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ABSTRACT

JIAN WU. High order H(div) discontinuous Galerkin methods for MHD equations.
(Under the direction of DR. WEI CAI)

In this dissertation, we investigate the divergence-free discontinuous Galerkin method

using the H(div) basis, to solve the nonlinear ideal magnetohydrodynamics (MHD)

equations. This is a novel approach to ensure the divergence-free condition on the

magnetic field. The idea is to add on each element extra bubble functions from the

same order hierarchical H(div)-conforming basis to reduce the higher order diver-

gence, and then extra constant edge functions to remove the constant term of diver-

gence. As a consequence, this method has a smaller computational cost than the tra-

ditional discontinuous Galerkin method with standard piecewise polynomial spaces.

We formulate the discontinuous Galerkin method using the H(div)-conforming basis

and perform extensive two-dimensional numerical experiments for both smooth so-

lutions and solutions with discontinuities. The computational results show that the

global divergence is largely reduced, but with a relatively small increase on the error

of the numerical solution.
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CHAPTER 1: INTRODUCTION

Magnetohydrodynamics (MHD) is the study of the magnetic properties of elec-

trically conducting fluids. Examples of such magneto-fluids include plasmas, liquid

metals, and salt water or electrolytes. The field of MHD was initiated by Hannes

Alfvn [2], for which he received the Nobel Prize in Physics in 1970.

The simplest form of MHD, Ideal MHD, assumes that the fluid has so little resistiv-

ity that it can be treated as a perfect conductor. This is the limit of infinite magnetic

Reynolds number. In ideal MHD, Lenz’s law dictates that the fluid is in a sense tied

to the magnetic field lines. To explain, in ideal MHD a small rope-like volume of

fluid surrounding a field line will continue to lie along a magnetic field line, even as

it is twisted and distorted by fluid flows in the system. This is sometimes referred

to as the magnetic field lines being ”frozen” in the fluid. The connection between

magnetic field lines and fluid in ideal MHD fixes the topology of the magnetic field in

the fluid. For example, if a set of magnetic field lines are tied into a knot, then they

will remain so as long as the fluid/plasma has negligible resistivity. This difficulty

in reconnecting magnetic field lines makes it possible to store energy by moving the

fluid or the source of the magnetic field. The energy can then become available if the

conditions for ideal MHD break down, allowing magnetic reconnection that releases

the stored energy from the magnetic field.

Many physical problems arising in a modeling process can be described by the MHD
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equations, the simplest self-constrained model. The fundamental concept behind

MHD is that magnetic fields can induce currents in a moving conductive fluid, which

in turn polarizes the fluid and reciprocally changes the magnetic field itself. The set of

equations that describe MHD are a combination of the Navier-Stokes equations of fluid

dynamics and Maxwell’s equations of electromagnetism. These differential equations

must be solved simultaneously, either analytically or numerically. The equations are

highly nonlinear, and analytic solutions are not available. We will focus on the ideal

MHD equations which form a hyperbolic conservation law but are constrained as

the magnetic field of the system is evolved with the constraint of zero divergence,

namely, ∇ · B = 0. On an analytic level the involution constraint is always fulfilled,

but numerical experiments indicate that negligence in dealing with the divergence

constraint leads to numerical instabilities and nonphysical solutions. Besides, solving

such a nonlinear system introduces another numerical challenge.

Various attemps have been made to numerically solve the hyperbolic conservation

law. Finite Volume Method (FVM) and Finite Element Method (FEM) are two of

the most popular methods. In this dissertation, we will focus on the Discontinuous

Galerkin (DG) Method which combines the flexibility of FEM and the physical in-

fluence of FVM. A discontinuous basis, normally piecewise polynomials or normal

continuous H(div) basis in our work, are used in DG method for the numerical so-

lution and the test functions. Due to the discontinuity, the scheme is more flexible

compared to standard Finite Element methods. The discontinuities at the element

interfaces allow the design of suitable inter-element boundary treatments, namely, nu-

merical fluxes, to obtain highly accurate and stable methods in many difficult cases.
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The allowance of arbitrary unstructured grids can have its own polynomial degree

independent of its neighbors. Moreover, the DG scheme has a extremely high parallel

efficiency, since the local elements only depend on their immediate neighbors.

The first discontinuous Galerkin method was introduced by Reed and Hill [35]

in 1973, when neutron transport was studied. Cockburn and Shu [6][10][11][12][24]

developed a framework to solve nonlinear time dependent problems. For temporal

integration, explicit, nonlinearly stable high order Runge-Kutta time discretizations

are used. For the DG spatial integration, exact or approximate Riemann solvers

as interface fluxes are applied. Also, total variation bounded nonlinear limiters are

introduced to avoid oscillations near shocks [37].

In terms of numerical influence of the divergence free condition, many attempts

have been made in the literature to satisfy the constraint or at least reduce the

negative impact on the numerical solution. In the following we will review some of

the divergence “cleaning” techniques in the context of MHD equations.

One way for the divergence correction is by projection, first proposed by Brackbill

and Barnes [7] in 1980. The numerical magnetic field B is projected into a zero

divergence vector space and the projected B is used in the next time step. Since the

projection is based on solving a global Poisson equation, the scheme increases the

computational cost a lot.

Another way is Powell’s source term formulation [32][47] in 1994. It is derived

from the physical laws if ∇ · B = 0 is not used. In order to symmetrize the MHD

equations, source terms proportional to ∇·B are added to the equations. The source

terms make the system well behaved but nonconservative.
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In 2002 Dedner et. al. [36] introduced their hyperbolic divergence cleaning tech-

nique which has several advantages over the Powell’s source terms. A generalized

Lagrangian multiplier was introduced to the MHD equations, along with some con-

trol parameters. While the Powell source terms only propagates the divergence with

fluid velocity, Dedner’s method allows the divergence error to be transported to the

domain boundaries with certain speed and damped at the same time.

Powell’s and Dedner’s methods are not able to reduce the divergence to zero, like

the projection method of Brackbill and Barnes does, but these methods are local and

easy to implement. To ensure an exact zero divergence, the follow approaches have

been proposed.

Another class of numerical schemes preserving the divergence of the magnetic fields

are often referred to as “constrained transport methods”, which was first brought by

Yee [45] in electromagnetics, and then adapted to MHD equations by Brecht et al.

[18], Evans and Hawley [17], Stone and Norman [40], etc. In the approach, a stag-

gered mesh is used, and a suitably defined discrete approximation to the divergence

of the solution can be maintained exactly zero. This method has been further de-

veloped recently by combining with the higher order Godunov type schemes by Dai

and Woodward [14], Ryu et al. [21], Balsara and Spicer [5], etc. In [3][4], Balsara

developed such divergence-free reconstruction strategy in an adaptive mesh setting.

In [41], Toth compared some of the methods mentioned above and introduced the

field/flux-interpolated central difference (CD) approaches, in which no staggered mesh

in needed. These shemes are restriced to structured grids and require large stencils

for the spatial discretization.
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In [27][44], Li introduced a DG scheme which is local and preserves the zero diver-

gence of the magnetic field. This is done by first discretizing the normal components

of the magnetic field along the edges of the elements, followed by a locally divergence

free reconstruction inside the elements. This method is restricted to cartesian grids,

since it uses the information of the normal components of the elements.

Recently, Li and Shu also introduced in [26] a DG scheme which uses a locally

divergence free basis for the magnetic field, followed the approach in context of Stokes

equations and the stationary Navier-Stokes equations, Baker et al.[22][23]. Li and

Shu use the locally divergence-free piecewise polynomials as the solution space in

the discontinuous Garlerkin method to solve ideal MHD equations. Because the

space is smaller, it can save computational cost when using the locally divergence-

free piecewise polynomial space compared with the standard piecewise polynomial

space, while enhancing the accuracy and stability in many cases. However, since

the locally divergence-free piecewise polynomials are used, it is hard to maintain the

divergence free condition globally.

In this dissertation, using on the high order divergence-free H(div)-conforming

hierarchical bases for MHD equations proposed by Cai, et, al.[43], we follow the dis-

continuous Galerkin method to solve two dimensional nonlinear ideal MHD equations.

The idea of the method is that the divergence-free H(div)-conforming hierarchical

bases is applied to the magnetic field B only, which will solve the magnetic filed

equation globally. Then divergence cleaning treatments are introduced based on the

H(div)-conforming hierarchical bases to clean up the divergence of magnetic field, on

the global basis. For other variables in the MHD equations, standard hierarchichal
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basis function will be used, and it can maintain the computation at an efficient level.

The method can be applied to three dimensional cases with no essential difficulty,

but will not be considered in this dissertation.

This dissertation is organized as follows. In Section 2.1, we describe the ideal MHD

equations along with their involution constraint. In Section 2.2, we will derive the

discontinuous scheme for ideal MHD equations. In Section 2.3, we will introduce

the construction of solving a two dimensional MHD equations using discontinuous

Galerkin method. In Chapter 3, high order divergence-free H(div)-conforming hier-

archical bases are introduced, in both two dimension and three dimension cases. In

Chapter 4, we will introduce the divergence cleaning treatment using the high or-

der divergence-free H(div)-conforming hierarchical bases, in both two dimension and

three dimension cases. In Chapter 5, the numerical results are presented. In Chapter

6, concluding remarks are made. Finally, Chapter 7 is the appendix. In appendix,

the mathematical derivation of the construction, the examples of basis functions, and

other detailed parameters are included.



CHAPTER 2: MHD EQUATIONS AND DISCONTINUOUS GALERKIN
METHOD

2.1 Ideal MHD Equations

Ideal MHD is only strictly applicable when the plasma is strongly collisional, so

that the time scale of collisions is shorter than the other characteristic times in the

system, and the particle distributions are therefore close to Maxwellian.

Electrically conducting fluid flow in which the electromagnetic forces can be of

the same order or even greater than the hydrodynamic ones is often modeled by

MHD equations. The ideal MHD equations consist of a set of nonlinear hyperbolic

equations,

∂ρ
∂t

+∇ · (ρu) = 0

∂(ρu)
∂t

+∇ ·
(
ρuuT +

(
p+ 1

2
|B|2

)
· I −BBT

)
= 0

∂E
∂t

+∇ ·
((
E + p+ 1

2
|B|2

)
u−B (u ·B)

)
= 0

∂B
∂t

+∇ ·
(
uBT −BuT

)
= 0

(2.1)

with the additional divergence constraint

∇ ·B = 0 (2.2)
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Here ρ, p, u = (ux, uy, uz), B = (Bx, By, Bz) and E denote the mass density, the

hydrodynamic presure, the velocity field, the magnetic field, and the total energy,

respectively. The ratio of the specific heats is given by γ and

E =
1

2
ρ|u|2 +

1

2
|B|2 +

p

γ − 1
(2.3)

This system combines the equations of gas dynamics with Maxwell equations for

problems in which relativistic, viscous, and resistive effects can be neglected; the

permeability is set to be unity. If the initial magnetic field satisfies the divergence-

free condition (2.2), the exact solution will automatically satisfy the constraint (2.2)

for all time.

We rewrite (2.1) in the conservation form

Ut +∇ · F (U) = 0 (2.4)

where

U = (ρ, ρux, ρuy, ρuz, Bx, By, Bz, E)T

F1 (U) =

(
ρux, ρu

2
x + p+

1

2
|B|2 −B2

x, ρuxuy

−BxBy, ρuxuz −BxBz, 0, uxBy − uyBx, uxBz

−uzBx, ux

(
E + p+

1

2
|B|2

)
−Bx (uxBx + uyBy + uzBz)

)T
F2 (U) =

(
ρuy, ρuyux −ByBx, ρu

2
y + p+

1

2
|B|2 −B2

y ,

ρuyuz −ByBz, uyBx − uxBy, 0, uyBz − uzBy,

uy

(
E + p+

1

2
|B|2

)
−By (uxBx + uyBy + uzBz)

)T
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2.2 Discontinuous Galerkin Method for MHD Equations

Starting with a triangulation Γh of the domain Ω, with the element being denoted by

K, the edge by e, and the outward unit normal by n = ne,K = (n1, n2), following the

usual definition of discontinuous Galerkin methods for conservation laws, [12][6], we

obtain the Runge-Kutta Discontinuous Galerkin formulation for (2.4) Find Uh ∈ Vh

, such that for all v ∈ Vh,

∫
K

Uht ·vdx +
∑
e∈∂K

∫
e

he,K

(
U
int(K)
h ,U

ext(K)
h ,ne,K

)
·vds−

∫
K

F(Uh) · ∇vdx = 0, ∀K

(2.5)

holds, where Vh is the solution space, which is the same as the test function space

and given by

Vh = Vk
h =

v : v|K ∈ Pk(K),

v5

v6

 ∈ Hk(div)

 (2.6)

with Pk(K) = (P k(K))8, and P k(K) denotes the space of polynomials in K of degree

at most k.

In (2.5), he,K

(
U
int(K)
h ,U

ext(K)
h ,ne,K

)
is the numerical flux, which is an exact or

approximate Riemann solver, consistent with F(Uh) · ne,K and conservative,

he,K

(
v
int(K)
h ,v

ext(K)
h ,ne,K

)
+ he,K′

(
v
int(K′)
h ,v

ext(K′)
h ,ne,K′

)
= 0, K ∩K ′ = e (2.7)

where v
int(K)
h ,v

ext(K)
h are the limits of v at the interface e from the interior and

exterior of K, respectively. The one we will use in our numerical examples is the
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Lax-Friedrichs flux,

he,K(a,b,ne,k) =
1

2
[F (a) · ne,k + F (b) · ne,k − αe,K(b− a)] (2.8)

where αe,K is an estimate of the largest absolute value of eigenvalues of the Jacobi

∂

∂v
F(v) · ne,K in the neighborhood of the edge e.

For discontinuous Galerkin methods applied to nonlinear systems such as (2.1),

nonlinear limiters are often needed. We use the minmod TVB slope limiter by Shu

[37] and Cockburn et al. [6][11], which has a parameter M related to the magnitude

of the second derivatives of the solution at smooth extrema.

To construct the minmod TVB slope limiter for triangular elements, we proceed as

follows. We start by making a simple observation. Consider the triangles in Figure

??, where m1 is the mid-point of the edge on the boundary of K0, and bIi denotes

the barycenter of the triangle Ki for i = 0, 1, 2, 3.

