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ABSTRACT 

ANDREW DAVID BAXTER.  Tradeoffs in the use of value-added estimates of 

teacher effectiveness by school districts.  

(Under the direction of DR. JENNIFER L. TROYER) 

 

 A new capacity to track the inputs and outcomes of individual students’ education 

production function has spurred a growing number of school districts to attempt to 

measure the productivity of their teachers in terms of student outcomes.  The use of these 

value-added measures of teacher effectiveness is at the center of current education 

reform.  This study links the technical work of academic researchers with the 

implementation and policy considerations school districts are likely to face in 

incorporating value-added measures in their teacher evaluations.  First, I assess the 

choices the district must make in specifying one or more models.  Then, I evaluate three 

potential threats to the validity of the inferences from value-added data:  the influence of 

prior inputs in a student’s education production function, ceiling effects in the test 

instrument, and the sorting of students to teachers.  I end by considering to what extent 

value-added measures could be useful to districts in monitoring the distribution of 

effective teachers to its students and personnel decisions such as retention and 

compensation. 
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INTRODUCTION 

MOTIVATION

Spurred by a new wave of education reform marked by an emphasis on effective 

teachers as the primary lever through which school districts can raise the achievement of 

their students, school districts are increasingly looking at ways to measure the 

effectiveness of their teachers.  Previous waves of education reform focused on student 

assignment (Angrist & Lang, 2004; Godwin, Leland, Baxter, & Southworth, 2006; 

Guryan, 2004; Reber, 2007); school choice (Godwin & Kemerer, 2002), the distribution 

of resources (Hanushek, 1986, 1996); and curricular reforms and management structures  

(Ladd, Hansen, & National Research Council (U.S.). Committee on Education Finance, 

1999).  Yet many of those reforms incurred significant costs for school districts while 

failing to achieve for sustained benefits for students (Hanushek, 2003, 2006; Hanushek & 

Rivkin, 1997). 

Before the advent of standardized testing, and its mandated use prompted by the No 

Child Left Behind Act (NCLB) ("NCLB," 2001), districts did not have outcomes of 

student achievement by which they could measure teacher effectiveness across teachers 

and schools.  Instead, the districts had to rely upon what they took to be signals of teacher 

effectiveness such as credentials or the type of qualifications easily listed on a resume. 

District recruiters sought out experienced teachers with advanced degrees and national 

board certification.  The institutionalization of standardized testing led to an observable 

outcome by which districts can measure one dimension of student learning—achievement 

that can be measured by changes in standardized test scores.  Districts are discovering 

what academic researchers have been noting, although not necessarily unanimously, for 
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the last 10-15 years—credentials, or more broadly, qualifications, are not effective 

predictors of post-hire performance (Rockoff, Jacob, Kane, & Staiger, 2008).  Returns to 

experience diminish greatly after a teacher’s first 4-5 years of teaching.  Advanced 

degrees do not seem to predict effectiveness with students (Kane, Rockoff, & Staiger, 

2006).  Neither do special certifications such as National Board Certification (Cantrell, 

Fullerton, Kane, & Staiger, 2008). In fact, one often cited study of North Carolina 

teachers  suggests that these types of qualifications explain only 3% of the variation in 

effectiveness among teachers (Goldhaber & Brewer, 1997). 

The lack of pre-hire predictors of teacher effectiveness has been exacerbated by the 

lack of post-hire predictors available to school districts.  Most districts rely upon 

classroom observations of teachers by principals.  Typically a principal or her surrogate 

will observe the teacher 3-4 times over the course of a year in a single class period.  The 

principal completes a rubric, and at the end of the year, the teacher is placed in a fairly 

broad category—satisfactory versus unsatisfactory or an equivalently crude 

categorization.  These observations contain a nontrivial amount of noise.  They are 

subject to a lack of inter-rater reliability, potentially biased by the principals’ preferences 

for some teachers over others, and they are spasmodic.  

Beyond these sources of noise is a larger one that lurks in the background—a notion 

of professionalism that simultaneously holds that teaching is a profession and that 

everyone can do it.   There is a well-documented egalitarian strain within education that 

is largely unwilling to make distinctions among teachers about their performance (see, for 

example, Millman & Darling-Hammond, 1990).  As a result, approximately 98% of the 
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nation’s teachers are rated as satisfactory or better (Weisberg, Sexton, Mulhern, & 

Keeling, 2009). 

So districts face a situation in which they have little ability to know before the hire 

how effective a teacher will be, and after the hire, they are receiving reports that 98% of 

their teachers are satisfactory despite stark evidence that many children are not learning.  

In states with collective bargaining, once teachers are hired, it is very difficult to fire 

them.  Whether or not the district negotiates with a teacher union, the district often must 

abide by the tenure regulations that govern teacher employment.  For example, in North 

Carolina, teachers are granted “career status” after their fourth year of teaching.  This 

career status all but guarantees continued employment for the rest of the teacher’s career.  

In NC, approximately 90% of eligible teachers pass through their probation period into 

career status (Goldhaber & Hansen, 2010).  If the teacher is subpar, then the net present 

value of the decision to grant career status is extremely high in absolute value terms both 

in terms of the costs in compensation and pensions as well as social welfare in terms of 

losses to student achievement (Staiger & Rockoff, 2010).  A bottom quartile teacher who 

is granted tenure would likely teach 26 additional years before retiring with 30 years of 

service.  Assuming an elementary teacher instructs 20 students a year, the district is 

subjecting 520 students to subpar teaching, assuming, as the evidence suggests, that the 

teachers are not likely to improve significantly after their first 4-5 years.   The economic 

costs to the students in foregone wages can be quite large.  A recent simulation study by 

Hanushek (2010) estimates that a teacher one standard deviation above the mean teacher 

would generate $400,000 in additional combined income for a classroom of twenty 

students.  Another well-publicized study that reanalyzed the earnings and postsecondary 
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outcomes of students from the Project STAR study came to similar conclusions (Chetty 

et al., 2010).  Students bear the costs of a district’s inability to identify the effectiveness 

of its teachers. 

So do teachers.  Without any strong signal of effectiveness, teachers are 

compensated on schedules laden with incentives to strengthen their qualifications—

staying in teaching to gain more years of experience, enrolling in advanced degree 

programs, obtaining special certifications.  These are the only ways in which teachers can 

improve their compensation and stay in teaching.  Yet even with these potential gains, an 

entrant into the teacher workforce will likely face a highly regulated pay scale in which 

no matter how effective they are, they are not likely to reach their earning peak for 30 

years (North Carolina Department of Public Instruction 2010).  Candidates who are more 

likely to be effective will also be more likely to select out of a profession in which their 

effectiveness will not be recognized.  This selection effect is likely to be large (Lazear, 

2003). We have evidence that this rigid salary schedule, coupled with expanding 

opportunities in other labor markets, has spurred an exodus of many potentially effective 

teachers from the field (Corcoran, Evans, & Schwab, 2004).   

The institutionalization of standardized tests coupled with the creation of 

longitudinal data systems that can now trace a student’s academic trajectory from pre-

kindergarten through graduate school has created the potential to measure teacher 

performance across schools and districts.  A literature largely dominated by economists 

has evolved over the last two decades to attempt to identify teacher effectiveness from 

changes in students’ standardized test scores from one year to the next.  Using a 

production function framework of student achievement, economists seek to parse the 
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teacher’s contribution to these changes from the observable and unobservable 

characteristics of the student, the student’s classroom or peers, and the student’s school.  

Much of the current literature is marked by statistical arguments over identification 

strategies, especially relating to endogeneity concerns.  The debate is highly technical.  

Often missing are the implications of one alternative versus another for a school district 

that wants to add a value-added measure of teacher effectiveness to its evaluation of 

teacher performance.  Academicians often spend large parts of their papers explaining 

how they arrived at their sample.  Typically they are working with large administrative 

data sets that cover a state or a large urban district.  They have large numbers of student 

observations.  They are not interested in identifying a particular teacher’s effect so much 

as they are identifying the variation in teacher effectiveness as a whole.  

KEY QUESTIONS ADDRESSED BY THE STUDY 

This study will serve as a bridge between the academy and district office.  It 

addresses three key questions faced by school districts considering the use of the value-

added measures of teacher effectiveness.  In this study, I evaluate some of the technical 

considerations that districts must consider in choosing one or more value-added models 

for human capital decisions such as recruitment, retention and compensation.  The 

district’s concerns in choosing a value-added model certainly include wanting to get the 

econometrics right.  Yet they also include implementation concerns that are not as urgent 

for the econometrician.   

The three lines of inquiry are as follows: 

1. What are the benefits and costs of various value-added models in terms of the 

identification and specification of teacher effects? 
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2. How serious are two often-cited threats to the validity of value-added 

estimates—ceiling effects in the test instrument and the sorting of teachers to 

students?  What can be done to mitigate the risks they pose? 

3. Are value-added estimates suitable for use in (a) considerations of a district’s 

equitable allocation of its resources across students, and (b) high-stakes 

personnel decisions? 

To answer the first question, I replicate a number of the models that are current in 

the literature, models that are designed to account for a particular concern, (e.g., 

measurement error).  I estimate the models and then the correlations of their teacher 

effects.  Where they are different, I try to explore why.  In assessing the benefits and 

costs, I evaluate the alternatives on their statistical properties (e.g., comparisons of model 

fit) as well as the constraints they pose on the district (e.g., requiring three years of 

student data rather than two).  I arrive at a preferred model that maximizes the number of 

teachers a district can evaluate in a way that minimizes misidentification of an individual 

teacher’s effects. 

To address the second question, I test the preferred model against two threats to 

its validity—ceiling effects in the test instrument and the sorting of students to teachers.  

Ceiling effects could bias the estimates of teachers with high proportions of students who 

scored at the high end of the distribution in the prior year.  The sorting of students to 

teachers could also bias the estimates of teachers even with robust controls for sorting on 

observables.  I test for the presence of such sorting and evaluate the magnitude and 

probability of its impact on estimates from the preferred model. 
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In answering the third question, I use the effect estimates from the preferred 

model to examine two possible policy uses of the estimates.  First, I use the estimates to 

explore the distribution of high and low value-added teachers to students both across and 

within schools.  Second, I evaluate the usefulness of the estimates for high-stakes 

decisions such as tenure or performance-based compensation. 

Section 2 reviews prior research.  Section 3 details the data.  Section 4 discusses the 

methods.  Section 5 reviews the results.  Section 6 concludes. 
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LITERATURE REVIEW 

Over the last twenty-five years, a robust literature on the specification and use of 

value-added models has reshaped education policy.  The emergence of the value-added 

measure in policy discussions has been fueled by the creation of large longitudinal 

administrative data sets that allow researchers to utilize panel data techniques to analyze 

the effect of various educational policies.  Extensive data sets in Texas (Rivkin, 

Hanushek, & Kain, 2005), Florida (Harris & Sass, 2006), Chicago (Jacob, Lefgren, & 

Sims, 2008), North Carolina (Clotfelter, Ladd, & Vigdor, 2006; Goldhaber, 2007) and 

New York City (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2008b) have been used 

repeatedly by groups of researchers first to test various specifications and then to assess 

potential uses of value-added estimates. 

The availability of the data has enticed economists who have both the econometric 

tools to exploit the large longitudinal data sets and a framework—the production 

function—for understanding the effect of educational inputs on student achievement.  

The work of (Hanushek, 1979; Lazear, 2001; Todd & Wolpin, 2003, 2004) posed 

education as a technology in which current and past inputs from the student, family and 

school, including the student’s unobserved endowment influence the student’s cumulative 

acquisition of knowledge.  This work, particularly that of Todd and Wolpin, illuminated 

the assumptions under which causal inferences about the relative effect of different inputs 

could be made.   

Although the production function included but was not limited to human capital 

inputs, the role of teachers quickly became the center of the research program.  The work 

of Eric Hanushek and his collaborators (1986, 1996, 2003, 2005) sparked many 
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economists to shift the research agenda away from measuring the effects of inputs such as 

programs or curricula or the allocation of financial resources.  Decades of increased 

investment in schools in terms of public expenditures spent on reducing class sizes or 

new curricula seem to have done little to increase student achievement  (Hanushek, 

2003).  Although not undisputed (Card & Krueger, 1996; Greenwald, Hedges, & Laine, 

1996; Krueger, 2003), this line of research has changed fundamentally the policy 

questions asked by districts. 

At the same time, the new administrative data sets have allowed researchers to 

uncover the effect of teachers on student achievement, at least the type of student 

achievement that can be measured by a standardized test.  In a recent review of the 

literature, Hanushek and Rivkin (2010b) summarize the consistent finding across studies 

of significant differences among teachers in their effect on student achievement.  These 

studies, from different researches using different data sets, consistently show that that a 

one standard deviation difference in teacher effectiveness results in changes in student 

achievement of 0.11-0.36 student-level standard deviations.  To put the magnitude of 

these effects into perspective, the Tennessee STAR experiment yielded effect sizes of 0.2 

student level standard deviations for decreasing class sizes from 22 to 15 students 

(Krueger, 2003).   

Table 2 summarizes the canonical studies that formed the first wave of value-added 

research.  These value-added studies were structured similarly.  They compared different 

specifications of the models to test their sensitivity to changes in the specification.  The 

work centered on assumptions about the decay of prior inputs, the form of teacher effects 

(random or fixed), and ways to handle the unobserved endowment of the student.  Many 
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of these papers were not testing hypotheses about policies, but rather specifying different 

possibilities for the actual estimate and then gauging the impact of those different 

specifications on the results.   

Although this literature did not result in a consensus on the proper specification of 

value-added models, there have been few papers since these that focus on the overall 

specification of the models.  A consensus seems to have emerged that controlling for 

student, classroom, or school characteristics is less a technical issue and more of a policy 

issue (for an exception, see Ballou, Sanders, & Wright, 2004).  Similarly, the decision 

about whether to model school heterogeneity through school fixed effects is also cast as a 

policy decision concerning how the estimates will be used (e.g., for cross-school 

comparisons).  A consensus has emerged that the teacher estimates must be shrunken of 

their sampling variation through either one of several variations of empirical Bayes 

estimators or by using the correlations of the adjacent year teacher effects (I will discuss 

this technique in the Methods section). 

The one specification issue where there seems to be ongoing disagreement is how to 

deal with measurement error in the test.  An oft-cited recent paper  argues for the use of 

dynamic panel data estimators  to deal adequately with the potential of measurement 

error in the pretest to render the teacher effect estimates inconsistent (Andrabi, Das, 

Khwaja, & Zajonc, 2009).  Similarly Boyd et al. (2008a) argue for an alternative 

approach to dealing with the measurement error that exploits the covariance structure of 

the tests.   

As considerations about the fine points of the specifications have subsided, a newer 

literature is examining threats to validity of the teacher effect estimates that would pertain 
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across most specifications.  The most controversial of these critiques is that introduced by 

Jesse Rothstein in two recent papers (Rothstein, 2009, 2010).  In these papers, Rothstein 

uses a North Carolina administrative dataset to test the strict exogeneity assumptions of 

the value-added approaches.  He conducts a falsification test such as that suggested by  

Todd and Wolpin (2003) and finds that the distribution of effects of the teachers at time 

t+1 on students at time t are almost as large as those of the teacher at time t, leading him 

to conclude that sorting of teachers to students renders estimates of the teacher effects 

biased and inconsistent.  His critique has gained great traction in the policy community 

(for example, see Baker et al., 2010). 

Among economists, Rothstein’s critique generated a vigorous response.  Koedel and 

Betts (2009a) replicate his results and show how adding additional years of data to in 

calculating the teacher’s effect mitigates the bias completely.  Others such as Hanushek 

(2009) have shown that the impact of the teacher at t+1 on the student at time t is actually 

a function of tracking of students to teachers on the basis of test scores. 

A recent experimental study by Kane and Staiger (2008) conducted an experiment in 

which pairs of teachers in Los Angeles were randomly assigned to classrooms within 

their schools.  Kane and Staiger used the strength of the relationship of the difference in 

the value-added of the teachers pre- and post-random assignment as a measure of the 

robustness of the specification against the threat of sorting to students.  They found that 

pre-experimental models that included peer effects but excluded student fixed effects 

yielded results that were not statistically different from the experimental differences in 

the teacher’s value-added. Thus, in their relatively small study, they were able to 
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conclude that sorting of students was not biasing the estimates of teacher effects.  It is 

unclear whether the findings would generalize to other districts. 

A second line of critiques returns to the assumptions of value-added models that are 

rooted in production function framework  (Ishii & Rivkin, 2009; Reardon & Raudenbush, 

2009).  The concerns include the difficulty value-added models have in accounting for 

the joint production of achievement by teachers within the same school; the assumption 

that all prior inputs decay geometrically at the same rate; and more generally what they 

hold to be violations of the assumptions of strict exogeneity. 

A third line of inquiry surrounds the assumption that economists estimating value-

added models are ignoring properties of the test (Koretz, 2002; McCaffrey, Lockwood, 

Koretz, & Hamilton, 2003).  They argue that academic researchers are treating the test as 

a prima facie indicator of student achievement when in fact the properties of the can 

render results between students incomparable.  For example, tests may not be scaled on 

an interval basis so that movement along one part of the distribution could be easier than 

another.  This line of argument can be summarized by concerns of the psychometricians 

that their tests are being used for a purpose—evaluating teachers—for which they were 

not intended. 

Beyond these arguments about the specification of the value-added models, 

researchers are engaged in a heated debate about the proper use of the value-added 

estimates.  This debate is largely being fought through competing reports written by 

academics for policy think tanks.  These reports are passed along in the policy circles as 

evidence that researchers cannot agree on the proper use of the estimates.  Perhaps the 

most prominent one was published by the Economic Policy Institute (Baker, et al., 2010).  
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It critiques the emphasis on value-added measures for their imprecision, inability to 

account for summer loss, sorting of students to teachers, incentives to narrow curriculum 

to tested subjects, and inability to control for factors outside the teacher’s control.   A 

panel from the National Academy of Science reached similar conclusions (Chudowsky, 

Koenig, Braun, National Research Council (U.S.). Center for Education., & National 

Academy of Education., 2010). 

 The Brookings Institution issues a  rejoinder paper  (Glazerman, Loeb, Goldhaber, 

Raudenbush, & Whitehurst, 2010).  The counter argument in this and other similar policy 

briefs is to accentuate the counterfactual in which current teacher evaluation systems do 

not generally distinguish among teachers.  Although it is not a perfect measure, it does 

add information for the district policy maker that is not available from the customary 

proxies of teacher effectiveness such as national board certification, advanced degrees, or 

years of experience. 

 Although some of the literature around uses of value-added estimates has focused 

on the placement of teachers (Clotfelter, Ladd, & Vigdor, 2005; Clotfelter, et al., 2006; 

Hanushek & Rivkin, 2010a), more has focused on the use of value-added estimates to 

inform high-stakes personnel decisions.  In the context of national cutbacks in the teacher 

workforce, several studies simulate how districts might employ value-added results in 

hiring and firing decisions (Goldhaber & Hansen, 2010; Staiger & Rockoff, 2010; Yeh & 

Ritter, 2009).  Another line of research involves the use of value-added estimates to 

inform performance-based compensation systems (Roland G. Fryer, 2011; Lazear, 2003; 

Neal, 2011; Podgursky & Springer, 2007; Springer et al., 2010) 
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There are far fewer studies that illuminate the policy decisions districts face in 

adopting one or more value-added models.  A recent overview for policymakers (Harris, 

2011) should help districts assess the strengths and weakness of value-added measures.  

The greatest contribution to districts has come from the work of McCaffrey et al. of the 

RAND Corporation (McCaffrey, Han, & Lockwood, 2010; McCaffrey, et al., 2003; 

Steele, Hamilton, & Stecher, 2010).  

McCaffrey, Han and Lockwood provide perhaps the most useful guidance. 

They walk districts through a number of decisions ranging from matching teachers and 

students to different estimators.  They list a number of considerations for the business 

rules of matching teachers and students that a district should establish (e.g., the number 

of days a student must be enrolled with the teacher in order to be attributed to the 

teacher).  Then, the authors test several models—regression residuals, ANCOVA, Look-

Up Tables, Gain Scores, Multivariate ANCOVA, Mixed Models, and student fixed 

effects—for their sensitivity to bias due to sorting and their relative degree of precision.  

