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ABSTRACT 

 
 

JONATHAN WARD MCCAFFERTY.  Microbial contributions to disease phenotypes.  
(Under the direction of DR. ANTHONY A. FODOR) 

 
 
 The unseen world of microbes has a profound affect on everyday life.  Complex 

microbial communities play a role in everything from climate regulation to human health 

and disease pathogenesis.  Advancements in the field of Metagenomics are providing a 

window into the world of microbial communities with an unprecedented resolution.  

Next-generation sequencing technology is allowing researchers to describe the 

relationships between these complex microbial communities and their host environments.  

The research in this dissertation investigates these complex microbial host relationships 

and the various tools and techniques needed to conduct metagenomic research. 

 Chapter 1 presents a current overview of techniques at the disposal of researchers 

conducting metagenomics experiments.  Topics discussed include qualitative DNA 

fingerprinting techniques, comparison between Next-generation sequencing platforms, 

and how to handle statistical analysis of large metagenomic datasets.  Chapter 2 deals 

with the development of Peak Studio, a platform independent graphical user interface, 

intended to be a pre-processing tool for researchers conducting DNA fingerprinting 

experiments.  Chapter 3 explores how time and microenvironment influence the structure 

of gut microbial communities in a mouse model.  Two experimental cohorts of mice are 

analyzed through the use of Illumina HiSeq sequencing of the 16S rRNA targeted V6 

hypervariable region.  Also considered are the effects over time of inoculating mice with 

a founder microbial community.  In total, this dissertation emphasizes the importance of 
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experimental design and the development and use of technology in the exploration of 

complex microbial communities. 
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CHAPTER 1:  HUMAN MICROBIOME ANALYSIS VIA THE 16S RRNA GENE 

 
1.1 Abstract 
 

The human associated microbiota has been linked to an ever-expanding set of 

diseases including obesity, cancer and inflammatory bowel disease.  While the decreasing 

cost of sequencing is making whole-genome metagenomic shotgun sequencing more 

feasible, 16S rRNA based sequencing studies remain the most commonly utilized method 

to characterize a microbial community.  In this review, we consider different methods to 

characterize a mixed microbial community by examination of the 16S rRNA gene.  We 

discuss older, low-resolution methods such as Terminal Restriction Length 

Polymorphisms (T-RFLP) and Automated Ribosomal Intergenic Spacer Analysis 

(ARISA), which yield low-cost “snapshots” of the microbial community that can be 

generated rapidly.  We next consider current high-throughput sequencing technology 

from 454 Life Sciences and Illumina.  These techniques generate large amounts of data 

and careful consideration must be given to how low-quality sequences and PCR chimeras 

are removed from downstream consideration.  We examine algorithms for clustering 

sequences into Operational Taxonomic Units (OTUs) and for assigning taxonomy. 

Finally, we consider methods for assigning statistical significance to differences between 

different microbial communities. 
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1.2 Introduction 

Microorganisms exist in great abundance and inhabit virtually every conceivable 

environment on earth including the inside and outside of the human body.   

Environmental microbial communities range from the highly simplified community 

found within acid-mine drainage ecosystems [1, 2] to extraordinarily complex and 

diverse soil and ocean ecosystems [3-6].  Within the human microbiome, there is also a 

range of complexity ranging from the relative simplicity of vaginal samples to more 

complex habitats such as the human gut [7-11].  Prior to the application of sequencing 

technology to the study of microbial communities, our knowledge and understanding of 

microbial community composition had been limited to the subset of organisms that could 

be cultured.  The sequencing technology that has driven recent advancements in culture 

independent molecular techniques is rapidly revolutionizing the field allowing for 

exquisitely detailed, yet low cost, descriptions of the structure of microbial communities.  

In this review, we discuss how technology has changed in the last few years, consider the 

informatics challenges that new sequencing technology is creating and examine recently 

developed solutions for these challenges.  

1.3  Whole Genome Shotgun Sequencing Vs 16S Sequencing 
 

All culture free identification methods begin with isolation of microbial DNA.  

The methods used to isolate DNA can have a profound impact on the observed microbial 

community structure [12, 13].  It is important, therefore, that in a series of experiments 

that the method of DNA isolation is not changed.   

Once DNA has been isolated, two distinct techniques can be used to characterize 

the metagenome (Fig. 1).  PCR can be used to target one gene that is used as a “barcode” 
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for taxonomy.   For bacteria, the chosen gene is usually the 16S rRNA gene, which is 

among the most conserved genes across evolutionary space in the microbial genome.  As 

an alternative to surveying a single gene, whole genome shotgun (WGS) is accomplished 

through random shearing of genomic DNA into smaller fragments then ligating the 

necessary platform specific adapters to the fragments prior to the sequencing reaction. 

Whole genome sequencing bypasses the PCR amplification step removing a potential 

source of bias.  Research conducted by the Human Microbiome Project (HMP) 

demonstrates that functional analysis of genes from whole genome sequencing produces 

results that have less variability that 16S community profiling [8, 14].  Whole-genome 

metagenome shotgun sequencing experiments, however, have higher requirements for the 

amount of starting material and are more sensitive to host contamination.  Moreover, 

interpretation of shotgun sequencing experiments requires more sequences and hence 

whole-genome shotgun sequence datasets are more expensive to produce and require 

more time and computational resources to analyze.  The Global Ocean Survey, at the time 

of publication in 2007 by far the largest whole genome metagenome shotgun experiment 

ever performed, consisted of 7.7 million Sanger sequencing reads for a total of 6.3 

gibabases spread across 44 samples.  Typically, a current sequencing strategy for whole-

genome shotgun sequencing experiments will attempt to generate on the order of 2-10 

gigabase of total sequence per sample from a paired-end generating technology.   

Because of this requirement for a large number of sequences, whole-genome shotgun 

sequence characterizations are usually done on the Illumina HiSeq platform, where the 

library preparations plus sequencing costs can potentially run into the hundreds of dollars 

per sample. By contrast, because 16S rRNA amplicon sequencing targets only a single 
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gene, many fewer sequences are required to be informative.  Before the advent of next-

generation sequencing, a typical strategy would involve creating clone libraries from 

PCR products and picking and sequencing on the order of one hundred clones [15, 16].  

With 454 sequencing, read-length decreased, but a typical study would generate on the 

order of thousands of sequences per sample [17, 18].  Recently, protocols have been 

published that describe the application of the Illumina HiSeq platform to 16S amplicon 

sequencing [19].  16S rRNA sequencing based on Illumina HiSeq easily allows for tens 

of thousands to millions of sequences per sample [20, 21]. 

To economically run multiple sequences under either Illumina or 454 

technologies, a “barcode” system is typically utilized in which a small DNA identifier 

(typically on the order of 4-10 nucleotides) is inserted adjacent to the 16S sequence in the 

PCR primer [22].  One lane of a typical paired-end HiSeq Illumina run may produce over 

100 million sequences and cost on the order of $2,500US.  By introducing bar-codes into 

both the 5’ and 3’ primers, the over 100 million sequences can be split between on the 

order of 100 to 1,000 samples allowing for a per-sample cost of as low as a few dollars.  

Per sample costs for 16S amplicon sequencing, therefore, remains much lower than for 

shotgun sequencing.  Moreover, because fewer sequences are generated, the downstream 

analysis times and computational requirements are also significantly smaller.   

Because of the high degree of individual variation in the human microbiome [7-

11], in clinical studies large sample sizes are often required to ensure adequate power.  

Longitudinal study designs that sample patients across multiple time points can capture 

variation across time, allowing each patient to in some sense to serve as their own 

control.  This approach can be crucial for detecting important changes against the 
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backdrop of individual variation [18, 23].  Sampling many patients frequently across time 

can easily generate large numbers of samples, and the lower cost and simpler analysis 

path for 16S sequencing therefore offers a crucial advantage over whole-genome shotgun 

sequencing.  However, straight-forward methods that allow for functional gene analysis 

[24] and taxonomy [25] of shotgun sequence datasets have recently been developed and 

as sequencing continues to approach being “free”, the effects of the cost differences 

between 16S and shotgun methods will become less significant. In the future, therefore, 

we may see whole genome shotgun sequencing become the dominant method.  For the 

immediate present, however, cost and data management concerns usually make 16S 

sequencing the default method for large clinical studies.   A feasible strategy is to 16S 

sequence a large set of samples and then choose a subset of samples for in-depth whole-

genome shotgun characterization. 

1.4  Low Resolution Community Profiling  
 

This barcode strategy described above for 454 and Illumina 16S sequencing has 

the disadvantage that samples need to be archived until a sufficient number of samples 

are available to make economical use of all of the sequences in the next-generation run.  

There are situations, however, when more immediate results are required.  For example, 

in animal studies it may be required to know that the microbial community has achieved 

stability after a treatment before performing an intervention or terminating an experiment.  

In cases such as these, microbial “profiling” techniques, which were state of the art in the 

1990s, may still have utility.  Rather than directly sequencing the DNA sequence 

associated with the 16S gene, these profiling techniques use either a fluorescent tag 

incorporated into one of the PCR primers or a denaturing gel to separate DNA from 
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different taxa (Fig. 2).  Changes to the “profile” of the DNA can be used to detect 

changes to the overall microbial community, although it is usually not straightforward to 

identify which taxa make up the profile. 

The three most popular DNA fingerprinting techniques are ARISA (Automated 

Ribosomal Intergenic Spacer Analysis) [26], T-RFLP (Terminal Restriction Length 

Polymorphism) [27], and DGGE (Denaturing Gradient Gel Electrophoresis) [28] (Fig. 2).  

T-RFLP performs a PCR targeting the 16S rRNA gene followed by application of one or 

more restriction enzymes.  In ARISA, the PCR is performed in the region between the 

16S and 23S gene.  Since the number of nucleotides in this region is different for 

different taxa, changes in the microbial community will produce a distinct ARISA 

profile.  In both ARISA and T-RFLP, a fluorescent primer is incorporated into one of the 

PCR primers and, typically, a Sanger sequencing machine is used to separate the DNA 

regions of different length (Fig. 2). As an alternative that does not require access to a 

Sanger sequencing machine, DGGE performs a PCR on the 16S gene and then uses a 

denaturing gel to separate DNA based on melting temperature.  Different bacteria have 

different GC content and thus changes to the microbial community can be detected as 

changes to the DGGE profile.   

In general, if access to a Sanger sequencing machine is available, T-RFLP and ARISA 

are easier to perform than DGGE and can generate results quickly.  It is possible to 

perform DNA isolation and then generate interpretable T-RFLP and ARISA results 

within a 24-hour period for a cost on the order of one dollar per sample.  Software, such 

as Peak Studio [29] can be used to interpret the results of T-RFLP and ARISA 

experiments.   
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While they are not a substitute for sequencing experiments, fingerprinting 

techniques are still an inexpensive and quick way to identify differences in microbial 

communities, and are currently in use by microbiology laboratories around the world, [4, 

30, 31].  These techniques however are limited in their ability to provide taxonomic 

identifications.  Fingerprinting techniques are especially useful as a way to test the 

success of DNA microbial isolation methods on difficult samples and can be used to 

troubleshoot samples of interest prior to sequencing. 

1.5  Next Generation Sequencing 
 

Before the advent of next-generation sequencing, Sanger sequencing [32]  had 

been the dominant method for investigating microbial communities.  While generating 

longer read lengths than currently popular next-generation platforms, Sanger sequencing 

suffers from several limitations including the requirement of building bacterial clone 

libraries, which had the potential to bias against genes that were harmful to the E. Coli 

that hosted the library.  Moreover, the cost of Sanger sequencing inevitably limited the 

depth of sequencing making it more difficult to categorize the low-abundance members 

of the community.  By eliminating the laborious clone library step, next generation 

sequencing experiments, in addition to being much cheaper, are much easier to perform 

and have the potential to be less biased than Sanger sequencing.  As a result, few papers 

are currently published that make extensive use of Sanger 16S sequencing. The two next 

generation sequencing (NGS) platforms developed by Roche/454 Life Sciences (released 

in 2005) and Illumina/Solexa (released in 2007) [33], have ushered in a revolution in 

microbial ecology studies.  While 454 pyrosequencing and Illumina currently produce 

shorter read lengths compared to Sanger sequencing, making alignment and de novo 
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assembly of whole-genome shotgun reads more difficult, both platforms continue to 

improve.  Initially read lengths from a 454 run averaged around 100 bases, increasing to 

400 – 700 bases in just a few years while reducing overall cost to about 10 dollars per 

sequenced mega-base [34].  Illumina has also demonstrated the ability to quickly make 

adjustments to sequencing technology by increasing read length from 36 bases to 

currently greater than 100 bases and bringing down the cost to 12 cents per sequenced 

mega-base [34].  Read lengths will continue to grow with biochemistry refinements and 

advancements with microfluidics that will increase the speed of the sequencing reaction 

[35]. 

In performing a 16S rRNA sequencing experiment, an early choice that must be 

made is which region of the 16S rRNA gene should be sequenced.  While the 16S rRNA 

gene is among the most conserved genes in bacterial genomes, it contains 9 hypervariable 

regions (V1-V9) that show considerable diversity among bacteria but can be targeted and 

amplified to facilitate identification down to the genus and species level [35, 36]. The 

relatively short read lengths of 454 and Illumina do not allow for sequencing across the 

entire 16S rRNA gene requiring an explicit choice of which variable regions are targeted 

when these sequencing platforms are used.  In an early survey that used the GS20 

platform on 454 sequencing, the ~100 base pair read length of that platform dictated the 

choice of the V6 primer [37].  As 454 sequencing matured and the read length approach 

400 basepairs, more studies targeted regions within V1-V5, as bioinformatics studies 

suggested that these regions had improved taxonomic resolution [38, 39].  With the 

application of the Illumina HiSeq to 16S datasets, the V6 region has remained attractive 

[19, 20] as a 100 base-pair paired end read can sequence the entire V6 amplicon at 2X 
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coverage.  With 100 base-pair Illumina reads, the V4 region has also been targeted [21] 

likely allowing for greater taxonomic resolution [39] but at a cost of only partial overlap 

if a paired end approach is taken.  As Illumina read-lengths increase, we can anticipate 

that future studies will more frequently target the V1-V3 and V3-V5 regions with a 

paired-end approach that will reduce the effect of sequencing error on downstream 

analyses. 

1.6  Potential Sources Of Error And Preprocessing 

Environmental deep sequencing of PCR amplicons using NGS technology 

enhances the ability to detect the low abundant members present in the community, what 

has been termed the “rare biosphere” [37, 38, 40, 41].  The same NGS technology that 

grants this unprecedented look at complex microbial communities also contributes to a 

possible overestimation of diversity due to the generation of low frequency error prone 

reads [40, 41].  Error rates using 16S rRNA amplicons can have a great effect on 

diversity estimates because every read in a 16S rRNA sequencing run is treated as a 

unique identifier for a member of the microbial community leading to inflation of 

diversity estimates [41].  PCR amplification can be a prime source of error bias and 

chimera formation in 16S datasets.  The limitations of the next generation sequencing 

platforms are also sources of potential error accumulation and bias.  Chemistry used in 

the 454 sequencing platform lacks a terminating functional group, allowing for the 

incorporation of multiple bases during a single injection cycle making an accurate 

assessment of the number of nucleotides in homopolymer region difficult.  Huse and 

colleagues estimated that the errors involving homopolymer regions accounted for 39% 

of all errors using the GS20 454 sequencing platform on the V6 hypervariable region of 
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16S rRNA with insertions being the most common followed by deletions, ambiguous 

bases and substitutions [42].  While the Illumina platform uses bridge amplification 

instead of the emulsion PCR used by the 454 platform it also has limitations that produce 

potential errors.  Minoche and colleagues report that Illumina sequences exhibit 

preferences for certain substitutions with a measurable GC bias demonstrated [43].  Any 

errors that occur during the sequencing process can have dramatic and profound effects 

on downstream analysis and therefore must be accounted for to prevent any false positive 

calls during taxonomic assignment procedures. 

Errors accumulated during the sequencing process, regardless of platform 

selected, lead to artificially inflated estimates of diversity affecting the composition of the 

“rare biosphere”.  Preprocessing to correct for these errors usually involves a quality filter 

step followed by a clustering algorithm to generate a set of Operational Taxonomic Units 

(OTUs) used for analysis.   

