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ABSTRACT 
 
 
SEUNGMOO YANG. Spectroscopic study of optical confinement and transport effects 

in coupled microspheres and pillar cavities. (Under the direction of Dr. VASILY N. 
ASTRATOV) 

 
 

In this thesis we investigated the spatial and spectral mode profiles, and the 

optical transport properties of single and multiple coupled cavities. We performed 

numerical modeling of whispering gallery modes (WGMs) in such cavities in order to 

explain recent experiments on semiconductor micropillars. High quality (Q up to 20 000) 

WGMs with small mode volumes V ~0.3 μm3 in 4-5 μm micropillars were reproduced. 

The WGM spectra were found to be in a good agreement with the experimental data. 

The coupling between size-matched spheres from 2.9 to 6.0 μm in diameter was 

characterized using spectroscopy. We observed peculiar kites in the spectral images of 

such coherently coupled bispheres. The origin of these kites was explained due to the 

coupling of multiple pairs of azimuthal modes. We quantified the coupling constant for 

WGMs located in the equatorial plane of spheres parallel to the substrate which plays the 

most important role in the transport of WGMs in such structures. 

It was shown that in long (>10 spheres) chains of size-disordered polystyrene 

microspheres the transmission properties are dominated by photonic nanojet-induced 

modes (NIMs) leading to periodic focusing of light along the chain. In the transmission 

spectra of such chains we observed Fabry-Pérot fringes with propagation losses of only 

0.08 dB per sphere at the maxima of the transmission peaks. The fringes of NIMs are 

found to be in a good agreement with the results of numerical modeling. These modes 

can be used in various biomedical applications requiring tight focusing of the beams. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Outline and overview of thesis 

 This thesis is devoted to experimental studies and numerical modeling of optical 

properties of microcavities such as dielectric microspheres and semiconductor 

micropillars. The research in this thesis falls into two directions. 

 The first direction is devoted to resonant properties of the microcavities. In 

general, confinement of light in cavities takes place in a variety of structures such as 

photonic crystals with local defects [1-8], planar semiconductor microcavities [9, 10], 

 micropillars [11-22], microdisks [23-31], rings [32-39], toroids [40-42], and 

microspheres [43-67]. Since the first microsphere laser [68] was developed much work 

on WGMs in individual spheres has been done by many groups [43-67]. The confinement 

of light occurs due to various effects including Bragg reflection [1-22] and total internal 

reflection (TIR) [23-68].  

In this thesis we will focus mainly on microspheres and microdisks where the 

light waves can be trapped due to total internal reflection, leading to the formation of so-

called whispering gallery modes (WGMs). These resonant optical modes in these 

microcavities show very interesting properties due to high quality factor and small mode 

volume V. WGMs in microspheres can have Q-factors in excess of 109 [45-49]. Such Q-

factors are available in relatively large spheres with submicron dimensions where the 

modal volumes are around 5×103 µm3 [49-51]. A combination of large Q and small 
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modal volumes increases light-matter interaction in such cavities. For example 

nanoparticles deposited at the surfaces of such cavities or embedded inside the cavities 

can be sensitively detected due to their interaction with WGMs [69]. Such structures can 

also be used in cavity quantum electrodynamics (CQED) experiments [4-6, 11, 13, 31, 42, 

62]. An example of such experiments is generation of single photons which can be 

strongly coupled to photonic modes in such structures [70-72]. This is one of the 

developing sources of single photons [70-72] which can be applied in quantum 

computing applications. 

Although the properties of single cavities are well studied, systems of coupled 

cavities constitute a more complicated and somewhat less studied area. Theoretically, the 

coupling phenomena can be explained by the tight binding approximation [73] for 

photonic “atoms” similar to the solid state theory where tight binding model is widely 

used to describe band structure effects for electrons [74,75]. However this theory applies 

only to perfectly identical cavities. 

The resonant properties based on WGM coupling phenomena have attracted a 

significant interest of groups in Japan [61, 73, 76-79], Germany [56-59, 80-83] and 

Ireland [84-86]. These groups started using techniques of selection of spheres with almost 

identical positions of WGMs. Through these techniques normal mode splitting (NMS) 

effects in bispherical systems [76-78, 80-84] and in chains [78, 85, 86] were observed. 

One of the interesting recent results in this area was connected with observation of 

coupling between azimuthal modes in bispheres assembled in microwells [80]. Generally, 

these groups have been concentrating their studies on the spectral manifestations of 

strong coupling effects in such structures. The optical transport effects such as spectral 
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transmission properties and efficiencies of coupling have received less attention in these 

studies. 

Developing such transport studies requires special techniques of measurements 

such as using local sources of light. Such techniques were developed in the previous 

studies [87, 89, 90] of Prof. Astratov’s group. When I joined Prof. Astratov’s group in 

August 2006, it was one of the leading groups in studies of optical coupling and transport 

phenomena in mesoscopic systems of coupled microspheres. Several important results 

were obtained in this group prior to beginning of my thesis work. These include 

observation of optical transport in disordered chains of microspheres [87], modeling of 

coupling efficiencies and spectral effects in size-mismatched bispheres [88], observation 

of percolation of WGMs in 3D systems of coupled cavities [90], and observation of 

nanojet-induced modes (NIMs) in chains of cavities [89]. 

Some aspects of these phenomena still required more detailed studies. These 

include a necessity to characterize the coupling constant between the spheres for spheres 

with different sizes, to better understand the spectral and spatial properties of coupled 

modes in bispheres, and more sophisticated circuits assembled on the substrate. Thus, one 

of the objectives of this thesis work is to use techniques of local sources of light in 

combination with spectroscopy and microscopy in order to further advance the 

fundamental understanding of coupling of WGMs in circuits of microspheres. 

The second direction of the thesis is connected with studies of nonresonant 

mechanisms of propagation of light in chains of spheres. This direction of research is 

related to novel phenomena of formation of so-called “photonic nanojets” [93-97] 

produced by single spheres in response to illumination by incident plane waves. The 
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results [90] show that in chains of microspheres the nanojets are periodically reproduced 

along the chain giving rise to a new type of modes called in this paper “nanojet-induced 

modes” (NIMs) These modes have very interesting properties, the main one is an ability 

to form progressively smaller spot sizes along the chain [90]. However some of the 

properties of these modes, such as their propagation losses and their spatial distributions, 

were not studied in sufficient detail in the previous work. 

The start of this thesis work was actually initiated by studies of properties of 

WGMs not in microspheres, but in semiconductor micropillars. The spectral response of 

the WGMs from the semiconductor micropillars was observed by Professor Vasily 

Astratov and his Sheffield’s colleagues during his sabbatical stay at the University of 

Sheffield in April-July 2006. The structure of semiconductor micropillars is formed by 

two Bragg mirrors with a cavity in between [11, 15, 98, 99]. A layer of light-emitting 

quantum dots (QDs) is grown in the middle of the cavity to study light-matter coupling. 

Conventionally, studies on emission properties of semiconductor micropillars have been 

performed from the top of the pillars [12-14, 16-22]. Professor Astratov suggested using 

a different experimental configuration with excitation and collection of the micropillars’ 

emission at normal to their sidewall surface.  

In this geometry narrow peaks with almost equal separations were observed in the 

emission spectra that revealed [11] the presence of WGMs in such cavities. This 

observation was surprising since the mechanism of confinement of WGMs is nontrivial. 

Previously WGMs have been observed in microdisks [23-31] where the vertical 

confinement is provided due to very high refractive index contrast between the 

semiconductor and air. In micropillars, in contrast, the vertical confinement between the 
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central cavity and Bragg mirrors is much weaker. In addition the mirrors are formed by 

layers with alternating index of refraction. It is difficult to expect  WGMs in such 

structures due to their possible leakage from the central cavity into the adjacent mirrors. 

More detailed theory based on modeling of the electromagnetic (EM) processes in such 

structures was necessary in order to explain the properties of WGMs. Thus, the numerical 

modeling of WGMs in semiconductor micropillars became another objective of this 

thesis work. 

This thesis consists of four Chapters. In Chapter 1 we give an introduction to 

resonant and nonresonant modes in such structures. Chapter 2 is devoted to modeling of 

WGMs in semiconductor micropillars. We developed 3D finite-difference time-domain 

(FDTD) modeling of WGM in micropillars [11] based on the effective medium 

approximation for the Bragg mirrors. We achieved very good agreement of calculated 

WGM peak positions [11] with experimental spectra obtained at Sheffield for 

micropillars with different sizes and different shape. 

In Chapter 3 we present the results of detailed studies of the optical coupling 

effects in supermonodispersive bispheres. We developed techniques of size sorting of 

microspheres [100] with an unprecedented accuracy of ~0.03 %. In a special 

configuration of the experimental setup we observed unusual and characteristic kites 

[100] in spectral images of such bispheres. Using various experimental geometries we 

quantified the dependence of the coupling constant on the sphere size for maximally 

coupled fundamental modes. 

In Chapter 4 we present the results of studies of NIMs in very long (up to 100 

cavities) and straight chains of spheres. We experimentally observed extremely small 



  
6

losses smaller than 0.08 dB/sphere in such chains [92]. The numerical modeling of NIMs 

spatial distribution performed in this work revealed that these modes have a spatial period 

equal to the size of two cavities in the case of polystyrene microspheres. 

1.2 Resonant modes in circular cavities 

1.2.1 Whispering gallery modes in cylinders 

In this section we present basic information about WGMs in single cylindrical 

cavities [101, 102]. When the light enters the cylindrical structure, it is trapped inside due 

to total internal reflection (TIR). This confinement of the EM field inside a cylindrical 

cavity attracts much attention in many applications. Using simple geometrical optics, a 

cylinder of radius a with refractive index n, and a ray of light propagating inside, hitting 

the surface with angle of incidence θin,  are shown in Figure 1(a). If θin> θc= arcsin(1/n) 

where θc is the critical angle and n the refractive index, then TIR occurs. 

This simple geometric picture immediately leads to the concept of resonances 

along the circumference. For a large cylinder (a >> λ), the trapped ray propagates close 

to the surface, and traverses a distance ≈ 2πa in one round trip. If one round trip exactly 

equals l wavelengths in the medium, then one expects a standing wave to occur as shown 

in Figure 1(b). This condition translates into 

    2πa ≈ l(λ/n).     (1.1) 

It is conventional to define for this system a dimensionless size parameter 

λπ /2 ax =      (1.2) 

in terms of which the resonance condition is 

x  = l/n      (1.3) 
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where l is angular momentum that represents the number of wavelengths along the 

circumference. 

 

 
 

FIGURE 1.1: Cross sectional view of a cylinder. 
(a) Totally reflected ray at glancing angle. (b) A resonance formed when optical 
path length equals the integer number of wavelengths [103]. 

 
 
 In order to obtain the mode profile of a cylindrical cavity, more rigorous wave 

optics analysis should be employed. A plane monochromatic EM wave incident into a 

dielectric cylinder (with dielectric constantε ) will circulate inside the cylinder due to 

internal reflections when the resonant condition is reached. The total EM field satisfying 

Maxwell’s equations together with the boundary conditions can be derived from the Bz 

component written as [96], 

  Bz = 
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Field patterns represented by ),( yxBz  in Eq. (1.4) are shown in Figure 1.2. A 

nonresonant field with focusing properties of the dielectric cylinder with radius of a = 

2.17 in wavelength unit is illustrated in Figure 1.2(a). The field pattern of the radiation 

that circulates inside the cylinder is shown in Figure 1.2(b) when the resonant condition 

is satisfied with a = 2.16226047 in wavelength units. This resonance enhances the 

external field in the vicinity of the cylinder. This field pattern corresponds to the angular 

index m=22 for WGM resonances [102].  

The photoluminescence (PL) spectra of the WGMs in a cylindrical structure [104] 

are shown in Figure 1.3. In this experiment small, highly luminescent aluminosilicate 

microtubes of ~7 – 8 µm diameters were fabricated. Light propagating inside the 

microtube can be spatially constrained to travel along the rim of its cross-section, thus 

becoming trapped in a WGM. Such microcylinders support optical WGM at a Q-factor of 

3200 [104]. The emission spectra show strong polarization properties as shown in Figure 

1.3. The sharp peaks dominating the spectrum for a polarizer orientation parallel to the 

microtube axis correspond to linear polarized light with the electric vector oscillating 

parallel to the axis of the cylinder [104].  
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FIGURE 1.2: Field patterns represented by ),( yxBz . 
(a) In non-resonant, (b) in resonant scattering conditions. A dielectric cylinder has 
the dielectric constant ε  = 4, while its radius, in units of the wavelength λ, is in 
(a) a = 2.17 and in (b) a = 2.16226047 corresponding to the angular index of 22 
WGM resonance [102]. 

 
 

 
 

FIGURE 1.3: Room-temperature PL spectra of a single free-standing microtube. 
The spectra were recorded with polarizer orientation parallel to the microtube axis 
(red trace) and with polarizer rotated by 90º (black trace) [104]. 

 
 
 This cylindrical cavity can be compared to the microdisk structure which can be 

seen as part of a cylindrical cavity. In the cylindrical cavity the mode propagates along 

the cylinder axis, i.e. z axis, whereas the modes in a microdisk are confined in the z 
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direction and propagate around the disk [105]. Due to the boundary conditions imposed 

by the top and bottom boundaries of the disk, the wave vector in z direction, kz, is 

determined solely by the disk thickness which is different from a cylindrical cavity [105]. 