They find that the mixed models and student fixed effects generally produce more precise 

and less biased estimates of teacher effects.   Finally, the authors explore the implication 

of the uncertainty in the estimates for decision rules about who would qualify for a bonus. 

This study extends McCaffrey, Han and Lockwood to help districts align their 

decisions on value-added models to their policy goals.  From issues of covariate selection 

to the form of the estimated teacher effects, it evaluates many of the statistical concerns 

from the academy by criteria—technical, practical, political—which are of significant 

concern to the district. It addresses directly to specific doubts often raised in districts 

concerning the validity of value-added models—ceiling effects and the sorting of 
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teachers to students.  Finally, it goes beyond the current literature in exploring how the 

value-added effects could be used as measures of equity within a school district. 
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DATA 

This study employs data from an administrative data set supplied by Charlotte-

Mecklenburg Schools (CMS) that includes cohorts of students in grades 5-8 during the 

period 2008-2010.  It contains information on the students, their courses and teachers, 

and their schools.  

STUDENTS 

Data on the students include their demographic characteristics, test score history, 

enrollment patterns (e.g., mobility between schools), attendance and behavioral record.   

The demographic data on students include their gender, English proficiency, designation 

as academically gifted by the district, ethnicity, special education designation, and age 

relative to their peers.  Unlike many data sets used in similar studies, the data do not 

include an indicator of the student’s eligibility for free or reduced lunch, the usual proxy 

for a student’s socio-economic background.  Due to legal constraints, the district no 

longer allows researchers access to this information.  

Student test scores are from the standardized end-of-grade tests administered by 

the NC Department of Public Instruction (NCDPI) 3-4 weeks prior to the conclusion of 

the school year.  These are norm-referenced tests that measure student mastery of the NC 

Standard Course of Study for that grade and subject.  NCDPI converts the students’ raw 

scores to scale scores that are designed to be vertically linked across grades and to 

possess the property of interval scaling such that a one point increase in the scale score 

reflects the same amount of learning across the scale score distribution.  Following 

general practice, I standardize the scale scores by grade and year so that the scores have 

mean of zero and unit variation.  Students who fail the tests are allowed, and in some 
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cases, required, to take a re-test often within the week of the first test.  I use the score 

from the first administration.
1
  There are also a number of accommodations given to 

students with special needs.  These range from having extended time on the test to taking 

alternate forms of the test.  In this study, I use only those students who take the regular 

administration of the test. 

The data also contain information on the student’s enrollment in school.  They 

indicate whether a student is repeating a grade, is enrolled in a school for the first time 

and/or has changed schools within the academic year.  Data on the student attendance 

include the number of absences as well as the number of days enrolled in school within 

the year. The data also include the percentage of time the student spent in out-of-school 

or in-school suspension during the year.  

COURSES 

As with many urban districts, Charlotte-Mecklenburg Schools establishes the link 

between students and teachers through course registration data entered by the school  

through the scheduling interface of the student information system.  There is a record for 

each student in each course period.  The record contains the name of the course, an 

associated course code provided by the state, a course code specific to CMS, the course 

day and period, and an associated instructor.  In NC, end-of-course standardized tests are 

required for any student who is enrolled in courses with a given state course code.  For 

example, any student enrolled after the 20th day of the term in a course with a 2001 state 

course code must take the end-of-grade math test.  Researchers seeking to establish the 

                                                 
1
 Using a subsequent attempt introduces the effect of taking the test a second time into the 

student’s score.  Another alternative—averaging the test and the retest—changes the 

underlying variance of the score. 
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primary teacher for the student in the tested subject often default to the teacher listed by 

this course code.  This assumption may not always hold for a variety of reasons. 

First, student mobility among classrooms threatens the validity of teacher-student 

matches.  When these students move, their course records are overwritten by the student 

information system.  So, for example, a researcher who pulls the course table at the end 

of the school year will not observe the students’ course enrollments in their previous 

schools.  Aside from being unable to apportion the student’s instructional dosage among 

more than one teacher, the researcher’s calculations of the composition of the student’s 

peers can be invalid.   The mobile student may have been enrolled in the first term with 

Teacher A in Class B at School C, but when computing the classroom averages for that 

class, the student will not contribute to those peer means. 

A similar overwriting happens at CMS when a student withdraws from school.  The 

course records of students who withdraw from the district are purged from the course 

data, making it impossible to include them in ex post calculations of peer means. To the 

extent that these students are clustered in certain schools or among certain teachers, their 

omission from the data could bias estimates of the teacher effects, especially if their 

withdrawal was endogenous to the teacher’s effect.   

A second risk of invalid teacher-student matches stems from within-year teacher 

mobility.  A teacher may leave the school and a new teacher takes over.  If the school 

administrator does not update the database, the teacher of record will be the first teacher.  

Or suppose a teacher takes maternity leave.  The student may have an interim teacher or 

the student’s class may be instructed by a principal or other group of teachers who fill in 
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for the teacher.  This type of arrangement will likely never be recorded in the 

administrative dataset and will be unobservable to the district office.   

A third threat to the validity of the teacher-student matches arises from non-

traditional teacher arrangements.  The scheduling software used by CMS presupposes 

static groupings of students with one or two teachers.  Yet increasingly in its elementary 

schools, CMS principals and teachers are using more dynamic groupings of teachers and 

students.  For example, the principals may have all 5
th

 grade students instructed in math 

by one 5
th

 grade teacher who is particularly adept at math.  They may or may not record 

this change in the student information system, even if the system allows this type of 

input.  Or principals might adopt a type of flexible grouping approach where students are 

grouped into small subsets of the class based on instructional needs and then regrouped 

every few weeks.  Each iteration of the groups could have a different instructor. 

A final difficulty in matching students and teachers arises from students having 

varying exposures to different teachers in the same subject.  Some low-performing 

students in a class are pulled out by a resource teacher or specialist for intensive 

instruction in reading.   There is a similar problem with students having varying amounts 

of time with the same teacher.  For example, a student could be enrolled in a math course 

that has a lab component taught either by the same teacher or by a different one.  If it is 

taught by the same teacher, and this is not a standardized practice across the district, then 

the teacher has greater exposure to the student than the teacher’s peers.  To the extent that 

the teacher’s effectiveness is linked to the time with the student, this could conflate time 

and effectiveness and make comparisons among teachers difficult.  Note that this could 

also be a problem if retained students have the same teacher from the prior year.  In some 
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cases, researchers using large state administrative data sets cannot observe these 

complementary teachers.  When they do, they often drop students with multiple 

instructors from the sample.     

Table 3 summarizes the exposure of students to multiple dosages of teachers and 

subjects within a term in 2010.  Of the 42,552 students in grades 5-8 in the sample for 

that year, 51% had only one math course in the year and 48% had two math-related 

courses.  Most of the students with two math-related courses had the same teacher for 

both.  Eleven percent of the sample had two math-related courses with two different 

teachers. 

Notwithstanding the potential threats to the validity of the teacher-student matches, I 

calculated the classroom means by aggregating the individual student data to the 

classroom level while excluding each individual student from his/her classroom mean. 

SCHOOLS 

Similarly, I aggregated all individual data to the school level to create school-

level means.  In addition, I included the school’s percentage of students who are eligible 

for free or reduced lunch.  This measure could influence student achievement in two 

possibly opposite directions.  The school’s free and reduced lunch eligible population is 

an indicator of the needs of its students—needs that are correlated negatively with the 

student’s academic achievement.  At the same time, this percentage is a trigger for a 

school’s receipt of Title I funds from the federal government.  This funding is tied to 

smaller class sizes or access to technology such as smart boards that could conceivably be 

correlated with improved instruction. 
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ARRIVING AT THE SAMPLE 

This section outlines the steps I took to arrive at the estimation samples.   First, I 

selected all CMS students in grades 5-8 during the period 2008-2010 from the master 

student file (N=160,527).  I began with grade 5 because I want to have two prior test 

scores available for each student. 

Second, I merged these students with the test score file.  I summarized the 

demographic characteristics of the 11.4% of students who are missing a test score on the 

regular administration of the test in math in the current year and report this in column 1 

of Table 4 (N=18,285).   These students are more likely to be special education students 

who would not take the regular administration or students who scored much lower than 

their peers in prior years. 

Third, I merged these students with the course file, again summarizing the 

characteristics of the students who are not found in the course file in column 2 of Table 4.  

There are 21,893 students who do not have course records (13,785 of these also had no 

current year test score). Of the 21,893 with no course data, CMS records 438 students 

dropping out or being expelled and 12,460 students transferring out of the district during 

the year.  These students’ course data is wiped from the student information system at the 

end of the school year as a result of a business rule in the student information system 

updating procedure.  There are another 9,407 students for whom I do not have any 

withdrawal data; of these, 8,032 were in eighth grade.  These eighth-graders who 

disappear from the data are evenly distributed across the years 2008-2010. 

Fourth, I divided the remaining students (those with a current year test score and 

course enrollment data, N=120,349) into three groups and summarize their characteristics 
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in columns 3-5 of Table 4. Column 3 provides means and standard deviations for the 

28,513 students who were missing a prior year test score.  Columns 4-5 summarize the 

characteristics of students who have a score in the prior year and do not have one at t-2 

(column 4) or do (column 5).   

Columns 3-5 show that students who are missing one or two prior test scores differ 

significantly on observable characteristics from students who do have these scores.  

Students missing a score in the prior year score (column 3) score on average almost one-

third of a standard deviation lower on the current year test than those who are not missing 

it (column 6).  They are more likely to be special education students, older than their 

peers due to previous year retentions, and in their first year in the school.   Their 

classmates scored on average one-fourth of a standard deviation lower than others in that 

grade and were far more likely to be special education students. 

  Among those students with scores from the prior years, those without a score from 

two years prior (column 4) differ significantly from those with a score from two years 

prior (column 5).  They score significantly lower on the current year test as well as the 

prior year.  They are more likely to be designated as having limited English proficiency 

(LEP), older than their peers, in their first year at the school and Hispanic.  They are 

much less likely to be labeled as academically gifted.  Many of these differences extend 

to their classes as well.  The difference in their classroom mean math scores from the 

prior year is almost 0.15 standard deviations. 

The differences in test scores among the students summarized in columns 3-5 

extends beyond central tendencies.   Figure 1 shows the kernel densities of current year 

test scores for the students summarized in columns 3-5.  The distribution of current year 
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scores for students missing scores from the last two years is well to the left of students 

who are not missing those scores.  A similar pattern holds for students who have a score 

from the prior year but not two years prior.   

The magnitude of the differences among these students has policy implications for 

the district’s decisions on the how to handle missing data on prior test scores.  All value-

added models rely upon having at least two years of achievement data to estimate a 

student’s growth, from which the teacher’s effect is derived.  An identification strategy 

for teacher effectiveness that excludes these students from the analysis leads to several 

potential problems.  First, assuming that the district would impose a floor on the number 

of students a teacher must instruct in order to compute an effectiveness measure, 

excluding these students could lead to some teachers being left out of the analysis 

altogether.  Second, some teachers will have a mix of students who are returning and who 

are new to the district. If a district excludes the new students from the teacher’s 

calculation, it could be estimating the teachers’ effect on only a relatively small 

proportion of their students.     

The CMS data allows me to gauge the magnitude of these threats.  Requiring each 

student to have two prior scores eliminates 156 teachers and 1,060 classrooms from the 

value-added calculation over three years.  For teachers who do not drop out the sample, 

the requirement of students having two prior year scores results in a median loss of 4 

students per year from a median teaching load of 56 students per year (three of the four 

grades in the sample are in middle school).  I will compare estimates of teacher effects 

that include and exclude students without two prior scores as a way estimate the 

difference it will make for teachers who are not excluded from the sample. 
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One alternative to excluding students with missing data from the sample is an 

imputation procedure, and this has both statistical and practical concerns.  Districts are 

likely equipped to handle simple single imputation.   However, the multiple imputation 

technique recommended as a best practice in the statistics literature is more difficult to 

compute, especially in combination with more sophisticated estimators (e.g., multilevel 

models) (Rubin, 1996).  Aside from the computational considerations, the rationale for 

imputing the prior values is hard for district analysts to explain to teachers, especially 

when high stakes are attached to the estimate of a particular teacher’s estimate.  In this 

study, I leave the issue of how to deal with missing data through imputation for further 

research.    

I use as the estimation sample students who have a score in the prior year and who 

may or may not have two prior scores and who have non-missing values on other 

variables.  These students are summarized in column 7 of Table 4.   
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METHODS 
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This section details the methods used to explore the three central lines of inquiry of 

this study.  These lines of inquiry are: 

1. What are the benefits and costs of various value-added models in terms of the 

identification and specification of teacher effects? 

2. How serious are two often-cited threats to the validity of value-added 

estimates—ceiling effects in the test instrument and the sorting of teachers to 

students?  What can be done to mitigate the risks they pose? 

3. Are value-added estimates suitable for use in (a) considerations of a district’s 

equitable allocation of its resources across students, and (b) personnel 

decisions? 

INTRODUCTION 

It can be useful to begin with the simple question that value-added estimates of 

teacher effectiveness are seeking to answer:  what would happen to the test scores of the 

students in a given classroom if they had one teacher rather than another (Kane & Staiger, 

2008)?    To answer this question, a district would need to have multiple teachers 

teaching the same group of students in the same school at the same time of day.  The 

district could then conclude that under ceteris paribus conditions, the difference in the 

student test scores at the end of the course would be the teacher’s effect relative to the 

other teachers.  This, of course, is impossible, but framing it this way points to what from 

a potential outcomes framework, Holland calls the fundamental problem of causal 

inference—someone cannot simultaneously receive the treatment and not receive the 

treatment at the same time (Holland, 1986). 
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One option would be to create an experiment.
2
  The district could randomly assign 

teachers to students within the same school and grade.  If the experimental conditions 

held, it could attribute the differences in the student test scores to the teacher.  In this 

case, from a potential outcomes framework, the district would assume: 

 0ijt tE A      (1) 

where ijtA  is the achievement of student i with teacher j at time t and θ is student’s 

teacher at time t.  From the perspective of the potential outcomes framework, the district 

would be looking at a specific teacher as a treatment effect (see Imbens & Wooldridge, 

2009; Rubin, Stuart, & Zanutto, 2004).  In Equation (1), it would assume that all 

differences among the students’ test scores arose from the treatment. 

The plausibility of this assumption is easily challenged.  A long line of literature 

casts student achievement in terms of a production function in which the teacher’s input 

is just one of many factors (Hanushek, 1986 ; Harris & Sass, 2006; Lazear, 2001; Todd & 

Wolpin, 2003).   These factors include aspects of the child’s neighborhood, home life, 

socio-economic status—factors largely beyond the control of the school district—as well 

as those factors that the school can control—the assigned school, peers and teacher. 

Todd and Wolpin (2003) provide one of the seminal explanations of the 

educational production function and the assumptions required to identify the contribution 

                                                 
2
 Experimental estimates of teacher effects based upon random assignments of teachers to 

classrooms are both relatively rare and usually limited in scope. Researchers from 

Mathematica used random assignment to assess impact of Teach for America teachers, 

see Glazerman, S., Mayer, D., & Decker, P. (2006). Alternative routes to teaching: The 

impacts of teach for america on student achievement and other outcomes. Journal of 

Policy Analysis and Management, 25(1), 75-96.  For a critique of the reluctance of school 

districts to use random assignment, see Cook, T. D. (2003). Why have educational 

evaluators chosen not to do randomized experiments? Annals of the American Academy 

of Political and Social Science, 589, 114-149.. 
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of any one input.  Adapting their argument, I specify a basic education production 

function as follows: 

 [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ]ijt t i it i ijt ijt ijt i iA A t t t t t t c t e  F Y Z C S  (2) 

where A is the academic achievement of student i with teacher j at time t.  F is a vector of 

student i’s family inputs to the student’s achievement, Y is a vector of student inputs that 

are time-varying, Z is a vector of time-invariant student inputs, C is a vector of classroom 

level inputs; S is a vector of school inputs; θ is the teacher; c is the unobserved 

“endowment” or “heterogeneity” of the student, and e is a random error term.  In this 

formulation, the t subscripts denote the presence of the input at time t, making explicit 

that the effect of the input could vary by time.  For example, the student’s unobserved 

endowment ci is time invariant and yet its impact on student achievement could vary with 

time.  In contrast, the student’s classroom C-ijt is both time-varying and its effect could 

depend on time, e.g., a student may be more influenced by the peer composition of the 

class in third grade than in the eighth. 

For researchers using even the rich administrative data sets that have come to 

dominate the last ten years of research on value-added models, some of these inputs are 

often unobservable.  How does a district know how to estimate the family’s input into 

education save for a few proxies such as the decision to enroll in a magnet school or the 

student’s eligibility for free or reduced lunch?  To the extent that these unobserved inputs 

are correlated to the observed inputs and to the student’s achievement, then estimates of 

the observed inputs, including the teacher effects, are likely to be inconsistent.   

Turning to a regression framework for estimating Equation (2), I simplify the 

notation by temporarily collapsing inputs so that , F,Y,Z,C S X  to get: 
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 1 , 1 2 1 1 1... ... ,  for 1,...,ijt ijt ij t ij t i ijtA c t T                 X X X  (3) 

where αt is the estimated effect of the inputs X at time t, λ is the effect of the teacher at 

time t, β is the effect of the student’s endowment and ε is a random error term.  This 

formulation makes explicit the potential effects of prior inputs on the student’s current 

achievement.  A student’s achievement at a given time, t, is an additive function of 

current and past realizations of the family, student, and school inputs, as well as a fixed 

contribution from the student endowment ci and an error term that at this point I cannot 

assume is i.i.d.  

For a number of reasons, estimation of Equation (3) is unfeasible. School districts 

do not observe the contemporaneous or lagged inputs from the child’s family.  In fact, 

school districts do not even approach observing a complete set of the prior schooling 

inputs.  The risk of not accounting for these lagged inputs is that the current year inputs 

could be endogenous, rendering the estimates of the impact of contemporaneous inputs 

(e.g., the teacher effect) inconsistent and biased.   

At this point, it may be useful to frame just what is at stake in the violations of the 

exogeneity assumption. The estimation of Equation (3) is a student-level estimation of 

the impact of the teacher effect on the student’s achievement.  Yet the parameter of 

interest for a district is not the particular impact of the teacher on that student’s learning, 

but rather the impact of that teacher across all the teacher’s students. By aggregating 

Equation (3) across the teacher’s students it becomes possible to distinguish more readily 

between noise and bias.  The noise at the level of Equation (3) may not result in bias 

when these are aggregated to the teacher.     In this framework, I rework Equation (1) to 

the teacher level so that: 
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where i is student of teacher j at time t.  

PREVIEW OF ANALYSES 

The analyses in the study will proceed in three steps: (1) arriving at a preferred 

model for the estimation of teacher effects, (2) testing that based model against threats to 

validity common to most value-added models, and (3) exploring the policy implications 

of the resulting teacher effects.  Table 1 summarizes the analyses. 

TABLE 1:  Sequence of Analyses. 

Sequence of Analysis 

 

Arriving at a preferred model 

 Dealing with lagged score 

 Accounting for student heterogeneity 

 Accounting for school heterogeneity 

 Accounting for classroom heterogeneity 

 Modeling teacher effects 

 

Testing the preferred model 

 Prior Inputs 

 Ceiling Effects 

 Sorting of Teachers to Students 

 

Policy Implications 

 Distributing teachers to students 

 Personnel Decisions  

 

ARRIVING AT A PREFERRED MODEL 

In this section I build a preferred model for estimating teacher effects that I use to 

assess threats to the validity of the inferences about teacher effects and policy 

implications.  In creating the preferred model, I cover four primary issues: (1) ways to 

handle the inclusion of the student’s prior test score, (2) options for controlling for 

student heterogeneity, (3) options for school heterogeneity, and (4) estimating teacher 
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effects.  In order to limit the number of analyses, I do not estimate every permutation of 

the available options.  Instead, I consider only those options that seem likely to be 

consequential for the resulting effects. 