The appropriate QA/QC pipeline to use on next generation sequencing data has 

been a source of considerable interest in the literature.  Initially it was believed that 

filtering out reads with ambiguous bases, reads that contained an error in the primer 

sequence, or any reads that were too long or too short would be sufficient in minimizing 

error rates [42].  Kunin and colleagues argued, however, that even downstream of these 

QC filtering steps that diversity estimates from 16S rRNA 454 pyrosequencing studies 

can be inflated by two orders of magnitude due to sequencing errors [41].    By setting 

stringent thresholds for quality filtering and base trimming of reads and clustering at no 

greater than 97% they were able to eliminate most spurious OTUs in a library that 

sequenced a single Escherichia coli reference template [41].  In an alternative approach 
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to eliminating spurious OTUs, an algorithm called PyroNoise [44] circumvented the 454 

sequencing platform base calling algorithm and instead analyzed the underlying 

flowgrams produced by the sequencing machine.  While potentially more accurate than 

competing methods, the pyronoise algorithm is computationally very expensive to run 

and can only be applied to 454 datasets. 

To address the question of how data processing and error rates can affect diversity 

estimates in the rare biosphere; Huse and colleagues set out to analyze how different 

combinations of filter and clustering techniques influence the estimates of diversity [40].  

By exploring pipelines that relaxed a requirement that no two sequences within an OTU 

had a greater divergence than the threshold of the OTU, Huse and colleagues 

demonstrated that spurious OTUs could be eliminated in a matter that was less 

computationally expensive than PyroNoise [40].  Using this method Huse et al argued 

that while previous analysis of the rare biosphere contained over estimates of diversity, 

the rare biosphere was not made up entirely of spurious OTUs [40].  The question of 

separating sequencing error from rare OTUs remains an area of active research. 

One way to deal with sequencing error in the rare biosphere is to choose a 

clustering algorithm such as AbundantOTU that deliberately excludes the rare biosphere 

[45].  By using a recruitment strategy that builds consensus sequences from individual 

16S reads, AbundantOTU takes advantage of redundant sequence information to achieve 

efficient run times. In our lab, we have found that AbundantOTU can cluster 100 million 

100 base pair V6 Illumina 16S sequences in approximately 12 hours on a single CPU. 

Reads that are not recruited to consensus sequences by AbudantOTU represent sampling 

from rare species or error prone reads from abundant species.  These left over reads can 
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be used for further analysis but should be done with caution as they may be the source of 

diversity inflation [45].   In a recent study [7], it was found that the majority of reads 

from the Human Microbiome Project that failed to be clustered by AbundantOTU were in 

fact chimeric as detected by UCHIME [46].  This suggests that reads that are not 

incorporated by AbundantOTU are frequently the result of error.  

1.7  Chimera Detection 

16S datasets characterized by next-generation sequencing requires an initial 

amplification of sample through PCR.  Chimeric sequences are artifacts in the PCR 

process that result in the formation of product that is the combination of two or more 

parent sequences. Anomalies is sequences from diverse origins have been identified in 

public repositories creating the appearance of novel non-existent organisms [47].  In 

2005, it was estimated that the error rate of sequences in public databases is 5% with 

chimeras representing the majority of anomalies [48].  Chimera detection is an active area 

of research with many researchers developing algorithms to filter sequences and limit the 

introduction of chimeras into analysis pipelines.   

Early approaches to chimera detection utilized a comparison of calculated 

evolutionary distance with that of the known rate of variability in the 16S rRNA gene 

with highly divergent sequences flagged as chimeras [48].  Chimera Slayer was 

developed to address the short read lengths and large data sets produced by NGS 

sequencing platforms [49].  Chimeria Slayer uses a multiple sequence alignment of a 

chimera free reference database that can be searched by query sequences to identify 

potential chimeras.  Edgar and colleagues have recently developed what is likely to date 

the most sensitive and accurate chimera detection software program UCHIME [46], 
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which can work either by mapping sequences to a reference database or in a “de novo” 

mode that does not require a reference database [46].  UCHIME has demonstrated an 

increase in speed and sensitivity compared to the next best chimera detection algorithm, 

Chimera Slayer, while preserving lower error rates [46]. 

1.8  Taxonomy Assignment 

Accurate taxonomic assignment of high throughput sequencing data is essential to 

our understanding of the structure and composition of microbial communities and 

defining ecological roles played by community members.  Without taxonomic 

information findings about communities cannot be related to known attributes of 

microbes at varying levels of resolution [50].  A principle challenge is obtaining accurate 

assignments using the shorter reads produced by next generation sequencing.  A common 

method for evaluating the taxonomy of a sequence is to simply BLAST the sequence 

against some reference database.  However, since many sequences in reference databases 

are annotated simply as “uncultured organism”, and the query sequence can match many 

reference taxa with sometimes conflicting taxonomic annotations, this method often leads 

to unsatisfying results. 

Classification algorithms attempt to assign taxonomy to sequences in a more 

systematic matter than is achievable through a simple BLAST search.  Arguably the most 

widely used taxonomic classifier The Ribosomal Database Project (RDP) algorithm 

classifies taxa based on the co-occurrence of 8-mers in a query sequence and a reference 

database. Trained on Bergey’s Taxonomic Outline accuracy of classification can be seen 

down to the genus level for near-full-length and 400 base pair partial rRNA sequences 

[51].  Shorter 200 base pair partial sequences were accurate down to the family level 
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[51].  Given the simplicity of the algorithm used by RDP classification scheme, its high 

level of accuracy is perhaps surprising.    Misclassifications are primarily caused by 

errors present in the underlying training set of reference sequences, but in the case of 

shorter reads a lack of information contained in the sequence could lead to 

misclassifications [51].   Because it is based on 8-mers, which can be indexed for rapid 

retrieval independent of the size of the reference database, the RDP algorithm is 

extremely computationally efficient, a factor that undoubtedly contributes to its enduring 

popularity. Well regarded alternatives to the RDP algorithm include techniques based on 

the Greengenes [52] and Silva [53] databases.  A recent paper demonstrated new methods 

that have led to an improved Greengenes taxonomy [54].  Taxonomic classification 

remains an active area of research as well as a source of much debate and controversy 

and we can expect continued refinement of taxonomies and classifiers as more datasets 

become available and algorithms continue to improve. 

Whichever classifier is used, query read length is a contributing factor in correctly 

assigning taxonomy.  A choice that must be made in an analysis pipeline is whether to 

directly classify the short reads produced by next generation sequencers or to map those 

reads to full length 16S rRNA sequences and instead classify the full-length references.    

Using the RDP classifier, increasing query reads from 50 bases to full-length 16S rRNA 

will generate a greater than 5% increase in accuracy at the Phylum level and a greater 

than 39% increase in accuracy at the Genus level [51].  With short reads (such as the 

~100 basepairs produced by early 454 technology or recent Illumina HiSeq technology), 

classifying reference OTUs instead of the reads directly is therefore clearly attractive.  

Individual sequence reads (or consensus or representative sequences from OTUs) can be 
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mapped to reference databases with simple best hits from blast searches or from methods 

such as GAST [55] or align.seqs from Mothur [56] that consider global alignments.  A 

study [7] from the Human Microbiome Project demonstrated that nearly every taxa in the 

HMP collection was previously observed as a full length sequence in the Silva database.  

This makes the strategy of mapping short-read sequences to a full length database a 

feasible option for human metagenomic studies, with the obvious caveat that this 

approach will be unable to discriminate two taxa that play biologically distinct roles but 

have identical sequences within the sequenced region. 

1.9  Statistical Analysis 

In order to understand how the microbial community contributes to health and 

disease phenotypes, it is necessary to perform inference in order to assign probabilities 

with which to reject null hypotheses that the state of the microbial community is not 

associated with subject characteristics.   A straightforward approach to this problem is to 

choose a taxonomic level (phyla, class, order, family, genus or OTU) and form a null 

hypothesis for each taxa that the taxa is not associated with the phenotype of interest.  P-

values for each null hypothesis can be generated by univariate statistical tests.  For 

example, for a case-control experiment, the t-test can be used, or if the sample size is 

large enough, the Wilcoxon test in order to avoid the parametric assumptions of the t-test.  

This approach has been used numerous times in the literature [17, 18]. 

One possible limitation of this approach is that it will lead to over-fitting and 

spurious conclusions if a simple threshold of significance (for example p <0.05) is used.  

This is because an independent test is run for each taxa in the experiment.  If, for 

example, there were 1,000 OTUs in an experiment (a not atypical number for a human 
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gut survey) and a simple p-value threshold of p <0.05 were used, we would expect 50 

significant “hits” even if completely random data were fed into the t-tests.  In order to 

avoid over-fitting of data, appropriate correction for multiple hypothesis testing is 

required.  One simple approach, Bonferonni correction, adjusts the p-value directly by 

dividing the p-value threshold by the number of tests that are being run.  So if 1,000 null 

hypotheses are tested, the p-value that would be used as a threshold of significance is 5 * 

10-5 (that is, 0.05/1000).  The probability that any of the hits detected at this threshold of 

significance are false positives is 0.05.   Bonferonni correction sets a rigorous threshold 

for interpretation of genomics experiments, but is often considered to be too conservative 

for genomics experiments.  A popular alternative is false discovery rate (FDR) based 

metrics.  At a 5% FDR threshold, we would expect 5% of the hits to be false positives.  

This is a far less stringent threshold than a Bonferonni corrected p-value of 0.05, in which 

there would only be a 5% chance that any of the hits would be false positives.  Popular 

methods of calculating false discovery rate include Storey’s q-value method [57] and the 

Benjamani and Hochberg false discovery rate method [58].  The Benjamani and 

Hochberg method in particular is very easy to calculate and has a straightforward 

interpretation.  Given a list of p-values that result from a series of independent statistical 

tests, the list is sorted with the smallest p-values at the top.  For each p-value, a corrected 

metric is calculated which is N*p/k where N is the number of null hypotheses that are 

being tested, p is the p-value produced by the independent statistical test, and k is the 

rank (the smallest p-value ranked 1, the next p-value ranked 2 and so forth).  To 

determine what hits are significant at a 5% false discovery rate, one simply starts at the 

top of the list and continues until the N*p/k value exceeds 0.05.   
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An alternative to performing multiple statistical tests on metagenomic data is to 

reduce the high dimensionality of metagenomic data sets by finding individual metrics 

that describe the state of the metagenomic community and performing inference on those 

metrics.  Popular examples of such a metric include diversity metrics that attempt to 

describe the complexity of the microbial community. The simplest measure of microbial 

community complexity is richness, which is simply the number of taxa present in a 

sample.  In NGS experiments in which barcodes are utilized, there are inevitably very 

different numbers of sequences per sample and this can potentially skew richness 

methods.  A simple but effective technique to correct for this is to randomly re-sample 

each sample a set number of times and report as richness the average number of taxa 

observed across the re-samples. 

Another often-used metric is the Shannon diversity index.  This measures 

diversity through a log proportionality of species abundance in each sample.  To calculate 

Shannon diversity, each taxa in the sample is converted to a proportion (for example if 

12% of the sequences were assigned to Firmicutes, p for Firmicutes would be 0.12) and 

the Shannon diversity is simply calculated as –Σp * log p summed across all of the taxa.  

Shannon diversity is easy to compute but it has been argued [59] that it lacks a 

straightforward biological interpretation.  Shannon diversity reflects a mixture of richness 

(as defined above) and evenness (how equally reads are distributed across the taxa).  A 

high Shannon diversity, therefore, can reflect either high richness or high evenness. 

Directly reporting richness and evenness rather than Shannon diversity may lead to 

results with a more straightforward biological interpretation. 
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An alternative to diversity metrics is to find single variables that describe the 

entire microbial community.  Microbial ecologists have long utilized multivariate 

statistical analysis as a way of visualizing and explaining diversity patterns based on 

environment, time, geographical location, or disease states in high dimensional data sets.  

Principal component analysis (PCA) and principal coordinates analysis (PCoA) are two 

often used metrics for identifying patterns in metagenomic data.  Both techniques are in a 

class of unsupervised statistical models that compress high dimensional data into a set of 

new variables that will explain the variance contained in the data in a lower dimensional 

space.  While PCA and PCoA share similar assumptions and objectives in that they 

project the similarities between samples onto a new coordinate system, the input matrix 

used and data interpretation differs [60].  Standard implementations of PCA are 

conducted with covariance or correlation matrices [60].  In contrast to PCA, PCoA can 

use any distance matrix as input.  In microbial ecology UniFrac is a popular distance 

metric used to analyze microbial community data sets [61].  A UniFrac distance is 

calculated between any two samples by constructing phylogenic trees.  Environment 

similarities are determined through the distance metric based on the number of shared 

branch lengths in the phylogenetic tree. Weighted UniFrac, a modification to UniFrac 

incorporates abundance information into the branch length calculation in order to track 

changes in community organism populations [61].  While UniFrac is currently a popular 

choice for microbial community studies, other distance metrics have been implemented 

with comparable results.  A recent study demonstrated that 18 distance metrics obtained 

broadly similar results in a study of an elderly Irish cohort [62].  A metric long popular 

with ecologists due to its simple calculation and ease of interpretation is the Bray-Curtis 
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dissimilarity.  This metric is not a true distance metric but works by quantifying 

dissimilarity between two samples based on the count of common taxa divided by the 

total number of taxa present.   

Canonical unsupervised statistical tests ask whether changes to the microbial 

community are statistically associated with changes to phenotypes of interest.  An 

alternative analysis path, supervised classification, instead asks whether the state of the 

microbial community can predict phenotypes of interest [63].  One goal of this type of 

analysis is to identify groups of microbes that can be used as markers for disease and 

distress.  In supervised classification, models are constructed from a set of training data 

with categorical information, case and control for example, and then when new unlabeled 

data is introduced the model makes a prediction as to which category the new data 

belongs.  The field of machine learning offers many models that could potentially reveal 

relationships between metagenomic data and host phenotypes [63].  Random forests (RF) 

classifiers work by generating decision trees from a random subset of available features 

and then discriminating between categories by choosing the maximum number of 

category predictions.   RF’s have been applied to characterize metagenomic signatures 

[64] but depending on the data are not always the best classifier choice [65]. Other 

models that have successfully been applied to metagenomic data included Elastic Net 

(ENET) [66] and a technique that combines k-nearest neighbor and Support Vector 

Machines (SVM) [67].    

Overfitting is always a concern when dealing with predictive models.  A 

supervised classification model is trained on a set of known data and the more complex 

the data is the more the model is prone to describing the noise in the data rather than the 
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underlying relationship.  This causes the model to be highly accurate on the training set 

but to falter when new data is presented. Cross-training validation where models are 

repeatedly trained on a subset of data and then tested on the “left out” portion of the data 

are routinely used as tests for overfitting.  Waldron and colleagues [66]  demonstrated, 

however,  that even this sort of approach is not a guarantee of preventing model over-

fitting and they highlight the importance of using datasets that were in no way used in 

model building steps in order to test the model to avoid generating irreproducible results. 

1.10  Conclusion 

The advent of next-generation sequencing is spawning a revolution in 

microbiology allowing for the analysis of whole communities rather than only organisms 

that can be cultured.  While the potential applications of this technology seem limitless, 

as sequencing becomes less expensive the costs and efforts associated with data analysis 

become an ever-larger part of the budget of sequencing experiments [68].  Even though 

16S datasets are substantially simpler and smaller than whole-genome metagenomic 

datasets, careful attention must be paid to pre-processing, clustering, taxonomy and 

statistical techniques if reproducible results are to be obtained from 16S datasets.  

Fortunately, popular software suites including Qiime [69] and Mothur [70] collect pre-

processing, clustering and analysis packages allowing for application on these methods 

by users with minimal requirements for scripting or coding by the end user.  While there 

is no single “correct” pipeline for analysis of 16S data, a strong grasp on fundamental 

statistics and a good understanding of how the algorithms in the chosen pipeline work are 

essential to avoiding costly errors that will lead to irreproducible results.  Biologists who 

lack a background in these areas should strongly consider collaborations with experts in 
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bioinformatics and statistics.  As the Human Microbiome Project [8] has demonstrated, 

such multi-disciplinary teams can make substantial and exciting progress in linking the 

structure and function of metagenomic communities to human health and disease 

outcomes. 
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FIGURE 1.1:  Flow chart illustrating possible techniques for microbial community 
analysis. 
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FIGURE 1.2:  Typical experimental flow for ARISA (top panel) and T-RFLP 
(bottom panel).  DNA is extracted from microbial community samples. In the case 
of ARISA the intergenic distance between the 16S and 23S rRNA gene is 
measured while T-RFLP uses fragments from a restriction digest of a gene of 
interest (typically the 16S rRNA gene).  Both techniques produce an 
electrophrogram where different members of the sample community are 
represented by peaks. 