This will be discussed in the next chapter. 

1.2.2 Whispering gallery modes in microspheres 

In spherical cavities [43-67], there are three mode numbers (l, m, n) with 

polarization ( n
lTE  or n

lTM ) to describe the characteristics of the WGMs due to the 

rotational symmetry. Calculated EM field intensity distribution ( 2E ) [105] on a sphere 

surface for a microsphere with R = 1.4 µm and n = 1.57 is shown in Figure 1.4. The 

radial number n indicates the number of peaks in the radial direction of the sphere 

whereas the angular number l represents the number of modal wavelengths that fits into 

the circumference of the equatorial plane of the sphere. Figure 1.4 shows three examples 

with the same l =16 and n =1 for different m numbers. The azimuthal mode number m 

defines the number of maxima along the equator as shown in Figure 1.4(c) where m = 16. 

The fundamental modes are defined in the equatorial plane of spheres corresponding to a 

condition |m|=l. In free standing spheres the azimuthal modes are degenerate by the 

symmetry of the problem. This degeneracy however can be removed by the presence of 

the substrate or any other local factor.  

 Theoretical studies can use the 3D rotational symmetry in a single sphere when 

they are in free space. However, in most real applications the substrate plays a very 

important role in defining the optical modes due to the interaction of the evanescent field 

tail outside the sphere with the substrate. Due to the substrate, the optical symmetry axis 

can be defined along the axis perpendicular to the substrate. Accordingly, all the optical 
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resonant modes of a single sphere on a substrate can be defined along the plane that is 

parallel to the substrate [56] as shown in Figure 1.4(c).  

 

 
FIGURE 1.4: Calculated EM field intensity distribution ( 2E ) on a sphere surface. 

The microsphere has R = 1.4 µm and n = 1.57. (a) 1
16TE  mode with m = ±1 (λ = 

688.5 nm), dipole oscillates in x direction, (b) 1
16TE  mode m = 0 (λ = 666.9 nm), 

dipole oscillates in z direction. Comparison of the corresponding picture of a 
WGM 1

16TE with m = 16 is shown in (c) [105]. 
 
 

In addition, the substrate also interacts with the azimuthal modes due to their 

spread on the equator for small m numbers. Different azimuthal mode patterns observed 

from a sphere of size 286 µm (thick curves) depending on different azimuthal mode 

numbers [60] are shown in Figure 1.5. The azimuthal mode numbers vary from m = l 

(fundamental mode, single lobe) to m = l-7 (lower azimuthal mode, eight lobes). The 

inset shows the sphere formed at the end of a fiber with a tapered fiber probing the 

angular patterns with respect to the equatorial plane. The fiber that supports the sphere 

has very similar effect as a substrate in this case. 

The largest intensities are observed for the peaks that are furthest from the 

equatorial plane at 90°. For instance, the angular mode pattern with azimuthal mode 
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number m = l-7 shown on the bottom of Figure 1.5 has two the largest intensity peaks 

located about 86 and 94 degrees. The separation of these two largest peaks from the 

center (90 degrees) is about 4 degrees. Therefore, smaller azimuthal modes (m << l) will 

interact more strongly with the substrate, lifting the degeneracy of the azimuthal modes 

and broadening the experimentally observed WGM peaks [56]. 

 

 
 

FIGURE 1.5: Experimental and theoretical angular patterns in a microsphere. 
Patterns are from different resonant TE modes in a fused-silica microsphere of 
size 286 µm (thick curves) and their fitted patterns from theory (thin curves) [60]. 
The inset shows the sphere with a probe along the equatorial plane. 
 
 
The wave optics description of the WGMs in a sphere is summarized below based 

on review papers [52, 106, 107]. A dielectric sphere with dielectric constant distribution 

ε(r) that depends on the radius r only is considered. The electric field in the sphere obeys 

the Maxwell equation 

0)()( 2

2

2 =
∂
∂+×∇×∇

t
E

c
rE ε     (1.8) 



  
13

where c is the speed of light in the vacuum. The electric field can be presented as 

∫
∞

−=
0

)exp()( ωω dtireE ,    (1.9) 

we can rewrite the Eq. (1.8) as 

0)()( 2 =+×∇×∇ erke ε     (1.10) 

where ck /ω= is the wave vector. Eq. (1.10) may be solved in terms of TE and TM 

modes. Keeping in mind that 0)( =⋅∇ eε  we write 
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where radial functions Ψ and Φ  stand for the TE and TM modes, respectively, and Yl.m 

are vector spherical functions with angular number l and azimuthal number m. Radial 

field distribution for TE modes, for instance, of a dielectric sphere cavity can be 

described by 
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where l is angular momentum number (l = 0, 1, 2, 3L  for a sphere). Electric field 

distribution has a dependence of rr)(Ψ  for a sphere. Eq. (1.12) has an exact solution for 

a homogeneous dielectric spherical cavity with constr == 0)( εε . This solution reads 

)()( 2/1 rkJr l+=Ψ      (1.13) 

where )(2/1 rkJl+ is the Bessel function of the first kind. 

 The mode spectrum is determined by the boundary conditions 0)( →Ψ r for 

∞→r and 0. For the case of high TE mode order (l >> 1) 
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where aq is the qth root of the Airy function, a is the radius of the resonator, Ai(-z), which 

is equal to 2.338, 4.088, and 5.521 for q=1, 2, 3, respectively. The expression for TM 

WGM spectrum can be obtained analogously [52] 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+

−
−⎟

⎠
⎞

⎜
⎝
⎛+≅ − 3/2

3/12

00

3/1

0
,

2
20

3

)1(
1

2
1 lO

l
ll

a
k q

qql

α
εε

α
ε

 (1.15) 

 One of the basic properties of a whispering gallery resonator (WGR) is the 

relatively small volume occupied by the electromagnetic field of the mode in comparison 

to the total volume of the cavity. This effect takes place because WGMs tend to 

propagate close to the surface of the cavity, so that the electromagnetic intensity in 

middle of the cavity is small in most cases. The mode volume of the WGMs is especially 

important for nonlinear applications of the resonators. WGRs can have mode volumes 

orders of magnitude less than in Gaussian-mode resonators. The mode volume for a 

spherical WGR can be estimated as [57] 
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where λ is the wavelength of the pumping light. 

 Another important parameter is the Q-factor. The Q-factor is related to the 

lifetime of light energy in the resonator mode (τ) as Q = ωτ, where ω is the frequency of 

the mode. Generally Q is defined to be [67] 
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The quality factor is severely affected by the deformities in the shape and roughness of 

the microsphere. The modes experience variable refractive index contrast at different 

points along the circumference and can be estimated as [103] 

 

matcontscatrad QQQQQ
11111 +++=    (1.18) 

where  radQ  is intrinsic radiative loss, scatQ is scattering losses on residual surface 

inhomogeneities,  contQ  is losses induced by surface contaminants, and matQ is material 

losses. An additional and most important factor influencing Q-factors in practical 

structures assembled on substrate is represented by the mode leakage in the substrate 

which will be discussed in more detail in Chapter 3.  

1.3 Nonresonant modes in microspheres 

1.3.1 Sphere as a thick lens 

A dielectric sphere can be treated as a thick lens whose front (R1) and back (R2) 

radii of curvature are equal to half of its thickness ( dl ). This introduction starts from the 

analysis of the focusing properties of the thick lens. When the thickness of the lens along 

its optical axis is not negligible, the refractions at the front and back surfaces have to be 

considered separately. In the limit of geometrical optics both refractions seem always 

considered separately. 

The geometry of a thick lens with various quantities is shown in Figure 1.6. In 

this geometry, the effective focal length, f, is given by [108] 
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where ln , the refractive index of the lens. The back focal length, fb, can be calculated 

from fb = f - |h2|.The value of h2 is given by 
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Using Eq. (1.19) and (1.20), the back focal length is 
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It is noted that when the numerator of Eq. (1.21) is zero, the focal point, Fi, locates at the 

vertex of the back surface, V2 (for 1>ln ). Therefore, the focal point is exactly at the back 

surface of the lens when  
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For example, if ln  = 2.0, then R1 should be half of dl, which is exactly the size of a sphere. 

 

 
 

FIGURE 1.6: Thick lens geometry [108]. 
 
 
 The sphere is a special case of the thick lens where the thickness of the lens is 

twice of the radius. Using this condition for a sphere, Eq. (1.21) can be rewritten as 
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where R is equal to R1 and R2. Eq. (1.23) indicates that when ln >2, then bf <0, which 

means the focal point is located inside the sphere. For ln <2, the focal point is outside the 

sphere. This simple geometrical optics analysis provides a rough estimation of how a 

sphere works as a thick lens in making a focal point in the back surface. 

 

 
 

FIGURE 1.7: Schematic diagram of lens focusing. 
(a) Geometrical optics focus of a lens. (b) Wave optics focusing of a lens. ∆x: 
focal spot size. ∆y: depth of focus [109]. 

 
 
 A schematic diagram of the geometrical optics focus of a lens is shown in Figure 

1.7(a). Using the wave optics, the diffraction-limited focal spot size (∆x) and depth of 

focus (∆z) of a lens are defined as [109]  

   D
fx λ44.2=Δ  ,     (1.24) 

and 
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where f, and D are the focal length, lens diameter. These quantities are illustrated in 

Figure 1.7(b) with 2D cross-section of irradiance distribution from a lens.  

1.3.2 Photonic nanojets in a microsphere 

 The photonic nanojet is a narrow, high-intensity beam that propagates into the 

background medium from the shadow-side surface of a plane-wave illuminated lossless 

dielectric microsphere [93]. When the size of a sphere is small enough and comparable to 

the wavelength of light, the focusing beam at the back surface of the sphere has shown 

very interesting properties [110]: (1) Such focusing is a nonresonant phenomenon, i.e., it 

can appear for a wide range of sphere size if the refractive index contrast relative to the 

background medium is less than about 2:1. (2) The intensity of light in the middle of the 

focused spot exceeds that for the illuminating wave by a factor of 1000. (3) The focused 

spot has the full-width-half-maximum (FWHM) beamwidth between one-third and one-

half wavelength in the background medium and is only weakly dependent upon the size 

of the dielectric sphere. A transverse beamwidth as small as 0.3λ has been reported [97]. 

(4) The beam keeps a subwavelength FWHM over a propagation distance grater than 2.5 

λ [94, 124]. These specific features – subwavelength FWHM and micron propagation 

distance – are unreachable with a classical Gaussian laser beam focused by a high 

numerical aperature objective [124]. As has been pointed out by Flecher et al. [152], 

when the diameter of the dielectric sphere is reduced to be on the order of the wavelength, 

the distribution of light intensity close to the surface of the sphere cannot be analyzed by 

the diffraction theory [94].  
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The calculated external light intensity distribution resulting from illuminating 

dielectric spheres with n = 1.59 with an x-polarized, z-propagating plane wave with unit 

intensity and wavelength λ = 400 nm is shown in Figure 1.8. For a dielectric sphere with 

D = 1 µm (Figure 1.8(a)), a subdiffractional light jet protrudes from the shadow side of 

the dielectric particle. The FWHM of the jet is 130 nm which is much smaller than the 

incident wavelength λ = 400 nm. The spheres with D = 2 and 3.8µm produce the nanojet 

with FWHM of 150 and 190 nm, respectively (Figure 1.8(b) and (c)). As the diameter  

 

 
 

FIGURE 1.8: Photonic nanojets. 
They are generated by illuminating dielectric spheres (n = 1.95) with a λ = 400 nm, 
x-polarized, z-propagating incident plane wave in vacuum [94]. The near-field 
intensity distributions are calculated with Eq. (2). (a) Sphere diameter D = 1 µm. 
(b) D = 2 µm. (c) D = 3.5 µm. (d) D = 8 µm. 

 

increases, the light jet starts to emerge and move away from the dielectric sphere (Figure 

1.8(d)). The maximum intensity and FWHM of the light jet also increase as the size of 
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the dielectric sphere increases. For a microsphere with diameter D = 3.5µm (Figure 

1.8(c)), a tight focus of light (photonic nanojet) is created with high peak intensity (Imax ≈ 

160I0), subdiffractional waist (FWHM = 190 nm), and propagating in micron scale. It is 

interesting to note that the photonic nanojets have strong radiative mode properties as 

well as the evanescent fields outside the sphere surface.  

Since the photonic nanojet by a dielectric microsphere started attracting attention 

in 2004, many applications have been suggested [94, 110] using this nonresonant optical 

properties of microspheres. These interesting properties have been used in several 

application areas such as nanoparticle detection [94], detection of subwavelength pits in 

the optical data-storage disks [115, and low loss optical transport in a size detuned 

microsphere chain [90]. 