Dealing with the Lagged Score 

I begin building the preferred model by evaluating three common approaches to 

using the student’s prior test score: as a lagged dependent variable, a gainscore and 

instrumenting for the lagged score with the twice lagged score.  In evaluating these 

alternatives, I need to hold constant some of the other options (e.g., how to account for 

school heterogeneity) that will be discussed later in this section.  In this first step, I 

estimate the teacher effects as fixed and conditioned on student characteristics.  In the 

absence of a statistical test with which to compare the results of the models, I evaluate the 

approaches by the constraints on the sample imposed by the approach (e.g., needing three 

years of student data vs. two) and the extent to which their resulting estimates are 

correlated and. I turn now to a discussion of rationale for each option. 

Models 1-2: Lagged Prior Score(s) 

To capture the effect of past inputs on student achievement, many researchers 

include one or more lagged test scores in estimating some form of: 

 1 , 1 2 , 2[ ] ,  for all 2,...,ijt ij t ij t ijt ijt i ijtA A A c t T           X  (5) 

The premise is that the lagged score accounts for the accumulative effect of all prior 

inputs including the student’s endowment, which is unobserved.   

Although including the prior year score may help in mitigating the bias caused by 

being unable to account for prior inputs to the student’s achievement, including it 

introduces three new threats to the validity of the estimated teacher effects.  First, 
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suppose it were the case that the unobserved endowment’s effect on the score was not 

static over time.  If the lagged score captures the unobserved endowment, then I am 

assuming that the correlation between the score and endowment is the same in all time 

periods.  This assumption can be written as  

 
, 1 1 1

0 : ,  for i j
ijt ij t ijt t i i ijt

i j

A A c

H

    

 
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 

X
 (6) 

It is conceivable that this would not be the case.  Could smarter children grow faster than 

their peers, even conditional on the prior score?  If so, then the coefficient on the lagged 

score will be biased upward (Andrabi, et al., 2009).   

A second assumption of the models including lagged prior scores is that the effect 

of the student endowment is constant across time.  This assumption can be expressed as: 
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 (7) 

If this assumption does not hold, then the coefficient on the lagged score would need to 

vary by time or grade if it is to capture the impact of the student endowment on student 

achievement.  I assume Equation (7) holds for the purposes of this study.   

 A third assumption with the inclusion of the lagged score is that the coefficient on 

the lagged score is constant across all students in the sample.  One can allow the 

functional form of the lagged score to vary by including quadratic and cubic polynomials 

so that the coefficient could vary depending on where the student’s prior score lies in the 

distribution of scores (see Figure 2 for the relationship between test scores at t-2 and t, 
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and t-1 and t).  Yet this still homogenizes the trajectories of the students.  One way to 

mitigate this constraint is to include the second lagged score from t-2.  In addition to 

allowing for more of a trajectory, having two prior scores should help to minimize the 

effects of measurement error in the prior scores.  I estimate Equation (5) with the t-2 

score included as well.  I report the results in column 2 of Table 5.   

Model 3: IV Estimates 

Models that include a lagged test score on the left-hand-side are subject to bias in 

the estimated teacher effect due to measurement error in the lagged score.  The lagged 

test score is an additive function of the true score and measurement error.  This 

measurement error could result from many things: the student could have had a bad 

testing day or the test just happened to have questions that the student was well-equipped 

to answer.  The measurement error invites two potential problems.  First, it increases the 

noise in the estimate of the coefficient on the lagged score and attenuates that coefficient.  

Second, it also renders OLS estimates of teacher effect estimates using a lagged score 

inconsistent by inducing correlation between the error term and the lagged score 

(Andrabi, et al., 2009; Harris & Sass, 2006).  

Perhaps the most straightforward solution to the first problem—the attenuation of 

the coefficient on the prior score—would be to correct for the measurement issue by 

using a known estimate of the reliability of the assessment from the testing service.  

However, many districts may not have access to the reliability of the assessment  In this 

study, I do not pursue solutions to using estimates of the reliability of the of the prior 

score in the estimation of the prior scores (Boyd, Lankford, Loeb, Wyckoff, & Grossman, 

2008).  I do pursue an approach often used to correct for the inconsistency wrought by 
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having the lagged score correlated with the error term.  This approach is to instrument for 

the score at t-1 with that of t-2. 

 , 1 ,  for all 3,...,ijt ij t ijt ijt i ijtA A c t T        X  (8) 

I estimate Equation (8) using a 2SLS estimator and report the results in column 3 of 

Table 5. 

Model 4: Gainscore 

As a final option, I estimate a gainscore specification.   In this specification the 

dependent variable becomes the change rather than the level of the score.  The intuition is 

that by moving the lagged score from the right-hand-side to the left, you solve the 

measurement error issue.   

 , 1 ,  for all 2,...,ijt ij t ijt ijt i ijtA A c t T       X  (9) 

In order to understand the drawbacks of such an approach, it helps to consider the 

specific interpretation of the coefficient on the prior year test score.  It can be construed 

as a measure of the decay of academic achievement from one year to the next.   

 , 1ijt ij t ijt ijt i ijtA A c      X  (10) 

Jacob, Lefgren and Sims (2008) show that this coefficient could be the decay of long 

term learning but also measurement error and short-term cramming for test.   

Under most plausible assumptions about the nature of learning, a district could 

assume that 0 1  .  If λ=0, then it is assuming complete decay such that no inputs 

from the prior year would have an impact on achievement in the current year.  If λ=1, this 

implies that there is no decay in learning from one year to the next.  The gainscore model 

effectively constrains λ to one.    The implication of this constraint is that the effect of an 

input is independent of the time that it is applied, leading Andrabi et al. to conclude:  
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"...this implies that the effect of each input must be independent of when it is 

applied...For example, the quality of a child's kindergarten must have the same impact on 

their achievement at the end of age 5 as it does on their achievement at age 18” (2009, p. 

8) . 

Their critique is supported by empirical evidence that the effects of teacher effects do not 

in fact persist without decay (Andrabi, et al., 2009; Jacob, et al., 2008; Kane & Staiger, 

2008). 

While not disputing the implications of the complete decay assumption, Harris and 

Sass (2006) test the degree to which the constraint changes estimated teacher effects.  

They estimate specifications in which the lagged achievement variable's coefficient is 

constrained to various levels of decay. They find the teacher effects are highly correlated 

(r=0.88) regardless of the constraint.    They conclude that the benefits of dealing with 

measurement error outweigh the cost of the complete decay assumption.  I report the 

results of this estimation in column 4 of Table 5. 

Accounting for Student Heterogeneity 

The prior test score captures some but not all of the student heterogeneity.  I begin by 

addressing the heterogeneity of a teacher’s students along four dimensions represented in 

Equation (2).  These include their unobserved endowment or innate ability, c,; their 

unobserved family inputs such as the parental support of their education, F; time-

invariant characteristics, Z, such as a student’s gender; and time-varying student 

characteristics, Y, such as their absence rate.  The primary question for the district is the 

extent to which these variables explain enough of the student’s unobserved characteristics 
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to mitigate substantially the risk that these variables could bias the estimates of the 

teacher effects. 

Many of the common value-added models adjust for student characteristics that 

are both time-invariant and time-varying.  These characteristics can include 

demographics (e.g., ethnicity, socio-economic status and gender), behavior (e.g., 

discipline and attendance), and enrollment patterns (e.g., between-school mobility).  In 

the estimation of the models above that deal with the lagged score, I include sets of time-

varying and time-invariant student covariates.  I use F-tests of the joint significance of 

each set of characteristics a measure of their contribution to the model.   I report the 

results in columns 1-4 of Table 5. 

I discuss two sources of unobservable student heterogeneity.  One of the most 

significant sources of variation among students in their achievement is the family level 

inputs that are largely unobservable to the district.  We know empirically that these inputs 

matter and that they include factors ranging from the number of books in a household 

(Roland G. Fryer & Levitt, 2004; Roland G.  Fryer & Levitt, 2006) to the child’s 

grandmother’s education (Phillips, Brooks-Gunn, Duncan, Klebanov, & Crance, 1998).    

A second source of unobserved student heterogeneity is the student’s own innate 

ability.  This endowment could affect both the level scores in a given year and the rate of 

change of scores across years.  I assume that both sources of unobserved heterogeneity 

would influence a student’s achievement in a given year.  The threat of these sources of 

unobserved student heterogeneity to estimates of teacher effects depends upon the extent 

to which they are also correlated with contemporaneous inputs to the student’s 

achievements.  They might have two types of relationships to the current inputs that 
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could classified as static and dynamic.  Imagine that the student has parents who are very 

engaged in the student’s education and provide outside-of-school opportunities for the 

child that would influence the child’s achievement, perhaps even before entering school.  

I assume that this sort of parent input could be consistent over time and that its effect on 

the student’s achievement is also similarly constant. 

Parental input could also have a more dynamic nature.  Suppose the student of 

highly engaged parents has an off year and receives an unusually low score in math.  In 

this case, the parents may respond by securing a tutor for the child.  If we imagine the 

mean parental involvement in the student’s education over the years, then in this year, 

there would be a positive deviation from this mean that could easily be confused with the 

teacher’s input in that year.  How can the district account for the difference in the input of 

the tutor and the student’s math teacher in that year? 

There is little the district can do to account for time-varying unobservables such 

as the dynamic response by parents to inputs.  Instead, I explore the potential of student 

fixed effects and first differences to capture student unobservables beyond those captured 

by the lagged scores and observable student characteristics in the previous models.  The 

former identifies the impact of the inputs on a student’s achievement by predicting 

deviations from the student’s average academic achievement with the deviations of the 

inputs from their average for the student:   

  2( ) ,  for all 3,...,i iijt it i ijtA t T         X X  (11) 

The latter identifies the effect of the inputs from changes in the inputs from one year to 

the next.   

 , 1 , 1 1 ,  for all 3,...,ijt t ijt t t ijtA t T         X  (12) 
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In this study, I estimate both student fixed effects and first differences and report the 

results in columns 5-6 of Table 5.   

Approaches to estimating teacher effects that depend on panel data from students 

are likely to invite serial correlation into the error term.  The intuition is that the 

unobserved endowment will be correlated with both the lagged score and the current 

score.  If this were true, it would violate the assumption of strict exogeneity on which the 

panel approach to accounting for unobserved student heterogeneity depends.  In this 

study, I test for the presence of serial correlation using Stata’s –xtserial— program which 

is based upon a test developed by Jeffrey Wooldridge (Drukker, 2003).  This test is 

predicated on the assumption that if the errors are uncorrelated, they should be correlated 

at -0.5 in a first difference estimation.  If I find evidence of serial correlation, then it 

would suggest a first-difference approach rather than a student fixed effects approach to 

modeling unobserved student heterogeneity.  I report the results of the serial correlation 

tests in the text. 

After running the models reported in columns 1-6 of Table 5, I select a preferred 

model that I use in the subsequent analyses.  I choose the model based upon the following 

criteria: 

1. Tests of the joint significance of added variables and their contribution to the 

model fit. 

2. When correlations of the estimated teacher effects from two or more models 

are high, I prefer the more parsimonious model. 

3. Maximizing the number of students and teachers that can be included in the 

model. 
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Based upon these criteria, I choose a preferred model of student heterogeneity that I use 

as the preferred model upon to add ways to account for classroom heterogeneity. 

Accounting for Classroom Heterogeneity 

As with students, classrooms of students will also differ in their influence on student 

learning.  The mechanism of the influence is primarily through peer effects (Hanushek & 

Rivkin, 2008; Hoxby, 2000; Hoxby & Weingarth, 2005).  The importance of the 

classroom heterogeneity becomes clear in thinking about estimating, for example, a fifth-

grade teacher’s effect on her students’ achievement in math in a given year.  If she has 

one class, then a fixed effect for the class and a fixed effect for the teacher would pick up 

the same variation.  They would be perfectly collinear. 

It is easy enough to include classroom-level covariates on the right-hand-side of the 

teacher effect estimator.  Most often these covariates are peer means.  It is worth noting, 

however, that one issue complicating what would seem to be a straight-forward 

calculation is identifying the actual class.  For example, using CMS data, I cannot 

reconstruct a class prior to 2007.  Students could be with the same teacher at the same 

time but under different course names, e.g., a special education child might have a special 

education code and be in the same classroom.  Section numbers were calibrated to the 

course code not to a physical location.  The problem, of course, is that this is not 

modeling the student’s production function precisely, but rather approximates it.  In this 

study, I estimate the preferred model from Table 5 with classroom means, and I report the 

results in column 2 of Table 6. 
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Accounting for School Heterogeneity 

There is consensus in the value-added literature that the majority of variation in 

teacher effectiveness is within rather than between schools (Aaronson, Barrow, & Sander, 

2007; Goldhaber & Brewer, 1997).  Even so, a nontrivial amount of the variation in 

teacher effects is across schools. It is difficult to isolate the teacher’s effect from the 

school’s on student achievement.  Unless the district conditions its prediction of a 

student’s achievement on the student’s enrollment in this school, it is likely to conflate 

the effect of the program with the teacher’s effect.  One can easily imagine a number of 

observable and unobservable characteristics of the school—a new reading program or 

dynamic principal—that could similarly add noise to the estimate of the teacher’s effect. 

Researchers commonly respond to this issue of school heterogeneity by including 

either school level covariates (often peer means) or school fixed effects.  Both approaches 

have the effect of constraining the comparison group for a given teacher to teachers in 

similar settings.  Taking the more extreme case of school fixed effects, by removing the 

variation in student achievement associated with attending a specific school, the district 

constrains the estimate of the teacher’s effectiveness to a comparison with other teachers 

in that school.  Although this approach is likely to remove more noise from the estimate 

of the teacher’s effectiveness, it also restricts the district’s policy uses of the data.  For 

example, it does not allow the district to measure the distribution of teacher effectiveness 

across schools.  As a result, any attempt to compensate teachers for their performance on 

this metric would have to be within a school (e.g., the top 10% of teachers in each school 

will get a bonus).  So there is a tradeoff for the district—does the benefit of reducing the 

noise in the teacher effect estimate outweigh the costs of restricting the use of the 
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estimate?  I attempt to explore the magnitude of the tradeoff by estimating models with 

and without school fixed effects (see columns 3-4 in Table 6), comparing, as before, the 

contributions of the school fixed effects to the model fit and the correlations of estimates 

under models with and without school fixed effects. 

Modeling Teacher Effects 

Once I develop a preferred model of student achievement that includes prior scores, 

student characteristics, classroom characteristics and school characteristics, I turn to 

estimating the teacher effects.  In this section, I consider three issues regarding the 

teacher effect estimators: (1) fixed or random teacher effects, (2) adjusting the effects for 

sampling error, and (3) classroom-level shocks. 

Form of Teacher Effects 

Districts must decide whether to estimate the teacher effects as fixed or random.  

In much of the literature, the effects are estimated as fixed, but some estimate them as 

random (see Table 2).  Only Harris and Sass (2006) discuss the methodological 

considerations of the choice.  The assumption of the random effect approach is that the 

random teacher effects will be uncorrelated with the student, class and school 

characteristics that condition the expectation of a student’s change in test scores.  On the 

surface, this assumption seems untenable.  There is strong evidence of sorting of teachers 

to students on observables (Bonesronning, Falch, & Strom, 2005; Boyd, Lankford, Loeb, 

& Wyckoff, 2005; Clotfelter, et al., 2005; Clotfelter, et al., 2006). 

Given the implausibility of the assumption, why would a district consider 

estimating teacher effects as random?  The advantage to the district is twofold: (1) the 

estimated effects are already shrunken by the sampling error and thus require no post-hoc 
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transformation of the effects, and (2) the random effects allow the district a 

straightforward way to estimate effects for every teacher in the sample, i.e., the random 

procedure does not require a hold-out teacher (Mihaly, McCaffrey, Lockwood, & Sass, 

2010).  This simplifies the interpretation of the estimates for the district ( i.e., a mean of 

zero is the average for the average teacher, not the hold-out teacher). 

Adjusting for Sampling Error 

As a set of estimates, the variation in teacher effects will include both estimation 

and sampling error.  Standardized test scores can be noisy measures of achievement for 

individual students. The student may not be feeling well on a given test day and perform 

poorly.  Or the student may have been lucky; the test covered items, such as a reading 

passage, that happened to sync with the students’ own interests.  The noise can result 

from classroom sources as well.  The axiomatic “dog barking outside the classroom” or 

an air-conditioning unit that malfunctions on the day of the test are both examples of 

classroom-level shocks that could introduce noise to a student’s test score.  

The level of noise in individual students’ test scores poses a threat to the validity 

of inferences about the effectiveness of teachers or schools in raising those scores.  How 

much signal can a district wring from noisy student test scores?  To the extent that this 

noise is random, one strategy is to assume that as student scores are aggregated across a 

teacher’s class, the errors would wash out.  One way to see this is to examine the 

relationship between the number of student contributing to a teacher effects and the 

variation of those teacher effects.   In one of the canonical papers on the influence of 

sampling variation on accountability systems, Kane and Staiger (2002) show that schools 

in North Carolina with smaller numbers of students have effectiveness estimates at the 
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extremes of the distribution.  The magnitude of the estimates depends in part on the 

number of observations attributable to the teacher or school.   

A common way to deal with both sources of error is through empirical Bayes or 

“shrinkage” estimators.  The idea follows the logic prevalent in the multilevel model 

random effects literature (Rabe-Hesketh & Skrondal, 2008; Snijders & Bosker, 1999; 

West, Welch, & Galecki, 2007) in which you partition the residual variation from a 

student level regression of the current test score on prior year test scores and any 

covariates into those student, class and teacher level error. The shrinkage estimator 

multiplies the teacher effect by an estimate of its reliability as measured by the ratio of 

the signal of the teacher effect to the signal plus the noise.  Thus estimates that have high 

amounts of noise are shrunken towards the population mean.  In the literature, these 

empirical Bayes estimates are estimated primarily in two different ways. 

The most common way is to estimate the teacher effects as fixed effects and then 

to apply a post-hoc shrinkage procedure (Harris & Sass, 2006; Kane & Staiger, 2008; 

Koedel & Betts, 2007).  In this procedure, the author reports both unadjusted and 

adjusted variations of the teacher effects.  The unadjusted are just the variation in the 

teacher effects.  The adjusted variation of teacher effects is unadjusted variation of the 

teacher effects minus the sampling error.  Typically, the literature uses the mean of the 

squared standard error of the teacher effects as the estimate of the sampling error. 

Another way to generate the empirical Bayes estimates is to estimate them 

directly through a procedure such as Stata’s –xtmixed— program.  Here the estimates of 

the teacher effects are not estimated directly, but rather as predictions of the random 

effect that have been pre-shrunk.  From a district’s perspective, the key tradeoff is that 
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estimates of the teacher effect can take substantially longer to complete since they are 

maximum likelihood estimates.   

In this study, I estimate the proportion of the unadjusted variation in teacher 

effects that is attributable to sampling error and compare the resulting distributions of 

teacher effects from three specifications: (1) unadjusted from a teacher fixed effects 

approach, (2) the same, but adjusted using the procedure above for the adjustment, and 

(3) teacher random effects.  I report the resulting distributions in columns 1-3 of Table 7. 

I graph the kernel density plots of the distribution of the effects in Figure 3.  Finally, in 

Figure 4 I plot boxplots of the range of teacher effects by the number of students 

contributing to the estimated teacher effects as an attempt to gauge the sensitivity of the 

estimates to the number of students both for adjusted and unadjusted variations.  

Classroom Shocks 

A final consideration in estimating the teacher effects is the extent to which they 

may be confounded with unobservable classroom characteristics.  Recall that even if one 

controls for classroom observables, you might still confound teacher and classroom 

effects if you have only one year of data for a teacher.  A teacher might have had a 

particularly good match with the class in that year, or there might have been a classroom 

level shock.  One way to handle this is to estimate multiple classes (in the case of 

elementary schools, this will be mean multiple years) and treat the classroom effect as a 

teacher-by-year effect nested within the teacher (Kane & Staiger, 2008; Rivkin, et al., 

2005).    

In this study, I test for the presence of a classroom level unobservable effect that 

is distinct from the teacher effect and report the results in column 4 of Table 7.  I estimate 
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the preferred model that emerges from the previous sections with and without the 

teacher-by-class effect.  I use likelihood ratio tests to determine if the inclusion of this 

effect improves the fit of the model and the correlations of the teacher effects to test the 

practical significance of the difference. 