Figure 1: The 2D MINMOD limiter diagram.
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Since we have that

m1 − b0 = α1(b1 − b0) + α2(b2 − b0) (2.9)

for some nonnegative coefficients α1, α2 which depend only on m1 and the geometry,

we can write for any linear function uh

uh(m1)− uh(b0) = α1(uh(b1)− uh(b0)) + α2(uh(b2)− uh(b0)) (2.10)

and since

uKi =
1

|Ki|

∫
Ki

uh = uh(bi), i = 0, 1, 2, 3, (2.11)

we have that

ũh(m1, K0) ≡ uh(m1)− uK0 (2.12)

and

∆u(m1, K0) ≡ α1(uK1 − uK0) + α2(uK2 − uK0) (2.13)

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear

function uh, and let mi, i = 1, 2, 3 be the three mid-points of the edges of the triangle

K0. We then can write for (x, y) ∈ K0

uh(x, y) =
3∑
i=1

uh(mi)ψi(x, y) = uK0 +
3∑
i=1

ũh(mi, K0)ψi(x, y) (2.14)

where ψi, i = 1, 2, 3 are first order basis functions.

To compute ΛΠhuh, we first compute the quantities

∆i = m(ũh(mi, K0), ν∆u(mi, K0)) (2.15)
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where m is the TVB modified minmod function defined as

m(a1, · · · , am) =


a1, for |a1| ≤M∆x2,

m(a1, · · · , am), otherwise

(2.16)

with the minmod function m defined by

m(a1, · · · , am) =


s mini |ai|, if s = sign(a1) = · · · = sign(am),

0, otherwise

(2.17)

The TVB correction is needed to avoid unnecessary limiting near smooth extrema.

For an estimate of the TVB constant M in terms of the second derivatives of the

function, see [10]. Usually, the numerical results are sensitive to the choice of limiters.

In all calculation in this dissertation, we take M to be 50.

Also we take ν = 1.5 in our computation. Then, if
3∑
i=1

∆i = 0, we simply set

ΛΠhuh(x, y) = uK0 +
3∑
i=1

∆iψi(x, y) (2.18)

If
3∑
i=1

∆i 6= 0, we compute

pos =
3∑
i=1

max(0,∆i), neg =
3∑
i=1

max(0,−∆i) (2.19)

and set

θ+ = min

(
1,

neg

pos

)
, θ− = min

(
1,

pos

neg

)
(2.20)

Then, we define

ΛΠhuh(x, y) = uK0 +
3∑
i=1

∆̂iψi(x, y) (2.21)
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where

∆̂i = θ+ max(0,∆i)− θ−max(0,∆i) (2.22)

It is very easy to see that this slope-limiting operator satisfies the following three

properties:

• Accuracy: if piecewise function uh is linear, then ΛΠhuh = uh.

• Conservation of mass: for every element K of the triangulation Γh, we have

∫
K

ΛΠhuh =

∫
K

uh (2.23)

• Slope limiting: on each element K of the triangulation Γh, the gradient of

ΛΠhuh is not larger than that of uh.

2.3 MHD Equations in Two Dimensions

In two dimensional case, we rewrite (2.4) in the form of

∂
∂t



ρ

ρux

ρuy

E

Bx

By



+ ∂
∂x



ρux

ρu2
x + p+ 1

2
|B|2 −B2

x

ρuxuy −BxBy

ux
(
E + p+ 1

2
|B|2

)
−Bx (u ·B)

0

uxBy −Bxuy



+ ∂
∂y



ρuy

ρuxuy −BxBy

ρu2
y + p+ 1

2
|B|2 −B2

y

uy
(
E + p+ 1

2
|B|2

)
−By (u ·B)

uyBx −Byux

0



= 0

(2.24)

where p = (γ − 1)

(
E − 1

2
ρ
(
u2
x + u2

y

)
− 1

2

(
B2
x +B2

y

))
.
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In order to apply DG method, set

B =
n∑
i=1

αi
−→
ψ i

ρ =
n∑
i=1

βiφi

ρux =
n∑
i=1

γx,iφi

ρuy =
n∑
i=1

γy,iφi

E =
n∑
i=1

ηiφi

(2.25)

{ψ}ni is theH(div)-conforming basis, and {φ}ni is the regular orthonormal hierarchical

basis.

H(div)-conforming basis will be discussed in the next chapter. For regular or-

thonormal hierarchical basis in 2-D triangles {φ}ni , the following form can be adapted,

see [9]:

• Zeroth-order

φ0,0 =
√

2

• First-order

φ1,0 = 3(2x1 − 1)

φ0,1 = 2
√

3(x1 + 2x2 − 1)
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• Second-order:

φ2,0 =
√

6(1− 8x1 + 10x2
1)

φ0,2 =
√

30(1− 2x1 + x2
1 − 6x2 + 6x1x2 + 6x2

2)

φ1,1 = 3
√

2(x1 + 2x2 − 1)(5x1 − 1)

• Third-oder:

φ3,0 = 2
√

2(15x1 − 45x2
1 + 35x3

1 − 1)

φ0,3 = 2
√

14(3x1 − 3x2
1 + 12x2 + x3

1 − 24x1x2 − 30x2
2 + 20x3

2 + 12x2x
2
1 + 30x1x

2
2 − 1)

φ2,1 = 2
√

6(x1 + 2x2 − 1)(1− 12x1 + 21x2
1)

φ1,2 = 2
√

10(7x1 − 1)(1− 2x1 + x2
1 − 6x2 + 6x1x2 + 6x2

2)

For future simplification, we define mass matrix Mφ, and stiffness matrix Sφ, for

basis {φ}ni

Mφ =

∫
K

φiφjdx, (2.26)

and

Sφ =

∫
K

(
uxφi

∂φj
∂x

+ uyφi
∂φj
∂y

)
dx. (2.27)

This set of orthonormal basis functions will make the mass matrix

Mφ = |J | · I, (2.28)

where |J | is the Jacobian of the mapping from the reference triangle to the global

triangle.

In order to perform integration on triangles and their edges, numerical integration
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will be applied. We include the details of numerical integration for 1-D intervals and

2-D triangles in the appendix 7.3.

Now we will show the finite element construction of 2-D MHD equation.

First, for equation of ρ, the DG formulation is

∫
K

∂ρ

∂t
φjdx =

∫
K

ρ−→u · ∇φjdx−
∫
∂K

F ∗(ρ) · φjds (2.29)

For each term, we can rewrite them as

∫
K

∂ρ

∂t
φjdx =

∂

∂t

∫
K

n∑
i=1

βiφiφjdx

=
∂

∂t

n∑
i=1

βi
∫
K
φiφjdx

= Mφ ·
d

dt

−→
β ⊥

(2.30)

∫
K
ρ−→u · ∇φjdx =

∫
K
ρ

(
ux ·

∂φj
∂x

+ uy ·
∂φj
∂y

)
d−→x

=
n∑
i=1

βi
∫
K

(
uxφi

∂φj
∂x

+ uyφi
∂φj
∂y

)
d−→x

= Sφ ·
−→
β ⊥

(2.31)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρ) · φjds =

1

2

∫
∂K

(F (ρint) · −→n + F (ρext) · −→n − C(ρext − ρint)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F (ρint) · −→n + F (ρext) · −→n − C(ρext − ρint)) · φjds

(2.32)

where Γr is the edges of the triangle element.
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On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F (ρint) · −→n + F (ρext) · −→n ) · φjds

=
1

2

∫
∂Γr

(ρint−→u int · −→n + ρext−→u ext · −→n ) · φjds

= Cavg,ρ

(2.33)

1

2
C
∫
∂Γr

(ρext − ρint)) · φjds = Jρ (2.34)

The corresponding boundary condition is applied in the above flux term, which the

edges lies on the boundary.

Second, for equation of −→u , the DG formulation is

∫
K

∂ρ−→u
∂t

−→
φ jdx =

∫
K

(
ρ−→u−→u T +

(
p+ 1

2
|
−→
B |2
)
· I −

−→
B
−→
B T
)
· ∇
−→
φ jdx−

∫
∂K
F ∗(ρ−→u ) ·

−→
φ jds (2.35)

For the first component ux, we can rewrite each term as

∫
K

∂ρ−→u x

∂t

−→
φ jdx =

∂

∂t

∫
K

n∑
i=1

γx,iφiφjdx

=
∂

∂t

n∑
i=1

γx,i
∫
K
φiφjdx

= Mφ ·
d

dt
−→γx⊥

(2.36)

∫
K

ρux−→u +

(
p+

1

2
|
−→
B |2
)
·

1

0

−Bx
−→
B

 · ∇φjdx
=
∫
K

{(
ρuxux +

(
p+

1

2
|
−→
B |2
)
−BxBx

)
· ∂φj
∂x

+ (ρuxuy −BxBy) ·
∂φi
∂y

}
dx

=
∫
K

{(
n∑
i=1

γx,iφiux +

(
p+

1

2
|
−→
B |2
)
−BxBx

)
· ∂φj
∂x

+

(
n∑
i=1

γx,iφiuy −BxBy

)
· ∂φi
∂y

}
dx

=
n∑
i=1

γx,i
∫
K

(
φiux ·

∂φj
∂x

+ φiuy ·
∂φj
∂y

)
dx+

∫
K

{(
p+ 1

2
|
−→
B |2 −Bx −Bx

)
· ∂φj
∂x
−BxBy ·

∂φj
∂y

}
dx

= Sφ · −→γ T
x + Vρux

(2.37)
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After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρux) · φjds

=
1

2

∫
∂K
{(F ((ρux)

int) · −→n + F ((ρux)
ext) · −→n − C((ρux)

ext − (ρux)
int)) · φj} ds

=
1

2

3∑
r=1

∫
∂Γr
{(F ((ρux)

int) · −→n + F ((ρux)
ext) · −→n − C((ρux)

ext − (ρux)
int)) · φj} ds

(2.38)

where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F ((ρux)
int) · −→n + F ((ρ, ux)

ext) · −→n ) · φjds

=
1

2

∫
∂Γr


(ρux)

int−→u int +
(
pint + 1

2
|
−→
B int|2

)
·

1

0

−Bint
x

−→
B int

 · −→n

+

(ρux)
ext−→u ext +

(
pext + 1

2
|
−→
B ext|2

)
·

1

0

−Bext
x

−→
B ext

 · −→n
 · φjds

= Cavg,ρux

(2.39)

1

2
C

∫
∂Γr

(
(ρux)

ext − (ρux)
int)
)
· φjds = Jρux (2.40)

The corresponding boundary condition is applied in the above flux term, which the

edges lies on the boundary.

In the same manner, the second component of −→u , uy is calculated as follows.

∫
K

∂ρ−→u y

∂t

−→
φ jdx =

∂

∂t

∫
K

n∑
i=1

γy,iφiφjdx

=
∂

∂t

n∑
i=1

γy,i
∫
K
φiφjdx

= Mφ ·
d

dt
−→γy⊥

(2.41)
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∫
K

ρuy−→u +

(
p+

1

2
|
−→
B |2
)
·

0

1

−By
−→
B

 · ∇φjdx
=
∫
K

{
(ρuyux −ByBx) ·

∂φi
∂x

+

(
ρuyuy +

(
p+

1

2
|
−→
B |2
)
−ByBy

)
· ∂φj
∂y

}
dx

=
∫
K

{(
n∑
i=1

γy,iφiux −ByBx

)
· ∂φi
∂x

+

(
n∑
i=1

γy,iφiuy +

(
p+

1

2
|
−→
B |2
)
−ByBy

)
· ∂φj
∂y

}
dx

=
n∑
i=1

γy,i
∫
K

(
φiux ·

∂φj
∂x

+ φiuy ·
∂φj
∂y

)
dx+

∫
K

{(
p+ 1

2
|
−→
B |2 −By −By

)
· ∂φj
∂x
−ByBx ·

∂φj
∂x

}
dx

= Sφ · −→γ T
y + Vρuy

(2.42)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρuy) · φjds

=
1

2

∫
∂K

(F ((ρuy)
int) · −→n + F ((ρuy)

ext) · −→n − C((ρuy)
ext − (ρuy)

int)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F ((ρuy)
int) · −→n + F ((ρuy)

ext) · −→n − C((ρuy)
ext − (ρuy)

int)) · φjds

(2.43)

where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F ((ρuy)
int) · −→n + F ((ρ, uy)

ext) · −→n ) · φjds

=
1

2

∫
∂Γr


(ρuy)

int−→u int +
(
pint + 1

2
|
−→
B int|2

)
·

0

1

−Bint
y

−→
B int

 · −→n

+

(ρuy)
ext−→u ext +

(
pext + 1

2
|
−→
B ext|2

)
·

0

1

−Bext
y

−→
B ext

 · −→n
 · φjds

= Cavg,ρuy

(2.44)

1

2
C

∫
∂Γr

(
(ρuy)

ext − (ρuy)
int)
)
· φjds = Jρuy (2.45)

The corresponding boundary condition is applied in the above flux term, which the

edges lies on the boundary.
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Third, for equation of E, the DG formulation is

∫
K

∂E

∂t
·φjdx =

∫
K

((
E + p+

1

2
|
−→
B |2
)
· −→u −

−→
B (−→u −

−→
B )

)
·∇φjdx−

∫
∂K

F ∗(E)·φjds

(2.46)

For each term, we can rewrite into

∫
K

∂E

∂t

−→
φ jdx =

∂

∂t

∫
K

n∑
i=1

ηiφiφjdx

=
∂

∂t

n∑
i=1

ηi
∫
K
φiφjdx

= Mφ ·
d

dt
−→η T

(2.47)

∫
K

((
E + p+

1

2
|
−→
B |2
)
· −→u −

−→
B (−→u −

−→
B )

)
· ∇
−→
φ jdx

=
∫
K

{((
E + p+

1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )

)
· ∂φj
∂x

+

((
E + p+

1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )

)
· ∂φj
∂y

}
dx

=
∫
K

{((
n∑
i=1

ηjφi + p+
1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )

)
· ∂φj
∂x

+

((
n∑
i=1

ηjφi + p+
1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )

)
· ∂φj
∂y

}
dx

=
n∑
i=1

ηj
∫
K

(
uxφi ·

∂φj
∂x

+ uyφi ·
∂φj
∂y

)
dx

+
∫
K

{((
p+ 1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )
)
· ∂φj
∂x

+
((
p+ 1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )
)
· ∂φj
∂y

}
dx

= Sφ · −→η T + VE

(2.48)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(E) · φjds

=
1

2

∫
∂K

(F (Eint) · −→n + F (Eext) · −→n − C(Eext − Eint)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F (Eint) · −→n + F (Eext) · −→n − C(Eext − Eint)) · φjds

(2.49)

where Γr is the edges of the triangle element.



