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ABSTRACT 

 
 

MELANIE DAVIS SPENCER.  Stability, resistance and change in mammalian 
microbiota and their associations with host health.  (Under the direction of DR. 

ANTHONY A. FODOR) 
 
 

What is the nature of a complex organism?  Metagenomic research and its insights 

into biosystem function have fundamentally altered the answer to this question.  High-

throughput sequencing technology has revealed the multitude of microbes that live in and 

on human beings and other mammals.  Metagenomics is beginning to uncover the 

relationships between microbiome and host that contribute to a complex organism’s 

biological processes.  The vast quantities of data generated by sequencing have also 

created analytical challenges that require new methods to identify biologically 

meaningful results.  The research described in this dissertation applies many of these 

techniques to elucidate the role of microbiota in human health.  

Chapter 1 presents results from our study of human choline metabolism that identified 

a relationship between the human gut microbiome and health.  Primer design and qPCR 

experiments that confirm Chapter 1 results are explained in Chapter 2.  Chapter 3 

characterizes the microbial community from cystic fibrosis lung infection exposed to 

repeated courses of antibiotic therapy.  An experiment designed to improve the resolution 

of ARISA, a metagenomic profiling technique, is described in Chapter 4.  In Chapter 5, 

the relationship between gut microbial community composition and exercise in mice is 

investigated.  In total, the work in this dissertation identifies several novel relationships 

between microbiota, host and environmental factors that may prove important in 

identifying underlying biological mechanisms that will improve human health.  
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INTRODUCTION 

 
 

Traditional methods of researching the microbial communities that reside in or on 

human beings and mammals were limited to investigating those organisms that could be 

cultured, a small subset of those that exert a significant influence on host health.1  The 

limited numbers of organisms that were identified using culture-based techniques focused 

attention on abundant or pathogenic species and, in the case of infection, how to eradicate 

those microbes.  Additionally, the constraints of culture kept us blind to the nature of the 

community as a functioning ecosystem:  its stability or lack thereof, the interdependence 

of its members and host, how it can be disrupted and what might be the outcomes of such 

disruptions.   

Rapid advances in molecular methods, such as Automated Ribosomal Intergenic 

Spacer Analysis (ARISA) and high-throughput sequencing technologies, have heralded a 

revolution in microbial research.  The study of metagenomes, the composite genomes of 

microbes in an environment, has been an important beneficiary of these advances and is 

only beginning to transform our understanding of microbial community composition and 

dynamics that have important ramifications for ecology and health.  The outcomes from 

this metagenomic revolution have uncovered the depth of microbial diversity in a variety 

of environments2-8  Research has found that human body habits harbor 100 trillion 

symbiotic microbes9 that participate in processes as diverse as nutrient bioavailability10-11 

and pathogen resistance.12-13   These studies and others have challenged conventional 

conceptions of complex organisms, placing human beings and other mammals squarely in 

the realm of biosystem ecology. 
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Next-generation sequencing technology has provided a window on the metagenomic 

complexity of human and mammalian biosystems.8-9  With this opportunity has come an 

array of challenges, from the complications of experimental design to the management 

and analysis of the vast quantity of data produced to the mind-bending task of teasing 

meaningful results from data with interdependent relationships that are yet to be 

documented.  Changing and improving sequencing techniques have necessitated the 

development of new data management schemes to store an overwhelming volume of 

sequence data, new algorithms to efficiently process data from a variety of platforms and 

new analytical methods to apply the expanding applications of sequencing results to 

biological problems.  The research described in this dissertation has evolved alongside 

these advances in sequencing methods and makes some progress in overcoming a few of 

the challenges.  At the same time, this work adds to our understanding of the relationship 

between the organism-associated microbial communities and host health. 

The relevance to health outcomes of understanding humans as biosystems is most 

aptly demonstrated in Chapter 1, research that describes how the combination of human 

genetics, dietary choline deficiency and gut microbial community composition work 

together to define susceptibility to fatty liver development.  In this collaboration with Dr. 

Steven Zeisel from the University of North Carolina at Chapel Hill, we characterized the 

gut microbiome using 454-FLX pyrosequencing of the 16S rRNA gene, a technique that 

describes microbial community composition by identifying inherent differences between 

microbes in the sequence of one gene region.14  Time-series stool samples were the 

source of the metagenomic DNA we used to study the changing gut microbiome in 15 

female subjects as they were placed on rigorously controlled, common diets where 
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dietary choline was manipulated.15  The results identified two classes of bacteria, 

Gammaproteobacteria and Erysipelotrichi, whose baseline abundance combined with the 

haplotype of PEMT, a gene important for normal choline metabolism, predicted the 

degree to which our subjects developed fatty liver when they were on a choline-deficient 

diet.  This study will be published in Gastroenterology, a journal focused on both clinical 

and basic research on the human digestive system. 

The validation of our choline metabolism study results is described in Chapter 2.  

Using targeted qPCR of DNA from our subjects’ baseline stool samples to quantify the 

abundance of Enterobacteriales, an order within the Gammaproteobacteria class, we 

confirmed our findings that the levels of these bacteria were critical in predicting fatty 

liver susceptibility in our subjects.  To develop this assay, we designed novel primers that 

were both sensitive and specific for Enterobacteriales and used a variety of 

bioinformatics methods to test their efficacy before having the primer sequences 

synthesized and conducting the qPCR assay that confirmed our results. 

The importance of the technology-driven shift from culture to sequencing is 

effectively illustrated by the changed view of the role of microbes in human health and 

disease.  In Chapter 3, we examine implications of moving from an organism-focused, 

culture-centric understanding of cystic fibrosis infection to the recognition that the health 

consequences of this condition are driven by a microbial biosystem where the impact 

from the whole may well exceed that from any individual member.16-18  In our study of 

one CF patient over the course of almost a year, we characterized the changing dynamics 

of infection, again using 16S rRNA gene pyrosequencing.  Like other recent studies that 

have taken advantage of new sequencing technologies, this research confirmed that CF 
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infection is definitively polymicrobial13-14 and identified many previously observed  and 

novel CF microbial community members that are components of a rich and complex 

microbial mix.  More importantly, our findings documented changing microbiome 

dynamics, as our patient experienced exacerbations in his condition and was treated with 

antibiotics to bring the infection under control.  This study is among the first to observe 

the simultaneous dynamic reactions of multiple microbial community members over 

several cycles of infection exacerbation and antibiotic response19 that are so familiar to 

patients living with CF.   

In our CF study findings, we also encountered a specific and troublesome analytical 

limitation of pyrosequencing methodology:  the fact that measures of microbial 

composition within a sample are relative.  The consequence of this constraint is that 

comparisons across samples are inevitability subject to potential artifacts of the method.     

In longitudinal analysis, such as ours, a comparison between relative abundance of a 

microbe in one sample to that in another may not be meaningful if there are large 

differences in the total microbial burden between samples.  In our results, we offered a 

potential solution to this problem by using qPCR, a method that provides quantification 

of microbes for each sample, to adjust the relative abundance measures provided by 

pyrosequencing to reflect differences between samples in overall bacterial counts. 

At the beginning of our research, significant cost reductions in pyrosequencing had 

not yet been achieved.  Consequently, we explored the alternative of using ARISA 

(Automated Ribosomal Intergenic Spacer Analysis), a low-cost, low-resolution DNA 

fingerprinting technique, to profile microbial communities from several preliminary 

studies we conducted.  Even with decreasing sequencing costs, the expense of sequence-
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based metagenomic research, where the volume of sequences required to analyze a single 

sample numbered in the thousands or tens of thousands, was not insignificant.  This 

problem was particularly acute for preliminary research where testing hypotheses and 

gathering information were a prerequisite to funding to obtain funding for a full study.  

The experiment described in Chapter 4 attempted to improve the resolution of ARISA 

results.  We reasoned that by combining the analysis from Sanger sequencing of the 

intergenic region between the 16S rRNA and 23S rRNA genes with microbial community 

profiles from ARISA on the samples, we could create a library of bacterial taxonomies 

that could, thereafter, be used to identify the types of bacteria associated with a specific 

ARISA signal.  This outcome would offer a reasonable alternative to expensive 

sequencing.  Unfortunately, the study uncovered two problems that we were unable to 

resolve:  1) intergenic sequence lengths are degenerate and redundant between bacteria 

types and 2) base pair variations in ARISA spectral signals, even between technical 

replicates.  

Despite our inability to link ARISA signal to bacterial taxonomies, the value of low-

resolution DNA profiling techniques has never been clearer.  The importance of 

inexpensive metagenomic profiling methods that provide an assessment of similarities or 

differences between samples within 24-48 hours of collection is becoming critically 

apparent as anecdotal evidence has accumulated that sequencing conducted at different 

times, by different technicians or in different sequencing facilities is not always 

comparable.20  The repercussions of this problem are monumental for metagenomic 

research.  If samples from a study are to be compared, all samples must be prepared and 

sequenced together for comparisons to be valid.  Furthermore, scarce resources demand 
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that the quality of each sample be verified before sequencing is undertaken to prevent 

wasting resources on inferior samples.  These unresolved sequencing constraints 

underscore a significant role for ARISA and other fingerprinting techniques for the 

foreseeable future.  Our early work on ARISA formed the foundation for a suite of 

ARISA analysis tools, Peak Studio, that were developed by Jon McCafferty and Robert 

Reid, which provide simple, flexible data management and analysis of results from DNA 

molecular profiling methods. 

ARISA applications for metagenomic analysis of preliminary research are 

documented in Chapter 5.  In a group of three related, preliminary studies, we extended 

the use of a high and low activity mouse model, developed by Dr. Timothy Lightfoot 

(NIH RO1-AR050085-01), to explore the effects of activity levels on the gut microbial 

community and vice versa.  Experiment 1 investigated whether ARISA gut microbiota 

profiles were different in two mouse models, one with high activity levels and the other 

with low activity levels.   In Experiment 2, a cross-over study in four C57/LJ mice, we 

identified significant differences in ARISA gut microbial profiles that distinguished 

between experimental phases of wheel running activity and constrained activity.  

Sampling and analysis methods were tested in two different mouse strains in Experiment 

3. 

This dissertation encompasses a broad spectrum of metagenomics methods and their 

applications to original research on mammalian microbiota.  Its central theme focuses on 

the host-microbe relationship and how its stability, resistance and change affect 

mammalian biosystems.  By providing a view of microbiota in different human and 
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model animal systems, this work advances our understanding of the influence of 

microbial communities on host health. 
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CHAPTER 1:  ASSOCIATION BETWEEN COMPOSITION OF THE 
HUMAN GASTROINTESTINAL MICROBIOME AND DEVELOPMENT 

OF FATTY LIVER WITH CHOLINE DEFICIENCY15 
 
 
1.1 Abstract 

Non-alcoholic fatty liver disease affects up to 30% of the U.S. population, but the 

mechanisms underlying this condition are incompletely understood. We investigated how 

diet standardization and choline deficiency influence the composition of the microbial 

community in the human gastrointestinal (GI) tract and the development of fatty liver 

under conditions of choline deficiency.  We performed a 2-month in-patient study of 15 

female subjects who were placed on well-controlled diets in which choline levels were 

manipulated. We used 454-FLX pyrosequencing of 16S rRNA bacterial genes to 

characterize microbiota in stool samples collected over the course of the study.  The 

compositions of the GI microbial communities changed with choline levels of diets; each 

individual’s microbiome remained distinct for the duration of the experiment, even 

though all subjects were fed identical diets. Variations between subjects in levels of 

Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver 

fat in each subject during choline depletion. Levels of these bacteria, change in amount of 

liver fat, and a single nucleotide polymorphism that affects choline were combined into a 

model that accurately predicted the degree to which subjects developed fatty liver on a 

choline-deficient diet.  Host factors and GI bacteria each respond to dietary choline 

deficiency, although the gut microbiota remains distinct in each individual. We identified 
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bacterial biomarkers of fatty liver that results from choline deficiency, adding to the 

accumulating evidence that GI microbes have a role in metabolic disorders. 

1.2 Background and significance 

Intestinal microbes utilize nutrients and produce metabolites that influence a wide 

range of human phenotypes, including susceptibility to conditions such as obesity,21-22 

insulin resistance,11, 23 metabolic syndrome,11, 23 liver steatosis,11, 23 Crohn’s disease24 and 

cancer.25-26  Recent characterizations of the human gut microbiota have repeatedly 

observed that microbial communities are distinct, even among closely related 

individuals.27   Nevertheless, the specific interactions between gut microbes, the 

environment and the human host that select for different microbial communities in 

different people are largely unknown. 

Many studies have reported direct links between diet and the structure of the gut 

microbiome in mouse models.  One recent example observed that microbiome structure 

rapidly shifts in response to a change from a low-fat, plant-based diet to a high-sugar, 

high-fat diet, modifying both the available metabolic pathways and actual gene 

expression.28  This study and others like it have demonstrated that symbiotic microbes are 

key for access to and use of nutrients and energy from dietary sources21, 28-31 and have 

identified relationships between specific gut bacteria and host metabolism.28, 31  These 

studies have demonstrated the relationship between dietary exposure and microbial 

response, but extending  these results from mouse models to humans is complicated by 

differences in gut structure and microbiome composition.28   

A principal challenge in determining associations between the human gut microbiome 

and health is the difficulty of standardizing the diet during sampling.31  Our study 
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overcomes this limitation by taking advantage of ongoing research that explores the 

effects of choline depletion in human subjects under a rigorously standardized diet in a 

hospital setting.  Choline is an essential nutrient and a major methyl donor that supports 

physiological processes from normal metabolism to neurological development in the 

fetus.32  Human beings obtain choline from two major sources:  diet and endogenous 

production in the liver.  The level of choline in the American diet varies substantially, 

with one study reporting a median intake of 284 mg/day compared with the 

recommended daily intake of 550 mg/day.33  Low-choline diets have been associated 

with health problems in humans and in mouse models, including non-alcoholic fatty liver 

disease, neural tube defects, hepatic cancer and an increased risk of breast cancer.34  

Furthermore, common single nucleotide polymorphisms (SNPs) in several genes have 

been shown to affect choline production and metabolism.35-36  One notable example is the 

gene, PEMT, which is important in the endogenous de novo synthesis of 

phosphatidylcholine.  A common haplotype associated with a defective estrogen response 

element in PEMT’s promoter region disrupts this critical process.35-36   

Gut bacteria can hydrolyze choline to form dimethylamine and trimethylamine.37-39  

Phosphatidylcholine has been identified as a component of bacterial cell walls in 

approximately 10% of bacteria.40  To obtain phosphatidylcholine, prokaryotes utilize two 

pathways, the PMT pathway for endogenous biosynthesis and the PCS pathway that 

utilizes exogenous choline to produce phosphatidylcholine.41  Different bacterial types 

may have none, one or both pathways, and pathway specificity is important to microbe-

host interactions.42   
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Our recent metabolomic analysis of the effects of choline deficiency on human beings 

has identified metabolites, some of bacterial origin, that differentiated subjects who 

experienced organ dysfunction associated with choline deficiency from those who did 

not.43  Other studies have used mouse models to determine bacterial influences on host 

metabolism and biochemistry,10-11, 23, 44-47 and some have suggested that gut bacteria 

affect the bioavailability of dietary choline to the host.10-11, 39  One recent study used 

vancomycin to chemically knock-out gut microbes in mice and observed a variety of 

metabolic changes, including increased choline in feces.48. Another study reported on the 

effects from metabolic syndrome in a mouse model.  These were ameliorated when 

antibiotics were administered to remove the gut microbiome.23  Taken together, these 

studies suggest that the gut microbiome influences an organism’s need for choline, as 

well as the health outcomes associated with choline deficiency.  Our research seeks to 

further characterize this relationship. 

1.3 Materials and methods 

1.3.1 Study subjects 

Healthy female subjects (n=15), a subset of those enrolled in an NIH-funded study 

(DK055865) investigating choline metabolism, were recruited to participate in a gut 

metagenomic study and provided informed consent (approved by the Institutional Review 

Boards at the University of North Carolina at Chapel Hill [UNC] and at the University of 

North Carolina at Charlotte [UNCC]).  Inclusion was contingent on a good state of 

health, a body mass index (BMI) of 18–34, and no history of hepatic, renal, or other 

chronic system disease determined by physical examination and standard clinical 

laboratory tests.  Individuals eating unusual diets that would interfere with the study, 
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using drugs or medications known to alter liver metabolism or using choline-containing 

dietary supplements during the previous 3 months were excluded.  Subjects were 

genotyped for the PEMT promoter SNP rs12325817 (Appendix A, Supplemental Table 

1).   

1.3.2 Dietary manipulation 

After admission to the Clinical and Translational Research Center (CTRC) at UNC 

Hospitals, subjects were continuously supervised to assure protocol compliance.  

Participants were fed study diets, prepared in-house to protocol specifications.49  Total 

food intake was adjusted to be isocaloric and to provide adequate intakes of macro- and 

micronutrients. (Appendix A, Supplemental Table 2) 

During the baseline study phase (FIGURE 1.1), all participants were fed a 

conventional diet of normal foods containing 550 mg choline · 70 kg body weight · day 

[the current adequate intake (AI) 50], 50 mg betaine · 70 kg body weight · day.  After 10 

days of this initial diet, subjects entered the choline-depletion phase during which they 

were fed a low-choline diet containing <50 mg choline · 70 kg body weight · day and 6 

mg betaine · 70 kg body weight · day, as confirmed by chemical analysis of a sample of 

duplicate food portions.51-52  Periodic measurements of urinary choline and betaine 

concentrations52 were made to confirm dietary compliance. Subjects consumed the 

depletion diet until they developed organ dysfunction associated with choline deficiency 

or for 42 days if they did not develop dysfunction. Subjects were deemed to have organ 

dysfunction if they had a more than 5-fold increase in serum creatine phosphokinase 

(CPK) activity 53; a more than 1.5-fold increase in aspartate aminotransferase (AST) or 

alanine aminotransferase (ALT); or an increase in liver fat content of >28% during the 
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choline-depletion diet and if these elevated measures resolved when dietary choline was 

restored.  

During the depletion phase, if functional markers indicated choline deficiency 

associated organ dysfunction, subjects were transitioned to a high choline repletion diet, 

containing 850 mg choline · 70 kg body weight · day for 10 days. Subjects who did not 

manifest signs of organ dysfunction after 42 days of the low-choline diet were likewise 

advanced to the choline repletion diet for 10 days. 

1.3.3 Clinical assessment   

Blood and urine samples were taken and laboratory tests were performed on each 

subject at screening, on day 1, and at the end of each dietary phase, as well as every 3–4 

days for the duration of the study to monitor the depletion and repletion status. These 

laboratory analyses (conducted at the McLendon Clinical Laboratory at UNC Hospitals; 

Clinical Laboratory Improvement Act and College of American Pathologists accredited) 

included measurements of AST, ALT, and CPK. 

1.3.4 Fatty liver 

Liver fat was measured by magnetic resonance imaging (MRI) at the beginning and 

end of the baseline diet, after 21 and 42 days of the low-choline diet, and at the end of the 

repletion period. Liver fat content was estimated by MRI with a Vision 41.5T 

clinicalMRsystem (Siemens, Malvern, PA) by using a modified “In and Out of Phase” 

procedure.54-55 This approach used the differences in transverse magnetization intensity 

after an ultrabrief time interval (FLASH; echo time _2.2 and 4.5 ms, flip angle_80 °, and 

repetition time_140 ms). Processing of successive FLASH MRI images with software 

from Siemens Medical Solutions (Malvern, PA) was used to estimate fat content. 
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Quantification of organ fat content was based on measurements across 5 images per 

subject and standardized using similarly measured images of spleen fat content to create a 

liver fat to spleen fat ratio (LF:SF), based on the assumption that spleen fat remained 

constant and could be used to normalize liver fat results (Appendix A, Supplemental 

Table 3). A 28% increase in liver fat from B1 to D2 time points was the predetermined 

threshold for indicating organ dysfunction secondary to choline deficiency. Liver fat 

measurements were subject to being mistimed by a couple of days because of MRI 

unavailability.  

1.3.5 Dietary compliance 

Our diets were well tolerated by subjects in this study.  If subjects did not tolerate the 

diet, their participation in the study was terminated.  No side effects were observed other 

than those associated with the removal of choline (hepatic dysfunction and muscle 

damage).  Symptoms typically resolved within days when dietary choline was re-

introduced.  All subjects who completed our study were unaware of the diet treatment 

they received; none felt sick or abnormal.  No study-related physical illness occurred in 

any subject, nor were there any serious adverse events.  

1.3.6 Sample collection and preparation 

Time-series stool samples were collected as indicated (FIGURE 1.1) based on the 

instructions provided to study personnel and study subjects.  Samples were frozen at 

-80˚C and shipped on dry ice to The University of North Carolina at Charlotte where they 

were stored at -80˚C.  Samples were thawed on ice and metagenomic DNA was extracted 

using QIAamp DNA Stool Mini-kit.  Extracted DNA was quantified using a NanoDrop 

ND-1000 spectrophotometer and frozen at -20˚C to await further preparation.   
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1.3.7 ARISA sample preparation and analysis 

Automated Ribosomal Intergenic Spacer Analysis56 (ARISA) was used to detect 

microbial signatures in our samples.  Using extracted DNA, the intergenic region 

between the 16S rRNA and the 23S rRNA genes was PCR amplified for each of two 

technical replicates using universal bacterial primers. (Appendix A, Supplemental 

Materials and Methods)  Samples were run on an Applied Biosystems 3130 genetic 

analyzer and resulting spectra were analyzed and data vectors from all samples were 

compared using hierarchical clustering with custom JAVA code. 

1.3.8 Sequencing sample preparation and sequence data management   

Extracted DNA was thawed and used to PCR amplify the V1-V2 hypervariable 

regions of the 16S rRNA gene. The PCR products for 454 tagged sequencing were 

prepared with primers and thermalcycling parameters described in Fierer et al57 

(Appendix A, Supplemental Materials and Methods).  PCR products were sent to the 

Environmental Genomics Core Facility at the University of South Carolina for 454-FLX 

pyrosequencing. The resulting ~213,000 sequences were subjected to quality control 

standards (Appendix A, Supplemental Materials and Methods) and sequences that did not 

meet quality criteria were removed from the dataset (Appendix A, Supplemental Table 

4).   

The remaining 194,781 sequences were assigned to Operational Taxonomic Units 

(OTUs) at ≥ 97% sequence similarity using the RDP-II infernal aligner and complete 

linkage clustering from the RDP web-based pipeline.58  Sequences were assigned 

taxonomy using RDP classification software.59  A minimum 50% threshold confidence 

score 60 was used to include sequences in each taxonomic group.  Sequence counts were 
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analyzed using logged proportion abundance, standardized to the average sample size 

across all samples (Appendix A, Supplemental Materials and Methods). 

1.3.8 Statistical analysis 

General descriptive statistics used all available samples, 74 samples across 15 

subjects.   For statistical analysis, two subjects with an incomplete sample set (29, 04) 

were left out of any statistical test where a missing sample was required for the analysis. 

Sequence counts were standardized to the average sample size across all samples and 

the resulting sequence frequencies were logged (adding 1 to each sequence to avoid 

logging zeros).  For the calculation and an example, see Appendix A, Supplemental 

Materials and Methods. 

Hierarchical clustering of OTUs at 97% and of ARISA binned signal intensities were 

conducted using Ward’s method on standardized logged sequence proportions.  Statistical 

analyses on RDP classifications were conducted at the most inclusive taxonomy for 

which results were identified (at the class level) to ensure that the highest possible 

numbers of sequences were used in comparisons (Appendix A, Supplemental Materials 

and Methods).  All p-values were corrected for multiple comparisons using an adjusted p-

value (Appendix A, Supplemental Materials and Methods).  

In Figure 5C, we used Principal Components Analysis (PCA) to build a simple linear 

model which related gut metagenomic sequencing and LF:SF ratio changes.  We 

conducted the PCA on the two taxa at the class level (Gammaproteobacteria and 

Erysipelotrichi) with the highest R2 values when regressed against LF:SF ratio change 

(Appendix A, Supplemental Table 5).  We used the first component of the PCA as a 

regressor against the % change in LF:SF ratio from B1 to D2 (FIGURE 1.5C).  In our 
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final model (FIGURE 1.5D), we included the subject genotype for the PEMT SNP with 

B1 abundance levels for Gammaproteobacteria and Erysipelotrichi to conduct the PCA.  

The wild-type genotype value was set to 1 and, for either heterozygous or homozygous 

genotype, the value was set to 2.  Because such models are subject to over-fitting, we 

performed permutation procedures that produced a permuted p-value to assess the 

validity of our results (Appendix A, Supplemental Materials and Methods).   

Statistical analyses were conducted using the R statistical package (R version 2.7.2 

(2008-08-25)), JMP® 8.0 software for Microsoft Windows (SAS Institute) and 

Microsoft® Office Excel 2003. 

1.4 Results 

1.4.1 Experimental design 

Healthy adult female subjects (n=15; Appendix A, Supplemental Table 1) were 

brought into the hospital and fed a proscribed experimental diet that included three 

dietary phases:  1) a standard research diet providing the current recommended level of 

choline, 2) a diet with very low choline and 3) a diet that included significant levels of 

choline to restore subjects’ choline levels (FIGURE 1.1).  Stool samples were obtained at 

time points reflecting dietary changes (FIGURE 1.1), and the gut microbiome was 

characterized from these samples.  Although we recognize that the composition of 

mucosal-adherent microbes could differ from stool sample results61, invasive procedures 

required to sample that component were not advisable for this study.  By sampling under 

controlled conditions as choline levels were manipulated, we observed the effects of 

dietary challenge on microbial community stability, identifying changes in bacterial taxa 
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that were coincident with controlled dietary manipulations and disease states in human 

beings. 