The first example of detecting nanoparticles was the theoretical calculation result 

which was based on the enhanced backscattering intensity by dielectric particles of sizes 

between 1 and 100 nm [94]. The strong perturbation in the back scattering signal 

introduced by a small particle was used [94] to detect a nanoparticle as it moved through 

the photonic nanojet as shown in Figure 1.9(a). A dielectric microsphere (n = 1.59, r = 

1.75µm) was illuminated by a collimated beam (λ = 400 nm). A gold nanoparticle (n = 

1.47 –j1.95, d = 20 nm) moved through the photonic nanojet that is located close to the 

back surface of the microsphere. Figure 1.9(b) shows the normalized backscattering 

intensity of this two-sphere system [94] as the position of the nanoparticle is varied with 

respect to the microsphere position. It is clearly seen that an increase of about 40% in the 

normalized backscattering is introduced by the strong perturbation due to the nanoparticle. 

Using this method, the sizes of the small particles can be characterized by examining the 
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variation of the backscattering intensity. In this example, the backscattering of a photonic 

nanojet has been demonstrated to provide the resolution of 1 nm precision of a single 

nanoparticle [94]. 

 

 
 

FIGURE 1.9: Backscattering of a nanoparticle moving through a photonic nanojet. 
(a) A 20 nm nanoparticle and the photonic nanojet. (b) Normalized backscattering 
intensity as a function of the position of the nanoparticle. An increase of 40 % 
backscattering intensity is observed [94].  
 
 
Another interesting application of the photonic nanojet is the detection of 

subwavelength pits [110, 111] in the optical data-storage disks as illustrated in Figure 

1.10. In this case a microwave wavelength jet was used instead of optical wavelength for 

the experiment and the simulation.  This microwave wavelength experiment can easily be 

scaled down to optical wavelength range. Figure 1.10(a) and (b) shows the microwave 

intensity distributions of the backscattering of the microwave jet by the Duroid-coated 

aluminum plate for the no-pit and pit cases from the FDTD computations, respectively. 

The fit case shown in Figure 1.10(b) shows a strong microwave intensity that is localized 

in front of the pit and the magnitude of the intensity is about 225 times bigger than the 

incident microwave intensity. This backscattered wave from the pit decreases faster as it 
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propagates backward from the pit compared to the decrease in the no-pit case. This 

difference in the intensity decay is illustrated in a graph along line AB as shown in Figure 

1.10(c). In this experiment a much smaller area of pit compared to the current BluRayTM 

device was detected experimentally due to the interaction with the small and intense 

microwave jet.  

 

 
 

FIGURE 1.10: photonic nanojets for the detection of pits of data-storage disks. 
FDTD-calculated microwave intensity distributions are shown. (a) Interaction of 
the photonic nanojet for no-pit case. (b) The photonic nanojet interacting with the 
pit in the aluminum plate. (c) The backscattered intensity decreases faster with 
propagation distance from B to A for the pit case than no-pit case [110]. 
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1.3.3 Nanojet induced modes in a microsphere chain 

The optical transport of coherent microsphere chains have been studied [93] 

recently for two different transport mechanisms: (i) tight-binding between WGMs, and 

(ii) coupling by periodical focusing effects. In a chain with identical spheres the WGMs 

can couple very efficiently. This highly efficient optical coupling can be achieved in the 

identical spheres by evanescent fields that overlap with the modes of neighboring spheres. 

Figure 1.11 (a) shows the electric field intensity distribution of a chain of five touching 

microspheres with a refractive index of 1.8 and a diameter of 3 µm. Plane waves were 

launched along the axis of the chain from left to right in Figure 1.11. Light of wavelength 

λ = 430.889 nm which is a WGM resonance propagates from left to right via evanescent 

coupling [93]. They show the intensity profiles of highly efficient coupling of WGMs 

inside each sphere. Peak intensity of each sphere with respect to the distance between 

their centers is shown Figure 1.11(b). The maximum peak intensity in this case is shown 

to be close to 6000 and input and output intensities close to 2000. 

However, light with wavelength λ = 429.069 nm propagates along the nanojet-

including microspheres with index of 1.59 as shown in Figure 1.12(a) [93]. In this case, 

the constituent spheres are nonevanescently coupled due to the radiative nature of 

photonic nanojets [93]. Figure 1.12(a) shows the intensity distribution of each constituent 

sphere of the chain consisting of microspheres that have a refractive index of 1.59 and 

induce photonic nanojets. It is seen that a WGM resonance (λ = 429.069 nm) is weakly 

excited in each sphere by the evanescent-field component of the nanojet, and its 

propagation through the sphere chain is achieved via evanescent coupling [93]. However, 
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due to the radiative nature of the nanojet, optical coupling between neighboring spheres is 

not  

 
 

FIGURE 1.11: FDTD calculation for a chain of five microspheres at near-resonance. 
(a) Electric field intensity distribution of a chain of five touching microspheres 
that have a refractive index of 1.8 and a diameter of 3 µm. Light of wavelength λ 
= 430.889 nm propagates from left to right. (b) Peak intensity of each constituent 
sphere as a function of the distance between their centers [93]. 

 

efficient. Figure 1.12(b) shows peak intensity of each constituent sphere as a function of 

the distance between their centers. The maximum peak intensity of this case is just above 

600 which is approximately one order of magnitude smaller than the maximum peak 

intensity of the resonant case. Also the output intensity of about 200 is smaller than the 

input intensity of 550. The incident light can propagate efficiently only as far as the third 

sphere, and the intensities within the fourth and fifth spheres go down dramatically [93]. 

In contrast to chains made from identical spheres, size-detuned (~3 % size 

dispersion) microsphere chains were studied in dye-doped polystyrene microspheres with 

sizes in the 2-10 µm range [90]. Since most commercial microspheres have a standard 
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size variations ~1-3%, it is not easy to select identical spheres to make resonant 

microsphere chains. This non-resonant optical transport has been observed for the first 

time in recent study [90] by using the scattering measurements. 

 

 
 

FIGURE 1.12: FDTD calculation for a chain of five microspheres at off-resonance.  
(a) Electric field intensity distribution of a chain of five touching microspheres 
that have a refractive index of 1.59 and a diameter of 3 µm. Light of wavelength λ 
= 429.069 nm propagates from left to right. (b) Peak intensity of each constituent 
sphere as a function of the distance between their centers [93]. 
 
 
In this work the scattering of light from the axis of the chain has been captured by 

the imaging system to directly visualize the nanojets emerging in the vicinity of the 

touching points between the spheres [90]. By directly observing a series of photonic jets 

at the shadow side of multiple spheres, a characteristic feature of NIMs, the fluorescence 

from the source is gradually converted into NIMs away from such source [90]. By 

performing measurements at long distances from the source, propagation losses of less 

than 0.5 dB per sphere for NIMs were demonstrated [90]. 



  
26

The propagation of NIMs in size-detuned chain is illustrated in Figure 1.13. Three 

(leftward) dye-doped microspheres are locally excited and the NIMs propagate along the 

chain of dye-doped microspheres as shown in Figure 1.13(a). Fluorescent light 

propagation is shown in Figure 1.13(b) with color bars. It is clearly seen that the input 

beam is converging into small spot at the end sphere due to the NIMs propagation. A 

particularly interesting result consists in observation of a decrease of the cross-sectional 

FWHM of bright spots along the chain as shown in Figure 1.13(c). It is suggested that 

this reduction in spots sizes is a result of filtering of NIMs occurring in the course of light 

propagation along the chain. This mode conversion process is very useful in making a 

small spot size beam from a large size input beam. 

 

 
 

FIGURE 1.13: NIMs in a chain of 2.9 μm spheres [90]. 
(a) Image obtained with the background white light illumination. Three spheres 
(left) are pumped. (b) Same chain imaged without background illumination due to 
propagation and scattering of light originating from the FL source. (c) Cross-
sectional FWHM of bright spots measured in unexcited spheres perpendicular to 
the chain. 
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1.4 Conclusions 

In this chapter the optical properties of microspheres and their chains are 

considered for two cases: the resonant WGMs and their coupling effects and  the 

nonresonant optical effects connected with periodic focusing of light in chains of 

microspheres. Whispering gallery modes are the guided modes inside the microsphere by 

the total internal reflection along the index difference between the microsphere and its 

surrounding media. Due to the high Q-factors, WGMs have been used for long time in 

optical communication applications [112-114] and sensing applications [115-118]. 

Another interesting application is the possibility of using WGMs in quantum cavity 

electrodynamics [4-6, 11, 13, 31, 42, 62] due to their high Q-factors and small mode 

volume. During last few decades the properties of WGMs in individual spheres have been 

well studied [43-67]. Q-factors above 109 are reported for sufficiently large spheres with 

submillimeter sizes [45-49]. 

Since the late 1990s new ideas have emerged in this area due to a possibility of 

integration multiple spheres in more complicated structures. These ideas have been 

stimulated by the proposals of coupled microrings [119, 120] and CROWs [121]. These 

ideas stimulated an interest in coupled bispheres [76-77, 80-84] and chains of cavities [78, 

84, 86]. Important keystone results in this area include an observation of a strong 

coupling between WGMs in specially selected nearly identical spheres [76], an 

observation of optical transport effects in disordered chains of spheres [87] and modeling 

of WGM coupling efficiencies in size-mismatched spheres [88], an observation of 

coupling between a series of azimuthal modes in bispheres in microwells [80, 82], and an 
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observation of percolation of WGMs in 3D crystal-like structures formed by 

microspheres [90]. 

These studies also revealed some challenges of the technology of microsphere 

resonator circuits (MRCs). First, it was shown [87] that the size variations of spheres 

reduce the efficiency of WGM-based coupling. Supermonodispersive selection [100] of 

microspheres with δ<<κ, where δ is the deviation of the spheres’ sizes and κ is the WGM 

coupling constant, is required. Second, the coupling constant varies for spheres with 

different sizes. Although it has been measured in some cases [76], the systematic studies 

of the coupling constant have not been performed in a broad range of spheres’ sizes. 

Finally, the substrate is known to be an important factor [56, 100] when determining Q-

factors of WGMs in individual spheres, but its role was not well studied in more 

complicated structures assembled on a substrate. 

Similar studies and ideas have been developed in the area of semiconductor 

micropillars [11-22],  microcylinders [122, 123] and microrings [32-39]  which can be 

fabricated by conventional semiconductor technology. 

The start for the research performed in this thesis was initiated by recent 

experimental results obtained in semiconductor micropillars during a sabbatical stay of 

Prof. Astratov at the University of Sheffield, UK, in April-July 2006. This subject is 

considered in Chapter 2 of this thesis where a separate introduction into cavity effects in 

micropillars can be found in Section 2.1. The main task of these studies was in 

developing numerical modeling techniques in order to fit the experimental spectra 

obtained from such micropillars. These spectra contained narrow peaks indicating 

presence of WGMs in such semiconductor micropillars. 
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Regarding resonant structures formed by the microspheres the objective of this 

thesis work was to develop techniques of selection of supermonodispersive spheres as 

well as techniques of tuning WGM resonances in order to use such spheres for studying 

fundamental coupling phenomena. More specific goals include understanding of the role 

of substrate in the formation of coupled photonic molecular states with specific 

geometrical configurations. It also includes measurements of the coupling constant 

through extensive studies of strong coupling between almost identical spheres with a 

wide range of average sizes. These results are presented in Chapter 3. 

Finally, developing concept of photonic nanojets [93-97] and experimental 

observation of NIMs achieved by the group of Prof. Astratov [90] stimulated a significant 

interest in this subject worldwide [124-126]. 

This interest was mainly motivated by the subwavelength sizes of nanojets which 

opens a prospect for various applications of such structures. Many questions however 

remained unanswered regarding these novel modes. These questions include the level of 

fundamental losses for NIMs and the spatial distributions of these modes in long chains. 

The objective of this thesis work in this area was connected with obtaining more 

complete experimental information on these subjects through synthesis and spectroscopic 

study of light transport in extremely long chains of cavities. Another objective was 

connected with developing numerical modeling of NIMs in order to define the periodicity 

and other spatial characteristics of these modes. The results of studies of NIMs are 

summarized in Chapter 4 of this thesis work. 

 A few applications of using the spherical structures in real commercial products 

are the glass microspheres used for road marking paint (Langfang Wanda Glass 
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Microsphere Co.,Ltd, China) and the microring resonator all-optical switches in 

communications. The glass microspheres deposited in the road mark paint can make the 

car-light at night to reflect parallel to the ground and make the driver distinguish the 

direction better improving the safety. Companies such as Intel (Santa Clara, CA, USA) 

are investigating the microring resonators for silicon modulators and silicon lasers in 

order to integrate both optics and electronics on a single chip. The microring resonators 

provide a building block for fast, integrated, all-optical switches with lower cost and 

improve performance by reducing the number of optical-electronic conversions during a 

communication. 

 

 

 



 
 
 
 
 

CHAPTER 2: SEMICONDUCTOR MICROPILLAR RESONATORS 
 
 
2.1 Introduction 

The semiconductor micropillar resonator is one of the optical microcavities with 

3D confinement for photons. It has been studied due to interest in controlling light-matter 

coupling [14, 17-19, 42, 127] as well as due to potential applications [128, 129] of these 

structures as sources of single photons for quantum information processing. This 

structure obtained by etching of a planar semiconductor material has been known to 

support the discrete three-dimensionally (3D) confined modes, i.e., photonic dot states 

[12, 14, 15] along the axis of the pillar. When an internal light emitter is inserted into the 

structure, the efficient coupling into the photonic dot states can be achieved [12, 14, 15]. 