21

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F (Eint) · −→n + F (Eext) · −→n ) · φjds

=
1

2

∫
∂Γr

{((
Eint + pint + 1

2
|
−→
B int|2

)
· −→u int −

−→
B int(−→u int ·

−→
B int)

)
· −→n

+
((
Eext + pext + 1

2
|
−→
B ext|2

)
· −→u ext −

−→
B ext(−→u ext ·

−→
B ext)

)
· −→n
}
· φjds

= Cavg,E

(2.50)

1

2
C

∫
∂Γr

(
Eext − Eint)

)
· φjds = JE (2.51)

The corresponding boundary condition is applied in the above flux term, which the

edges lies on the boundary.

Fianlly, for equation of
−→
B , the DG formulation is

∫
K

∂
−→
B

∂t
·
−→
ψ jdx =

∫
K

(−→
B · −→u T −−→u ·

−→
B T
)
· ∇
−→
ψ jdx−

∫
∂K

F ∗ ·
−→
ψ jds (2.52)

For each term, we can rewrite into

∫
K

∂
−→
B

∂t

−→
ψ jdx =

∂

∂t

∫
K

n∑
i=1

αi
−→
ψ i

−→
ψ jdx

=
∂

∂t

n∑
i=1

αi
∫
K

−→
ψ i

−→
ψ jdx

= Mψ ·
d

dt
−→α T

(2.53)

∫
K

(−→
B · −→u T −−→u ·

−→
B T
)
· ∇
−→
ψ jdx

=
∫
K

{
(
−→
Bux −−→u Bx) ·

∂
−→
ψ j

∂x
+ (
−→
Buy −−→u By) ·

∂
−→
ψ j

∂y

}
dx

=
∫
K

{(
n∑
i=1

αi
−→
ψ iux −

n∑
i=1

αiψi,x
−→u
)
· ∂
−→
ψ j

∂x
+

(
n∑
i=1

αi
−→
ψ iuy −

n∑
i=1

αiψi,y
−→u
)
· ∂
−→
ψ j

∂y

}
dx

=
n∑
i=1

αi
∫
K

{
(
−→
ψ iux − ψi,x−→u ) · ∂

−→
ψ j

∂x
+ (
−→
ψ iuy − ψi, y−→u ) · ∂

−→
ψ j

∂y

}
dx

= SB · −→α T

(2.54)
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After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗ ·
−→
ψ jds

=
1

2

∫
∂K

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n − C(

−→
B ext −

−→
B int)

)
·
−→
ψ jds

=
1

2

3∑
r=1

∫
γr

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n − C(

−→
B ext −

−→
B int)

)
·
−→
ψ jds

(2.55)

where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n

)
·
−→
ψ jds

=
1

2

∫
∂Γr

{(−→
B intuintx −−→u intBint

x +
−→
B extuextx −−→u extBext

x

)
· nx ·

−→
ψ j

+
(−→
B intuinty −−→u intBint

y +
−→
B extuexty −−→u extBext

y

)
· ny ·

−→
ψ j

}
ds

= Cavg,B

(2.56)

1

2
C

∫
∂Γr

(−→
B ext −

−→
B int)

)
·
−→
ψ jds = JB (2.57)

The corresponding boundary condition is applied in the above flux term, which the

edges lies on the boundary.

MHD Equations in time space

Next, we construction our equations with all the matrices above

Mφ · ddt
−→
β T = Sφ ·

−→
β T −

3∑
r=1

(Cavg,ρ − Jρ)

Mφ · ddt
−→γ T

x = Sφ · −→γ T
x + Vρux −

3∑
r=1

(Cavg,ρux − Jρux)

Mφ · ddt
−→γ T

y = Sφ · −→γ T
y + Vρuy −

3∑
r=1

(Cavg,ρuy − Jρuy)

Mφ · ddt
−→η T = Sφ · −→η T + VE −

3∑
r=1

(Cavg,E − JE)

MB · ddt
−→α T = SB · −→α T −

3∑
r=1

(Cavg,B − JB)

(2.58)

• Forward Euler scheme
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Euler method is a first-order numerical procedure for solving ordinary differen-

tial equations (ODEs) with a given initial value. It is the most basic explicit

method for numerical integration of ordinary differential equations and is the

simplest Runge-Kutta method. Euler method has error of order O(h).

−→
β T (N+1) =

−→
β T (N) + ∆h ·M−1

φ ·
{
S

(N)
φ ·

−→
β T (N) −

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
−→γ T (N+1)

x = −→γ T (N)
x + ∆h ·M−1

φ ·
{
S

(N)
φ · −→γ T (N)

x + V
(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
−→γ T (N+1)

y = −→γ T (N)
y + ∆h ·M−1

φ ·
{
S

(N)
φ · −→γ T (N)

y + V
(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
−→η T (N+1) = −→η T (N) + ∆h ·M−1

φ ·
{
S

(N)
φ · −→η T (N) + V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
−→α T (N+1) = −→α T (N) + ∆h ·M−1

B ·
{
S

(N)
B · −→α T (N) −

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
(2.59)

where ∆h is the size of each time step.

• 3rd order Runge-Kutta scheme

RungeKutta methods are a family of implicit and explicit iterative methods,

which includes the well-known routine called the Euler Methods, used in tem-

poral discretization for the approximate solutions of ordinary differential equa-

tions.
−→
β T (N+1) =

−→
β T (N) +

1

6
∆h · (Kβ

1 + 4Kβ
2 +Kβ

3 )

−→γ T (N+1)
x = −→γ T (N)

x +
1

6
∆h · (Kγx

1 + 4Kγx
2 +Kγx

3 )

−→γ T (N+1)
y = −→γ T (N)

y +
1

6
∆h · (Kγy

1 + 4K
γy
2 +K

γy
3 )

−→η T (N+1) = −→η T (N) +
1

6
∆h · (Kη

1 + 4Kη
2 +Kη

3 )

−→α T (N+1) = −→α T (N) +
1

6
∆h · (Kα

1 + 4Kα
2 +Kα

3 )

(2.60)
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where

Kβ
1 = M−1

φ ·
{
S

(N)
φ ·

−→
β T (N) −

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
Kβ

2 = M−1
φ ·

{
S

(N)
φ ·

(−→
β T (N) +

∆hKβ
1

2

)
−

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
Kβ

3 = M−1
φ ·

{
S

(N)
φ ·

(−→
β T (N) −∆hKβ

1 + 2∆hKβ
2

)
−

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
(2.61)

and

Kγx
1 = M−1

φ ·
{
S

(N)
φ · −→γ T (N)

x + V
(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
Kγx

2 = M−1
φ ·

{
S

(N)
φ ·

(−→γ T (N)
x +

∆hKγx
1

2

)
+ V

(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
Kγx

3 = M−1
φ ·

{
S

(N)
φ ·

(−→γ T (N)
x −∆hKγx

1 + 2∆hKγx
2

)
+ V

(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
(2.62)

and

K
γy
1 = M−1

φ ·
{
S

(N)
φ · −→γ T (N)

y + V
(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
K
γy
2 = M−1

φ ·
{
S

(N)
φ ·

(−→γ T (N)
y +

∆hK
γy
1

2

)
+ V

(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
K
γy
3 = M−1

φ ·
{
S

(N)
φ ·

(−→γ T (N)
y −∆hK

γy
1 + 2∆hK

γy
2

)
+ V

(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
(2.63)

and

Kη
1 = M−1

φ ·
{
S

(N)
φ · −→η T (N) + V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
Kη

2 = M−1
φ ·

{
S

(N)
φ ·

(−→
etaT (N) +

∆hKη
1

2

)
+ V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
Kη

3 = M−1
φ ·

{
S

(N)
φ ·

(−→η T (N) −∆hKη
1 + 2∆hKη

2

)
+ V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
(2.64)
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and

Kα
1 = M−1

B ·
{
S

(N)
B · −→α T (N) −

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
Kα

2 = M−1
B ·

{
S

(N)
B ·

(−→α T (N) +
∆hKα

1

2

)
−

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
Kα

3 = M−1
B ·

{
S

(N)
B ·

(−→α T (N) −∆hKα
1 + 2∆hKα

2

)
−

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
(2.65)

where M−1
B will be calculated by Gauss elimination method.



CHAPTER 3:H(DIV) BASIS FUNCTIONS

3.1 H(div) Basis Functions for the Triangular Element

Any point in the reference triangular element is uniquely located in terms of the

local coordinate system (ξ, η). The vertexes are numbered as v0(0, 0), v1(1, 0), v2(0, 1),

in Figure ??. The barycentric coordinates are given as

λ0 := 1− ξ − η

λ1 := ξ

λ2 := η

(3.1)

Figure 2: Two dimensional reference triangular element

The directed tangent on a generic edge ej = [j1, j2] is similarly defined as in (3.19)
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for the three dimensional case. In the same manner the edge is also parameterized as

in (3.20). A generic edge can be uniquely identified with

ej := [j1, j2], j1 = {0, 1}, j1 < j2 ≤ 2, j = j1 + j2 (3.2)

The two-dimensional vectorial curl operator of a scalar quantity, which is used in our

construction, needs a proper definition. We use the one given in the book [15], viz.

curl(u) := ∇× u :=

[
∂u

∂η
,−∂u

∂ξ

]T
(3.3)

Based upon the newly created shape functions for the three-dimensional H(div)-

conforming tetrahedral elements and using the technique of dimension reduction we

construct the basis for the H(div)-conforming triangular elements in two dimensions.

However, it is easy to see that the two groups for the face functions cannot be ap-

propriately modified for our purpose. Instead we borrow the idea of Zaglmayr in the

dissertation [46], viz, we combine the edge-based shape functions in [46] with our

newly constructed edge-based and bubble interior functions. In [46] Zaglmayr had

applied the so-called scaled integrated Legendre polynomial in the construction, viz.

Lsn(x, t) := tn−1

∫ x

−t
ln−1

(
ξ

t

)
dξ, n ≥ 2, t ∈ (0, 1], (3.4)

where ln(x) is the n-th order Legendre polynomial.

• Edge functions

Associated with each edge the formulas for these functions are given as

ΦN0

e[k1,k2] = λk2∇× λk1 − λk1∇× λk2 (3.5)
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for the zeroth order approximation,

ΦN1

e[k1,k2] = λk2∇× λk1 + λk1∇× λk2 (3.6)

for the first order approximation, and

Φj
e[k1,k2] = Lsj−1 (λk2 − λk1) ΦN1

e[k1,k2] + Lsj−2 (λk2 − λk1) ΦN0

e[k1,k2], j ≥ 2 (3.7)

for higher-order approximations.

• Interior functions

The interior functions are further classified into two categories: edge-based

and bubble interior functions. By construction the normal component of each

interior function vanishes on either edge of the reference triangular element, viz.

nej ·Φt = 0, j = 1{1, 2, 3}, (3.8)

where nej is the unit outward normal vector to edge ej.

Edge-based interior functions

The tangential component of each edge-based function does not vanish on the

associated only edge ek := [k1, k2] but vanishes on the other two edges, viz.

τej ·Φt,i
ek:=[k1,k2] = 0, ej 6= ek, (3.9)

where τej is the directed tangent along the edge ej := [j1, j2]. The following

basis functions are proposed here as

Φt,i
ek:=[k1,k2] = Ciλk1λk2(1− λk1)iP

0,2
i

(
2λk2

1− λk1
− 1

)
τek

|τek |
(3.10)
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where the function P
(0,2)
i (•) is the classical un-normalized Jacobi polynomial of

degree i with a single variable [30], and the scaling coefficient is given by

Ci =
√

2(i+ 2)(i+ 3)(2i+ 3)(2i+ 5), i = 0, 1, · · · , p− 2 (3.11)

The following orthonormal property of edge-based interior functions can be

proved

〈Φt,m
ek:=[k1,k2],Φ

t,n
ek:=[k1,k2]〉|K2 = δmn, {m,n} = 0, 1, · · · , p− 2. (3.12)

Interior bubble functions:

The interior bubble funtions vanish on the entire boundary of the reference

triangular element. The formulas of these functions are given as

Φt,−→e i
m,n = Cm,nλ0λ1λ2(1− λ0)mP (2,2)

m

(
λ1 − λ2

1− λ0

)
P (2m+5,2)
n (2λ0 − 1)−→e i, i = 1, 2,

(3.13)

where

Cm,n =

√
(m+ 3)(m+ 4)(2m+ 5)(2m+ n+ 6)(2m+ n+ 7)(2m+ 2n+ 8)

(m+ 1)(m+ 2)(n+ 1)(n+ 2)

(3.14)

and

0 ≤ {m,n}, m+ n ≤ p− 3 (3.15)

One can again prove the orthonormal property of the interior bubble functions

〈Φt,−→e i
m1,n1

,Φt,−→e j
m2,n2
〉|K2 = δm1m2δn1n2 , (3.16)
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where

0 ≤ {m1,m2, n1, n2}, m1 + n1,m2 + n2 ≤ p− 3, {i, j} = 1, 2 (3.17)

The following table shows the decomposition of the space (Pn(K))2 for the H(div)-

conforming triangular element.

Decomposition Dimension

Edge functions 3(n+ 1)

Edge-based interior functions 3(n− 1)

Interior bubble functions (n− 2)(n− 1)

Total (n+ 1)(n+ 2)

3.2 H(div) Basis Functions for the Tetrahedral Element

Our construction [43] is motivated by the work on the construction of H(div)-

conforming hierarchical bases for tetrahedral elements [1]. We construct shape func-

tions for the H(div)-conforming tetrahedral element on the canonical reference tetra-

hedral element, as shown in Figure ??. The shape functions are grouped into several

categories based upon their geometrical entities on the reference tetrahedral element

[1]. The basis functions in each category are constructed so that they are orthonormal

on the reference element.

Any point in the tetrahedral element K3 is uniquely located in terms of the lo-

cal coordinate system (ξ, η, ζ). The vertexes are numbered as v0(0, 0, 0), v1(1, 0, 0),
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Figure 3: Three dimensional reference tetrahedral elements

v2(0, 1, 0), v3(0, 0, 1). The barycentric coordinates are given as

λ0 := 1− ξ − η − ζ

λ1 := ξ

λ2 := η

λ3 := ζ

(3.18)

The directed tangent on a generic edge ej = [j1, j2] is defined as

τej := τ [j1,j2] = vj2 − vj1 , j1 < j2. (3.19)

The edge is parameterized as

γej := λj2 − λj1 , j1 < j2. (3.20)
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A generic edge can be uniquely identified with

ej := [j1, j2], j1 = 0, 1, 2, j1 < j2 ≤ 3, j = j1 + j2 + sign(j1), (3.21)

where sign(0) = 0. Each face on the tetrahedral element K3 can be identified by the

associated three vetexes, and is uniquely defined as

fj1 := [j2, j3, j4], 0 ≤ {j1, j2, j3, j4} ≤ 3, j2 ≤ j3 ≤ j4. (3.22)

The standard bases in Rn are noted as −→e i, i = 1, · · · , n, and n = 1{2, 3}.