1.4.2 Distinctly individual gut microbial communities 

Accumulating evidence has documented the diversity of gut microbial community 

composition between individuals, even those who are closely related.27  If dietary 

differences primarily defined gut microbial community structure, placing subjects on 

common diets would erase some of those differences.  To test the prediction that a 

common diet leads to a homogenous microbial community, we conducted hierarchical 

clustering on Operational Taxonomic Units (OTUs), groups of sequences identified as 

having at least 97% sequence similarity.  Our samples clustered perfectly by subject (P = 

6.78E-65; Appendix A, Supplemental Materials and Methods) regardless of sampling 

time point (FIGURE 1.2A).  A profile of each subject’s microbiome obtained from 

ARISA, a DNA fingerprinting technology that does not involve direct sequencing 

(Appendix A, Supplemental Figure 1), also found nearly perfect clusters by subject 

(FIGURE 1.2B).  The highly similar clustering patterns observed from these two distinct 

methods ensures that our results are not an artifact caused by sequencing errors that may 

be associated with pyrosequencing methodology.62  These observations demonstrate that 

differences between individuals were maintained despite subjects being fed a common 

diet and that the established adult gut microbiome does not undergo wholesale, common 

change in response to short-term, common dietary perturbations. 

1.4.3 Effects of diet on the human gut microbiome 

Although our subjects’ microbiota remained distinct, we observed shifts in microbial 

community composition within subjects as their diets were altered.  When bacterial 
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proportions were plotted for each sampling time point in each subject, changes were 

visually apparent (FIGURE 1.3).  Bacterial classes with the highest abundance, such as 

Bacteroidia and Clostridia, were ubiquitous, whereas less abundant classes, such as 

Fusobacteria and Bacilli, were present in only a few subjects.   

We measured phylogenetic differences between dietary time points using Unifrac63 to 

assess the degree to which a phylogenetic tree for each sample differed in branch lengths 

from a subject’s “community” tree, constructed from all sequences from that subject.  In 

six subjects, the p-values from these comparisons revealed that the microbial community 

present when subjects consumed an ad libitum diet at baseline was more phylogenetically 

unique than would be expected by chance based on a threshold of P ≤ 0.05 (Appendix A, 

Supplemental Table 6), indicating that switching from an ad libitum diet to a balanced, 

standardized research diet substantially altered gut microbiome composition in a subset 

of our subjects.  

To quantify any common impact of dietary changes on frequencies of individual taxa, 

we compared differences in bacteria abundance between study time points that 

corresponded to changes in diet (FIGURE 1.1):  the ad libitum diet (B1) vs. the 

controlled research diet (B2), the ad libitum diet (B1) vs. the choline deficient diet (D2), 

the ad libitum diet (B1) vs. the high choline repletion diet (R1) and the choline deficient 

diet (D2) vs. the high choline repletion diet (R1).  Using paired t-tests, we found no 

common change in abundance of any taxon from one time point to another after 

correcting for multiple comparisons (Appendix A, Supplemental Table 7).  These results 

indicate that, while subjects experienced changes to their microbial community on 

exposure to a new diet (FIGURE 1.3), there is little compelling evidence for a common 
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pattern of change across subjects for individual types of bacteria.  Nevertheless, test 

results before multiple comparison correction for Gammaproteobacteria (P = .006) and 

Betaproteobacteria (P = .008) from D2 to R1 indicate a potential impact either from 

restoring dietary choline (Appendix A, Supplemental Table 7) or possibly from removing 

the soy shake from the repletion diet (Appendix A, Supplemental Materials and 

Methods).  Based on these results, we examined the differences in Gammaproteobacteria 

abundance between time points D2 and R in greater detail. 

We plotted the distributions of Gammaproteobacteria for all time points (FIGURE 

1.4).  At D2, where subjects had been on an extended diet containing very low daily 

choline levels (50 mg), subjects exhibited a variety of Gammaproteobacteria abundance 

levels.  When high dietary choline levels were restored to subjects’ diets at the R1 time 

point, abundance levels in all but two subjects dropped to zero.  This suggests that 

Gammaproteobacteria may be inhibited by very high levels of dietary choline.  Although 

evidence for such a direct effect of choline on Gammaproteobacteria is not 

unprecedented in the literature,64 further evidence will be necessary to confirm this 

observation at a threshold of statistical significance that survives correction for multiple 

tests.   

1.4.4 Relationships among choline deficiency, fatty liver, gut microbes and host genotype 

We next examined whether each taxon’s abundance levels at the B1 (baseline) time 

point, an “experiment-free” condition prior to dietary changes, could predict how subjects 

would respond to dietary choline insufficiency at D2 (end of the depletion phase).  

Abundance levels of two taxa, Gammaproteobacteria (FIGURE 1.5A) and 

Erysipelotrichi (FIGURE 1.5B), were correlated to the percentage change in the LF:SF 
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ratio from B1 to D2.  Gammaproteobacteria showed the strongest correlation, and the 

negative association with liver fat changes survived correction for multiple comparisons 

at a 5% false discovery rate (R2 = .5679, P = .00118, adjusted p-value .011) (Appendix A, 

Supplemental Table 5).  These results suggest that a subject’s baseline levels (ad libitum 

diet) of this taxon predict the degree of subject susceptibility to fatty liver when dietary 

choline is deficient. 

Although both Gammaproteobacteria and Erysipelotrichi abundance levels offered 

some predictive power for fatty liver development in our subjects, we wished to explore 

whether multivariate models could better explain subjects’ susceptibility.  Principal 

Components Analysis (PCA) provides a simple method to combine 

Gammaproteobacteria and Erysipelotrichi B1 abundance levels as explanatory variables.  

A regression of the first principal component generated from this analysis against the 

percentage change in the LF:SF ratio from B1 to D2 improved predictive value for fatty 

liver susceptibility over either taxa alone (FIGURE 1.5C).  To correct for the possibility 

of model over-fitting, we completed one million permutations of this analysis (Appendix 

A, Supplemental Materials and Methods), and the resulting permutation derived p-values 

supported the observed correlation.   

To further refine our model, we borrowed insight from previous studies that 

demonstrated that subject genotype for the PEMT SNP influences susceptibility to 

choline deficiency induced fatty liver.35-36   Results from Welch’s t test (FIGURE 1.6A) 

confirmed that this SNP genotype would be an effective predictor of liver fat changes in 

our subjects (P = .0028).  We combined the PEMT SNP genotype values with B1 

abundance information from Gammaproteobacteria and Erysipelotrichi (Appendix A, 
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Supplemental Materials and Methods) using PCA (FIGURE 1.6B).  The first principal 

component from this analysis proved to be highly correlated with the change in LF:SF 

ratio (FIGURE 1.5D) for all our subjects (R2 = 0.8388, P = 2.4e-06).  A permutation 

based p-value, designed to correct for over-fitting remained highly significant (P = 7.0e-

04), demonstrating that these three factors together (FIGURE 1.5D), are a powerful 

predictor of the physiological effects of choline deficiency.  We obtained similar results 

using multivariate regression (Appendix A, Supplemental Table 8).    

1.5 Discussion 

Our study demonstrates the importance of longitudinal experimental design and 

rigorous dietary control to identify changes in the gut microbiome that have potentially 

significant ramifications for human nutrition and health.  We have verified previous 

findings 9, 27 that gut microbial communities are distinctly individual and have 

demonstrated that there is little generalized convergence between subjects on a common 

diet over a two-month time period (FIGURE 1.2).  Although gut microbiota remained 

characteristically individual, dietary changes did produce some effects, altering overall 

gut microbial composition when subjects shifted from their normal diets and changing the 

abundance of specific microbes when the essential nutrient, choline, was perturbed 

(FIGURE 1.3).  The lack of statistically significant general microbial community 

convergence between subjects suggests that immigration of bacteria from food or the 

environment was not a major contributor to microbiome composition in our subjects. 

Our results are presented in the context of non-alcoholic fatty liver disease estimated 

prevalence as high as 30% in the U.S. population65-66 and observed interrelationships 

between choline, high fat diets, fatty liver, insulin resistance, diabetes and other 
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metabolic syndrome conditions.  Previous literature suggests that changes associated with 

menopause in women, particularly when combined with relevant SNPs, may disrupt 

endogenous choline production, increase a subject’s need for dietary choline and 

predispose post-menopausal women to developing fatty liver.35-36, 67-68  If this model is 

correct, the subjects who deplete most on a choline deficient diet are those who are least 

efficient at endogenous choline production and are, therefore, the most dependent on 

obtaining needed choline from their normal diets.  In Figure 1.5C, 3 subjects (33, 29 and 

04) did not show the same strong correlation as the other subjects when the combination 

of Gammaproteobacteria and Erysipelotrichi abundance was plotted against LF:SF ratio 

changes.  All 3 of these subjects, however, are WT for a SNP in the PEMT gene, which 

suggests that they are in the group of women better able to endogenously synthesize 

phosphatidylcholine.68  Combining the SNP status of PEMT with the abundance of the 

two taxa produces a correlation with essentially no outliers (FIGURE 1.5D).  These data 

support a model in which subjects with the ability to endogenously produce 

phosphatidycholine are less dependent on the composition of the microbial community.  

While such a model will need further validation, the observation that 

Gammaproteobacteria abundance went to zero in all but two of our patients when dietary 

choline levels were high (FIGURE 1.4) lends further support to the assertion that 

members of this taxa are involved in choline-sensitive pathways that have implications 

for host health. 

Animal models have also suggested a relationship between choline deficiency 

induced fatty liver and the gut microbiome.  Dumas et al. described a microbiota-

mediated mechanism underlying the development of fatty liver that mimicked choline 
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deficiency in mice fed high fat diets and was also associated with insulin resistance.10  

This mechanism was explained by microbial flora that disrupt choline bioavailability to 

the host by converting choline to methylamines, although no specific taxa were named.  

Increases in Proteobacteria, the phylum that includes Gammaproteobacteria, were also 

observed in mice that were fed high fat diets and that exhibited increased obesity.31  A 

study of metabolic endotoxemia, high-fat diets and obesity identified lipopolysaccharide 

(LPS), a phospholipid in the outer membrane of most gram-negative bacteria69, as a 

possible culprit in the chronic inflammation that accompanies metabolic dysfunction, 

insulin resistance and diabetes.47   Recent work by Kudo et al. implicated gut-derived 

bacterial endotoxin in up-regulation of TNF-alpha, apoptosis of primary hepatocytes and 

development of liver injury in a murine model of non-alcoholic steatohepatitis.70  Taken 

together, these studies provide support for the assertion that nutrient imbalance may 

trigger a bloom of inflammation-producing bacteria and concurrent metabolic 

dysfunction.  The Gammaproteobacteria genera identified in our study, including 

Klebsiella spp., Enterobacter spp. and Eschericha spp., are known gram-negative 

bacteria with LPS-containing membranes.69   Their combined association with fatty liver 

development suggests that these mechanisms may be at work in our subjects, as well.   

Even though we cannot yet assign cause and effect, our results suggest that host 

genotype and specific members of the microbial community are important predictors of 

susceptibility to choline deficiency induced fatty liver disease (FIGURE 1.5D).  Defining 

the interrelationships between these bacteria, host genotype and choline metabolism 

could begin to establish the biological mechanisms through which the gut microbiome 

influences human health.  Such work could ultimately yield important insights into the 
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causes and risks associated with fatty liver disease and related, increasingly prevalent 

conditions, such as obesity, insulin resistance, diabetes and cardiovascular disease. 
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FIGURE 1.1:  Experimental design. Participants were fed a controlled research diet 
that included adequate daily choline intake during the baseline period (red). During 
depletion, subjects were fed a diet very low in choline until they demonstrated signs 
of deficiency or for a maximum of 42 days (grey). The 10-day repletion diet was 
very rich in choline (green). Arrows indicate timing of stool samples. 

 

 



    20 
 
  A                                            B 

 

FIGURE 1.2:  Hierarchical clustering of gut microbiome 
samples.  A. Hierarchical clustering based on OTUs at 
97% sequence similarity. Samples are colored by subject. 
B. Hierarchical clustering based on ARISA profiles, a 
DNA fingerprinting technique. 
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FIGURE 1.3:  Diagrams of bacterial sequence proportions by time point at the class 
level.  The key shows ordering of time points in the ring: B1-baseline, B2-standard 
diet, D1-choline-deficient diet, D2-end of choline-deficient diet, R1-high dietary 
choline and R2-second high dietary choline sample (subjects 34, 32, 37, 39).  Blue 
subject labels designate those who developed fatty liver (liver fat change ≥ 28%) on a 
choline deficient diet; those with red labels did not.  Subjects 4 and 29 do not have all 
samples, and time points are labeled. 
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FIGURE 1.4: Distribution of Gammaproteobacteria abundance by time point by 
subject. Plot of logged standardized sequence frequencies (log10) for 
Gammaproteobacteria colored by subject.  
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FIGURE 1.5: Gammaproteobacteria and Erysipelotrichi abundance and subject 
genotype predict choline deficiency induced fatty liver.  Regressions of A. 
Gammaproteobacteria B1 abundance and B. Erysipelotrichi B1 abundance against 
the Liver fat/Spleen fat (LF:SF) % change from baseline (B1) to choline deficient 
(D2) diet. C. Regression of PCA1 from PCA of Gammaproteobacteria and 
Erysipelotrichi B1 abundance against the LF:SF % change from B1 to D2.  D. 
Regression of PCA1 from PCA of PEMT genotype for rs12325817, 
Gammaproteobacteria and Erysipelotrichi B1 abundance (6B) against the LF:SF % 
change from B1 to D2. 
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FIGURE 1.6: The PEMT SNP affects risk of developing choline deficiency induced 
fatty liver.  A. Variability plot of PEMT genotype for SNP rs12325817 and the % 
change in Liver fat/Spleen fat ratio (LF:SF).  WT, wildtype; HET, heterozygous; HO, 
homozygous.    B. PCA of PEMT genotype for rs12325817, Gammaproteobacteria 
and Erysipelotrichi B1 abundance. Open circles indicate subjects who did not develop 
fatty liver; closed squares are subjects who did.  

 

 

 



  

CHAPTER 2:  QUANTIFYING RELATIVE BACTERIAL ABUNDANCE 
THROUGH PRIMER DESIGN AND REAL-TIME QUANTITATIVE 

POLYMERASE CHAIN REACTION 
 
 
2.1 Abstract 

In our 16S rRNA gene sequencing study of the human gut microbiome (Chapter 1), 

we identified a linear relationship between the sequence abundance of 

Gammaproteobacteria and susceptibility to fatty liver development in subjects fed a 

choline deficient diet.  These results required validation using another technique.  We 

chose qPCR to test Gammaproteobacteria abundance and designed novel primers 

sensitive and specific for Enterobacteriales, an order within the Gammaproteobacteria 

class.  Our qPCR assays confirmed the bacteria abundance we had found using 16S 

rRNA gene sequencing, thereby validating the relationship between health outcome and 

human gut microbial composition demonstrated by our study. 

2.2 Background and significance 

The strong relationship between Gammaproteobacteria abundance, host genotype 

and fatty liver development described in the previous chapter was an unexpected finding 

from our research.  For post-menopausal subjects, the model that best explained this 

relationship used a more specific taxonomy, Enterobacteriales, an order within the 

Gammaproteobacteria class (FIGURE 2.1).  We chose quantitative real time polymerase 

chain reaction (qPCR)71 to validate the Gammaproteobacteria abundance in each sample  

and, thereby, to confirm the relationship our model had explained.  
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The qPCR technique can provide a quantitative assessment of DNA from a sample.  

The process amplifies a selected sequence, thereby allowing an otherwise undetectable 

amount of DNA to be detected and quantified.  Primers that are both sensitive and 

specific to the targeted sequence are required for quantification to be accurate.  If the 

primers have been designed effectively, they will bind to a targeted DNA sequence from 

the organism of interest, catalyzing the PCR chemistry and initiating amplification.  For 

our investigation, primer sensitivity and specificity needed to span a portion of the 16S 

rRNA genes from the several different types of Gammaproteobacteria identified in our 

study. 

2.3 Materials and methods 

2.3.1 Primer design 

As a first step in primer identification, we aligned the Gammaproteobacteria 16S 

rRNA sequences obtained from the samples in our study to find a common, homologous 

template that would recruit across the Gammaproteobacteria sequence dataset in a qPCR 

experiment.  Although no effective candidate template could be identified, as an 

alternative, we tested Enterobacteriales sequences (n=608), which comprised 92% of our 

study’s gut microbiome sequences in the Gammaproteobacteria class and which had 

exhibited the same model characteristics for our post-menopausal subjects.  We used 

MUSCLE72 and CodonCodeAligner 3.7.1  (copyright © 2009 CodonCode Corporation, 

Dedham, MA), to conduct multiple sequence alignment on 16S rRNA sequences from 

that group.  From the alignment, we identified a consensus sequence template (TABLE 

2.1), 203 nucleotides in length, which had high sequence similarity across all the 

Enterobacteriales sequences.  To spot check for Enterobacteriales specificity, we 
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developed a database of 5000 non-Enterobacteriales sequences randomly selected from 

among 53,545 unique 16S rRNA sequences in our study.  We aligned the sequences 

using MUSCLE and obtained a consensus sequence (TABLE 2.1) which we then 

compared to the Enterobacteriales template.  The non-Enterobacteriales consensus 

sequence (gaps removed) had an overall similarity of 57.64% (Figure 2.2); however, 

there were regions that showed markedly higher and lower similarities, providing an 

indication that the Enterobacteriales template had areas specific enough to develop 

effective primer pairs. 

Using the Enterobacteriales template, candidate primer pairs were identified using 

NCBI Primer-BLAST.23-24   Parameters used for the primer search included: 

1. PCR product size range = 75-120 

2. # primers to return = 100 

3. Primer melting temperatures = default 

4. Specificity check organism = Gammaproteobacteria 

5. Specificity check database = Refseq RNA 

6. Primer specificity stringency = default 

7. Misprimed target size deviation = default 

The 20 primer pairs with the highest specificity to Gammaproteobacteria in the NCBI 

Refseq RNA database (TABLE 2.2) were selected as candidates for further testing.  The 

primer pairs were evaluated for sensitivity and specificity for Enterobacteriales using 

BLASTn against a database of all unique sequences from our gut microbiome study 

(n=53,545).  A strong hit in our BLAST analysis was defined as having an E-value ≤ 

0.001.  The results (TABLE 2.3) indicated that the primer pairs demonstrated a wide 
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range of sensitivity levels (83.53%-95.58%).  However, they exhibited more consistency 

in specificity, with only three primer pairs recruiting sequences other than 

Enterobacteriales.   

The three primer pairs with the best balance of sensitivity and specificity, PP05, PP08 

and PP20 (TABLE 2.3), were chosen for further analysis.  We then tested those 

Enterobacteriales sequences that were not recruited by the primer pairs to ensure that 

they did not all come from a single sample or taxon which, if true, could bias the qPCR 

assay.  Taxonomic classification was conducted using the Ribosomal Database Project 

(RDP) sequence classification algorithm59 for the Enterobacteriales 16S rRNA sequences 

that had E-values > 0.001 in each pair’s BLAST results.  This analysis indicated that 

primer pair PP05 would perform best in our qPCR experiment. A comparison of the 

primer to the aligned Enterobacteriales and non-Enterobacteriales consensus sequences 

showed that the reverse primer was critical to its performance (FIGURE 2.2).  The PP05 

primer pair was then sent to Integrated DNA Technologies (Coralville, IA) for synthesis. 

2.3.2 Sample preparation and DNA extraction 

Time-series stool samples from fifteen human subjects in our choline metabolism 

study were collected at the Clinical and Translational Research Center at the University 

of North Carolina at Chapel Hill (Appendix A, Supplemental Methods).  Samples were 

frozen at -80˚C and shipped on dry ice to The University of North Carolina at Charlotte 

where they were stored at -80˚C.  Samples taken at the baseline (B1) time point in the 

study were thawed on ice and metagenomic DNA was extracted using QIAamp DNA 

Stool Mini-kit (Qiagen, Valencia, CA) .  Extracted DNA was quantified using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE).   
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2.3.3 qPCR experiments 

Using PicoGreen (Invitrogen, Carlsbad, CA), the relative fluorescence units (RFU) of 

each metagenomic DNA sample were determined and an aliquot was then normalized to 

a standard concentration across all samples.  Quantitative PCR was performed using 

Quanta Biosciences PerfeCta SYBR green FastMix for iQ (Gaithersburg, MD) and run 

on a Bio-Rad myiQ Single Color Real-Time PCR detection system (Quanta Biosciences, 

Gaithersburg, MD).  Each reaction was set up with 10uL of 2x FastMix, 200nM of 

forward PP05 and 200nM of reverse PP05 primers, 3ul standardized template and the 

total volume was brought to 20uL with molecular biology grade water.  Samples were 

run at: 50C for 2 min 1x; 95C 10 min 1x; 95C 15sec; and 56C 1min 40x.  Thermalcycling 

was immediately followed by a melting curve analysis beginning at 95C and decreasing 

0.5C each cycle for 120 cycles. 

2.4 Results 

Two separate qPCR experiments (7-21-2010 and 7-30-2010) were completed on 

baseline (B1) samples from the fifteen choline metabolism study subjects for whom we 

had sequencing results and on additional subjects for whom we had samples, but not 

sequences.  Results from qPCR are expressed in cycle time (CT), a measurement that 

indicates the number of cycles required for the fluorescence that is emitted in DNA 

binding to reach the threshold of detection.  The number of cycles is logarithmically and 

inversely correlated to the concentration of probe-specific DNA in a sample.  Therefore, 

higher CT values indicate lower abundance and vice versa.  The immediate output from 

our qPCR experiments, are displayed in PCR cycle graphs (FIGURE 2.3A-B).  The 

comparison of these sample curves with a standard curve based on serial dilutions of 
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known DNA quantity demonstrated that the qPCR worked properly and provided 

quantification of Enterobacteriales for each sample.  To confirm the qPCR results for 

each sample, we checked for consistency between the two qPCR experiments by plotting 

the CT values from each one against the other (FIGURE 2.4). 

To determine whether the qPCR confirmed our sequencing findings, we first plotted 

each of the B1 qPCR CT results against Enterobacteriales sequencing abundance levels 

(FIGURE 2.5A-B).  The matches between qPCR and sequencing results demonstrated 

strong correspondence (7-21-10: R2 = 0.8235, P = 3.00E-06; 7-30-10:  R2 = 0.8202, P = 

3.38E-06) further demonstrating that qPCR validated our sequencing findings.  We next 

checked to determine if the relationship between fatty liver development during choline 

deficiency and the combination of Gammaproteobacteria baseline abundance and PEMT 

host genotype and could be confirmed for Enterobacteriales qPCR cycle times.  Because 

Enterobacteriales presence was identified as being more specific for post-menopausal 

subjects, we included all post-menopausal subjects for whom we had qPCR results, not 

just those whose samples had been sequenced, in the analysis.   The combination of 

qPCR results and PEMT genotype from both qPCR experiments confirmed the 

relationship with choline deficiency induced fatty liver development we had observed 

previously with sequencing (FIGURE 2.5C-D). 

2.5 Discussion  

Primers of many types have been designed to target specific regions of genomes to 

detect presence and/or abundance of the organism or gene of interest.  Commercial 

enterprises, such as Invitrogen and Applied Biosystems, sell primers for a variety of 

organisms and genes.  Many published manuscripts report primer design to quantify 
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specific types of bacteria.23-2873  Nevertheless, an extensive search of literature and 

internet resources indicated that the primers we created are original. 

Designing primers that were both sensitive and specific for Enterobacteriales 

quantification was essential to validate our metagenomic sequencing results showing a 

novel and strong association between Enterobacteriales in our subjects and their 

susceptibility to fatty liver development when dietary choline was deficient.  The success 

of our qPCR experiment solved a non-trivial technical problem and anticipated potential 

questions that might have arisen had had our original association results been obtained 

using pyrosequencing as the only single method.  Subsequently, we recognized the utility 

of these primers for additional uses. 

With a non-alcoholic fatty liver disease prevalence estimated as high as 30% of 

adults in the United States65 and an increasing incidence of associated conditions, such as 

obesity29-31, metabolic syndrome74-75 and type 2 diabetes76, identifying factors which 

contribute to fatty liver development has become more urgent.  In addition, non-alcoholic 

fatty liver disease is also associated with other serious illnesses including increased risks 

of liver cancer77, breast cancer78, atherosclerosis33 and cardiovascular disease.79     Our 

post-menopausal subjects who had the PEMT SNP, which is in the estrogen response 

element of the gene, were expected to be even more susceptible to choline deficiency 

because their lower estrogen levels would reduce gene transcription.   Interestingly, 

higher Enterobacteriales abundance (both qPCR and sequence) appeared to modulate this 

effect, reducing the degree to which these subjects developed choline deficiency induced 

fatty liver.  Conversely, lower Enterobacteriales abundance was associated with higher 

susceptibility.  These results suggested that primers which could quantify 
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Enterobacteriales abundance, combined with measures of PEMT genotype, could 

provide ways of diagnosing individuals most likely to be affected and of tracking risk 

profiles over time.   
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TABLE 2.1:  Consensus sequences from Enterobacteriales and non-Enterobacteriales 
alignments. Enterobacteriales (n=608) and non-Enterobacteriales (n=5000) aligned 
using MUSCLE.  Gaps removed from Non-Enterobacteriales consensus sequence. 
 
Description Sequence 
Enterobacteriales 
Consensus Sequence 

CTGGTCATCCTCTCAGACCAGCTAGGGATCGTCGCC
TAGGTGAGCCGTTACCCCACCTACTAGCTAATCCCA
TCTGGGCACATCTGATGGCATGAGGCCCGAAGGTC
CCCCACTTTGGTCTTGCGACGTTATGCGGTATTAGC
TACCGTTTCCAGTAGTTATCCCCCTCCATCAGGCAG
TTTCCCAGACATTACTCACCCGTC 

Non-
Enterobacteriales 
Consensus Sequence 

TCGCGCCATCAGACGCTATCTGGACATGCTGCCTCC
CGTAGGAGTTTGGACCGTGTCTCAGTTCCAATGTGG
GGGACCTTCCTCTCAGAACCCCTATCCATCGTAGCC
TTGGTGGGCCGTTACCCCGCCAACTAGCTAATGGAA
CGCATCCCCATCGATTACCGAAATTCTTTAATAATG
TGACCATGCGGAATCATTATGCCATCCGGTATTAAT
CTTCCTTTCGAAAGGCTATCCCCGAGTAATCGGCAG
GTTGGATACGTGTTACTCACCCGTGCGCCGGTCGCC
ATCAATCTATTGCAAGGRCCG 
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TABLE 2.2:  Primer pair candidates for Enterobacteriales selected for testing. 
 
