(k
W

)

NL#1 Active Power Profile

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time hh:mm

-500

0

500

1000

A
c
ti

v
e
 P

o
w

e
r 

(k
W

)

NL#3 Active Power Profile

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time hh:mm

0

1000

2000

3000

4000

5000

A
c
ti

v
e
 P

o
w

e
r 

(k
W

)

Substation Active Power Profile

Fig. 7.6. Net-load#1 and Net-load#3 active power profile with and without
net-load active powr control;(a) NL1. ; (b) NL3.; (c) Substation

in voltage profile due to active power intermittent of PV output power. Separately,

VVC, VWC, and VVWC are used to tackle all above-mentioned active and reactive

power issues for the given network due to the high penetration level of PV. Greatly,

VVWC is mitigating voltage fluctuations by 45% (V DI5 = 0.4567) of original volt-

age profile’s fluctuations. Even though VWC is able to reduce voltage fast changes,
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Fig. 7.7. Active and reactive power for energy storage system #1.
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Fig. 7.8. Active power losses.

VVWC presents better regulation for voltage profiles due to reactive power dispatch

to limit each location at targeted average value. Also, Figure. 7.11 shows voltage

profiles for both net-load#1 and net-load#3 locations. Both locations’ are success-

fully maintained at 1 p.u. to mitigate voltage span of 0.03 p.u. pk-pk. Table. 7.1
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Fig. 7.9. Line regulators source side voltage profiles comparison for all cases;(a)
LReg2-Source side voltage ; (b) LReg3-Source side voltage; (c) LReg4-Source side
voltage

summarizes all voltage deviation index (VDI) for all cases.

7.4.3 OLTC and Line Regulators Taps Operations

Table 7.2 summarizes number of taps operations for all regulators in the system

throughout the 5 scenarios. It could be seen that total number of taps operations
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Fig. 7.10. Net-Load locations voltage profiles comparison for all cases;(a) NL1
voltage profile. ; (b) NL3 voltage profile.

Table 7.1
Voltage deviation index for net-load locations and source side locations of line regulators.

VDI (index is considering scenario2 as base case)

LReg2 Src OLTC Load NL#1

Scenario3∗(V V C) 0.7042 0.9729 0.8264
Scenario4∗(VWC) 0.9868 0.6568 0.5381

Scenario5∗(V VWC) 0.4567 0.4202 0.4041

increased from 33 to 49 after adding three PV units. The increase in number of

taps operations are due to intermittency and ramp rate of system net-load. However,

scenario #4 (VWC) successfully brought these extra actions down to 37. Finally,

(VVWC) provided the least number of taps operations for the network where active

and reactive power management are bot provided by all storage systems at local

net-load locations.
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Table 7.2
OLTC and line regulators taps operations.

Taps Operations

OLTC LReg2 LReg3 LReg4 Total

Scenario1 2 9 11 11 33
Scenario2 6 19 16 8 49

Scenario3 (VVC) 0 2 10 8 20
Scenario4 (VWC) 6 5 14 12 37

Scenario5 (VVWC) 0 2 9 8 19

7.4.4 Ramp Rate Improvement (RRI) and Power Losses Improvement (ILP)

Reference [3], [75] discussed the characteristics of conventional generation step re-

sponse. As it is concluded, gas turbines based generation units have the fastest time

response. Even though gas turbines seem to be the most available solutions to com-

pensate for fast ramp rate changes due to duck curve ramp rate, it inversely impacts

the efficiency of the generation unit to run at less than it’s full potential output. As

shown in Fig. 7.6, local net-load locations encountered noticeable improvement in

both ramp rate decrease as well as fast changes smoothing. Also, Table. 7.3 shows

ramp rate improvement for the following; NL#1, NL#3 and network substation (net-

work’s net-load profile). Total ramp rate at the substation location is decreased by

44%. Quantitatively, under the given assumptions of PV/energy storage units siz-

ing, net-load ramp rate is successfully brought down from 52.5 kW/minute to 16.1

kW/minute. On larger scaled power distribution networks, this ramp rate improve-

ment relieves gas-fired generation units from running less efficiently while energy

storage units are best managed to cover ramp rate changes. On the other hand, the

proposed methodology provided significant saving in active and reactive power losses.
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Fig. 7.11. OLTC and line regulator#2 taps operations for all scenarios.; (a) OLTC.;
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Table 7.3
OLTC and line regulators taps operations.

NL Location Ramp Rate Improvement (RRI)

NL1 42.2%
NL1 52%

Substation 44%

Table. 7.4 presented the percentage of saved system losses for each control case com-

pared with scenario-2 (No control with PV profile). Energy losses are greatly reduced

by (4.5%) for scenario-4, whereas it is reduced the most by (3%) for scenario-5.