In addition, in the semiconductor laser application the vertical cavity surface emitting 

lasers [130, 131] can also be implemented with this structure. 

It should be noted that due to its cylindrical symmetry the structure of 

semiconductor micropillars has a similarity with semiconductor laser microdisks [23, 24]. 

It is well-known [23] that microdisks support lasing WGMs. Despite similarity of the 

structures of semiconductor laser microdisks [23, 24] and micropillars [12, 14, 15] these 

structures have very different strength of the confinement of optical modes in vertical 

direction. In the case of microdisks it is defined by the refractive index contrast between a 

semiconductor (typically >3) and air, whereas in the case of micropillars it is defined by 

the index contrast between the central cavity (~3.5) and surrounding Bragg mirrors which 
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have somewhat complicated index distribution typically within 2.5-3.2 range. It is 

obvious that the refractive index contrast is much smaller in the case of micropillars, 

which was a primary reason why the existence of WGMs has never been considered in 

these structures. This will be discussed in the following sections. 

Some recent spectroscopic studies performed by Prof. Vasily Astratov and his 

collaborators at the University of Sheffield, UK, indicated that WGMs do exist in 

semiconductor micropillars despite the weak optical confinement in the vertical direction. 

This experimental observation required more theoretical insight into the mechanisms of 

formation of these modes in micropillars, and that was the primary objective of the work 

presented in this chapter.  

In this chapter we will first consider the basic cavity quantum electrodynamic 

(CQED) experiments and different types of cavities. Then we will consider the 

experimental results indicating the presence of WGMs in micropillars. After that we will 

turn to the techniques and results of numerical modeling of WGMs in micropillars 

developed in this thesis work.        

2.1.1 Cavity quantum electrodynamics (CQED) experiment 

2.1.1.1 Background theory 

 In this section, a brief summary for the strong coupling between the cavity mode 

and individual quantum dot (QD) is introduced based mainly on the work by Reithmaier 

[17]. When the optical microcavity that has high Q-factor has a single atom inside, the 

weak coupling and the strong coupling states can be accomplished depending on the 

strength of their interaction. 



  
33

The two coupled states are identified depending on the coupling strength between 

the material oscillator and the optical cavity mode. In the weak coupling regime, the 

spontaneous emission rate from an atom can be enhanced or reduced [17]. This 

spontaneous emission rate is modified experimentally [17] by temperature tuning with 

respect to the discrete optical cavity modes. However, the most striking change of 

emission properties can take place when the strong coupling conditions are satisfied. In 

this regime the irreversible spontaneous emission of the atom can be changed to a 

reversible exchange of energy between the atomic oscillator and the optical cavity mode. 

Due to this strong interaction, photons emitted by the atom located inside the optical 

cavity mode can be reabsorbed and reemitted, which gives rise to so called Rabi 

oscillations [4]. However, in order to observe this phenomenon experimentally from the 

interaction between the atomic emission and optical cavity mode, the individual linewidth 

of the two resonant states has to be smaller than the splitting between these states 

occurring due to their coupling. 

Such experiments have been performed [26] using semiconductor technology, i.e., 

the discrete states of the semiconductor QDs. This semiconductor realization of the 

strong coupling can provide the fundamental building block for solid state quantum 

computers (qubits) and the optical cavity mode can manipulate the interaction between 

the qubits. 

Light can oscillate inside an optical microcavity and resonate at the resonant 

energy (Ecav) as shown in Figure 2.1(a). The exciton can be excited with the energy (Eex) 

close to the resonance of the microcavity as shown in Figure 2.1(b). When the exciton 

interacts with the light inside the microcavity, the strongly coupled states of light and 
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matter can be produced as shown in Figure 2.1(c). If the exciton-photon interaction 

becomes larger than the combined atomic dipole decay rate and the cavity mode decay 

rate, then strong coupling occurs [17]. Then the irreversible spontaneous emission 

process of the emitter is changed into the reversible energy exchange. This energy 

exchange between the exciton and the photon can take place in the form of Rabi 

oscillations for timescales shorter than the inverse cavity mode decay rate [17]. In 

spectroscopic experiments this energy exchange results in anti-crossings between the 

atom-like emitter and cavity-mode dispersion relations. It is characterized by the vacuum 

Rabi splitting or normal mode splitting NMS [17]. 

 

 
 

FIGURE 2.1: Light-matter interaction. 
(a) Light in a microcavity, (b) Exciton from matter, and (c) Exciton-polaritons 
from the light-matter interaction. 
 
 
In solid state implementation by QD semiconductor cavity, the strong and weak 

interaction can occur between the QD exciton (X) and discretized cavity (C) modes at a 

resonance (EX = EC = E0). In a picture of coupled oscillators the energies of the 

interacting modes at resonance are [17] 
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where XC ,γ is the full width at half maximum (FWHM) of the cavity and exciton modes, 

respectively, and g is the exciton-photon coupling parameter. In order to achieve the 

strong coupling, the last term in Eq. (2.1) should be real, in other words, g2 must be 

bigger than 16/)( 2
XC γγ − , that is, ( 16/)( 22

XCg γγ −> ). When this condition is 

satisfied, the separation between the two resonant energies ±E  is called the vacuum Rabi 

splitting or NMS. In contrast, if 16/)( 22
XCg γγ −≤  the real parts of the energies ±E  are 

degenerate then there is no noticeable splitting. This regime is called the weak coupling 

which can be explained by an enhancement of the spontaneous emission on resonance by 

the Purcell effect [17]. 

 The exciton-photon coupling parameter g is related to the oscillator strength f and 

the mode volume V by [13] 

2/1
00

2/12 )4/()( Vmfeg rεπεπ=              (2.2) 

where rε  and 0ε  are the dielectric constants of cavity material and vacuum, respectively, 

and 0m  is the free electron mass. Eq. (2.2) shows that the exciton-photon coupling 

parameter g is related to the QD exciton oscillator strength f and the mode volume of the 

cavity V as 2/1)/( Vf [17]. 

 In Eq. (2.1) the FWHM of the cavity mode Cγ is related to the quality factor of the 

cavity CCEQ γ/=  where EC is the resonant energy of the cavity. In general, the Q-factor 

of a cavity is determined by the energy loss per cycle versus the energy stored. With no 

absorption by the cavity material, the Q-factor is determined by the reflection loss at the 

interface between the interior and exterior of the ideal cavity [3]. Considering the 
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practical values of Cγ  and Xγ  in semiconductor microcavities and in quantum dots, Cγ  is 

much bigger than Xγ  and the criterion for strong coupling can approximated by 

4/Cg γ>  [17]. Lastly, in order for strong coupling to take place, we can make the 

approximation,  

4// CEQVf >⋅ .              (2.3) 

In Eq. (2.3), if f is fixed because it is mainly related to the fabrication parameters of the 

QDs, the figure of merit for strong coupling is basically 

 VQF /> .                (2.4) 

Therefore, in order to overcome the threshold for strong coupling, the figure of merit (F) 

is required to be as large as possible. The figure of merit can be maximized by increasing 

the Q-factor and decreasing the mode volume of the optical cavity. These two factors are 

mostly related to the design of optical microcavity.  

2.1.1.2 Anti-crossing example 

 In this section, one experimental result [17] of the strong coupling between the 

optical cavity and a single QD will be discussed as an example of the CQED effects. In 

this experiment, the strong coupling of an individual two-level solid state system with a 

photon was observed as realized by a single QD in a semiconductor micropillar cavity 

[17]. The strong coupling manifests itself in florescent (PL) data due to anti-crossings 

between the QD exciton and cavity mode dispersion relations. 

 Figure 2.2(a) shows the SEM image of InGaAs QDs that are self-assembled with 

a characteristic diameter of 15-20 nm. Larger size of the QDs was obtained by reducing 

the indium content. Such QDs are located in the middle layer of the micropillar cavity 

that is shown in Figure 2.2(b). This larger size of QDs gives rise to an increase in the 
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excitonic oscillator strength which can increase the coupling strength. This micropillar 

was fabricated by a combination of electron-beam lithography (EBL) and reactive dry 

etching, giving the defect-free sidewalls for high Q cavities (Q = 8,800). 

 

 
 

FIGURE 2.2: SEM images of QDs and a micropillar cavity. 
(a) Scanning electron micrographs of InGaAs QDs. (b) Scanning electron 
micrograph of a pillar with a diameter of about 0.8 µm [17]. 

 
 
 Figure 2.3 shows the anti-crossing phenomenon observed in a micropillar cavity 

with diameter of 1.5 µm at different temperatures between 5 and 30K. At temperatures of 

5K and 30K, the emission intensity and the linewidth of the dot exciton are smaller than 

those of the cavity mode. It is clearly seen that the emission peak of the exciton at 5K, 

which has a slightly higher energy (1.32365 eV) than the cavity mode centered at about 

1.32335 eV, shifted to the lower energy as the temperature is increased up to 30K. In 

addition, in the middle of the temperature tuning process at around 21K, the intensities 

and the linewidths of the two resonant peaks are quite similar. At this stage, the two 

peaks are mixed up with the exciton emission and the cavity mode. 

 These results show that the larger QD gives rise to better oscillator strength. Also, 

in order to observe the strong coupling, the linewidth of the cavity mode should be 

smaller. Therefore considering the Eq. 2.4 for the figure-of-merit, it is highly necessary to 
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increase the Q-factors and to decrease the modal volumes of the microcavities in order to 

achieve strong light-matter coupling regime. 

 

 
 

FIGURE 2.3: Temperature dependence of PL spectra. 
An anti-crossing is observed owing to strong coupling between the QD exciton 
and the microcavity photon mode [17]. 

 
 
2.1.2 Microresonator cavities 

In this section, three different kinds of optical microcavities [4, 17, 26] are briefly 

introduced which can be used for achieving the strong coupling between the optical 

microcavity and the QDs. These microcavities play an important role in these 

experiments where high Q-factor and small mode volume are necessary. There are two 

types of optical resonant modes in these microcavities depending on the ways of 

confining the light inside the cavity, which are the WGMs and the photonic dot states. 

The WGMs are the 3D confined optical mode rotating in a circular shaped 

microcavity. The EM field propagates along the circumference of the circular geometry 

making the ring-like patterns that fit close to the surface of the cavity. Whereas the 

photonic dot states are not circularly propagating and they are confined by the structures 
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using a periodic modulation of the refractive index. Compared to the ring-like mode 

profile of WGMs, the EM fields of the photonic dot states are concentrated in the center 

of the cavity. However, in both cases the light traveling inside the resonator should be 

confined in three spatial dimensions (3D) by means of the TIR and/or the Bragg 

reflection mirrors. Examples of such cavities are considered in the next section.  

2.1.2.1 Microdisk cavity 

One of the well-known examples of the microcavities is represented by the 

microring or microdisk resonators [25, 26] as shown in Figure 2.4. The SEM image of a 

microdisk cavity which is fabricated [26] by the undercut etching is shown in Figure 

2.4(a). The microdisk is elevated above the substrate layer by the supporting pole high 

enough so that the optical mode is not perturbed by either the substrate. The microdisk 

resonators support the WGMs by TIR due to the index difference with the background 

medium. Figure 2.4(b) shows the schematic diagram of a microdisk resonator and its EM 

amplitude mode profile. 

The refractive index of the microdisk, n1, is surrounded by the lower index of air, 

n2, as shown on top of Figure 2.4(b).  Since n1 is bigger than n2, the light inside the 

microdisk can be reflected continuously along the circular surface as shown in top view 

of Figure 2.4(b). An example of the amplitude mode profile of the microdisk is shown in 

the bottom of Figure 2.4(b) shown as a top view. It is clearly seen that the peaks of the 

EM field amplitude mode map locate very close to the surface of the disk. The vertical 

thickness of the disk is typically small enough to allow only the first order which is the 

fundamental mode and the number of maxima gives the angular mode number. 
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FIGURE 2.4: Microdisk cavity. 

(a) SEM image of microdisk cavity [26], (b) Schematic diagram of microdisk 
cavity and its amplitude mode profile from FDTD calculation for radius of 1.5 µm. 
 
 

2.1.2.2 Photonic crystal cavity 

Other types of microcavities include the photonic crystal cavities [1-8]. The SEM 

image of a fabricated 2D photonic crystal cavity and computed optical field magnitude of 

the cavity mode [4] are shown in Figure 2.5(a) and (b), respectively. In this cavity, the in-

plane confinement is obtained by fabricating a 2D photonic crystal lattice slab with three 

holes missing to form a defect where the mode is located [4]. These 2D periodic 

structures confine the EM field in lateral dimension which acts very similarly to the 

Bragg layers in the micropillar. The vertical confinement, achieved by TIR at the slab 

semiconductor-air interfaces, is imperfect, due to the fact that light with small in-plane 

wavevectors can leak out of the top and bottom [4]. 

In Fig 2.5(b) the computed field strength as a function of position shows that most 

of the field energy is confined in the defect region with a mode volume of about 0.04 µm3. 

The Q-factor of the photonic crystal nanocavities can reach up to Q = 800,000 [132]. 
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However, in order to have this high Q-factor and small mode volume in photonic crystal 

cavities, a fine-tuning of the positions of air rods at the cavity edges is necessary [3] to 

reduce the radiation loss due to weak vertical confinement.  