 
Name Sequence Name Sequence 
PP01F TCGTCGCCTAGGTGAGCCGT PP11F TCGTCGCCTAGGTGAGCCGT 

PP01R CGTCGCAAGACCAAAGTGGGGG PP11R ACCGCATAACGTCGCAAGACC 

PP02F TCGTCGCCTAGGTGAGCCGT PP12F AGACCAGCTAGGGATCGTCGCC 

PP02R ACGTCGCAAGACCAAAGTGGGG PP12R AGTGGGGGACCTTCGGGCCT 

PP03F TCGTCGCCTAGGTGAGCCGT PP13F AGACCAGCTAGGGATCGTCGCC 

PP03R CGTCGCAAGACCAAAGTGGGG PP13R CAAAGTGGGGGACCTTCGGGC 

PP04F TCGTCGCCTAGGTGAGCCGT PP14F CGTCGCCTAGGTGAGCCGTT 

PP04R ACCGCATAACGTCGCAAGACCA PP14R ACGTCGCAAGACCAAAGTGGGG 

PP05F TCGTCGCCTAGGTGAGCCGTT PP15F AGACCAGCTAGGGATCGTCGCC 

PP05R CGTCGCAAGACCAAAGTGGGGG PP15R AAAGTGGGGGACCTTCGGGC 

PP06F ACCAGCTAGGGATCGTCGCC PP16F GACCAGCTAGGGATCGTCGCC 

PP06R CAAAGTGGGGGACCTTCGGGC PP16R CAAAGTGGGGGACCTTCGGGC 

PP07F ACCAGCTAGGGATCGTCGCC PP17F GACCAGCTAGGGATCGTCGCC 

PP07R AAAGTGGGGGACCTTCGGGC PP17R AAAGTGGGGGACCTTCGGGC 

PP08F TCGTCGCCTAGGTGAGCCGTT PP18F TCGTCGCCTAGGTGAGCCGT 

PP08R ACGTCGCAAGACCAAAGTGGGG PP18R ACGTCGCAAGACCAAAGTGGG 

PP09F TCGTCGCCTAGGTGAGCCGT PP19F TCGTCGCCTAGGTGAGCCGTT 

PP09R AACGTCGCAAGACCAAAGTGGGG PP19R CGTCGCAAGACCAAAGTGGGG 

PP10F TCGTCGCCTAGGTGAGCCGT PP20F TCGTCGCCTAGGTGAGCCGTT 

PP10R CCGCATAACGTCGCAAGACCA PP20R ACCGCATAACGTCGCAAGACCA 
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TABLE 2.3:  BLASTn performance of primer pairs against database of all unique gut 
microbiome sequences from our study.  Strong hits had an E-value ≤ 0.001.  
Highlighted primer pairs demonstrated high sensitivity and specificity and were selected 
for further testing. 
 

 
 PP01 PP02 PP03 PP04 PP05 PP06 PP07 PP08 PP09 PP10 

Strong hits  232 231 228 231 238 209 208 237 231 231 
Enterobacteriales hits 232 231 228 231 238 209 208 237 231 231 
Sensitivity 93% 93% 92% 93% 96% 84% 84% 95% 93% 93% 
Other bacteria hits 0 0 0 0 0 0 0 0 0 0 
Missing Enterobacteriales 17 18 21 18 11 30 31 12 18 18 
Specificity 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
                      

 PP11 PP12 PP13 PP14 PP15 PP16 PP17 PP18 PP19 PP20 
Strong hits 231 240 242 235 241 211 210 229 234 237 
Enterobacteriales hits 231 210 212 235 211 211 210 229 234 237 
Sensitivity 93% 84% 85% 94% 85% 85% 84% 92% 94% 95% 
Other bacteria hits 0 30 30 0 30 0 0 0 0 0 
Missing Enterobacteriales 18 9 7 14 8 38 39 20 15 12 
Specificity 100% 88% 88% 100% 88% 100% 100% 100% 100% 100% 

 

Total Enterobacteriales sequences 608 
Total Enterobacteriales unique sequences 249 

 

 

 

FIGURE 2.1: Association of 
Enterobacteriales abundance at baseline 
(B1) with fatty liver development in post-
menopausal subjects. 
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FIGURE 2.2:  Alignment of Enterobacteriales and non-Enterobacteriales consensus 
sequences.  Red lines above the alignment indicate the binding locations of the PP05 
forward and reverse primers, highlighting the specificity of the reverse primer for 
only Enterobacteriales sequence. 
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A 

 
B 

 

FIGURE 2.3:  qPCR cycle graphs from qPCR experiments.  A. Experiment 
conducted on 7-21-2010.  B. Experiment conducted on 7-30-2010 
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FIGURE 2.4:  Reproducibility of qPCR 
results.  High correlation of cycle times by 
sample from experiments 7-21-10 and 7-
30-10 confirms values from qPCR. 
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FIGURE 2.5:  Enterobacteriales qPCR results for post-menopausal subjects 
compared to results from Log10 relative sequence abundance. Enterobacteriales 
qPCR plotted against Enterobacteriales sequence abundance for each subject for A. 
7-21-2010 and B. 7-30-2010.  Choline-deficiency induced fatty liver development 
(change from B1 to D2) regression against PC1 of PCA model of subject genotype 
for PEMT and Enterobacteriales qPCR from C. 7-21-2010 qPCR and D. 7-30-2010 
qPCR.  Subjects in orange have only qPCR and no sequencing results. 

 

 



 

CHAPTER 3:  RESPONSE AND RESILIANCE IN THE SPUTUM 
MICROBIOME OF AN ADULT CYSTIC FIBROSIS PATIENT 

UNDERGOING REPEATED ANTIBIOTIC TREATMENT 
 
 
3.1 Abstract 

Although cystic fibrosis is caused by a genetic mutation, the manifestation of disease 

results from microbial colonization of the lungs that requires regular treatment, both with 

prophylactic therapies and with systemic antibiotics to relieve periodic acute infection.  

Diagnosis of infection and selection of treatments has traditionally been determined using 

bacterial culture and, consequently, has focused on the most abundant or recognizable 

pathogens as the infection source.  The application of metagenomic techniques, such as 

pyrosequencing, to characterize the cystic fibrosis microbial community is relatively new 

and has revealed that lung colonization is decidedly polymicrobial. 

Our study profiles cystic fibrosis infection in one adult patient over a 276-day period 

using 21 sputum samples collected before, during and after antibiotic treatment.  It is one 

of the few longitudinal studies that use 16S rRNA gene pyrosequencing to characterize 

the cystic fibrosis lung microbiome.80-82  Although the dominant pathogens in all our 

samples were Pseudomonas and Burkholderia, which is common in adult patients, 

sequencing also revealed a rich community with members from at least six different 

phyla and from several genera rarely identified in such infections.  Our sampling scheme 

also allowed us to compare microbial community composition between conditions and 

over time, identifying a strong microbiome response to repeated antibiotic treatment that 
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was inevitably followed by quick community recovery.  While the findings from one 

patient cannot be generalized broadly, our results illustrate that new techniques can yield 

insights into well-studied and presumably well-understood problems and suggest that 

metagenomic techniques and longitudinal sampling could provide insight into the clinical 

management of this chronic disease. 

3.2 Background and significance 

Cystic fibrosis (CF) affects approximately 30,000 people in the United States and 

70,000 worldwide83 and is the most common inherited chronic disease among 

Caucasians.84  Several different mutations in the CFTR gene affect epithelial chloride 

channels and result in airway dehydration85 that prevents normal airway clearance.86-87  

CF patients produce abnormally thick and sticky mucus in their airways that clogs the 

lungs and encourages chronic bacterial infections that incite a strong inflammatory 

response88, scarring and destroying lung tissue.89  The disease can also disrupt normal 

pancreatic function88, preventing proper digestion and absorption of foods and resulting 

in bowel problems, weight loss and poor growth.83  Recent advances using systemic and 

inhaled antibiotic treatments have extended US patients’ life spans to a median survival 

age of 37.83  Nevertheless, typical disease progression exhibits increasingly frequent and 

acute infection episodes, that become less responsive to treatment and substantially 

deteriorate quality of life as patients age. 

Pulmonary infections in CF patients have been extensively researched using bacterial 

cultures and were traditionally characterized as having limited diversity16; however, the 

culture-independent studies have revealed a complex microbiota containing both aerobes 

and anaerobes.81-82, 90-92  Clinical and study data have suggested a common succession 
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pattern of pathogens over the course of the disease.  In early childhood, Haemophilus 

influenzae and Staphylococcus aureus, typically found in healthy airways, dominate the 

microbiome.93  These are replaced by the microbes uncommonly associated with human 

airways, such as Pseudomonas aeruginosa, Stenotrophomonas maltophlia and/or 

Burkholderia spp., as the patient ages and disease progresses.93-94  By early adulthood, 

many patients have established Pseudomonas aeruginosa infections that become 

progressively resistant to antibiotic therapy.95-96  Colonization by Burkholderia cepacia 

occurs as the disease advances and coincides with increased morbidity and mortality.97  

Culture-independent methods have also recently identified both aerobic and anaerobic 

species, such as Prevotella spp., Veillonella spp., Clostridium spp., Mycobacterium spp. 

and Streptococcus spp., which had not previously been associated with CF infection and 

appeared to be harbingers of disease progression.17, 98-100 

Advances in culture-independent sequencing methods have provided the means to 

view human microbiota and their associations with health more comprehensively.9, 15, 101  

In the case of CF lung infections18, 81, 98, 100, results from these techniques have offered 

new insights into the complexity of microbial community composition18 and have begun 

to challenge conventional wisdom regarding underlying causes of infection, 

characteristics of disease progression and the efficacy of typical treatment regimens.93, 95, 

102-103  Studies, both in CF and in other environments, have posited the notion that 

microbial community composition could be a significant determinant of pathogen 

acquisition.104-107  Furthermore, a variety of other factors, such as antibiotic treatments, 

host characteristics and environment, appear to affect pathogen colonization and disease 

course. 93, 102-103, 108-109   
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Our study tracks one adult CF patient over 276 days through different treatments and 

hospitalizations.  We used 454-FLX pyrosequencing and qPCR to characterize the 

microbiota in 21 sputum samples and to compare treatment response, species abundance 

and microbial community diversity over time.  Our results and previous work emphasize 

the importance of repeated, longitudinal sampling for studying microbial communities in 

human subjects15 where some variation in microbial community composition can occur, 

even between sequential samples from a single clinically stable patient.92  

While we recognize that many of our specific findings from our study are not broadly 

applicable across adult CF patients whose microbiota are distinctive91-93, 110, we believe 

our study results emphasize the utility of regular within-patient sampling and may 

provide insight into community antibiotic susceptibility, resistance and change beyond 

this one patient.80  Furthermore, as sequencing costs continue to decrease, longitudinal 

sampling and metagenomic analysis is becoming accessible for researchers and clinicians 

both to inform treatment choices and to guide disease management.82, 92, 103, 111 

3.3 Materials and methods 

3.3.1 Patient profile 

One 30-yr-old adult male subject, diagnosed with CF at two weeks of age, voluntarily 

participated in this study of CF microbial community composition and dynamics.  He 

provided informed consent in accordance with an IRB protocol approved by the 

University of North Carolina at Charlotte.  His treatment regimen during the study 

included oral enzymes for CF-related malabsorption, along with various antibiotics for 

recurrent respiratory infections since the age of diagnosis.  During the sampling period, 

the subject was also following a prophylactic antibiotic regimen of 500 mg of 
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azithromycin three times per week and twice-daily nebulizer-administered TOBI® (a 

solution of 300mg tobramycin and 11.25mg sodium chloride in sterile water), every other 

month.  The subject displayed no other CF-associated complications during the study. 

3.3.2 Sample collection and preparation 

Spontaneously expectorated sputum samples were collected twice weekly for nine 

months.  Twenty-one of the samples were selected for analysis based on the patient’s 

antibiotic regimen, as described in results.   They were immediately stored at -20ºC to 

await further preparation.  Prior to DNA extraction, samples were pretreated with a 2:1 

ratio of sputum to Sputolysin (a solution of 1% 1,4-dithiothreitol, 7% NaOH and 7% 

H3PO4), and then incubated at 50ºC for 30 min.   

3.3.3 DNA extraction  

A 100uL quantity of sputum was mixed with a 200uL DTT solution and then 

incubated at 55C for 1 hour to reduce sputum viscosity.  Bacterial DNA was then 

extracted using the IT 1-2-3 VIBE Sample Purification Kit (Idaho Technologies, Salt 

Lake City, UT).  DNA extract was used for quantitative PCR and 16S rRNA gene 

pyrosequencing. 

3.3.4 qPCR 

The PCR mixture contained 12.5uL Perfecta SYBR Green FastMix Reagent Low 

ROX (Quanta Biosciences, Gaithersburg, MD), .5uL of 100 pmole/uL of each primer, 

5uL of DNA, and 6.5 uL nuclease-free water to a final volume of 25 uL.  The primer pair 

was 27F and 244R with a target size of a 357bp.  PCR was performed using the ABI 

7500 Fast Real-Time PCR System (Applied Biosystems) with an initial step of 10 min at 

95oC, followed by 40 cycles of 15 sec at 95oC and 1 min at 60oC.  Melting curves were 
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determined following the PCR by 1 cycle of 15 sec at 95oC, 1 min at 60oC, 30 sec at 95oC 

and 15 sec at 60oC.   

A standard curve was created using 10-fold dilutions of amplicons generated using 

the 27F/244R primer pair and an E. coli lab strain as the DNA template.  DNA copy 

number per mL of sputum was calculated for each sample based on a standard curve with 

a 1x106 fold linear range in CT values.   

3.3.5 16S PCR for 454-sequencing 

The PCR products for 454 tagged sequencing, from extracted previously extracted  

DNA (see 3.3.3), were prepared with primers and thermalcycling parameters described in 

Fierer et al.57  The 454 Life Sciences primer B with a “TC” linker and bacterial 27F 

primer (5’-GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’) and 

454 Life Sciences primer A with a “CA” linker, 12 mer barcode and bacterial primer 

338R (5’-

GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT

-3’), where the N’s represent barcodes used to identify each sample,112 were used to 

target the V1-V2 variable regions of the 16S rRNA gene.113  PCRs were set up with 

Platinum Taq DNA polymerase (Invitrogen) according to the included protocol with 

100ng of bacterial genomic DNA as a template.  Each reaction was quantified by 

PicoGreen on a NanoDrop ND-3300 fluorospectrometer.  Samples were pooled in 

equimolar amounts and concentrated in a vacuum centrifuge before being submitted the 

Environmental Genomics Core Facility at the University of South Carolina for 454-FLX 

sequencing. 
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3.3.6 Data and statistical analysis 

Close to 270,000 sequences were obtained from 454-FLX pyrosequencing.  All 

sequences were end-trimmed based on the Lucy algorithm at a cut-off of 0.002 

corresponding to a quality score of 27.62  Sequences had to meet the following criteria114 

to be included in the final dataset:  (1) an exact match to the 5’ primer, (2) Lucy’s 

identified region of poor quality at the 0.002 threshold did not extend beyond the 5’ 

primer, (3) no Ns in the trimmed sequence.  The 5’ primer (including the barcode) was 

trimmed from the sequences before analysis.  Any sequences that did not meet a length 

requirement from 180 to 280 bases after trimming were discarded.  The 216,677 trimmed, 

quality-controlled sequences were evaluated for human contamination by using 

BLASTn115 searches against the entire bacterial 16S rRNA Ribosomal Database Project 

(RDP)58 database.  Another 257 sequences did not meet our BLAST e-value threshold of 

0.001 and were removed from the dataset. 

The remaining 216,420 quality-controlled sequences were assigned to Operational 

Taxonomic Units (OTUs) at ≥ 97% sequence similarity using the AbundantOTU2 

algorithm116, a clustering model that develops consensus sequences that form the basis 

for OTU clustering.  The resulting consensus sequences were aligned using NAST-iEr 

utility117 and the resulting alignment was submitted to ChimeraSlayer117 for detection of 

chimeric sequences.  Any OTU with a corresponding consensus sequence that was 

determined to be chimeric was removed from the dataset. 

We used Fast Unifrac118 to evaluate whether there were differences between pre-

treatment and post-treatment samples based on phylogenetic distances.  Using OTU 

consensus sequences, we mapped the pre- and post-treatment samples and their sequence 
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frequencies to each OTU and used ClustalX (2.0.12)119 to align OTU consensus 

sequences and construct a phylogenetic tree.  The Newick formatted tree and mapping 

file were used in the Unifrac analysis.  We conducted the analysis using unweighted 

parameters and the resulting distance matrix was used to construct hierarchical cluster 

and Principal Coordinates plots.  

We used the SILVA120 reference tree to develop and visualize a phylogenetic tree of 

OTU consensus sequences by identifying the best BLAST115 hit for each OTU consensus 

sequence to the reference tree and using that branch to stand for the OTU in the tree we 

constructed.  Archeopteryx software (version 0.957 beta)121 was used to visualize the 

tree, which we hand-pruned to remove branches not represented by the OTUs in our 

study.  The tree was then “decorated” with the most detailed taxonomic classifications for 

each OTU consensus sequence that met a minimum classification confidence of at least 

80%60 using the RDP classifier.59     

Individual sequences were assigned taxonomy using RDP web-based classification 

software.59  A minimum 80% threshold confidence score60 was used to include sequences 

in each taxonomic group. 

The 16S rRNA sequence counts were standardized to the average number of 

sequences across all samples and logged (base 10) for statistical analysis of relative 

sequence abundance, using the following calculation: 

( )





 +∗





 1##10 samplepersequencesAveragesamplepersequences

FrequencyLOG  

As an example, consider a dataset in which there was an average of 2,500 sequences per 

sample assigned to phylum at a 80% confidence level.  For one sample within this 
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dataset, 1,000 sequences were assigned to phylum and, of those, 300 were assigned to the 

taxon Firmicutes.  The transformation would be: 

 ( )( ) 8756.2125001000
30010 =+∗LOG  

Using this measure, relative abundance corrects for different samples having different 

total numbers of sequences. 

To develop a weighted abundance measure, 16S rRNA sequence counts were 

adjusted, and then logged, to reflect the bacterial counts in each sample from qPCR 

results using the following calculation: 

( )





 +∗





 1#10 samplepercountsqPCRsamplepersequences

FrequencyLOG  

Relative abundance and weighted abundance were then used in qualitative and 

statistical analyses.  Choices of statistical analysis were informed by tests for normal 

distribution (Shapiro-Wilk W Test) and/or equal variance.  In cases where assumptions 

were not met, Wilcoxon Ranked Sum or Welch’s ANOVA were used as appropriate. 

Statistical analyses were conducted and figures constructed using the R statistical 

package (R version 2.7.2 (2008-08-25)), JMP® 8.0 software for Microsoft Windows 

(SAS Institute) and Microsoft® Office Excel 2003. 

3.4 Results 

3.4.1 Experimental design 

Our study documents microbial community dynamics of CF lung infection in one 

adult patient over almost a year of infection exacerbation and treatment (TABLE 3.1) and 

prophylactic management (see Methods).  During the study, the patient was treated with 

three commonly prescribed antibiotics88:  Ciprofloxacin, an oral or intravenous broad-
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spectrum fluoroquinolone; Sulfamethoxazole, an oral or intravenous narrow-spectrum 

drug that can be targeted to Burkholderia cepacia in CF; and Tobramycin, an inhaled, 

narrow-spectrum antibiotic, used extensively for Pseudomonas aeruginosa infection 

(FIGURE 3.1).122-123  Our experimental design was observational, developing over the 

course of the study with sampling undertaken to provide a range of conditions, including 

periods of exacerbation, treatment and relative clinical stability.  While our sampling 

scheme is not unique80, 124, our longitudinal focus on the changing size and composition 

of the sputum microbiome, over a large number of samples and range of conditions, is.  

In addition, we have attempted to overcome the drawbacks of using a single microbial 

community assessment method by combining quantitative Polymerase Chain Reaction 

(qPCR) to evaluate changes in overall bacterial abundance and 16S rRNA 

pyrosequencing gene surveys to characterize microbiome membership associated with 

variations in bacterial biomass and treatments. 

3.4.2 Quantitative PCR bacterial abundance 

As a first step in assessing microbial community dynamics, we quantified bacterial 

abundance in each sample using qPCR (TABLE 3.2).  Overall bacterial counts, measured 

by qPCR, displayed surprising differences between samples, showing a 1.2E+06 dynamic 

range where the standard deviation was larger than the mean (range = 1.70E+04 – 

1.24E+06; mean = 2.39E+05 ± 2.90E+05 s.d).  Based on these results, we next examined 

whether or not acute antibiotic treatment cycles affected these abundance fluctuations.   

Because treatment timing and selection cannot be experimentally controlled in a 

patient, we recognized that the range and overlap of treatments in our study created the 

potential for confounding.  As an attempt to address this issue, we chose to evaluate acute 
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antibiotic treatment only and assigned each of our samples to one of two treatment groups 

for our first analysis.  Due to the nature of Pseudomonas aeruginosa infection in our 

patient, our patient’s inhaled Tobramycin therapy was not included in our definition of 

acute antibiotic treatment.  While Tobramycin is often prescribed to reduce Pseudomonas 

aeruginosa bacterial load in newly established or mild infection, it is primarily used for 

maintenance therapy in cases of established Pseudomonas aeruginosa colonization, such 

as that in our patient.123, 125  We therefore defined the acute antibiotic treatment group to 

include any sample obtained during or immediately after Ciprofloxacin and/or 

Sulfamethoxazole therapy.  All other samples were assigned to the “no acute treatment” 

group.  We then examined the time series based on these assignments (FIGURE 3.2).  

Based on statistical testing, the two groups demonstrated a significant difference in 

sample means (FIGURE 3.3:  Student’s T-test P = 0.0090), offering an indication that the 

sputum microbiome responded to acute antibiotic therapy with a reduction in abundance 

and, then, quickly recovered after the antibiotics cleared the patient’s system. 

3.4.3 Pyrosequencing 

To further characterize the microbial community within each sample, we used 454-

FLX pyrosequencing of the 16S rRNA gene to quantify bacterial phylotypes.  Sequences 

were assigned to OTUs, using the AbundantOTU (v2.0) algorithm116, at 97% similarity, 

and OTU frequencies were calculated for each sample.  Although the number of distinct 

OTUs across all samples demonstrated a polymicrobial microbiome, the observed 

concentration of relative OTU abundance in a small number of OTUs highlights the 

dominance of a few phylotypes in our patient’s lung environment (FIGURE 3.4). 
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We were interested in understanding the phylogenetic relationships between the 

OTUs present in the sputum microbiome.  Using the Silva reference tree, we constructed 

a phylogenetic tree of OTU consensus sequences and labeled each branch with the most 

detailed RDP classification with a confidence score ≥ 80%.  The resulting tree (FIGURE 

3.5) showed that, in general, OTUs grouped by phylum or class within phylum and that 

Firmicutes contained the highest number of OTUs, even though the OTUs classified as 

Proteobacteria contained almost 97% of all sequences.  Proteobacteria also contained 

the two most abundant OTUs classified to genus, Pseudomonas and Burkholderia, the 

most common opportunistic pathogens in the adult CF sputum microbiome.84, 88  Several 

OTUs could not be classified to genus, with two of the more abundant OTUs (OTU6 and 

OTU7) only classified to the domain level. 

3.4.4 Microbiome diversity 

As a measure of overall microbial diversity in our samples, we computed Shannon-

Wiener’s Diversity index for each sample (TABLE 3.2), calculated using those OTUs 

with > 5 sequences across all samples.  Our results revealed that samples were not 

uniformly diverse, with indices ranging between 0.1467 and 1.3579.  We then assessed 

whether there was a relationship between qPCR abundance and microbiome composition.  

A regression of each sample’s diversity index against qPCR abundance showed that the 

relationship between abundance and diversity (R2 = 0.3424, P = 5.324e-3) was positively 

correlated (FIGURE 3.6A), indicating that conditions which had an effect on overall 

bacterial abundance, also influenced the diversity of the microbiome.  Comparing mean 

diversity indices between those samples that were associated with antibiotic treatment 

and those that were not, Welch’s ANOVA (unequal variances) confirmed that a primary 
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impact of antibiotic treatment was a decrease in diversity (FIGURE 3.6B), validating 

similar results seen in childhood infections exposed to antibiotic treatment.93  

The antibiotic effects on microbial abundance and diversity in our patient were not 

unexpected but were noteworthy because Shannon-Wiener’s diversity index includes the 

relative abundance of OTUs, and the two most abundant OTUs dominated the 

microbiome in every sample.  Unifrac63, a tool that assesses sample similarity based on 

phylogenetic distances between sequences, provided a technique that allowed us to assess 

antibiotic treatment separately from abundance measures.  To evaluate the effects on the 

presence of bacterial phylotypes from a full course of acute antibiotic therapy, we used 

Fast Unifrac118 without abundance weighting to calculate a distance matrix that compared 

the sequence similarity of OTUs from samples taken either directly prior to acute 

antibiotic treatment or immediately after treatment.  The results showed that samples 

from the two treatment groups clustered together (FIGURE 3.7A), and that all but one 

pre-treatment sample demonstrated separation in Principal Coordinates Analysis from the 

post-treatment samples (FIGURE 3.7B).   

3.4.5 Microbial community composition 

To better understand the types of bacteria that accounted for these diversity shifts, we 

taxonomically classified each 16S rRNA sequence using RDP.59  For our analysis, we 

only used those sequences that had a minimum RDP classification confidence of 80% at 

each taxonomic level.81   Our results revealed that Pseudomonas and Burkholderia 

overwhelmed other community members as a proportion of the overall sputum 

microbiome (FIGURE 3.8), comprising over 93% of all sequences for 19 of our 21 

samples.  Pseudomonas, by itself, dominated all other types of bacteria in every sample, 
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comprising over 90% of total sequences in 13 of the 21 samples obtained.  Although 

other studies that used a variety of methods have shown that Pseudomonas is often the 

major player in the adult CF microbiome81, 84, 88, 96, we were surprised by the degree to 

which relative Pseudomonas abundance defined the sputum microbiome in our patient.  

Nevertheless, hierarchical clustering of samples based on RDP classifications shows that 

microbes other than Pseudomonas drove the similarities and differences that defined how 

our samples grouped (FIGURE 3.9).   