TESTING THE PREFERRED MODEL 

In this section of the study, I transition from comparing models on a number in terms 

of the specifications used to identify teacher effects to assessing threats to the validity 

that are common to all models.  I examine: (1) the assumption that the prior test scores 

capture prior inputs to the student’s production function, (2) the potential for ceilings and 

floors in the test score instrument to bias estimates of teacher effects  and (3) the ways in 

which sorting of students across teachers within and between schools could bias teacher 

effect estimates. 

Prior Inputs 

A primary assumption of including the student score from t-1 is that it captures all 

prior inputs to the student’s education production function.  This assumption can be 

written as:  

 , 1 , 1, ,... , , , ,  for all 2,...,ijt ijt ij t ijT i ijt ijt ij tE A c E A A t T 
       X X X X  (13) 

where X is the matrix of student inputs. 

This assumption can be tested easily. I estimate the preferred model and test for 

whether the coefficients on the twice lagged inputs are jointly zero.  If so, there is 

empirical support for the assumption that the lagged score has captured the impact of the 

prior inputs. 
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Harris and Sass (2006, see Table 2) conduct a similar test and find no evidence of an 

impact for the prior inputs when the prior year score is included.   As a sensitivity test, I 

add the student’s score from t-2 and again test the joint significance of the prior inputs.  I 

report the results in Table 9.   

Ceiling Effects 

One criticism of value-added models is that they will likely bias downward the 

effects of teachers who instruct students who are already at the high end of the 

distribution.  The argument is that these students do not have “as far to grow” as those 

who are at lower ends of the distribution. 

There are at least three threats to the validity of teacher effects for teachers whose 

students have scored at the high end of the distribution in the previous year.  First, these 

teachers may focus on content that goes beyond the standard course of study and thus 

beyond the scale of scores.  To the extent that these teachers’ added value occurs beyond 

the range of knowledge assessed by the testing instrument, then these teacher effects will 

be biased downward.  Koedel and Betts refer to this as a “lost information” problem 

(2009b, p. 7).  This threat to the validity will not be addressed in this study.  It is a 

question of the scope of the standard course of study. 

The second threat to the validity concerns the assumption of interval scaling:  a one-

unit movement along the distribution of scores reflects the same magnitude of change in 

student achievement throughout the entire distribution.  If this assumption does not hold, 

then equally effective teachers could have different value-added scores depending upon 
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their students’ scores in the previous year. For the purposes of this study, I assume 

interval scaling of the test score distribution. 

  A third and related threat to the validity is a function of the range of scores 

possible on the test.  Students who scored high on the test in the previous year do not 

have as much “room to grow” as their peers and thus the potential value-added of their 

teachers is truncated or biased downward ” (2009b, p. 7).  The hypothesis is that if the 

teacher had a concentration of students whose previous year scores were at the top end of 

the distribution, then the teacher’s effect would be biased downward.  As Koedel and 

Betts point out, this hypothesis cannot be tested by examining the correlation between the 

previous year’s score and the gains from that year because the presence of regression to 

the mean will induce a negative correlation.  Prior scores are negatively correlated with 

gains.  Nor can this hypothesis be tested by examining the correlation between prior 

scores and the teacher’s current-year value-added estimate on the assumption that a 

negative correlation would be evidence of a ceiling effect bias.  One could find little to no 

evidence of correlation but this would assume that teacher effectiveness is not sorted a 

priori by student ability. 

There has been relatively little work done on the potential for ceiling effects to 

bias value-added estimates.  Koedel and Betts (2009b) conduct simulations in which they 

right-censor the distribution of scores at various points and then test the effect of those 

ceilings on teachers’ value-added estimates.  They find that their estimates of teacher 

effects are robust to changes in the ceiling as they move it down to the 75
th

 percentile (a 

skewness of -0.64).  The correlations of teacher effects with a 75
th

 percentile ceiling are 

correlated at 0.94 with the teacher effect estimates under no ceiling. 
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I cannot directly test the hypothesis that ceiling effects bias the estimates of 

teacher effects in the sample.  However, following the empirical strategy of Koedel and 

Betts (2009b), I can explore the potential for bias given the distribution of student scores 

across teachers.   First, I use kernel density plots of the actual and lagged scale scores for 

math in grades 5-8 to illustrate the extent to which the distribution of scores is negatively 

skewed in a way that might produce ceiling effects in the test.  Second, following Koedel 

and Betts (2007), I divide students into deciles by their scores at t-2 and plot their average 

gains from t-1 to t.  Smaller average gains in the upper tail of the distribution could 

indicate the presence of ceiling effects. 

Third, I plot the value-added of teachers with by the percentage of their students 

in to the top and bottom 10% of the student distribution of scores at t-1.  Smaller 

variation in the teacher effects for teachers with high proportions of previously high-

achieving students could indicate that the test instrument is not picking up the full range 

of these teachers’ contribution to their students’ achievement.   

Fourth, I analyze the proportion of students whose maximum gain on the test from 

t-1 to t will be smaller than the maximum teacher effect in that year.  The intuition is that 

teachers with high concentrations of students at the top of the range could be at a 

disadvantage if the top teacher effect would be unattainable for them given their students.   

For example, suppose that a teacher at the 95
th

 percentile of the effectiveness distribution 

improved their students’ scores 0.4 standard deviations, or roughly 4 scale score points 

more than the average teacher.    It is conceivable that an effect of this size could be 

impossible given the teacher’s students’ prior year scores.   
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Fifth, as a test of the effect of students at the high end of the distribution of scores 

from t-1 on the teacher effects, I re-estimate the base model with samples trimmed at the 

99
th

, 95
th

 and 90
th

 percentiles of the distribution.  I identify how many teachers are 

excluded from the calculation under each trimmed sample and the correlation of the 

effects from those that remain. 

Finally, following a suggestion from Tim Sass (2010), I estimate the preferred 

model but with test scores in the current year normalized by the mean and standard 

deviation of the decile of the student’s prior year score.  The intuition behind this test is 

that the coefficients on the lagged score could vary by the position of the prior score’s 

position in the distribution.  By normalizing based upon the prior score, I would be 

modeling more flexibly the relationship between the prior score and the current score, 

perhaps even more so than including quadratic and cubic forms of the prior test (for an 

example of this technique, see LoGerfo, Nichols, & Reardon, 2006; Reardon, 2008).  I 

compare the teacher effects estimated teacher effects from this model with those of the 

preferred model as a sensitivity test for the effect of the test score. 

The potential for ceiling effects in test scores to bias estimates of teacher 

effectiveness depend largely on the extent of student sorting across teachers.  In the next 

section, I outline how will I test the potential of such sorting to bias estimates of all 

teachers, not just those whose students scored at the top of the distribution in the prior 

year. 

Sorting 

The issue of sorting of teachers to students both across and within schools poses 

significant risks to inference about the effectiveness of teachers.    It may be useful to 
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observe these mechanisms through a measurement error framework—this time not in 

terms of the students’ test scores, but rather in terms of the teacher’s estimates.   In this 

light, teacher effects are a function of their true effectiveness and an error component.  

We can never observe true effectiveness for it is always manifested in the context of 

confounding factors such as the characteristics of the students, classrooms and schools in 

which teachers demonstrate their effectiveness.   

One approach to identifying the true effectiveness in the midst of sorting of teachers 

to students is to follow the strategy outlined above in the derivation of the preferred 

model where I control for sorting by conditioning teacher effects on observable student, 

classroom, and school characteristics.  The presupposition of this approach is that true 

teacher effectiveness is distributed randomly across students conditional on the included 

characteristics.   Hence, controlling for differences in students, classrooms and schools 

will reduce bias to the extent that these conditions influence the observed effects  of 

teachers whose true effectiveness is not sorted across these student, classroom and school 

characteristics.  This is the approach adopted in this study, and the sensitivity tests 

proposed in this section follow accordingly. 

Yet before I proceed to the sensitivity tests, I want to note that it could also be the 

case that true teacher effectiveness is not distributed randomly across students.  In this 

case, controlling for the student, classroom and school heterogeneity could conceivably 

bias the teacher effects.  For example, suppose that truly highly effective teachers sorted 

themselves to schools with affluent children.  In this case, true teacher effectiveness 

would be positively correlated with a school’s socioeconomic status.  By controlling for 

the school characteristics, I would bias downward the effectiveness of these teachers.    
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Because it cannot observe true teacher effectiveness, the district cannot assess the 

extent to which true teacher effectiveness is sorted across schools.  However, the district 

can assess the benefits and costs of controlling for the student, classroom and school 

heterogeneity.   Resuming the scenario above, suppose that the district’s most effective 

teachers (true, not observed) sorted to affluent schools, and by controlling for the 

attributes of these schools in its value-added model, the district was in fact biasing 

downward these teachers’ observed effect estimates to an undetermined extent.  In the 

context of a pay for performance system, these teachers are already receiving non-

pecuniary awards for being in these schools (e.g., increased parental involvement, less 

discipline problems, strong PTA support).  There are already incentives now for these 

teachers to cluster to these schools.  Even if the value-added model provided a slight 

disincentive to be at these schools, the district would need to decide if this is worse than 

the status quo in terms of increasing the probability that low-performing students in high-

poverty schools have access to the most effective teachers?  

Both across and within school sorting of teachers to students can threaten the validity 

of the value-added estimates.  There is an extensive literature on the sorting of teachers 

across schools (Boyd, et al., 2005; Clotfelter & et al., 2004; Clotfelter, et al., 2005).  

Although there is less on the sorting of teachers to students within schools, the political 

science literature would suggest that within school assignment of teachers to students 

may be a principal’s way of meting out rewards to favored teachers (Wilson, 1989). In 

fact, this type of sorting could be exacerbated by a compensation system which limits 

differential rewards based upon effectiveness among teachers.  For example, in CMS, 
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novice teachers are disproportionately assigned previously lower-performing student both 

across and within schools (Center for Educational Policy Research, 2010).   

If this sorting occurred only on the basis of observable characteristics of the student, 

then the inclusion of these characteristics in the model to estimate teacher effects should 

mitigate the threat to validity of these estimates.  However, if the sorting occurs on 

unobservable characteristics, then the threat is more pernicious.  The threat of this type of 

sorting stems largely from the endogeneity of the student’s inputs at time t to the 

student’s unobserved endowment.  For example, if the student’s parents lobby for a 

particular teacher assignment and the human capital underlying the lobbying also predicts 

the student’s score under that preferred teacher, then the estimate of that teacher’s effect 

will be inconsistent.   

One can imagine two types of within-school sorting of students to teachers.  The 

first, and perhaps relatively easier one to account for, is that based on time-invariant 

student characteristics.   If this were the case, then a model including student fixed effects 

should account for this sort of tracking.  For example, this would remove the correlation 

between a student’s assignment and the student’s unobserved endowment.  For the 

student fixed effect to mitigate the endogeneity created by the parental lobbying for the 

student’s assignment, one would have to assume that this lobbying was constant across 

years.  Or, as Rothstein (2009) notes, it would be, at least in terms of the student’s 

unobserved characteristics, as if all decisions based on the child’s placement were made 

at the beginning of the kindergarten and never changed throughout the student’s 

education. 
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However, it seems equally likely that student assignment to teachers could result from 

dynamic rather than static processes.  For example, consider the recent controversy 

around the publication of value-added estimates for teachers in the Los Angeles Unified 

School District by The Los Angeles Times (Song, Felch, & Smith, 2010).   Might astute 

parents in Los Angeles examine the value-added estimates for their children’s 

prospective teachers and then lobby the principals for assignment to these teachers?  To 

the extent that the principals respond to this pressure, then the assignment is likely to be 

endogenous. 

Rothstein (2009, 2010) proposes a simple falsification test for the presence of 

student sorting suggested by Todd and Wolpin (2003). He estimates the effects of 5th 

grade teachers in North Carolina on the 4th grade gains of their students.  He finds almost 

as much variation in the effects of the 5
th

 grade teachers as the student’s 4
th

 grade teacher 

although of course, at that point in time the 5
th

 grade teachers had never taught the 4
th

 

grade students.  Koedel and Betts (2009a) were able to replicate Rothstein’s results on 

their own sample of students from San Diego.  Both use the ratio of the variation of the 

effect of future teachers to the effect of current teachers as a measure of the size of the 

bias. 

Nevertheless Rothstein’s critique has left many researchers unconvinced 

(Hanushek & Rivkin, 2009).  Suppose a class of 4th grade students has a highly effective 

teacher and as a result their test scores rise.  Now suppose that their school sorts students 

based on their test scores at the end of the year.  These students will be assigned to a 

certain fifth grade teacher because they had such gains in fourth grade.  If one conducts 

Rothstein’s falsification test and estimates the effect of the 5th grade teachers on the 4
th
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grade gains, there will likely be a correlation that is induced by the sorting.  After 

replicating Rothstein’s findings, Koedel and Betts (2009a) conduct sensitivity tests and 

conclude that including multiple years of data for a teacher reduces the bias from the 

sorting significantly in all models and completely in the student fixed effect specification. 

In this study, I estimate the extent of sorting of students to teachers across schools 

and the extent it biases estimates of teacher effects.  First a I plot the means and standard 

deviations of the student scores from t-1 by classroom under three conditions:  the actual 

sorting in the data, a simulation of random sorting within school year and grade, and a 

simulation of perfect sorting under the same strata.  Comparing the means and standard 

deviations across these scenarios is one gauge of the extent of sorting. 

Then, following an approach adopted by a several recent studies (Aaronson, et al., 

2007; Hanushek & Rivkin, 2009; Koedel & Betts, 2009a), I identify classrooms that seem 

to approximate random assignment on observables.  The strategy is to identify a subset of 

classes for which I cannot reject the null hypothesis of no sorting on observables.   First, I 

regress the student test at t-1 on a vector of indicators for class assignments in each 

school at t.  Then, I test the hypothesis that the classroom indicators are jointly 

significant.  Schools in which I fail to reject the null hypothesis will be placed into a 

sample of schools with random assignment on observables.  Then, I rerun the basic 

specification on this restricted sample.  The change in the variation of teacher effects in 

the restricted sample is an estimate of the effect of sorting.   

IMPLICATIONS FOR POLICY 

Estimates of teacher value-added are not so interesting in and of themselves, but 

rather in the context of district policy.    Many districts are interested in use of these 
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estimates as one component of compensation reform (Podgursky & Springer, 2007; 

Springer, 2010).  Others will be interested in using the data as a way of increasing the 

probability that low-performing students will receive high value-added teachers.  For 

example, one could imagine a scenario where a district ceased to monitor the equitable 

distribution of inputs to the education production function that have trivial effects on 

student achievement (e.g., the number of VCRs in a building) and turned instead to 

monitoring the impacts of inputs such as high value-added teachers. 

In this section, I explore two such policy issues.  First, I assess the potential uses of 

value-added data to inform district policies of distributing teachers to students.  Second, I 

evaluate the extent to which districts can reliably compare the value-added estimates of 

teachers for use in personnel decisions.     

Distributing Teachers to Students 

In this study, I explore the sorting of effective and ineffective teachers to students.  

Effective and ineffective teachers can be sorted to students across and/or within schools.  

If teacher effectiveness is primarily sorted across schools, then the district will likely try 

to incentivize effective teachers to switch schools to even out the distribution, assuming 

that the teacher’s effectiveness is transferable.  If teacher effectiveness is primarily sorted 

within schools, then the district can focus less on movement of teachers and more on 

matching teachers to students within those schools. 

First, I use a variation decomposition approach to estimate the magnitude of the 

variation in teacher effectiveness within and between schools.  I estimate the preferred 

model for math scores for grades 5-8 in 2010 with and without school fixed effects.  The 

proportion of the variation in the teacher effects that remains after the inclusion of the 
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school fixed effects is an estimate of the within-school variation.  To show this 

graphically, I overlay kernel density plots of the distribution of teacher effects across and 

within schools. As a way to depict the across-school variation, I plot the range of teacher 

effects within each school in the district. 

Once I establish the extent of across and within school variation in teacher 

effectiveness, I turn to estimating the extent to which these effective and ineffective 

teachers are distributed to specific types of students both across and within schools. To 

test the presence of the sorting, I divide students in grades 3-7 in 2009 into by-grade 

quartiles of achievement in 2009.  Then, I estimate the across and within-school 

probabilities that these students are assigned in 2010 to teachers whose value-added as of 

2009 was in the top 25% or bottom 25% of the district.   

The sorting of teachers suggests that subject to the dynamics of the teacher labor 

market, a superintendent could assign or incent more effective teachers to move to 

schools with lower concentrations of effective teachers.  There is evidence to suggest that 

teacher effectiveness is portable and not school-specific (Lockwood & McCaffrey, 2009; 

Sanders, Wright, & Langevin, 2010).  If this were the case, moving the effective teachers 

to schools with less effective teachers could increase student achievement for those 

students in the receiving schools but could decrease the student achievement for those 

students in the schools from which the effective teachers are moved.  The predicted 

general equilibrium benefits of this sort of policy would depend, in part, upon (1) the 

effectiveness of the teachers who replaced the transferring teachers, (2) whether effective 

teachers are effective across different student sub-types, and (3) whether different sub-

types of students are equally responsive to an effective teacher.  If a low-performing 
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student benefits more from a highly effective teacher than a high-performing student, 

then one can imagine a scenario in which from a social welfare perspective, there is a net 

gain in student achievement.  For example, the gains in student achievement for lower-

performing students from having a top 25% teacher could be greater than the losses in 

student achievement from higher-performing students who move from having a top 25% 

to having an average teacher. 

To investigate this possibility, I adapt an analysis from Aaronson, Barrow, and 

Sander (2007).  I use the same groupings of students in grades 3-7 in 2009 as above and 

calculate the mean gains in their test scores from 2009 to 2010.  Then I estimate teacher 

effects from the preferred model and report the standard deviation of the teacher effect in 

student level standard deviations.  If I divide this standard deviation by the average gain 

for the group, I have an estimate of the proportion of average gain that is attributable to 

the teacher effects.  If lower performing students are benefiting more from higher value-

added teachers then there are possibilities that their gains could offset the losses from 

other students who are losing their better teachers.  

Personnel Decisions  

In addition to using value-added estimates to inform its policies of distributing 

teachers to students, a district may want to use the estimates as a measure of teacher 

performance in the context of evaluation, compensation and retention policies.  The 

degree of stability of the estimates across time will inform the degree to which they can 

be used for personnel decisions. 



58 

 

Following much recent work (Aaronson, et al., 2007; Jacob, et al., 2008; McCaffrey, 

Sass, Lockwood, & Mihaly, 2009), I partition the variation in teacher effects from the 

preferred model into three parts  

 2 2 2

,where

var( ) , var( ) , and var( )
kt k kt kt

k kt kt ktse

   
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where k is the part of the teacher’s effect that is persistent across time, kt  is the part of 

the teacher’s effect that is specific to year t, and kt  is the sampling error.  Then, 2

becomes the variation in the persistent part of teacher effectiveness (i.e., the between-

teacher variation) and can be estimated as the correlation of teacher effects across time; 

2 is the variation within teachers over time (i.e., the within-teacher variation); and 
2
ktse is 

variation in the sampling error which can be given by the mean squared error of the 

standard errors of the teacher effects. 

Under this decomposition, I estimate the reliability of the teacher effect estimate 

(i.e., ratio of signal to noise) as: 
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The reliability of the estimate is another way of thinking of the shrinkage factor in the 

empirical Bayes approach to shrinkage.  It is that proportion of the variation in teacher 

effects that is not due to random or sampling error.  The stability of the estimate is the 

proportion of the variation that is attributed to the time-persistent component of teacher 

effectiveness.  It can be given as: 

 

2

2 2 2
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From here, I estimate the between-teacher variation as  
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and the within-teacher component as: 
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The district could be interested in the latter two estimates as a way of informing its 

resource allocation between, for example, recruitment/deselection and professional 

development.  For instance, if the proportion of within-teacher variation is low relative to 

that between teachers, then it could suggest that the professional development activities 

may have less return than recruiting and tenure policies.     

The degree to which these measures of teacher effectiveness are consistent for a 

specific teacher over time is likely to influence the buy-in from the teacher and the 

measure’s overall usefulness a policy tool.  On the one hand, if the estimates are not 

sufficiently stable, then it is unlikely that the teachers and principals will see much of a 

signal in them and any use of the measures in an incentive capacity is likely to be 

undermined.  On the other hand, if the measures are not sufficiently nimble or malleable, 

then it is likely that they will not pick up on changes in the effectiveness that stem from 

the teacher’s effort to improve. This, too, would diminish the signal. 