 

 
 

FIGURE 2.5: Photonic crystal microcavity. 
(a) SEM image of a fabricated photonic crystal cavity, (b) Computed optical field 
magnitude of the cavity mode [4]. 
 
 

2.1.2.3 Micropillar cavity 

Another interesting microresonator structure is the micropillar cavity [17] that 

supports the photonic dot states. Usually the photonic states in such cavities are optically 

probed along the vertical direction. Fig 2.6(a) shows the micropillars with circular cross-

section that have been processed by electron-beam lithography and reactive ion-etching 

in inductively coupled Ar/Cl2 plasma [17]. Pillars with 2 µm diameter result in Q-factors 

of about 9.000 with optimized micropillar processing.  Numerical calculations show the 

mode volumes of about 0.3 µm3 for the 1.5 µm diameter micropillar [17]. 
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FIGURE 2.6: Micropillar cavity. 
(a) SEM image of a micropillar cavity [17], (b) Schematic diagram of the cavity 
and its mode profiles. 
 
 
The Bragg mirrors on top and bottom between the middle layer confines the light 

in vertical direction and creates the resonant cavity structure where the light oscillates 

along the axis of the pillar as shown on top of Figure 2.6(b). On the other hand, the lateral 

confinement is accomplished by the TIR along the lateral surface of the pillar. The lateral 

profile of the photonic dot states of the micropillar shown on bottom of Figure 2.6(b) 

indicates that most of the energy of the mode is concentrated in the center region of the 

cavity. Therefore, the sidewall surface roughness in the micropillar cavities doesn’t 

contribute as much to the Q-factor as the performance of the vertical confinement by the 

Bragg layers.  

Until recently, only photonic dot states were observed in micropillar cavities. 

However, the micropillar can be viewed as a microdisk that has Bragg layers on top and 

bottom. Thus, it is possible to suggest  that this structure can support two resonant modes, 

photonic dot states and WGMs. The Bragg layers loosen the confinement in the vertical 

direction for the WGMs in micropillars compared to the microdisk cavities. In addition, 



  
43

the sidewall surface roughness plays more important role in having larger Q-factors of 

WGMs compared to the photonic dot states in micropillar cavities. This is because most 

of the energy of the WGMs is located very close to the sidewall surface. Therefore, an 

investigation to WGMs in the mcropillar cavities is necessary in order to estimate full 

potential of these cavities for developing CQED applications in comparison with other 

resonant modes in different cavity structures. 

2.2 Experimental observation of WGMs in semiconductor micropillar resonators 

The study of WGMs in micropillar resonators is quite interesting due to the 

unusual combination of optical confinement. On one hand they are similar to microdisks 

[23-31] because of their circular symmetry. On the other hand the vertical confinement is 

due to Bragg reflection which is very different from microdisks. This work shows that 

due to higher Q-factors and smaller modal volumes of  WGMs in pillars,  they have 

better potential for observation of strong coupling with individual QDs according to the 

figure-of-merit: Q / V . As it was mentioned earlier in section 1.1 this problem is based 

on the experimental results obtained in Sheffield, so below we consider the experimental 

configuration used in these measurements and present major experimental observations. 

2.2.1 Experiment geometry 

The microcavity structure used in this work consists of 27 pairs of alternating 

Al0.8Ga0.2As/GaAs layers in the bottom distributed Bragg reflector and 20 repeats on top. 

The one-wavelength cavity contains one layer of InAs QDs of density ~ 5 × 109 μm-2 

positioned at the anti-node of the optical field which is very close to the circular surface 

of the structure as shown in Figure 2.7. The samples were processed into 1-10 μm 

diameter pillars using a combination of electron beam lithography (EBL) and inductively 
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coupled plasma etching at the All-UK III-V Growth and Fabrication Facilities at the 

University of Sheffield, U.K. The studies of photonic dot states in such micropillars have 

been performed [13, 121, 122] at the Low Dimensional Structures and Devices (LDSD) 

at the Department of Physics and Astronomy along with other groups [11, 15]. The 

studies of WGMs in micropillars were initiated by Dr. Vasily Astratov during his visit to 

the University of Sheffield in April-July 2006.  

The photonic dot states are confined by the two distributed Bragg layers. The 

photonic dot states are measured from the vertical direction which is the resonant 

direction of cavity due to the reflections provided by the two Bragg reflectors. A laser 

light (black arrow) was focused at the top of each pillar and the spectral response (blue 

arrow) was obtained from the top too.  

During his visit to Sheffield, Dr. Vasily Astratov suggested the possibility of the 

existence of the WGMs in the micropillar structures. In this case, the WGMs are confined 

by the dielectric interface along the circumference of the GaAs (index 3.54) layer due to 

the TIR between the GaAs and the air. The vertical confinement of the WGMs is 

accomplished by the Bragg reflection layers. Since the WGMs are propagating along the 

circumference of the middle layer, the spectral response from the scattering of the WGMs 

may be detected in the plane of the central cavity between two Bragg mirrors. Therefore 

the laser beam (black) was focused at the middle layer of the pillar and the WGMs (red) 

were detected from the same layer in the direction perpendicular to the pillar axis as 

shown in Figure 2.7. 
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FIGURE 2.7: SEM image of a micropillar with diameter of 4 μm [11, 133, 134]. 
Photonic dots are measured from vertical direction and WGMs from horizontal 
direction. QDs lie in the middle layer (Schematic diagram on right). 

 
 

In order to measure the WGMs in this plane, it was important to find a way to 

open an optical access to the side wall of the micropillars. This was achieved by cleaving 

the substrate as shown in Figure 2.8. A laser light (black arrow) was focused onto the side 

wall of the pillars and the photoluminescence (PL, red arrow) of the WGMs was 

measured from side wall in the direction perpendicular to the pillars. 

 
 

FIGURE 2.8: SEM images of circular micropillars with diameter of 5.4 μm [11]. 
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2.2.2 Experimental Results 

The photoluminescence spectra from 5.4 μm pillars are shown in Figure 2.9. The 

spectral response of photonic dot states were obtained with excitation and collection of 

PL emission perpendicular to the Bragg mirrors, as illustrated by the blue spectrum in 

Figure 2.9. The PL from the InAs QDs was excited through the top mirror at 633 nm in a 

micro-PL setup with a ~1 μm laser spot size. The experiments were performed at 10 K. 

Under the high power conditions (~1mW) used in their experiments they excite an 

inhomogeneously broadened QD emission band in the 1.2-1.4 eV range. The coupling of 

this emission to 3D size quantized photonic dot states gives rise to peaks in the 1.27-1.30 

eV range. 

To study circular cavity modes in the perpendicular direction the structure was 

cleaved to enable optical access to the sidewalls of the pillars as illustrated in the Figure 

2.8. The distance between the pillars and the cleaved edge of structure was in the 1-5 μm 

range. The sample was rotated in the cryostat by 900 to provide the excitation and 

collection of light at normal to the sidewall surfaces of the pillars. In this geometry a 

series of nearly equidistant peaks over a broad range of energies, the characteristic 

fingerprint of WGMs, was observed [11, 133, 134] as illustrated by the red spectrum in 

Figure 2.9. The intensity of these peaks was found to be a maximum when the excitation 

laser was focused on the central section of the pillars, thus indicating that the WGMs are 

localized in the central cavity region. 
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FIGURE 2.9:  Emission spectra of 5.4 μm circular pillar. 
The spectra were detected from the top mirror (blue), from the sidewall surface 
(red) with the WGM mode spacing ΔE indicated [11, 133, 134]. 
 
 
The separation between the peaks was found to be converging with increasing 

energy (typically by ~8 % in the 1.27-1.37 eV range). The separations (ΔE) measured in 

the low energy side of spectra (~1.28 eV) were found to be inversely proportional to the 

diameter of the pillars as illustrated in Figure 2.10. The Q-factors of the WGMs were 

found to approach 20000 for 4-5 µm pillars, well in excess of Q~10000 for the photonic 

dot states in the same pillar represented by the blue spectrum in Figure 2.9. 

Similar WGM peaks were detected from the sidewalls of pillars with elliptical 

cross section for 2.6 x 1.6 µm2 pillars. The Q-factors of the WGMs were found to be 

reduced in such small pillars down to Q~6000 but were still higher than that for photonic 

dot states (Q~4000) [15] measured from the same pillars.  
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FIGURE 2.10: ΔE versus 1/D where D is the pillar diameter (squares). 
The straight line represents a theoretical fit obtained with n = 3.54 [11, 133, 134]. 
 
 
An estimate of the separation between cylindrical WGM peaks with the same 

polarization can be obtained under the assumption that inside the cavity the photons 

follow a circle of radius R: )/(0 effRncE h≈Δ , where neff is the effective refractive index. 

This formula provides a good fit to the measured dependence of peak separation with 

pillar size using neff = 3.54, as illustrated by the straight line in Figure 2.10. This model, 

however, is a too rough approximation to provide correct WGM mode numbers and to 

explain more detailed effects such as convergence of the peak separations with energy. 

2.3 Numerical modeling of WGMs in semiconductor micropillars 

The experimental spectral peaks of WGMs in micropillar cavities show better Q-

factors compared to the photonic dot states in the same structure. However, a theoretical 

investigation of these experimental results is necessary not only to understand the 

properties of the WGMs in the pillars but also to apply them properly to the CQED 

experiments. In the experiments, the WGMs are observed in the pillars with elliptical 

cross section with 2.6 x 1.6 µm2 that have even smaller radius of curvature at the ends of 

the major axis. These measured Q-factors for the WGMs may be increased close to the 
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theoretical limit of the structure by improving the quality of the sidewall surface using 

different etching processes. In addition, the experimental results show the relatively 

strong convergence trend of the peak separations with energy for all the pillars with 

different sizes.  

Another important goal for such theoretical modeling is connected with 

evaluation of the prospect of using of WGMs in micropillars for the possible CQED 

experiments. This analysis can be performed by studies of the photonic figure-of-merit 

discussed in Section 2.1.1.1. for various types of modes in different cavities. In the next 

section we will introduce the numerical modeling methods and the results of modeling 

compared with the experimental spectra. Finally, the calculated mode volumes for those 

cavities will be presented. 

2.3.1 Simulation methods 

In order to obtain a more accurate description of the WGM resonances in 

micropillars, numerical modeling of the EM field distribution based on 3D finite 

difference time domain (FDTD) simulations using the FullWAVETM software [135] was 

performed. There are three factors that contribute to increasing the computational time 

for this type of modeling. First, such 3D FDTD simulations require much longer time 

compared to 2D simulation due to the big increase of the calculation area. Secondly, the 

micropillar cavities have 27 and 20 pairs of GaAs/AlGaAs layers which form the bottom 

and top Bragg layers, respectively. They are used for the vertical confinement of the 

“photonic dot” states. The role of these mirrors for WGMs was not clear before 

beginning this computational work. However modeling these mirrors in 3D case was not 

realistically possible since they significantly increase the computational area. Finally, 
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spectral response of the cavity requires very long time of calculation in the time domain 

in order to obtain reliable spectra especially for high Q resonators.  

2.3.1.1 Averaged index material for Bragg layers 

The 3D calculations for micropillars are found to be so time consuming that the 

numerical modeling for a full experimental structure including multi layer Bragg mirrors 

was not realistically possible for us. One factor allowed us to simplify the structure 

significantly. Due to large in-plane k-vectors WGMs in the central cavity are effectively 

confined in the central cavity due to TIR. Under these conditions their penetration into 

the Bragg mirrors is due to the evanescent field. These modes are not propagating 

perpendicular to the mirrors, and for this reason they are not a subject for the Bragg 

reflectivity. The penetration depth in the mirrors corresponds to only 2-3 layers of the 

mirrors, which reduced the number of Bragg layers from more than 20 down to three 

layers for both sides. 

 In addition to this requirement of long calculation time, which even though 

reduced dramatically by reducing the number of Bragg layers, it is not easy to implement 

each Bragg layer in the software due to their small height with respect to the size of the 

grid (or mesh) used in the calculations. For example, the alternating Bragg layer consists 

of a pair of GaAs/AlGaAs that have thickness of 69.3 nm and 78 nm, respectively. Figure 

2.11 shows the vertical index profile at x=-0.13 µm for different step sizes. In the cases of 

step sizes  λ/16 and λ/50 for Figure 2.11(a) and (b), respectively, the index profile does 

not represent the index of the real structure. Only when the step size is close to λ/100 

does the index profile properly represent the real structure. Therefore, the size of the unit 

cell, i.e., Yee cell [136] should be smaller than 1/100 times the operating wavelength 
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resulting in ~9 nm which is too small to implement in our current PC. The calculation 

volume of the 4.1 µm pillar that has two pairs of Bragg layers on both sides is 5.4 × 1.4 × 

5.4 µm3. The approximate amount of memory for a simulation is [137] 

  Approximate amount of memory = Nx Ny Nz [(6×8)+8] (2.5) 

where Nx, Ny, and Nz are the array dimensions in each direction. Eq. (2.5) assumes that 

the six field components and permittivity are stored as double precision floating point 

values requiring 8 bytes of memory each. Using the maximum step size of ~9 nm and the 

computation area of 5.4×1.4×5.4 µm3, the approximate amount of memory for a 

simulation is larger than 3 Gb. The actual required memory size should be greater than 3 

Gb since it does not take into consideration storage of variables for boundary conditions 

and the input field. This memory size is not currently available for the lab PC. 