• Face functions The face functions are further grouped into two categories: edge

based face functions and face bubble functions.

Edge-based face functions:

These functions are associated with the three edges of a certain face fj1 , and by

construction all have non-zero normal components only on the associated face

fj1 , viz.

nfjk ·Φfj1 ,i

e[k1,k2] = 0, jk 6= j1, (3.23)

where nfjk is the unit outward normal vector to face fjk .

The edge-based face functions for higher order have been proposed in [1] as

follows:

Φ̃
fj1 ,i

e[k1,k2] = li(γek)λk1∇λk2 ×∇λk3 , i = 0, · · · , p− 1. (3.24)

For instance, for the face opposite to the vertex v0(0, 0, 0), f0 := [1, 2, 3], the
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face functions related to edge e[1, 2] are given by

Φ̃f0,i
e[1,2] = li(λ3 − λ2)λ1∇λ2 ×∇λ3, i = 0, · · · , p− 1 (3.25)

However, it can be easily checked that the basis functions given in (3.24) in fact

are not independent for p = 2 (for example, the sum of all the basis functions

on a given face in fact equals to zero) and thus the proposed basis function is

not complete. To remedy this degeneracy, two types of constructions of new

hierarchical high-order independent edge-based face functions will be presented

here.

– Type One: high-order independent edge-based face functions

In [8], the following orthonormal basis functions are given as

Φ
fj1 ,i

e[k1,k2] = Ciλk3(1− λk1)iP
(3,0)
i

(
2λk2

1− λk1
− 1

)
∇λk1 ×∇λk2
|∇λk1 ×∇λk2|

, (3.26)

where

Ci =
√

3(2i+ 4)(2i+ 5), i = 0, 1, · · · , p− 1, (3.27)

and

k1 = {j2, j3}, k2 = {j3, j4}, k1 < k2, k3 = {j2, j3, j4}\{k1, k2}. (3.28)

One can prove the orthonormal property of these edge-based face functions

〈Φfj1 ,m

e[k1,k2],Φ
fj1 ,n

e[k1,k2]〉|K3 = δmn, {m,n} = 0, 1, · · · , p− 1. (3.29)

Note that with our new construction, the edge-based face functions are all

linearly independent, which is also verified by the fact that in the spectrum
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of the mass (Gram) matrix, none of the eigenvalues is zero.

– Type Two: high-order independent edge-based face functions

An alternative approach using the idea of recursion from [1] can also be

used to construct independent edge-based face functions as follows.

For p = 1, for each edge we have one face function for this edge as proposed

in [1],

Φ
fj1 ,0

e[k1,k2] = λk1∇λk2 ×∇λk3 , (3.30)

and for p = 2, one additional new basis function can be constructed as

Φ
fj1 ,1

e[k1,k2] = λk1λk2∇λk3 ×∇λk1 , (3.31)

which can be shown to satisfy the condition (3.23), and for p > 3, the basis

functions are given by

Φ̃
fj1 ,i+1

e[k1,k2] ≡ li(γek)Φ̃
fj1 ,1

e[k1,k2] + li−1(γek)Φ̃
fj1 ,0

e[k1,k2]

= li(γek)[λk1λk2∇λk3 ×∇λk1 ] + li−1(γek)[λk1∇λk2 ×∇λk3 ],

i = 1, · · · , p− 2

(3.32)

It can be shown again numerically that there are exactly p functions that

are independent and only whose normal component is non-zero only on

the associated edge ek.

Face bubble functions:

The face bubble functions which belong to each specific group are associated

with a particular face fj1 . They vanish on all edges of the reference tetrahedral
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element K3, and the normal components of which vanish on other three faces,

viz.

nfjk ·Φfj1
m,n = 0, jk 6= j1 (3.33)

The explicit formula is given as

Φ
fj1
m,n = ι(1− λj2)m(1− λj2 − λj3)nP

(2n+3,2)
m

(
2λj3

1−λj2
− 1
)
P

(0,2)
n

(
2λj4

1−λj2−λj3
− 1
)
∇λj3×∇λj4
|∇λj3×∇λj4 |

(3.34)

where

ι = Cn
mλj2λj3λj4 (3.35)

where

Cn
m =

√
(2n+3)(m+n+3)(m+2n+4)(m+2n+5)(m+2n+7)(m+2n+8)(m+2n+9)√

(m+1)(m+2)

(3.36)

and

0 ≤ {m,n}, m+ n ≤ p− 3 (3.37)

By construction the face bubble functions share again the orthonormal property

on the reference tetrahedral element K3:

〈Φfj1
m1,n1 ,Φ

fj1
m2,n2〉|K3 = δm1,m2δn1,n2 (3.38)

• Interior functions

The interior functions are classified into three categories: edge-based, face-based

and bubble interior functions. By construction the normal component of each

interior function vanishes on either face of the reference tetrahedral element K3,
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viz.

nfj ·Φt = 0, j = {0, 1, 2, 3}. (3.39)

Edge-based interior functions:

The tangential component of each edge-based function does not vanish on the

associated only edge ek := [k1, k2], but vanishes on all other five edges, viz.

τ fj ·Φt,i
e[k1,k2] = 0, ej 6= ek, (3.40)

where τ fj is the directed tangent along the edge ej := [j1, j2]. The shape

functions are given as

Φt,i
e[k1,k2] = Ciλk1λk2(1− λk1)iP

(1,2)
i

(
2λk2

1− λk1
− 1

)
τek

|τek |
, (3.41)

where

Ci = (i+ 3)

√
(2i+ 4)(2i+ 5)(2i+ 7)

i+ 1
, i = 0, 1, · · · , p− 2. (3.42)

Again one can prove the orthonormal property of edge-based interior functions:

〈Φt,m
e[k1,k2],Φ

t,n
e[k1,k2]〉|K3 = δmn, {m,n} = 0, 1, · · · , p− 2. (3.43)

Face-based interior functions:

These functions which are associated with a particular face fj1 have non-zero

tangential components on their associated face only, and have no contribution

to be the tangential components on all other three faces, viz.

nfjk ×Φ
t,fj1
m,n = 0, jk 6= j1, (3.44)
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Further each face-based interior function vanishes on all the egdges of the tetra-

hedral element K3, viz.

τek ·Φt,fj1
m,n = 0. (3.45)

The formulas of these functions are given as

Φ
t,f1j1
m,n = ι(1− λj2)m(1− λj2 − λj3)nP

(2n+3,2)
m

(
2λj3

1− λj2
− 1

)
P 0,2
n

(
2λj4

1− λj2 − λj3
− 1

)
τ [j2,j3]

|τ [j2,j3]|
,

Φ
t,f2j1
m,n = ι(1− λj2)m(1− λj2 − λj3)nP

(2n+3,2)
m

(
2λj3

1− λj2
− 1

)
P 0,2
n

(
2λj4

1− λj2 − λj3
− 1

)
τ [j2,j4]

|τ [j2,j4]|
,

(3.46)

where ι is given in (3.35) and 0 ≤ {m,n}, m + n ≤ p − 3. The face based

interior functions enjoy the orthonormal property on the reference tetrahedral

element K3:

〈Φ
t,f ij1
m1,n1 ,Φ

t,f ij1
m2,n2〉|K3 = δm1m2δn1n2 ,

i = {1, 2}, 0 ≤ {m1,m2, n1, n2}, m1 + n1,m2 + n2 ≤ p− 3.

(3.47)

Interior bubble functions:

The interior bubble functions vanish on the entire boundary ∂K3 of the reference

tetrahedral element K3. The formulas of these functions are given as

Φt,−→e i
l,m,n = χP

(2m+2n+8,2)
l (2λ1 − 1)P

(2n+5,2)
m

(
2λ2

1−λ1 − 1
)
P

(2,2)
n

(
2λ3

1−λ1−λ2 − 1
)−→e i, i = 1, 2, 3,

(3.48)

where

χ = Cl,m,nλ0λ1λ2λ3(1− λ1)m(1− λ1 − λ2)n (3.49)

where

Cl,m,n = C1
l,m,nC

2
l,m,n, (3.50)
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where

C1
l,m,n =

√
(l + 2m+ 2n+ 9)(l + 2m+ 2n+ 10)(l + 2m+ 2n+ 11)(m+ 2n+ 6)

(l + 1)(m+ 1)(n+ 1)

C2
l,m,n =

√
(m+ 2n+ 7)(m+ 2n+ 8)(n+ 3)(n+ 4)(2n+ 5)

(l + 2)(m+ 2)(n+ 2)

(3.51)

and

0 ≤ {l,m, n}, l +m+ n ≤ p− 4. (3.52)

Again, one can show the orthonormal property of the interior bubble functions

〈Φt,−→e i
l1,m1,n1

,Φ
t,−→e j
l2,m2,n2

〉|K3 = δl1,l2δm1,m2δn1,n2 , (3.53)

where

0 ≤ {l1, l2,m1,m2, n1, n2}, l1 +m1 + n1, l2 +m2 + n2 ≤ p− 4, {i, j} = 1, 2, 3.

(3.54)

In the following table we summarize the decomposition of the space (Pn(K))3 for the

H(div)-conforming tetrahedral element.

Decomposition Dimension

Edge-based face functions 12n

Face bubble functions 2(n− 2)(n− 1)

Edge-based interior functions 6(n− 1)

Face-based interior functions 4(n− 2)(n− 1)

Interior bubble functions (n− 3)(n− 2)(n− 1)/2

Total (n+ 1)(n+ 2)(n+ 3)/2



CHAPTER 4: GLOBAL DIVERGENCE-FREE TREATMENT

4.1 Treatment on 2-D Triangle Mesh

In solving the MHD equations, the divergence free condition needs to be satisfied.

However, the time evolution from a fulling discretized DG finite element method

will render the divergence of B to be non-zero. There are many ways to remove

the non-zero divergence in the magnetic field such as the projection method through

Helmholtz decomposition. In this dissertation, we will use the interior functions in

the H(div) basis set to correct the non-zero divergence element by element. Due to

the vanishing property of the normal components of the interior basis functions, such

a local correction will still keep the corrected finite element solution in H(div) in the

whole domain.

First, we will study 2-dimensional case. The H(div) basis functions can be ex-

pressed as

H(div) =

u =

 u1

u2

 , [u · n]|Γ = 0

 ∈ P2
n(K), (4.1)

where n is the outer unit normal vector on the interface Γ of the triangle, and P2
n(K)

denotes the space of polynomials in K of degree at most n. There are (n+ 1)(n+ 2)

of basis functions of degree at most n.
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For example, on edge e12, for edge-based interior function ψt,i
[k1,k2], we have

ψt,i
[k1,k2] · ni = 0 (4.2)

for i = 1, 2, but it has non-zero tangential components on its associated edge only

ψt,i
[k1,k2] · n0 6= 0 (4.3)

For interior bubble functions, such asψt,−→e i
m,n = λ1λ2λ0

−→e i, i = 1, 2, it vanishes on the

entire boundary of the reference triangle.

For future convenience, we define a collection of bubble functions which is consisted

of edge-based interior functions and interior bubble functions.

Σint =
{
ψbi
}nb
i=1

(4.4)

where nb = 3(n− 1) + (n− 2)(n− 1).

In solving the 2-D equation

∂B

∂t
+∇ ·

(
uBT −BuT

)
= 0 (4.5)

The magnetic field B ∈ H(div), but ∇B 6= 0.

The ability of using only the interior functions to reduce the non-divergence error

in the following lemma.

Lemma 4.1. The span of the divergence of the bubble functions of order n is equiv-

alent to the span of the polynomial space n− 1 excluding the constant term. That is,

DivΣint = Pn−1(K)\{1} = {1}⊥.

Proof. We will prove the result by subspace inclusion argument. First, we will show
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DivΣint ⊂ {1}⊥.

For ∀b ∈ Σn, we have

∫
K

divbdx =

∫
K

1 · divbdx =

∫
∂K

b · nds = 0, (4.6)

due to the fact that the normal component of interior function vanishes on the edge

of the element K.

Thus, DivΣint ⊂ {1}⊥.

On the other hand, we will show DivΣint ⊃ {1}⊥ by showing that (DivΣint)
⊥ ⊂

{1}, instead.

Let v ∈ (DivΣint)
⊥ ⊂ Pp−1(K), then we have

∫
K

v ·Divbidx = 0, (4.7)

for ∀bi ∈ Σint.

After integration by parts, we get

∫
∂K

bi · n · vds−
∫
K

∇v · bidx = 0 (4.8)

Since
∫
∂K

bi · n · vds = 0 by the design of the bi’s, then

∫
K

∇v · bidx = 0, (4.9)

for ∀bi ∈ Σint.

We can see ∇v ∈ P2
n−2(K).

Let t01, t02 be the tangential vectors of the two edges sharing the common vertex

v0. We can see easily that the following vector functions are also interior functions
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(with zero normal components on all faces),

λ0λ1g1t01, λ0λ1g2t02 ∈ Σint (4.10)

where the scalar functions gi, i = 1, 2 are polynomials of degree p− 2.

Next we construct two bi-orthogonal vectors s1, s2, with respect to t01, t02 with the

following property

sj · t0i = δij. (4.11)

Now we can express the vector field ∇ · v using the basis vector s1, s2 as follows

∇v = g01s1 + g02s2, (4.12)

where g01,g02,∈ Pn−2(K).

Pick b = g01λ0λ1t01, and b ∈ Σint, since

t01 ⊥ e01,

λ0 = 0 on e12,

λ1 = 0 on e02.

(4.13)

Plugging ∇v and b into equation (4.9), we can get

∫
K

∇v · bdx = 0 (4.14)

∫
K

(g01s1 + g02s2) · (g01λ0λ1t01) = 0 (4.15)∫
K

λ0λ1g
2
01 · s1t01dx = 0 (4.16)

The integration equals to zero only when g01 = 0. By the same argument, g02 = 0.

Thus, ∇v = 0. That is, v = constant.
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Thus, (DivΣint)
⊥ ⊂ {1} is proved.

4.2 Treatment on 3-D Tetrahedral Mesh

In 3-dimensional case, the H(div) basis functions can be expressed as

H(div) =


u =


u1

u2

u3

 , [u · n]|Γ = 0


⊂ P3

n(K), (4.17)

where n is the outer unit normal vector on face Γ of the tetrahedron, and P3
n(K) de-

notes the space of polynomials inK of degree at most n. There are
(n+ 1)(n+ 2)(n+ 3)

2

number of basis functions of degree at most n.