We next examined the sampling time series more closely, visualizing changes in the 

Pseudomonas and Burkholderia relative abundance compared to qPCR bacterial counts 

(FIGURE 3.10A-B).  Differences between the two genera in the pattern of change, for 

both degree and direction, were clearly apparent.  Standard measures of variation 

(TABLE 3.3) revealed that Pseudomonas relative abundance differed little from one 

sample to another (CV = 0.14) compared either to changes in Burkholderia (CV = 1.15) 

or in other bacteria as a group (CV = 1.37).  One interpretation of these statistics is that 

Pseudomonas has much higher resistance to antibiotic therapy than does Burkholderia, 

which was supported by our sequencing data but contradicts evidence from recent 

studies.126-127  To argue for Pseudomonas relative stability also seemed counterintuitive in 

the context of qPCR bacterial counts that varied by orders of magnitude. 

Artifacts of relative abundance measurement could also account for the observed 

differences in variation.62  Relative abundance, by definition, requires that when one 

variable changes, another must change in the opposite direction, which may mask actual 

variation in a dominant variable, such as we observed with Pseudomonas in our patient’s 

sputum microbiome.  Indeed, when we conducted regression analysis of Pseudomonas 
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relative abundance against Burkholderia, the significantly strong negative correlation (R2 

= 0.6037, P = 3.43E-05) highlighted a reciprocal relationship between Pseudomonas and 

Burkholderia relative abundance which supported this assessment (FIGURE 3.11A). 

Defining the relationship between our results based on relative abundance from 

sequencing versus the findings from absolute abundance from qPCR appeared to be the 

next logical analytical step.  By multiplying the proportion of sequences assigned to each 

genus in a sample by that sample’s qPCR counts, we calculated a weighted abundance 

measure designed to adjust the relative sequence frequency to reflect qPCR abundance.  

Comparing summary statistics for relative abundance and weighted abundance (TABLE 

3.3), we observed that the large variation between samples in qPCR results was not 

accurately reflected by our sequencing results alone.  The coefficient of variation (CV) 

for Pseudomonas weighted abundance was much higher than that for relative abundance, 

indicating that Pseudomonas might not be as unresponsive to antibiotic treatment as 

relative abundance results would have suggested.  In fact, those samples which were 

associated with acute antibiotic treatment showed significant differences in Pseudomonas 

weighted abundance as opposed to samples not linked to therapy (FIGURE 3.12A).  

Pseudomonas and Burkholderia also demonstrated similar patterns of weighted 

abundance in regression analysis, opposite from the relationship identified using relative 

abundance (FIGURE 3.11B).  

Based on weighted abundance, Burkholderia still remained more responsive to 

changing conditions than did Pseudomonas (TABLE 3.3), showing wide swings in 

weighted abundance levels with acute antibiotic treatment (FIGURE 3.12B).   These 

findings indicated the temporary effectiveness of acute antibiotic therapy in reducing 
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Burkholderia abundance; however, abundance quickly rebounded, highlighting resilience 

as a key characteristic of Burkholderia infection in our patient. 

Despite the relative dominance of Pseudomonas and Burkholderia, other microbial 

community members were not insignificant components of the microbiome (TABLE 

3.4).  Based on taxonomic classification of individual sequences, twenty-nine different 

genera were classified at an 80% confidence level; however, only three, Pseudomonas, 

Burkholderia and Streptococcus, were present at all sampling time points.  Increases in 

relative abundance of Streptococcus during exacerbation events (FIGURE 3.13A) are 

noteworthy and support previously reported observations linking increases in 

Streptococcus spp. to infection exacerbation events.111  Several other minor microbiome 

members documented in previous pyrosequencing studies exhibited the same pattern of 

response to acute antibiotics:  Prevotella, Veillonella, Bacteroides, Lactobacillus and 

Rothia.81-82  These observations indicate that minor players in the microbiome may have 

important ramifications for clinical management in CF patients. 

The remainder of the microbiome contained additional previously documented 

bacteria81-82, 90-91, 128, including facultative and obligate anerobes characteristic of the 

hypoxic environment thought to be created when Pseudomonas abundance and biomass 

is high (TABLE 3.4).90  Four specific genera, Moryella, Pasteurella, Granulicatella and 

Gemella, displayed similar patterns of abundance increases in the absence of acute 

antibiotic therapy (FIGURE 3.13B).  A few low prevalence genera, were more commonly 

associated with other microbiota types in the literature (e.g. Turicibacter [oral, fecal], 

Bradyrhizobium [plants], Sneathia [vaginal]), but, nevertheless, classified with high 

confidence in our sputum samples.  As a group, both relative and weighted abundance for 
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the less prevalent bacteria varied tremendously over the course of the study (TABLE 3.3) 

and showed susceptibility to acute antibiotic therapy (FIGURE 3.12C).   

3.5 Discussion 

Our study is one of many that have described the complex, polymicrobial 

environment that characterizes the adult CF lung; however, our research is among the 

first to document CF microbiome dynamism using 16S rRNA to examine microbial 

composition and the effects of antibiotic therapy in one patient over an extended time 

period.19, 111  Sequence analysis techniques allowed us to identify temporal changes in CF 

microbiome composition and confirmed the presence of newly identified community 

members81-82 that may have clinical consequences.102-103, 111  Our choice to combine 16S 

rRNA pyrosequencing with qPCR quantification unexpectedly illustrated analytical 

inadequacies inherent in relative abundance measurement.  Correcting this potential 

limitation of pyrosequencing results becomes an important priority as more researchers 

and clinicians adopt culture-independent approaches required to fully understand 

polymicrobial CF infection. 

For our patient, the dominance of Pseudomonas was the most obvious feature of the 

microbiota and supported existing evidence that an established Pseudomonas presence in 

the CF lung defines the character of infection from that point forward.  Several studies 

have identified genetic changes88, 129-130 and increased mutation propensity124, 131-132 over 

the course of CF infection that map a progression of decreased virulence and increased 

resistance as the bacteria adapt to their environment to evade host immune responses.124  

Paradoxically, the unwavering abundance of Pseudomonas observed from our 

pyrosequencing results, which indicated virtually complete antibiotic resistance in our 
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patient, was called into question when we examined abundance changes in the context of 

qPCR bacterial counts.   

The survival benefits for Pseudomonas of genetic adaptation are clear.  In addition, 

mechanisms, such as biofilm formation, that support antibiotic resistance90, 133-135 may 

also encourage microbial diversity and proliferation rather than crowding out other 

species.  The wide variety of taxa identified in our samples echoes the findings from 

previous research that Pseudomonas-dominant CF infections support a hypoxic 

environment where anaerobic species can flourish.81, 136-138   What remains unclear is how 

secondary players, both major and minor, affect disease progression and exacerbation 

severity and frequency.   

Burkholderia, the second most abundant genus in our patient’s microbiota, has long 

been recognized as a common source of cross-infection in adult CF cases.139  It is notable 

for its virulence and resistance to therapy140-142, further documented by the resilience we 

observed over the course of our study.  The combination of Pseudomonas and 

Burkholderia has also been associated with poor clinical outcomes, and their potential 

interactions have been hypothesized to promote colonization by additional infectious 

agents.138, 143    

The observed increase in Streptococcus in our samples during exacerbation events 

provides a potential example of this phenomenon.  Sibley et al. documented a similar 

relationship between Streptococcus spp. colonization and pulmonary exacerbations in one 

patient that was later confirmed in several adult CF patients admitted to the hospital for 

treatment.111  Culture-based diagnostic techniques and TR-FLP were not always effective 

in identifying Streptococcus, leading to recommendations of specialized culture and 
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culture-independent approaches to improve diagnosis.111  Our analysis also identified 

other less abundant microbiome members, such as Prevotella144 and Veillonella, that 

appeared to cycle with exacerbation and treatment.  The clinical relevance of these 

observations is uncertain.  While culture-independent studies are beginning to 

characterize the complexity and dynamics of the CF infection biosystem, the 

polymicrobial mechanisms by which chronic colonization produces clinically detectable 

infection and pulmonary damage are only beginning to be appreciated.98, 145-146 

Like many long-term chronic diseases, CF presents significant challenges for clinical 

management.88  Those challenges are intensified by a complex and ever-changing CF 

microbiome, in which the interrelationships between host, therapeutic and microbial 

mechanisms that drive community dynamics and clinical outcomes are not well 

understood.  Although time series snapshots, such as ours, can provide useful 

documentation of CF community members and dynamics, a more comprehensive vision 

is needed.98  Modeling approaches that consolidate information from multiple 

experimental and analytical techniques, such as the metabolic network analysis of 

Pseudomonas aeruginosa pathogenicity and adaptation developed by Oberhardt et al.147, 

may ultimately provide an excellent option for resolving the complexity inherent in CF 

infection, leading to a more effective application of research insights to clinical 

management and treatment of CF patients.   
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TABLE 3.1: Clinical observation and medication stage.  Exacerbation column indicates 
which sampling dates occur during clinical signs of infection.  For the columns 
indicating specific medications: Pre = 1-2 days immediately prior to treatment, Post = 1-
2 days immediately after treatment was completed, None = that medication was not part 
of therapy, Yes = treatment was underway. 
 

 
Sample 

Date 

 
Exacer-
bation 

 
Tobra-
mycin 

 
Cipro-

floxacin 

 
Sulfame-
thoxazole 

28Feb No Post None None 
10Mar Yes None Pre Pre 
11Mar Yes None Pre Pre 
25Mar No Pre Yes Yes 
10Apr No Yes Post Post 
11Apr No Yes Post Post 
28Apr No Post None None 
25May Yes Pre Pre Pre 
26May Yes Pre Pre Pre 
27Jun No Post Post Post 
28Jun No Post Post Post 
25Jul No Pre None None 
26Jul No Pre None None 
12Aug No Yes None None 
17Aug No Post None None 
14Sep No None None None 
15Oct No None None None 
5Nov Yes None Pre None 
16Nov Yes None Yes Pre 
21Nov No None Post Yes 
1Dec No None None Post 
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TABLE 3.2: Total bacterial qPCR results compared to diversity.  Overall bacterial 
counts from qPCR of sputum microbiome. Standardized mean difference = μk-μ/σ and 
provides a relative measure of dispersion for each sample.  Shannon’s diversity index 
indicates the genus level diversity calculated from pyrosequencing results. 
 

Sample 
Date 

qPCR 
Abundance 

 
Standardized 

Mean 
Difference 

  
Shannon’s 
Diversity 

Index 
28Feb 2.84E+08 3.98E-01  0.3552 

10Mar 8.69E+07 -4.53E-01  0.6849 

11Mar 4.43E+08 1.08E+00  0.8788 

25Mar 4.36E+07 -6.40E-01  0.4268 

10Apr 1.20E+08 -3.12E-01  0.2575 

11Apr 1.88E+08 -1.51E-02  0.5767 

28Apr 4.89E+07 -6.17E-01  0.7016 

25May 8.06E+07 -4.80E-01  0.5133 

26May 3.54E+08 7.01E-01  1.3579 

27Jun 1.53E+07 -7.62E-01  0.3084 

28Jun 1.39E+07 -7.68E-01  0.2199 

25Jul 1.98E+08 2.59E-02  0.1765 

26Jul 2.82E+08 3.90E-01  0.6917 

12Aug 9.98E+08 3.48E+00  0.7344 

17Aug 4.58E+08 1.15E+00  0.7910 

14Sep 1.92E+07 -7.45E-01  0.1969 

15Oct 5.28E+07 -6.00E-01  0.5000 

5Nov 2.07E+08 6.47E-02  0.4021 

16Nov 6.15E+07 -5.62E-01  0.1467 

21Nov 3.81E+07 -6.64E-01  0.3915 

1Dec 3.68E+07 -6.69E-01  0.2985 

Mean 1.92E+08 
Standard 
Deviation 

 
2.32E+08 

 

 
 

  

  
 

 

 



  62 
 
TABLE 3.3: Comparison of Pseudomonas, Burkholderia and other bacteria relative 
abundance from pyrosequencing to abundance weighted by qPCR overall bacterial 
counts.  CV = coefficient of variation.  Relative abundance uses the number of 
sequences assigned to the genus or group for each sample based on RDP classification 
at 80% confidence to calculate statistics.  qPCR weighted abundance uses the 
proportion of sequences represented by each genus or group for each sample applied to 
the total bacterial counts from qPCR of that sample to estimate qPCR counts for the 
genus or group.  Overall mean, s.d. and CV are calculated from sample results. 
 

  
 

Relative Abundance qPCR Weighted Abundance 
Genus Mean s.d. CV Mean s.d. CV 
Pseudomonas 8027 1095 0.14 2.E+08 2.E+08 1.18 
Burkholderia 867 993 1.15 3.E+07 5.E+07 1.75 
Other bacteria 329 450 1.37 9.E+06 2.E+07 2.17 
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TABLE 3.4: Comparison of average LOG10 relative and weighted abundance for 
genera (> 5 sequences).  Relative abundance uses the number of sequences assigned at 
the genus level for each sample based on RDP classification at 80% confidence to 
calculate mean.  qPCR weighted abundance uses the proportion of sequences 
represented by each genus for each sample applied to the total bacterial counts from 
qPCR of that sample to estimate qPCR counts for the genus and calculates the mean 
from the results. 
 

Genus 

Mean Log10 
Relative 

Abundance 

Mean Log10 
Weighted 

Abundance 
Pseudomonas 5.23 8.18 
Burkholderia 4.26 7.48 
Lactobacillus 3.53 6.69 
Streptococcus 3.10 6.09 
Prevotella 2.91 6.16 
Veillonella 2.51 5.74 
Bacteroides 2.42 5.29 
Pelomonas 2.27 5.23 
Rothia 2.16 5.44 
Turicibacter 2.01 4.59 
Bradyrhizobium 1.90 4.79 
Moryella 1.70 4.78 
Gemella 1.64 4.80 
Granulicatella 1.61 4.85 
Sneathia 1.57 4.13 
Peptoniphilus 1.55 3.90 
Oscillibacter 1.46 4.92 
Corynebacterineae 1.37 4.32 
Parabacteroides 1.32 4.21 
Capnocytophaga 1.16 4.36 
Oribacterium 1.06 3.41 
Blautia 1.02 3.69 
Fusobacterium 1.01 3.34 



  64 
 
 

 

FIGURE 3.1: Timeline of treatment duration.  Sampling time points are indicated by 
red lines. 

 

 

 

FIGURE 3.2: qPCR bacterial counts by sample.  Red indicates samples taken during 
or immediately after Ciprofloxacin or Sulfamethoxazole treatment (acute antibiotics). 
Blue highlights samples that were not affected by acute antibiotic treatment. 
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FIGURE 3.3: Test of difference in means 
between samples in proximity to acute 
antibiotic treatment and samples not affected.  

 

 

 

FIGURE 3.4: Log10 total sequences by OTU ranked in descending order.  Sequence 
abundance by OTU from pyrosequencing illustrates the dominance of the most 
abundant OTUs. 
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FIGURE 3.5:  Phylogenetic tree of OTUs.  Labels indicate the most detailed 
classification at from RDP at 80% confidence. Colors are phylogenetic groupings: 
Orange = Proteobacteria, Light blue = Fusobacteria, Pink = Bacteroidetes, Green = 
Firmicutes Clostridia, Dark blue = Firmicutes Bacilli, Purple = Actinobacteria, Black 
= Cyanobacteria, Red = Unclassified. 
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FIGURE 3.6: Relationships between qPCR abundance, diversity and acute antibiotic 
treatment. A. Correlation between Log10 qPCR abundance by sample and diversity 
by sample shows a significant, positive association. Test for the difference in means 
of diversity between samples affected by acute antibiotic treatment and those that are 
not show that diversity is higher in those samples not associated with acute antibiotic 
treatment. 
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FIGURE 3.7: Analysis of phylogenetic distances between samples shows clustering 
of samples before and after acute antibiotic treatment.  Unweighted Unifrac 
phylogenetic distances between samples (measured from 16S rRNA sequences 
comprising each sample) shows A) hierarchical clustering highlighting differences 
before (green) and after (blue) treatment and B) the first two principal components 
from PCA plotting the distances between the two groups. 

 

 

 
FIGURE 3.8: Proportions of Pseudomonas, Burkholderia and other genera by 
sample from pyrosequencing results in context of treatment regimens. Proportions 
of Pseudomonas (blue) are often higher during and after treatment, while 
Burkholderia (yellow) and other genera (red) tend to be higher prior to treatment.  
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Pre11Mar
Pre25May

Pre26May
Pre5Nov



  69 
 
 

 

FIGURE 3.9:  Two-way clustering of samples based on numbers of sequences 
grouped by most detailed taxonomic classification at 80% confidence. Samples in red 
are those during or directly after acute antibiotic treatment. 
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FIGURE 3.10: Time series relative abundance of Pseudomonas and Burkholderia 
from sequencing versus qPCR bacteria counts.  A) Pseudomonas relative abundance 
(red) shows less variation and response to treatment than does qPCR bacterial 
abundance (blue).  B) Burkholderia relative abundance exhibits a similar pattern of 
change to that of qPCR abundance. 
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FIGURE 3.11:  Associations between Pseudomonas and Burkholderia abundance. A) 
Correlation between Log10 relative abundance of Pseudomonas and Burkholderia 
shows a strong inverse relationship.  B) When abundance is weighted by qPCR 
bacterial counts for each sample, an entirely different result is apparent with 
Pseudomonas and Burkholderia showing a similar response to conditions at each 
sampling period.  Sample points in red indicate those samples obtained during or 
immediately after acute antibiotic treatment, and samples in blue are not associated 
with acute antibiotics. 

 

A 

 

B 

 

C 

 

FIGURE 3.12: Test of mean difference in weighted abundance response of bacterial 
types to acute antibiotic treatment.  A) Pseudomonas, B) Burkholderia, C) all other 
genera as a group. All differences are significant but Burkholderia and other genera 
appear to exhibit a stronger response. 
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FIGURE 3.13: Patterns of weighted abundance by sample for less abundant genera.  
A) Those minor genera with higher abundance show similar spikes in abundance that 
coincide with samples immediately prior to acute antibiotic treatment.  B) Low 
abundance minor genera show some similarities in timing of abundance increases; 
however Moryella and Gemella, in particular, appear to spike during antibiotic 
treatment (Mar. 25, Nov. 16, Nov. 21) 

 

 
 



 

CHAPTER 4:  AUTOMATED RIBOSOMAL INTERGENIC SPACER 
ANALYSIS AS AN EFFECTIVE ALTERNATIVE TO SEQUENCING 
FOR CHARACTERIZING COMPLEX BACTERIAL COMMUNITIES 

 
 
4.1 Background and significance 

Snapshot profiling techniques rely on molecular methods, such as T-RFLP, DGGE, 

LH-PCR and ARISA, and use characteristics of the 16S rRNA, or other genes that can 

distinguish between types of bacteria, to estimate microbial diversity in metagenomic 

samples.19, 110, 148-151  While these methods have significant cost and speed advantages 

over metagenomic 16S rRNA sequencing, the trade-off is depth of information.  

Although microbial community diversity can be estimated and samples can be compared 

on a relative basis, these techniques do not provide the analytical richness that is 

available from sequencing.  As a result, taxonomic classification of metagenomic 

samples remains out of reach for many research studies. 

The combination of relatively high sequencing expense and cheap, low resolution 

snapshot techniques suggests that a robust way to associate these methods with specific 

taxa19 could offer a much higher resolution analysis of metagenomic samples at a 

reasonable cost with results generated within 1-2 days.  ARISA (Automated Ribosomal 

Intergenic Spacer Analysis),56 which relies on differences in the length of the intergenic 

region in different bacterial taxonomies to characterize a complex microbial community 

(FIGURE 4.1), produces a electropherogram, a spectrum where each peak indicates the 
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presence (and qualitative abundance) of a specific community member, although the 

taxonomic classification of that member remains unknown.     

This study investigates whether results from ARISA combined with 16S rRNA 

Sanger sequencing152 on the same metagenomic sample could provide enough 

information to identify a relationship between sequence-derived taxonomic classifications 

and ARISA peaks.  With an initial investment in sequencing the intergenic regions 

between the 16S and 23S rRNA genes from a series of metagenomic samples, taxonomic 

classifications could be associated with the intergenic lengths which could, in turn, be 

assigned to the corresponding ARISA peak.  Similar approaches have been attempted for 

LH-PCR.19  

If successful, the assignment of ARISA peaks to taxa in this manner would offer 

metagenomic investigators a rapid-turnaround, inexpensive characterization of a 

microbial community that could be used to assess sample quality, to quickly compare 

samples to see if an experiment worked and to determine whether expending additional 

resources on sequencing would be worthwhile.  For example, in a 30-day intervention 

experiment with 10 subjects, assessing the effects from the intervention on microbial 

community composition might require sampling every 3 days.  454-FLX pyrosequencing 

could be conducted on the total of 100 samples at an approximate cost of $10,000 and the 

results might not be available until a month after the experiment was completed.  If the 

intervention did not affect the microbial community until the subjects had been treated 

for 10 days, sequencing the 30 samples that showed no differences would waste 

resources.  Alternatively, ARISA with taxonomic peak assignments would allow each 

sample to be assessed for response to treatment within 1-2 days of sampling at a cost of 
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$2 per sample.  The result would be more efficiently allocated resources and more timely 

information on experimental effects.  

4.2 Methods 

4.2.1 Sample collection and preparation 

A stool sample was obtained from a female patient undergoing choline depletion as 

part of a study being conducted by Dr. Steven Zeisel at The University of North Carolina 

at Chapel Hill.  The sample was frozen at -80˚ and shipped on dry ice to The University 

of North Carolina at Charlotte where it was stored at -20˚.  The sample was thawed on ice 

and metagenomic DNA was extracted and fragmented using QIAamp DNA Stool Mini-

kit.  Extracted DNA was then refrozen at -20˚ to await further preparation.   

4.2.2 ARISA sample preparation and analysis 

ARISA was used to detect microbial signatures in our sample based on taxonomic 

differences in the intergenic distance between the 16S and 23S ribosomal RNA genes 

(FIGURE 4.1).  Using extracted DNA, the intergenic region between the 16S rRNA and 

the 23S rRNA genes was PCR amplified for each of two technical replicates using a 

universal 16S forward primer and a eubacterial 23S reverse primer which was 

fluorescently tagged.  The labeled fragments were then separated by size on an Applied 

Biosystems 3130 sequencer, resulting in an electropherogram where each signal peak 

represented a different “operational taxonomic unit”.  The electropherogram from each 

replicate was analyzed using internally-developed JAVA software153 that establishes a 

base-pair scale, calls the data peaks from the image, assigns base pair sizes to each peak 

and provides summaries of the peak call assignments.  Peak calls were validated using 

ABI 3130 analysis software. 



  76 
4.2.3 Sequencing sample preparation  

Extracted DNA was thawed and used to PCR amplify a DNA region from the 16S to 

23S rRNA genes with the 967F 16S primer and 125R 23S primer using Platinum Taq 

polymerase from Invitrogen.  The resulting PCR products were inserted into pCR 2.1-

TOPO vectors (Invitrogen) and sent to Washington University where they were 

transfected into E. coli K12.  E. coli colonies were then randomly picked and grown in 

media.  Sequences were extracted by mini-prep and the following 3 primers were used to 

perform sequencing reactions:  M13R CAG GAA ACA GCT ATG ACC (vector primer), 

T7 promoter TAA TAC GAC TCA CTA TAG GG (vector promotor) and 1406F/TGY 

ACA CAC CGC CCG T (16S rRNA primer).  Resulting fragments were sequenced on 

Applied Biosystems 3730XL.  A file containing 1152 sequence fragments representing 

384 potential contigs and their trace files was created and sent to the University of North 

Carolina at Charlotte for analysis.  

4.2.4 Sequence assembly and taxonomy assignment 

Sets (3 sequences per vector) of matched sequences were analyzed for sequencing 

quality.  They were then aligned and assembled using CodonCodeAligner software 

(Copyright © 2009 CodonCode Corporation),154-156 both with and without end trimming 

(FIGURE 4.2).  Resulting assembled contigs (361) were NAST-aligned157 and checked 

for chimeric sequences using Greengenes Bellerophon (Version 3).158 Chimeras were 

identified in 39 of the assembled contigs which were removed from the analysis.  

Trimmed and untrimmed contigs were classified for sequence taxonomy using the RDP 

(Ribosomal Database Project) classification tool.59, 159  Because of excessive end-

trimming, trimmed sequence classification resulted in a significantly reduced analysis set 
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which appears to be due to removal of portions of the V6 region in the trimming process.  

Of the untrimmed sequences, 274 were successfully classified. 

4.2.5 Intergenic spacer length identification 

To determine the intergenic sequence between the 16S and 23S rRNA genes in each 

assembled contig, four forward and twelve reverse primer sequences (includes 

ambiguous nucleotide assignments and reverse complements from the degenerate primers 

used in PCR) from the ARISA analysis were used as search sequences against assembled 

contigs.  Only exact matches were considered to be a hit.  From the positions of the 

matched primers, intergenic lengths between the primers were calculated for each 

sequence.  JAVA software was developed for the primer searches, intergenic length 

calculations and assignment of taxonomy to intergenic length.  Intergenic lengths were 

verified visually on sample contig sequences. 

4.2.6 Analysis 

ARISA peak assignments and contig intergenic length frequencies were normalized 

by dividing each signal intensity or frequency by the sum of all signal intensities or 

frequencies for the data set.  The data was plotted using IGOR software.  Correlations 

were calculated using the R statistical package (R version 2.7.2 (2008-08-25), Copyright 

(C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0). 

4.3 Results 

Two types of metagenomic analysis were applied to the same fecal sample from a 

female patient undergoing choline depletion, ARISA and 16S rRNA Sanger sequencing.  

ARISA was first used to examine microbial diversity in the sample.  The spectrum on an 

ARISA electropherogram displays peaks that are associated with specific intergenic 
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lengths of the PCR products that have been run through the sequencer.  A standards 

ladder comprised of fragments of known intergenic lengths is used to calibrate the 

ARISA signal and assign base pair lengths to each of the peaks in the ARISA spectrum.  

The intensity of each peak measures relative abundance.  Our results showed that the 

sample contained two dominant peaks at approximately 690 and 729 in base pair lengths 

(FIGURE 4.3).  Several other peaks were of intermediate intensity.  Each of these peaks 

demonstrated the presence of one or more microbial taxa in the sample. 