 

 
 
FIGURE 2.11: Vertical cut of index profile. 

The index profiles are obtained at x=-0.13 µm for different step size of (a) λ/16, 
(b) λ/50, and (c) λ/100.   
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In addition, the time step should be very small with small grid size of λ/100. The 

stability condition relating the spatial tΔ and temporal step size xΔ , yΔ , and zΔ  is [135] 
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where C is the maximum velocity of the wave. Eq. (2.6) shows that the maximum time 

step satisfying the stability condition for the grid size of λ/100 is about 1.73×10-17 sec 

which makes the wave propagation very slow. Therefore, based on the memory size and 

the time step for the simulation, implementing the real quarter-wavelength thickness of 

Bragg layer is not practical because the calculation time required for such modeling is too 

expensive. 

One way of overcoming this problem is to simplify the structure so that the 

software can take into account only essential physical properties of the structure. 

Therefore we approximated the multiple Bragg reflection layers with the simple averaged 

index material. Figure 2.12(a) shows the half cross-section image of a micropillar with 

radius of 2μm and ten alternating Bragg reflection layers on both sides. The index of the 

cavity is sufficiently large for confining the modes in vertical direction. However this 

confinement is much weaker than in microdisks. As a result, the evanescent field of these 

modes penetrates deeply into the Bragg mirrors, so that the evanescent field in 2-3 layers 

of the mirrors experiences their average index. 

Due to the deep penetration of evanescent field in the Bragg mirrors we made an 

assumption [11, 133, 134] that this structure can be modeled using an effective index 

approximation for Bragg mirrors. Therefore we can further simplify the reduced number 

of the Bragg reflection layers with the single averaged index media shown in Figure 
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2.12(b). We modeled the GaAs cavity as a disk (index 3.54) with 0.27μm 

thickness surrounded on both sides with disks of effective index 3.31 that correspond to 

the Bragg reflection layers with a pair of alternating GaAs/AlGaAs layers (index 3.54 and 

3.07, respectively). Figure 2.12(c) shows the reflection index profile with the vertical 

dimension of the pillar. We limit the height of the averaged index layer adjacent to the 

cavity to 0.4 μm. 

 

 
 

FIGURE 2.12: Averaged index approximation of Bragg layers [11]. 
(a) Half cross-section image of a micropillar with 10 pairs of alternating layers for 
top and bottom. (b) Image of simplified structure by averaged index 
approximation for 3 pairs of Bragg layers for both sides. (c) Refractive index 
profile with vertical direction.  
 
 
Finally, with all the approximations above, the spatial step size was reduced to 

λ/16 which results in 0.116 ns in temporal step size. The running time for this structure 

usually takes about 2-3 days with the PC.  

2.3.1.2 Implementation of the source and detector 

In order to excite the WGMs inside the micropillars, the built-in source with 

Gaussian plane wave launched a pulse with pulse duration of 3.3 fs very close to the 
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circumference of the cavity. Figure 2.13 shows the top view of the geometry of 5.1 μm 

micropillar. The dimensions and the locations of the source and the monitor are 

summarized in Table 2.1.  

 
 

 
 

FIGURE 2.13: Source and detector dimensions and locations for 5.1 μm pillar. 
 

Table 2.1: Simulation parameters for monitor and source 

 
Sphere size Monitor (μm) Source (μm) 

5.1 μm 
circular 

Size: W=1, L=0.1, H=0.27 
Position: x=-2.05, y=z=0 

Size: W=0.27, H=0.27, L=0 
Position: x=2.38, y=z=0 

4.1 μm 
circular 

Size: W=0.6, L=0.1, H=0.27 
Position: x=-1.75, y=z=0 

Size: W=0.27, L=0.27, H=0 
Position: x=1.88, y=z=0 

2.6x1.6 μm 
elliptical 

Size: W=0.2, L=0.05, H=0.27 
Position: x=-0.7, y=z=0 

Size: W=0.27, L=0.27, H=0.27 
Position: x=0.6, y=z=0 

 
 

Figure 2.14(a) shows the geometry for the FDTD simulation where d is the cavity 

thickness of 0.27μm and R is the radius of the pillar of 2 μm. The dotted square shows 

the built-in source in the pillar. The red arrows show the direction of the propagation of 
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the launching plane wave. The size of the launching Gaussian pulse was 0.5×0.5 µm2 in 

x-y plane. 

 

 
 

FIGURE 2.14: FDTD simulation mode profiles [11]. 
(a) Geometry for the FDTD simulation with launching source. (b) Amplitude 
mode profile in x-y plane. (c) Amplitude mode profile in x-z plane for 1

56TE . 
 
 
The short pulses with pulse duration of 3.3 fs that is sufficient for excitation of 

multiple WGM peaks centered at 0.94 μm wavelength. A Transverse electric (TE) 

polarized source was used to generate a comb of n
lTE  WGMs with radial number n=1 

and various angular l numbers. Figure 2.14(b) shows the amplitude mode profile in x-y 

plane of the WGMs. This amplitude profile shows that the thickness of 0.4μm of layers 

adjacent to the central cavity is sufficient to approximate the mode profile along the y-

axis in the entire pillar. One of the resonant mode profiles in the x-z plane for 1
56TE  is 

shown in Figure 2.14(c). The spectral response from a short pulse excitation was obtained 

by the Frequency Monitor of the software in the FDTD output option. Once the spectral 

response was obtained, the excitation changed into continuous wave (CW) that had a 

single frequency of one of the WGM peaks. 
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2.3.2 Calculated WGM spectra and their comparison with the experiment  

The bottom black curve in Figure 2.15 shows the spectral response of the WGMs 

calculated for the 5.3 μm pillar which has a slightly smaller size compared to that in the 

experimental structure. In order to obtain the best spectrum fit, the diameter of the 

micropillar was used as a fitting parameter. It shows that the calculated spectrum for the 

5.3 μm pillar fits very well the experimental one for the 5.4 μm micropillar. The small 

difference in the size between the experimental and the calculated spectra can be 

explained by the fact that in real AlGaAs structure the near surface layer is always 

oxidized. From the SEM image, the pillar sidewall reveals the presence of a 90 nm thick 

oxide skin which is probably formed during the plasma-assisted etching [138]. The index 

of the oxide is expected to be around 1.5. In terms of modeling this means that the 

effective size of micropillars is expected to be less than their physical dimensions 

determined by SEM characterization. The use of slightly smaller sizes in modeling is 

reasonable for this structure. The small difference of ~100-200 nm is generally consistent 

with thickness of so-called “oxide skin” in AlGaAs structures [11]. 

It should be noted that the calculations predict a weak (2–4 %) converging trend 

of the WGM peak separations with energy in the range between 1.27 and 1.37  eV for 5.4 

µm pillars as shown in Figure 2.16. This convergence arises from the slight increase of 

the effective WGM radius with l. The stronger converging trend observed in the 

experimental spectra (~8%) may arise from dispersion effects in the GaAs cavity 

combined with additional dispersion introduced by QDs absorption with increasing 

energy. Small convergence (0.2 meV) between the third and forth FSR compared to 0.5 

meV for other peaks might come from the experimental error. 
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FIGURE 2.15: WGM spectra from experiment and calculation 5.4 μm circular pillar. 
Calculated (black) emission spectrum fits the experimental (red) results [11, 133, 
134]. 
 
 

 
 

FIGURE 2.16: Convergence of the peak separation ΔE for 5.4 μm circular pillar.  
 
 

Examples of such spectra calculated for 4.1 μm circular and for 2.6 × 1.6 μm 

elliptical pillars are presented (black) in Figure 2.17 and Figure 2.18, respectively. Figure 

17(a) and Figure 2.18(a) illustrate the SEM image of the two micropillar structures with 

the laser excitation (black) and the PL detection (red). For the elliptical pillars, the 

excitation and the detection were oriented along the major axis of the ellipse. 
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FIGURE 2.17: WGM spectra from experiment and calculation 4.3 μm circular pillar. 
(a) SEM image of 4.3 μm circular pillar, (b) amplitude mode profile of WGMs in 
x-z plane for 1

45TE , (c) emission spectrum of experimental sidewall PL (red) and 
of WGMs peaks (black) calculated for 4.1 μm pillars [11, 133, 134]. 

 
 

An EM amplitude map for the TE1
45 WGM peak of Figure 2.17 (c) at 1.373 eV is 

presented in Figure 2.17 (b), and a similarly obtained map for the 1
21TE  peak of Figure 

2.18 (c) at 1.316 eV is presented in Figure 2.18 (b). The calculated WGM peak positions 

for circular pillars and elliptical pillars agree well with the experimental peak positions in 

Figure 2.17(c) and Figure 2.18(c), respectively. 
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FIGURE 2.18: WGM spectra from a 2.6x1.6 μm elliptical pillar. 
(a) SEM image of the structure, (b) amplitude mode profile in x-z plane for 1

21TE , 
and (c) fitting of spectra between experiment (red) and FDTD calculation (black) 
results. The excitation and detection were performed along the major axis [11, 
133, 134]. 
 
 
The slightly smaller pillar diameter (4.1 μm) was employed in the simulations to 

give the best fits to the experimental data compared to the 4.3 μm sizes determined by 

SEM characterization for circular pillars in Figure 2.17. This may also arise from the 

presence of an oxide skin with smaller index at the sidewall surface of the AlGaAs layers 

as in the case of 5.4 μm pillars. It also shows that the calculations reproduced the 

converging trend of the WGM peak separations in the experimental spectra in the energy 

range between 1.27-1.37 eV reasonably well for 4.3 μm pillars.  
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2.3.3 Q-factor and mode volume calculation 

 One important parameter for the CQED experiment along with Q-factor for the 

optical cavity is the mode volume. The mode volume can be calculated only by the 

calculation of the EM field in the cavity. The cavity mode volume is calculated according 

to the formula [139]: 
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∫
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             (2.5) 

where )(rrε  is the dielectric constant, )(rE rr
 is the electric field strength, and Vq is a 

quantization volume encompassing the resonator and with a boundary in the radiation 

zone of the cavity mode under study. It turned out that the numerator of Eq. (2.5) can be 

calculated using an option developed by RSoft. So, we calculated the energy density in 

the FullwaveTM RSoft which is defined as 

rdrErEd
32 )()(∫= ε .              (2.6) 

The denominator of Eq. (2.5) ( )]()(max[ 2 rErε ) was determined from the field 

distribution at the end of the simulation. We analyzed field distributions in different 

cross-sections using RSoft in order to find this maximum. This approach works equally 

well for circular and elliptical pillars.  

By using this method, we made Table 2.1 to summarize the mode volumes for 

three structures, elliptical pillar (diameter: 2.6 µm × 1.6 µm), elliptical disk (diameter: 2.6 

µm × 1.6 µm), and circular pillar (diameter: 4.1 µm). In order to improve the accuracy of 

mode volume for circular pillar (4.1 µm) we increased the calculation time more than 

three times compared to the previous results and reduced the cell size of FDTD from 
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(1/20)λ to (1/25)λ. In addition, in order to make the spectrum of the source narrower we 

terminated the Gaussian pulse of the source at longer time and in more symmetric way. 

This reduces generation of higher frequencies that may excite higher order cavity modes. 

Under these improved conditions, the mode volume for circular pillar turned out to be 

little smaller value (V=0.26 µm3) than the previous one (V=0.3 µm3). 

 
TABLE 2.2: Mode volume and Q-factors for three different structures (λ=0.94 µm) 
 

Structures 
Elliptical pillar 
(2.6 × 1.6 µm2) 

(height: 1.07µm)

Elliptical disk 
(2.6 × 1.6 µm2) 

(height: 0.27µm) 

Circular pillar 
(4.1 µm) 

(height: 1.07µm) 

Mode volume(µm3) 0.17 0.08 0.26 

Quality factor 6300   

Schematic 
Diagram 

 

 
n core = 3.54 
n clad = 3.31 

 

 
 

n core = 3.54 
n clad = 1.0 

 
n core = 3.54 
n clad = 3.31 

 

The mode volume for the elliptical disk 2.6 µm × 1.6 µm was calculated to 

compare with the one from the paper by E. Peter et al. [26]. The elliptic disk which has 

similar circumference to the circular disk with diameter of 2 µm shows the mode volume 

of 0.08 µm3 comparable to 0.07 µm3 from E. Peter’s paper. Considering the wavelength 

difference between E. Peter’s paper (0.74 μm) and our case (0.94 μm), calculation results 

actually showed even smaller mode volume. The elliptical pillar 2.6 µm × 1.6 µm was 

found to have the mode volume of 0.17 µm3 which is twice bigger than that for the 

elliptical disk with the same size. The difference can be explained by weaker optical 
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confinement in vertical direction due to smaller refractive index 3.54/3.31. For circular 

pillar with diameter of 4.1 µm we found mode volume of 0.26 µm3.  