For example, on face f0, for face-based interior function ψt,f0
m,n, we have

ψt,f0
m,n · ni = 0 (4.18)

for i = 1, 2, 3, but it has non-zero tangential components on its associated face only

ψt,f0
m,n · n0 6= 0 (4.19)

For edge-based interior functions, such as ψt,i
[k1,k2] = λ1∇λ2 × ∇λ3 on edge e12, its

tangential component does not vanish on the associated only edge e12, but vanishes

all other five edges.

For future convenience, we define a collection of bubble functions which is consisted

of edge-based interior functions, face-based interior functions and interior bubble
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functions.

Σint =
{
ψbi
}nb
i=1

(4.20)

where nb = 6(n− 1) + 4(n− 2)(n− 1) +
(n− 3)(n− 2)(n− 1)

2
.

In solving the 3-D equation

∂B

∂t
+∇ ·

(
uBT −BuT

)
= 0 (4.21)

The magnetic field B ∈ H(div), but ∇B 6= 0.

Our goal is to make ∇ ·B∗ = 0. To achieve it, we need a proved theorem [19].

Lemma 4.2. The span of the divergence of the bubble functions of order n is equiv-

alent to the span of the polynomial space n− 1 excluding the constant term. That is,

DivΣint = Pn−1(K)\{1} = {1}⊥.

Proof. We will prove the result by subspace inclusion argument. First, we will show

DivΣn ⊂ {1}⊥.

For ∀b ∈ Σint, we have

∫
K

Divbdx =

∫
K

1 ·Divbdx =

∫
∂K

b · nds = 0, (4.22)

due to the fact that the normal component of interior function vanishes on the edge

of the element K.

Thus, DivΣint ⊂ {1}⊥.

On the other hand, we will show DivΣint ⊃ {1}⊥ by showing that (DivΣint)
⊥ ⊂

{1}, instead.

Let v ∈ (DivΣn)⊥ ⊂ Pp−1(K), then we have
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∫
K

v · ∇bidx = 0, (4.23)

for ∀bi ∈ Σint.

After integration by parts, we get

∫
∂K

bi · n · vds−
∫
K

∇v · bidx = 0 (4.24)

Since
∫
∂K

bi · n · vds = 0 by the design of the bi’s, then

∫
K

∇v · bidx = 0, (4.25)

for ∀bi ∈ Σint.

We can see ∇v ∈ P3
n−2(K).

Let t01, t02, t02 be the tangential vectors of the three edges sharing the common

vertex v0. We can see easily that the following vector functions are also interior

functions (with zero normal components on all faces),

λ0λ1g1t01, λ0λ1g2t02, λ0λ1g2t03 ∈ Σint (4.26)

where the scalar functions gi, i = 1, 2, 3 are polynomials of degree p− 2.

Next we construct two bi-orthogonal vectors s1, s2, s3, with respect to t01, t02, t03

with the following property

sj · t0i = δij. (4.27)

Now we can express the vector field ∇ · v using the basis vector s1, s2, s3 as follows

∇v = g01s1 + g02s2 + g03s3, (4.28)
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where g01,g02,g03 ∈ Pn−2(K).

Pick b = g01λ0λ1t01, and b ∈ Σint, since

t01 ⊥ f2, f3,

λ0 = 0 on f0,

λ1 = 0 on f1.

(4.29)

Plugging ∇v and b into equation (4.23), we can get

∫
K

∇v · bdx = 0 (4.30)

∫
K

(g01s1 + g02s2 + g03s3) · (g01λ0λ1t01) = 0 (4.31)∫
K

λ0λ1g
2
01 · s1t01dx = 0 (4.32)

The integration equals to zero only when g01 = 0. By the same argument, g02 =

0, g03 = 0.

Thus, ∇v = 0. That is, v = constant.

Thus, (DivΣint)
⊥ ⊂ {1} is proved.

4.3 Algorithm of Cleaning the Divergence of Magnetic Field

Next, we propose the following algorighm to remove the non-divergence in the

numerical solution for the magnetic field B in the numerical solution for the magnetic

field on a triangle.

• Step 1 (local correction) Element-wise normal removal of high order terms in

DivB.
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Due to Lemma 1, we can use the interior function in Σint to remove higher order

terms in DivB, the remaining component in DivB will be a constant on each

element. We proceed to find a vector function

Φ =

ni∑
i=1

αiΦi ∈ Σn (4.33)

such that

B1 = B + Φ, (4.34)

Div(B + Φ) = c (4.35)

where Div(B + Φ) ∈ (DivΣn)⊥, which gives the following linear system

ni∑
i=1

αi

∫
K

DivΦi ·DivΦjdx = −
∫
K

DivB ·DivΦjdx (4.36)

where 1 ≤ j ≤ ni. αi’s can be solved in least square measure.

• Step 2 (global correction) Remove the constant term in DivB1 in the whole

domain.

Due to the result of Lemma 1, we will have a residual constant term left in

the corrected magnetic field DivB1, which can only be removed by a global

correction with the first order H(div) basis defined in Chapter 3. We proceed

as follows by finding a function Ψ ∈ H(div,Ω) using the first order H(div)

basis functions

Ψ =

N1∑
i=1

βiΦi (4.37)

such that

B∗ = B1 + Ψ (4.38)
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Ω

DivB∗ ·DivΦjdx = 0, for1 ≤ j ≤ N1, (4.39)

resulting into the following linear system for the coefficient {βi}N1
i=1,

ni∑
i=1

βi

∫
K

DivΦi ·DivΦjdx = −
∫
K

DivB1 ·DivΦjdx. (4.40)



CHAPTER 5: NUMERICAL EXAMPLES

5.1 Approximation Accuracy of Basis Functions

In order to check the convergence rate of the H(div)-conforming basis functions,

we design this example to fully test it.

Assume Bh =
n∑
i=1

αiψi, and Bh = B0. n is the number of basis functions. Use

Discontinuous Galerkin method, we obtain

∫
K

Bh · ψjdx =

∫
K

B0 · ψjdx (5.1)

and plugging Bh, one can obtain

n∑
i=1

αi

∫
K

ψi · ψjdx =

∫
K

B0 · ψjdx (5.2)

Write it in the form of matrices:

Mk · α = bk (5.3)

where Mk =
∫
K
ψi · ψjdx and bk =

∫
K

B0 · ψjdx.

α can be solved from the above equation, in the domain [0, 10] × [0, 10], and the

domain is discretized by triangular elements in Figure ??. K is one of the triangular

elements in the mesh.

The novelty of our method is that when patching Mk and bk together, the edge func-

tions of the common edge on two neighboring elements will have the same coefficient
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Figure 4: An example triangular mesh on a square domain

αi, to ensure the continuity on normal component. This can be shown numerically

that the normal component of the edge functions only depends on the two vertices

of the edge AB, see Figure ??. Therefore, the edge functions of the same order p

on the the common edge AB of two neighboring elements K1 and K2 have the same

magnitude on the normal direction. By ensuring the edge functions share the same

coefficient on neighboring elements, the continuity of the normal direction across the

interface can be well preserved.

Aggregate the Mk and bk, ensuring that the edge functions of each edge are shared,

and thus the corresponding entries are overlapped in M and b, with

M =
N∑
i=1

Mk, b =
N∑
i=1

bk (5.4)

where N is the number of elements in the domain.
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Figure 5: An example of patching two triangular elements

Let

B0 =

sin(x+ y)

cos(x+ y)

 (5.5)

and we check the error of the numerical solution Bh,

ε = ||Bh −B0||2 (5.6)

Theoretically, for basis functions of order p, as the length of the element edge de-

creases by half, the numerical error will go down by a rate of 2p+1, which is also called

as convergence rate. In Table 1, The numerical result shows that for basis function

of order p, the numerical convergence rate is close to the theoretical rate.

Moreover, Figure 6, as a better illustration of Table 1, shows that the error goes

down not only as the mesh is finer, but also as the order of basis functions increases.

Therefore, the H(div) basis functions enjoy a good convergence property while en-

suing the normal components are continuous across the interface of the triangular

elements.
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Table 1: Numerical error and convergence rate of using H(div) basis functions of
different order, compared to the theoretical convergence rate

Mesh p = 0 p = 1 p = 2 p = 3 p = 4
Error Rate Error Rate Error Rate Error Rate Error Rate

2 3.0E-00 - 1.0E-00 - 1.2E-00 - 1.0E-00 - 7.0E-01 -
8 1.0E-00 1.6 6.9E-01 0.5 4.6E-01 1.4 1.2E-01 8.3 4.5E-02 4.0
34 5.7E-01 0.8 4.0E-01 0.8 7.1E-02 2.8 1.9E-02 6.3 2.6E-03 4.1
142 2.3E-01 1.3 7.7E-02 2.4 8.1E-03 3.1 7.4E-04 25.7 6.5E-05 5.3

average - 1.3 - 2.8 - 1.5 - 3.7 - 4.6
theoretical - 1 - 2 - 8 - 4 - 5
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Figure 6: Numerical error of using H(div) basis functions of different order

5.2 Example with Smooth Solution

This two dimensional vortex problem was originally suggest by Shu [38] in the hy-

drodynamical system, and was adapted to the MHD equations by Balsara [4]. The

solution is a smooth vortex stably convected with the velocity field and the mag-

netic field. The unperturbed magnetohydrodynaimic flow with (ρ, ux, uy, Bx, By, p) =

(1, 1, 1, 0, 0, 1) is initialized on the computational domain [−10, 10] × [−10, 10] with

γ = 5/3. The vortex is introduced through the fluctuation in the velocity and mag-
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netic fields given by

(∂ux, ∂uy) =
η

2π
∇× exp{0.5(1− r2)} (5.7)

(∂Bx, ∂By) =
ξ

2π
∇× exp{0.5(1− r2)} (5.8)

where r2 = x2 + y2, and the dynamical balance is obtained through the perturbation

on pressure by

∂p = (ξ2(1− r2)− η2)
1

8π2
exp(1− r2) (5.9)

In our computation of equation (2.1), we set η = 1, ξ = 1. Periodical boundary

conditions are used. The exact solution is just the one obtained from the initial

configuration propagating with speed (1, 1), or mathematically given by Up(x, y, t) =

Up
0(x− t, y − t).

We choose theH(div)-conforming basis function for magnetic filed B, and the third

order regular orthonormal hierarchical basis for other components. As our major

task is to test the property of H(div)-conforming basis, we will keep the regular

orthonormal hierarchical basis, and focus on the impact of H(div)-conforming basis

of different orders.

Table 2 shows the L2 errors and accuracy for all the components of MHD equations

at t = 0. The L2 errors are computed within the domain [−10, 10] × [−10, 10].

We can see that the third order regular orthonormal hierarchical basis obtain third

order accuracy. H(div)-conforming basis of order p obtain p-th order accuracy when

p = 2, 3. When p = 4, 5, the convergence rate definitely improves, but is a little

short to the p-th order convergence, which was limited by the third order regular



54

orthonormal hierarchical basis that we use. Nevertheless, our results show again

that the H(div)-conforming basis enjoys a well-behaved convergence property, and

it can work very well with other type of basis functions, such as regular orthonormal

hierarchical basis. The convergence rates are proportionally adjusted to the size of

the elements, so that they are comparable to the theoretical values.

Table 2: L2 errors of all the components and the convergence rate with smooth
solution at time t = 0

ρ u E B
Mesh Error Order Error Order Error Order Error Order

p = 3 p = 2
2 5.55E-16 5.39E-02 1.33E-03 3.16E-02
14 4.84E-16 - 8.00E-03 1.94 2.70E-04 1.49 1.40E-02 0.37
44 4.29E-16 - 1.05E-03 3.28 1.35E-03 -2.00 3.35E-03 2.41
106 4.64E-16 - 2.05E-04 3.09 1.98E-04 3.50 1.12E-03 2.31

p = 3 p = 3
2 5.55E-16 5.39E-02 1.33E-03 5.39E-02
14 4.84E-16 - 8.00E-03 1.94 2.70E-04 1.49 8.92E-03 1.79
44 4.29E-16 - 1.05E-03 3.28 1.35E-03 -2.00 1.24E-03 3.20
106 4.64E-16 - 2.05E-04 3.09 1.98E-04 3.50 2.35E-04 3.13

p = 3 p = 4
2 5.55E-16 5.39E-02 1.33E-03 9.37E-02
14 4.84E-16 - 8.00E-03 1.94 2.70E-04 1.49 6.00E-03 3.16
44 4.29E-16 - 1.05E-03 3.28 1.35E-03 -2.00 9.78E-04 2.97
106 4.64E-16 - 2.05E-04 3.09 1.98E-04 3.50 1.59E-04 3.35

p = 3 p = 5
2 5.55E-16 5.39E-02 1.33E-03 1.23E-01
14 4.84E-16 - 8.00E-03 1.94 2.70E-04 1.49 4.10E-03 4.10
44 4.29E-16 - 1.05E-03 3.28 1.35E-03 -2.00 1.92E-04 4.76
106 4.64E-16 - 2.05E-04 3.09 1.98E-04 3.50 2.69E-05 3.57

Figure 7 shows clearly the above relation at t = 0. As we increase the granularity of

the mesh, the L2 error of the magnetic field B will decay, for p = 2, 3, 4, 5, respectively.

As we increase the order of H(div)-conforming basis, the numerical solution will

converge to the exact solution. For other components, using third order regular
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orthonormal hierarchical basis, as the mesh is finer, the error typically gets smaller.
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(a) Magnetic field B using H(div) basis functions
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Figure 7: Numerical error of different components using different size of meshes at
t = 0
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Table 3 shows the L2 errors and accuracy for all the components of MHD equations

at t = 1.0, using third order Runge-Kutta temporal scheme. The spatial L2 error is

still calculated over the domain [−10, 10]× [−10, 10]. As the error from the temporal

discretization kicks in, the convergence rate ofH(div)-conforming basis at t = 1.0 can

no longer obtain p-th order accuracy. However, there is still a trend for the numerical

solution converging to the exact solution as higher order of H(div)-conforming basis

is used or the mesh gets finer. The errors are contained well by our third order

Runge-Kutta time scheme. The third order regular orthonormal hierarchical basis

shows a similar behavior as H(div)-conforming basis. Again, the convergence rates

are proportionally adjusted to the size of the elements, so that they are comparable

to the theoretical values.