In the second analysis, metagenomic DNA extracted from the same sample was used 

to amplify a region of microbial DNA spanning from position 967 in the 16S rRNA gene 

to position 125 in the 23S rRNA gene.  Sanger sequencing was performed using 3 

different primers creating overlapping sequences that spanned from the 16S V6 region to 

the 23S rRNA gene (FIGURE 4.2).  For 384 clones, we generated 3 sequences each, one 

for each primer, for a total of 1152 sequences that were assembled into 384 contigs.  

These contigs then underwent quality checking and removal of chimeric sequences 

(TABLE 4.1).  The final set of assembled contigs was then used in additional analysis 

steps. 

To determine the intergenic length from the end of the 16S rRNA gene to the 

beginning of the 23S rRNA gene, primers used to synthesize the intergenic spacers for 

the ARISA analysis were identified within each assembled contig and intergenic 

sequence lengths were calculated for each sequence.  The frequencies of intergenic 

lengths from the assembled contigs were not evenly distributed in the sample.  Two 

lengths, at 700 and at 739, were dominant.  The resulting intergenic lengths were 

associated with the RDP classifications identified for each sequence (TABLE 4.2).  In 
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several cases, multiple classifications were linked to the same intergenic length and, in 

other cases, several different intergenic lengths were assigned to the same RDP 

classification.   

ARISA peak assignments and calculated contig intergenic lengths were then 

compared to determine if there was any correspondence between the results from each 

method.  To reduce noise in the ARISA signal, only the peaks with highest signal 

intensity were used in the evaluation (37 peaks in total).  Both ARISA signal intensities 

and calculated intergenic length frequencies were normalized to ease the comparison.  A 

normalized ARISA spectrum and the sequence frequencies at each intergenic length were 

compared (FIGURE 4.4).  While the signal intensities showed differences between the 

two plots, the signals demonstrated a similar peak pattern with the sequence intergenic 

lengths shifted to the right of the ARISA plot.  This correspondence provided some 

evidence that that associating ARISA signal with taxonomy might be possible. 

In examining the ARISA peak calls, there appeared to be some consistency in the size 

of the signal shift between the ARISA signal and the frequencies of the contig intergenic 

lengths of approximately 10 base pairs.  When intergenic lengths at every position were 

adjusted by +10 base pairs for the ARISA data and the signal was plotted again (FIGURE 

4.5), the shift appeared to be quite consistent, with signals from both sets of data aligning 

well.  To determine how well the patterns aligned, correlations were performed on the 

data with and without correction.  The resulting correlation coefficient on data without 

correction was -0.01175, while the 10 base pair addition substantially improved the R-

value to 0.54910.  
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4.4 Discussion  

ARISA is a blunt instrument because, even though each peak in an ARISA spectrum 

putatively represents a different taxon in a sample, the taxonomic assignment for each 

peak is unknown.  The low resolution of ARISA and other snapshot analysis techniques 

has been a limiting factor in their utility for detailed taxonomic analysis.  Nevertheless, 

the cost of ARISA for metagenomic analysis compared to sequencing, approximately $2 

per sample versus approximately $500 per sample for Sanger sequencing, argue for an 

evaluation to determine if their output could have value beyond simple diversity 

assessment. 

In this study, we have attempted to associate an ARISA spectrum and Sanger 

sequencing results from a single sample using intergenic lengths calculated from both 

methods.  The ultimate goal of this exercise is to determine whether or not a library of 

taxonomic classifications for human gut microbial sequences can be associated with 

ARISA intergenic spacer lengths.  This library would then allow inexpensive 

characterization of complex metagenomic human samples within a few days of sampling.   

To obtain sequences long enough to cover both 16S-23S intergenic distance and the 

16S V6 variable region for taxonomic classification, we employed a method that 

sequenced three overlapping fragments and assembled those fragments.  To test our 

hypothesis that ARISA and sequence could be associated, we only sequenced a small 

number of DNA fragments.  Our process had a yield of 71% (274 net sequences), once 

low quality sequences and chimeras were removed.  We anticipated that the highest 

intensity ARISA peaks would be an indicator of abundance and that these peaks would 
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show an association with the calculated intergenic lengths from the assembled contigs.  

For several of the ARISA peaks, this was the case. 

An association between ARISA intergenic spacer length and calculated intergenic 

sequence length does appear to exist; however, for this experiment, that relationship is 

not straightforward.  Intergenic lengths in sequence contigs demonstrate visually similar 

patterns to ARISA spectra.  This relationship improves substantially when the ARISA 

spectrum is shifted right by 10 base pairs.  Many ARISA peaks with high signal intensity 

tended to show correspondence to contig intergenic lengths that were most frequent.  

Several possibilities exist that would explain this shift.  The presence of fluorescent tags 

may have affected the ARISA signal.  The condition of reagents could also be a factor in 

the precision of the instrument.  The shift might be a pattern that is intrinsic to the 

physical properties and chemistry of the method.  Without further experimentation, the 

consistency of this pattern could not be established, and the cause could not be resolved.    

The degenerate and redundant RDP classifications across adjacent contig intergenic 

lengths presented a further problem.  RDP classifications that corresponded to our 

calculated intergenic sequence lengths clearly showed that, in several cases, multiple 

types of bacteria had the same intergenic length and one classification could have several 

sets of ribosomal genes with different intergenic sequence lengths (TABLE 4.2).  For 

correspondence between intergenic length and classification to be used to accurately 

assign spectrum peaks to bacterial types, the assignments could be overly ambiguous.  

This problem might be partially addressed with a binning strategy and knowledge of 

which taxonomies are typically found in the samples being used; however, these 

solutions would require further sampling and sequencing to test whether they would be 
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effective.  Samples with higher levels of diversity than the sample diversity in this 

experiment could also complicate a binning strategy.  With no experimental rationale or 

precedent in the literature to support shifting the base pair assignments and no reasonable 

resolution to the problem of redundant and degenerate assignments, we concluded that 

our experiment did not succeed in accurately assigning ARISA peaks to taxonomies. 

4.5 Conclusion 

The ability to use inexpensive, speedy ARISA analysis to thoroughly profile human 

gut metagenomic samples could provide many benefits.  It would make metagenomic 

analysis accessible to moderately-funded studies, would greatly reduce the turnaround 

from sampling to analysis and would make large sample sizes affordable.  Nevertheless, 

our results indicated that several problems remain unsolved.   
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TABLE 4.1: Seqencing results from assembled contigs and quality checks. 
 
Number of sequence fragments 1152 
Number of potential assembled contigs   384 
Successful untrimmed assemblies   361 
Contigs containing intergenic sequence primer pairs   313 
Chimeric sequences     39 
    Net assembled contigs   274 

 
 
TABLE 4.2:  Intergenic sequence lengths from contig assembly and their corresponding 
sequence classifications. 
 

Intergenic 
Length Freq Phylum Class Order Family 

460, 461 4  Bacteroidetes  Bacteroidetes  Bacteroidales  Rikenellaceae 

487 1 
 

Proteobacteria  Alphaproteobacteria  Rickettsiales  Anaplasmataceae 

525, 526 25  Firmicutes  “Clostridia”  Clostridiales  Veillonellaceae 

526 1  Bacteroidetes  Bacteroidetes  Bacteroidales  Rikenellaceae 

551 1 
 

Proteobacteria  Betaproteobacteria  Burkholderiales  Burkholderiaceae 

551 1 
 

Proteobacteria  Betaproteobacteria  Hydrogenophilales  Hydrogenophilaceae 

571 1  Firmicutes  “Erysipelotrichi”  “Erysipelotrichales”  Erysipelotrichaceae 

636 1 
 

Proteobacteria  Gammaproteobacteria  Enterobacteriales  Enterobacteriaceae 

638 1  Firmicutes  “Clostridia”  Clostridiales  Incertae Sedis XV 

638 1  Firmicutes  “Clostridia” 
 

Thermoanaerobacterales  Incertae Sedis IV 

689 1  Firmicutes  “Clostridia”  Clostridiales  “Ruminococcaceae” 

698 1  Bacteroidetes  Flavobacteria  Flavobacteriales  Flavobacteriaceae 

698, 699 2  Bacteroidetes  Bacteroidetes  Bacteroidales  Prevotellaceae 
699, 700, 
701, 702, 

703 106  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

700 3  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

700 1  Bacteroidetes  Bacteroidetes  Bacteroidales  Rikenellaceae 

700 1  Bacteroidetes  Bacteroidetes  Bacteroidales  Rikenellaceae 

700 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

700 1  Firmicutes  “Clostridia”  Clostridiales  Incertae Sedis XV 

700 1  Bacteroidetes  Bacteroidetes  Bacteroidales  Bacteroidaceae 

711 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

725, 728 3  Firmicutes  “Clostridia”  Clostridiales  Veillonellaceae 

728 1  Firmicutes  “Clostridia”  Clostridiales  “Lachnospiraceae” 

736, 737 3  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 
737, 738, 

739 9  Bacteroidetes  Bacteroidetes  Bacteroidales  Rikenellaceae 
737, 739, 

741 4  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 
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Table 4.2 (continued) 
 

747 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

767 1  Firmicutes  "Clostridia"  Clostridiales  "Lachnospiraceae" 

767 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 
772, 773, 
774, 775, 
776, 777 79  Bacteroidetes  Bacteroidetes  Bacteroidales 

 
Porphyromonadaceae 

774, 775 2  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

774 1  Firmicutes  "Clostridia"  Clostridiales  "Lachnospiraceae" 

774 1  Bacteroidetes  Bacteroidetes  Bacteroidales  Prevotellaceae 

774 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

798 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

799 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

802 1  Firmicutes  "Clostridia"  Clostridiales  Incertae Sedis XV 

811 1  Bacteroidetes  Bacteroidetes  Bacteroidales 
 

Porphyromonadaceae 

844 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

858 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

876 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

886 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

891 1  Firmicutes  "Clostridia"  Clostridiales  "Ruminococcaceae" 

899 1  Firmicutes  "Clostridia"  Clostridiales  "Lachnospiraceae" 

1033 1  Firmicutes  "Clostridia"  Clostridiales  "Lachnospiraceae" 
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FIGURE 4.1:  Example of Automated Ribosomal Intergenic Spacer Analysis.  
The less conserved intergenic DNA regions between 16S and 23S genes are 
PCR amplified and separated according to size.  Taxa identification and 
community profiling can be performed based on the observation of different 
sized samples. 
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FIGURE 4.2:  Example of Sanger sequence contig assembly using 
CodonCodeAligner.   

 
 
 

 
FIGURE 4.3:  ARISA spectrum from patient 30 showing 
two dominant peaks associated with intergenic lengths of 
690 and 729. 
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FIGURE 4.4:  Comparison of normalized signal from ARISA and 
intergenic lengths from Sanger sequencing assemblies. 
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FIGURE 4.5:  Comparison of normalized signal from ARISA and 
intergenic lengths from Sanger sequencing assemblies after 10 base 
pair adjustment of ARISA. 

 
 
 



 

CHAPTER 5: THE RELATIONSHIP BETWEEN ACTIVITY LEVELS 
AND THE GUT MICROBIAL COMMUNITY IN A MOUSE MODEL 

 
 

5.1 Background and significance 

Physical inactivity is among the leading risk-factors associated with mortality in the 

United States.160  Mounting evidence suggests that physical activity is crucial for the 

health and well being of people of all ages.  A sedentary lifestyle is widely known to be 

associated with a diverse number of health problems such as coronary heart disease and 

colon cancer and has been estimated to be responsible for 1 in 10 deaths in the United 

States each year.161  Physical inactivity is also thought to promote obesity and related 

diseases, such as diabetes.  The increasing prevalence of obesity and sedentary lifestyles 

in the United States162 is a major public health concern, as well as a source of escalating 

healthcare costs.  The CDC estimates that the medical costs associated with obesity are 

29% to 117% greater than for people of normal weight, accounting for an estimated $117 

billion in 2000 for obesity-related health problems alone.162   

Genetic differences between individuals that contribute to physical inactivity remain 

poorly characterized.  Recent studies have observed that physical activity levels vary 

markedly between inbred strains of mice as measured by distance run on an activity 

wheel.163-164  Multiple regions of chromosomes containing putative quantitative trait loci 

controlling various activity measures have been identified.122, 124  Recently, several   
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specific haplotypes associated with high activity phenotypes have also been determined; 

however, the mechanisms by which they affect activity have not yet been discovered.165   

Metagenomic research has revealed that an organism’s genomic capacity extends 

beyond its own genome.  As an example, there are ten times more microbial cells in the 

human gut than cells in a typical person and 100 times more microbial genes within our 

bodies than are in the human genome.  Host and microbes together form a “super-

organism” with a metagenome that acts as a single entity, sustaining the functions 

required for life.101  As one component of this biosystem, gut microbes support a variety 

of metabolic processes and are critical for harvesting energy and processing nutrients 

from food.21, 28-29  Consequently, the metabolic capacity of the superorganism is at least 

partially defined by these host and symbiont relationships.101 

 Metabolism is influenced by many factors.  Results from a number of studies 

indicate that the gut microbiome also influences metabolic activity.21, 29, 45-46, 166-167  

Turnbaugh et al. have observed that gut microbiota composition varied between lean and 

obese individuals27 and that transferring the gut microbiome from an obese mouse to a 

germ-free lean mouse significantly increased the weight and fat deposits of the recipient 

mouse.21  This research led to the hypothesis that deviations from a core microbiome are 

responsible for the physiological alterations associated with obesity.27  What is not yet 

clear is how the many factors that affect metabolism interact with one another to define 

an individual’s metabolic state. 

Although several studies have examined the relationship between exercise and 

intestinal physiology168-170, with the implicit, if not explicit, implication for involvement 

of the gut microbiome, research exploring the interactions between exercise and intestinal 
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microbes has been relatively limited.135-136  Resolving questions surrounding the 

plasticity of an individual’s gut microbiome and the degree to which controllable factors, 

such as physical activity levels and nutrition, can be managed are key to applying our 

expanding knowledge of superorganism dynamics to critical public health problems.   

Testing such a complex equation requires that variables, such as diet and 

environment, be controlled.  To investigate one of these factors, the relationship between 

gut microbiome composition and physical activity, we conducted three preliminary 

experiments using mouse models.  We tested the idea that physical activity might have 

some effect on gut microbiome composition.  Our preliminary experiments were 

designed to determine 1) whether we could observe any associations between exercise 

levels and gut microbial composition, 2) if so, the degree to which the microbial 

community changed in response to exercise, 3) whether there were associations between 

food consumption, weight gain and exercise, 4) whether small molecules in the blood 

were different between high activity and low activity strains and 5) which protocol 

choices could be applied to a full-scale experiment.  Our results were planned to provide 

evidence to conduct further research to investigate causal relationships among these 

components.  

We used known high activity and low activity mouse strains123-124, measured their 

activity levels and profiled their gut microbial communities to determine if differences in 

activity levels were, in fact, associated with microbiota composition differences.  Each of 

the three preliminary experiments was designed to test a different aspect of experimental 

protocol and to provide evidence to develop a larger study. 



  91 
All experiments for this aim were conducted in the vivarium at the University of 

North Carolina at Charlotte under Institutional Animal Care and Use Committee 

(IACUC) protocol 08-014.   Microbial communities were sampled by collecting feces 

from each mouse and using ARISA (Chapter 4) to provide a spectral characterization of 

community composition from each sample.  The first experiment compared activity 

levels and gut microbial community composition between two different mouse strains, 

one high activity (SM/J) and one low activity (129S1/SvlmJ) strain, to determine if gut 

microbial community composition differed significantly between the two types of mice.  

In the second experiment, we used two female and two male same-strain (C57/LJ) mice 

to test whether changes in activity levels would result in altered gut microbiota.  Our final 

set of experiments again used two different inbred mouse strains (C57Bl/6J and 

129S1/SvlmJ) to test experimental protocols for fecal sample collection, blood sample 

collection, food measurement and weight measurement. These measures were also 

analyzed with activity and microbial community assessment to look for confounding 

factors in our design.  Blood samples from two of our mice were analyzed by mass 

spectrometry to identify blood metabolites that differed between the high activity and low 

activity mouse strains. 

Peak Studio153, a set of JAVA software tools that provides comprehensive analytical 

capabilities for DNA molecular methods that yield spectral results, was used to analyze 

ARISA spectra from mouse fecal samples in Experiments 2 and 3.  PeakStudio provided 

a platform to establish a base-pair scale for ARISA standards and data, to call data peaks 

from the spectra image, to assign base pair sizes to each peak and to provide summaries 

of binned peak call assignments for analysis. 
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5.2 Common methods 

5.2.1 Animal care 

All mice were housed individually in either 1) a standard, solid bottom, plastic rat 

cage with a filter top when activity wheels were not in use or 2) a large, solid bottom, 

plastic rat cage with a filter top equipped with an activity wheel when activity levels were 

being monitored.  Mice were provided ad libitum standard mouse chow and water.  Cages 

were changed every two weeks at a minimum, per IACUC recommendations.  Mice were 

provided with fresh bedding material at each cage change.  Mice were monitored either 

by vivarium staff or by the study team each day to ensure that they remained healthy and 

exhibited no signs of stress or disease.  If any mouse had signs of distress, it was 

evaluated in consultation with the IACUC veterinary expert and a decision was made on 

the best way to resolve the issue.   

Large rat cages were equipped with digital counters to document wheel activity.  The 

counter consisted of a chronometer triggered by a magnet that was attached to the outside 

of each activity wheel.  Counters were calibrated at the beginning of each experiment, at 

each cage change and in the event of counter or wheel malfunction.  Counters were 

checked to document mouse wheel running activity and to ensure proper function each 

day.   

5.2.2 Sample collection and preparation 

For Experiments 1 and 2, and for a portion of Experiment 3, feces for metagenomic 

analysis were collected using sterilized forceps to remove the fecal pellet as it was 

expelled from the anus.  We used this procedure to prevent contamination of the fecal 

pellet with bacteria from sources other than the gut microbiome.  Each pellet was 
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immediately placed in a sterile labeled cryovial.  When 3-5 pellets were collected, the 

cryovial was placed in liquid nitrogen.  After the collection procedure was completed, 

samples were transported in liquid nitrogen to the laboratory and placed in storage at -20˚ 

C to await further preparation.   

Before DNA extraction, each fecal sample was first thawed on ice.  Metagenomic 

DNA was then extracted using the MoBio UltraClean Fecal DNA Isolation Kit (Carlsbad, 

CA).  Extracted DNA was quantified using the Nanodrop Spectrophotometer 

(Wilmington, DE) to ensure sufficient DNA for analysis.  DNA extracts were then stored 

at -20˚ C to await ARISA analysis. 

5.2.3 ARISA sample preparation and analysis 

The ARISA technique that was used to detect microbial signatures in our sample is 

based on taxonomic differences in the intergenic distance between the 16S and 23S 

ribosomal RNA genes (FIGURE 4.1).  Using thawed, extracted DNA, the intergenic 

region between the 16S rRNA and the 23S rRNA genes was PCR amplified for each of 

two (minimum) technical replicates using a universal 16S forward primer (16S-1406F-

FAM primer - 5’- /56-FAM/TGY ACA CAC CGC CCG T -3’) and a eubacterial 23S 

reverse primer (23S-125R - 5’- GGG TTB CCC CAT TCR G -3’) which was 

fluorescently tagged.  PCR reactions were conducted using the Advantage® HD 

Polymerase protocol (Clontech, Mountain View, CA) with a customized master mix 

(TABLE 5.1).  The labeled fragments were then separated by size on an Applied 

Biosystems 3130 sequencer (Carlsbad, CA), resulting in an electropherogram where each 

signal peak represented a different “operational taxonomic unit”. 
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5.3 Experiment 1:  Gut metagenomics of high activity and low activity mouse strains 

5.3.1 Experimental design 

Ten mice, five each of SM/J and 129S1/SvlmJ mouse strains were obtained from the 

lab of our collaborator, Dr. Timothy Lightfoot.  The two mouse strains were selected for 

known and sizable differences between their activity levels.124  Each mouse was placed in 

its own large rat cage that accommodated a standard activity wheel equipped with a 

digital counter to document wheel activity.  The counter recorded wheel-running activity 

for the four-week duration of the experiment.  During the study, one SM/J mouse (mouse 

12) developed signs of distress and illness.  In consultation with the vivarium 

veterinarian, a decision was made to euthanize the animal, and its samples and activity 

observations were excluded from the analysis.  Methods of preparing fecal samples for 

ARISA are described in Common Methods. 

5.3.2 ARISA analysis 

The electropherograms from ARISA were analyzed using a preliminary version of 

custom JAVA software that applied size standards to ARISA spectra, identified peaks in 

the spectra and assigned base pair lengths to each called peak. The vectors resulting from 

peak assignment were compared to one another to assess similarities and differences.  

The R statistical software package was used to conduct hierarchical clustering of sample 

vectors that represented each ARISA spectrum. 

5.3.3 Results 

We observed large and sustained disparities in activity levels (measured by daily 

distance run on an activity wheel) between SM/J and 129 mouse strains (FIGURE 5.1). A 

comparison of ARISA signals from the fecal samples showed that there were also 
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differences in gut microbiota profiles between the two mouse strains.  We used 

hierarchical clustering to analyze the ARISA spectra and visualize the comparison.  All 

samples clustered perfectly by mouse strain, indicating clear differences between the 

strains in overall gut microbial composition (FIGURE 5.2).  Although our results 

demonstrated that the high active and low active mouse strains each had distinctive gut 

microbial profiles, the design of the experiment did not allow us to separate the effects 

from strain genomics, from disparities in gut microbiome acquisition (either from dam or 

sibling exposure) or from activity level differences. 

5.4 Experiment 2:  Effect of activity changes on mouse gut metagenomics 

5.4.1 Experimental design 

Experiment 2 was designed to test the effect of activity levels on mouse gut microbial 

composition.  Unlike in Experiment 1, in which we compared two different strains with 

dissimilar activity levels, this experiment used four C57/LJ high activity mice, 2 female 

and 2 male, provided by the lab of Dr. Timothy Lightfoot.  To control for potential 

effects from differences in gut microbiome acquisition, we used mouse siblings and 

employed a cross-over design.  This design allowed each mouse to act as its own control, 

supplying a built-in comparison of each set of experimental conditions.   In Phase 1, the 

mice were provided ad libitum access to an activity wheel for 2 weeks, they then had the 

wheel removed for a period of time for 2 weeks in Phase 2 and finally had the wheel 

returned to their cages for another 2 weeks for Phase 3 (FIGURE 5.3).  Sampling was 

conducted on a regular schedule through all three phases of the experiment resulting in a 

total of 147 samples, including technical replicates.  Methods of preparing fecal samples 

for ARISA are described in Common Methods. 
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5.4.2 ARISA analysis 

A minimum of two technical replicates of extracted 16S rRNA gene intergenic 

sequence from each sample were run using ARISA.  The resulting electropherograms 

were analyzed using Peak Studio.153  For each of the three experimental phases, the last 

four fecal samples obtained during that phase from each mouse were selected for 

analysis.  These samples were determined to best represent the gut microbiota based on 

the conditions during that phase, as the animals had the opportunity to adjust to changed 

conditions.  A minimum of two technical replicates of ARISA spectra were examined.  

One of these was selected for further analysis based on the consistency and quality of the 

standard peak signal, which is used to set the base pair scale, and of the data peak signal. 

Spectral peaks were identified and called based on binned base pairs (bin size = 3)171 

for the range from 250 to 1000 base pairs.  Each analyzed sample resulted in an array in 

which each data value for a bin represented the signal intensity of the peak call for that 

bin, if any peak were called.  The arrays were consolidated into a matrix by bin size for 

further analysis.  

5.4.3 Statistical analysis 

The matrix of binned peak call arrays that included the last four samples from each 

phase (n=48) was then used to assess the similarities and differences between samples 

with regard to gut microbiota profiles.  Hierarchical clustering used Ward’s method on 

binned signal intensities standardized to the average signal intensity for all arrays in the 

sample, as did Principal Components Analysis on covariance.  The following formula 

was used to standardize peak intensities for each sample,  
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where Si is the signal intensity value in each bin. 

Statistical analyses were conducted and figures constructed using JMP® 8.0 software 

for Microsoft Windows (SAS Institute) and Microsoft® Office Excel 2003. 

5.4.4 Results 

In Phases 1 and 3 of our experiment, all mice were exposed to an activity wheel and 

running distance was measured each day.  As expected, the C57/LJ mouse strain 

exhibited high levels of activity (FIGURE 5.4), evidenced by daily running distance 

(mean = 8.76 km/day; Phase 1 mean = 10.42 km/day; Phase 2 mean = 7.10 km/day).  

Principal Components Analysis of running distances showed differences between Phase 1 

and Phase 3 (FIGURE 5.5).  All mice demonstrated significantly lower Phase 3 activity 

levels (FIGURE 5.6).  Mice also exhibited differences from each other in their activity 

levels (FIGURE 5.7).  When Phase 1 and Phase 3 were analyzed separately, differences 

between mice were more apparent in Phase 3.     

Mouse weights were measured throughout the study.  All four mice gained weight 

from the beginning to the end of the experiment (FIGURE 5.8).  Weight differences 

between mice appeared to be associated with sex; the male mice consistently weighed 

more than the female mice.  Interestingly, weights for all mice dropped immediately after 

activity wheels were removed from the cages for Phase 2 (mean = 4.22%).  No mice 

regained the weight quickly and all but one mouse, 340-1, did not regain the lost weight 

until the activity wheels were returned to the cages in Phase 3.  
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ARISA was used to profile the gut microbiota from mouse fecal samples over the 

course of the experiment.  ARISA analysis was completed on extracted DNA from same-

day baseline fecal samples from each of the four mice (FIGURE 5.9).  The superimposed 

spectra show that the mice had very similar microbiome profiles at baseline. 

To compare the three different experimental phases, the last four samples taken 

during each phases were selected for analysis to ensure that microbial composition had 

stabilized and that it would reflect the metabolic characteristics of that phase.  