In this study, I follow the literature in assessing the stability of the estimates through 

(a) the correlation of the point estimates of teacher effectiveness and (b) transition 

matrices that record the quantile of a teacher’s effectiveness in two successive time 

periods.  I run two sets of analyses—one on the whole sample of teachers in the district 

and the other on a restricted sample of only those teachers present in the district in both 
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time periods.  The former is likely to be the more policy relevant to the district—it is 

what the teachers will see about their performance.  The latter deals with selection and 

attrition dynamics that can add noise to the estimated correlation.  For example, a given 

teacher’s performance could look like it varies more than it does if the overall average 

teacher performance in the district is changing, i.e., the reference group changes  

The pursuit of value-added estimates of teacher effectiveness is motivated by 

districts that seek to distinguish among their teachers’ effect on student achievement for 

reasons as varied as professional development to compensation.  Because much of the 

concern in the literature on value-added models of teacher effectiveness has been in 

estimating the variation in teacher effectiveness rather than the estimation of individual 

teacher effects, the issue of how districts should handle the imprecision of the effect 

estimates has been given less attention than perhaps it deserves (for a notable exception, 

see Lockwood, Louis, & McCaffrey, 2002; McCaffrey, et al., 2010).  The general 

admonition the literature is to (a) include more than one year of data for the teacher 

and/or (b) to be cautious of dividing teachers into more than three groups—a large middle 

flanked by two smaller tails (Lockwood, et al., 2002; McCaffrey, et al., 2003). 

Yet this issue requires more thought by the district. For example, in the literature, 

researchers typically construct 95% confidence intervals around the teacher effects.  

However, given the counterfactual in which a district has almost no information with 

which to distinguish teachers (Weisberg, et al., 2009), does it need to be 95% certain that 

the teacher’s effect is above or below average?  Or, how should a district balance the 

risks of committing Type I and Type II errors (McCaffrey, Han, & Lockwood, 2008)? 
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In this study, I investigate this issue in two ways.  First, I estimate teacher effects 

for fifth grade and eighth-grade math teachers and plot the effects with varying 

confidence levels around them.  I report how many teachers are significantly below or 

above the average based upon the confidence interval level. 

Second, following a suggestion by Doug Staiger (2009), I experiment with an idea of 

estimating the probability that a teacher is in a given quantile.  For example, imagine two 

teachers whose confidence intervals around their effects both cross zero, but one does just 

barely and the other straddles the line.  Assuming a normal distribution of the error 

around the point estimate, we can be more confident that the former teacher is above the 

teach mean.  In this approach, I leverage the assumption of normally distributed errors to 

estimate the probability that a teacher’s effect is above or below the teacher mean.  

LIMITATIONS

There are a number of limitations both to the study, specifically, and to the policy 

use of value-added models more generally that the methods described in this section do 

not solve. 

Limitations of the Data 

First, the teacher student matching in the data depends on what has been entered into 

the student information system.  The student information is designed to capture at most 

two teachers who share equal responsibility for a student’s instruction in a given subject. 

Consequently, if a school chooses a different instructional strategy—departmentalization 

or flexible grouping in which students are rearranged among the teachers episodically 

throughout the year—then the attribution of a single teacher to the student is likely to be 

invalid.   
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A similar concern arises with special student populations such as English language 

learners or exceptional children.  For example, English language learner populations may 

receive instruction from a homeroom teacher as well as a resource teacher.  The value-

added models estimated in this study cannot handle this type of joint production.  Rather, 

they ascribe all of the value-added to one teacher.   

Another issue is the extent to which student achievement in a given subject is jointly 

produced by several teachers in the same term across subjects (Jackson & Bruegmann, 

2009; Koedel, 2009).  For example, it is easy to imagine that the Social Studies instructor 

could influence reading achievement.  Although the data documents the course 

enrollments, the actual models do not allow for this.  The implications are that the teacher 

effect estimates could be biased.  

An additional limitation of the data lies in its provenance—hand-entered by a school-

level administrator through the interface of the student information system. (This is not 

true of the test scores, but is true of most of the other variables, especially the control 

variables.)  Sources of inaccurate data include:   

1.  The data is mis-entered. 

2. The student information system is not designed to provide archival or 

retrospective data; it is designed for snapshots.  As a result, records can be 

overwritten and this will be unobservable to the researcher.  For example, the 

CMS student information system deletes the course records from the 

scheduling data base of a student who withdraws from school. 
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3. There can be incentives for school-level staff not to record certain types of 

data (e.g., discipline incidents that will reflect negatively on the school in 

district reports). 

4. In at least the case of unexcused absences, the district allows schools to put 

students with large numbers of unexcused absences through a special 

program.  When the student completes the program, the absences are erased 

from the student’s record.  This is unobservable to the district office. 

The potential problems with some of these measures points to a tradeoff for the district.  

On the one hand, the district may want to control for student heterogeneity by using as 

many of these measures as is feasible, especially if the district decides to refrain from 

including time-invariant variables such as gender or ethnicity in its models.  Yet each 

new variable increases the risk of having right-hand-side variables measured with error. 

I have limited the scope of the study to students with no missing data.  As Table 4 

makes clear, this eliminates a number of students who are likely to be different than those 

who remain in the sample.  Although this type of constraint is most likely to affect 

individual teacher estimates, it is possible that the exclusion of the students with missing 

data could change the overall variation in teacher effects. 

Limitations of Use of Value-added Measures for Policy 

In addition to limitations posed by the data, there are limitations to the use of value-

added measures for policy.  First, the value-added methodology assumes that the tests on 

which they are based are good measures of student achievement.  A number of testing 

experts challenge this assumption (Koretz, 2002; McCaffrey, et al., 2003) or emphasize 
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how small changes in the scaling of the tests can produce substantial differences in the 

estimates for particular teachers (Ballou, 2009; Lockwood et al., 2007). 

Second, value-added estimates provide measures of effectiveness for a limited 

number of students.  Nationally, the oft-cited figure is that 69% of teachers do not teach 

in a subject or grade in which a test is administered that can be used to measure student 

achievement growth.  In CMS, that number is 60%.   Value-added covers one dimension 

of teaching for one subset of teachers in a limited number of subjects.  

The options for policymakers are twofold:  (1) add similar assessments of student 

learning in other grades and subjects and (2) use the value-added measures to learn what 

the effective and ineffective teachers are doing, taking advantage of the value-added 

measure as a validation of the effective practices.  Then extrapolate the practices to 

teachers in non-assessed areas on the assumption that the practices are not subject-

specific. 

Finally, I do not attempt in this study to test some of the fundamental assumptions of 

value-added methodology, the types of assumptions outlined by Todd and Wolpin 

(2003).  In particular, I assume that the effects of past inputs (including teachers) do not 

affect the student’s current year achievement beyond what is captured by the prior test 

score.  In addition, I also assume that the dynamic responses of students’ families to prior 

education experiences are orthogonal to the observed inputs of the student’s production 

function in a given year.  I assume that the inputs to student achievement in a given year 

are additive rather than multiplicative.  Section 4.3 outlines a number of assumptions 

required for consistent teacher effect estimates that I do not test in this study. 
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RESULTS

In this section, I summarize the results from deriving a preferred model, testing it 

against threats to its validity, and the exploring two potential policy uses. 

ARRIVING AT A PREFERRED MODEL 

Dealing with the Lagged Score 

Columns 1-4 of Table 5 report the results from four prevalent ways in the literature 

to capture observed and unobserved prior inputs to the student’s education production 

function through the use of one or more prior scores.  Column 1 summarizes the model 

described in Equation (5) which includes one prior test score as a lagged dependent (the 

Lag (1) model).  Column 2 adds another prior score from t-2 (hereafter, the Lag (2) 

model).  Column 3 summarizes the model described in Equation (8), which instruments 

for the t-1 score with one from t-2 (the IV model).  The model summarized in column 4 

moves the prior score from t-1 from the right-hand-side to the left-hand-side so that the 

dependent variable is the change in scores from t to t-1 (the gainscore model). 

Examining Table 5, the four models produce similar teacher effects.  The standard 

deviation of the teacher effects (reported in student-level standard deviations of test 

scores) are consistently between 0.19-0.21 sds when the teacher effects are unadjusted for 

sampling error and 0.15-0.17 sds when the estimates are shrunken discussed previously.  

The estimated teacher effects from the models are correlated quite highly as well with the 

Lag (1), Lag (2), and IV estimators correlated from 0.96-0.99.  Each of these is correlated 

with the noisier gainscore model at 0.84-0.86. 

The striking similarity of the results places some of the statistical concerns among 

value-added researchers in perspective for the district.  The primary justification for the 
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Lag (2) model is mitigate the effect of measurement error in the t-1 score and to allow the 

coefficient on the t-1 score to be conditional on the t-2 score rather than impose the same 

coefficient on each student.  Yet this model correlates with the Lag (1) model at 0.96.  

Similarly, the rationale for the IV approach in column 3 is to handle the endogeneity 

created by the measurement error in the prior test score being on the right-hand-side.  For 

the district, however, this approach results in almost identical teacher effects.  It is harder 

to know what to conclude from the gainscore model results in column 4.  It requires no 

additional complexity in estimation, and it remains highly correlated with the other 

models (0.84-0.86).   From a statistical perspective, the decision comes down to a trade-

off between the benefit of the gainscore model (e.g., no measurement error issues from 

having a lagged dependent variable) versus the cost of the assumption of complete decay 

of prior achievement discussed previously. 

From an implementation perspective, districts may prefer the gainscore model and 

the Lag (1).  Both are less complicated to compute than the IV model.  More importantly, 

each of these models allows the district to include more students and teachers.  Although 

the Lag (2) model results in estimates for only seven fewer teachers and 30 fewer 

classrooms over a three-year period, it results in 8,061 fewer student-by-year 

observations and eliminates 4,517 students from the estimation.  As a result the district 

could be creating an incentive for teachers to ignore these students. As seen previously in 

Figure 1, these students are likely to be lower-performing than their peers and so the 

district could exacerbate its efforts to raise the achievement of its lowest-performing 

students.  A larger issue of excluding teachers and students in the Lag (2) and IV models 



67 

 

is that in NC, no fourth-grade students and teachers can be included in the estimation 

because there is no second-grade test. 

Accounting for Student Heterogeneity 

All of the models summarized in columns (1-4) assume that the student’s prior 

score(s) also capture the effect of the student’s unobserved endowment.  Columns 5-6 of 

Table 5 go further through a student fixed effect [Equation (11)] and first difference 

approach [Equation (12)], respectively.  The first difference approach in column 6 uses 

the same dependent variables as the gainscore model in column 4 but differs in 

transforming all the left-hand side variables into first differences, including the teacher 

effect.  This means that the teacher effects it estimates are actually the difference in 

teacher effect from a student’s teacher at t-1 to the teacher at t.   

From a statistical perspective, these methods are correlated similarly less strongly 

(0.67-0.76) with the models in columns 1-4.  On the hypothesis that noisier estimates of 

teacher effects, especially in the student fixed effects specification, could result in lower 

correlations, I checked the correlations of the estimates adjusted for sampling error and 

there was little difference in the magnitude of the correlations.  In addition, both models 

seemed to decrease dramatically the impact of the time-varying student characteristics.  

Both estimators also produced teacher effects with larger unadjusted standard 

deviations of teacher effects.   The effect of adjusting for sampling error on the student 

fixed effect teacher estimates was more pronounced than the other models, which is 

consonant with the conventional wisdom in the value-added literature that the student 

fixed effects result in noisier estimates of teacher effects.  The first difference estimator is 
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the only one in which there was not an appreciable difference between the unadjusted and 

adjusted teacher effects.   

The correlations of the teacher effects from the first difference and student fixed 

effects models are moderately correlated at 0.62.  Given that the presence of serial 

correlation would indicate a preference for the first difference estimator, I conducted the 

test for serial correlation developed by Jeffrey Wooldridge and implemented using 

Stata’s –xtserial— command  (Drukker, 2003).  The F-statistic for the test of the null 

hypothesis of no first order autocorrelation was 2027.44 resulting in a strong rejection of 

the null of no first-order autocorrelation.   The implication is that the first difference 

estimator is the more appropriate estimator because the unobserved endowment will not 

be correlated with the lagged score. 

In selecting a base model to move forward in the analysis, I chose the Lag (1) model 

over the first difference model for the ease of interpretation and computation.  The first 

difference model requires estimating fixed effects for every combination of teacher from t 

and t-1 and extrapolating the teacher’s value-added at t from those combinations.  I move 

forward to look at modeling classroom and school heterogeneity with the base model 

summarized in column 1 of Table 5. 

Accounting for Classroom and School Heterogeneity 

Table 6 summarizes three models that attempt to take into account heterogeneity 

among classrooms and schools in estimating teacher effects.   Column 1 brings forward 

the base model (Table 5, column 1) for controlling for student heterogeneity.   Column 2 

adds a vector of classroom means to the model in column 1.  Column 3 adds an additional 
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vector of school-level means.  Column 4 excludes those school means and replaces them 

with school fixed effects. 

In every specification, the additional characteristics were jointly significant at 

p<.001.  The smaller F-statistics for the student controls indicate that some of the work 

being done by the student controls in the base model in column 1 was really the effect of 

the classroom and school composition (I excluded the individual student from the 

calculation of the classroom means).  Nevertheless, the additional controls did little to 

change the overall fit of the model, consistently explaining 77% of the variation in 

student test scores.  Nor did the presence of the classroom (column 2) and school 

covariates (column 3) change significantly the estimated teacher effects; they remained 

highly correlated at 0.96 and 0.89, respectively.  The correlations in the school fixed 

effects models were significantly lower.  This is to be expected, however, as this becomes 

the correlation of a teacher’s effect relative to the district’s teachers to the effect relative 

to other teachers in the teacher’s school. 

Although the correlations across the models were large, it may not be enough for the 

district to conclude that it is indifferent among the models.  Even with the high 

correlations, it is possible that the teachers whose ratings moved significantly between 

the models could share characteristics that the district will need to heed from a policy 

perspective.  A district would likely want to explore the cases of outlier individual 

teachers whose scores changed significantly between the models to identify patterns that 

could require a policy decision. 
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Modeling Teacher Effects 

Up to this point, I have estimated the teacher effects as fixed effects pooled across all 

the teacher’s classes.  As discussed in Section 4.3.5, most researchers adjust these fixed 

effects estimates to account for the sampling variation and/or across-year or class 

variation in the effects.  Table 7 compares the effects of two types of shrinkage on the 

distribution of teacher effects.  Columns 1-2 are the unadjusted and shrunken standard 

deviations of teacher effects from the preferred model summarized in column 3 of Table 

6.  The estimates are shrunken by the procedure outlined previously.  Column 3 replicates 

the model in column 2 but estimates the teacher effects as random effects rather than 

fixed.  An assumption of the random effect estimator is that the random teacher effects 

are orthogonal to the inputs.  In the teacher fixed estimates, there is evidence that this 

assumption is violated; the correlation between the teacher fixed effects and the left-

hand-side variables is 0.11.  Nevertheless, the teacher effects from these two estimators 

are correlated at 0.98.   

Column 4 adds a classroom random effect to the model in column 3.  Here, the 

classroom random effect is nested within the teacher random effect.  In the case of 

teachers with only one class per year, the classroom random effect is equivalent to a 

teacher-by-year effect.  Whether the teacher has one or many classes per year, the intent 

of the classroom random effect is to account for non-persistent variation at the classroom 

level—perhaps due to an especially good or poor match of the teacher and students in 

that specific class or perhaps a classroom-level shock out from the teacher’s effect—from 

the teacher’s persistent effect.  In this case, including the classroom random effect 

reduces the variation in teacher-level effects slightly and a likelihood ratio test provides 
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evidence that the inclusion of the classroom random effects improves the model fit.  The 

correlation between the models with and without the classroom effects is strong.  Figure 

3 shows the effect of the shrinkage estimators on the distribution of teacher effects.  As 

expected, shrinking the teacher effects (column 2 vs. column 1) narrows the distribution 

of teacher effects.  Including the classroom random effects tightens the distribution still 

further.   

A district faces a trade-off in deciding whether or not to shrink the estimates.  On the 

one hand, the shrinkage estimators pull towards the mean teachers at the tails that might 

be their due to sampling variation.  Figure 4 shows the sensitivity of the magnitude of 

teacher effects to the numbers of student attributed to the teacher across all years in the 

sample.  Comparing Panels A-B, it is clear that the shrinkage estimators affect teachers 

with fewer numbers of students.  These teachers could be novice teachers, elementary 

school teachers, or teachers in schools with smaller class sizes (e.g., a Title 1 school).  By 

using a shrinkage estimator, the district could potentially underestimate the effect of a 

highly talented novice teacher or overestimate the effect of another teacher who is 

teaching a small number of students, in both cases by pulling the teacher toward the 

middle.  In some ways, the district must decide whether it prefers avoiding a Type I error 

by choosing a shrinkage estimator versus a Type II error in which it fails to recognize a 

truly good or poor teacher.   

 The district faces a similar trade-off in deciding whether or not to include the 

classroom random effects.  Choosing to include them helps buffer teachers from 

classroom-level shocks that could idiosyncratically change their effects (e.g., a 

problematic student that the teacher spends extraordinary amounts of time with.)  
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However, especially for teachers with only one class per year, using the classroom 

random effects could attenuate the true improvement of the teacher.  For example, a 

portion of a second-year elementary school teacher’s improvement will look like a 

classroom level shock and be partially netted out of the teacher effect.  For teachers who 

are accustomed to quick changes year-to-year, this smoothing out of the effect could be 

frustrating. 

 In the end, I chose the model summarized in column 4 of Table 7 as the base 

model to be used throughout the rest of the dissertation.  As the results in Table 7 

demonstrate, there is no clear winner among the models there.  They are all highly 

correlated.  The advantages to the district of the teacher and class random effect model 

are the elimination for the need for post-estimation shrinkage of the teacher effects and 

the intuitive appeal of sweeping out non-persistent variation in a teacher’s effect (i.e., the 

classroom random effect) which should lead to greater stability of the estimates. 

Including Race Covariates 

For many districts, the decision about whether to include the race of the student 

and/or the racial composition of the classroom and school is fraught with political 

implications.  Many worry that including the race covariates is tantamount to having 

different expectations for students based upon their race.  To test the effect of race 

covariates on the teacher effects from the preferred model, I estimate three additional 

variants that include student, classroom and school race covariates.  Table 8 reports the 

results.  Including race covariates did not seem to have an impact on results from the base 

model.  It did not change the distribution of the teacher or classroom level effects.  It does 

not reduce the student-level error.  The teacher effects from the various models were 
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correlated at no less than 0.988 with the base model.  Likelihood ratio tests did indicate 

that the model fit improves with the presence of student and school-level race covariates.  

Classroom racial covariates were not statistically significant in any of the specifications.  

The results indicate an approach that districts may adopt to help mitigate potential 

conflicts over the inclusion of certain covariates:  test for their effect before having a 

longer philosophical debate about their inclusion. 

TESTING THE PREFERRED MODEL 

With the preferred model established, I proceeded to test it for three particular threats 

to its validity—prior inputs to the education production function, ceiling effects in the test 

instrument and sorting of teachers to students.  I am assuming that the analysis completed 

in this section would apply equally well to the other models considered in the preceding 

section.  However, I do not test this assumption on the other models. 

Testing the Prior Score Assumption 

Before moving to testing the preferred model against two primary threats to its 

validity, I test the assumption that the student’s prior score captures the effects of all prior 

educational inputs.  The primary assumption behind the preferred model is that the prior 

score captures the impact of previous inputs to the student’s educational production 

function. Table 9 summarizes tests of this assumption. To test the assumption that the 

score at t-1 captures all previous inputs from t-1 and t-2, I estimated the Lag (1) model 

and included classroom and school means of variables from t-1 and t-2.  Wald tests of the 

joint significance of the t-2 variables provide strong evidence that observed 

characteristics at t-2 of the student predict the student scores at t conditional on the score 

and inputs from t-1.  There is weaker evidence that the school characteristics from t-2 
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affect the score at t, but they are statistically significant at the 0.05 significance level.   A 

likelihood ratio test suggests that including the t-2 inputs improves the fit of the baseline 

model. 