Table 7.4
Power losses improvement (ILP) for control scenarios compared with scenario-2.

Scenario Power losses improvement (ILP)

scenario 3 101.89%
scenario 4 95.46%
scenario 5 97.01%

7.5 Summary

This chapter presented a novel active and reactive power management (Volt-Var-

Watt control) methodology. The methodology utilizes voltage source converters

(VSC) at local net-load locations in power distribution networks to generate active

and reactive power set-points to manage system net-load ramp rate, over-voltage and

risk of overgeneration at high PV penetration level. The volt-var control calculates

online sensitivity indexes to aid maintaining the nearest source side voltage of each

line regulator at a tentative constant value (1 p.u.) not only to minimize line regula-

tor’s taps actions but also to mitigate over-voltage risk due to PV penetration level.

The active power management part of the proposed methodology incorporates FFT

based local net-load reference curves to meet with energy storage system active power
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capability. Further, it develops least squares minimization based objective function

to control fast swings as well as local net-loads ramp rate through a set of equality

and inequality constraints. The optimization problems constraints are state of charge

driven constraints when both state of charge and ramp rate are co-dependent. Re-

sults showed a high level of voltage regulation throughout the tested feeder where the

voltage was kept within 1 p.u. and over-voltage due to installing PV farms were mit-

igated. Also, the total number of taps operations were best minimized by considering

both active and reactive power management. Finally, the total system’s net-load

ramp rate was successfully decreased by 50% which allows energy storage units to

pitch in ”Duck Curve” solutions instead of having gas-fired generation units as a first

solution to this phenomenon.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

8.1 Concluding Remarks

In this dissertation, new approaches to active power and reactive power manage-

ment were presented. The proposed algorithms addressed properly locating energy

storage units not only to control renewable energy active power swings but also to

control large-scale power distribution network net-load profile and thus the so called

”Duck Curve.” Further, the proposed approaches utilized historical dataset and time

series transformation techniques (FFT) to generate reference curves for each local

net-load location. All control objectives and constraints were developed using the

least squares error minimization technique. The effectiveness of the methodology

was verified using large-system IEEE 8500-Node system. The proposed active power

management approaches were developed in Python and tested through Long-Term

Dynamic (LTD) simulation on the CYME platform.

Moreover, this dissertation presented integrated feeder peak load management

based on active load prediction using weather forecasting. The proposed load predic-

tion approach incorporated feeder load decomposition such that all load components

and different behaviors were predicted separately. Also, the proposed load prediction

methodology was tested and temporarily implemented on an existing energy storage

controller at distribution feeder. The methodology was developed using JAVA pro-
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gramming. The proposed prediction methodology was deployed to aid energy time

shift (ETS) application where the energy storage system was expected to dispatch the

full capacity of discharge to cover the peak load period. Both implementation and

simulation results showed a high level of accuracy for both mean absolute percentage

error (MAPE) as well as peak time instants prediction.

Furthermore, coordinated voltage control was presented in this dissertation which

aimed to optimize the coordination between available voltage source converters (VSC)

in any given system and the legacy voltage regulation equipment such as online load

tap changer (OLTC), line regulators and capacitor banks. The approach was devel-

oped to fulfill the need for volt-var control (VVC) algorithms that are independent

of the system topology by considering locations of interests as source side voltage of

line regulators. The proposed volt-var methodology is further improved to take on-

line sensitivity analysis into considerations where sensitivity indexes were calculated

online based on the reactive power dispatch at VSC location and voltage profile at

locations of interests. The proposed methodology proved effective in maintaining any

chosen location at a given distribution feeder at a constant average voltage per unit

value.

Also, both active and reactive power management control was developed (VVWC)

by energy storage units installed at the tentative local net-load locations for any given

feeder. The proposed methodology aimed to regulate voltage profiles as well as con-

trolling system’s net-load ramp rate. The method addressed the active and reactive

power capability of the inverters and the consequences of operating with any of the

controllers taking precedence over the other. The proposed methodology utilized dis-
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tributed energy storage units to regulate the voltage at each line regulator in IEEE

8500-Node test model. VVWC was also developed in Python/CYME interface.

8.2 Future Work

Active and reactive power management approaches research could be further ex-

tended. Some of the potential future work are listed below:

• The selection of local net-load locations at large-scale power distribution net-

works could be addressed through certain criterion so that much distributed

behind the meter (BTM) PV farms and utility-scale PV farms are considered.

• The impacts of PQ-curves capability of VSC could be further considered and

determined based on characteristics and medium voltage levels of distribution

networks. Distribution feeder R/X ratio could be an important aspect in deter-

mining the precedence of either VVC or VWC for better control effectiveness

and system stability.

• The proposed VVWC approach could further incorporate feeder level active

power prediction methodology to coordinate between different ancillary services

provided by energy storage units such as energy time shift.
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