Agian, Figure 8 shows a clear illustration of the above relation at t = 1.0. As we

increase the granularity of the mesh, the L2 error of the magnetic field B will decay,

for p = 2, 3, 4, 5, respectively. As we increase the order of H(div)-conforming basis,

the numerical solution will converge to the exact solution. For other components,

using third order regular orthonormal hierarchical basis, as the mesh is more granule,

the error typically gets smaller. The error of ρ is not shown at t = 0 since it is a

constant at t = 0, and only presents machine error. At time t = 1.0, the effect of the

temporal error brings the error of ρ in sight, but it goes down by finer mesh.
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Table 3: L2 errors of all the components and the convergence rate with smooth
solution at time t = 1.0

ρ u E B
Mesh Error Order Error Order Error Order Error Order

p = 3 p = 2
2 1.69E-06 1.32E-01 3.60E-03 1.30E-01
14 2.46E-03 -10.51 4.97E-03 3.92 5.76E-03 -1.47 3.54E-03 4.39
44 1.59E-03 0.98 3.34E-03 0.92 5.89E-03 0.31 3.60E-03 0.32
106 8.96E-04 1.56 1.26E-03 2.14 2.81E-03 1.80 2.58E-03 1.21

p = 3 p = 3
2 2.30E-06 1.32E-01 3.60E-03 1.20E-01
14 2.25E-03 -9.93 4.96E-03 3.93 5.89E-3 -1.51 4.86E-03 3.82
44 1.44E-03 0.99 3.26E-03 0.96 5.58E-03 0.42 2.28E-03 1.44
106 7.21E-04 1.73 1.22E-03 2.15 2.43E-03 1.93 8.86E-04 2.09

p = 3 p = 4
2 4.35E-06 1.32E-01 3.60E-03 1.10E-01
14 2.30E-03 -9.05 4.97E-03 3.92 5.98E-03 -1.56 1.44E-03 5.45
44 1.38E-03 1.08 3.29E-03 0.94 5.54E-03 0.45 9.78E-04 0.90
106 7.28E-04 1.66 1.21E-03 2.17 2.45E-03 1.91 5.11E-04 1.67

p = 3 p = 5
2 5.98E-06 1.32E-01 3.60E-03 9.65E-02
14 2.41E-03 -8.65 4.96E-03 3.93 6.15E-03 -1.60 2.34E-03 4.56
44 1.37E-03 1.16 3.28E-03 0.94 5.55E-03 0.50 7.70E-04 1.95
106 7.31E-03 1.64 1.23E-03 2.15 2.45E-03 1.91 7.19E-04 0.83

Now we will show the results after we apply the divergence cleaning technique

described in Chapter 4. After the magnetic filed Bh is numerically solved from the

MHD equations, we will apply our divergence cleaning technique as a post process. To

clean the divergence of the magnetic field, we follow two steps. First step to use the

bubble function to eliminate the higher order terms in ∇·Bh; then the second step is

to use the edge functions from order p = 0 to eliminate the constant term. Although,

we find that the divergence of the edge function of order 0 are linear dependent, it

may not completely eliminate the remaining constant term of the divergence. Our

numerical experiment below shows that our two-step divergence cleaning technique
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(a) Magnetic field B using H(div) basis functions
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Figure 8: Numerical error of different components using different size of meshes at
t = 1.0

can largely reduce the divergence of magnetic field to a very low level.

Table 4, 5, 6 and 7 show the L2 error and the divergence of the magnetic

field B before and after each cleaning step, at time t = 0 and t = 1.0, for H(div)-

conforming basis of order p = 2, 3, 4, 5. The error and divergence are computed on
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over the domain [−10, 10] × [−10, 10] with diferent sizes of mesh. The results show

that at time t = 0 without sacrificing too much accuracy of the solution of magnetic

field Bh, the divergence can be significantly reduced by fifth or sixth orders. At time

t = 1.0, this divergence cleaning technique also works well with the time scheme,

and have a similar effect in reducing divergence. We notice that in some cases, the

divergence can be completely eliminated (to machine error), but in some cases it

can only be largely reduced. The effect is caused by the following reason. Since the

edge functions are shared on common edges when patching the triangular elements

together, the actual number edge functions of order 0 in the global scope is less than

the needed freedom of the equation(the number of triangular elements), which makes

our equation system (4.40) under-determined. At t = 0, when all the components

start with nicely defined polynomials or other special functions, we might have the

luck to completely eliminate all the constant divergence with fewer edge functions of

order 0. However, we will not going to have the same luck when the temporal error

kicks in and the linear combination of the numerical solutions get more complicated.
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Table 4: Error of magnetic field B and divergence of magnetic field at t = 0 and
t = 1.0, using H(div) basis of order 2

p = 2 t = 0 t = 1.0
Mesh B−Bh ∇Bh B−Bh ∇Bh

2 original 3.16E-02 1.11E-16 1.30E-01 2.05E-09
step 1 2.14E-01 4.39E-17 1.22E-01 3.77E-10
step 2 2.14E-01 4.26E-18 1.22E-01 3.77E-10

14 original 1.40E-02 4.24E-04 3.54E-03 6.28E-04
step 1 1.70E-02 5.36E-04 4.41E-03 7.10E-04
step 2 1.92E-02 2.45E-18 1.94E-02 3.06E-07

44 original 3.35E-03 6.74E-04 3.60E-03 1.89E-03
step 1 3.86E-03 5.36E-04 6.31E-03 1.60E-03
step 2 6.14E-03 2.08E-06 1.52E-02 7.55E-06

106 original 1.12E-03 3.85E-04 2.58E-03 1.85E-03
step 1 2.01E-03 2.72E-04 4.43E-03 1.26E-03
step 2 5.80E-03 6.04E-09 5.80E-02 4.38E-07

Table 5: Error of magnetic field B and divergence of magnetic field at t = 0 and
t = 1.0, using H(div) basis of order 3

p = 3 t = 0 t = 1.0
Mesh B−Bh ∇Bh B−Bh ∇Bh

2 original 5.39E-02 3.88E-16 1.20E-01 3.35E-05
step 1 5.51E-01 8.20E-17 1.93E-01 1.02E-05
step 2 5.51E-01 7.37E-18 1.93E-01 3.68E-06

14 original 8.92E-03 5.50E-04 4.86E-03 1.16E-03
step 1 1.46E-02 8.10E-05 1.85E-01 6.11E-04
step 2 1.47E-02 3.79E-18 1.95E-01 5.29E-07

44 original 1.24E-03 4.93E-04 2.28E-03 1.55E-03
step 1 3.26E-03 3.50E-04 7.89E-03 1.17E-03
step 2 5.41E-03 1.55E-06 1.29E-02 2.75E-06

106 original 2.35E-04 3.03E-04 8.86E-04 8.90E-04
step 1 7.14E-04 1.25E-04 4.06E-03 8.34E-04
step 2 3.30E-03 3.90E-10 1.36E-02 7.58E-08

Table 8 and Table 9 show the error and accuracy for the divergence-cleaned

magnetic field B∗, at t = 0 and t = 1.0, respectively. We can see that the magnetic

field after correction B∗ at t = 0 typically has a better convergence rate than that

of t = 1.0. Although in either of the cases, the convergence rate is short of the
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Table 6: Error of magnetic field B and divergence of magnetic field at t = 0 and
t = 1.0, using H(div) basis of order 4

p = 4 t = 0 t = 1.0
Mesh B−Bh ∇Bh B−Bh ∇Bh

2 original 9.37E-02 1.96E-15 1.10E-01 6.86E-04
step 1 2.11E-01 3.25E-17 5.53E-02 1.85E-05
step 2 2.11E-01 1.19E-17 5.53E-02 1.85E-05

14 original 6.00E-03 4.04E-04 1.44E-03 1.76E-03
step 1 2.61E-02 5.85E-04 2.54E-02 7.16E-04
step 2 2.76E-02 1.60E-17 3.08E-02 1.26E-06

44 original 9.78E-04 3.38E-04 9.78E-04 1.66E-03
step 1 1.11E-02 1.99E-04 9.73E-03 5.99E-04
step 2 1.23E-02 2.19E-07 1.05E-02 4.91E-07

106 original 1.59E-04 5.19E-05 5.11E-04 1.03E-03
step 1 8.71E-04 5.27E-05 6.07E-03 6.04E-04
step 2 1.46E-03 4.54E-11 1.45E-02 2.13E-08

Table 7: Error of magnetic field B and divergence of magnetic field at t = 0 and
t = 1.0, using H(div) basis of order 5

p = 5 t = 0 t = 1.0
Mesh B−Bh ∇Bh B−Bh ∇Bh

2 original 1.23E-01 1.39E-15 9.65E-02 4.86E-04
step 1 2.94E-01 5.46E-17 7.78E-02 1.61E-05
step 2 2.94E-01 5.46E-17 7.78E-02 1.45E-05

14 original 4.10E-03 2.94E-04 2.34E-03 7.21E-04
step 1 1.60E-01 1.87E-04 1.71E-01 4.34E-04
step 2 1.63E-01 1.10E-17 1.72E-01 7.56E-09

44 original 1.92E-04 1.75E-04 7.70E-04 6.90E-04
step 1 1.31E-02 7.42E-05 8.20E-02 5.56E-04
step 2 1.41E-02 4.53E-08 8.68E-02 6.55E-07

106 original 2.69E-05 5.21E-05 7.19E-04 1.46E-03
step 1 2.78E-03 1.59E-05 2.47E-02 7.61E-04
step 2 2.99E-03 4.59E-11 4.44E-02 1.76E-08

theoretical value, the error of the magnetic field before and after each correction step

decays as the mesh is further refined, as better shown in the left columns of Figure 9

and Figure 10. On the other hand, in the right columns of Figure 9 and Figure 10,

the divergence of the magnetic field before and after each correction step also decays
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with a finer mesh. More importantly, after the second-step correction, the divergence

goes down to the unnoticeable level compared to the divergence before the correction

steps. It shows that our global divergence cleaning technique is efficient when working

with spatial and temporal discretization schemes.

Table 8: Error of magnetic field B after divergence cleaning at t = 0 and its conver-
gence rate for different orders of basis

t = 0 p = 2 p = 3 p = 4 p = 5
Mesh B−Bh order B−Bh order B−Bh order B−Bh order

2 2.14E-01 5.51E-01 2.11E-01 2.94E-01
14 1.92E-02 2.67 1.47E-02 4.42 2.76E-02 2.13 1.63E-01 0.04
44 6.14E-03 1.99 5.41E-03 1.79 1.23E-02 1.52 1.41E-02 3.88
106 5.80E-03 0.82 3.30E-03 1.44 1.46E-03 3.81 2.99E-03 2.96

Table 9: Error of magnetic field B after divergence cleaning at t = 1.0 and its
convergence rate for different orders of basis

t = 1.0 p = 2 p = 3 p = 4 p = 5
Mesh B−Bh order B−Bh order B−Bh order B−Bh order

2 1.22E-01 1.93E-01 5.53E-02 7.78E-02
14 1.94E-02 1.84 1.95E-01 -0.81 3.08E-02 0.04 1.72E-01 -1.94
44 1.52E-02 0.70 1.29E-02 4.27 1.05E-02 1.90 8.68E-02 1.33
106 5.80E-02 -1.18 1.36E-02 0.65 1.45E-02 0.26 4.44E-02 1.70
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Figure 11 shows the error and log error of magnetic field B before and after each

divergence cleaning step from time t = 0 to t = 2.0. Figure 12 shows the divergence

and log divergence of the magnetic field B before and after each divergence cleaning

step from time t = 0 to t = 2.0. This is calculated over the domain [0, 10] × [0, 10]

with a mesh of 106 triangular elements, using third order H(div)-conforming basis

and third order regular orthonormal hierarchical basis. As we can see in Figure

12, without any correction, the divergence can accumulate and grow very quickly.

After two-step cleaning process, the global divergence is mostly eliminated compared

to the initial divergence, and stays low as time evolves. On the other hand, the

numerical solution of magnetic field B has a relative large error after the corrections.

Particularly, the first step of the divergence cleaning, i.e., eliminating the high order

terms of the divergence, will lead to a bigger error margin in the solution itself. The

second step of the divergence cleaning has little impact on the solution itself, but

largely eliminated the divergence. However, in spite of introducing extra errors of

the numerical solution itself for the divergence cleaning, the numerical solution still

stays close enough with the uncorrected one. It shows again that, as a post process,

our divergence cleaning technique greatly serves our purpose, and can also work well

with the spatial and temporal discretization schemes.
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Figure 9: Numerical error(left column) and divergence(right column) of magnetic
field B on different size of meshes, using H(div) basis at t = 0
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Figure 10: Numerical error(left column) and divergence(right column) of magnetic
field B on different size of meshes, using H(div) basis at t = 1.0
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(a) Numerical error of magnetic field B

(b) Log of numerical error of magnetic field B

Figure 11: Numerical error of magnetic field B from t = 0 to t = 2.0 for 2-D smooth
solution. Solid line is original, dash-dot line is B after first step correction, dash line
is B after second step correction.
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(a) Divergence of magnetic field B

(b) Log of Divergence of magnetic field B

Figure 12: Divergence of magnetic field B from t = 0 to t = 2.0 for 2-D smooth
solution. Solid line is original, dash-dot line is B after first step correction, dash line
is B after second step correction.
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5.3 Orszag-Tang Vortex Example

We will study the development of the Orszag-Tang vortex example, see [31], which

is a widely used test example in the literature because of the complex interaction

between several shocks generated as the whole system evolves. Starting from a smooth

state, after the transition period, the system will go to turbulence. The initial setup

is

Up = (γ2,− sin y, sinx, 0,− sin y, sin 2x, 0, γ) (5.10)

with γ = 5/3, and the computational domain is [0, 2π]×[0, 2π] with periodic boundary

conditions.

The time development of density is shown in Figure 13. This is calculated over the

domain [0, 2π] × [0, 2π] with a mesh of 106 triangular elements, using second order

H(div)-conforming basis and first order regular orthonormal hierarchical basis. The

figures show that the solution is quite smooth at the early stage. At t = 2, shocks

have already appeared. At later times, for example, at t = 3, 4, the shocks interact

each other and the structure gets quite complicated.

During the computation, the minmod TVB shlope limiter is applied to the com-

ponents that will develop shocks, which can enhance the stability of the method and

eliminate possible spurious oscillations in the approximate solution. The limiter is

only designed for the first order basis, but for higher order basis, the limiter can still

delay the blowing up. For example, with M = 4.0, on a mesh of 44 triangular ele-

ments, computation with third order H(div)-conforming basis and first order regular
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(a) t = 0.5 (b) t = 2.0

(c) t = 3.0 (d) t = 4.0

Figure 13: The development of ρ on a mesh of 106 triangular elements.

orthonomal hierarchical basis could reach t = 20.0. This stability is highly dependent

on the choice of M . Li [26] also pointed out that the choice of limiters also has a big

impact on the numerical stability.