CHAPTER 2:  PEAK STUDIO:  A TOOL FOR THE VISUALIZATION AND 
ANALYSIS OF FRAGMENT ANALYSIS FILES [29] 

2.1  Abstract 
 

While emerging technologies such as next generation sequencing are  

increasingly important tools for the analysis of metagenomic communities, molecular 

fingerprinting techniques such as Automated Ribosomal Intergenic Spacer Analysis 

(ARISA) and Terminal Restriction Fragment Length Polymorphisms (T-RFLP) remain in 

use due to their rapid speed and low cost. Peak Studio is a java based graphical user 

interface (GUI) designed for the visualization and analysis of fragment analysis (FSA) 

files generated by the Applied Biosystems capillary electrophoresis instrument.  

Specifically designed for ARISA and T-RFLP experiments, Peak Studio provides the 

user the ability to freely adjust the parameters of a peak-calling algorithm and 

immediately see the implications for downstream clustering by Principal Component 

Analysis.  Peak Studio is fully open-source and, unlike proprietary solutions, can be 

deployed on any computer running Windows, OS X or Linux.    Peak Studio allows data 

to be saved in multiple formats and can serve as a pre-processing suite that prepares data 

for statistical analysis in programs such as SAS or R.   Source code binaries, a user 

manual and demonstration videos are available at 

www.fodorlab.uncc.edu/PeakStudioPage.html. 
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2.2  Introduction 

Describing the diversity and complexity in mixed microbial communities is 

essential to understanding the role microbes play in an environment. Microbiology 

techniques utilizing PCR are well established [71] and provide a way to directly amplify 

microbial genes from samples, removing the need to culture [72].  Molecular 

fingerprinting techniques such as the Automated Approach for Ribosomal Intergenic 

Spacer Analysis (ARISA) [26] and Terminal Restriction Fragment Length 

Polymorphisms (T-RFLP) [27], provide a cost efficient and time effective way to 

produce microbial community diversity profiles.  Numerous studies have demonstrated 

the reproducibility and accuracy of these techniques in microbial communities ranging 

from terrestrial [73], to aquatic [74] to the human microbiome [18].   While advancing 

technology is continuing to increase the affordability and popularity of next generation 

sequencing techniques, ARISA and T-RFLP remain proven microbiology techniques that 

still maintain an advantage in cost and speed over next generation sequencing and should 

not be overlooked in the scientific toolbox.   Because T-RFLP and ARISA profiles can be 

generated quickly and for low cost, they remain useful as a quality-control step to check 

DNA extraction prior to techniques such as 454 sequencing, where per sample costs can 

be as much as one to two orders of magnitude higher. 

   Because of their low cost and speed, it is relatively easy to generate datasets with 

hundreds of T-RFLP and ARISA samples with modest experimental efforts.  The 

visualization and management of such datasets is challenging, in part because the 

software that ships with the ABI sequencing machine is not open source and may not be 

freely distributed to client computers.  Moreover, peak calling algorithms are notoriously 
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unreliable and biologists often wish to have direct control over how peaks are called in 

their spectra.  Peak Studio was designed to provide a data-browsing interface that allows 

the user to see in real time the consequences of changing which peaks are called for 

downstream clustering methods.  Other software tools allow users to analyze peak 

patterns including a web-based interface called T-REX [75], T-RFLP Stats which is a 

downloadable package of scripts run from a command line environment [76], Ribosort an 

R package for analysis of microbial community profiles [77] and a clustering algorithm 

written in R designed for DNA fingerprinting studies [78].  These valuable tools utilize as 

input a data table exported by ABI’s GeneMapper® software as input.  Peak Studio 

allows the user to generate the input required for these and other statistical tools (such as 

R and SAS) by directly accessing the binary fragment analysis files (FSA files) generated 

by the ABI instrument.  By allowing for full control over how peaks are called from 

within an interactive browsing environment, and permitting the export of the resultant 

peak tables in a variety of text file formats, Peak Studio can be easily incorporated into 

existing data analysis pipelines while giving users more control over data pre-processing. 

2.3  Input And Visualization 

Peak Studio is designed to accept FSA files generated by the ABI capillary 

electrophoresis instrument.  The user has the option to select the appropriate colors 

corresponding to the dye colors used when samples were run on the ABI machine.  The 

spectra will display in the primary window with the peaks identified by their respective 

dye color.  Once the files are loaded, a fully sortable and modifiable table displays 

information on each spectra, including name, dye color, and current peak color.  The user 

has the freedom to modify the color of called peaks and non-peak regions to best suit 
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their viewing or organizing needs.  Any metadata (i.e. user annotations on samples) that 

is added will also appear in the table as additional columns. Peak Studio provides 

continuous scrolling and zooming in real time. 

2.4  Data Analysis 

Peak Studio allows for PCA clustering within the program or for export of binned 

data in tabular format suitable for analysis by full statistics packages such as R.  A sizing 

table is also available for export that can be utilized by other available statistical software 

such as T-REX [75], T-RFLP Stats [76] or Ribosort [77].  Ultimately, the number of FSA 

files that can be analyzed at one time is limited by the amount of RAM available to the 

Java Virtual Machine (JVM).  We tested the software on both Mac OS X and Windows 

XP platforms and successfully analyzed several hundred FSA files allocating 1 GB of 

RAM to the JVM. 

2.5  Peak Calling Heuristics 

Accurate identification of peaks is a critical step in ensuring that the data is 

prepared for further analysis.  Our peak-calling algorithm applies linear interpolation to 

separate signals of peaks from that of baseline. The algorithm works by using a 

configurable parameter set that contains thresholds for values such as slope and peak 

heights, assigning each data point to one of five possible phases: non-peak, peak, up-

slope, down-slope or inter-peak.  A peak is recognized as a collection of points that meet 

the requirement of beginning at an up slope phase and ending at a down slope phase.  

Taking the difference between the highest and lowest data points in the region containing 

the peak determines the height.  If the newly detected peak fails to meet the user 

determined height threshold, the data that is contained in the phase is then relabeled as a 
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nonpeak region.  Adjusting the parameter set allows the user to redefine what constitutes 

a peak with the resulting peak calls seen in real time.  Since any peak-calling algorithm 

has the potential of missing peaks or miscalling peaks, Peak Studio combines automated 

peak detection with the ability for the user to visually inspect and manually select peaks 

that need to be adjusted.   

Analysis of a T-RFLP or ARISA file begins with assigning peaks to a standard 

ladder that is run with each sample.  In order to determine whether peaks have been 

assigned correctly to the standards ladder, Peak Studio defines a QC score by taking a set 

of three peaks at a time and applying linear interpolation using the location of the outside 

peaks to predict the location of the center peak.  The QC score is the sum of the absolute 

value of the difference between the predicated peak location and observed location 

divided by the number of total peaks called in the spectra.  In our experience, this value is 

usually less than 1 basepair if the standards have been correctly assigned.  Peak Studio 

has two modes that allow for assignment of standard peaks.  In manual mode, peak 

assignment is carried out with adjustable parameters as above and the user can manually 

adjust the peaks if the QC score is high or if the resulting number of peaks is not in 

accordance with the expected number of peaks.  In automated mode, peaks are assigned a 

probability of being correctly called (based on their magnitude) and peaks are removed or 

added until the correct number of peaks is achieved with a low QC scores (see the Peak 

Studio manual for more details).  For most spectra, the automated mode will generate the 

correct assignment to the reference spectra, but through use of the manual mode of 

reference peak assignment, samples that have misidentified peaks can be salvaged 
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allowing researchers access to data that may have been discarded by ABI’s 

GeneMapper® software. 

Correctly detecting peaks is a non-trivial problem often hindered by interference 

from high signal-to-noise ratios (SNR) in the spectra.  ABI’s GeneMapper® software 

incorporates baseline correction and data smoothing algorithms into the peak detection 

process.  Peak Studio also implements optional baseline correction and smoothing and 

provides the user the ability to choose raw or smoothed baseline corrected data for 

downstream analysis.  In Peak Studio, baseline correction is a two-fold process where an 

estimated baseline is generated then subtracted from the spectra to establish a baseline 

independently for each spectrum.  Regression points for a continuous baseline are derived 

by employing a sliding window and recursive histogram approach [79], where the mean 

of the noise distribution in the window is recovered by the mode of the histogram.  To 

further reduce spectral noise we use a Savitzky-Golay low-pass smoothing filter [80]. A 

minimum peak height threshold is also available for user adjustment in the parameter set, 

similar to the way ABI’s GeneMapper® provides access through the analysis methods 

panel.  The recommendation from Abdo et al is (2006) to set a height threshold as low as 

possible to maximize background noise; Peak Studio by default sets a height threshold of 

25 fluorescent units for data spectra but this can easily be adjusted downward as 

appropriate. 

2.6  Results 

For demonstration purposes, we examined a data set involving the gut 

microbiome from fecal samples from human subjects on strictly controlled experimental 

diets over a two-month period in which choline was manipulated [18].  The study was 
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split into three phases with a specific diet administered during the baseline phase, choline 

depletion phase and the choline repletion phase [18].  Longitudinal sampling of 15 female 

patients generated 74 samples [18].  ARISA was conducted on each sample and fragment 

analysis files generated by the Applied Biosystems capillary electrophoresis instrument 

were used as input into Peak Studio.   

Evaluation of Peak Studio’s peak calling heuristics was conducted by comparing 

ARISA data from sample 4B2_A07, which is from patient “4” in our study during the 

baseline phase before choline manipulation [18].  We compared this ARISA sample 

analyzed with the default AFLP (Amplified Fragment Length Polymorphisms) settings in 

ABI’s GeneMapper® against the default settings of Peak Studio.  Standard spectra 

(resulting from size standards) generally have a very high signal-to-noise ratio making 

peaks relatively easy to separate from background noise.  Comparison of the area under 

the peaks between Peak Studio and ABI show a very high correlation (FIGURE 2.1A).   

Data spectra (resulting from 16S-23S intergenic lengths in our metagenomic samples) are 

inherently noisier and have a much lower signal-to-noise ratio increasing the difficulty in 

correctly separating peaks from background noise. Comparing the area under the peaks 

from the data spectra between ABI’s GeneMapper® and Peak Studio, we still observe a 

reasonable correlation (FIGURE 2.1B), although not as high as for the standards spectra.    

We conclude that, at least for this human gut sample, the default settings in Peak Studio 

and GeneMapper yield broadly similar results. 

Peak Studio gives the user the ability to select multiple samples to examine regions of 

interest that may be different between samples and display information about each peak 

(FIGURE 2.2).  Principal Component analysis (PCA) can be initiated by user selection of 
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the starting and stop locations, in base pair space, along the x-axis with a minimum 

height threshold for peaks to be considered.  A new viewing window will display the 

PCA, colored by the users choice of Peak Color in the primary display, which can be 

adjusted in real time (FIGURE 2.3).  The data matrix used to produce the PCA can be 

exported as a tab delimitated text file, also available for export is a sizing table in the 

same format used by ABI’s GeneMapper® software.  These files are compatible with 

other statistical analysis programs, such as SAS, R, T-REX [75], T-RFLP Stats [76] and 

Ribosort [77]. 

2.7  Discussion 

Molecular fingerprinting techniques, such as ARISA, can be used to rapidly 

generate snapshots of microbial diversity.   Often DNA extraction and generation of the 

ARISA or T-RLFP profile can be completed in a single day. Peak Studio was designed to 

be a user-friendly data browsing and visualization application that gives the user a fine 

level of control over peak calling and acts as a pre-processing step that works in concert 

with currently available statistical analysis software.  While the emergence of next 

generation sequencing techniques is ushering in a new paradigm in microbial diversity 

studies, Peak Studio provides support for proven microbiology techniques that are still 

widely used. 
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FIGURE 2.1:  Linear regression of peak area of ARISA data from a human 
gut metagenomic sample 4B2_A07 [18] analyzed with the default settings in 
both Peak Studio and GeneMapper® for (A). Standards spectra and (B).  Data 
spectra. 
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FIGURE 2.2:  Data spectra of multiple samples viewed at the same time.  Resting the 
mouse on an individual peak will highlight the area under the peak and display an 
information window containing the sample name, what the algorithm identified it as, 
the xy coordinates and the area under the curve.   
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FIGURE 2.3:  This dataset is a subset of samples from a study completed by Spencer et al 
in 2011.  Patient sampling was conducted at various time-points indicating different diets 
throughout the study. Patients were subjected to strictly controlled diets used to monitor 
any fluctuations in microbial composition.  Diets fell into different phases, baseline phase 
(B1, B2), choline depletion phase (D1, D2) and a choline repletion phase (R1, R2) [18].  
Four character sample names identify both the patient and the current diet the patient was 
on at that time.  For example sample 33B1 identifies patient 33 on diet B1.  Viewing the 
result of the PCA reinforces what we would expect to see; samples taken from the same 
individual will cluster together because an established microbiome does not undergo a 
comprehensive change in response to short-term dietary modifications [18]. 

 
 



CHAPTER 3:  STOCHASTIC CHANGES OVER TIME AND NOT FOUNDER 
EFFECTS EXPLAIN CAGE EFFECTS IN MOUSE MODELS OF THE GUT 

MICROBIAL COMMUNITY 

3.1  Abstract 
 

Cage effects in studies of the mouse microbiome are pronounced and can 

confound experimental design.  We show that cage effects in animals removed from germ 

free conditions take several weeks to develop and are not mitigated by an initial gavage.   

This suggests that stochastic differences that develop over time in different cages, rather 

than initial founder differences between cages, are the cause of cage effects.   Mice that 

are allowed to naturally acquire a microbial community from their cage, but not mice 

treated with gavage, show a cage effect in inflammation induced by DSS.    This initial 

gavage influenced, but did not eliminate, a successional pattern we repeatedly observed 

in both Wild Type (WT) and Interleukin-10-deficient (Il10-/-) mice in which 

Proteobacteria became reduced over time.  Our results argue that the long term effects of 

gavage are subject to mitigation by cage and time, which must both be explicitly 

considered in the interpretation of microbiome mouse experiments. 

3.2  Introduction 

Since Darwin’s formation of the theory of evolution based on observations made 

in the Galapagos Islands, island ecology has played a key role in our understanding of 

how communities form and respond to change.  The mammalian gut can be thought of as 

an island inhabited by a complex assemblage of microbes.  It has been demonstrated in 
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humans that the initial micobiome in different body sites is undifferentiated and is set by 

mode of delivery [11].  Over time, selection pressure on the human microbiome sculpts 

microbes in each body site, so that, for example, the adult oral microbiota are largely 

distinct from the adult gut microbiota [81].    

In the experiments in this study, we look at successional patterns over time in WT 

and Il10-/-mice.  Interleukin-10 (Il10) is an anti-inflammatory cytokine.  Microbial 

commensals that are well tolerated in WT mice cause severe inflammation in Il10-/- mice 

[20, 82] suggesting the Il10 gene plays a key role in host-micobial interactions.  In a 

previous paper, we examined WT and Il10-/-mice 20 weeks after they were removed from 

germ-free conditions [20].    We found that the proteobacteria E. coli was greatly 

expanded in the week 20 Il10-/- mice and that the pks island within the E. coli genome 

was essential in driving an inflammation phenotype to tumor formation in the presence of 

the carcinogen AOM.  This observation led us to propose a “two-hit” model in which 

early inflammation allows expansion of bacteria with genotoxic potential and this 

expansion in turn disrupts host phenotype.  