 I also tested the effect on inputs from t-2 of adding the t-2 score on the left-hand-

side (column 3).  The student, classroom and school inputs from t-2 remain statistically 

significant, and a likelihood ratio test provides evidence that this model fits the data 

better than the Lag (1) model.  So in either case, the assumption that the score at t-1 

and/or t-2 captures the effect of prior inputs appears to be violated.  To test the 

significance of this violation, I calculated the correlation of the estimated teacher effects.  

The teacher effects from the model that included the t-1 score and t-2 inputs were 

correlated at 0.99 with the same model that excluded the t-2 inputs.  The model that 

included the t-1 and t-2 score as well as the t-2 inputs was correlated at 0.96 with the 

model that excluded the t-2 score and inputs.  The results were highly correlated, but 

there is evidence that the violation of the assumption would affect the estimates for some 

teachers.   

Ceiling Effects 

In this section, I report the results of the analyses concerning the potential of ceiling 

effects in the test instrument to bias the teacher effects for teachers with students who 

enter their classroom already at the high end of the distribution. 

Figure 6 shows the distributions of student scale scores by grade for the current year 

and prior year.  The extent of negative skewness could indicate the potential for a ceiling 

effect.  Using one year of data (2010) as an example, we find that the greatest skewness 
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in grades 5 & 8, although the magnitudes are relatively small.  There seems to be little 

evidence of censored distributions either in the current or prior year test score.   

As noted previously, comparing the gains from t-1 to t by level of score at t-1 points 

is more of a measure of regression to the mean rather than the effect of a ceiling.  By 

comparing the gains from t-1 to t by score at t-2, we can see more clearly the potential for 

a ceiling effect.  Figure 7 provides a second assessment of the potential for ceiling effects 

by using boxplots to compare the average gains in student achievement at time t with the 

gains the student made from t-2 to t-1.  The shaded box represents the interquartile range 

(75
th

 percentile is top, 25
th

 percentile is bottom) of the average scale score gains for 

students in each decile.  The vertical lines emanating from the shaded box are the upper 

and lower adjacent values, which by convention extend 1.5 times the difference in the 

75
th

 and 25
th

 quartiles.  The dots indicate values beyond the upper and lower adjacent 

values.    Students in the bottom and top deciles have some of the highest average gains 

two years later.  The variation of the gains among the deciles of prior achievement 

generally decreases as we move up the distribution of prior achievement.  Students in the 

top 10% of achievement at t-2 have the highest average gains but also the smallest 

variation in those gains. 

Figure 8 maps the relationship between the mean score at t-1 of a teachers’ students 

and the teacher’s value-added at t.  There is no evidence of a linear relationship and this 

is not surprising because the classroom means of prior achievement were included as a 

covariate in our base model.    However, the figure does show what seems to be smaller 

variation in the teacher effects when the mean prior achievement of the students is greater 

or less that one standard deviation below their peers. 
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To explore this further, Figure 9 plots the relationship of the proportion of a teacher’s 

students in the top and bottom 10% in prior year achievement to the teacher’s effect in 

year t.  I weighted each teacher by the number of students the teacher instructed during 

the period.  It is possible that teachers with high proportions of students in the top 

quantiles of prior achievement taught fewer students.  If this were the case, the smaller 

variation of the estimated effects of these teachers could be due more to the shrinkage 

estimator than the possibility of a ceiling effect.  This would be equally in the case of 

teachers with high proportions of students who are in the bottom quantiles.   

Figure 9 provides mixed signals.  On the one hand, there appear to be thresholds of 

proportions of students in the top quantiles above which teacher effects seem to move 

toward zero.  It seems to be the case that many, but not all, of the teachers above this 

threshold have fewer students and effects generally closer to the mean.  The pattern is 

similar in looking at the teacher effects of students with high proportions of students in 

the bottom 10% of the previous year, although it seems that these teachers generally have 

fewer students than their peers.  In both cases, we see less variation in the teacher effects 

at the tails of the distributions of students and it seems that at least part of this is due to 

these teachers having fewer students. 

 To probe deeper, I examined how many students scored high enough on test at t-1 

that it would be impossible for them to increase their scores by the amount of the effect 

of the highest value-added teachers.  For example, for eighth grade math in 2010, the 

highest value-added teacher added approximate 3.5 scale score points.  I counted how 

many students were within 3.5 scale score points in year t-1 of the maximum score in 

year t.  The intuition is that if a teacher had a large proportion of these students, the 
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teacher could not be the highest value-added teacher.  In the sample, across all grades and 

years, 0.32% of the students could not have raised their scores by the size of the effect of 

the highest value-added teacher.  Of these students, 15% hit the ceiling the next year.  So 

across three years and five grades, 76 of 89,300 students hit the test score ceiling before 

they could move up by the amount of scale score points added by the highest value-added 

teacher. 

 As another test of the sensitivity of the teacher effects, I re-estimated the preferred 

model with samples trimmed at the 99
th

, 95
th

, and 90
th

 percentiles of the student’s prior 

achievement.  The results are summarized in Table 10.  The standard deviation of the 

teacher effects was unchanged across all specifications and the correlations of the teacher 

effects across the models was greater than 0.99.   Trimming high-performing students did 

not exclude any classrooms or teachers from the sample.   

 The differences in the models for a district lay primarily in changes in the 

percentile ranking that are wrought from trimming the samples.  Although the mean 

difference in percentile rankings for teachers in any of the trimmed sample models from 

the untrimmed sample was zero, there was some movement.  For example, trimming the 

top 10% would result in approximately 95% of the teachers experiencing a percentile 

rank change of less than or equal to 7.8 percentile points.  Depending on how the district 

grouped its teachers, this could be more or less significant.    

As a final check on the impact of ceiling effects, I examined the impact of an 

alternative way of standardizing the student’s current year score.  Given the difference in 

gains among students in different deciles of the distribution of scores at t-1, I re-estimated 

the base model but standardized the score at time t with by the decile of the score at time 
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t-1.  Table 11 summarizes the results.   I use this alternative normalization of the current 

year score in the models in columns 2, 4, and 6.  In addition, to check the sensitivity of 

the ceiling effects to the number of students a teacher has, I re-estimate the model with 

one, two, and three years of data.  The intuition, following Koedel and Betts (2009a), is 

that additional years of data should mitigate the potential of sorting to bias teacher effects 

(in this case by reducing the teachers’ proportions of students at the tails of the 

distribution).   

Table 11 shows that the alternative normalization increases the standard deviation of 

the teacher effects by one-third, and the classroom effects by an even greater amount.  

This could be a statistical artifact of the alternative normalization or possibly an 

indication that there is greater variation in teacher effects at different points of the 

distribution of prior student scores.  Examining the correlations among the models, it 

seems that having multiple years of data for a teacher makes more of a difference for a 

teacher’s effect than the alternative normalization.  Across all teachers the effects 

generated from one-year versus three years are correlated at 0.69-0.76.  The results of the 

alternative normalization are highly correlated for all teachers, with slightly weaker 

correlations for teachers with large numbers of students who were in the top decile of 

achievement in the prior year.  Table 11 suggests that a district concerned about ceiling 

effects could mitigate any negative bias by including more years of teacher data as a way 

of smoothing out any shocks to the teachers’ classroom composition due to sorting. 

Sorting 

In this section, I report the results of the analyses outlined above concerning the 

potential of sorting of students to teachers to bias the effects of some teachers.  To begin 
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the exploration of the potential of sorting of teachers to students to bias estimates of 

teacher effects, I considered three sorting scenarios that use the student’s score at t-1 as 

the sorting criterion.  The first is that of perfect sorting in which within each school-year-

grade combination, students are sorted into classes strictly by their scores at t-1 while 

preserving the original class sizes.  The second is similar to the first except that now 

students are sorted randomly into classes.  The third scenario is the actual classroom 

assignments in the data.   

I began by calculating the standard deviations and means of the teachers’ 

students’ scores at t-1 as a measure of the sorting of students to teachers in each of the 

three scenarios.  Figure 11 shows the distribution of these means and standard deviations 

across teachers.  Actual sorting in the sample results in average classroom standard 

deviations of prior test scores that are closer to distribution of standard deviations from 

the simulated random sorting than the perfectly sorted simulation.  In Table 12, I re-

estimated the preferred model using the perfectly and randomly sorted samples.  The 

distribution of teacher effects was slightly larger in the simulated samples and this 

seemed to result from a slightly smaller variation in the classroom-level random effects. 

 Next, following Hanushek and Rivkin (2009), I created a subsample of 

classrooms that do not appear to be sorted on the student scores at t-1.  I regressed the 

student scores at t-1 on each classroom within each year, school and grade.  If the F-tests 

of joint significance of the classroom indicators failed to reject the null at p<.05, I 

considered that school-grade-year’s classrooms to be not-sorted.  This subsample 

included 15,159 student-year observations (approximately 17% of the full sample) 

containing 830 classrooms, 473 teachers, and 210 school-year-grades. 
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Then, I ran a series of regressions on these samples in which I estimated the 

effects of the teacher in time t and t+1 on student scores at time t.  As discussed above, 

the intuition is that the student’s teacher at t+1 should not have an effect on test scores 

from time t.  Table 13 reports the results.  Columns 1-2 summarize results from two 

regressions using the preferred model for the full subsample of students from 2008 and 

2009 for which we have data on classroom assignments in the following year.  Column 1 

is the preferred model using the teacher and classroom at time t as the random effects.  

Column 2 repeats the estimation but substitutes the teacher and classroom at time t for 

those at time t+1.  Columns 3-4 repeat the procedure but use the subsample of classrooms 

from Columns 1-2 that are sorted on student scores at t-1.  Columns 5-6 replicate the 

analysis on the smaller subsample of classrooms that were not sorted on student scores at 

t-1. 

In each sample, the teacher and classroom at t+1 did predict student achievement 

at t as would be expected if students sorted to classrooms in t+1 based on their scores at t.  

The variation in teacher effects at t+1 for the full and sorted samples was approximately 

80% of that of the variation of teacher effects at t.   Even in the non-sorted sample, the 

t+1 teacher effects had roughly 60% of the variation of the teacher effects at t.  This is 

surprising because this is the sample in which we could reject sorting among classrooms 

based on student scores at t-1.  This suggests that there could be sorting on other 

observables or unobservables that are biasing the teacher effects.  Finally, a puzzling 

result is the coefficients at the student test scores at time t-1 for the non-sorted subsample 

in columns 5-6.   Note that the coefficients on the score become insignificant both 

statistically and substantively.   



81 

 

In sum, the evidence for sorting bias is mixed.  On the one hand, the simulations 

of perfect and random sorting resulted in slightly wider distributions of teacher effects.  

This seemed to be related to an accompanying narrowing of the distribution of the 

classroom effects.  On the other hand, the replication of the Rothstein falsification test 

indicated that the effect of teachers at t+1 on student scores at t was significant, even in 

the non-sorted sample. 

POLICY IMPLICATIONS 

In this section, I turn to exploring two possible policy uses of value-added 

estimates—as a measure of equity for students and as an input into personnel decisions. 

Distributing Teachers to Students 

I began by estimating kernel densities of the distributions of the teacher effects 

across and within schools in Figure 13.  The across and within school teacher effects are 

derived from model summarized in Table 7, column 4 which is the preferred model.  The 

within school distribution teacher effects came from re-estimating the preferred model 

and adding school fixed effects.  The standard deviation of teacher effects in the base 

model was 0.15 student level standard deviations.  For the model with school fixed 

effects, the standard deviation of the teacher effects decreased by 20% to 0.12 standard 

deviations.    Figure 14 provides boxplots of the teacher effects for all schools in the 

sample over the period 2008-2010, sorted from left to right by the mean teacher effect for 

each school.  The between school variation in teacher effects is approximately 0.07 

student-level standard deviations and the within school is 0.11.  Both Figure 13 and 

Figure 14 provide evidence that there is substantially more variation in teacher 

effectiveness within schools than between them.   
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Knowing that there is substantial variation both within and between schools, a 

district will want to monitor the sorting of students to high- and low-value added teachers 

both within and across schools.  The district will need to ensure that (1) high-value added 

teachers are at every school and (2) within the schools, these teachers are distributed 

across students in a way that meets the district’s policy objectives. 

Figure 15 shows the distribution of the district’s top (Panel A) and bottom (Panel 

B) quartile value-added teachers across schools.  Each circle represents one school 

weighted by the school’s student enrollment during the period 2008-2010.  There were a 

number of schools with no teachers in the district’s top (Panel A) or bottom (Panel B) 

quartile of teachers during the period, and many of these schools had smaller student 

populations.  There seemed to be a negative relationship between the proportion of 

teachers in the top 25% of the district and the proportion of the school’s students 

qualifying for free or reduced lunch.  There was almost no relationship between the 

proportion of bottom 25% teachers and the school’s proportion of students eligible for 

free and reduced lunch status. 

Following an analysis by Aaronson, Barrow and Sander (2007), I explored whether 

some types of students benefited more from good teaching than others.  Table 14 

summarizes the results.  Each column represents a estimation of the base model for 

teacher effects restricted to the sample indicated by the column header.  For example, 

column 1 reports results from students who scored in the bottom quartile in the previous 

year.  The standard deviation of their test scores in scale score points was 6.4 and the 

mean gain in their scores from t-1 to t as 6.8.  For their group, a one standard deviation 

change in teacher effectiveness resulted in a 0.13 standard deviation increase in their test 
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scores, or 0.84 scale score points.  The proportion of the mean gain in scores by students 

in the lowest quartile from t-1 that could be attributed to the teachers was then 

0.84/6.8=.12.  So, twelve percent 12% of their gain was associated with the difference in 

a teacher at the 50
th

 percentile vs. 84
th

 percentile of the distribution of teacher 

effectiveness. 

Columns 1-4 of Table 14 show that the proportion of mean gains attributable to the 

teacher were the smallest for the students in the bottom quartile relative to the other 

quartiles.  This is largely due to the largely average gains made by the lower quartile 

students that do not yield large variation in the effect of the teachers a fact borne out in 

Figure 10.  The higher gains associated with this group could stem from some sort of 

mean reversion that is being netted out of the teacher effect.  Indeed the proportion of the 

mean gain attributable to teachers in the top quartile is 2.5 times greater than that of the 

teachers of bottom quartile students.  The results provide some evidence that in math 

students in the top 50% of performance coming into the year will benefit more from 

teaching than those in the bottom fifty percent. 

Columns 5-8 show the results by ethnicity.  I found more homogeneity across ethnic 

groups than achievement groups.  The standard deviation of teacher effects was similar 

across groups as well as the proportion of the mean gain that could be attributable to the 

teacher.  This suggests that teachers do not seem to matter more or less for different 

ethnic groups. 

Table 15 extends the analysis further by summarizing the difference in 

probabilities that certain types of students are assigned a top or bottom quartile teacher 

from the prior year or a teacher whose prior year data is unobservable.  Each column 
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reports the results from a probit estimation of the probability of being assigned a top 

(columns 1-2) or bottom (columns 3-4) quartile value-added teacher from the prior year.  

Columns 5-6 estimate the probability of being assigned a teacher whose prior year value-

added was unobservable (e.g., a novice teacher).  The results in columns 1-3-5 reflect 

across and within school differences.  Columns 2-4-6 reflect within school probabilities 

by including school fixed effects in the specifications for columns 1-3-5. 

The samples for these estimations were smaller than the sample used throughout 

this study for estimating the base model.  I used only 2009 and 2010 because I needed to 

have a value-added score from the teacher at t-1.  The sample was further reduced in 

within-schools estimations in columns 2-4-6.  Approximately 29% of the schools had no 

top quartile teachers and 39% had none in the bottom quartile, and 7% had no teachers 

who were missing a value-added score from the prior year, and as a result these schools 

were eliminated from the estimation. 

Even with the reduced sample sizes, a district could learn a great deal from this 

simple analysis. There were no differences among the groups in their probability of being 

assigned a bottom quartile teacher and only a few in terms of the probability of being 

assigned a teacher with unobservable value-added data.  There were differences in 

exposure to top quartile teachers.   For example, white students were 5% more likely to 

have a top quartile teacher from the prior year and this discrepancy persisted, although 

with a smaller magnitude, when looking within schools.  Whites were also 4.3% more 

likely to have top quartile teachers than Hispanic students but this difference eroded 

when looking within schools.     
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There are interesting differences when comparing ethnicities by quartile.  Within 

schools, white students who scored in the top quartile in the previous year were 2.7% less 

likely to be assigned a top quartile teacher than black students who scored in the top 

quartile in the previous year, but 2.3% more likely to be assigned a teacher with a known 

value-added measure from the prior year.  Conversely, within schools, white students 

from the top quartile were 2.3% more likely to be assigned a top quartile teacher than 

Hispanic students from the top quartile. 

Perhaps the starkest discrepancies came from comparisons of black students from 

the top and bottom quartiles of achievement in the prior year.  Black students from the 

top quartile were 6.8% more likely to be assigned a top quartile teacher than black 

students from the bottom quartile.  Most of the difference was coming is coming from 

assignment patterns within schools.  Similarly, black students from the top quartile were 

3.2% less likely than black students from the bottom quartile to be assigned a teacher 

with missing prior year value-added data and this difference persisted within schools. 

Personnel Decisions 

A far more controversial policy use of teacher value-added estimates is in personnel 

decisions such as retention and compensation.  In this section, I explore how useful these 

measures might be for districts. 

I began by decomposing the variation in teacher effects between and within 

teachers.  In Table 16, columns 1-2 show that the proportion of between-teacher variation 

in teacher effects was twice as large as that within teachers.  This could suggest to the 

district that selection rather than professional development may be a greater lever for 

increasing the overall effectiveness of its teaching workforce.  Following the 
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decomposition outlined previously, I found that approximately 81% of the variation in 

teacher effects was attributable to either between- or within-teacher variation (the 

remaining portion to estimation error of the teacher effects).  Fifty-one percent of the 

variation was persistent across years.  The signal in the variation of teacher effects 

seemed to dwarf that of current evaluation systems in which 98% of teachers are rated as 

satisfactory or above. 

Districts will also want to know to what extent the estimates of the teacher effects 

are stable across time.  Table 17 provides an analysis based upon the movement of a 

teacher from one quartile to another from one year to the next.  The transition tables in 

Panels A-C report the movement of teachers among quartiles from 2009 to 2010.  Panel 

A places teachers in quartiles in 2009 and 2010 based upon single-year estimation of the 

teacher effects.  Panel B places them in quartiles based upon an estimation using the 

teacher’s pooled data from multiple years (i.e., the 2009 quartile is based upon available 

teacher data from 2008-2009; the 2010 quartile is based upon available teacher data from 

2008-2010).  Panel C replicated Panel B but restricted the sample to only teachers who 

had data in all years. 

The stability of the estimates was weakest when the teacher’s placement in a 

quartile depended on one year of data.  The between year correlation was 0.48 with 8.9% 

of the teachers in the bottom quartile in 2009 moving to the top quartile in 2010 and 5.5% 

moving from the top to the bottom quartile in one year.  Approximately 52% of the 

teachers in the top quartile stayed there a year later, and 42% of those in the bottom 

quartile stayed.  The stability of the estimates increased dramatically when using more 

than one year of data in Panel B.  Just 0.4% of the teachers moved from the top to the 
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bottom quartiles or vice versa.   Approximately 82% of the teachers who were in the top 

quartile stayed there, a similar percentage as for those who remained in the bottom 

quartile.  The teacher effect point estimates were correlated at 0.94.  

Panel C provides a check to see how much of the movement among quartiles 

could be a result of a selection effect of teachers moving in and out of the sample.  The 

transition matrix from Panel B was replicated, but the quartiles were calculated using 

teachers who were present each year from 2008-2010.  The results were similar to those 

of Panel B.  Fewer teachers seemed to be moving more than one quartile and more are 

moving one quartile. 