Figure 14a shows the divergence of the magnetic field B before and after each

divergence cleaning step from t = 0 to t = 2.0, and Figure 14b shows the log of the

divergence. This is calculated on a mesh of 106 triangular elements, using second

order H(div)-conforming basis and first order regular orthonormal hierarchical basis.

These two figures show that without any correction, the divergence RKDG solutions

can quickly accumulate and grow, which will eventually lead to non-physical solutions.

By applying our proposed divergence corrections, as a post process, the numerical

divergence can be significantly eliminated, and maintained stably at a low level, even
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over the time evolution. Therefore, our divergence cleaning technique is effective.

(a) Divergence of magnetic field B

(b) Log of Divergence of magnetic field B

Figure 14: Divergence of magnetic field B from t = 0 to t = 2.0 for 2-D Orszag-Tang
vortex problem. Solid line is original, dash-dot line is B after first step correction,
dash line is B after second step correction.



CHAPTER 6: CONCLUDING REMARKS

Discontinuous Galerkin method using H(div)-conforming basis seems to be very

effective for solving the MHD equations. It can reduce the computational cost, and

increase the flexibility, by providing the choice of different order of basis for magnetic

field and the rest of the components. More importantly, the divergence cleaning

techniques developed based on the H(div)-conforming basis can greatly eliminate the

divergence of the magnetic field on the global scope, while maintaining the solution

itself stable with small sacrifice on the accuracy.

This method can be extend to three dimensional cases without essential difficulty.



CHAPTER 7: EXTRA NOTES

7.1 List of 2-D H(div) Basis Functions

For the convenience of implementation, we list the H(div) basis function of 2-

Dimensional triangles, up to order 5.

H(div) basis functions for 2-Dimension triangles

• Zeroth order

Edge functions

ψ0
e[0,1] =

 x

y − 1

 , ψ0
e[0,2] =

x− 1

y

 , ψ0
e[1,2] =

x
y

 , (7.1)
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Figure 15: Graph of ψ0
e[1,2]

• First order
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Edge functions

ψ1
e[0,1] =

 −x

2x+ y − 1

 , ψ1
e[0,2] =

x+ 2y − 1

−y

 , ψ1
e[1,2] =

 x

−y

 (7.2)
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Figure 16: Graph of ψ1
e[1,2]

• Second order

Edge functions

ψ2
e[0,1] =

 −2x2 − xy

4x2 + y2 + 4xy − 4x− 3y + 2

 ,

ψ2
e[0,2] =

−x2 − 4y2 − 4xy + 3x+ 4y − 2

2y2 + xy

 ,

ψ2
e[1,2] =

−x2 + xy − x

−y2 + xy − y



(7.3)
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Figure 17: Graph of ψ2
e[1,2]

Interior functions

ψt,2
e[0,1] =

x(1− x− y)

0

 ,

ψt,2
e[0,2] =

 0

y(1− x− y)

 ,

ψt,2
e[1,2] =

 xy

−xy



(7.4)

• Third order
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Figure 18: Graph of ψt,2
e[1,2]

Edge functions

ψ3
e[0,1] =

 −6x3 − 6x2y − 3

2
xy2 + 4x2 + 2xy

12x3 +
3

2
y3 + 18x2y + 9xy2 − 18x2 − 11

2
y2 − 20xy + 10x+ 6y − 2

 ,

ψ3
e[0,2] =

−
3

2
x3 − 12y3 − 9x2y − 18xy2 +

11

2
x2 + 18y2 + 20xy − 6x− 10y + 2

6y3 +
3

2
x2y + 6xy2 − 4y2 − 2xy

 ,

ψ3
e[1,2] =


3

2
x3 − 3x2y +

3

2
xy2 − y2 − xy − 1

2
x

−dfrac32y3 − 3

2
xy2 + 3x2y + x2 + xy +

1

2
y


(7.5)
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Figure 19: Graph of ψ3
e[1,2]

Interior functions

ψt,3
e[0,1] =

−x(x+ y − 1)(2x+ y − 1)

0

 ,

ψt,3
e[0,2] =

 0

−y(x+ y − 1)(x+ 2y − 1)

 ,

ψt,3
e[1,2] =

−xy(x− y)

xy(x− y)



(7.6)
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Figure 20: Graph of ψt,3
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Bubble functions

ψt,−→e1
0,0 =

xy(1− x− y)

0

 ,

ψt,−→e2
0,0 =

 0

xy(1− x− y)


(7.7)
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• Fourth order
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Edge functions

ψ4
e[0,1] =

 −(
5

2
(2x+ y − 1)3 +

3

2
(2x+ y − 1)2 − 3x− 3

2
y + 1)x

(−3x+
3

2
− 3

2
y +

5

2
(2x+ y − 1)3)(2x+ y − 1) + (−1

2
+

3

2
(2x+ y − 1))(1− y)

 ,

ψ4
e[0,2] =

(−3y +
3

2
− 3

2
x+

5

2
(x+ 2y − 1)3)(−x− 2y + 1) + (−1

2
+

3

2
(x+ 2y − 1)2)(x− 1)

(
5

2
(x+ 2y − 1)3 +

3

2
(x+ 2y − 1)2 − 3

2
x− 3y + 1)y

 ,

ψ4
e[1,2] =

 (
5

2
(y − x)3 − 3

2
(y − x)2 +

3

2
x− 3

2
y +

1

2
)x

(−5

2
(y − x)3 − 3

2
(y − x)2 − 3

2
x+

3

2
y +

1

2
)y


(7.8)
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Figure 22: Graph of ψ4
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Interior functions

ψt,4
e[0,1] =

x(1− x− y)(−3x+
3

2
− 3

2
y +

5

2
(2x+ y − 1)3)

0

 ,

ψt,4
e[0,2] =

 0

y(1− x− y)(−3y +
3

2
− 3

2
x+

5

2
(x+ 2y − 1)3)

 ,

ψt,4
e[1,2] =

 xy(−3

2
y +

3

2
x+

5

2
(y − x)3)

−xy(−3

2
y +

3

2
x+

5

2
(y − x)3)



(7.9)
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Figure 23: Graph of ψt,4
e[1,2]
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Bubble functions

ψt,−→e1
1,0 =

(1− x− y)xy(y − x)

0

 ,

ψt,−→e2
1,0 =

 0

(1− x− y)xy(y − x)



ψt,−→e1
0,1 =

(1− x− y)xy(1− 2x− y)

0

 ,

ψt,−→e2
0,1 =

 0

(1− x− y)xy(1− 2x− y)



(7.10)
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Figure 24: Graph of bubble functions, x component

• Fifth order
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Edge functions

ψ5
e[0,1] =

 −(
35

8
(2x+ y − 1)4 +

5

2
(2x+ y − 1)3 − 15

4
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2
y +

15

8
)x

(
3

8
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4
(2x+ y − 1)2 +

35

8
(2x+ y − 1)4)(2x+ y − 1) + (−3x+

3

2
− 3

2
y +

5

2
(2x+ y − 1)3)(1− y)

 ,

ψ5
e[0,2] =

(
3

8
− 15

4
(x+ 2y − 1)2 +

35

8
(x+ 2y − 1)4)(x+ 2y − 1) + (−3y +
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4
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 ,

ψ5
e[1,2] =

 (
35

8
(y − x)4 − 5

2
(y − x)3 − 15

4
(y − x)2 − 3

2
x+

3

2
y +

3

8
)x

(−35

8
(y − x)4 − 5

2
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15

4
(y − x)2 − 3

2
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3

2
y − 3

8
)y


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Interior functions

ψt,5
e[0,1] =

x(1− x− y)(
3

8
− 15

4
)(2x+ Y − 1)2 +

35

8
(2x+ y − 1)4

0

 ,

ψt,5
e[0,2] =

 0

y(1− x− y)(
3

8
− 15

4
(x+ 2y − 1)2 +

35

8
(x+ 2y − 1)4)

 ,

ψt,5
e[1,2] =

 xy(
3

8
− 15

4
(y − x)2 +

35

8
(y − x)4)

−xy(
3

8
− 15

4
(y − x)2 +

35

8
(y − x)4)



(7.12)
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Figure 27: Graph of bubble functions, x component
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Bubble functions

ψt,−→e1
2,0 =

xy(1− x− y)(−1

2
+

3

2
(y − x)2)

0

 ,

ψt,−→e2
2,0 =

 0

xy(1− x− y)(−1

2
+

3

2
(y − x)2)

 ,

ψt,−→e1
0,2 =

xy(1− x− y)(−1

2
+

3

2
(1− 2x− 2y)2)

0

 ,

ψt,−→e2
0,2 =

 0

xy(1− x− y)(−1

2
+

3

2
(1− 2x− 2y)2)

 ,

ψt,−→e1
1,1 =

xy(1− x− y)(−1

2
+ (y − x)(1− 2x− 2y))

0

 ,

ψt,−→e2
1,1 =

 0

xy(1− x− y)(−1

2
+ (y − x)(1− 2x− 2y))



(7.13)

7.2 Barycentric Coordinates

In the context of a triangle, barycentric coordinates are also known as area coor-

dinates or areal coordinates, because the coordinates of P with respect to triangle

ABC are equivalent to the (signed) ratios of the areas of PBC, PCA and PAB to
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the area of the reference triangle ABC. Areal and trilinear coordinates are used for

similar purposes in geometry.

Figure 28: An example of patching two triangular elements

Barycentric or areal coordinates are extremely useful in engineering applications

involving triangular subdomains. These make analytic integrals often easier to evalu-

ate, and Gaussian quadrature tables are often presented in terms of area coordinates.

Conversion between barycentric and Cartesian coordinates

Given a point r in a triangle’s plane one can obtain the barycentrick coordinates

λ1, λ2 and λ3 from the Cartesian coordinates (x, y) or vice versa.

We can write the Cartesian coordinates of the point r in terms of the Cartesian

components of the triangle vertices r1, r2, r3, where ri = (xi, yi) and in terms of the

barycentric coordinates of r as

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

(7.14)

where λ1 +λ2 +λ3 = 1. That is, the Cartesian coordinates of any point are a weighted

average of the Cartesian coordinates of the triangle’s vertices, with the weights being
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the point’s barycentric coordinates summing to unity.

To find the reverse transformation, from Cartesian coordinates to barycentric co-

ordinates, it satisfies this linear transformation

T · λ = r− r3 (7.15)

where

T =

x1 − x3 x2 − x3

y1 − y3 y2 − y3

 (7.16)

Now the matrix T is invertible. Thus, we can rearrange the above equation to getλ1

λ2

 = T−1(r− r3) (7.17)

Explicitly, the formulae for the barycentric coordinates of point r in terms of its

Cartesian coordinates (x, y) and in terms of the Cartesian coordinates of the triangle’s

vertices are:

λ1 =
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

det(J)
=

(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ2 =
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

det(J)
=

(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ3 = 1− λ1 − λ2

(7.18)

7.3 Numerical Integration and Numerical Quadrature

• Gaussian quadrature for general triangle elements K:

First of all, on the reference triangular element TSt, the Gaussian quadrature
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rules [16] are in the form

∫ ∫
Tst

g(ξ, η)dξdη ≈ 1

2

Ng∑
i=1

ωig(ξi, ηi) (7.19)

where Ng is the number of quadrature points, (ξi, ηi) are quadrature points

located inside the reference triangular element and ωi are weights (normalized

with respect to the triangle area).

Let K be a triangular element with straight boundary lines and vertices (xi, yi), i =

1, 2, 3 arranged in the counter-clockwise order:

We would like to evaluate

I =

∫ ∫
K

F (x, y)dxdy, (7.20)

The idea is to first transform the triangular element K to the standard triangular

element Tst and then apply the Gaussian quadrature for Tst.

The mapping can be achieved conveniently by using the nodal shape functions

as follows:

x = P (ξ, η) =
3∑
i=1

xiNi(ξ, η) = x1N1(ξ, η) + x2N2(ξ, η) + x3N3(ξ, η),

x = Q(ξ, η) =
3∑
i=1

yiNi(ξ, η) = y1N1(ξ, η) + y2N2(ξ, η) + y3N3(ξ, η),

(7.21)

Then we have

∫ ∫
K

F (x, y)dxdy =

∫ ∫
Tst

F (P (ξ, η), Q(ξ, η))|J(ξ, η)|dξdη (7.22)
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where J(ξ, η) is the Jacobian of the transformation, namely,

J(ξ, η) =

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣ = 2T (7.23)

Here T represents the area of the triangle K, which is generalized in (), and can

be evaluated here in Tst by

K =
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

2
(7.24)

Therefore, we have

∫ ∫
K

F (x, y)dxdy = 2K

∫ ∫
Tst

F (P (ξ, η), Q(ξ, η))dξdη (7.25)

Applying the Gaussian quadrature of degree N for the standard triangular ele-

ment yields

∫ ∫
K

F (x, y)dxdy ≈ K

Ng∑
i=1

ωiF (P (ξi, ηi), Q(ξi, ηi)) (7.26)

• Legendre-Gauss quadrature for 1-D integration:

Legendre-Gauss quadrature integral approximation tries to solve the following

function ∫ b

a

f(x)dx =
∞∑
i=1

ωif(xi) ≈
n∑
i=1

ωif(xi) (7.27)

by picking approximate values for n, ωi and xi. While only defined for interval

[−1, 1], this is actually a universal function, because we can convert the limits
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of integration for any interval [a, b] to the Legendre-Gauss interval [−1, 1]:

∫
∂K

φ(x, y)ds =
1

2
dr ·

Nr∑
i=1

φ(x(ξi, ηi), y(ξi, ηi))wi (7.28)

where (ξi, ηi) are the Gaussian quadrature points on reference triangle, and wi

are the weights. dr is the length of the integrated edge, and Nr are the number

of quadrature points on the edge.

Here we include some of the weights and abscissae tables for both 1-D and 2-D

triangular elements that are used for our computation.