In this previous study, we noticed a strong cage effect in which animals within the 

same cage had similar microbial communities.   To account for these cage effects, in the 

previous study we reported median values of each cage.  In the present study, we wished 

to explore the causes and consequences of these cage effects and more fully consider a 

more formal statistical model to handle these cage effects.  We therefore used Illumina 

sequencing to characterize the 16S gene from fecal samples collected over time for four 

cohorts of mice following removal from germ-free conditions.   In one experiment, we 

added 2 week and 12 week time-points to our previously published (20 week) WT and 
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Il10-/- cohorts.  In this experiment with WT and Il10-/- mice, we let the mice acquire their 

microbial community from the cage microenvironment.  We report that time is the 

dominant force in structuring the microbial community but strong effects of genotype and 

cage are observable in our dataset.    

Because by chance different cages might have different initial communities of 

microbes, and there was no other source of microbes for mice removed from germ-free 

conditions, we suspected that these different “founder” effects might explain the cage 

effects.  Under this model, mice removed from germ free conditions would “amplify” 

whatever microbes they by chance initially encountered in their cages.  To test this 

hypothesis, we performed a longitudinal time-series on WT mice in which the initial 

microbial community in one group of mice was set by gavage and another was allowed to 

acquire the microbial community from their cages.  We found that while the gavage did 

have long-lasting effects on the recipient animals that appeared to influence the 

inflammation phenotype, it did not eliminate either cage effects or the succession of the 

gut microbial community over time.   Our results show that whether or not an initial 

gavage is used, experimental design must explicitly account for successional patterns 

over time and cage microenvironment or risk mis-interpretation that could lead to 

difficult to reproduce conclusions. 

3.3  Results 

3.3.1  Structuring The Microbial Community In A Study Of WT And Il10-\- Mice 
 

In order to characterize cage effects and how the gut microbial community 

changes over time in the presence and absence of inflammation, we collected repeated 

longitudinal samples from Il10-/- and WT mice (TABLE 3.1) at 2 weeks, 12 weeks and 20 
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weeks after removal from germ free conditions.  In these experiments, mice were allowed 

to acquire the microbial community from their cage microenvironment. DNA was 

isolated from these samples and subjected to PCR targeting the V6 region of the 16S 

rRNA gene.  Amplicons from these PCR reactions were characterized with paired-end 

HiSeq Illumina sequencing.  Because our read length (100 bp) was longer than our 

amplicon size (75 bp), we had 2X coverage on every read and could therefore remove 

sequences if the paired sequences were not in good concordance (see methods).   

Merging the paired-end reads resulted in 55,153,918 consensus sequences that met all 

QA/QC criteria with an average length of 74.52 ± 1.05 (mean ± SD) (TABLE 3.2).  

Sequences were clustered into Operational Taxonomic Units (OTU) with the program 

AbundantOTU (see methods) and the consensus sequences from each OTU were 

matched to full length sequences in the Silva database, which were classified with the 

Ribosomal Database Project (RDP) classifier [51]. 

Just by visual inspection of assignments to the phyla level (FIGURE 3.1), we note 

(i) Proteobacteria are clearly higher in Il10-/- mice than in WT mice at early time points 

and (ii) in both Il10-/- and WT mice there is a shift in community structure over time from 

an early Firmicutes dominated community with more Proteobacteria to a community 

more dominated by Firmictes and Bacteriodetes with fewer Proteobacteria.   This change 

in the composition of the microbial community is associated with a dramatic increase in 

richness for WT and a much less pronounced increase in richness for Il10-/-mice 

(FIGURE 3.2A).   

In order to explicitly consider the effects of cage, genotype and time, we 

performed PCoA using Bray-Curtis dissimilarity at the OTU level (FIGURE 3.3).  From 
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this analysis, time is clearly the dominant force in structuring the microbial community 

with a dramatic shift in both WT and Il10-/- animals from 2 weeks to 12 weeks and a 

smaller shift from 12 weeks to 20 weeks (FIGURE 3.3, top panel; see also supplementary 

FIGURE 3.S1 for a similar analysis with a different distance metric).  Within the time 

shift, genotype remains an important factor with a noticeable separation between WT and 

Il10-/- mice at 2 weeks becoming essentially perfect separation at 20 weeks (FIGURE 3.3, 

middle panel).   

From these results, one might conclude that the effects of genotype are substantial 

and become more pronounced over time.    However, we used a nested experimental 

design in which WT and Il10-/- mice were housed in separate cages.  If we look at the 

PCoA broken down by time-points and colored by cages (FIGURE 3.3, bottom panel), 

we see that the cage has a profound effect on the microbiome as there is strong clustering 

by cage. 

To quantify the cage effect, we performed one-way ANOVAs with a factor of 

cage.  Fitting these models for each cohort at each time point (FIGURE 3.4A and B) 

shows that cage effects can be pronounced.  For nearly all of the first 5 principle co-

ordinates in both WT and Il10-/- animals, we are able to reject a null hypothesis that cage 

has no effect at p <0.05.  We note, however, that the magnitude of cage effects can vary 

substantially over time.  It appears in general that the 20 week time period for both WT 

and Il10-/- mice have more pronounced cage effects, but the development of the cage 

effects over time is noisy with the 2 week time point generally showing more pronounced 

cage effects than the 12 week timepoint for WT animals. 
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Given these pronounced cage effects, statistics that ignore cage will be in 

violation of the assumption of independence and will therefore produce faulty inference.   

In order to account for the effects of cage, genotype and time, therefore, we evaluated a 

mixed linear model in which genotype and time is a fixed effect and cage is a random 

effect (see methods). The form of this mixed linear model for the Il10-/- vs. WT 

experiments is:  

 Y = genotype + time + genotype × time +  (genotype:cage) + error 

where genotype and time are fixed factors, genotype x time is a fixed factor interaction 

term and (genotype:cage) represents cage nested within genotype as a random effect, and 

Y is either PcOA axis value (supplemental FIGURE 3.S2; TABLE 3.S1),  phylum count 

(supplemental TABLE 3.S2) or genus count (supplemental TABLE 3.S3)  as called by 

the RDP classifier on a full-length reference sequences that matches our V6 tag 

sequences (see methods) or richness value (supplemental TABLE 3.S4).  From this 

model we note that (i) time effects, genotype effects and time x genotype interactions are 

all highly significant for the first few principle co-ordiantes (FIGURE 3.S2); (ii) richness 

effects for time and genotype (FIGURE 3.2A) are highly significant (supplemental 

TABLE 3.S4).  (iii) all phyla detected in our WT vs. Il10-/- experiment (FIGURE 3.1) 

changed significantly (FDR-corrected p-values <0.005) over time (supplementary 

TABLE 3.S2).  However, only Proteobacteria and Verrucomicrobia had consistent 

genotype effects that were significant (with an FDR-corrected p-value of <0.10) 

independent of time.  (iv) at the genus level (supplemental FIGURE 3.S5; TABLE 3.S3), 

the first 25 most significant effects are all due to time and the first 40 most significant 

effects are due to either time or genotype x time interactions.  However, at a 10% FDR, 
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15 genera are significantly different due to genotype without a time effect, including the 

genera Escherichia_Shigella that contains E. coli.   

Our results show that there are taxa that are associated with differences between 

the WT and Il10-/- genotypes independent of time.  However, time and time x genotype 

interactions appear to explain more of the variance of the microbial community seen in 

our experiment.  That is, effects associated with time and the interaction of time with 

genotype are much larger than effects associated with genotype, but there are some taxa 

that are different between WT and Il10-/- independent of time. 

3.3.2  Gavage Can Modulate The Microbial Community 
 

Because cage effects appeared so significant in our WT vs. Il10-/- experiment, we 

wished to better understand their cause.  In the WT vs. Il10-/- experiment, the mice were 

removed from germ free conditions and therefore presumably had to acquire their 

microbiota from the cage micro-environment.  We suspected that stochastic differences in 

the composition of the cages were driving the pronounced cage effects that we observed 

(FIGURE 3.4A -B).  To test this hypothesis, we performed an additional experiment on 

WT mice in which a donor community generated from adult WT mice was given to one 

set of mice (hereafter referred to as the “gavage” treatment) while another set of mice 

were again allowed to acquire their microbial community from the cage environment 

(hereafter referred to as the “acquired” treatment).  Fecal samples were collected at week 

1, 2, 4 and 8 following removal from germ-free conditions and the microbal community 

was again characterized by Illumina sequencing targeting the V6 region of the 16S rRNA 

gene. 
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An examination of the results at the phyla level (FIGURE 3.5) demonstrates that 

at the 1 week time-point, the gavage treated animals appeared to have a microbial 

community that was in some ways a mixture of the donor community (FIGURE 3.5, 

upper right panel) and the community in the “acquired” group with a contribution from 

Proteobacteria (7.5%) in between the large fraction (41%) of Proteobacteria in acquired 

and the smaller fraction in the donor biota (1.5%).  It appears, therefore, that the donor 

community influenced, but did not completely set, the resulting microbial community at 1 

week.  Over time, the fraction of Proteobacteria decreased in both the Acquired and 

Gavage groups.  By week 8, the phyla view of these two groups was very similar 

(FIGURE 3.5, bottom panel).  As was the case in the WT mice from our initial 

experiment, richness in both the gavage and treatment groups increased over time 

(FIGURE 3.2B) suggesting that the initial seeding of the microbial community by gavage 

did not give the gavage group a substantial “head start” in forming a mature microbial 

community. 

To perform inference on the gavage experiment, we again used PcOA with Bray-

Curtis as a distance metric for taxa clustered into OTUs (FIGURE 3.6; top panel).   We 

see that, as in the WT vs. Il10-/- experiment, time is again a dominant force with clear 

separation of samples at different time points.  However, at each time point gavage and 

acquired appear to be distinct (FIGURE 3.6; middle panel), although over the course of 

the experiment the differences between gavage and acquired become less pronounced 

(FIGURE 3.4C and D; FIGURE 3.6, top panel). 

If initial differences in the microbial community drove cage effects, we might 

expect to see a reduced cage effect in the gavage group when compared to the acquired 
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group.  Examination of the PcOA plots colored by cage (FIGURE 3.6, bottom panel) 

appear to show pronounced cage effects in both the acquired and gavage groups, 

however, especially at later time points.  To quantify this, we fit each treatment group at 

each time point with a one-way ANOVA with a fixed factor of cage.   P-values generated 

from this model (FIGURE 3.4C and D, bottom panel) show that the gavage and acquired 

groups have a similar pattern of cage effects.  At the 1 week time point (FIGURE 3.4C 

and D, bottom panel, black symbols), cage effects appear to be of marginal significance 

at best.  At the 4 and 8 week timepoints, the cage effects have become much more 

pronounced for both gavage and acquired.   

The presence of cage effects again suggests that a mixed linear model is an 

appropriate statistical framework in which to perform inference.  To analyze the gavage 

vs. acquired dataset, we therefore formed the model: 

Y = treatment + time + treatment x time +  (treatment:cage) + error 

where treatment  is a fixed effect set to one value for gavaged animals and another for 

animals allowed to acquire the microbial community from the cages, time is a fixed 

factor, treatment x time is a fixed interaction term,  and (treatment:cage) represents cage 

nested within treatment status as a random effect, Y is either PcOA axis value 

(supplemental FIGURE 3.S3; TABLE 3.S5),  phylum count (supplemental TABLE 

3.S6), genus count(supplemental TABLE 3.S7)  or richness value (supplemental TABLE 

3.S8).   

From this model we conclude that time and time x treatment effects are generally 

more pronounced than the treatment effect confirming that the gavage effect did not 

eliminate the strong successional effect of time.  Specifically, (i) richness changed over 
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time but was not affected by treatment (supplementary TABLE 3.S8); (ii) at the phyla 

level (supplementary TABLE 3.S6) at a 10% FDR, time and treatment x time interactions 

are significant for all evaluated phyla; (iii)at the genus level, time and treatment x time 

represent the first 49 most significant effects (supplementary TABLE 3.S7). 

3.3.3  Gavage Treatment Protects From Cage Effects Of Inflammation. 

Even though gavage did not eliminate temporal effects, there were several taxa 

that were significantly different between gavage and acquired groups independent of 

time.  At a 10% FDR cutoff at the phyla level (supplementary TABLE 3.S6), the 

treatment variable for both Bacteroidetes and Firmicutes were significantly different 

between gavage and acquired independent of time.  At the genus level, the 10% FDR 

cutoff yielded 20 genera that were significantly different between gavage and acquired 

independent of the time factor (supplementary TABLE 3.S7).  This suggests that, despite 

the overall progress on acquired and gavage to become more similar to each other 

(FIGURE 3.5), the gavage treatment did have some long lasting effects. 

To study the consequences of these effects for host health, at the end of the 

gavage experiment, we sacrificed and scored a subset of the mice for inflammation.  

Inflammation was induced through the use of DSS (Dextran Sulfate Sodium) at the 8-

week time point in the gavage study and after 12 days inflammation scores were 

established by histological examination of tissue. The mice that were gavaged did not 

show a cage effect for inflammation but the mice that were allowed to acquire the 

microbiome from the external environment showed distinct patterns of inflammation by 

cage (FIGURE 3.7).  Interestingly, Lactobacillus, a taxa that is considered to have anti-

inflammatory properties [83-85] was found to be significantly associated with time, 
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treatment x time and treatment under the mixed linear model analysis of the gavage vs. 

acquired dataset (supplemental TABLE 3.S7).     With our small sample size, we cannot 

meaningfully speculate on whether these associations are robust and would be 

reproducible in future cohorts.  We also do not have sufficient data to know whether the 

gavage treatment in general will nullify the phenotypical influence local cage 

environments may contribute to experiments utilizing the DSS mouse model.   

Nonetheless, these data are intriguing in suggesting that long-term effects of an initial 

gavage may insulate an animal from environmentally-induced susceptibility to cage 

effects in phenotypes of interest.   

3.3.4  Sequencing Depth And Quantitfying The Microbial Community 
 

We have previously argued [20] that E. coil is one organism that may drive 

progression from inflammation to cancer.  To verify the abundance of this organism, we 

performed qPCR targeting the 16S rRNA region at week 20 from the WT/ Il10-/- 

comparison (the qPCR data have also been previously published in Arthur et al.[20]).  In 

order to validate our sequence data, we compared the qPCR data to the abundance of 

OTU 23, the OTU with the consensus sequence that most closely matches E. coli 

(FIGURE 3.8).  We see a very strong quantitative relationship (FIGURE 3.8, top panel) 

validating both our sequence-based and qPCR quantification.  In our experiment, we used 

an Illumina Hi-Seq pipeline that produced on average 450,000 sequences per sample that 

met our QA/QC criteria.  We were curious to estimate what we would have seen if we 

had instead used technology such as 454 sequencing or Illumina MiSeq, which tends to 

produce approximately two orders of magnitude fewer sequences per sample.  We 

therefore, sub-sampled our dataset and compared to the qPCR data (FIGURE 3.8, bottom 
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panels).  We see that much of the correlation with the qPCR data would have been lost if 

we had produced on average 4,500 sequences per sample (FIGURE 3.8, panel marked 

1%).  Consensus 23, the 23rd most abundant taxa in our dataset, represented ~1% of all of 

our sequences, but may still be biologically crucial.  We conclude that it is not “overkill” 

to produce on the order of a million sequence per sample if there is interest in quantitative 

changes in the less abundant members of the microbial community and that such a 

sequence depth may be crucial in generating an accurate description of the microbial 

community. 

3.4  Discussion 

In our previous study [20] exploring the interactions of inflammation, tumor 

formation and the microbiota, we noticed a strong cage effect in which animals within the 

same cage had similar microbial communities.  To explore the causes and consequences 

of these cage effects, we here used Illumina sequencing to characterize the 16S gene from 

fecal samples collected over time for four cohorts of mice following removal from germ-

free conditions.  In all of our cohorts, time was the dominant factor in structuring the 

microbial community with a low richness community with a substantial fraction of 

Proteobacteria becoming more like the adult mammalian gut over time with an increase 

in richness (FIGURE 3.2) and increasing domination by Bacteroidetes and Firmicutes 

(FIGURE 3.1, FIGURE 3.5).  These results are similar to those seen in a successional 

sequencing experiment performed by [86].  Superimposed on these broad and 

reproducible successional patterns, however, our experiments also observed substantial 

individual variation in the microbial community that could in large part be explained by 

the cage in which the animals were housed (FIGURE 3.4). Starting the microbial 
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community with an initial gavage from a mature gut microbial community influenced, 

but did not eliminate, the dependency on time or cage effects.  Our data show that host 

genotype (WT vs. Il10-/-), initial composition of the microbial community (gavage vs. 

acquired), selection pressure over time common across all cages and stochastic effects 

that develop differently over time in different cages all make important and measurable 

contributions in structuring the microbial community.  