By measuring the linewidth of the peaks from the calculated spectrum Q-factors 

of WGMs can be obtained. We could calculate the Q-factor for the elliptic pillar only 

with small running time due to large loss. The Q-factor is 6300 which is close to the 

result from the experimental observation. For the Q-factor calculation, we had to run the 

simulation for more than 5 days. It will take even more time to calculate the Q-factors for 

the elliptical disk and the circular pillar due to much smaller losses. This can be 

completed in the future work. 

 
TABLE 2.3: Comparison of figure of merits for different cavities. 
 

Cavity Mode 
type V, µm3 Q Q/(V)1/2 

1.5 µm Pillars [17] Photonic 
dot state 0.3 8,800 16,000 

4-5 µm Pillars [11] WGM 0.3 20,000 ~36,000 

2 µm Microdisks [26] WGM 0.07 500- 
12,000 ~30,000 

Nanocavities [4] Photonic 
dot state 0.04 13,300 67,000 

 
 

In Table 2.2 the calculated mode volume, experimental Q-factor, and the figure-

of-merits of different optical resonant modes are summarized.  The WGMs of 4.1 µm 

micropillar have the calculated mode volume of 0.3 µm3 and the experimental Q-factor of 

20,000 resulting in the figure-of-merit of about 36,000. This result shows that the figure-

of-merit of WGMs of 4.1 µm pillar is even slightly bigger than the 2 µm microdisks. 

Recently, micropillars with Q-factors of larger than 150,000 [140] has been reported for 

photonic dot states which has been published after submitting our work on WGMs. On 



  
63

the other hand, most recently the Sheffield’s group observed WGMs with Q>60000 (A.M. 

Fox: private communication (2008)). 

Therefore, the WGMs from the micropillar cavities can promise better 

performance in the CQED experiment compared to the photonic dot states from the same 

structure. These modes (WGMs and “photonic dot” states) aim at coupling with QDs at 

different locations inside the cavity, which can be used in developing fabrication 

techniques of cavities with strong coupling effects. 

2.4 Conclusions 

In conclusion, the results of experimental studies of semiconductor micropillars have 

shown a possibility of selective excitation of WGMs and “photonic dot” states. The 

results of numerical modeling of WGMs in micropillars performed in this thesis 

confirmed that WGMs can be excited in such cavities despite the fact that the optical 

confinement in the vertical direction is relatively weak. The results demonstrate the 

potential advantage of using WGMs for CQED experiments in GaAs/AlGaAs pillar 

microcavities. For strong coupling with individual QDs, Q / V  is the figure of merit to 

be maximized. For 4-5 μm circular we estimate Q / V ~ 3.6×104 using Q=20000 and 

calculated modal volumes V~ 0.3 μm, two times larger than that for photonic dot states in 

pillars with comparable or smaller sizes. 

The large figure of merit achieved for the WGMs is reminiscent of the similarly high 

values achieved in microdisks [26, 27]. The vertical optical confinement is weaker in the 

pillar cavity, leading to approximately two times larger WGM modal volumes compared 

to microdisks of a comparable size. It should be noted, however, that in principle the Q-

factors of WGMs in pillars may be higher than in microdisks due to reduced out-of-plane 
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scattering at the vertical interfaces of the cavity obtained by epitaxial growth as opposed 

to etching. To take advantage of this factor, the scattering at the sidewall surfaces of the 

pillars needs to be minimized, for example by additional wet etching of pillars.  

In order to provide a qualitative description of WGM spectra observed in 

semiconductor micropillars a numerical 3D FDTD modeling was developed based on 

RSoft FullWave software. Considering the size of the structure and the computational 

resources, the number of the Bragg layers was reduced from more than 20 layers to 2-3 

layers. In addition, small thickness of the Bragg layers allows to simply them with the 

effective index approximation.  

A good agreement with experimental spectra was obtained for cylindrical and 

elliptical micropillars with dimensions from 2 to 5 μm. The weak convergence trend was 

not observed in contrast compared to the one seen in the experimental results. The 

difference between them may come from the material dispersion effect that was not 

considered in the calculation. Finally, small modal volumes of the order of 0.3 µm3 for 

pillars with sizes 4-5 µm from the calculation were determined for WGMs in cylindrical 

and elliptical micropillars demonstrating potential advantages of these structures in 

CQED studies. 

 

 

 

 

 



 
 
 
 
 

CHAPTER 3: COHERENT WGM COUPLING IN BI-SPHERES 
 
 
3.1 Introduction 

Optical resonant mode coupling in spherical microcavities has drawn considerable 

attention recently in order to transport optical power efficiently for the potential 

applications in coupled-resonator optical waveguides (CROWs) [87, 85, 114, 121, 141]. 

The simplest of such structures is a single photonic molecule such as a dielectric bi-

sphere which has been studied experimentally [76, 77] and theoretically [73, 82, 142]. It 

has been shown that the spectrum of photonic molecular states is modified significantly 

from the normal mode spectrum of a single sphere. Interaction of the two WGMs with the 

same resonant frequency in an identical bi-sphere will split the frequency into two split 

frequency components: bonding states (Bs) and antibonding states (ABs). These split 

frequency components in a size-matched bi-sphere have revealed the coherently coupled 

photonic molecular states [73]. 

In the applications of photonic circuits or CROWs it is important to quantify the 

coupling constant(κ) between the two split frequency components based on the properties 

of the normal modes in a single sphere to achieve coherent optical transport. In addition, 

the broken degeneracy in azimuthal mode coupling has been studied [80] in bi-spheres 

that are located in microwells under conditions of local photoexcitation. However, this 

geometry leads to touching between the spheres and sidewall surfaces of the trenches 

with many poorly controlled points of contact between the spheres and the walls of the 
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microwell. This can lead to unpredictable leakage of WGMs into the substrate. In many 

applications, the bi-spheres should be located on top of a flat substrate that defines the 

boundary condition. 

 

 
 
FIGURE 3.1: Modeling results of WGM of a sphere for substrate effects. 

The 1
30TE  WGM is from a polystyrene sphere with a diameter 4.5 µm (a) 

Linewidth variation versus the azimuthal mode number m for different index ns of 
the substrate. (b) Geometry of sphere-substrate. (c) Normalized spectrum of even 
m modes in the presence of the substrate [56]. 
 

This dielectric substrate broadens the linewidth of WGMs [56] which was 

investigated in the geometry shown in Figure 3.1(b). In this work, the scattering spectrum 

of a single sphere on substrate was calculated for each m mode based on the rotational 

symmetry along the z axis. The results of this calculation for the 1
30TE  WGM for 

polystyrene sphere with a diameter of 4.5 µm were shown in Figure 3.1. As the azimuthal 

mode number m gets smaller than around 20, the linewidth increases rapidly except for 

the sphere in free space (ns=1) as shown in Figure 3.1(a). This strong dependence on m in 
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the linewidth mainly comes from the varying distance of the mode from the substrate. 

The EM field of WGMs is confined at a distance 2/122 )/1( lmr −  on both sides of the 

equatorial plane and thus at a distance of [ ]2/122 )/1(1 lmr −−  from the substrate [56]. 

Therefore, for smaller m the distance gets small enough to allow for significant 

evanescent coupling with the substrate resulting in the linewidth broadening as shown in 

Figure 3.1 (c). 

3.1.1 Split frequency components with respect to the normal modes 

The internal field distribution and the spectral features of the photonic molecular 

states were calculated [73] and observed [76] in many studies. Miyazaki and Jimba’s 

paper [73] stated that in analogy to the quantum-mechanical formation of the molecular 

orbits, it is expected that the interaction between spheres brings about the bonding and 

antibonding states of the EM field. These states can be expressed as a linear combination 

of the Mie resonance states of each sphere. Also, Fuller [143] has observed numerically 

that the EM coupling between spheres causes the narrow Mie resonance to split into 

distinct, relatively broad peaks and dips in the forward-scattering spectrum of the 

bisphere.  

Theoretical studies [73, 143] can take advantage of the optical symmetry of the 

structure in coupled spherical cavities when they are in free space. However, in most real 

applications the substrate plays a very important role [79] in defining the optical modes 

due to the interaction of the evanescent field tail outside the sphere with the substrate. In 

Miyazaki and Jimba’s paper [73], the two spheres in free space are aligned along the z 

axis which is the axis of the bi-sphere as shown in Figure 3.2. Since there is no substrate 

that supports them, the optical symmetry can be established along the axis of the bi-
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sphere. In this case, the fundamental modes (n=1, l=|m|) are circulating in the plane (x-y 

plane) that is perpendicular to the axis of the bi-sphere. The planes of such WGMs in two 

spheres are parallel to each other and have no crossing point. Therefore, the two 

fundamental modes in each sphere are not coupled, which results in zero splitting. On the 

contrary, the smallest two azimuthal order modes overlap at the interface between the two 

spheres. Therefore, it is expected that the coupling between the smallest azimuthal modes 

should be the maximum in this geometry [73]. 

 

 
 

FIGURE 3.2: Bi-sphere in free space aligned along the z axis. 
Two fundamental modes are shown in two spheres and define the plane (x-y 
plane) where they are circulating. This geometry is similar to Miyazaki and 
Jimba’s paper [73]. 
 
 
Compared to the theoretical work above, in our experiments, the coherent bi-

sphere is placed on top of the glass substrate. The substrate breaks the axial symmetry of 

the bi-sphere and thus defines the new boundary conditions for the system. When the two 

spheres are separated by a large distance, there is no interaction between them. In this 



  
69

case, each sphere supports its own resonant modes with respect to the substrate as 

mentioned in the introduction section. The Normal axis (z axis), which is perpendicular 

to the substrate will define the orientation of fundamental WGMs in the equatorial plane 

of each sphere parallel to the substrate. Therefore, the fundamental mode that has the 

smallest mode volume and largest Q-factor can be defined along the circumference of the 

equatorial plane of each sphere. Each fundamental mode has the smallest radial number 

(n = 1) and its azimuthal mode number (m) is equal to the angular mode number (l). 

Depending on the propagation direction along the circumference, the azimuthal mode 

number m can be equal to +l or –l as shown in Figure 3.3. 

 

 
 

FIGURE 3.3: Schematic diagram of the fundamental modes of two separated spheres. 
Two spheres are separated by gap d and their fundamental modes are defined in 
the equatorial plane parallel to the substrate.  
 
 

 As the separation d between two spheres in Figure 3.3 gets smaller, the normal 

modes of each sphere start interacting with each other due to an overlap of their 

evanescent fields in the area where they are separated by the small gap d.  One sphere 

with respect to the other will start perturbing the normal modes and vice versa. For 

touching or almost touching spheres the situation is similar to the formation of electronic 

molecular states [82]. As it was discussed previously in the introduction section such 
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coupling can give rise to formation of two split components [82], bonding and 

antibonding molecular states for each WGM eigenstate. In other words, these states can 

be expressed as a linear combination of the Mie resonance states of each sphere [73]. 

This definition is different from the case for the bi-sphere without substrate [73] where 

the axis of the bi-sphere acts as the optical symmetry axis in defining the modes. 

3.1.2 Observation of split frequency components 

The optical coupling between the optical cavities has been observed in various 

photonic microstructures such as planar semiconductor microcavites [144] and photonic 

molecules [145]. The experimental observation of the coupled states in monodispersive 

bispheres was achieved by T. Mukiyama et al. [76] in a bisphere. In this work, 

monodispersive polystyrene spheres (refractive index 1.59, sizes from 2 to 5 µm) were 

soaked in a solution of dye (Nile Red, concentration is about 1022 molyl, fluorescence 

FWHM is about 70 nm). Dye doped spheres were placed on a glass plate under a 

microscope. The spheres were manipulated with an optical fiber probe which was made 

by pulling the multimode optical fiber in a flame. By using a microscope objective lens, 

the individual spheres were excited with the second harmonics of a CW Q-switch Nd-

YLF laser (λ = 527 nm). The dye fluorescence was collected with the same fiber probe 

and sent to a spectrometer with a liquid nitrogen cooled charge-coupled device (CCD) 

detector. Then, they measured the spectrum in parallel (Figure 3.4(A)) and perpendicular 

(Figure 3.3(B)) direction with respect to the tapered fiber tip as shown in Figure 3.4(a). 

The fluorescence spectra of individual spheres (C) and the bisphere (A, B) in the 

vicinity of 1
30TE  and 1

29TE resonances are shown in Figure 3.4 (b) and (c). For both 

polarizations, they observed new peaks due to an intersphere coupling, in the parallel 
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configuration (A), but not in the perpendicular configuration (B). The intersphere 

coupling is maximum for the pair of modes whose orbitals include the contact point and 

lay in the same plane. Therefore, the fluorescence of the coupled modes is maximum in 

the direction parallel to the bisphere’s axis. As a result, the signal from the coupled 

intersphere modes is more pronounced in the parallel configuration than in the 

perpendicular configuration. 

 

 
 

FIGURE 3.4: Optical coupling of nearly identical bisphere. 
(a) Microscope images of the bisphere and the fiber probe. Two detection 
geometries; parallel (A) and perpendicular configuration (B). (b), (c) Spectra of 
resonance bisphere of 1

30TE  mode and 1
29TE  mode in parallel configuration (A) 

and perpendicular configuration (B). Spectra (C) show the fluorescence of 
individual spheres before contact. The arrows indicate the coupled modes [76]. 
 