A chief use of the teacher effect estimates for a district may be to distinguish 

between the effect of teachers for the use of high-stakes rewards or sanctions.  To that 

end, a district will need to grapple with the uncertainty around the estimates.  Figure 16 

provides a way of examining district options for the confidence intervals to categorize 

teachers into distinct groups based upon their effects.  For example, in our sample a 95% 

confidence interval around the teacher effect estimates distinguished 14% of the teachers 

as above the mean and 13% teachers below. Some would argue that given the state of 

teacher evaluation in which the vast majority of teachers are deemed effective, that we do 

not need to be 95% certain that a teacher is above the mean for us to deem the teacher 

above average.  The other panels in Figure 16 show how many teachers are distinct from 

the mean at 90%, 85%, and 80% confidence intervals.  If a district moved to an 80% 

confidence interval, then it could place 44% of its teachers below or above the mean. 

 Some argue that this way of using the confidence interval ignores important 

information about the likelihood that a given teacher effect estimate is above or below the 
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mean even if its confidence interval includes the mean.  In Figure 17, I estimate the 

probability that a teacher’s effect is above the mean on the assumption that the estimation 

error around the estimate is normally distributed.  Using this approach, the district could 

be 90% or more confident that approximately 22% of its teachers are above the mean and 

about 80% or more confident that approximately 30% of its teachers are above the mean.  

In either case, this approach allows the district to expand the number of teachers it can 

label distinct from the average.  It could also be applied to other thresholds, such as the 

probability that a teacher is in the top quartile. 
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DISCUSSION

The potential of value-added models for use in measuring teacher effectiveness 

should be evaluated in light of the current state of teacher evaluation in which nearly 98% 

of teachers nationally are rated as satisfactory or above despite large differences in their 

impact on student achievement.  Value-added measures are not perfect measures.  They 

cover only teachers who teach subjects and grades for which there are standardized tests.  

They assume that the standardized tests are telling the district something about the 

learning that happened in the classroom.  The imprecision of the estimates give pause to 

some.   

And yet these limitations should be seen in context.  Many of the other measures 

proposed such as classroom observations or student work samples are also imperfect.  A 

classroom observation that occurs maybe four times for a total of one or two hours over 

the course of 180 instructional days has confidence intervals around it as well.   They are 

subject to factors outside the control of the teacher, too, such as the subjectivity of the 

observer.  They are stable across time only because there is little variation in the results, 

period.  Each measure is going to have shortcomings.  For any proposed measure, the 

district must ask whether it adds information to what it currently knows about its 

teachers.   

Many districts have concluded that value-added measures of teacher effectiveness 

provide more information about teachers than they have presently.  The decision to 

pursue value-added measures by a district raises a number of decisions for the district.  

These decisions often have neither a wrong or right answer, but instead reflect a trade-off 

among viable policy options.  The central questions addressed in this study are  
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1. What are the benefits and costs of various value-added models in terms of the 

identification and specification of teacher effects? 

2. How serious are three often-cited threats to the validity of value-added 

estimates—influence of prior inputs, ceiling effects in the test instrument and 

the sorting of teachers to students?  What can be done to mitigate the risks 

they pose? 

3. Are value-added estimates suitable for use in (a) considerations of a district’s 

equitable allocation of its resources across students, and (b) personnel 

decisions? 

BENEFITS AND COSTS OF VARIOUS MODELS 

The results of the study may provide some comfort to districts overwhelmed by 

some of the statistical arguments within the academic community on the proper 

specification of the value-added models.  In most cases, the resulting value-added 

estimates seemed to differ very little across specifications.  In terms of modeling student 

heterogeneity, the results were largely insensitive as to whether the district includes one 

or two prior scores as predictors of the current year score.  Instrumenting for the score at 

t-1 with the score at t-2 in an effort to deal with measurement error also resulted in little 

difference in the effect estimates.  Student fixed effect and gainscore models were less 

correlated with the results from the simple lagged score models largely due to the noisier 

estimates created by these estimators. 

 Given the similarity of the results, a district is freer to choose a model that allows 

more students and teachers to be included in the estimation.  The models that required a 

second lagged score eliminate a significant portion of students who are missing that for 
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two reasons.  First, some students will be missing those prior scores because they are new 

to the district and they are likely to be lower performing on average.  Second, for 

example, in Charlotte-Mecklenburg Schools, the decision to require two prior lagged 

scores would eliminate all fourth-graders from the estimation (there is no second grade 

test).  Note that the student fixed effects models also restrict the number students and 

teachers included.  The identifying variation comes from students who switched teachers 

implying again that fourth grade students who are not repeating the grade with a different 

teacher will not be included in the estimation.  So the district can choose an approach that 

is both simpler to calculate (e.g., the Lag (1) model that requires only one prior test score) 

and includes more students and teachers and which will result in very similar results to 

the more complicated models. 

The district faces similar flexibility in choosing how to measure classroom and 

school heterogeneity.  The models with additional classroom- and school-level 

characteristics covariates correlated strongly with the model that included only student 

level characteristics.  As one would expect, adding school fixed effects did change the 

results significantly because the teacher effects were being identified only within schools, 

making across-school estimates impossible.  The trade-off for the district is that only the 

school fixed effects can handle the unobserved school characteristics (such the effects of 

a great principal) that could otherwise be included in the teacher’s effect estimates, giving 

some teachers an advantage over others just based on the school they served.  The general 

flexibility provided by the models allows districts to work with their stakeholders, 

primarily teachers, in deciding which classroom and school characteristics to include. 
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Similarly, the results of estimating different forms of teacher effects yielded very 

similar results.  The estimates from fixed and random teacher effects yielded almost 

identical estimates, perhaps due to the large sample sizes.  The result of the teacher 

random effects, especially when adding the classroom random effects, was a normal 

distribution that was much tighter around the mean.  The tighter distribution makes it 

more likely that the district will fail to identify teachers who are significantly above or 

below the mean of teacher effectiveness (the tails shrink toward the mean). At the same, 

time, it is likely to improve the inter-temporal stability of the estimates which could result 

in more teacher buy-in for the use of the value-added data. 

THREATS TO THE VALIDITY OF INFERENCES 

After establishing a preferred model, I tested it for its sensitivity to three potential 

threats to the validity of its estimates. 

Influence of Prior Inputs 

I did find evidence that a student’s prior score was not capturing the effect of all 

prior inputs.  This violates a central assumption of value-added models that incorporate 

lagged scores.  It was unclear, however, how this violation resulted in different teacher 

effects for a district.  Conditional on the prior score, including the prior inputs did not 

measurably change the resulting teacher effects. 

Ceiling Effects 

A common fear of teachers is that value-added measures penalize teachers whose 

students who enter the year at the upper end of the prior test distribution.  In the study, I 

conducted several tests on the potential severity of the ceiling effect to bias the teacher 

effect estimates and the results were mixed.  On the one hand, I found little evidence of 
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right-censored distributions in examining current and prior year scores.  Further, students 

in the top decile at t-2 had the highest median gain from t-1 to t but the smallest variation 

in those gains.  I found no relationship between the mean scores of a teacher’s students at 

t-1 and the teacher’s effect on those students at time t. I estimated the number of students 

who hit the ceiling in year t before they could have yielded their teacher the highest 

teacher effect that year was only 76 of 89,300 students.  And I estimated teacher effects 

trimming the sample of the students at the 99
th

, 95
th

 and 90
th

 percentile of the students’ 

scores at t-1.  The correlations between the models were extremely high, although there 

was some movement in the rankings for some teachers. 

On the other hand, a few of the tests did indicate that ceiling effects could be 

biasing the results.  Teachers with large concentrations of students from the top quartile 

or decile of the prior year score did have smaller variation in their effects.  One 

explanation is that for high performing students the tests offers less range for the for the 

students to score (i.e., they are going to be scoring high anyway so that the margin of 

effect for the teacher is much smaller, perhaps even depending on how the students 

answer very few questions).   

I also estimated a series of models that normalized the student’s score at t by the 

decile of their score at t-1.  The correlations of the effects were high for all teachers 

(0.87) and slightly lower for teachers with high concentrations of previously high (0.84) 

or low (0.81) students.  The results suggest that the district that wanted to minimize any 

potential ceiling effects might be better served by focusing on including more than one 

year of data for a teacher in the estimation.  This could reduce the teacher’s proportion of 

the number of students at the upper and lower ends of the distribution. 
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In sum, the risk of ceiling effects biasing teacher effects in this district was minimal 

and districts could address the minimal risk by including more than one year of teacher 

data in the estimations. 

Sorting of Teachers and Students 

The threat that the sorting of students to teachers could bias teacher effects has 

received considerably more attention than ceiling effects.  To test the severity of any bias 

due to sorting, I focused on sorting based on student scores at t-1.  I found that the 

variation in teacher effects was very similar (0.15-0.16 sds) over simulated conditions of 

sorting that yielded very different within-class variation in student prior test scores. 

At the same time, I did find evidence that sorting on test scores did seem to lead to the 

seeming impossibility of the teacher at t+1 having an effect on the student at t, both in 

samples sorted and not sorted on prior test scores.  This would suggest that some sort of 

sorting on unobservables that are not being captured in the student’s prior test scores is 

occurring and that the teacher results could be biased by this sorting.  To the extent that 

students were sorted based on their score at time t to their classroom at t+1, then we 

would expect that at time t+1, the teacher will look as if they had an impact on the score 

at t.  The results of this study are less reassuring than recent work would indicate (Koedel 

& Betts, 2009a).  There are limits to testing the severity of sorting bias in the 

observational data.  The real test of the threat of sorting will come from experiments 

using random assignment of teachers such as current national studies being conducted by 

the Gates foundation and Harvard’s Center for Education Policy Research.
3
 

 

                                                 
3
 See the Measuring Effective Teaching project at http://www.metproject.org/ and the 

Harvard at http://www.gse.harvard.edu/ncte/default.php. 

http://www.metproject.org/
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POLICY IMPLICATIONS 

Finally, I turned to two possible uses of the value-added estimates for the district. 

Distributing Teachers to Students 

I found that value-added estimates can provide districts a great deal of information 

that can inform its policies to ensure that students get access to its most effective 

teachers.  A district wanting to ensure that every student has access to its highly effective 

teachers will need to ensure both that every school has these teachers and that within 

these schools every student has access to them.  I found evidence that in CMS schools 

there was significant variation in high value-added teachers across schools and that 

schools with larger proportions of students eligible for free or reduced lunch also tended 

to have fewer high value-added teachers. 

When examining differences in the probabilities that certain types of students 

were more or less likely to be assigned highly effective teachers, I found evidence of 

differential rates of exposure.  In general whites were more likely to be assigned high 

value-added teachers than blacks both across schools and within schools.  The starkest 

difference in the exposure rates came in the significantly higher likelihood that black 

students from the top quartile of prior performance had high-value added teachers than 

black students from the lower quartile.  The majority of this difference was happening 

within schools.  Interestingly, there were no real differences in exposure to low value-

added teachers between any of the groups. 

Personnel Decisions 

Given the rather uniform distribution their teacher evaluation scores, many districts 

will consider using value-added estimates as a criterion for high-stakes personnel 
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decisions such as compensation, tenure or layoffs.  Districts may have more confidence 

in value-added measures if their results are somewhat stable over time and if the 

measures are precise enough to distinguish between teachers.  The results would seem 

encouraging to districts.  Including more than one year of data for teacher radically 

improves the stability of the estimates from year to year.  The teacher’s effect in year t is 

correlated with the effect at t+1 at 0.94 when using multiple years of data to estimate the 

effect at year t.  Prior performance on value-added is a strong predictor of future 

performance. 

The results on the precision of the estimates were not as strong.  A district must 

consider how confident it needs to be to designate a teacher as above or below average.  

A district that requires a 95% confidence interval is going to be able to pinpoint 

approximately 27% of its teachers as distinct from the mean.  Of course, the district has 

to ask whether it needs to be this sure given its current information on its teachers.  The 

results indicate that estimating the probability that a teacher is above the mean or in a 

certain quartile could allow the district to identify additional teachers. 

 The degree of imprecision in the value-added estimates will need to be viewed by 

districts in the context of the other measures it uses.  In many cases, districts lack the 

comparable reliability statistics for other measures it uses such as classroom observations.  

Does the district have reason to believe that these measures are more or less precise than 

the value-added estimates?  Can the imprecision of the value-added estimates be offset by 

including other measures or is the result of combining noisy measures just more noise? 
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FURTHER RESEARCH 

The results of this study suggest fruitful avenues of research that could be helpful 

for districts.  First, districts could benefit from further help with handling missing data on 

prior student performance.  One approach would be the creation of within-state 

longitudinal data systems so that students transferring into a district from within the state 

would have their test scores follow them.  Another approach would be technical expertise 

on how to include imputation techniques in a district’s value-added approach.  The 

vexing problem for districts is the large number of students who are missing data on prior 

achievement and seem to score systematically lower than their peers once they are in the 

district. 

A second line of research would aid districts in using value-added estimates to 

help teachers improve their instruction.  Some districts may use value-added only as a 

sorting mechanism.  Others will want to use them as diagnostically as possible on the 

assumption that moving the entire distribution of teachers will result in larger student 

achievement gains than lopping off the bottom tail of the distribution and replacing it.  

Value-added estimates in and of themselves do not provide teachers data on why their 

students are scoring higher or lower than expected with an average teacher.  One way to 

improve the estimates might be to investigate whether or not teachers’ value-added varies 

by student-type.  For example, teachers could see that they are doing well with their 

previously high-performing students but not as well with their lower-performing students.  

One could imagine any number of student subgroups for which a district could calculate a 

teacher’s value-added in hopes of providing deeper insight into the teacher’s 

effectiveness. 
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 Finally, districts could use more research such as the randomized assignment 

studies mentioned above to understand more fully to what extent the sorting of teachers 

to students could bias teacher effect estimates. 
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TABLE 3:  Exposure to Multiple Classes and Teachers in Math within Year. 

Math Classes in 2010 # of Different Classes 

# of Different Teachers 1 2 3 Total 

1 51.1 0.0 0.0 51.1 

2 37.5 10.8 0.2 48.4 

3 0.1 0.3 0.1 0.5 

Total 88.6 11.2 0.3 100.0 

     

# of students 42552    

Notes:  CMS Grades 5-8 (2010).  Figures are cell percentages. 
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TABLE 5:  Accounting for Student Heterogeneity. 

TABLE 5 (continued)       

  

Lag (1) Lag (2) IV 
Gain-

score 

Student  

Fixed 

Effects 

First 

Difference 

                                 (1) (2) (3) (4) (5) (6) 

Teacher Effect (SD)  
 

 
   

Unadjusted   0.20 0.19 0.21 0.19 0.34 0.24 

Adjusted 0.17 0.16 0.17 0.15 0.21 0.23 

 
      

Student-Level Error (SD)          0.47 0.43 0.47 0.51 0.39 0.41 

 
      

Student Characteristics:       

Time-Varying  204.21 188.46 1340.63 175.8 47.92 40.22 

Time-Invariant  442.79 173.69 2111.27 31.03 ~ ~ 

 
      

R
2
 0.77 0.80 0.73 0.11 0.15 0.41 

 
      

Number of Student (x) 

Year Observations 

89300 81303 81303 89300 89300 83607 

Number of Distinct 

Students 

48552 44063 44063 48552 48552 45415 

Number of Distinct 

Classrooms 

4458 4443 4443 4458 4458 4455 

Number of Distinct 

Teachers 

1144 1140 1140 1144 1144 1144 

 
      

Correlations of Teacher 

Effects Between Models 

(1) (2) (3) (4) (5) (6) 

Lag (1) 1      

Lag (2) 0.96 1     

IV 0.99 0.96 1    

Gainscore 0.86 0.85 0.84 1   

Student Fixed Effects 0.64 0.66 0.64 0.75 1  

First Differences 0.69 0.70 0.68 0.77 0.62 1 

Notes:  CMS, Grades 5-8, (2008-2010).  All specifications include student-level 

characteristics and grade-by-year fixed effects.  Time-varying student characteristics 

include their prior year proportion of days absent of days enrolled in the prior year, 

proportion of days spent in out-of-school suspension in prior year, proportion of days 

spent in in-school suspension in prior year, whether the student is repeating the grade, 

enrolled in the school for the first time, and the number of moves between schools in the 

current year.  Time-invariant characteristics include the student's gender, limited English 

proficiency, designation as academically gifted or special education student.  In models 

that include one or more prior year math scores, the functional form of the prior scores is 

allowed to vary by up to a cubic.  Teacher effects are estimated as fixed effects and are 
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TABLE 5 (continued)       

reported in standard deviations of student test scores.  These standard deviations are 

reported in two forms--unadjusted for sampling error and adjusted as empirical Bayes 

estimates. The figures for each set of control variables are the F-statistics from a Wald 

test of the joint significance of the control variable, except in column 3 where they are 

chi-square test statistics due to the IV estimator used.  All tests reject the null of that the 

controls are jointly equal to zero at p<.001.  Models summarized in columns 1-2 and 4 

are estimated using the -felsdvreg_dm- command  (Mihaly, et al., 2010) in Stata.  Model 

in column 3 estimated using Stata's –xtivreg- command.  Model in column 6 estimated 

using the –fese- command (Nichols, 2008) in Stata. The correlations of the models use 

the teacher estimates that have been unadjusted for sampling error. 
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TABLE 6:  Accounting for Classroom and School Heterogeneity. 

TABLE 6 (continued)     

  Base 
Class 

Cov 

School 

Cov 

School 

FE 

                                 (1) (2) (3) (4) 

Teacher Effect (SD)     

Unadjusted   0.20 0.19 0.20 0.33 

Adjusted 0.17 0.16 0.17 0.12 

 
    

Student-Level Error (SD)          0.47 0.46 0.46 0.46 

 
    

Student Controls                 
264.6

7 

255.3 256.02 254.62 

Classroom Controls  45.23 45.84 43.29 

School Controls   19.34  

School Fixed Effects    3.27 

 
    

R
2
 0.77 0.77 0.77 0.77 

 
    

Number of Student (x) Year Observations 89300    

Number of Distinct Students 48552    

Number of Distinct Classrooms 4458    

Number of Distinct Teachers 1144    

 
    

Correlations of Teacher Effects Between 

Models 

(1) (2) (3) (4) 

Base (Lag1) 1    

Classroom Covariates 0.96 1   

School Covariates 0.89 0.94 1  

School Fixed Effects 0.54 0.60 0.58 1 

      

Notes:  CMS Grades 5-8 (2008-2010).  All specifications include student-level 

characteristics (excluding ethnicity) described summarized in Table 4 and grade-by-year 

fixed effects. Classroom controls include the classroom means of all the student level 

characteristics as well as the class size.  School controls include the school means of all 

the student level characteristics as well as the school size, the school's mean reading 

achievement from the prior year, and the school's proportion of students who qualify for 

free or reduced price lunch.   All models include a student's prior year math score, the 

functional form of which is allowed to vary by up to a cubic.  The prior year score is 

interacted with the student's grade.  Teacher effects are estimated as fixed effects and are 

reported in standard deviations of student test scores.  These standard deviations are 

reported in two forms--unadjusted for sampling error and adjusted as empirical Bayes 

estimates. The figures for each set of control variables are the F-statistics from a Wald 

test of the joint significance of the control variable, except in column 3 where they are 

chi-square test statistics due to the IV estimator used.  All tests reject the null of that the 
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TABLE 6 (continued)     

controls are jointly equal to zero at p<.001.  Models summarized in columns 1-3 are 

estimated using the -felsdvreg_dm- command  (Mihaly, et al., 2010) in Stata.  The model 

in column 6 estimated using the –fese- command (Nichols, 2008) in Stata. The 

correlations of the models use the teacher estimates that have been unadjusted for 

sampling error. 
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TABLE 7:  Form of Teacher Effects. 