Protoebacteria contains many harmful pathogens including those that have been 

associated with gut inflammation, IBD and colorectal cancer [87].  In our “two hit” 

model [20] of cancer formation in Il10-/- mice, we argued that inflammation allows the 

Proteobacteria E. coli to invade the gut, where its genotoxic potential helps to drive 

progression to tumors in the Il10-/- mouse model.   In the current experiments, 

Proteobacteria was one of two phyla (supplementary TABLE 3.S2) that were 

significantly different in Il10-/- mice then in WT independent of time while genus 

Escherichia.Shigella was one of 15 genera (supplementary TABLE 3.S3) that were 

different in Il10-/- vs. WT independent of time.  This observation, that E. coli invades 

early in succession and is significantly higher independent of the other changes that occur 

in the microbial community over time is consistent with our two hit model in that it 

suggests that E. coli’s genotoxic influence on the host may begin well before the 

symptoms of inflammation become apparent in the Il10-/- mouse model. 

Richness for all of our cohorts except for the Il10-/- group substantially increased 

over time (FIGURE 3.2).  A plausible mechanism that would explain this observation is 

that the immune response and inflammation associated with the Il10-/- genotype prevents 

some taxa that are able to colonize WT animals from successfully becoming established 
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within the inflamed Il10-/- gut.   Our results are therefore consistent with the many [88-

92] experiments that have shown a lower diversity in the human gut microbiota in IDB 

patients.  Interestingly, while richness increased over time in our gavage and acquired 

experiment (FIGURE 3.2B), there was no significant difference in richness induced by 

the gavage treatment (p=0.42; Supplementary TABLE 3.S8).  This suggests that even 

though the gavage treated mice were presumably exposed to a higher abundance of 

microbes than the acquired treatment group, this did not influence the number of 

microbes that ultimately successfully colonized the gavaged group. 

In addition to using 16S sequencing to characterize the microbial community, we 

studied the functional consequences of cage effects by inducing inflammation through the 

use of DSS (Dextran Sulfate Sodium) on WT animals at 8-weeks after removal from 

germ free conditions (FIGURE 3.7).  Inflammation scores established by histological 

examination of gut tissue showed that animals that were allowed to acquire their 

microbiota from the cage environment displayed a more pronounced cage effect in the 

degree of inflammation observed than animals whose microbial community was acquired 

by gavage.  In our analysis utilizing mixed linear models with cage modeled as a random 

variable, treatment (gavage vs. acquired) effects on the structure of the microbial 

community were generally much less pronounced than effects due to time or interactions 

between time and treatment (supplementary TABLES 3.S5-3.S8).  There were, however, 

2 phyla (Bacteroidetes and Firmicutes; supplementary TABLE 3.S6) and 20 genera 

(including Lactobacillus) that were significantly different between gavage and acquired 

independently of time.  Taken together, these observations suggest that an initial gavage 

can have subtle, long-lasting effects on the microbial community that have long-term 
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consequences for host phenotype even as the microbial community changes substantially 

over time in ways that are different in different cages. 

There is considerable evidence for cage effects in the literature. Microbial transfer 

of disease can be accomplished by housing WT mice with mice that have colitis [93] 

suggesting that within a cage, the microbial community can be shared between mice.  

Mice are known to eat feces and this presumably has a substantial effect on the microbial 

community.   In this paper, we explicitly tested the hypothesis that cage effects are 

caused by initial differences in the microbial community within each cage.  If these 

stochastic “founder” effects drive cage effects we would expect (i) cage effects to be 

pronounced at early time points and (ii) gavage to significantly mitigate cage effects.  

Neither of these predications were well supported by our data.In the gavage vs. acquired 

experiment for which we have the most temporal resolution at early time points, cage 

effects clearly become more pronounced over time (FIGURE 3.4C and D) moving from 

barely significant at week 1 to highly significant at weeks 4-8.  Moreover, this same 

temporal pattern is seen in both the gavage and acquired groups.  Our data, therefore, 

argue that “drift”, stochastic differences in the way the microbial community forms that 

are different in different cages, rather than founder effects, are the primary drivers of cage 

effects.  Attempts to eliminate cage effects by standardizing the initial microbial 

community within cages or with identical initial gavage to multiple animals are therefore 

likely to fail. 

The confounding nature of micro-environments on succession of microbial 

communities is a known problem in experimental design [86].  An outstanding recent 

paper [94] has argued that family transmission, if not properly accounted for, can lead to 
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confounded experimental design and incorrect inference regarding the effects of genotype 

differences.  We note that since our animals were born in germ-free conditions, family 

transmission is not a variable that can be considered in our experiments.  However, by 

necessity, animals that have a similar path of family transmission have also shared cages.  

In animals not born under germ-free conditions, therefore, cage effects and family 

transmission effects are likely often confounded and this can be a further complication in 

experimental design. 

In order to explicitly model the effects of cage, we utilized mixed linear models in 

which cage is set as a random effect.  Mixed linear models have many advantages 

including a solid theoretical base [95, 96], wide utilization in the literature [97-100] and 

robust implementations in statistical packages such as R and SAS.  However, mixed 

linear models impose an additional set of parametric assumptions over canonical linear 

models.  In our case, they assume that the effects of cages are normally distributed with a 

mean of zero.  These assumptions may be particularly inappropriate for metagenomics 

data, where it has been argued for the gut microbiome that only a few possible outcomes 

(or enterotypes) are likely [101].  While the enterotype hypothesis has been highly 

controversial [9, 25, 102], it seems unlikely that the opposite assumption that there is no 

repeatable structure to the microbial community within cages is unlikely to be broadly 

true.  A finite subset of possible cage outcomes might therefore violate the assumptions 

of mixed linear models.  With this in mind, we compared our results to a simple model in 

which the median value for each cage were fed into a canonical two way ANOVA (data 

not shown).  We saw a broadly similar pattern of p-values with this approach, although as 

we might expect this median based linear models appeared to have substantially lower 
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power than the full mixed linear model.  Future research will undoubtedly pursue the 

question of the most appropriate model for cage effects for metagenomics experiments 

that makes the fewest assumptions while preserving the most power, but the broad 

concurrency of the median and mixed linear models is encouraging in that is suggests that 

our results are not primarily driven by the additional parametric assumptions about cage 

distribution in the mixed linear model. 

It has long been a question in ecology how much community structure is driven 

by selection vs. stochastic events.  In our data, we find evidence for both kinds of 

processes.  The replicable drive to an end-point of a community dominated by Firmicutes 

and Bacteriodites (FIGURE 3.1, FIGURE 3.5) suggests selection pressure working over 

time in a reproducible matter to shape the gut microbial community.  The fact that this 

pattern has been observed in other cohorts in the literature suggests the strength of these 

reproducible forces of selection [86].  Starting mice at the end point of succession by 

using gavage to introduce a mature gut community influenced, but did not eliminate, this 

stereotyped succession, which led to our surprising result thatmice treated with gavage 

looked more like donor mice at the end of our experiment rather than the beginning 

(FIGURE 3.5).  Superimposed on this successional pattern, however, were cage effects 

(FIGURE 3.4C and D) which appear to develop over the first few weeks of removal from 

germ free conditions.   We conclude that generation of robust and reproducible results for 

mouse models of the gut microbiota are dependent on explicit consideration of this 

variation in the microbial community induced by time and the cage micro-environment.  

Failure to consider these factors in both experimental design and statistical models is 
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likely to lead to misinterpretation of experimental results in which changes due to cage or 

time are mistaken for the intended changes due to experimental manipulations. 

3.5  Material And Methods 

3.5.1  Illumina Sequence Pipeline 

Following the protocol outlined by Arthur et. al. [20] we aligned the paired-end 

reads and merged overlapping sections to convert the paired reads into a single consensus 

sequence.  Custom Java code was written in which the criteria for merging paired-end 

reads was two fold (i) an exact match to both the 5’ and 3’ primers was required and (ii) 

the overlapping region met or exceeded a 70 base threshold allowing for mismatches but 

not gaps.  All nucleotides in common were selected for the consensus sequence; in cases 

where a base position had a disagreement between the two reads the base with the highest 

quality score was selected for inclusion.  When an N was encountered in one read the 

base at the corresponding position in the read pair was selected.   Consensus sequences 

were then used for clustering into Opperational Taxonomic Units (OTUs) by feeding 

them into AbundantOTU (http://omics.informatics.indiana.edu/AbundantOTU/) running 

on a linux box with 128 GB of RAM.  AbundantOTU explicitly ignores rare taxa because 

of the higher propensity of error prone reads associated with the rare biosphere.  OTUs 

generated in the form of consensus sequences by AbundantOTU were checked for 

potential chimeras using UCHIME (http://www.drive5.com/uchime/)[46] and the Gold 

reference database.  For taxonomic classification the AbundantOTU consensus sequences 

were mapped to the Silva 108 database (http://www.arb-silva.de/) by BLAST with and e-

score threshold of e-10.  The top hits were selected and sent through RDP classifier 
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version 2.1 (http://sourceforge.net/projects/rdp-classifier/) [51] with an RDP confidence 

threshold of 80% or greater used for assignment. 

3.5.2  Statistical Analysis 

OTU consensus sequences were collapsed into pivot table format where each row 

represents a sample and each column contains the raw counts for each OTU consensus 

sequence.  Raw counts were transformed using a log frequency calculation (EQUATION 

3.1) before use in downstream analysis.  
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EQUATION 3.1:  Log frequency normalization used to normalize raw OTU 
counts.  Where RC represents the number of raw counts in a column cell (OTU, 
phyla, etc…) for a sample, n is the number of sequences in a sample, the sum of 
x is the total number of counts in the table and N is the total number of samples. 
 

 

Bray-Curtis dissimilarity matrixes were generated from normalized data and Principle 

Co-ordinate Analysis (PCoA) was conducted through the use of the software package 

mothur [70].  We chose to use Bray-Curtis dissimilarity matrixes because the results 

obtained using UniFrac distances [103] and the QIIME software package [69] were 

broadly similar (supplemental Figure S1).  Adjusting for cage effects was done by 

incorporating mixed linear models (EQUATION 3.2) utilizing SAS (supplemental code 

TABLE 3.S9) where cages were the random effects and genotype or treatment were 

fixed.  Benjamini-Hochberg method for False Discovery Rate (FDR) correction was used 

for multiple testing correction. Diversity measurements of richness were calculated using 

custom Java code and rarefying down to the lowest number of sequences present in the 
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data set.  All statistical analysis was conducted either through R (http://www.r-

project.org/), custom Java code (available upon request) and SAS (http://www.sas.com).      

! 

ijklY = µ + iG + jT +
ij(GT ) + k( i)C + ijkl"  

EQUATION 3.2:  Mixed effect linear models.  Where Yijkl represents 
either PCoA axis value, phylum count, genus count or richness value  for 
treatment/genotype i, time j, cage k and replicate l.  Gi.is the effect of the 
ith treatment/genotype. Treatment is set to one value for animals 
receiving gavage and another for animals allowed to acquire the 
microbial community from the cages, as genotype is set to either WT or 
Il10-\-.  Tj is effect from the jth time point. (GT)ij is the interaction effect 
between treatment/genotype i and time j.  Ck(i) is the effect from the kth 
cage that is nested within the ith treatment/genotype and εijkl denotes the 
error associated with measuring Yijkl. 

3.5.3  Il10-\- Vs WT Study 
 

Stool samples from germ-free WT 129/SvEv and Il10-\- mice were collected at 

three time points (2 weeks, 12 weeks, 20 weeks).  Due to an error in labeling one mouse 

(C5M5) was removed from each time point and not considered in any of the downstream 

analysis.   Illumina sequencing of the 16S rRNA V6 hypervariable region generated a 

total of 55,153,918 reads that passed all QC steps which were  ~75 base pairs in length 

(TABLE 3.2).  Sequences were combined from 2 lanes of separate sequencing runs with 

lane 1 containing time points 2-weeks (20,990,204 reads) and 20-weeks (17,803,385 

reads) and lane 2 contributing the 12-week time point (19,722,013 reads).  AbundantOTU 

clustered the merged sequences into 1422 OTUs at a 97% threshold incorporating 

99.993% of all sequences in a time of 616 minutes (~10 hours) and removing 375,807 

singletons from downstream analysis (TABLE 3.2 and TABLE 3.5).  Chimera detection 

using UCHIME identified 10 OTUs, which were then removed from the analysis 

pipeline. 
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Data from the 20 week time point has been previously published [20].  As noted 

in that paper, in both the WT and Il10-\- mice, the carcinogen AOM was applied to mice 

in a subset of cages at week 4.  Mice were housed 2-4 per cage in 6 WT and 5 Il10-\- 

cages with WT cages (C4, C5, C6) and Il10-\- cages (C1, C2, C3) receiving AOM 

treatment.  As shown in our previous work (Figure 1 in Arthur et al [20]), the effects of 

AOM on the microbial community were much smaller than the effects of genotype.  We 

did not therefore attempt to model the effects of AOM and did not separate AOM and 

non-AOM mice for the purposes of statistical inference.  Since AOM cages were distinct 

from non-AOM cages, ignoring this variable may cause us to over-estimate the effects of 

cage at the 12 week and 20 week timepoints for the WT and Il10-\-.  In general, however, 

the effects of AOM compared to the effects of cage were modest (data not shown), so we 

do not believe that the cage effects at these time points are being primarily driven by 

AOM induced differences between the cages.  AOM was not applied in the 

gavage/acquired experiment, so the strong cage effects seen in this experiment (FIGURE 

3.4C and D) cannot be explained by this potentially confounding variable. 

3.5.4  Gavage Study 

Sterile germ-free WT 129/SvEv mice were either inoculated by gavage from an 

amalgamation of 3 to 4 WT 129/SvEv donor fecal samples from mice ranging in age 

from 2 to 3 months or allowed to naturally acquire a microbiota.  Stool samples were 

collected and processed for sequencing following the protocol outlined by Arthur et al 

[20] at the 1-week, 2-week, 4-week, and 8-week time points (TABLE 3.3).  Mice were 

housed in 8 cages with 2-4 mice per cage (4 gavage cages and 4 acquired cages).  One 

lane of paried-end Illumina 16S rRNA sequencing of the V6 hypervarialbe region 
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produced 15,467,365 reads ~75 bases in length.  The paired-end reads were merged into 

14,880,760 sequences with an average length of 74.46 ± 1.18 (mean ± SD).  Clustering 

by AbundantOTU took 106 minutes and produced 873 OTUs using a 97% threshold 

incorporating 99.996% of all sequences and removing 50,863 singletons from 

downstream analysis (TABLE 3.4 and TABLE 3.5).  Chimera detection using UCHIME 

identified 5 OTUs, which we then removed from downstream analysis.  At the 8-week 

time point the mice were exposed to DSS (Dextran Sulfate Sodium) in order to induce 

inflammation.  After 12-days the mice were sacrificed and inflammation scores were 

cataloged through histological analysis of inflamed tissue. 
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FIGURE 3.1:  Alterations in microbial community composition over time at the 
phylum level in WT and Il10-\- mouse model.  Time is shown in the left column in 
weeks.  Sample size at each time point included stool samples from 2 week:  WT (n 
= 24) and Il10-\- (n = 17), 12 week:  WT (n = 22) and Il10-\- (n = 16) and 20 week:  
WT (n = 24) and Il10-\- (n = 15). 
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FIGURE 3.2:  Richness as a function of time for the WT vs Il10-\- experiment (A) 
and the acquired vs gavage experiment (B).  The Donor biota for the gavage 
experiment has a richness value of 118.8, similar to the week 1 values.  Richness 
was corrected for the number of sequences collected in each sample (see methods). 
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FIGURE 3.3:  Bray-Curtis dissimilarity PCoA at the OTU level showing a clear 
separation between early and late time points (top panel).  Independent PCoA 
clustering was performed for each time point and are colored by genotype (middle 
panel) and cage (bottom panel). 
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FIGURE 3.4:  Cage effects illustrated through the use of Bray-Curtis PCoA 
performed at the OTU level.  Shown for the first 12 PCoA co-ordinates are the p-
values from a one-way ANOVA with a fixed factor of cage evaluating the null 
hypothesis that cage had no effect on the distribution of the co-ordinate. 
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FIGURE 3.5:  Alterations in microbial community composition at the phylum level 
over time in mice for which initial gavage was performed and mice allowed to 
acquire the microbial community from the cage environment.  Time is shown in the 
left column in weeks.  The microbial community composition for the donor is 
shown in the upper right-hand corner.  Sample size at each time point was uniform 
with Gavage (n = 12) and Acquired (n = 12) with the Donor Biota having only 1 
sample (n = 1). 
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FIGURE 3.6:  (A) Bray-Curtis dissimilarity PCoA at the OTU level showing 
microbial community shifting over time.  (B) Independent PCoA clustering was 
performed for each time point and are colored by gavage status (top panel) and cage 
(bottom panel). 