• 1-D Gaussian quadrature

Table 10: 1-D Gaussian quadrature

i weight-ωi abscissa-xi

n=2

1 1.0000000000000000 -0.5773502691896257

2 1.0000000000000000 0.5773502691896257

n=3

1 0.8888888888888888 0.0000000000000000

2 0.5555555555555556 -0.7745966692414834

3 0.5555555555555556 0.7745966692414834

n=4

1 0.6521451548625461 -0.3399810435848563
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(continued)

2 0.6521451548625461 0.3399810435848563

3 0.3478548451374538 -0.8611363115940526

4 0.3478548451374538 0.8611363115940526

n=5

1 0.5688888888888889 0.0000000000000000

2 0.4786286704993665 -0.5384693101056831

3 0.4786286704993665 0.5384693101056831

4 0.2369268850561891 -0.9061798459386640

5 0.2369268850561891 0.9061798459386640

n=6

1 0.3607615730481386 0.6612093864662645

2 0.3607615730481386 -0.6612093864662645

3 0.4679139345726910 -0.2386191860831969

4 0.4679139345726910 0.2386191860831969

5 0.1713244923791704 -0.9324695142031521

6 0.1713244923791704 0.9324695142031521

n=7

1 0.4179591836734694 0.0000000000000000

2 0.3818300505051189 0.4058451513773972

3 0.3818300505051189 -0.4058451513773972
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(continued)

4 0.2797053914892766 -0.7415311855993945

5 0.2797053914892766 0.7415311855993945

6 0.1294849661688697 -0.9491079123427585

7 0.1294849661688697 0.9491079123427585

n=8

1 0.3626837833783620 -0.1834346424956498

2 0.3626837833783620 0.1834346424956498

3 0.3137066458778873 -0.5255324099163290

4 0.3137066458778873 0.5255324099163290

5 0.2223810344533745 -0.7966664774136267

6 0.2223810344533745 0.7966664774136267

7 0.1012285362903763 -0.9602898564975363

8 0.1012285362903763 0.9602898564975363

n=9

1 0.3302393550012598 0.0000000000000000

2 0.1806481606948574 -0.8360311073266358

3 0.1806481606948574 0.8360311073266358

4 0.0812743883615744 -0.9681602395076261

5 0.0812743883615744 0.9681602395076261

6 0.3123470770400029 -0.3242534234038089
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(continued)

7 0.3123470770400029 0.3242534234038089

8 0.2606106964029354 -0.6133714327005904

9 0.2606106964029354 0.6133714327005904

n=10

1 0.2955242247147529 -0.1488743389816312

2 0.2955242247147529 0.1488743389816312

3 0.2692667193099963 -0.4333953941292472

4 0.2692667193099963 0.4333953941292472

5 0.2190863625159820 -0.6794095682990244

6 0.2190863625159820 0.6794095682990244

7 0.1494513491505806 -0.8650633666889845

8 0.1494513491505806 0.8650633666889845

9 0.0666713443086881 -0.9739065285171717

10 0.0666713443086881 0.9739065285171717



93

• 2-D Gaussian quadrature for triangle elements

Table 11: 2-D Gaussian quadrature for triangular elements

i x y ωi

n=1

1 0.33333333333333 0.33333333333333 0.33333333333333

n=2

1 0.16666666666667 0.16666666666667 0.33333333333333

2 0.16666666666667 0.16666666666667 0.33333333333333

3 0.16666666666667 0.16666666666667 0.33333333333333

n=3

1 0.33333333333333 0.33333333333333 -0.56250000000000

2 0.20000000000000 0.20000000000000 0.52083333333333

3 0.20000000000000 0.60000000000000 0.52083333333333

4 0.60000000000000 0.20000000000000 0.52083333333333

n=4

1 0.44594849091597 0.44594849091597 0.22338158967801

2 0.44594849091597 0.10810301816807 0.22338158967801

3 0.10810301816807 0.44594849091597 0.22338158967801
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(continued)

4 0.09157621350977 0.09157621350977 0.10995174365532

5 0.09157621350977 0.81684757298046 0.10995174365532

6 0.81684757298046 0.09157621350977 0.10995174365532

n=5

1 0.33333333333333 0.33333333333333 0.22500000000000

2 0.47014206410511 0.47014206410511 0.13239415278851

3 0.47014206410511 0.05971587178977 0.13239415278851

4 0.05971587178977 0.47014206410511 0.13239415278851

5 0.10128650732346 0.10128650732346 0.12593918054483

6 0.10128650732346 0.79742698535309 0.12593918054483

7 0.79742698535309 0.10128650732346 0.12593918054483

n=6

1 0.24928674517091 0.24928674517091 0.11678627572638

2 0.24928674517091 0.50142650965818 0.11678627572638

3 0.50142650965818 0.24928674517091 0.11678627572638

4 0.06308901449150 0.06308901449150 0.05084490637021

5 0.06308901449150 0.87382197101700 0.05084490637021

6 0.87382197101700 0.06308901449150 0.05084490637021

7 0.31035245103378 0.63650249912140 0.08285107561837

8 0.63650249912140 0.05314504984482 0.08285107561837
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(continued)

9 0.05314504984482 0.31035245103378 0.08285107561837

10 0.63650249912140 0.31035245103378 0.08285107561837

11 0.31035245103378 0.05314504984482 0.08285107561837

12 0.05314504984482 0.63650249912140 0.08285107561837

n=7

1 0.33333333333333 0.33333333333333 -0.14957004446768

2 0.26034596607904 0.26034596607904 0.17561525743321

3 0.26034596607904 0.47930806784192 0.17561525743321

4 0.47930806784192 0.26034596607904 0.17561525743321

5 0.06513010290222 0.06513010290222 0.05334723560884

6 0.06513010290222 0.86973979419557 0.05334723560884

7 0.86973979419557 0.06513010290222 0.05334723560884

8 0.31286549600487 0.63844418856981 0.07711376089026

9 0.63844418856981 0.04869031542532 0.07711376089026

10 0.04869031542532 0.31286549600487 0.07711376089026

11 0.63844418856981 0.31286549600487 0.07711376089026

12 0.31286549600487 0.04869031542532 0.07711376089026

13 0.04869031542532 0.63844418856981 0.07711376089026

n=8

1 0.33333333333333 0.33333333333333 0.14431560767779
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(continued)

2 0.45929258829272 0.45929258829272 0.09509163426728

3 0.45929258829272 0.08141482341455 0.09509163426728

4 0.08141482341455 0.45929258829272 0.09509163426728

5 0.17056930775176 0.17056930775176 0.10321737053472

6 0.17056930775176 0.65886138449648 0.10321737053472

7 0.65886138449648 0.17056930775176 0.10321737053472

8 0.05054722831703 0.05054722831703 0.03245849762320

9 0.05054722831703 0.89890554336594 0.03245849762320

10 0.89890554336594 0.05054722831703 0.03245849762320

11 0.26311282963464 0.72849239295540 0.02723031417443

12 0.72849239295540 0.00839477740996 0.02723031417443

13 0.00839477740996 0.26311282963464 0.02723031417443

14 0.72849239295540 0.26311282963464 0.02723031417443

15 0.26311282963464 0.00839477740996 0.02723031417443

16 0.00839477740996 0.72849239295540 0.02723031417443

n=16

1 0.33333333333333 0.33333333333333 0.14431560767779

2 0.08141482341455 0.45929258829272 0.09509163426729

3 0.45929258829272 0.45929258829272 0.09509163426729

4 0.45929258829272 0.08141482341455 0.09509163426729



97

(continued)

5 0.65886138449648 0.17056930775176 0.10321737053472

6 0.17056930775176 0.17056930775176 0.10321737053472

7 0.17056930775176 0.65886138449648 0.10321737053472

8 0.89890554336594 0.05054722831703 0.03245849762320

9 0.05054722831703 0.05054722831703 0.03245849762320

10 0.05054722831703 0.89890554336594 0.03245849762320

11 0.00839477740996 0.26311282963464 0.02723031417444

12 0.26311282963464 0.72849239295540 0.02723031417444

13 0.72849239295540 0.00839477740996 0.02723031417444

14 0.26311282963464 0.00839477740996 0.02723031417444

15 0.72849239295540 0.26311282963464 0.02723031417444

16 0.00839477740996 0.72849239295540 0.02723031417444

n=19

1 0.33333333333333 0.33333333333333 0.097135796282799

2 0.02063496160253 0.48968251919874 0.031334700227139

3 0.48968251919874 0.48968251919874 0.031334700227139

4 0.48968251919874 0.02063496160253 0.031334700227139

5 0.12582081701413 0.43708959149294 0.077827541004774

6 0.43708959149294 0.43708959149294 0.077827541004774

7 0.43708959149294 0.12582081701413 0.077827541004774
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(continued)

8 0.62359292876193 0.18820353561903 0.079647738927210

9 0.18820353561903 0.18820353561903 0.079647738927210

10 0.18820353561903 0.62359292876193 0.079647738927210

11 0.91054097321109 0.04472951339445 0.025577675658698

12 0.04472951339445 0.04472951339445 0.025577675658698

13 0.04472951339445 0.91054097321109 0.025577675658698

14 0.03683841205474 0.22196298916077 0.043283539377289

15 0.22196298916077 0.74119859878450 0.043283539377289

16 0.74119859878450 0.03683841205474 0.043283539377289

17 0.22196298916077 0.03683841205474 0.043283539377289

18 0.74119859878450 0.22196298916077 0.043283539377289

19 0.03683841205474 0.74119859878450 0.043283539377289

n=25

1 0.33333333333333 0.33333333333333 0.09081799038275

2 0.02884473323269 0.48557763338366 0.03672595775647

3 0.48557763338366 0.48557763338366 0.03672595775647

4 0.48557763338366 0.02884473323269 0.03672595775647

5 0.78103684902993 0.10948157548504 0.04532105943553

6 0.10948157548504 0.10948157548504 0.04532105943553

7 0.10948157548504 0.78103684902993 0.04532105943553
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(continued)

8 0.14170721941488 0.30793983876412 0.07275791684542

9 0.30793983876412 0.55035294182100 0.07275791684542

10 0.55035294182100 0.14170721941488 0.07275791684542

11 0.30793983876412 0.14170721941488 0.07275791684542

12 0.55035294182100 0.30793983876412 0.07275791684542

13 0.14170721941480 0.55035294182100 0.07275791684542

14 0.02500353476269 0.24667256063990 0.02832724253106

15 0.24667256063990 0.72832390459741 0.02832724253106

16 0.72832390459741 0.02500353476269 0.02832724253106

17 0.24667256063990 0.02500353476269 0.02832724253106

18 0.72832390459741 0.24667256063990 0.02832724253106

19 0.02500353476269 0.72832390459741 0.02832724253106

20 0.00954081540030 0.06680325101220 0.00942166696373

21 0.06680325101220 0.92365593358750 0.00942166696373

22 0.92365593358750 0.00954081540100 0.00942166696373

23 0.06680325101220 0.00954081540030 0.00942166696373

24 0.92365593358750 0.06680325101220 0.00942166696373

25 0.00954081540030 0.92365593358750 0.00942166696373



100

REFERENCES

[1] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured
tetrahedral meshes. Internat. J. Numer. Methods Engrg., 58:2103–2130, 2003.

[2] H. Alfvén. Existence of electromagnetic-hydrodynamic waves. Nature, 150:405–
406, 1942.

[3] D. S. Balsara. Divergence-free adaptive mesh refinement for magnetodydrody-
namics. J. Comput. Phys., 174:614–648, 2001.

[4] D. S. Balsara. Second order accurate schemes for magnetohydrodynamics with
divergence-free reconstruction. Astrophys. J., 151:149–184, 2004.

[5] D. S. Balsara and D. S. Spicer. A staggered mesh algorithm using high order
Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic
simulatios. J. Comput. Phys., 149:270–292, 1999.

[6] B.Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin method
for conservation laws V: Multidimensional systems. J. Comput. Phys., 141:199–
224, 1998.

[7] J. U. Brackbill and D. C. Barnes. The effect of nonzero ∇ ·B on the numerical
solution of the magnetohydrodynamic equations. J. Comput. Phys., 35:426–430,
1980.

[8] J. Xin; W. Cai and N. Guo. On the construction of well-conditioned hierarchical
bases for h(div)-conforming Rn simplicial elements. Commun. Comput. Phys.,
14:621–638, 2013.

[9] W. Cai. Computational Methods for electromagnetic Phenomena. Cambridge,
2013.

[10] B. Cockburn and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws II: General framework.
Math. Comput., 52:411–435, 1989.

[11] B. Cockburn and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One-dimensional sys-
terms. J. Comput. Phys., 84:90–113, 1989.

[12] B. Cockburn and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional
case. Math. Comput., 54:545–581, 1990.

[13] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin method for
convection-dominated problems. J. Comput. Phys., 16:173–261, 2001.



101

[14] W. Dai and P. R. Woodward. A simple finite difference scheme for multidimen-
sional magnetohydrodynamic equations. J. Comput. Phys., 142:331–369, 1998.

[15] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods
for Science and Technology, Vol 3. Spectral Theory and Applications. Springer-
Verlag, 1990.

[16] D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for
the triangle. Int. J. Num. Meth. Engng,, 21:1129–1148, 1985.

[17] C. R. Evans and J. F. Hawley. Simulation of magnetohydrodynamic flows: A
constrained transport method. Astrophys. J., 332:659–677, 1988.

[18] S. H. Brecht; J. G. Lyon; J. A. Fedder and K. Hain. A simulation study of
eastwest IMF effects on the magnetosphere. Geophys. Res. Lett., 8:397–400,
1981.

[19] W. Cai; J. Hu and S. Zhang. High order hierarchical divergence-free constrained
transport H(div) finite element method for magnetic induction equation. Nu-
merical Mathematics: Theory, Methods and Applications, 2016.

[20] G. S. Jiang and C. C. Wu. A high-order WENO finite difference scheme for
the equations of ideal magnetodydrodynamics. J. Comput. Phys., 150:561–594,
1996.

[21] D. Ryu; F. Miniat; T. W. Joens and A. Frank. A divergence-free upwind code
for multi-dimensional magnetohydrodynamic flows. Astrophys. J., 509:244–255,
1998.

[22] G. A. Baker; W. N. Jureidini and O. A. Karakashian. Piecewise solenoidal vector
fields and the stokes problem. SIAM J. Numer. Anal., 27:1466–1485, 1990.

[23] O. A. Karakashian and W. N.Jureidini. A nonconforming finite element method
for the stationary Navier-Stokes equations. SIAM J. Numer. Anal., 35:93–120,
1998.

[24] B. Cockburn; F. Li and C.-W. Shu. The Runge-Kutta local projection p1 dis-
continuous Galerkin finite element method for scalar conservation laws. Math.
Model. Num. Analy., 25:337–361, 1991.

[25] B. Cockburn; F. Li and C.-W. Shu. Locally divergence-free discontinuous
Galerkin methods for the Maxwell equations. J. Comput. Phys., 194:588–610,
2004.

[26] F. Li and C.-W. Shu. Locally divergence-free discontinuous Galerkin methods
for MHD equations. J. Sci.Comput., 22:413–442, 2003.

[27] F. Li and L. Xu. Arbitrary order exactly divergence-free central discontinuous
Galserkin methods for ideal MHD equations. J. Comput. Phys., 231:2655–2675,
2012.



102
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