Hierarchical clustering of the arrays of standardized peak intensities resulting from the 

analysis of ARISA spectra demonstrated differences between gut microbiota in each of 

the phases of the experiment (FIGURE 5.10).  The most consistent clustering among the 

samples occurred for Phase 2, the period where activity was restricted.  Only 2 samples 

from Phase 2 did not cluster perfectly, both from mouse 338-1, the mouse with the lowest 

mean running distances in both Phases 1 and 3.  When we conducted Principal 

Components Analysis on covariances of the ARISA results, the size of differences 

between phases was apparent, with Phase 2, the period during which activity levels were 

restricted, showing the greatest separation from the phases during which activity wheels 

were available (FIGURE 5.11). After assessing sample distribution normality and 

variance equivalence, we tested the first component of the PCA to determine whether 

there were differences in means between samples taken when mice were running and 

those that were taken when activity wheels were not available, Phases 1 & 3 vs. Phase 2 

(FIGURE 5.12).  The Wilcoxon test indicated that the gut microbiota between phases 

were different (P = 1.5e-6), indicating that lack of activity was a significant factor in 

differentiating the mouse gut microbiota.  It is also noteworthy that the Jackknife 
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Distance method identified a few observations in each distribution that could be classified 

as outliers, the majority of which were samples from mouse 338-1. 

5.4.5 Discussion 

Health problems from increasing levels of obesity and sedentary lifestyles have been 

widely documented.121, 137-138  Several studies have investigated differences in activity 

levels between mouse strains in an attempt to identify factors, such as host genetics, that 

might account for activity disparities.164-165, 172-175  The latest in this research has 

documented gene, as well as non-coding region, associations that correspond to activity 

differences and suggest moderate to high heritability.165  These studies offer important 

contributions to improve understanding of innate differences in exercise propensity but 

provide less information on the mechanisms that govern the relationship between 

exercise and metabolism, an essential component for improving health outcomes. 

Although ground-breaking studies have shown an association between obesity, 

metabolism and the composition of the gut microbiome21, 27, 29, 46-48, 167, 176 very little 

research has investigated the relationship between gut microbial composition and 

exercise.  One human study examined the effects on the gut microbiota of obese 

adolescents of weight loss from diet and exercise.136  Using qPCR, their results revealed 

changes to specific bacterial groups but did not determine which factors led to the 

microbial composition change.  Matsumoto et al. provided more direct evidence that 

exercise alters the gut microbiome.177  Their study of voluntary exercise in rats used cecal 

samples to compare qPCR-TGGE profiles of rats exposed to activity wheels to a control 

group which were not provided wheel running opportunities.  Similar to our results, 

hierarchical clustering revealed that the majority of samples clustered by exercise group.  
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Because the Matsumoto study used a cohort design and collected only samples that 

required animal sacrifice, the analysis could not identify exercise-related gut microbiome 

changes within each animal, unlike the research reported here. 

Our results revealed gut microbial composition change in each mouse that was 

significantly associated with activity levels (FIGURE 5.12).  For the 8 observations that 

did not follow the common pattern (the outliers) in the means test of PC1 against activity 

phases, all but one belonged to mouse 338-1, the mouse with the lowest average running 

distance, reinforcing the interpretation that activity levels affect gut microbes.  The 

obvious explanation of these results, that exercise affects metabolism, is unsurprising.  

The further implications that gut microbes are intricately bound to host metabolic 

changes and that microbial composition is alterable are more significant and underscore 

the importance of further investigation to unravel the mechanisms of host and 

microbiome symbiosis that are involved in metabolism. 

The results from Experiment 2 allowed us to examine the effects of changing activity 

wheel availability, a proxy for mouse activity levels, on gut microbial community 

composition profiles.  Using a cross-over design provided a method to manage 

confounding factors for a preliminary study using a small number of animals.  While 

these results provide important clues to generate hypotheses for further studies, 

ultimately, the advantages of the experimental design alone were not enough to overcome 

the limitations of small sample size, and our results, while interesting, must still be 

considered preliminary. 
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5.5 Experiment 3:  Protocol testing for mouse activity studies 

5.5.1 Experimental design 

Experiment 3 was designed to test procedures and protocols that were planned for use 

in a larger study of gut microbiome and activity levels.  Twelve female mice, six each of 

129S1/SvlmJ low activity and C57BL/6J high activity strains, were purchased from The 

Jackson Laboratory (Bar Harbor, ME) at six weeks of age.  Mice were quarantined for 3 

days per laboratory protocols before being placed in individual cages with running 

wheels. 

We recognized that, for our study to have sufficient power, a much larger sample size 

would be needed and that some of our existing methods were not practically scalable. As 

an example, our existing protocol that used forceps to collect fecal samples required 

between 5-20 minutes per mouse per sample.  For this experiment, we tested the 

feasibility of a more efficient sample collection technique where we simultaneously 

placing the mice in sterilized, individual, empty rat cages, allowing them time to defecate 

and collecting the samples from the cage.  Our design for a larger study also included an 

assessment of associations between small molecules in the blood and gut microbiome 

composition.  Therefore, we tested methods of collecting blood samples.  Finally, we 

were interested in assessing the potential differences in microbial community 

colonization between cecal, intestinal and fecal microbiota46, 178 to inform our decisions 

for future gut microbiome sampling protocols.      

5.5.2 Fecal sample collection 

Clean, empty large rat cages were washed with disinfecting solution and dried.  Each 

mouse was placed in a cage by itself.  Once 3-5 fecal pellets were produced, the mouse 
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was removed and returned to its previous cage.  Feces were then collected from the 

empty cage with sterile forceps and put in a labeled cryovial which was placed in liquid 

nitrogen.  Samples were then frozen at -20˚ C.  Methods of preparing fecal, cecal and 

intestinal samples for ARISA are described in Common Methods. 

5.5.3 ARISA analysis 

A minimum of two technical replicates of extracted 16S rRNA intergenic sequence 

from each sample were run using ARISA.  The resulting electropherograms were 

analyzed using Peak Studio.153  Spectral peaks were identified and called based on binned 

base pairs (bin size = 3)171 for the range from 250 to 1000 base pairs.  Each analyzed 

sample resulted in an array in which each data value for a bin represented the signal 

intensity of the peak call for that bin, if any peak were called.  For comparison of cecal, 

fecal and intestinal samples, those sample arrays were consolidated into a matrix by bin 

size for further analysis. 

5.5.4 Statistical analysis 

The matrix of binned peak call arrays was then used to assess the similarities and 

differences between samples with regard to gut microbiota profiles.  Hierarchical 

clustering used Ward’s method on binned signal intensities standardized to the average 

signal intensity for all arrays in the sample, as did Principal Components Analysis on 

covariance.  Peak intensities were standardized for each sample as previously described.  

Statistical analyses were conducted and figures constructed using JMP® 8.0 software 

for Microsoft Windows (SAS Institute) and Microsoft® Office Excel 2003. 
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5.5.5 Blood sample collection 

Study personnel were trained in survival surgery, blood sampling and anesthesia 

using isoflurane per IUCAC protocol.  Blood sample volume maximums were equal to 

the lesser of 150-200ul or < 10% of blood volume calculated from mouse body weight 

and were collected from the saphenous vein with mice under isoflurane anesthesia using 

a heparinized collection tubes.  Actual blood obtained from two survival surgery 

collections was of insufficient volume (20-100ul whole blood per mouse) to yield enough 

serum for mass spectrometry.  Therefore, two mice (129-5 and C57-4) underwent 

anesthesia and non-survival surgery for blood collection through posterior vena cava 

puncture.  Collected blood was then transferred to labeled vials and immediately 

transported to the laboratory for serum preparation. 

5.5.6 Metabolite extraction 

50-μL aliquot of serum sample was spiked with an internal standard solutions (10μL 

heptadecanoic acid in methanol, 1 mg/mL) and vortexed for 10 seconds. The mixed 

solution was extracted with 150 μL of pre-cooled (-20°C) methanol: chloroform (3:1) and 

vortexed for 30 seconds. After storing for 10 minutes at -20°C, the samples were 

centrifuged at 10,000 g for 10 minutes at 4°C. An aliquot of the 170-μL supernatant was 

transferred to a glass sampling vial to vacuum dry at room temperature. 

5.5.7 Chemical derivatization  

The residue was derivatized using a two-step procedure. First, 80 μL methoxyamine 

(15 mg/mL in pyridine) was added to the vial and kept at 30°C for 90 minutes. An 

amount of 10 μL retention index compounds (the mixture of C10-C40, 50μg/mL), and 80 
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μL BSTFA (1%TMCS) were added into the reaction vials. Then the samples were 

subjected to a 70°C for 120 minutes derivatization reaction. 

5.5.8 Gas chromatography time-of-flight mass spectrum (GC-TOFMS) analysis 

Each 1-μL aliquot of the derivatized solution was injected in splitless mode into an 

Agilent 7890N gas chromatograph coupled with a Pegasus HT time-of-flight mass 

spectrometer (Leco Corporation, St Joseph, USA). Separation was achieved on a DB-5 

ms capillary column (30 m × 250 µm I.D., 0.25-µm film thickness; Agilent J&W 

Scientific, Folsom, CA, USA), with helium as the carrier gas at a constant flow rate of 

1.0 ml/min. The temperature of injection, transfer interface, and ion source was set to 

260°C, 260°C, and 210°C, respectively. The GC temperature programming was set to 2 

min isothermal heating at 80°C, followed by 10°C/min oven temperature ramps to 220 

°C, 5 °C/min to 240°C, and 25°C/min to 290 °C, and a final 8 min maintenance at 290°C. 

Electron impact ionization (70 eV) at full scan mode (m/z 40-600) was used, with an 

acquisition rate of 20 spectra/second in the TOFMS setting.  

5.5.9 GC-TOFMS data processing 

The data generated in GC-TOFMS instrument were analyzed be ChemTOF software 

(v4.22, Leco Co., CA, USA). Peak areas of unique mass were normalized to the internal 

standard. Metabolites were identified by comparing NIST library and confirmed by our 

established library. 

5.5.10 Results 

In Experiment 3, we tested sampling methods and protocols, as well as collecting 

activity levels, weights and food consumption.  In two of our mice, C57BL/6J (high 

activity) mouse and a 129S1/SvImJ (low activity) mouse, we also analyzed ARISA gut 
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microbiota profiles from cecal, fecal and intestinal samples and metabolomic profiles of 

serum samples.  For these two mice, documentation of activity levels, measured as 

distance run on an activity wheel confirmed that running distance for the C57 individual 

was consistently 10-fold or higher than for the 129 individual over a period of several 

weeks.  Daily food consumption of the C57 mouse was also consistently higher than that 

of the 129 mouse.  

A comparison cecal, fecal and intestinal sample profiles using hierarchical clustering 

on ARISA binned signals for mice 129-5 and C57-4 (FIGURE 5.13) showed that each 

mouse’s samples clustered together, indicating that differences between mice were larger 

than differences between sample sources.  The findings from Principal Components 

Analysis on covariances were less conclusive, however.  Although the three samples 

from mouse 129-5 clustered tightly, those from C57-4 demonstrated much more 

separation between the three sources. 

Preliminary results of metabolomic analysis from serum samples for 129-5 and C57-4 

yielded ~450 peaks of which ~180 match reference metabolites from our established 

library.  Peak areas of unique mass were normalized to the internal standard. Metabolites 

were identified via comparison to our established library.   

The total ion chromatograms (TIC) of the two samples are shown in FIGURE 5.14.   

As might be expected given that the mice were in the common environment of the UNC 

Charlotte Animal Facility and had been exposed to the same diet of mouse chow, there 

were considerable overlaps between the two spectra.  There were also, however, several 

clear differences in the relative magnitudes of some of the peaks.  In order to quantify 

these differences, we used the ChemTOF software to call 453 distinct peaks in the sample 
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from the 129-5 mouse and 449 peaks in the sample from the C57-4 mouse.  Of these 

~450 peaks, around 180 matched metabolites that we had identified in our reference 

library.   

In order to examine metabolites that might be differentially expressed between our 

two samples, we chose an arbitrary cutoff of a two-fold change.  By this threshold, we 

observed 53 differential peaks, of which we could identify 22 (TABLE 5.2).  Obviously, 

with only n=1 in each category, we do not know the variance of each peak and therefore 

can not perform meaningful statistics to evaluate for each of the metabolites the statistical 

significance of a null hypothesis of no differential expression.  Nonetheless, these 

preliminary data are encouraging as they demonstrated 1) that we have the technical 

capability to achieve the metabolomics experiments described in the proposal and 2) that 

there are likely a non-trivial number of differentially expressed metabolites between 

high-active and low-active strains.   
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TABLE 5.1:  MasterMix formulation for PCR reactions of intergenic spacer region 
between 16S and 23S rRNA genes. 
 
Reagents Volume/Final Concentrations 
Advantage HD buffer (Mg2+) 5 µl 
dNTP Mixture (10mM each) 0.5 µl 
Advantage HD Polymerase (2.5 units/µl) 0.25 µl 
16S-1406F-FAM primer 
5’- /56-FAM/TGY ACA CAC CGC CCG T -3’ 

 
2.5 µl 

23S-125R 
5’- GGG TTB CCC CAT TCR G -3’ 

 
2.5 µl 

H20 9.25 µl 
 
Total 

 
20 µl MM each rxn. 

+ 5 µl template each rxn. 
 
 
 
TABLE 5.2:  Differentially expressed metabolites from serum samples analyzed using 
mass spectrometry. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Metabolite 
Fold change (<1 

indicates higher in 129) 
Propanoic acid, 2,3-bishydroxy -50.37 
d-Galactose -5.76 
Glycine -4.53 
Cholesterol -3.96 
Á-D-Galactofuranose, -3.81 
L-Ascorbic acid -3.78 
1-Pentamethyldisilyloxypentane -3.60 
Butanoic acid, 3-methyl-3-
hydroxy- -3.21 
Urea  -3.13 
Oleic acid -2.79 
Butanedioic acid -2.74 
Myo-Inositol, phosphate -2.72 
Glucopyranose -2.53 
3-hydroxycaproate -2.34 
Arabitol 2.10 
Pyruvic acid 2.19 
2-Butenedioic acid (E)- 2.25 
Inositol 2.56 
d-Glucose 3.82 
Hydroxy acetic acid 4.94 
Phosphate  5.83 
Citrulline 10.39 
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FIGURE 5.1:  Weekly running distance by strain for SM/J and 129 
mice. 

 
 

 
FIGURE 5.2:  Hierarchical clustering of ARISA gut microbiota profiles from fecal 
samples of SM/J and 129 mice. 
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FIGURE 5.3:  Design for activity cross-over study (Experiment 2). 
 

 

 

 
 
FIGURE 5.4:  Activity levels for Phases 1 and 3 measured by daily distance run on 
an activity wheel. 
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FIGURE 5.5:  Principal Components Analysis showing 
differences between Phase 1 and Phase 3 activity levels. 

 

 

 
 
FIGURE 5.6:  Tests for differences between activity levels in each mouse for Phase 1 
and Phase 3.  Activity levels were measured by distance run on an activity wheel. 
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FIGURE 5.7:  Tests for differences in activity 
levels between mice in running distance (km/day) 
over the course of the study. 

 

 

 

 
 
FIGURE 5.8:  Mouse weights (gm) over the course of the experiment. 
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FIGURE 5.9:  Peak Studio ARISA microbiota profiles from baseline samples.  
Samples were obtained on 11-25-08.  The profile from each mouse is represented by 
a different color.  Profiles were calibrated in base pairs and superimposed. 
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FIGURE 5.10:  Hierarchical clustering of ARISA gut 
microbiome profiles from mouse fecal samples. The last 
four samples from each phase were analyzed.  Sample 
labeling indicates sampling date and mouse number. 
Green = Phase 1 where activity wheel was provided.  Red 
= Phase 2 where mice were in small cages with no 
activity wheel.  Blue = Phase 3 where activity wheels 
were re-introduced. 
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FIGURE 5.11:  Principal Components Analysis on covariances of gut microbiome 
profiles from binned ARISA signals. The plot shows separation of the profiles from 
phases where activity wheels were available (Phase 1 = green, Phase 3 = blue) and 
the phase during which activity was restricted (Phase 2).  Profiles from each mouse 
are designated by different symbols. 
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FIGURE 5.12 Wilcoxon test of differences between PC1 from PCA of 
gut microbiome profiles for activity levels.  The first principal 
component from PCA of ARISA spectra profiles of gut microbial 
composition (FIGURE 5.10) from fecal samples of mice with running 
wheels (Phases 1 & 3) versus the same mice without running wheels 
(Phase 2).  Points have been jittered to improve visualization.  
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FIGURE 5.13:  Hierarchical clustering and Principal 
Components Analysis on covariances of gut microbiome 
profiles from ARISA binned signal of cecal, fecal and 
intestinal samples. 
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FIGURE 5.14:  Spectra from total ion chromatograms from mass spectrometry 
analysis of serum samples from mouse 129-5 and C57-4. 



 

CHAPTER 6: CONCLUSIONS 
 
 

The metagenomic studies described in this dissertation illustrate dynamic 

relationships among microbiota, host factors and environmental factors that define 

mammalian biosystems.  These results relied on advances in DNA sequencing technology 

to characterize microbiome composition and its associations with host health.  Low 

resolution molecular techniques, such as ARISA, that were state-of-the-art at the 

beginning of this research, were quickly supplanted by the highly detailed microbiome 

profiles provided by next-generation sequencing methods.  This technology revolution 

has created tremendous opportunities to expand our understanding of host-microbiome 

interactions but has also driven a proliferation of bioinformatics and analytical methods 

that have complicated the quest for biologically relevant results.   

In this environment of rapid change, technical and analytical choices have increased 

in importance.  The initial selection of a sequencing platform requires understanding the 

trade-offs between the volume of sequences produced, sequence length, error rates, ease 

of sample identification, reliability, speed and expense.  The choice of a data organization 

scheme demands that algorithm details are well-understood and that the implications of 

different grouping or classification methods are appreciated.  Correctly identifying 

statistically significant results necessitates that hypothesis testing is planned in advance, 

that the most appropriate tests are used and that the possibility of spurious associations is
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minimized through correction.  Nevertheless, the most carefully selected techniques are 

no protection against unanticipated methodological artifacts, like those uncovered and 

addressed in Chapter 3. 

Such circumstances make it easy to get lost in the intricacies of technology and 

methodology decisions, especially when every new advance has its own set of advocates 

and few precedents have been established.  Furthermore, the excitement of embracing the 

next new technology can obscure the relationship between biological question and 

method choice.  In some cases, that relationship is critically important and can even 

reveal that an old-school approach can augment a deficiency in a newer technique.  As 

this dissertation clearly demonstrates, focusing on the biological questions is imperative 

and provides both barometer for determining biological relevance and a roadmap for 

navigating the complex decisions inherent in metagenomic research.  



  120 
REFERENCES 

 
 
1. Amann R, Ludwig W, Schleifer K. Phylogenetic identification and in situ 

detection of individual microbial cells without cultivation. Microbiol. Rev 
1995;59:143-169. 

2. Rusch DB, Halpern AL, Sutton G, et al. The Sorcerer II Global Ocean Sampling 
expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 
2007;5:e77. 

3. Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and 
the underexplored "rare biosphere". Proc Natl Acad Sci U S A 2006;103:12115-
20. 

4. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature 
2007;449:804-10. 

5. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant 
intestinal microbiota. PLoS Biol 2007;5:e177. 

6. Dantas G, Sommer MO, Oluwasegun RD, et al. Bacteria subsisting on antibiotics. 
Science 2008;320:100-3. 

7. Lear G, Niyogi D, Harding J, et al. Biofilm bacterial community structure in 
streams affected by acid mine drainage. Appl Environ Microbiol 2009;75:3455-
60. 

8. Sanapareddy N, Hamp TJ, Gonzalez LC, et al. Molecular diversity of a North 
Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ 
Microbiol 2009;75:1688-96. 

9. Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in 
human body habitats across space and time. Science 2009;326:1694-7. 

10. Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution 
of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl 
Acad Sci U S A 2006;103:12511-6. 

11. Toye AA, Dumas ME, Blancher C, et al. Subtle metabolic and liver gene 
transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-
resistant mice. Diabetologia 2007;50:1867-79. 

12. Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against 
microbial pathogens. FEMS Microbiol Rev 2004;28:405-40. 

13. Brook I. The role of bacterial interference in otitis, sinusitis and tonsillitis. 
Otolaryngol Head Neck Surg 2005;133:139-46. 



  121 
14. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in 

microfabricated high-density picolitre reactors. Nature 2005;437:376-80. 

15. Spencer MD, Hamp TJ, Reid RW, et al. Association between composition of the 
human gastrointestinal microbiome and development of fatty liver with choline 
deficiency. Gastroenterology 2010. 

16. Wahab AA, Janahi IA, Marafia MM, et al. Microbiological identification in cystic 
fibrosis patients with CFTR I1234V mutation. J Trop Pediatr 2004;50:229-33. 

17. Harrison F. Microbial ecology of the cystic fibrosis lung. Microbiology 
2007;153:917-23. 

18. Sibley CD, Rabin H, Surette MG. Cystic fibrosis: a polymicrobial infectious 
disease. Future Microbiol 2006;1:53-61. 

19. Doud MS, Light M, Gonzalez G, et al. Combination of 16S rRNA variable 
regions provides a detailed analysis of bacterial community dynamics in the lungs 
of cystic fibrosis patients. Hum Genomics 2010;4:147-69. 

20. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical 
impact of batch effects in high-throughput data. Nat Rev Genet 2010;11:733-9. 

21. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut 
microbiome with increased capacity for energy harvest. Nature 2006;444:1027-
31. 

22. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the 
resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 
2007;104:979-84. 

23. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic Syndrome and Altered 
Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science 2010. 

24. Jansson J, Willing B, Lucio M, et al. Metabolomics reveals metabolic biomarkers 
of Crohn's disease. PLoS One 2009;4:e6386. 

25. Fox JG, Feng Y, Theve EJ, et al. Gut microbes define liver cancer risk in mice 
exposed to chemical and viral transgenic hepatocarcinogens. Gut 2010;59:88-97. 

26. Davis CD, Milner JA. Gastrointestinal microflora, food components and colon 
cancer prevention. J Nutr Biochem 2009;20:743-52. 

27. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese 
and lean twins. Nature 2009;457:480-4. 



  122 
28. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The Effect of Diet on the Human Gut 

Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science 
Translational Medicine 2009;1:6ra14-6ra14. 

29. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J 
Physiol 2009;587:4153-8. 

30. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010;26:5-
11. 

31. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines 
the composition of the murine gut microbiome independently of obesity. 
Gastroenterology 2009;137:1716-24 e1-2. 

32. Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev 
2009;67:615-23. 

33. Bidulescu A, Chambless LE, Siega-Riz AM, et al. Repeatability and measurement 
error in the assessment of choline and betaine dietary intake: the Atherosclerosis 
Risk in Communities (ARIC) study. Nutr J 2009;8:14. 

34. Xu X, Gammon MD, Zeisel SH, et al. High intakes of choline and betaine reduce 
breast cancer mortality in a population-based study. FASEB J 2009;23:4022-8. 

35. Zeisel SH. Genetic polymorphisms in methyl-group metabolism and epigenetics: 
lessons from humans and mouse models. Brain Res 2008;1237:5-11. 

36. Song J, da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and 
susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J 
2005;19:1266-71. 

37. Zeisel SH, da Costa KA, Fox JG. Endogenous formation of dimethylamine. 
Biochem. J. 1985;232:403-408. 

38. Zeisel SH, daCosta KA, LaMont JT. Mono-, di- and trimethylamine in human 
gastric fluid: potential substrates for nitrosodimethylamine formation. 
Carcinogenesis 1988;9:179-81. 

39. Zeisel SH, daCosta KA, Youssef M, et al. Conversion of dietary choline to 
trimethylamine and dimethylamine in rats: dose-response relationship. J. Nutr. 
1989;119:800-4. 

40. Sohlenkamp C, Lopez-Lara IM, Geiger O. Biosynthesis of phosphatidylcholine in 
bacteria. Prog Lipid Res 2003;42:115-62. 

41. Martinez-Morales F, Schobert M, Lopez-Lara IM, et al. Pathways for 
phosphatidylcholine biosynthesis in bacteria. Microbiology 2003;149:3461-71. 



  123 
42. Aktas M, Wessel M, Hacker S, et al. Phosphatidylcholine biosynthesis and its 

significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 2010. 

43. Sha W, da Costa KA, Fischer LM, et al. Metabolomic profiling can predict which 
humans will develop liver dysfunction when deprived of dietary choline. FASEB 
J 2010. 

44. Backhed F, Crawford PA. Coordinated regulation of the metabolome and 
lipidome at the host-microbial interface. Biochim Biophys Acta 2009. 

45. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects 
of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 
2009;106:3698-703. 

46. Claus SP, Tsang TM, Wang Y, et al. Systemic multicompartmental effects of the 
gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 2008;4:219. 

47. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic 
endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes 
in mice. Diabetes 2008;57:1470-81. 

48. Yap IK, Li JV, Saric J, et al. Metabonomic and microbiological analysis of the 
dynamic effect of vancomycin-induced gut microbiota modification in the mouse. 
J Proteome Res 2008;7:3718-28. 

49. Busby MG, Fischer L, da Costa KA, et al. Choline- and betaine-defined diets for 
use in clinical research and for the management of trimethylaminuria. J Am Diet 
Assoc 2004;104:1836-45. 

50. Dietary intakes for folate, thiamin, riboflavin, niacin, vitamin B12, panthothenic 
acid, biotin, and choline. In: Institute of Medicine NAPU, ed. Washington, DC: 
National Academy Press, 1998:390-422. 

51. Zeisel SH, Mar MH, Howe JC, et al. Concentrations of choline-containing 
compounds and betaine in common foods. J Nutr 2003;133:1302-7. 

52. Koc H, Mar MH, Ranasinghe A, et al. Quantitation of choline and its metabolites 
in tissues and foods by liquid chromatography/electrospray ionization-isotope 
dilution mass spectrometry. Anal Chem 2002;74:4734-40. 

53. da Costa KA, Badea M, Fischer LM, et al. Elevated serum creatine phosphokinase 
in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am 
J Clin Nutr 2004;80:163-70. 

54. da Costa KA, Gaffney CE, Fischer LM, et al. Choline deficiency in mice and 
humans is associated with increased plasma homocysteine concentration after a 
methionine load. Am J Clin Nutr 2005;81:440-4. 



  124 
55. Fishbein MH, Gardner KG, Potter CJ, et al. Introduction of fast MR imaging in 

the assessment of hepatic steatosis. Magn Reson Imaging 1997;15:287-93. 

56. Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer 
analysis of microbial diversity and its application to freshwater bacterial 
communities. Appl Environ Microbiol 1999;65:4630-6. 

57. Fierer N, Hamady M, Lauber CL, et al. The influence of sex, handedness, and 
washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 
2008;105:17994-9. 

58. Cole JR, Chai B, Farris RJ, et al. The ribosomal database project (RDP-II): 
introducing myRDP space and quality controlled public data. Nucl. Acids Res. 
2007;35:D169-D172. 

59. Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ 
Microbiol 2007;73:5261-7. 

60. Liu Z, DeSantis TZ, Andersen GL, et al. Accurate taxonomy assignments from 
16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids 
Res 2008;36:e120. 

61. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal 
microbial flora. Science 2005;308:1635-8. 

62. Kunin V, Engelbrektson A, Ochman H, et al. Wrinkles in the rare biosphere: 
pyrosequencing errors can lead to artificial inflation of diversity estimates. 
Environ Microbiol 2010;12:118-23. 

63. Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing 
Microbial Communities. Appl. Environ. Microbiol. 2005;71:8228-8235. 

64. Selan L, Palma S, Scoarughi GL, et al. Phosphorylcholine impairs susceptibility 
to biofilm formation of hydrogel contact lenses. Am J Ophthalmol 2009;147:134-
9. 

65. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis 
in an urban population in the United States: Impact of ethnicity. Hepatology 
2004;40:1387-1395. 

66. Wieckowska A, Feldstein AE. Diagnosis of nonalcoholic fatty liver disease: 
invasive versus noninvasive. Semin Liver Dis 2008;28:386-95. 

67. Zeisel SH. Gene response elements, genetic polymorphisms and epigenetics 
influence the human dietary requirement for choline. IUBMB Life 2007;59:380-7. 



  125 
68. da Costa KA, Kozyreva OG, Song J, et al. Common genetic polymorphisms affect 

the human requirement for the nutrient choline. FASEB J 2006;20:1336-44. 

69. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 
2002;71:635-700. 

70. Kudo H, Takahara T, Yata Y, et al. Lipopolysaccharide triggered TNF-alpha-
induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J 
Hepatol 2009;51:168-75. 

71. Higuchi R, Dollinger G, Walsh PS, et al. Simultaneous amplification and 
detection of specific DNA sequences. Biotechnology (N Y) 1992;10:413-7. 

72. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time 
and space complexity. BMC Bioinformatics 2004;5:113. 

73. Maheux AF, Picard FJ, Boissinot M, et al. Analytical comparison of nine PCR 
primer sets designed to detect the presence of Escherichia coli/Shigella in water 
samples. Water Res 2009;43:3019-28. 

74. Sundaram SS, Zeitler P, Nadeau K. The metabolic syndrome and nonalcoholic 
fatty liver disease in children. Curr Opin Pediatr 2009;21:529-35. 

75. Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma: two 
growing epidemics with a potential link. Cancer 2009;115:5651-61. 

76. Leite NC, Salles GF, Araujo AL, et al. Prevalence and associated factors of non-
alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 
2009;29:113-9. 

77. Stickel F, Hellerbrand C. Non-alcoholic fatty liver disease as a risk factor for 
hepatocellular carcinoma: mechanisms and implications. Gut 2010;59:1303-7. 

78. Xu X, Gammon MD, Zhang Y, et al. BRCA1 promoter methylation is associated 
with increased mortality among women with breast cancer. Breast Cancer Res 
Treat 2009;115:397-404. 

79. Targher G, Bertolini L, Padovani R, et al. Prevalence of non-alcoholic fatty liver 
disease and its association with cardiovascular disease in patients with type 1 
diabetes. J Hepatol 2010;53:713-8. 

80. Armougom F, Bittar F, Stremler N, et al. Microbial diversity in the sputum of a 
cystic fibrosis patient studied with 16S rDNA pyrosequencing. Eur J Clin 
Microbiol Infect Dis 2009;28:1151-4. 

81. Guss AM, Roeselers G, Newton IL, et al. Phylogenetic and metabolic diversity of 
bacteria associated with cystic fibrosis. ISME J 2011;5:20-9. 



  126 
82. van der Gast CJ, Walker AW, Stressmann FA, et al. Partitioning core and satellite 

taxa from within cystic fibrosis lung bacterial communities. ISME J 2010. 

83. About Cystic Fibrosis:  What You Need to Know. Volume 2010: Cystic Fibrosis 
Foundation, 2010. 

84. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of 
pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 
2003;168:918-51. 

85. Rubin BK. Mucus, phlegm, and sputum in cystic fibrosis. Respir Care 
2009;54:726-32; discussion 732. 

86. Smith JJ, Travis SM, Greenberg EP, et al. Cystic fibrosis airway epithelia fail to 
kill bacteria because of abnormal airway surface fluid. Cell 1996;85:229-36. 

87. Gomez MI, Prince A. Opportunistic infections in lung disease: Pseudomonas 
infections in cystic fibrosis. Curr Opin Pharmacol 2007;7:244-51. 

88. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. 
Clin Microbiol Rev 2002;15:194-222. 

89. Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic 
fibrosis become infected and why can't they clear the infection? Respir Res 
2003;4:8. 

90. Tunney MM, Field TR, Moriarty TF, et al. Detection of anaerobic bacteria in high 
numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 
2008;177:995-1001. 

91. Harris JK, De Groote MA, Sagel SD, et al. Molecular identification of bacteria in 
bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad 
Sci U S A 2007;104:20529-33. 

92. Rogers GB, Skelton S, Serisier DJ, et al. Determining cystic fibrosis-affected lung 
microbiology: comparison of spontaneous and serially induced sputum samples 
by use of terminal restriction fragment length polymorphism profiling. J Clin 
Microbiol 2010;48:78-86. 

93. Klepac-Ceraj V, Lemon KP, Martin TR, et al. Relationship between cystic 
fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and 
Pseudomonas aeruginosa. Environ Microbiol 2010. 

94. Hoiby N. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and 
prognostic significance of pseudomonas aeruginosa precipitins determined by 
means of crossed immunoelectrophoresis. A survey. Acta Pathol Microbiol Scand 
Suppl 1977:1-96. 



  127 
95. Smith EE, Buckley DG, Wu Z, et al. Genetic adaptation by Pseudomonas 

aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 
2006;103:8487-92. 

96. Rajan S, Saiman L. Pulmonary infections in patients with cystic fibrosis. Semin 
Respir Infect 2002;17:47-56. 

97. Muhdi K, Edenborough FP, Gumery L, et al. Outcome for patients colonised with 
Burkholderia cepacia in a Birmingham adult cystic fibrosis clinic and the end of 
an epidemic. Thorax 1996;51:374-7. 

98. Rogers GB, Carroll MP, Bruce KD. Studying bacterial infections through culture-
independent approaches. J Med Microbiol 2009;58:1401-18. 

99. Rogers GB, Carroll MP, Serisier DJ, et al. Characterization of bacterial 
community diversity in cystic fibrosis lung infections by use of 16s ribosomal 
DNA terminal restriction fragment length polymorphism profiling. J Clin 
Microbiol 2004;42:5176-83. 

100. Rogers GB, Hart CA, Mason JR, et al. Bacterial diversity in cases of lung 
infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length 
heterogeneity PCR and 16S rDNA terminal restriction fragment length 
polymorphism profiling. J Clin Microbiol 2003;41:3548-58. 

101. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut 
microbiome. Science 2006;312:1355-9. 

102. Rogers GB, Hoffman LR, Whiteley M, et al. Revealing the dynamics of 
polymicrobial infections: implications for antibiotic therapy. Trends Microbiol 
2010;18:357-64. 

103. Rogers GB, Stressmann FA, Walker AW, et al. Lung infections in cystic fibrosis: 
deriving clinical insight from microbial complexity. Expert Rev Mol Diagn 
2010;10:187-96. 

104. Duan K, Dammel C, Stein J, et al. Modulation of Pseudomonas aeruginosa gene 
expression by host microflora through interspecies communication. Mol 
Microbiol 2003;50:1477-91. 

105. Dunne C. Adaptation of bacteria to the intestinal niche: probiotics and gut 
disorder. Inflamm Bowel Dis 2001;7:136-45. 

106. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the 
human skin microbiome. Science 2009;324:1190-2. 

107. Stecher B, Chaffron S, Kappeli R, et al. Like will to like: abundances of closely 
related species can predict susceptibility to intestinal colonization by pathogenic 
and commensal bacteria. PLoS Pathog 2010;6:e1000711. 



  128 
108. McKone EF, Goss CH, Aitken ML. CFTR genotype as a predictor of prognosis in 

cystic fibrosis. Chest 2006;130:1441-7. 

109. Dorfman R, Sandford A, Taylor C, et al. Complex two-gene modulation of lung 
disease severity in children with cystic fibrosis. J Clin Invest 2008;118:1040-9. 

110. Rogers GB, Carroll MP, Serisier DJ, et al. Bacterial activity in cystic fibrosis lung 
infections. Respir Res 2005;6:49. 

111. Sibley CD, Parkins MD, Rabin HR, et al. A polymicrobial perspective of 
pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. 
Proc Natl Acad Sci U S A 2008;105:15070-5. 

112. Hamady M, Walker JJ, Harris JK, et al. Error-correcting barcoded primers for 
pyrosequencing hundreds of samples in multiplex. Nat Meth 2008;5:235-237. 

113. Hamp TJ, Jones WJ, Fodor AA. The effects of experimental choices and analysis 
noise on surveys of the rare biosphere. Appl Environ Microbiol 2009. 

114. Huse SM, Welch DM, Morrison HG, et al. Ironing out the wrinkles in the rare 
biosphere through improved OTU clustering. Environ Microbiol 2010. 

115. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol 
Biol 1990;215:403-10. 

116. Ye Y. AbundantOTU. Volume 2010, 2010: Consensus alignment algorithm for 
analysis of 16S rRNA pyrosequences. 

117. Microbiome Utilities Portal of the Broad Institute. Volume 2010, 2010. 

118. Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput 
phylogenetic analyses of microbial communities including analysis of 
pyrosequencing and PhyloChip data. ISME J 2010;4:17-27. 

119. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 
2.0. Bioinformatics 2007;23:2947-8. 

120. Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for 
quality checked and aligned ribosomal RNA sequence data compatible with ARB. 
Nucleic Acids Res 2007;35:7188-96. 

121. Han MV, Zmasek CM. phyloXML: XML for evolutionary biology and 
comparative genomics. BMC Bioinformatics 2009;10:356. 

122. Pai VB, Nahata MC. Efficacy and safety of aerosolized tobramycin in cystic 
fibrosis. Pediatr Pulmonol 2001;32:314-27. 



  129 
123. Chuchalin A, Amelina E, Bianco F. Tobramycin for inhalation in cystic fibrosis: 

Beyond respiratory improvements. Pulm Pharmacol Ther 2009;22:526-32. 

124. Oberhardt MA, Goldberg JB, Hogardt M, et al. Metabolic network analysis of 
Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol 
2010;192:5534-48. 

125. Doring G, Conway SP, Heijerman HG, et al. Antibiotic therapy against 
Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 
2000;16:749-67. 

126. Dales L, Ferris W, Vandemheen K, et al. Combination antibiotic susceptibility of 
biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from 
patients with pulmonary exacerbations of cystic fibrosis. Eur J Clin Microbiol 
Infect Dis 2009;28:1275-9. 

127. Govan JR, Brown AR, Jones AM. Evolving epidemiology of Pseudomonas 
aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. 
Future Microbiol 2007;2:153-64. 

128. Worlitzsch D, Rintelen C, Bohm K, et al. Antibiotic-resistant obligate anaerobes 
during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 
2009;15:454-60. 

129. Martin DW, Schurr MJ, Mudd MH, et al. Mechanism of conversion to mucoidy in 
Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U 
S A 1993;90:8377-81. 

130. Luzar MA, Montie TC. Avirulence and altered physiological properties of cystic 
fibrosis strains of Pseudomonas aeruginosa. Infect Immun 1985;50:572-6. 

131. Oliver A, Canton R, Campo P, et al. High frequency of hypermutable 
Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 
2000;288:1251-4. 

132. Mena A, Smith EE, Burns JL, et al. Genetic adaptation of Pseudomonas 
aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. 
J Bacteriol 2008;190:7910-7. 

133. Hoiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial 
biofilms. Int J Antimicrob Agents 2010;35:322-32. 

134. Hassett DJ, Korfhagen TR, Irvin RT, et al. Pseudomonas aeruginosa biofilm 
infections in cystic fibrosis: insights into pathogenic processes and treatment 
strategies. Expert Opin Ther Targets 2010;14:117-30. 

135. King P, Citron DM, Griffith DC, et al. Effect of oxygen limitation on the in vitro 
activity of levofloxacin and other antibiotics administered by the aerosol route 



  130 
against Pseudomonas aeruginosa from cystic fibrosis patients. Diagn Microbiol 
Infect Dis 2010;66:181-6. 

136. Hassett DJ, Sutton MD, Schurr MJ, et al. Pseudomonas aeruginosa hypoxic or 
anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 
2009;17:130-8. 

137. Bittar F, Rolain JM. Detection and accurate identification of new or emerging 
bacteria in cystic fibrosis patients. Clin Microbiol Infect 2010;16:809-20. 

138. Ellis CN, Cooper VS. Experimental adaptation of Burkholderia cenocepacia to 
onion medium reduces host range. Appl Environ Microbiol 2010;76:2387-96. 

139. Hoiby N. Hemophilus influenzae, Staphylococcus aureus, Pseudomonas cepacia, 
and Pseudomonas aeruginosa in patients with cystic fibrosis. Chest 1988;94:97S-
103S. 

140. Hoiby N. Isolation and treatment of cystic fibrosis patients with lung infections 
caused by Pseudomonas (Burkholderia) cepacia and multiresistant Pseudomonas 
aeruginosa. Neth J Med 1995;46:280-7. 

141. Baldwin A, Sokol PA, Parkhill J, et al. The Burkholderia cepacia epidemic strain 
marker is part of a novel genomic island encoding both virulence and metabolism-
associated genes in Burkholderia cenocepacia. Infect Immun 2004;72:1537-47. 

142. Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the 
Burkholderia cepacia complex. Chron Respir Dis 2005;2:209-17. 

143. Sibley CD, Duan K, Fischer C, et al. Discerning the complexity of community 
interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 
2008;4:e1000184. 

144. Ulrich M, Beer I, Braitmaier P, et al. Relative contribution of Prevotella 
intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients 
with cystic fibrosis. Thorax 2010. 

145. Bittar F, Richet H, Dubus JC, et al. Molecular detection of multiple emerging 
pathogens in sputa from cystic fibrosis patients. PLoS One 2008;3:e2908. 

146. Sibley CD, Parkins MD, Rabin HR, et al. The relevance of the polymicrobial 
nature of airway infection in the acute and chronic management of patients with 
cystic fibrosis. Curr Opin Investig Drugs 2009;10:787-94. 

147. Benedict KF, Mac Gabhann F, Amanfu RK, et al. Systems Analysis of Small 
Signaling Modules Relevant to Eight Human Diseases. Ann Biomed Eng 2010. 



  131 
148. Spasenovski T, Carroll MP, Payne MS, et al. Molecular analysis of diversity 

within the genus Pseudomonas in the lungs of cystic fibrosis patients. Diagn 
Microbiol Infect Dis 2009;63:261-7. 

149. Knapp BA, Seeber J, Rief A, et al. Bacterial community composition of the gut 
microbiota of Cylindroiulus fulviceps (diplopoda) as revealed by molecular 
fingerprinting and cloning. Folia Microbiol (Praha) 2010;55:489-96. 

150. Brown MV, Schwalbach MS, Hewson I, et al. Coupling 16S-ITS rDNA clone 
libraries and automated ribosomal intergenic spacer analysis to show marine 
microbial diversity: development and application to a time series. Volume 7, 
2005:1466-1479. 

151. Dahllof I. Molecular community analysis of microbial diversity. Curr Opin 
Biotechnol 2002;13:213-7. 

152. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating 
inhibitors. Proc Natl Acad Sci U S A 1977;74:5463-7. 

153. McCafferty JW, Reid RW, Spencer MD, et al. Peak Studio:  a tool for the 
visualization and analysis of fragment analysis files., 2011. 

154. Richterich P. Estimation of errors in "raw" DNA sequences: a validation study. 
Genome Res 1998;8:251-9. 

155. Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces 
using phred. I. Accuracy assessment. Genome Res 1998;8:175-85. 

156. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. 
Error probabilities. Genome Res 1998;8:186-94. 

157. DeSantis TZ, Jr., Hugenholtz P, Keller K, et al. NAST: a multiple sequence 
alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 
2006;34:W394-9. 

158. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S 
rRNA gene database and workbench compatible with ARB. Appl Environ 
Microbiol 2006;72:5069-72. 

159. Cole JR, Wang Q, Cardenas E, et al. The Ribosomal Database Project: improved 
alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141-5. 

160. Khaw KT, Wareham N, Bingham S, et al. Combined impact of health behaviours 
and mortality in men and women: the EPIC-Norfolk prospective population study. 
PLoS Med 2008;5:e12. 



  132 
161. Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the 

United States: comparative risk assessment of dietary, lifestyle, and metabolic risk 
factors. PLoS Med 2009;6:e1000058. 

162. Ford ES, Mokdad AH. Epidemiology of obesity in the Western Hemisphere. J 
Clin Endocrinol Metab 2008;93:S1-8. 

163. Lightfoot JT, Turner MJ, Pomp D, et al. Quantitative trait loci for physical 
activity traits in mice. Physiol Genomics 2008;32:401-8. 

164. Lightfoot JT, Turner MJ, Daves M, et al. Genetic influence on daily wheel 
running activity level. Physiol Genomics 2004;19:270-6. 

165. Lightfoot JT, Leamy L, Pomp D, et al. Strain screen and haplotype association 
mapping of wheel running in inbred mouse strains. J Appl Physiol 2010;109:623-
34. 

166. Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human 
metabolic phenotypes. Proc Natl Acad Sci U S A 2008;105:2117-22. 

167. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic 
homeostasis. Curr Opin Clin Nutr Metab Care 2007;10:729-34. 

168. Hoffman-Goetz L, Pervaiz N, Guan J. Voluntary exercise training in mice 
increases the expression of antioxidant enzymes and decreases the expression of 
TNF-alpha in intestinal lymphocytes. Brain Behav Immun 2009;23:498-506. 

169. Hoffman-Goetz L, Pervaiz N, Packer N, et al. Freewheel training decreases pro- 
and increases anti-inflammatory cytokine expression in mouse intestinal 
lymphocytes. Brain Behav Immun 2010;24:1105-15. 

170. Hagio M, Matsumoto M, Yajima T, et al. Voluntary wheel running exercise and 
dietary lactose concomitantly reduce proportion of secondary bile acids in rat 
feces. J Appl Physiol 2010;109:663-8. 

171. Reid RW SM, Hamp TJ, Fodor AA. Clusters generated by ARISA data are robust 
to choices made during binning., 2011. 

172. Leamy LJ, Pomp D, Lightfoot JT. An epistatic genetic basis for physical activity 
traits in mice. J Hered 2008;99:639-46. 

173. Leamy LJ, Pomp D, Lightfoot JT. Genetic variation in the pleiotropic association 
between physical activity and body weight in mice. Genet Sel Evol 2009;41:41. 

174. Leamy LJ, Pomp D, Lightfoot JT. Genetic variation for body weight change in 
mice in response to physical exercise. BMC Genet 2009;10:58. 



  133 
175. Leamy LJ, Pomp D, Lightfoot JT. A search for quantitative trait loci controlling 

within-individual variation of physical activity traits in mice. BMC Genet 
2010;11:83. 

176. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. 
Proc Natl Acad Sci U S A 2005;102:11070-5. 

177. Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary running exercise alters 
microbiota composition and increases n-butyrate concentration in the rat cecum. 
Biosci Biotechnol Biochem 2008;72:572-6. 

178. Sarma-Rupavtarm RB, Ge Z, Schauer DB, et al. Spatial distribution and stability 
of the eight microbial species of the altered schaedler flora in the mouse 
gastrointestinal tract. Appl Environ Microbiol 2004;70:2791-800. 

 
 



  134 
APPENDIX A:  SUPPLEMENTAL MATERIALS 

AND METHODS FOR CHAPTER 1 
 
 

Study Diets 

Study diets were composed of 0.8 g/kg high biologic value protein (current 

Dietary Reference Intake [DRI]), 30% of energy from fat, and the remaining energy from 

carbohydrate.  Total food intake was adjusted to be isocaloric and to provide adequate 

intakes of macro- and micronutrients (supplemental table 2). All diets met or exceeded 

the Estimated Average Requirement for methionine plus cysteine and the DRI for 

vitamins B-12, B-6, and folic acid. A multivitamin supplement (Kirkland Brand Multi-

vitamin Multi-mineral) provided vitamins A, D, B-12, and C and thiamine, niacin, and 

riboflavin at or above the DRI.  Subjects were also given a calcium and magnesium 

supplement.  Subjects’ weights remained relatively stable, as caloric intake was adjusted 

for each subject over the course of the study to maintain subject weight (supplemental 

table 9).  In addition to changes in choline levels, all depletion diets included a soy shake 

containing Benefiber and, thereby, differed from the study diets at other time points.  

Description of and micronutrient levels of all diets are extensively detailed in Busby et 

al.1 

 

ARISA Analysis Methods 

Using extracted DNA, the intergenic region between the 16S rRNA and the 23S 

rRNA genes was PCR amplified for each of two technical replicates using universal 

bacterial primers 1406F-FAM (FAM+TGY ACA CAC CGC CCG T) and 125R (GGG 

TTB CCC CAT TCR G).  Reactions were set up using 50ng of template DNA according 
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to a NanoDrop ND-1000 spectrophotometer.  Thermalcycling conditions were as follows: 

an initial denaturation step at 94oC for 2 minutes, followed by 35 cycles of 94oC for 25 

seconds; 56.5C for 30 seconds; 72oC for 60 seconds.  An extension was carried out at 

72oC for 5 minutes.  Samples were loaded on an Applied Biosystems 3130 genetic 

analyzer.  Applied Biosystems GeneScan™ 1200 LIZ® size standard was used to 

determine sizing up to 1200 nucleotides. The labeled fragments were separated by size on 

an Applied Biosystems 3130 sequencer, resulting in an electropherogram where each 

signal peak represented a different bacterial signature (supplemental figure 1).  The 

electropherogram from each replicate was analyzed using custom JAVA software that 

establishes a base-pair scale, calls the data peaks from the spectra, assigns base pair sizes 

to each peak and provides summaries of the peak call assignments.  Peak calls were 

validated using Applied Biosystems 3130 analysis software.  Resulting data vectors from 

all samples were compared using hierarchical clustering with custom JAVA code. 

 

Sequencing Analysis Methods 

The V1-V2 variable regions of the 16S rRNA gene were targeted using the 454 

Life Sciences primer B with a “TC” linker and bacterial 27F primer (5’-

GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’) and 454 Life 

Sciences primer A with a “CA” linker, 12 mer barcode and bacterial primer 338R (5’-

GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT

-3’) where the N’s represent barcodes used to identify each sample.2  PCRs were set up 

with Platinum Taq DNA polymerase (Invitrogen) according to the included protocol with 

100ng of bacterial genomic DNA as a template.  Each reaction was quantitated by 
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PicoGreen on a NanoDrop ND-3300 fluorospectrometer.  Samples were pooled in 

equimolar amounts and concentrated in a vacuum centrifuge before being submitted to 

the Environmental Genomics Core Facility at the University of South Carolina for 454-

FLX sequencing. 

 Over 200,000 sequences were obtained from the 454-FLX process and were end-

trimmed based on the Lucy algorithm at a cut-off of 0.002 corresponding to a quality 

score of 27.3  Sequences had to meet the following criteria4 to be included in the final 

dataset:  (1) no Ns in the trimmed sequence, (2) an exact match to the 5’ primer, (3) 

Lucy’s identified region of poor quality at the 0.002 threshold did not extend beyond the 

5’ primer. The 5’ primer (including the barcode) was trimmed from the sequences before 

analysis.  Any sequences that did not meet a length requirement from 180 to 280 bases 

after trimming were discarded.  The 194,781 trimmed, quality-controlled sequences 

(supplemental table 4) were evaluated for human contamination by using BLASTn5 

searches against the E. coli (J01695) 16S rRNA gene.  All but 60 of our sequences 

matched the E. coli 16S rRNA gene with an e-score threshold of 0.04.  For the 60 

sequences that did not meet this threshold, a BLASTn search was performed against the 

entire bacterial 16S rRNA Ribosomal Database Project (RDP)6 database.  Every one of 

these sequenced matched this database with an e-value of 2.00E-90 or smaller.  Taken 

together, these results indicate that our quality-controlled, trimmed sequences had little to 

no human contamination.  Rarefaction curves illustrate that the resulting sequences 

provided sufficient sequence depth in all subjects and in 74 of the 79 samples originally 

collected (supplemental figures 2-3).  

Statistical Methods 
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The standardized logged sequence abundance was used in statistical analysis of 

all sequence counts, using the following calculation: 

LOG10 ((Frequency/ # sequences in sample)*Average # of sequences per sample 

+1)     

As an example, consider a dataset in which there was an average of 2,500 sequences per 

sample assigned to phylum at a 50% confidence level.  For one sample within this 

dataset, 1,000 sequences were assigned to phylum and, of those, 300 were assigned to the 

taxon Firmicutes.  The transformation would be: 

Log10 (( 300 / 1000 ) * 2500 + 1 )  =  2.8756 

Using this measure, the logged sequence proportion corrects for different samples having 

different total numbers of sequences. 

For hierarchical clustering of OTUs, we estimated the probability of obtaining the 

perfect clustering of samples by subject that we observed by sequencing by calculating 

how many different ways there are to achieve perfect clustering and dividing this value 

by the total number of ways the samples could be clustered.  For the purposes of this 

calculation, we consider the hierarchical cluster as arranging the samples in an 

unweighted tree and the results of the cluster as an ordered set of our 74 samples 

represented by the 74 most derived nodes of the tree.  In a tree with perfect clustering by 

subject, there are xi! possible arrangements of samples for each subject, where xi is the 

number of samples for subject i (supplemental table 4).  Since there are 15 ways of 

arranging our subjects while maintaining perfect clusters, the total number of unweighted 

trees that we could have observed that would have contained perfect clustering by patient 

is given by: 
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∏
=

=

15i

1i
iX !15 (1)  

 Since there are 74 samples, there are 74! possible arrangements of all of our 

samples.  Dividing equation (1) by 74! yields a value of 6.78e-65.  We conclude that we 

can reject a null hypothesis that we could have observed perfect clustering of our patients 

by chance with a p-value of essentially zero.  For all taxonomic statistical testing, we 

report results at the most inclusive taxonomic level for which effects were identified.  