 

 

  



 64 

 
FIGURE 3.7:  Relative abundance of genera in (A) Gavage and (C) Acquired at the 
8 week time point broken down by cages.  Each bar represents an individual mouse 
that received DSS.  Differences in inflammation scores with a factor of cage were 
not significant for the gavage mice (B) but were for the Acquired mice (D) with both 
parametric One-Way ANOVA and a non-parametric Kruskal-Wallis (with the 
indicated p-values)  *P < 0.05. 
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FIGURE 3.8:  The ability to detect low abundant taxa is dependent upon 
sequencing depth.  (Top Panel):  CT for qPCR for E. coli specific-CT from 16S 
rRNA universal primers plotted against the V6 consensus sequence with the best 
match to E. coli 16S sequence.  (Bottom Panel):  Our samples had an average of 
~450,000 V6 Illumina sequences per sample, but even a factor of 10 reduction 
would have impaired our ability to quantitatively detect E. coli even though E. coli 
was the 23rd most abundant taxa among all taxa.  All p-values shown are from 
Kendall’s tau. *P < 0.05. 
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TABLE 3.1:  WT vs Il10-\- study, number of stool samples used in downstream 
analysis.  Removed mouse C5M5 because it was mislabeled.  Mice were housed in 6 
WT cages and 5 Il10-\- cages. 

Time Point 
(week) WT Il10-\- Total 

 NOAOM AOM+ NOAOM AOM+  
2 12 12 8 9 41 
12 11 11 8 8 38 
20 12 12 7 8 39 

 118 
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TABLE 3.2: Number of reads in WT vs Il10-\- study before and after QC.  After QC 
a total of 3,3614,684 reads were removed and the remaining reads have a length of 
74.52 ± 1.05. 

Time Raw Reads QC Reads 
2 20,990,204 19,112,305 
12 19,722,013 19,127,448 
20 17,803,385 16,914,165 

Total 58,515,602 55,153,918 
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TABLE 3.3:  Acquired vs Gavage study stool samples of WT mice.  The 
Donor used for gavaging is an amalgamation of male and female WT 
mice ranging in age from 2 – 3 months.  Mice were housed in 4 Gavage 
cages and 4 Acquired cages. 

Time Point 
(week) 

Acquired Gavage Total 

1 12 12 24 

2 12 12 24 

4 12 12 24 

8 12 12 24 

 96 
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TABLE 3.4: Number of reads in Gavage Study before and after QC.  After 
QC a total of 586,605 sequences were removed and the remaining reads 
have a length of 74.46 ± 1.18. 

Time Raw Reads QC Reads 
1 4,008,877 3,851,944 
2 4,282,733 4,113,112 
4 2,643,686 2,504,576 
8 3,903,810 3,799,766 

Donor 628,259 611,362 
Total 15,467,365 14,880,760 
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TABLE 3.5:  Initial reads were feed into AbundantOTU running on a linux box with 
128 GB of RAM.  Singletons identified by AbundantOTU were removed from 
downstream analysis. 

Study Initial Reads OTUs Singletons Run Time 
WT vs Il10-\- 55,153,918 1422 375,807 616 mins (10.3 hrs) 

Gavage vs Acquired 14,880,760 873 50,863 106 mins (1.8 hrs) 
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TABLE 3.6: WT/Il10-\- study.  Richness rarified to 19,000 sequences for the 
Mixed Linear Model and Richness rarified to 19,000 sequences for the median 
cage value model.  Both models show a significant time and genotype effect but 
no.  P-values are corrected for multiple hypothesis testing using the Benjamini-
Hochberg procedure.   
*P < 0.05. 

Effect Mixed Linear Model Median Cage Value 
Time 0.0016* 0.03* 

Genotype 0.0016* 2.3e-05* 
Genotype x Time 0.309 0.257 
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TABLE 3.7:  Gavage study.  Richness rarified to 2,000 sequences for the 
Mixed Linear Model and Richness rarified to 11,000 sequences for the median 
cage value model.  Both models show a significant time effect.  P-values are 
corrected for multiple hypothesis testing using the Benjamini-Hochberg 
procedure.  *P < 0.05. 

Effect Mixed Linear Model Median Cage Value 
Time 5.48e-09* 7.101e-06* 

Treatment 0.64 0.9332 
Treatment x Time 0.98 1.3692 
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APPENDIX A:  SUPPLEMENTAL MATERIALS FOR CHAPTER 3 

 
 
Supplemental Figures 
 
 
 

 
FIGURE 3.S1:  WT vs Il10-\- study.  UniFrac distance metric produces the same 
pattern of clustering as that of a Bray-Curtis dissimilarity matrix.  The above figure 
is the result of the default settings in Qiime and jackknife resampling of 110 
sequences per sample.  The orbs surrounding each data point are 95% confidence 
intervals based on the jackknife re-sampling. 
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FIGURE 3.S2:  WT vs Il10-\- study.  Results of a mixed effect linear model with 
PCoA co-ordinates as the dependent variable.  The effects of Time, Genotype, 
and the Genotype x Time interaction show significance through the first few 
PCoA co-ordinates.  Dotted line represents P = 0.05. 
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FIGURE 3.S3:  Gavage vs Acquired study.  Results of a mixed effect linear 
model with PCoA co-ordinates as the dependent variable.  The effects of Time, 
Treatment (Gavage or Acquired), and the Treatment x Time interaction show 
significance through the first few PCoA co-ordinates.  
Dotted line represents P = 0.05. 
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FIGURE 3.S4:  Significance assigned through a t-test to differences between WT 
and Il10-\- mice at the phylum (A) and the genus level (B).  As seen in the 
abundance pie chart (Fig 1) an expansion in Proteobacteria occurs early on (A) 
and while decreasing over time is still significantly different at 20 weeks.   
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FIGURE 3.S5:  WT vs Il10-\- study.  Log normalized counts of Genus 
Escherichia/Shigella (A) and Family Enterobactriaceae (B) illustrates the effect 
time has on the abundance of potential pernicious microbes between healthy 
(WT) and disease states (Il10-\-).  
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Supplemental Tables 
 

TABLES 3.S1:  WT vs Il10-\- study.  Results of the mixed effect linear model 
conducted in SAS on the first 20 principle co-ordinates of a Bray-Curtis PCoA. 

effect var NumDF DenDF FValue raw_p fdr_p 
time axis2 2 103 92.17 <.0001 6.31E-22 
time axis4 2 103 90.45 <.0001 6.31E-22 

genotype*time axis4 2 103 65.76 <.0001 6.15E-18 
time axis1 2 103 65.68 <.0001 6.15E-18 

genotype*time axis3 2 103 37.82 <.0001 5.81E-12 
time axis3 2 103 24.22 <.0001 2.40E-08 

genotype*time axis6 2 103 17.66 <.0001 2.17E-06 
time axis7 2 103 12.7 <.0001 8.78782E-05 

genotype axis1 1 9 43.37 0.0001 0.000672729 
genotype axis2 1 9 20.82 0.0014 0.008164142 

time axis9 2 103 5.92 0.0037 0.019939539 
genotype*time axis11 2 103 5.83 0.004 0.019939539 
genotype*time axis2 2 103 4.22 0.0174 0.080178592 

time axis8 2 103 3.83 0.0248 0.106414406 
genotype*time axis8 2 103 3.35 0.039 0.155964185 
genotype*time axis12 2 103 3.11 0.0487 0.182673722 

genotype axis18 1 9 4.75 0.0572 0.194594529 
time axis15 2 103 2.92 0.0584 0.194594529 
time axis17 2 103 2.86 0.0621 0.196070927 
time axis10 2 103 2.71 0.0716 0.21469964 

genotype*time axis17 2 103 2.6 0.079 0.225790574 
genotype*time axis9 2 103 2.41 0.095 0.259114762 
genotype*time axis15 2 103 2.19 0.1174 0.306201466 

genotype axis9 1 9 2.64 0.1387 0.338170326 
genotype*time axis14 2 103 2 0.1409 0.338170326 

genotype axis6 1 9 2.21 0.1709 0.394361813 
genotype*time axis16 2 103 1.75 0.1794 0.398662011 
genotype*time axis5 2 103 1.58 0.2111 0.452396609 
genotype*time axis19 2 103 1.43 0.2448 0.506556459 

genotype axis10 1 9 1.45 0.2587 0.517458994 
genotype axis3 1 9 1.2 0.3008 0.582250191 

genotype*time axis7 2 103 0.99 0.3758 0.692706328 
genotype axis7 1 9 0.8 0.3957 0.692706328 

time axis6 2 103 0.9 0.4113 0.692706328 
genotype axis15 1 9 0.74 0.4124 0.692706328 

genotype*time axis13 2 103 0.87 0.4212 0.692706328 
genotype axis5 1 9 0.69 0.4272 0.692706328 
genotype axis16 1 9 0.53 0.487 0.759110724 

time axis12 2 103 0.71 0.4934 0.759110724 
genotype*time axis1 2 103 0.67 0.5121 0.768123201 

genotype axis8 1 9 0.4 0.5436 0.795563263 
genotype axis20 1 9 0.35 0.5704 0.814917856 
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TABLE 3.S1 (continued) 

time axis13 2 103 0.51 0.6032 0.84162906 
time axis20 2 103 0.47 0.6242 0.843107322 
time axis5 2 103 0.45 0.6377 0.843107322 
time axis14 2 103 0.44 0.6464 0.843107322 

genotype*time axis10 2 103 0.4 0.6743 0.860773517 
genotype axis19 1 9 0.17 0.6905 0.863115976 

time axis18 2 103 0.25 0.7787 0.926819876 
genotype axis13 1 9 0.08 0.7876 0.926819876 

genotype*time axis20 2 103 0.24 0.7878 0.926819876 
genotype axis11 1 9 0.05 0.836 0.964593392 

time axis19 2 103 0.15 0.8566 0.967744314 
genotype axis17 1 9 0.02 0.883 0.967744314 

time axis16 2 103 0.12 0.8888 0.967744314 
time axis11 2 103 0.1 0.9032 0.967744314 

genotype*time axis18 2 103 0.06 0.939 0.978710199 
genotype axis4 1 9 0 0.9481 0.978710199 
genotype axis14 1 9 0 0.9624 0.978710199 
genotype axis12 1 9 0 0.9887 0.988655299 
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TABLE 3.S2: WT vs Il10-\- study.  Results of the mixed effect linear model 
conducted in SAS using Phylum classification with an 80% RDP threshold. 
 

effect var 
Num 
DF 

Den 
DF FValue raw_p fdr_p 

time Verrucomicrobia 2 103 212.53 <.0001 5.82E-36 
time Bacteroidetes 2 103 110.33 <.0001 2.58E-25 
time Actinobacteria 2 103 51.27 <.0001 2.46E-15 
time Proteobacteria 2 103 45.46 <.0001 3.71E-14 
time Cyanobacteria 2 103 18.73 <.0001 4.84E-07 
time Firmicutes 2 103 12.12 <.0001 6.58417E-05 

genotype*time Verrucomicrobia 2 103 10.53 <.0001 0.000207285 
genotype Proteobacteria 1 9 32.41 0.0003 0.00077909 

time Tenericutes 2 103 7.31 0.0011 0.0025076 
genotype Verrucomicrobia 1 9 15.58 0.0034 0.007077512 

genotype*time Proteobacteria 2 103 3.58 0.0314 0.059944219 
genotype*time Bacteroidetes 2 103 2.86 0.0619 0.108307287 

genotype Bacteroidetes 1 9 1.87 0.2046 0.326642322 
genotype*time Cyanobacteria 2 103 1.55 0.2178 0.326642322 
genotype*time Firmicutes 2 103 1.34 0.2653 0.371432207 

genotype Cyanobacteria 1 9 0.62 0.4525 0.593921596 
genotype Firmicutes 1 9 0.42 0.5335 0.659016473 

genotype*time Tenericutes 2 103 0.46 0.631 0.736182878 
genotype Tenericutes 1 9 0.16 0.6983 0.771840782 
genotype Actinobacteria 1 9 0.11 0.7458 0.783043316 

genotype*time Actinobacteria 2 103 0.17 0.8473 0.847275483 
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TABLES 3.S3:  WT vs Il10-\- study.  Results of the mixed effect linear model 
conducted in SAS using Genus classification with an 80% RDP threshold. 

effect var Num DF Den DF FValue raw_p fdr_p 
time Barnesiella 2 103 240.5247432 1.54511E-39 2.54944E-37 

time Lactobacillus 2 103 229.1623352 1.19286E-38 9.84109E-37 

time Trichococcus 2 103 218.963221 8.026E-38 4.4143E-36 

time Akkermansia 2 103 163.5932156 1.0661E-32 4.39765E-31 

time Stenotrophomonas 2 103 126.3224669 1.92203E-28 6.34271E-27 

time Bacillus 2 103 88.16302783 4.8571E-23 1.3357E-21 

time Enterococcus 2 103 86.40191919 9.33687E-23 1.9749E-21 

time Enterobacter 2 103 86.33442363 9.57527E-23 1.9749E-21 

time Enterorhabdus 2 103 72.54492974 2.18149E-20 3.9994E-19 

time Bacteroides 2 103 67.44931831 1.89205E-19 3.12187E-18 

time Prevotella 2 103 53.78974686 1.01202E-16 1.51803E-15 

time Klebsiella 2 103 52.69603924 1.73275E-16 2.38253E-15 

time Peptostreptococcus 2 103 48.84490861 1.20521E-15 1.52969E-14 

time Clostridium 2 103 42.20302892 4.09978E-14 4.73162E-13 

time Escherichia_Shigella 2 103 42.1156914 4.30147E-14 4.73162E-13 

time Pseudoramibacter 2 103 38.52889505 3.21665E-13 3.31717E-12 

time Alistipes 2 103 33.60268426 5.83438E-12 5.66278E-11 

time Weissella 2 103 22.03280389 1.08217E-08 9.91986E-08 

time Blautia 2 103 21.76773123 1.30336E-08 1.13187E-07 

time Streptophyta 2 103 20.17125446 4.05326E-08 3.34394E-07 

time Anaerosporobacter 2 103 19.26109297 7.82806E-08 6.15061E-07 

time Anaerostipes 2 103 19.02399081 9.30514E-08 6.97886E-07 

time Lysinibacillus 2 103 15.00373545 1.91206E-06 1.37169E-05 

time Proteus 2 103 14.78227415 2.27042E-06 1.56091E-05 

time Robinsoniella 2 103 14.63100644 2.55392E-06 1.642E-05 

genotype*time Faecalibacterium 2 103 14.61428714 2.5874E-06 1.642E-05 

genotype*time Prevotella 2 103 14.33883245 3.20806E-06 1.96048E-05 

time Staphylococcus 2 103 11.57699778 2.91551E-05 0.000171807 

genotype*time Akkermansia 2 103 11.1114828 4.26965E-05 0.000242928 

genotype*time Bacteroides 2 103 10.78556061 5.58628E-05 0.000307245 

genotype*time Proteus 2 103 9.701522824 0.00013798 0.000734412 

time Marvinbryantia 2 103 9.327027254 0.000189277 0.000975959 

genotype*time Blautia 2 103 9.161419912 0.000217809 0.001089043 

time Ruminococcus 2 103 8.712598421 0.000319281 0.001549451 

genotype*time Dorea 2 103 8.656184634 0.000335072 0.001579624 

genotype*time Alistipes 2 103 8.184041831 0.000502775 0.002304385 

time Acetivibrio 2 103 8.027535536 0.000575573 0.002480913 

time Anaerovorax 2 103 8.014212752 0.000582246 0.002480913 

genotype*time Marvinbryantia 2 103 8.006002933 0.000586398 0.002480913 

genotype*time Anaerostipes 2 103 7.862397382 0.0006641 0.002739413 

genotype Allobaculum 1 9 25.57003433 0.000684112 0.002753135 

time Desemzia 2 103 7.677690605 0.000779713 0.003063157 
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genotype*time Coprococcus 2 103 7.479173822 0.000927022 0.003557177 