  Fixed 
 

Random 

 
Unadj Adj 

  
Class RE 

                                 (1) (2)   (3) (4) 

     
 

Teacher Effect (SD)  0.20 0.17  0.16 0.15 

                                      

Classroom Effect (SD) n/a n/a  n/a 0.10 

 
     

Student-Level Error(SD)          0.46 0.46  0.47 0.46 

 
     

R
2
 0.77 0.77  0.77 0.78 

 
     

Chi-Squared Statistic from LR test     921.85*** 

 
     

Number of Student (x) Year Observations 89300     

Number of Distinct Students 48552     

Number of Distinct Classrooms 4458     

Number of Distinct Teachers 1144     

 
     

Correlations of Teacher Effects Between Models (1) (2)  (3) (4) 

Teacher Fixed Effects (Unadjusted) 1     

Teacher Fixed Effects (Shrunken) 0.99 1    

Teacher Random Effects 0.94 0.96  1  

Teacher + Class Random Effects 0.91 0.93  0.99 1 

       

Notes:  CMS Grades 5-8, (2008-2010).  All specifications include student, classroom and 

school characteristics (excluding ethnicity) summarized in Table 4 and grade-by-year 

fixed effects. All models include a student's prior year math score, the functional form of 

which is allowed to vary by up to a cubic.  The prior year score is interacted with the 

student's grade.  Teacher effects in model summarized in columns 1-2 are estimated as 

fixed effects.  The teacher effects in columns 3-4 are predictions of the teacher random 

effects using Stata's –xtmixed- command.  The model in columns 1-2 is replicated from 

Table 6, column 3.  ***p<.001 
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TABLE 8:  Effect of Race Controls. 

  Race Controls 

  Base Student Class School 

                                 (1) (2) (3) (4) 

     

Teacher Effect (SD) Adjusted 0.15 0.15 0.15 0.15 

     

Classroom-Level Effect (SD) 0.10 0.10 0.10 0.10 

     

Student-Level Error (SD)          0.46 0.46 0.46 0.46 

     

Controls for Racial Composition     

Student                  
 664.65**

* 

672.41**

* 

652.58*** 

Classroom    18.81 13.82 

School     29.08*** 

 
    

Likelihood Ratio Test 
 603.69**

* 

18.77 28.86*** 

 
    

Number of Student (x) Year 

Observations 

89300    

Number of Distinct Students 48552    

Number of Distinct Classrooms 4458    

Number of Distinct Teachers 1144    

 
    

Correlations of Teacher Effects Between 

Models 

(1) (2) (3) (4) 

Base 1    

Student 0.998 1   

Classroom 0.995 0.999 1  

School 0.988 0.992 0.994 1 

          

Notes:  CMS Grades 5-8 (2008-2010).  Each column describes maximum likelihood 

estimates of the distribution of teacher effects under different covariate specifications.  

Column 1 replicates the preferred model summarized in Table 7, column 4.  Race 

covariates are indicators for student’s self-reported ethnicity.  The figures in columns 2-4 

for each type of covariate (student, classroom, school) are the chi-square statistics for the 

joint significance of those controls.  The likelihood ratio test row reports the chi-square 

statistics for the likelihood ratio test of the model versus the model in the prior column.   

***p<.001 
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TABLE 9: Testing Assumption of Prior Year Score. 

  
Base Lag (1) Lag (2) 

                                 (1) (2) (3) 

   
 

Teacher Effect (SD) Adjusted 0.14 0.14 0.14 

 
   

Student-Level Error (SD)          0.45 0.45 0.42 

 
   

Chi-Square Statistics from t-1    

Student Characteristics 137.92*** 83.95*** 112.60*** 

Classroom Characteristics  29.38*** 339.9*** 65.51*** 

School Characteristics 29.30*** 74.78*** 69.31*** 

 
   

Chi-Square Statistics from t-2    

Student Characteristics  47.22*** 24.07** 

Classroom Characteristics   40.39*** 42.06*** 

School Characteristics  13.84* 35.21*** 

 
   

Likelihood Ratio Test  158.51*** 4459.77*** 

 
   

 
   

Number of Student (x) Year Observations 34507 34813 34507 

Number of Distinct Students 24946 25165 24946 

Number of Distinct Classrooms 2407 2409 2407 

Number of Distinct Teachers 626 627 626 

 
   

Correlations of Teacher Effects Between Models (1) (2) (3) 

Base 1   

Lag (1) 0.99 1  

Lag (2) 0.96 0.97 1 

    
Notes:  CMS, Math, Grades 5-8, (2008-2010).  All specifications include the student, 

classroom and school characteristics from the preferred model summarized in Table 7, 

column 4.  Column 1 is the preferred model.  Column 2 replicates the base and adds all 

lagged student, class and school inputs from the prior two years.  Column 3 replicates 

column 2 and adds the student's prior score from t-2.  

*p<.05, **p<.01, ***p<.001. 
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TABLE 10:  Teacher Effects with Varying Right-Censored Student Distributions. 

  Base <99 <95 <90 

                                 (1) (2) (3) (4) 

     

Teacher Effect (SD) Adjusted 0.15 0.15 0.15 0.15 

     
Percentile Rank Change from Base Model 

    
Mean 

 
0 0 0 

Standard Deviation 
 

2.00 2.51 3.88 

Minimum  
 

-11 -11 -45 

Maximum 
 

17 16 20 

     
Number of Student (x) Year Observations 89300 87179 84583 80909 

Number of Distinct Students 48552 48033 47076 45387 

Number of Distinct Classrooms 4458 4457 4457 4457 

Number of Distinct Teachers 1144 1144 1144 1144 

     
Correlations of Teacher Effects Between Models (1) (2) (3) (4) 

Base 1 
   

<99 0.99 1 
  

<95 1.00 1.00 1 
 

<90 1.00 1.00 1.00 1 

          

Notes:  CMS Grades 5-8 (2008-2010).  Column 1 replicates the preferred model 

summarized in Table 7, column 4.  Columns 2-4 estimate the same model but with 

samples trimmed at the top tail of the student test score distribution at t-1.  The percentile 

rank changes refer to the differences in teacher percentile ranks under the different 

specifications. 
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TABLE 11:  Ceiling Effects. 

  Years Contributing to Teacher Effect 

 
2008  2008-09  2008-10 

                                 (1) (2)  (3) (4)  (5) (6) 

  
 

  
 

 
  

Teacher Effect (SD)       0.15 0.21  0.15 0.20  0.15 0.20 

                                  
 

  
 

 
  

Classroom Effect (SD) 0.07 0.11  0.09 0.18  0.10 0.17 

 
 

 
  

 
 

  
Student-Level Error (SD)          0.45 0.56  0.45 0.58  0.45 0.56 

 
 

 
  

 
 

  
Student Current Score 

Standardized by:   

 

  

 

  

All Students t-1 Scores x 
 

 x 
 

 x 
 

Decile of t-1 Scores   x   x  
 

x 

   
 

  
 

  
Number of Student (x) Year 

Observations 

19961 
19957 

 38936 
38931 

 
56687 56682 

Number of Distinct Students 19961 19957  30601 30605  39037 39041 

Number of Distinct Classrooms 940 940  1868 1868  2766 2766 

Number of Distinct Teachers 484 484  484 484  484 484 

 
  

 
  

 
  

Correlations of Teacher Effects Between 

Models  

 

  

 

  

   
 

  
 

  
All Teachers (1) (2)  (3) (4)  (5) (6) 

(1) 1 
 

 
  

 
  

(2) 0.85 1  
  

 
  

(3) 0.83 0.70  1 
 

 
  

(4) 0.70 0.77  0.85 1  
  

(5) 0.76 0.64  0.93 0.80  1 
 

(6) 0.65 0.71  0.80 0.92  0.87 1 

   
 

  
 

  
Teachers in Top Decile of Prior 

Student  
(1) (2) 

 
(3) (4) 

 
(5) (6) 

(1) 1 
 

 
  

 
  

(2) 0.76 1  
  

 
  

(3) 0.81 0.60  1 
 

 
  

(4) 0.70 0.84  0.77 1  
  

(5) 0.69 0.58  0.90 0.79  1 
 

(6) 0.62 0.79  0.67 0.93  0.83 1 
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Teachers in Bottom Decile of Prior 

Student  
(1) (2) 

 
(3) (4) 

 
(5) (6) 

(1) 1 
 

 
  

 
  

(2) 0.88 1  
  

 
  

(3) 0.83 0.72  1 
 

 
  

(4) 0.69 0.87  0.74 1  
  

(5) 0.69 0.65  0.89 0.74  1 
 

(6) 0.60 0.74  0.68 0.90  0.81 1 

   

 

  

 

  Notes:  CMS Grades 5-8 (2008-2010).  All models use the preferred model’s estimator 

summarized in Table 7, column 4.  Columns 1-2 restrict the sample to one year (2008); 

columns 3-4 restrict sample to two years (2008-2009); and columns 5-6 use the full three-

year sample (2008-2010).  Columns 2-4-6 normalize the student test scores at t using the 

mean and standard deviation of the decile of the students’ scores at t-1.  In the correlation 

tables, “Teachers in Top Decile of Prior Student Achievement” refers to teachers whose 

mean student test scores at t-1 was in the top decile of all teachers in the given year. 

 

  

TABLE 11 (continued) 
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TABLE 12:  Teacher Effects under Sorting. 

 Sorting 

  Actual Perfect Random 

                                 (1) (2) (3) 

    

Teacher Effect (SD) Adjusted 0.147 0.158 0.161 

 
(0.00442) (0.00425) (0.00423) 

    

Classroom Effect (SD) 0.101 0.0952 0.0759 

 (0.00260) (0.00297) (0.00360) 

    

Student Level Error (SD) 0.456 0.456 0.459 

 (0.00111) (0.00118) (0.00120) 

    

SD of Student Scores (t-1) by Class 0.61 0.16 0.82 

 
   

Number of Student (x) Year 

Observations 

89300   

Number of Distinct Students 48552   

Number of Distinct Classrooms 4458   

Number of Distinct Teachers 1144   

    

Notes:  CMS Grades 5-8 (2008-2010).  All models use the preferred model’s estimator 

summarized in Table 7, column 4.   Column 1 replicates the preferred model which is 

estimated under the actual degree of sorting of students to teachers.  Column 2 simulates 

perfect sorting of students to teachers within year, school, and grade by prior test score.  

Column 3 simulates random assignment of student to teachers within year, school and 

grade.  Standard errors in parentheses. 
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TABLE 13:  Testing for Effects of Next Year’s Teacher on Current Year Gains. 

  Full  Sorted Not Sorted 

 
t t+1 t t+1 t t+1 

                                 (1) (2) (3) (4) (5) (6) 

Teacher Effect (SD)  0.15 0.12 0.15 0.12 0.13 0.08 

 
      Classroom Effect (SD)  0.09 0.24 0.08 0.22 0.10 0.25 

 
      Student Level Error (SD)  0.46 0.44 0.45 0.44 0.46 0.44 

       
Math Score at t-1 0.532*** 0.461*** 0.554*** 0.498*** 0.046 -0.028 

 
(0.05) (0.05) (0.05) (0.05) (0.23) (0.25) 

       

Math Score at t-1 Squared 0.005 -0.010*** 0.002 -0.004 0.006 

-

0.022**

* 

 
(0.003) (0.003) (0.003) (0.003) (0.005) (0.005) 

       

Math Score at t-1 Cubed 
-

0.0389*** 
-0.033*** 

-

0.039*** 

-

0.032*** 

-

0.038**

* 

-

0.033**

* 

 
(0.002) (0.002) (0.002) (0.002) (0.004) (0.004) 

       
Number of Student (x) 

Year Observations 40707 40707 32042 32042 8665 8665 

Number of Distinct 

Students 
28845 28845 24731 24731 

8641 8641 

Number of Distinct 

Classrooms 

2538 2365 1998 2274 540 940 

Number of Distinct 

Teachers 
1011 592 724 546 

391 304 

              

Notes:  CMS Grades 5-7 (2008-2009).  All models use the preferred model’s estimator 

summarized in Table 7, column 4.   Columns 1-2 use the subsample of students from the 

sample used throughout the study that have classroom assignments at t+1.  Columns 3-4 

use a subsample of the group in columns 1-2 who are in classrooms at t that are sorted on 

student test scores at t-1.  Columns 5-6 are a subsample of the group in columns 1-2 who 

are in classrooms at time t that are not sorted on the scores at t-1.  Columns 1, 3, and 5 

report the effects of teachers and classrooms at time t on student scores at time t.  Columns 

2, 4, and 6 report the effects of teachers and classrooms at time t+1 on student scores at 

time t.   Standard errors in parentheses.  ***p<.001 
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TABLE 16:  Decomposition of Teacher Effects. 

Teacher Variation (Proportion)  

Between Within Reliability Stability 

(1) (2) (3) (4) 

.63 .37 .81 .51 

    

Notes:  CMS Math Grades 5-8, (2008-2010).  Based upon estimation of an alternative 

specification of the base model.  Under this random effects specification, teacher-by-year 

effects, rather than classroom random effects, are nested within teacher effects. Columns 

1-2 decompose the variation in teacher effects (net of estimation error) due to between 

and within teacher differences.  Column 3 indicates the proportion of the variation in 

teacher effects due to the between and within teacher variation.  Column 4 indicates the 

proportion of the between teacher variation of the total teacher variation.   
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TABLE 17:  Teacher Effect Transition Matrices. 

Panel A:  2009 v. 2010 

   

          Quartile in 2010 

                                   (1) (2) (3) (4) 
Q

u
ar

ti
le

 i
n
 

2
0
0
9
 (1) 41.8 28.8 20.5 8.9 

(2) 28.9 26.3 21.7 23.0 

(3) 20.8 22.7 31.2 25.3 

(4) 5.5 14.5 28.5 51.5 

 N=617 

Correlation of Teacher Effect Point Estimates= 0.48 

      Panel B:  <=2009 v. <=2010 

       Quartile in 2010 

                                   (1) (2) (3) (4) 

Q
u
ar

ti
le

 i
n
 

2
0
0
9
 (1) 83.7 14.0 1.9 0.4 

(2) 13.3 68.9 14.8 3.0 

(3) 1.1 16.7 67.4 14.8 

(4) 0.4 0.8 17.1 81.7 

 

    

N=1055 

Correlation of Teacher Effect Point Estimates= 0.94 

      
Panel C:  <=2009 vs. <=2010 for all teachers in sample all three years 

    Quartile in 2010 

                                   (1) (2) (3) (4) 

Q
u
ar

ti
le

 i
n
 

2
0
0
9
 (1) 78.7 19.7 1.6 0.0 

(2) 19.0 62.7 17.5 0.8 

(3) 2.4 15.7 63.0 18.9 

(4) 0.0 0.8 18.3 81.0 

 N=506 

Correlation of Teacher Effect Point Estimates=  0.94 

 

Notes:  CMS Grades 5-8, 2008-2010.  Each panel provides a transition matrix for the 

teachers in a given quartile in 2009 who are in a given quartile in 2010.  All figures are 

row percentages.  Panel A uses quartiles based upon single year estimates of teacher 

effects in 2009 and 2010.  Panel B uses multi-year estimates of teacher effects up to and 

including 2009 and then up to and including 2010.  Panel C replicates Panel B but 

restricts the sample to those teachers who were present each year 2008-2010.  Teacher 

effects are calculated using the base model described in Table 7, column 4. 
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FIGURES 

FIGURE 1:  Kernel Density of Current Test Score by Prior Year Score Missingness. 

 
Notes: CMS Grades 5-8 (2008-2010).  Current year test scores normalized by grade and 

year to have mean of zero and unit variation. 
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FIGURE 2:  Functional Form of Prior Score. 

 

Panel A:  Score at t and t-1 
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FIGURE 2 (continued) 

 

Panel B:  Score at t and t-2 

 
 

Notes: CMS Grades 5-8 (2010).  Test scores normalized by grade and year to have mean 

of zero and unit variation. 
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FIGURE 3:  Teacher Effects and Shrinkage. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).    The distributions of the teacher effects come 

from the models estimated in Table 7. 
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FIGURE 4:  Sampling Error and Teacher Effects. 

 

Panel A:  Unshrunken Estimates 
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FIGURE 4 (continued) 

Panel B:  Shrunken Estimates 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  The effects plotted in Panels A-B come from the 

model summarized in Table 7 columns 1-2, respectively. 
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FIGURE 5: Precision of Estimates by Number of Observations. 

 
Notes:  CMS Grades 5-8 (2008-2010).  The standard errors are from the teacher effects 

generated by the model summarized in Table 7, column 4. 
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FIGURE 6:  Skewness of Current and Prior Year Scores. 

 
 

Notes:  CMS Grades 5-8 (2010). 
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FIGURE 7:  Average Test Score Gains by Prior Test Scores. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  The elements of the figure are boxplots of the 

range of test scores changes from t-1 to t by decile of student test scores at t-2.  (Decile 

10 is top.) The shaded portion of the box represents the interquartile range.  The whiskers 

represent the range of adjacent values, and the dots represent students outside the range 

of adjacent values. 
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FIGURE 8:  Relationship of Prior Score to Current Year Teacher Effect. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  Teacher effects are generated by the preferred 

model summarized in Table 7, column 4. 
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FIGURE 9:  Teacher Effects and the Proportion of Students Top and Bottom Deciles.  

 

Panel A:  Top 10% of Students 
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FIGURE 9 (continued) 

Panel B: Bottom 10% Students 

 
 

Notes:  CMS Grades 5-8 (2008-2010).   Teacher effects are based on preferred model 

summarized in Table 7, column 4.  
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FIGURE 10: Variation of Teacher Effects Across Student Deciles. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).   Teacher effects are based on preferred model 

summarized in Table 7, column 4. 
 The elements of the figure are boxplots of the range 

of teacher effects by decile of teacher mean student test scores at t-2.  (Decile 10 is top.) 

The shaded portion of the box represents the interquartile range.  The whiskers represent 

the range of adjacent values, and the dots represent students outside the range of adjacent 

values. 
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FIGURE 11:  Classroom Sorting. 

 

Panel A.  Standard Deviation of Student Scores at t-1 by Class 
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FIGURE 11 (continued) 

Panel B.  Classroom Means of Student Test Scores at t-1 

 

 
Notes:  CMS Grades 5-8 (2008-2010).  Panels A-B depict the kernel densities of 

classroom prior test score standard deviation and means under three conditions of sorting.  

The perfectly sorted sample is a simulation in which students are sorted within year, 

school, and grade by prior test score.  The randomly sorted sample simulates random 

assignment of teachers to students within these same strata.  The actual sample reflects 

the extant sorting in the data. 
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FIGURE 12:  Sorting by Subsample. 

 

Panel A:  Teacher’s SD Student Test Scores at t-1 
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FIGURE 12 (continued) 

Panel B:  Teacher’s Mean Student Test Scores at t-1 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  Panels A-B depict the kernel densities of the 

standard deviations and means of the teachers’ students test scores at t-1.  The non-sorted 

and sorted samples refer to the sample described in Table 12, columns 3-4 and 5-6, 

respectively. 
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FIGURE 13: Distribution of Teacher Effects Across and Within Schools. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).    The teacher effects plotted in the density curve 

for across and within school are derived from the preferred model summarized in Table 

7, column 4.  The teacher effects for the within-school distribution are derived from an 

estimation of the preferred model that includes school fixed effects. 
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FIGURE 14:  Between and Within-School Variation in Teacher Effects. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).   Teacher effects derived from the preferred model 

preferred model summarized in Table 7, column 4.   The between and within school 

variation is calculated using Stata's -xtsum- command.  Each vertical line is a boxplot of 

the teacher effects for one school over the period 2008-2010). 

 

 

  

-.4

-.2

0

.2

.4

T
ea

ch
er

 E
ff

ec
ts

 
Variance decomposition in student-level sds:
Between Schools=.07, Within Schools==.11.

CMS Math Grades 5-8 (2008-2010)
Between and Within School Variance of Teacher Effects

Schools



146 

 

FIGURE 15: Distribution of High and Low Value-Added Teachers Across Schools. 

 

Panel A:  Distribution of Top 25% Teachers Across Schools. 
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FIGURE 15 (continued) 

Panel B:  Distribution of Bottom 25% Teachers Across Schools. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  Panels A-B plot the proportion of a school’s 

teachers in the top and bottom quartile of teacher effects by the school’s percentage of 

students qualifying for free and reduced lunch in 2010.  The teacher effects are derived 

from the preferred model. 
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FIGURE 16:  Teacher Effects under Varying Confidence Intervals. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  The teacher effects are derived from the preferred 

model. 
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FIGURE 17:  Probabilities of Teachers in Given Quantile. 

 
 

Notes:  CMS Grades 5-8 (2008-2010).  The teacher effects are derived from the preferred 

model.  The probabilities are calculated under the assumption that the error around the 

teacher effect estimate is normally distributed.  A kernel density curve is superimposed 

on the histogram. 
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