From a practical perspective, we were able to determine that statistical testing at fine 

levels of detail was unlikely to be productive.  In many cases, a particular family or genus 

would only be present in a small subset of our subjects, sometimes only in one subject, 

which reduced sample size and, therefore, the power of any statistical analysis, to the 

point where achieving significance was improbable.  We were also aware of the problem 

created by multiple comparisons and wanted to approach our dataset with that issue in 

mind.  To manage power and to provide some control for multiple comparisons, we chose 

to conduct statistical testing at the highest taxonomic level present in at least half of our 

subjects.  While we recognized that the range of bacterial types within a group as large as 

class would likely also represent a range of functional types, our observed correlations 

between physiological changes and bacterial abundance suggested that that function in 

the bacterial group was consistent enough to support the host physiology link.  

For paired t-tests comparing time points, samples missing one or more time points 

(subjects 29, 04) were excluded from the analysis.  To manage the number of 

comparisons for which we had to correct, we removed from statistical analysis any taxon 

which did not have a presence in at least 50% of our subjects (9 categories for the 
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taxonomic class level), a criterion which reduced the possibility of spurious observations 

that might result from low sample sizes.   

To correct for multiple comparisons in statistical testing, we used the Benjamini 

and Hochberg algorithm7 to adjust each  p-value.  The adjusted p-values for a statistical 

test run over a set of taxa (ordered in ascending rank by p-value) is given by N * p(k)/k 

where N is the number of taxa for which a null hypothesis is evaluated by the test 

statistic, p(k) is the p-value produced by the test statistic and k is the rank of the taxa 

within the p-value ranked list.  (Note that, for the top hit with the smallest p-value, the 

adjusted p-value is identical to Bonferroni correction).  The adjusted p-value can then be 

evaluated against a threshold false discovery rate.  For example, an adjusted p-value of 

0.05 indicates that a result could be considered  significant if  a commonly-selected 5% 

FDR threshold was chosen.  We note that our adjusted p-values can be greater than 1 and 

hence cannot be strictly considered as classical p-values. 

 In our PCA models of the relationships between bacterial abundance, host 

genotype and liver fat changes, we recognized the potential problem of model over-

fitting.  Because we selected the two taxa having the highest R2s of the nine regressions 

we performed (one for each class found in at least 8 of our patients), we would expect 

that the first component of the PCA could be well matched to the LF:SF ratio % change.  

We recognize that the reported p-value from the linear regression in Figure 5C is, 

therefore, likely to be anticonservative.  To correct for model over-fitting, we developed a 

permutation procedure which randomly reassigned the taxa associated with each subject, 

then performed regressions between the permuted taxa and the LF:SF % change.  (For 

example, in a permutation the taxa that were associated with subject 04, could be 
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assigned to patient 28; for 15 subjects, the number of possible permutations for this 

procedure is 15! or 1.31E+12.)  We then selected the two taxa that had regressions with 

the highest R2 values for each permutation and used those taxa in a PCA.  We then 

computed the R2 of the first component of that PCA against the LF:SF ratio % change.  

We ran the permutation procedure one million times.  The “permuted p-value” reported 

from this process is the fraction of times that we observed an R2 with a value greater than 

or equal to the R2 we observed in the unpermuted data.  To correct for over-fitting in our 

model in Figure 5D, we performed a similar set of one million permutations to those 

described for Figure 5C.  We maintained the correct SNP genotype assignment for each 

subject while reassigning taxa to different subjects, as before.  The reported permutation 

based p-value, therefore, tests the null hypothesis that, given the established relationship 

between the PEMT SNP and fatty liver, inclusion of microbiome composition adds no 

power to the model.  All permutations were conducted using custom JAVA software 

(source code available on request).   
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Supplemental Tables 

Supplemental Table 1 
 

Status 
Post/ 
Pre 

Study 
# Age BMI Race 

Ethnicity PEMT 

Depletion Status 
Start 
Date 

(Day 1) 

End Date 
(Final 
Study) 

Total 
Days 

in 
Study 

Depleted 
Y/N 

LF:SF        
% 

Change 
Post 28 73 22.2 White HET Y 54.4 1/5/08 3/6/08 62 
Post 29 61 27.8 White WT N -14.6 1/7/08 3/8/08 62 
Post 30 67 30.5 Black HET Y 33.1 3/9/08 5/9/08 62 
Post 31 58 25.3 White HET N 3.1 3/12/08 5/12/08 62 
Post 32 56 28.3 White HO Y 48.5 3/12/08 5/27/08 77 
Post 33 52 28.3 Black WT N -17.6 3/26/08 5/26/08 62 
Post 34 61 26.5 White HET Y 56.3 5/14/08 7/7/08 55 
Post 36 50 29.5 Hispanic HET N -8.8 5/28/08 7/27/08 61 
Post 37 78 22.9 Hispanic HET Y 38.5 7/16/08 9/29/08 76 
Post 38 59 23.3 White HET Y 44.2 7/16/08 8/25/08 41 
Post 39 61 21.4 White HET Y 30.3 8/6/08 10/20/08 76 
Pre 03 20 25.4 White HET N 23.6 5/4/08 7/4/08 62 
Post  41 69 26.6 White WT N 18.8 9/3/08 11/3/08 62 
Post 42 71 26.9 White WT N 2 9/20/08 11/20/08 62 
Pre 04 49 30.5 Black WT N -5.2 5/28/08 7/28/08 62 

 
Table 1. Descriptive information by Subject.  For the PEMT SNP (promoter region:  
12325817), WT = Wild Type, HET = Heterozygous, HO = Homozygous.  
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Supplemental Table 2:  Nutrients in Baseline, Depletion and Repletion Diets 
  Breakfast Lunch 
Nutrients* Baseline Depletion Repletion Baseline Depletion Repletion 

Choline (mg) 129.10 13.14 243.69 150.45 10.54 152.60 
Energy (kcal) 484.29 474.29 377.72 700.47 657.64 640.33 
Pro (g)  7.12 13.79 9.70 16.45 15.16 18.66 
Fat (g)  18.64 15.65 11.14 24.05 21.70 27.17 
Carb (g) 72.65 72.82 59.35 103.58 104.63 78.70 
Folate (mcg) 72.24 20.01 100.30 157.28 4.80 158.08 
Vitamin B-12 (mcg) 0.00 0.00 0.64 0.17 0.17 0.24 
Met (g) 0.06 0.00 0.06 0.32 0.13 0.37 
Cys (g) 0.07 0.00 0.06 0.20 0.03 0.22 
Na (mg) 546.49 266.38 530.36 2560.95 191.20 2709.85 
Water (g) 29.78 244.72 308.24 215.45 116.45 219.36 
Fiber - total dietary 
(g) 3.25 2.38 1.18 1.62 1.44 1.62 
Ca (mg) 29.83 12.61 43.15 187.40 147.95 242.60 
P (mg) 293.67 117.47 263.99 389.20 111.20 440.50 
K (mg) 283.45 743.51 274.11 275.14 652.16 291.54 
Fe (mg) 2.79 1.24 2.54 5.71 0.28 5.72 
Zn (mg) 1.05 0.85 0.85 1.81 0.66 2.09 
Mg (mg) 80.79 74.90 21.86 35.49 9.20 38.19 
Cu (mg) 0.14 0.12 0.12 0.37 0.04 0.37 
Mn (mg) 1.30 1.61 0.78 0.57 0.09 0.57 
Se (mcg) 18.69 8.68 25.81 36.22 3.23 37.66 
Vit C (mg) 0.02 0.02 0.27 0.02 25.44 0.02 
Thiamin (mg) 0.37 0.14 0.27 0.49 0.02 0.50 
Riboflavin (mg) 0.24 0.07 0.45 0.56 0.11 0.59 
Niacin (mg) 2.64 0.21 1.92 5.42 0.24 5.43 
Pantothenic acid 
(mg) 0.36 0.20 0.99 0.83 0.20 0.88 
Vit B-6 (mg) 0.05 0.03 0.10 0.06 0.05 0.07 
Vit A (IU) (IU) 764.76 382.20 436.15 2237.49 617.10 2333.59 
Vit E (mg_ATE) 2.43 1.11 0.76 1.32 1.11 1.32 
Vit D (IU) 0.00 0.00 17.27 0.00 2.40 0.00 
Cholesterol (mg) 0.00 0.00 211.50 46.16 21.00 55.56 
Vitamin K (mcg) 12.32 6.51 3.26 8.39 6.11 8.66 
Protein (%) 5.85 11.32 10.30 9.45 8.99 11.78 
Fat (%) 34.45 28.90 26.64 31.07 28.96 38.57 
Carbohydrate (%) 59.70 59.77 63.06 59.48 62.06 49.65 
Alcohol (%) 0.00 0.00 0.00 0.00 0.00 0.00 

 
*Nutrient values do not include supplements provided to subjects (Supplemental 
Materials and Methods, Study Diets) 
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Supplemental Table 2 (cont.) 
  4PM Snack Dinner 
Nutrients* Baseline Depletion Repletion Baseline Depletion Repletion 

Choline (mg) 95.19 2.09 189.67 206.39 19.85 227.68 
Energy (kcal) 207.93 220.54 316.32 599.83 521.09 581.57 
Pro (g) 1.18 0.16 2.25 24.48 20.11 17.86 
Fat (g) 5.00 5.72 10.00 11.02 7.66 11.12 
Carb (g) 39.55 43.40 53.61 100.91 92.66 103.17 
Folate (mcg) 0.00 0.00 0.00 257.01 89.19 223.70 
Vitamin B-12 (mcg) 0.00 0.00 0.00 0.22 0.10 0.14 
Met (g) 0.00 0.00 0.00 0.60 0.27 0.40 
Cys (g) 0.00 0.00 0.00 0.30 0.15 0.21 
Na (mg) 9.48 9.48 9.48 708.16 358.23 556.15 
Water (g) 211.17 211.17 211.17 386.85 163.20 361.06 
Fiber - total dietary 
(g) 0.00 0.00 0.00 6.76 0.69 6.33 
Ca (mg) 7.11 7.11 7.11 86.30 22.12 76.91 
P (mg) 30.81 30.81 30.81 414.80 115.87 287.79 
K (mg) 61.11 6.76 119.85 735.64 646.43 684.49 
Fe (mg) 0.05 0.05 0.05 4.49 2.19 3.44 
Zn (mg) 0.02 0.02 0.02 2.21 1.12 1.74 
Mg (mg) 2.37 2.37 2.37 63.35 25.07 54.16 
Cu (mg) 0.01 0.01 0.01 0.26 0.12 0.22 
Mn (mg) 0.04 0.04 0.04 1.02 0.73 0.92 
Se (mcg) 0.24 0.24 0.24 37.51 19.60 26.21 
Vit C (mg) 0.00 0.00 0.00 103.35 0.03 103.35 
Thiamin (mg) 0.00 0.00 0.00 0.51 0.26 0.39 
Riboflavin (mg) 0.00 0.00 0.00 0.44 0.06 0.33 
Niacin (mg) 0.00 0.00 0.00 8.10 3.83 5.67 
Pantothenic acid 
(mg) 0.00 0.00 0.00 1.79 0.73 1.55 
Vit B-6 (mg) 0.00 0.00 0.00 0.67 0.25 0.55 
Vit A (IU) (IU) 0.00 0.00 0.00 2778.25 1.15 2587.30 
Vit E (mg_ATE) 0.00 0.00 0.00 1.33 0.01 0.67 
Vit D (IU) 0.00 0.00 0.00 0.00 0.00 0.00 
Cholesterol (mg) 0.00 0.00 0.00 41.59 16.69 24.99 
Vitamin K (mcg) 0.00 0.00 0.00 175.12 0.16 172.30 
Protein (%) 2.27 0.29 2.87 16.30 15.47 12.23 
Fat (%) 21.65 22.80 28.72 16.51 13.26 17.13 
Carbohydrate (%) 76.08 76.91 68.41 67.19 71.28 70.65 
Alcohol (%) 0.00 0.00 0.00 0.00 0.00 0.00 

 
*Nutrient values do not include supplements provided to subjects (Supplemental 
Materials and Methods, Study Diets) 
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Supplemental Table 2 (cont.) 
  Bedtime Snack Total 
Nutrients* Baseline Depletion Repletion Baseline Depletion Repletion 

Choline (mg) 3.38 3.38 10.28 584.51 49.00 823.92 
Energy (kcal) 230.66 150.08 106.68 2223.17 2023.64 2022.61 
Pro (g) 1.96 1.96 2.55 51.19 51.18 51.01 
Fat (g) 9.69 9.69 0.98 68.39 60.41 60.42 
Carb (g) 35.60 14.81 22.18 352.28 328.33 317.02 
Folate (mcg) 12.60 12.60 47.88 499.12 126.60 529.95 
Vitamin B-12 (mcg) 0.00 0.00 0.00 0.39 0.27 1.03 
Met (g) 0.03 0.03 0.05 1.00 0.43 0.87 
Cys (g) 0.02 0.02 0.05 0.60 0.20 0.55 
Na (mg) 182.91 173.32 487.20 4008.00 998.62 4293.05 
Water (g) 216.75 699.83 700.22 1060.00 1435.38 1800.05 
Fiber - total dietary 
(g) 1.26 1.26 0.90 12.89 5.76 10.02 
Ca (mg) 13.83 104.72 108.08 324.46 294.50 477.84 
P (mg) 46.20 46.20 31.64 1174.68 421.55 1054.72 
K (mg) 359.37 357.00 40.88 1714.71 2405.87 1410.87 
Fe (mg) 0.88 0.46 1.21 13.91 4.22 12.96 
Zn (mg) 0.42 0.31 0.24 5.51 2.96 4.94 
Mg (mg) 21.13 18.76 9.80 203.14 130.30 126.39 
Cu (mg) 0.13 0.09 0.07 0.91 0.38 0.81 
Mn (mg) 0.15 0.12 0.50 3.09 2.60 2.82 
Se (mcg) 2.51 2.27 1.62 95.16 34.01 91.54 
Vit C (mg) 8.71 8.71 0.00 112.10 34.20 103.65 
Thiamin (mg) 0.05 0.05 0.13 1.42 0.46 1.28 
Riboflavin (mg) 0.06 0.06 0.17 1.29 0.29 1.55 
Niacin (mg) 1.07 1.07 1.47 17.24 5.35 14.49 
Pantothenic acid 
(mg) 0.11 0.11 0.08 3.09 1.24 3.50 
Vit B-6 (mg) 0.18 0.18 0.03 0.96 0.51 0.75 
Vit A (IU) (IU) 0.00 0.00 0.00 5780.51 1000.45 5357.05 
Vit E (mg_ATE) 1.37 1.37 0.00 6.45 3.60 2.76 
Vit D (IU) 0.00 0.00 0.00 0.00 2.40 17.27 
Cholesterol (mg) 0.00 0.00 0.00 87.75 37.69 292.05 
Vitamin K (mcg) 0.00 0.00 0.25 195.83 12.79 184.47 
Protein (%) 3.30 5.08 9.46 9.18 9.93 10.12 
Fat (%) 36.72 56.52 8.19 27.61 26.37 26.97 
Carbohydrate (%) 59.97 38.40 82.35 63.21 63.70 62.90 
Alcohol (%) 0.00 0.00 0.00 0.00 0.00 0.00 

 
*Nutrient values do not include supplements provided to subjects (Supplemental 
Materials and Methods, Study Diets) 
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Supplemental Table 3: MRI Measurement Values for Liver Fat  and Spleen Fat 
 
Subject Study Day In/out 

Liver  
In/out 
Spleen 

Ratio L/S % change 
B1 to D2 

MRI mean MRI mean 

28 Baseline 107.3 55.9 1.92  
 Depletion 164.2 55.4 2.96 54.4 
      

29 Baseline 97.3 52.3 1.86  
 Depletion 84.2 53.0 1.59 -14.6 
      

30 Baseline 93.7 61.4 1.53  
 Depletion 129.8 63.9 2.03 33.1 
      

31 Baseline 105.1 66.1 1.59  
 Depletion 102.1 62.3 1.64 3.1 
      

32 Baseline 106.8 60.1 1.78  
 Depletion 161.0 61.0 2.64 48.5 
      

33 Baseline 111.6 63.3 1.76  
 Depletion 90.1 62.0 1.45 -17.6 
      

34 Baseline 104.1 79.9 1.30  
 Depletion 164.1 80.6 2.04 56.3 
      

36 Baseline 101.2 75.4 1.34  
 Depletion 97.4 79.6 1.22 -8.8 
      

37 Baseline 100.4 71.2 1.41  
 Depletion 142.6 73.0 1.95 38.5 
      

38 Baseline 120.6 73.4 1.64  
 Depletion 171.3 72.3 2.37 44.2 
      

39 Baseline 98.6 77.0 1.28  
 Depletion 119.8 71.8 1.67 30.3 
      

03 Baseline 102.5 68.1 1.51  
 Depletion 136.2 73.2 1.86 23.6 
      

41 Baseline 145.6 56.1 2.60  
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Supplemental Table 3 (cont.) 
 

 Depletion 179.2 58.1 3.08 18.8 
      

42 Baseline 100.2 75.8 1.32  
 Depletion 102.9 76.3 1.35 2.0 
      

04 Baseline 94.4 57.7 1.64  
 Depletion 100.8 65.0 1.55 -5.2 

 
Table 3.  Components of the B1 to D2 Liver Fat to Spleen Fat 
(LF:SF) ratio percent change.  For each subject, MRI measurements 
of liver fat values, spleen fat values and the ratio of liver fat to spleen fat 
are provided for Baseline and Depletion time points. The percentage 
change in the LF:SF ratio from B1 to D2 is also calculated. 
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Supplemental Table 4 
 

Patient # Usable Samples Usable 
Sequences 

03 B1, B2, D1, D2, R 8,819 
04 B1, B2, D2 7,578 
28 B1, B2, D1, D2, R 18,486 
29 B1, B2 10,299 
30 B1, B2, D1, D2, R 14,448 
31 B1, B2, D1, D2, R 6,571 
32 B1, B2, D1, D2, R1, R2 14,838 
33 B1, B2, D1, D2, R 8,933 
34 B1, B2, D1, D2, R1, R2 9,887 
36 B1, B2, D1, D2, R 13,321 
37 B1, B2, D1, D2, R1, R2 14,970 
38 B1, B2, D1, D2, R 13,763 
39 B1, B2, D1, D2, R1, R2 20,698 
41 B1, B2, D1, D2, R 24,894 
42 B1, B2, D1, D2, R 7,366 
Total 194,871 
Patients         15 
Samples         74 
Sequences Generated 213,375 
Usable Sequences 194,871 
OTUs at 97% 4,857 
 
Table 4.  Subject and sample descriptive statistics. 
Usable sequences met quality standards:  no Ns in 
sequence, exact match to 5’ primer, exact match to 
barcode tag, no low quality sequence beyond 5’ primer.  
Sequences that passed quality standards and that had a 
length 180 nt to 280 nt, after quality trimming, were 
retained.  
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Supplemental Table 5 
 
Class R2 Direction p-value adjusted 

 p-value 
Gammaproteobacteria 0.5679 negative 0.00118 0.01062 

Erysipelotrichi 0.3822 positive 0.01403 0.06314 

Deltaproteobacteria 0.1262 positive 0.19383 0.58149 

Bacteroidia 0.0992 negative 0.25290 0.56903 

Clostridia 0.0253 positive 0.57110 1.02798 

Flavobacteria 0.0246 negative 0.57674 0.86511 

Betaproteobacteria 0.0062 negative 0.78000 1.00286 

Actinobacteria 0.0040 positive 0.82268 0.92552 

Bacilli 0.0022 positive 0.86759 0.86759 

Table 5.  Results from regressions showing predictive value of 
B1 bacteria abundance for choline deficiency induced fatty 
liver development.  Correlations, p-values and adjusted p-values 
from regressions testing the null hypothesis that the slope of the 
linear relationship between B1 abundance levels of each class and 
the percentage change in the liver fat to spleen fat ratio from time 
point B1 (study initiation) to D2 (maximum subject choline 
deficiency) is zero. The adjusted p-value  (see methods) corrects 
the p-value for multiple comparisons (n=9) and shows that only 
Gammaproteobacteria B1 abundance shows a significant linear 
correlation to liver fat change at a false discovery rate of 0.05. 
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Supplemental Table 6 

 
              Unifrac Environmental Distance P-Values 
 
Patient 
 

B1 B2 D1 D2 R1 R2 

28 <=0.01 0.38 1.00 0.99 0.99 *** 
30 <=0.01 0.99 0.97 .081 1.00 *** 
31 0.76 1.00 0.96 0.52 <=0.01 *** 
32 0.60 0.63 0.05 0.59 0.89 0.41 
33 <=0.01 0.99 0.74 0.75 0.97 *** 
34 <=0.01 0.96 1.00 0.81 0.83 0.17 
36 0.89 0.05 0.79 0.74 0.97 *** 
37 0.12 0.93 0.97 0.29 0.09 1.00 
38 0.70 0.89 0.58 0.58 0.64 *** 
39 0.01 0.91 0.98 0.88 0.91 0.17 
03 0.06 0.49 0.39 0.57 0.96 *** 
41 0.02 0.70 0.86 0.71 0.98 *** 
42 0.27 0.35 0.58 0.39 0.98 *** 
04 0.83 0.90 *** 0.87 *** *** 

 

 
Table 6. P-values based on Unifrac analysis of samples within subject. 
The p-value represents the probability that a sample has more unique 
phylogenetic branch lengths that would be expected by chance. Low values 
indicate that the sample is different from the other patient samples. Asterisks 
designate missing samples. Noteworthy are the B1 samples from patients 28, 
30, 33 and 34, where baseline samples are distinct. 
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Supplemental Table 7 
 

Classes B1 to B2 D2 to R B1 to D2 B1 to R 

  p-
value 

adjusted 
p-value 

p-
value 

adjusted 
p-value 

p-
value 

adjusted 
p-value 

p-
value 

adjusted 
p-value 

Gammaproteobacteria 0.727 0.793 0.006 0.216 0.523 0.856 0.041 0.492 

Betaproteobacteria 0.074 0.533 0.008 0.144 0.221 0.530 0.175 0.525 

Bacilli 0.059 0.531 0.627 0.806 0.171 0.560 0.079 0.406 

Clostridia 0.078 0.468 0.841 0.841 0.205 0.527 0.124 0.496 

Deltaproteobacteria 0.528 0.836 0.665 0.798 0.373 0.707 0.086 0.387 

Bacteroidia 0.781 0.803 0.503 0.862 0.151 0.544 0.185 0.512 

Erysipelotrichi 0.659 0.818 0.610 0.845 0.239 0.538 0.307 0.650 

Actinobacteria 0.326 0.652 0.699 0.812 0.595 0.857 0.440 0.792 

Flavobacteria 0.725 0.816 0.551 0.827 0.615 0.820 0.755 0.799 

 
Table 7.  Significance of changes in bacterial frequencies from one time point to 
another.  P-values and adjusted p-value (see methods) from paired t-tests of the null 
hypothesis that there was no change between time points in logged standardized 
sequence abundance for each bacterial class.  P-value indicates the probability that 
the difference could be as significant by chance.  Adjusted p-value corrects the p-
value for multiple comparisons (n=36) and shows that no difference is significant at a 
false discovery rate of 0.05. 
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Supplemental Table 8:  Multivariate Regression Effect Testing 

  Sum of Squares F Ratio Probability > F 
Model 1:  R2=.6545  P=.0017         
% change LF:SF ratio against:       
     Gammaproteobacteria 2509.47 9.46 0.0096 
     Erysipelotrichi 798.67 3.01 0.1083 
        
Model 2:  R2=.8716  P=3.3E-5         
% change LF:SF ratio against:       
     Gammaproteobacteria 1402.09 13.04 0.0041 
     Erysipelotrichi 711.16 6.61 0.0260 
     PEMT 2000.6 18.6 0.0012 
 
Table 8.  Multivariate regression effect testing shows contribution of each factor 
to model.  Probability > F is the probability that if the null hypothesis is true, a larger 
F-statistic would occur due to random error – the probability that the actual effect is 
zero.  Model 1 considers only the taxa Gammaproteobacteria and Erysipelotrichi.  
Model 2 considers both taxa as well as host genotype for PEMT 

 
 
Supplemental Table 9: Weight of Each Subject at Baseline (B1), Depletion (D2) 
and Repletion (R) Time Points 
 
  

Subject 
Baseline 

(B1) Weight 
(kg) 

Depletion 
(D2) Weight 

(kg) 

Repletion 
(R1) Weight 

(kg) 

28 70.6 71.7 72.5 
29 77.6 80.6 81.0 
30 75.5 76.0 75.8 
32 73.3 72.9 71.3 
33 72.8 73.8 73.4 
34 64.6 65.6 64.6 
36 80.9 82.1 83.4 
37 53.5 54.4 54.6 
38 63.7 62.3 62.5 
39 51.0 51.8 52.3 
03 71.2 71.5 72.3 
41 63.7 64.4 64.8 
42 70.9 72.8 71.7 
04 84.0 80.8 81.9 
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Supplemental Figures 

 

 

 

Supplemental Figure 1.  Example of Automated Ribosomal Intergenic Spacer 
Analysis.  An ARISA experiment showing changes in the microbial community during 
the initial baseline stage, when subjects have entered the hospital are placed on a 
controlled diet and a choline depletion stage when subjects are placed on a low-choline 
diet. 
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Supplemental Figure 2.  Rarefaction curve for all samples.  Rarefaction curve shows 
that sampling saturates the sequence space. The red arrows indicate the numbers of 
OTUs at which 93% (566 OTUs) and 95% (843 OTUs) of total sequences are under the 
curve. 
 

 

 

 
Supplemental Figure 3.  Rarefaction curves by patient across samples.  Curves 
illustrate the differing levels of saturation. 
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