genotype Barnesiella 1 9 21.83923583 0.001163243 0.004326318 

genotype Clostridium 1 9 21.68210498 0.001191268 0.004326318 

genotype*time Robinsoniella 2 103 7.178529696 0.001206125 0.004326318 

time Anaerotruncus 2 103 7.050383404 0.001349866 0.004700688 

time Odoribacter 2 103 7.035651741 0.001367473 0.004700688 

genotype Marvinbryantia 1 9 20.2240091 0.001495146 0.005034676 

genotype*time Anaerofustis 2 103 6.774744053 0.001721207 0.005679982 

time Haemophilus 2 103 6.603328134 0.002003182 0.006480882 

time Anaerofustis 2 103 6.441697762 0.002312196 0.007336776 

genotype Enterobacter 1 9 16.56747863 0.002798317 0.00871174 

genotype*time Barnesiella 2 103 6.135917426 0.003036491 0.009278166 

time Faecalibacterium 2 103 6.101798397 0.003130517 0.009391552 

genotype*time Sarcina 2 103 5.36804334 0.006058367 0.017850546 

genotype*time Clostridium 2 103 4.925144077 0.009062112 0.025883027 

time Acholeplasma 2 103 4.920780656 0.009098276 0.025883027 

genotype Escherichia_Shigella 1 9 10.85577378 0.009306639 0.02602704 

genotype*time Odoribacter 2 103 4.589945282 0.012316688 0.033870893 

genotype*time Enterorhabdus 2 103 4.535560608 0.012947641 0.035022308 

genotype Acetivibrio 1 9 9.364508083 0.013568366 0.036109361 

genotype Akkermansia 1 9 9.190777485 0.014209147 0.037214433 

genotype*time Lactobacillus 2 103 4.223897485 0.017255829 0.044487685 

genotype Oscillibacter 1 9 8.338075792 0.017955123 0.04557839 

genotype*time Haemophilus 2 103 4.131176608 0.018801074 0.047002685 

genotype*time Coprobacillus 2 103 4.043555319 0.020390976 0.050216583 

genotype Butyricicoccus 1 9 7.500159714 0.022898402 0.055562299 

genotype*time Acetivibrio 2 103 3.901889902 0.023257147 0.055614916 

time Carnobacterium 2 103 3.84800967 0.024452253 0.057637453 

genotype Carnobacterium 1 9 7.115499795 0.025728081 0.059790612 

genotype*time Roseburia 2 103 3.661982998 0.029081646 0.066235475 

genotype Anaerotruncus 1 9 6.698313271 0.02930418 0.066235475 

genotype Proteus 1 9 6.487889854 0.031341793 0.069883727 

time Dorea 2 103 3.53838023 0.032643117 0.071814857 

time Allobaculum 2 103 3.519876189 0.033213332 0.072107891 

genotype Dorea 1 9 6.166432374 0.03480648 0.073965895 

time Salmonella 2 103 3.464973356 0.034965696 0.073965895 

genotype Blautia 1 9 5.946666018 0.037451849 0.078222215 

genotype*time Rikenella 2 103 3.125693539 0.048098181 0.099202499 

genotype*time Pseudoramibacter 2 103 3.040883147 0.052105162 0.106140145 

genotype*time Lysinibacillus 2 103 3.002695001 0.05401899 0.108631538 

time Roseburia 2 103 2.97578501 0.055410515 0.108631538 

genotype Haemophilus 1 9 4.821372809 0.055724288 0.108631538 

genotype Enterococcus 1 9 4.780037149 0.056587779 0.108631538 

time Shewanella 2 103 2.948100986 0.056880228 0.108631538 

time Sporacetigenium 2 103 2.940725488 0.057278447 0.108631538 

genotype Weissella 1 9 4.404265457 0.065262768 0.12236769 
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time Coprobacillus 2 103 2.760106497 0.067970309 0.12601237 

genotype Serratia 1 9 3.816038193 0.082505822 0.151260673 

time Papillibacter 2 103 2.542532553 0.083595734 0.151574682 

genotype Odoribacter 1 9 3.643943093 0.088615834 0.158930572 

genotype Sporacetigenium 1 9 3.458150762 0.095872872 0.17009703 

genotype Pseudoramibacter 1 9 3.208826058 0.106847863 0.1875521 

time Sarcina 2 103 2.267114983 0.108757822 0.188895164 

genotype*time Staphylococcus 2 103 2.226018126 0.113126044 0.192598711 

genotype*time Trichococcus 2 103 2.225108777 0.113224697 0.192598711 

genotype Staphylococcus 1 9 3.013660415 0.116583447 0.196288456 

time Serratia 2 103 2.167729178 0.119630382 0.19938397 

time Coprococcus 2 103 2.130666849 0.123963162 0.204539218 

genotype Klebsiella 1 9 2.842219691 0.126096586 0.205999373 

genotype*time Carnobacterium 2 103 1.992313163 0.141600995 0.229060433 

genotype Shewanella 1 9 2.506037038 0.147870581 0.236880056 

genotype*time Bacillus 2 103 1.908177832 0.153558054 0.243625759 

time Peptococcus 2 103 1.843405789 0.163461005 0.256867293 

genotype*time Klebsiella 2 103 1.797098287 0.170938033 0.266082788 

time Rikenella 2 103 1.727266512 0.182878594 0.282009046 

genotype Anaerofustis 1 9 1.935681454 0.197567292 0.301838918 

genotype Streptophyta 1 9 1.790751056 0.213658616 0.32342818 

genotype Bacillus 1 9 1.736594982 0.22012646 0.33018969 

genotype Faecalibacterium 1 9 1.701738999 0.224430871 0.333613457 

genotype Enterorhabdus 1 9 1.618321828 0.235210198 0.346515024 

genotype Peptostreptococcus 1 9 1.579174229 0.240514758 0.351194116 

time Butyricicoccus 2 103 1.430593211 0.243878822 0.352982506 

genotype Anaerovorax 1 9 1.519534021 0.248918544 0.357143997 

time Moryella 2 103 1.327854783 0.269543625 0.38340257 

time Eubacterium 2 103 1.299706656 0.277044509 0.390703794 

genotype*time Anaerosporobacter 2 103 1.215472346 0.300787669 0.420592927 

genotype Coprococcus 1 9 1.157231668 0.310031306 0.42987534 

genotype*time Stenotrophomonas 2 103 1.158337363 0.318063954 0.437337937 

genotype Stenotrophomonas 1 9 1.090193679 0.323660981 0.441355884 

genotype*time Peptococcus 2 103 1.128309342 0.327545947 0.442992469 

genotype Roseburia 1 9 1.007616535 0.341697834 0.458375143 

genotype Ruminococcus 1 9 0.954696953 0.354057502 0.471124902 

genotype Bacteroides 1 9 0.897679937 0.368148019 0.485955386 

genotype*time Serratia 2 103 0.981956985 0.378056071 0.495073426 

genotype*time Acholeplasma 2 103 0.94769202 0.390988191 0.500194495 

genotype Lysinibacillus 1 9 0.808553985 0.391970847 0.500194495 

genotype Alistipes 1 9 0.805271914 0.392893751 0.500194495 

genotype Rikenella 1 9 0.801026518 0.394092632 0.500194495 

genotype*time Sporacetigenium 2 103 0.916630785 0.403100686 0.507722238 

genotype*time Enterobacter 2 103 0.893164815 0.412504513 0.515630641 

genotype*time Anaerotruncus 2 103 0.870695557 0.421718529 0.523184642 

time Oscillibacter 2 103 0.833124264 0.437596829 0.535287871 



 92 

 
 
  

TABLE 3.S3 (continued) 

genotype*time Butyricicoccus 2 103 0.832274769 0.437962804 0.535287871 

genotype Anaerosporobacter 1 9 0.580432219 0.465638156 0.564928645 

genotype Lactobacillus 1 9 0.554915671 0.475317949 0.572463223 

genotype*time Peptostreptococcus 2 103 0.719664 0.489347678 0.585089615 

genotype*time Enterococcus 2 103 0.703424562 0.497249225 0.590259871 

genotype*time Ruminococcus 2 103 0.658098061 0.519998811 0.612566736 

genotype*time Anaerovorax 2 103 0.651367786 0.52346612 0.612566736 

genotype*time Salmonella 2 103 0.642308932 0.528170314 0.613719027 

genotype*time Desemzia 2 103 0.601096006 0.550122038 0.634756197 

genotype Desemzia 1 9 0.339004565 0.574698196 0.655487691 

genotype Moryella 1 9 0.336597878 0.576034638 0.655487691 

genotype*time Shewanella 2 103 0.517602351 0.597489505 0.675244989 

genotype Prevotella 1 9 0.281592542 0.608502225 0.683012702 

genotype Peptococcus 1 9 0.268038308 0.617135034 0.688022167 

genotype*time Allobaculum 2 103 0.4638749 0.630149469 0.697816526 

genotype*time Papillibacter 2 103 0.419998065 0.658168228 0.723985051 

genotype*time Escherichia_Shigella 2 103 0.357235352 0.700471183 0.765415531 

genotype Trichococcus 1 9 0.140535462 0.716430645 0.777704319 

genotype Papillibacter 1 9 0.120737618 0.736223495 0.793966514 

genotype Salmonella 1 9 0.107424713 0.750591167 0.804204822 

genotype*time Eubacterium 2 103 0.263162336 0.769132329 0.81875377 

genotype Sarcina 1 9 0.082187197 0.780845282 0.825894049 

genotype*time Weissella 2 103 0.210213188 0.810758275 0.852070799 

genotype Eubacterium 1 9 0.051840995 0.824978566 0.861528249 

genotype*time Streptophyta 2 103 0.172453 0.841840338 0.868675666 

genotype*time Moryella 2 103 0.171843172 0.842352161 0.868675666 

genotype*time Oscillibacter 2 103 0.140091372 0.869444153 0.891045249 

genotype Anaerostipes 1 9 0.016689286 0.90005068 0.916718286 

genotype Robinsoniella 1 9 0.009607163 0.924067705 0.932613463 

genotype Coprobacillus 1 9 0.008886546 0.926961261 0.932613463 

genotype Acholeplasma 1 9 0.00266583 0.959949982 0.959949982 
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TABLE 3.S4: WT vs Il10-\- study.  Results of the mixed effect linear model 
conducted in SAS for Richness rarified to 19,226 sequences. *P < 0.05. 

effect var NumDF DenDF FValue raw_p fdr_p 
time richness19226 2 103 7.7 0.0008 0.001648427* 

genotype richness19226 1 9 22.22 0.0011 0.001648427* 
genotype*time richness19226 2 103 1.19 0.3093 0.309285384 
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TABLE 3.S5:  Gavage vs Acquired study.  Results of the mixed effect 
linear model conducted in SAS on the first 20 principle co-ordinates of a 
Bray-Curtis PCoA. 

effect var NumDF DenDF FValue raw_p fdr_p 
time axis1 3 82 222.67 <.0001 1.44E-37 

treatment*time axis2 3 82 75.89 <.0001 3.70E-22 
time axis2 3 82 46.61 <.0001 2.00E-16 

treatment*time axis4 3 82 22.52 <.0001 1.34E-09 
time axis4 3 82 20.24 <.0001 7.08E-09 
time axis7 3 82 14.14 <.0001 1.48E-06 

treatment*time axis13 3 82 11.55 <.0001 1.67559E-05 
treatment axis2 1 6 242.45 <.0001 2.99822E-05 

treatment*time axis16 3 82 9.59 <.0001 0.000101378 
treatment*time axis1 3 82 8.69 <.0001 0.000243805 
treatment*time axis17 3 82 7.43 0.0002 0.000906346 
treatment*time axis10 3 82 7.28 0.0002 0.000975655 

time axis13 3 82 6.29 0.0007 0.002834955 
treatment*time axis8 3 82 5.77 0.0013 0.004826499 
treatment*time axis6 3 82 5.59 0.0015 0.005463469 
treatment*time axis20 3 82 5.55 0.0016 0.005463469 

time axis10 3 82 3.95 0.011 0.035016758 
treatment axis1 1 6 12.27 0.0128 0.038341258 

time axis20 3 82 3.3 0.0245 0.069490814 
treatment*time axis14 3 82 3.14 0.0298 0.080447244 

time axis14 3 82 2.88 0.0407 0.10466861 
time axis16 3 82 2.64 0.0547 0.131291307 

treatment*time axis11 3 82 2.62 0.0561 0.131291307 
time axis11 3 82 2.59 0.0584 0.131291307 
time axis12 3 82 2.43 0.0713 0.154051024 
time axis17 3 82 1.79 0.1563 0.322949277 
time axis8 3 82 1.76 0.1615 0.322949277 
time axis18 3 82 1.37 0.2564 0.494439902 
time axis9 3 82 1.27 0.2914 0.537549714 

treatment*time axis9 3 82 1.25 0.2986 0.537549714 
time axis19 3 82 1.09 0.3564 0.620876507 

treatment axis16 1 6 0.69 0.4374 0.738046976 
treatment axis10 1 6 0.51 0.5014 0.820554016 
treatment axis4 1 6 0.43 0.5383 0.830977213 

treatment*time axis18 3 82 0.73 0.5386 0.830977213 
treatment axis12 1 6 0.32 0.5899 0.884810332 
treatment axis7 1 6 0.28 0.6145 0.896907649 
treatment axis20 1 6 0.22 0.655 0.929592464 

treatment*time axis12 3 82 0.47 0.7013 0.929592464 
treatment*time axis19 3 82 0.47 0.7064 0.929592464 

treatment axis13 1 6 0.15 0.7149 0.929592464 
time axis6 3 82 0.41 0.7446 0.929592464 
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TABLE 3.S5 (continued) 

treatment axis8 1 6 0.08 0.7811 0.929592464 
treatment axis19 1 6 0.08 0.7933 0.929592464 

treatment*time axis15 3 82 0.3 0.825 0.929592464 
treatment axis18 1 6 0.04 0.8531 0.929592464 
treatment axis6 1 6 0.03 0.8611 0.929592464 
treatment axis17 1 6 0.03 0.8731 0.929592464 
treatment axis14 1 6 0.02 0.9025 0.929592464 
treatment axis15 1 6 0.01 0.9071 0.929592464 

treatment*time axis7 3 82 0.18 0.9099 0.929592464 
time axis15 3 82 0.17 0.9139 0.929592464 

treatment axis11 1 6 0.01 0.9157 0.929592464 
treatment axis9 1 6 0.01 0.9296 0.929592464 
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TABLE 3.S6:  Gavage vs Acquired study.  Results of the mixed effect linear 
model conducted in SAS using Phylum classification with an 80% RDP 
threshold. 

effect var NumDF DenDF FValue raw_p fdr_p 
time Proteobacteria 3 82 63.63 <.0001 4.30E-20 
time Bacteroidetes 3 82 39.07 <.0001 7.95E-15 
time Actinobacteria 3 82 21.71 <.0001 8.80E-10 

treatment*time Bacteroidetes 3 82 21.69 <.0001 8.80E-10 
time Verrucomicrobia 3 82 11.78 <.0001 6.15E-06 

treatment*time Tenericutes 3 82 9.42 <.0001 6.12957E-05 
time Tenericutes 3 82 8.87 <.0001 9.48165E-05 

treatment*time Actinobacteria 3 82 4.31 0.0071 0.016065531 
treatment*time Proteobacteria 3 82 4.12 0.009 0.017957009 
treatment*time Verrucomicrobia 3 82 3.58 0.0174 0.031277647 

treatment Bacteroidetes 1 6 6.31 0.0458 0.074999645 
treatment Firmicutes 1 6 5.09 0.065 0.09440549 

treatment*time Firmicutes 3 82 2.46 0.0682 0.09440549 
time Firmicutes 3 82 2.34 0.0792 0.101785458 

treatment Verrucomicrobia 1 6 2.46 0.168 0.201626077 
treatment Actinobacteria 1 6 1.81 0.2274 0.255840238 
treatment Proteobacteria 1 6 0.09 0.7709 0.816290897 
treatment Tenericutes 1 6 0.04 0.8451 0.845066159 
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TABLE 3.S7:  Gavage vs Acquired study.  Results of the mixed effect linear model 
conducted in SAS using Genus classification with an 80% RDP threshold. 

effect var NumDF DenDF FValue raw_p fdr_p 
time Enterobacter 3 82 69.3968422 1.9456E-22 3.21024E-20 
time Anaerosporobacter 3 82 54.44195167 1.83615E-19 1.4945E-17 
time Robinsoniella 3 82 53.65927634 2.71727E-19 1.4945E-17 
time Enterococcus 3 82 52.0772511 6.07077E-19 2.50419E-17 

treatment*time Haemophilus 3 82 51.05317111 1.0302E-18 3.39968E-17 
time Barnesiella 3 82 48.44818065 4.08164E-18 1.027E-16 
time Klebsiella 3 82 48.32681285 4.35698E-18 1.027E-16 
time Butyricicoccus 3 82 47.42262519 7.10928E-18 1.46629E-16 
time Haemophilus 3 82 41.8985784 1.61773E-16 2.96584E-15 
time Escherichia_Shigella 3 82 39.82443589 5.57533E-16 8.8303E-15 
time Trichococcus 3 82 39.73471097 5.88686E-16 8.8303E-15 
time Clostridium 3 82 38.56288878 1.20553E-15 1.57727E-14 

treatment*time Anaerosporobacter 3 82 38.51369389 1.2427E-15 1.57727E-14 
time Blautia 3 82 37.78117344 1.95834E-15 2.30805E-14 
time Odoribacter 3 82 33.84762315 2.46315E-14 2.70946E-13 

treatment*time Trichococcus 3 82 32.87140073 4.73325E-14 4.88116E-13 
time Rikenella 3 82 30.48110808 2.45051E-13 2.37844E-12 

treatment*time Bacteroides 3 82 29.46054087 5.04676E-13 4.6262E-12 
time Faecalibacterium 3 82 28.13375933 1.31604E-12 1.14287E-11 
time Prevotella 3 82 27.88109285 1.58358E-12 1.30646E-11 
time Lactobacillus 3 82 27.52150899 2.0637E-12 1.62148E-11 

treatment*time Citrobacter 3 82 26.81602171 3.48689E-12 2.61517E-11 
time Citrobacter 3 82 26.69362237 3.82167E-12 2.74164E-11 
time Enterorhabdus 3 82 23.58796382 4.19831E-11 2.88634E-10 
time Anaerovorax 3 82 23.37236879 4.9843E-11 3.28964E-10 
time Parabacteroides 3 82 22.03816294 1.46482E-10 9.29595E-10 
time Acetivibrio 3 82 19.36586148 1.38512E-09 8.4646E-09 
time Alistipes 3 82 17.83101083 5.32687E-09 3.13905E-08 
time Ruminococcus 3 82 15.43451366 4.77469E-08 2.71663E-07 
time Bacteroides 3 82 14.94475871 7.58244E-08 4.17034E-07 

treatment*time Lactobacillus 3 82 14.2832667 1.42762E-07 7.59865E-07 
time Allobaculum 3 82 13.12202921 4.43686E-07 2.28776E-06 
time Syntrophococcus 3 82 13.0173465 4.9217E-07 2.46085E-06 
time Dorea 3 82 12.78067602 6.2279E-07 3.02236E-06 

treatment*time Parasutterella 3 82 12.00076591 1.36522E-06 6.43603E-06 
time Bacillus 3 82 11.90438657 1.50576E-06 6.8657E-06 
time Marvinbryantia 3 82 11.88256727 1.53958E-06 6.8657E-06 

treatment*time Syntrophococcus 3 82 11.10636989 3.41832E-06 1.48427E-05 
treatment*time Odoribacter 3 82 10.37803069 7.32282E-06 3.09812E-05 

time Akkermansia 3 82 9.799607981 1.35377E-05 5.58432E-05 
treatment*time Dorea 3 82 9.350239758 2.19495E-05 8.83335E-05 
treatment*time Acholeplasma 3 82 9.262346272 2.41402E-05 9.48364E-05 
treatment*time Robinsoniella 3 82 9.063728335 2.99517E-05 0.000114931 

time Coprococcus 3 82 8.89157956 3.61392E-05 0.000135522 
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TABLE 3.S7 (continued) 
treatment*time Rikenella 3 82 8.30898407 6.86259E-05 0.000251628 
treatment*time Coprococcus 3 82 7.918550412 0.000106001 0.000380221 

time Acholeplasma 3 82 7.631944627 0.00014623 0.000513359 
treatment*time Pantoea 3 82 7.077789225 0.000274087 0.000942173 

time Weissella 3 82 6.849648915 0.000355836 0.001198222 
treatment Odoribacter 1 6 51.04179796 0.000379007 0.001232999 
treatment Trichococcus 1 6 50.93821908 0.000381109 0.001232999 

time Papillibacter 3 82 6.744403027 0.000401558 0.001274174 
treatment*time Marvinbryantia 3 82 6.65512351 0.000445023 0.001385448 

time Pantoea 3 82 6.508526065 0.000527073 0.001610499 
time Lactococcus 3 82 6.486077747 0.000540935 0.001622806 

treatment*time Anaerotruncus 3 82 6.135544114 0.000812739 0.002394677 
treatment Haemophilus 1 6 34.24934536 0.001098857 0.003180901 
treatment Lactobacillus 1 6 33.89645949 0.001128911 0.003211557 

treatment*time Parabacteroides 3 82 5.748559947 0.001278662 0.003575918 
treatment*time Prevotella 3 82 5.596108501 0.001530188 0.004208016 

time Oscillibacter 3 82 5.537900305 0.00163904 0.004433468 
time Eubacterium 3 82 5.474112909 0.001767411 0.004703593 

treatment Rikenella 1 6 23.40436995 0.002887223 0.007561776 
treatment*time Helicobacter 3 82 4.870195275 0.003626921 0.009350655 
treatment*time Klebsiella 3 82 4.839780721 0.003761503 0.009548432 
treatment*time Blautia 3 82 4.545715404 0.005355808 0.013389519 
treatment*time Acetivibrio 3 82 4.222934524 0.0079108 0.019481821 

treatment Citrobacter 1 6 13.61496127 0.010210601 0.024472583 
time Adlercreutzia 3 82 4.01081051 0.010233989 0.024472583 

treatment Parabacteroides 1 6 13.2823767 0.010776829 0.025402525 
time Carnobacterium 3 82 3.930115039 0.011289699 0.026236625 

treatment Bacteroides 1 6 12.75904312 0.011756095 0.02694105 
treatment Syntrophococcus 1 6 12.53162051 0.012218858 0.027617966 

time Sporacetigenium 3 82 3.833424853 0.012701003 0.028319805 
treatment Prevotella 1 6 11.80588279 0.013869291 0.03051244 

treatment*time Allobaculum 3 82 3.736005153 0.014303765 0.031054226 
time Coprobacillus 3 82 3.696959307 0.015002226 0.032147627 
time Parasutterella 3 82 3.679293126 0.015329474 0.032427733 

treatment*time Coprobacillus 3 82 3.615713721 0.016568086 0.03460423 
treatment Lawsonia 1 6 10.68766418 0.017051303 0.0351667 
treatment Anaerosporobacter 1 6 10.62312145 0.017263653 0.0351667 

time Helicobacter 3 82 3.528245738 0.018439088 0.036915814 
time Lawsonia 3 82 3.522475403 0.018569773 0.036915814 

treatment Alistipes 1 6 9.758390257 0.020484471 0.040237354 
treatment Adlercreutzia 1 6 8.381598427 0.027509828 0.053401431 
treatment Desulfovibrio 1 6 8.205679869 0.028630375 0.054930371 

treatment*time Lactonifactor 3 82 3.071207465 0.032300964 0.061260449 
time Anaerotruncus 3 82 3.003561657 0.035101518 0.065815346 

treatment Allobaculum 1 6 6.934796676 0.038882252 0.071136461 
treatment*time Bifidobacterium 3 82 2.914719539 0.039153417 0.071136461 
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TABLE 3.S7 (continued) 

treatment Bifidobacterium 1 6 6.857834592 0.039652764 0.071136461 
treatment Anaerotruncus 1 6 6.856730577 0.039663966 0.071136461 
treatment Helicobacter 1 6 6.274395422 0.046222471 0.08200761 

treatment*time Anaerostipes 3 82 2.742749904 0.048377472 0.084917903 
treatment*time Anaerovorax 3 82 2.622596773 0.056084319 0.097409607 
treatment*time Escherichia_Shigella 3 82 2.569702478 0.059854824 0.102875479 

treatment Anaerovorax 1 6 5.236518179 0.062084909 0.10560835 
time Bifidobacterium 3 82 2.442833515 0.069960399 0.117790468 

treatment*time Ruminococcus 3 82 2.371100449 0.07640773 0.127346217 
treatment Pantoea 1 6 4.395506969 0.080862903 0.13342379 

treatment*time Bacillus 3 82 2.316399796 0.0817177 0.133499213 
treatment Enterorhabdus 1 6 4.177714294 0.086967953 0.140683453 

treatment*time Adlercreutzia 3 82 2.200346564 0.094224456 0.15094209 
time Weeksella 3 82 2.114590985 0.104664664 0.166054516 

treatment*time Weeksella 3 82 2.054930651 0.112592469 0.176931022 
treatment*time Carnobacterium 3 82 2.039487203 0.114739098 0.178347354 
treatment*time Butyricicoccus 3 82 2.032980271 0.115655557 0.178347354 

treatment Coprococcus 1 6 3.294803122 0.119418482 0.182225447 
treatment Bacillus 1 6 3.27383635 0.120379235 0.182225447 

treatment*time Akkermansia 3 82 1.964370505 0.125767016 0.188650524 
treatment Anaerostipes 1 6 3.008826356 0.133503908 0.198451755 
treatment Blautia 1 6 2.913493488 0.138712616 0.204353407 

treatment*time Enterococcus 3 82 1.832524287 0.147685127 0.215646424 
time Lactonifactor 3 82 1.816799096 0.150535883 0.217430216 

treatment*time Enterobacter 3 82 1.811316846 0.151542272 0.217430216 
treatment*time Desulfovibrio 3 82 1.758605423 0.161558381 0.22980287 

treatment Papillibacter 1 6 2.51690635 0.163727243 0.230897394 
treatment*time Faecalibacterium 3 82 1.703622969 0.172689413 0.241472484 

time Moryella 3 82 1.681562534 0.177360954 0.24592065 
treatment*time Eubacterium 3 82 1.56896291 0.203165676 0.277475512 

treatment Escherichia_Shigella 1 6 2.0363441 0.203482042 0.277475512 
treatment Coprobacillus 1 6 1.87753749 0.219670254 0.294826962 
treatment Acetivibrio 1 6 1.876518061 0.219780099 0.294826962 
treatment Akkermansia 1 6 1.620485613 0.250121428 0.332822868 

treatment*time Barnesiella 3 82 1.334417651 0.268876827 0.354917411 
treatment*time Weissella 3 82 1.31389027 0.275493783 0.360765668 

treatment Weissella 1 6 1.415032397 0.279156557 0.362683716 
treatment Klebsiella 1 6 1.259801679 0.304585854 0.392630203 
treatment Moryella 1 6 1.193022458 0.316625539 0.404986154 
treatment Dorea 1 6 1.179609607 0.319132097 0.405052277 

time Anaerostipes 3 82 1.114035549 0.348255281 0.438642147 
treatment Enterobacter 1 6 1.014541633 0.352696245 0.439591064 

treatment*time Lawsonia 3 82 1.099107096 0.35433704 0.439591064 
treatment Clostridium 1 6 0.885587153 0.383002504 0.471250163 
treatment Barnesiella 1 6 0.875428538 0.385568315 0.471250163 

treatment*time Shewanella 3 82 1.003512189 0.395577926 0.476510183 
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TABLE 3.S7 (continued) 

time Shewanella 3 82 1.003357736 0.395647849 0.476510183 
treatment Weeksella 1 6 0.799628909 0.405643292 0.485008283 
treatment Moritella 1 6 0.770246343 0.413898372 0.491318211 
treatment Sporacetigenium 1 6 0.724446502 0.427346225 0.503658051 

time Desulfovibrio 3 82 0.913064962 0.43840535 0.513027537 
treatment Enterococcus 1 6 0.661602789 0.447062497 0.519474028 
treatment Lactococcus 1 6 0.590709276 0.471303916 0.541641483 
treatment Carnobacterium 1 6 0.580277513 0.475070688 0.541641483 

treatment*time Oscillibacter 3 82 0.83508568 0.478428891 0.541641483 
treatment*time Papillibacter 3 82 0.833504632 0.479270645 0.541641483 

treatment Ruminococcus 1 6 0.535675011 0.491816892 0.552039368 
treatment*time Lactococcus 3 82 0.801312652 0.496673419 0.553723744 

time Moritella 3 82 0.761876547 0.518678896 0.574375959 
treatment*time Moryella 3 82 0.598014841 0.618106776 0.679917454 

treatment Robinsoniella 1 6 0.235206028 0.6448879 0.704678831 
treatment Butyricicoccus 1 6 0.211514226 0.661777354 0.718376733 
treatment Marvinbryantia 1 6 0.147688859 0.714005072 0.768642519 

treatment*time Sporacetigenium 3 82 0.450821552 0.717399685 0.768642519 
treatment*time Enterorhabdus 3 82 0.39504908 0.756893658 0.805725507 
treatment*time Alistipes 3 82 0.338878535 0.797257464 0.843253087 
treatment*time Clostridium 3 82 0.308967098 0.818838034 0.860562265 
treatment*time Moritella 3 82 0.290745955 0.831964522 0.86882371 

treatment Oscillibacter 1 6 0.031076622 0.865869167 0.898543476 
treatment Acholeplasma 1 6 0.025788567 0.877688115 0.905115868 
treatment Eubacterium 1 6 0.022736028 0.885087165 0.907076909 
treatment Lactonifactor 1 6 0.01463053 0.907674326 0.924483109 
treatment Shewanella 1 6 0.006518551 0.938276411 0.949789005 
treatment Faecalibacterium 1 6 7.01496E-05 0.993588905 0.999647374 
treatment Parasutterella 1 6 9.81594E-08 0.999760177 0.999760177 
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TABLE 3.S8:  Gavage vs Acquired study.  Results of the mixed effect linear 
model conducted in SAS for Richness rarified to 2,192 sequences. *P < 0.05. 

effect var NumDF DenDF FValue raw_p fdr_p 
time richness2192 3 81 19.11 <.0001 5.49E-09* 

treatment richness2192 1 6 0.72 0.4277 0.641483116 
treatment*time richness2192 3 81 0.06 0.9819 0.981853984 
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TABLE 3.S9:  SAS code used to run mixed linear model for each taxon in order. 
Other ranks were analyzed using the same method. 
%MACRO ord ( 
Var1, 
Var2, 
Var3, 
. 
. 
Var57); 
%DO i=1 %TO 57; 
 
   proc mixed data=ord covtest; 
 
 class  treatment time cage sampleID; 
 
 model &&var&i= treatment time treatment*time / residual outp=r1_&i outpm=r2; 
 
   random cage(treatment) ; 
 
   repeated time / subject=mouse type=cs; 
 
   lsmeans         treatment time treatment*time; 
 
   ods output Tests3  = overall&i; 
 
                   ods output diffs   = comparison&i; 
 
                   ods output LSMeans = means&i; 
 
   ods output covParms = cage&i; 
 
    run; 
. 
. 
%END; 
%MEND ord; 
%ord ( 
Acetivibrio, 
Acholeplasma, 
Akkermansia, 
. 
. 
Weissella); 

 