 
On the other hand, smaller splitting in the coupling of the azimuthal modes with 

smaller numbers in bispheres has been studied for the two spheres in a microwell [82]. 

The experimental geometry [146] for off-axis excitation and detection of their emission 

spectra and microscope image of the structure are shown in Figure 3.5(a) and (b), 

respectively. In this work, the photon lifetime spectral distribution in two coherently 
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coupled spherical microcavities is studied experimentally and theoretically. The 

multipeak narrowband modal structure resulting from lifting the azimuthal mode 

degeneracy compared to the peaks of non-interacting microspheres is shown in Figure 

3.6(a). Another key observation of this study is that the coupled molecular states 

appeared to have much higher Q-factors compared with that of single microsphere. The 

ratio between the photon lifetime of m modes of the photonic molecule and one of a 

single microsphere is shown in Figure 3.6(b).  

 

 
 

FIGURE 3.5: Bisphere in a microwell. 
(a) Experimental geometry for off-axis excitation and detection of emission 
spectra from two microspheres in a microwell. (b) Microscope image of the 
structure [81] 

 
 

 
 
FIGURE 3.6: Multipeak narrowband spectrum from a biosphere. 

(a) Emission spectra from two microspheres (solid curve) with off-axis excitation 
and detection and non-interacting microspheres (dashed curves). (b) Ratio 
between the photon lifetime of m modes of the bisphere and one of a single 
microsphere [146]. 
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In summary, the WGM eigenstates of a sphere on substrate are determined by the 

interaction with substrate compared with those of a sphere in free space. The substrate 

also broadens the linewidths of low azimuthal modes owing to photon tunneling into the 

substrate. Another interesting property of the azimuthal modes in a coherently coupled 

bisphere is the lifting of the degeneracy for the pairs of modes with the same m numbers 

resulting in a multipeak narrowband modal structure. These peaks with higher Q-factor 

can be used as a basis for a multichannel, wavelength-tunable optical delay-line device 

[146].  In this work, however, the lifting of the azimuthal mode degeneracy was shown 

only in the spectral domain without showing the spatial profiles of the azimuthal mode 

coupling in a coherently coupled bisphere. The points of contacts with the walls of the 

microwells were not controlled in the experimental configuration of this work.  

3.2 Temperature tuning of spheres 

In order to obtain the coherent coupling in a bisphere, one of the critical 

conditions is the small size or index variation. Previous works in our group [88] 

demonstrated the coupling efficiencies of size-mismatched spheres. The optical coupling 

of the two size-mismatched spheres with sizes 3 µm (S, source sphere) and 2.4 µm (R, 

receiving sphere) is shown in Figure 3.7. The antibonding and the bonding photonic 

molecular states shown in Figure 3.7 (a) and (b), respectively, correspond to two coupled 

components.  The calculated spectral energy densities deposited in the receiving sphere 

shown in Figs. 3.7 (c) - (j) demonstrate the dependency of the separation distance 

between the two spheres. As the inter-resonator gap d becomes smaller than 0.3 µm, the 

splitting between coupled states, also called normal mode splitting, starts to develop as 

shown in Figs. 3.7 (c) – (f). 
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FIGURE 3.7: Optical coupling of two size-mismatched microspheres. 
(a) Antibonding and (b) bonding photonic molecular states. (c)-(j) Spectral 
energy densities deposited in the receiving (R) sphere for different distances d 
between the two spheres, source (S, 3 µm) and receiving (R, 2.4 µm) spheres [88]. 
 

It is seen that the strongly detuned states (Δ>0 or Δ<0) can be coupled only at 

touching or nearly touching cases. However the resonant states (Δ~0) can be coupled at 

much longer distances and with much higher efficiencies. This means that only same size 

spheres can be coupled with maximal efficiency. Therefore, the size sorting for the 

coherently coupled microsphere circuits is the very important task. In this section, one of 

the methods to tune the WGM resonances in microspheres is introduced.  

3.2.1 Temperature tuning with NiCr wire 

 In order to obtain an identical bi-sphere, the size or index of one of the spheres in 

the bi-sphere should change according to those of the other sphere. Comparing the 
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spectra for multiple spheres is one of the methods with which one can select very 

identical spheres due to high Q-factors of WGMs of the spheres. The size and the index 

of the sphere are two of the parameters that can shift the WGM peaks. The dependence of 

the position of WGM peaks on the size and index of spheres can be expressed as [147] 

    
00 n

dn
r

drd +=
λ
λ         (3.1) 

where r is the radius of the sphere, λ0 the resonant wavelength, and n0 the index for large 

spheres ( λ>>r ), regardless of the WGM polarization and the mode numbers. Eq. (3.1) 

enables us to measure the change of the size or the index of the sphere by monitoring the 

change in the resonant peaks. The diameter of the sphere can be changed by mechanical 

[63] or acoustic action [147] on the sphere. 

 Alternatively, the size and index of the spheres can be changed by changing the 

temperature of the cavities. In our experiments the heating effect occurs due to touching 

between the sphere and the substrate (NiCr wire). The thermal heating through the 

substrate increases the temperature of the sphere and hence changes the size or index of 

the sphere. 

The experimental setup for the temperature heating of the microspheres is shown 

in Figure 3.8. The current flows through the NiCr wire (1.3 mm diameter) and the two 

spheres (5 and 7 µm) are attached to the surface of the wire. The optical image obtained 

by the imaging spectrometer shows two spheres sitting side to side at the NiCr wire as it 

can be observed through the wide spectrometer slit (500 µm). The two spheres are 

located in the center of the spectrometer slit as shown in Figure 3.8(a). For the spectral 

measurements the width of the spectrometer slit is reduced down to 100 µm as shown in 

Figure 3.8(b). 
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FIGURE 3.8: Temperature tuning of microspheres using a NiCr wire. 
(a) Optical image through the spectrometer slit of the two spheres (5, 7µm) and 
the NiCr wire.  (b) Schematic diagram of the temperature tuning using a NiCr 
wire.  
 
 
The spectral images of such bi-spheres are shown in Figure 3.9. The spectral 

shifts of the resonant peaks as a function of applied current are illustrated in this figure. 

The blue and red dotted lines show the reference line for the 0 mA current applied. All 

the resonant peaks from 5 µm sphere show blue shift in wavelength, which means that 

the effective path length of WGMs decreases with the temperature, which can be 

explained by changes of the size or index of spheres. The graph of the dependence of the 

resonant peak with respect to the applied current is shown in Figure 3.10. It is seen that 

the heat-induced changes of the path length increase nonlinearly with the temperature. 

The change of the WGM wavelength is about 0.51nm for the current variation from 0 to 

22.5 mA. There are other factors which are important in these experiments such as the 

dynamical characteristics of the current. The problem is the heating process possesses 

inertia typically in a millisecond range, so that it takes time for a system to keep up with 
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the variations of the current. Generally, the changes of the WGM resonant positions 

achieved in these experiments have an irreversible nature. 

 

 
 

FIGURE 3.9: Resonant peaks shifted by the applied currents for 5 and 7 µm spheres. 
 
 

 
 

FIGURE 3.10: Wavelength shift of the peak (blue dotted line) with applied currents. 
 
 

In attempt to fabricate the identical bi-sphere, two 5 µm spheres that are 

reasonably close in size were tuned with NiCr wire used as a local heater as shown in 

Figure 3.11. The two spheres were aligned perpendicular to the NiCr wire and oriented 
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parallel to the spectrometer slit. In this experimental configuration, one sphere was 

attached to the NiCr wire but the other was attached from the opposite side of the first 

sphere in such a way that it was not in direct contact with a heating wire. This setup was 

investigated in order to understand the temperature diffusion effect that may be too large 

to heat the only one sphere that is attached to the wire. 

 

 
 

FIGURE 3.11: Temperature tuning of two 5 µm spheres by a NiCr wire. 
(a) Schematic diagram for two 5 µm spheres. (b) Optical image through the slit. 
(c) Spectral image for spectral shift. 
 
 
The optical image of the two spheres with NiCr wire through the spectrometer slit 

with wide opening (500 µm) was shown in Figure 3.11(b). The spectral images of these 

spheres are shown in Figure 3.11(c). In this figure the peak shift is plotted against the 

current in a wire. The top spectral image for 0 mA shows that the two spheres have very 
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close sizes. The difference in wavelength is only about 0.4 nm which corresponds to the 

size difference of about 3.8 nm. The spectral image shows the uncoupled WGM peaks in 

two spheres along with their coupled split components which have much smaller 

intensities.  

As the applied current increases, the two peaks from the two spheres shifted to the 

left simultaneously, meaning that the temperature diffusion is so efficient that the two 

spheres are heated simultaneously. It is interesting, however, that the amount of the 

temperature shift exceeds the WGM wavelengths difference in two spheres. This means 

that in principle achieving the exact resonant conditions should be feasible through the 

temperature tuning of just one these spheres. This can be achieved by removing thermal 

contact for one of these spheres. In other words, had the second sphere hanging on the 

first sphere been isolated from the source of temperature heating, the WGM peak 

positions of the first sphere could have been moved through the perfect resonance with 

the second sphere 

3.2.2 Temperature tuning with Cr chip-scale micro heaters 

In attempt to confine heating effects we reduced the sizes of heaters to microscale 

dimensions. This was realized in chip-scale structures with local heaters fabricated as thin 

metallic wires with dimensions comparable with the dimensions of the spheres, as shown 

in Figure 3.12. One of the five Cr stripes (3.5 µm width) is connected to the positive and 

negative poles of the current source in order to heat only one sphere that is sitting on the 

stripe. In addition, small holes for all the patterns are etched in the centers of the stripes 

for increased local heating effect due to reduced cross-sectional area of the metallic 

stripes. These holes can be used to accommodate microspheres that allow to improve the 
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quality of assembly microspheres on a chip. These patterns were fabricated in the 

cleanroom facility at the University of North Carolina at Charlotte.  

 

 
 

FIGURE 3.12: Micro patterns with Cr thin film using EBL.  
 
 
 The thin Cr film was used to fabricate these micro-heaters since the NiCr thin 

films were subjected to a delamination while the wet etching was performed. The main 

fabrication process is illustrated in Figure 3.13 with colored layers for different materials. 

The first step is to clean the substrate (microscope glass slide) inside the Piranha (Sulfuric 

Acid 96 % 1000 mL + Hydrogen peroxide 800 mL) for longer than 20 minutes. This 

process will remove some organic debris from the surface of the substrate. The substrate 

is rinsed in the cascade water flow for about 10 minutes and dried by a Nitrogen blow. 

NiCr or Cr is deposited with the sputter on the clean substrates to make thin film.  The 

thin NiCr or Cr film with thickness of about 200 nm was deposited for about 60 minutes 

as it is shown in step (a) in Figure 3.13. 
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FIGURE 3.13: Fabrication process for micro patterns for local temperature heating.  
 
 

Once the thin film is deposited, the PMMA (EBL photoresist) is coated by spinner 

after hard baking (90 degrees for about 5munites). Step (b) shows the Cr layer and 

PMMA layer of about 250 nm thickness. The PMMA was baked at 120 degrees for about 

4 minutes. Next step is developing the PMMA using EBL and cleaning the structure with 

IPA (isopropyl alcohol) as shown in step (c). 

The patterned PMMA layer acts as a mask to transfer the structure into the Cr 

layer. The structure was inserted into the Cr etchant for about 2 minutes. Since the Cr 

etching rate is relatively fast, attention should be paid until all the Cr is removed to make 

a transparent opening through the substrate as shown in step (d). The last step is to etch 

the oxide below the Cr layer, which is very important for better isolating the heat 

diffusion. This oxide etching is done using the STS AOE (Advanced Oxide Etch) tool. 

During this process, the PMMA layer is etched also as shown in step (e) in Figure 3.13. 

Then, the positive and negative poles of the current source are connected to the pads by 

using the conductive glue. 
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FIGURE 3.14: Four spheres on top of the patterns. 
 
 
Once the micropatterns are fabricated, the spheres to be tuned are placed at top of 

each pattern as shown in Figure 3.14. Four microspheres are placed on top of the patterns 

and the last one is left on the large pad. The second sphere from the right is to be tuned 

by the current flow through the corresponding metallic stripe. In order to open a 

possibility of measuring the emission spectrum of the microspheres, the edge of the 

pattern is cleaved as shown in Figure 3.15. The spectral shift with applied current was 

observed, however, the small dimension and imperfect fabrication of the patterns limited 

the repeatability of the results. In addition, the pulse period dependence was not 

optimized for the sphere to be tuned.  

 

 
 

FIGURE 3.15: Five microspheres perpendicular to the cleaved edge of the substrate. 
The second sphere from the bottom is to be tuned. 
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Thus these studies showed that in principle, the tuning of WGM resonances by 

using local heating effects in chip-scale structures is possible. These studies also revealed 

some problems of such temperature tuning effects such as spatial diffusion of heat and 

complicated dynamical responses of the structures to the local thermal effects. In addition 

the fabrication of such structures is rather challenging since it requires a combination of 

standard techniques of lithography and etching with the following steps of 

micromanipulation with microspheres. Despite these difficulties we believe that with 

some improvement of technology of fabrication of microheaters, this approach can be 

used in future for simultaneous tuning of tenths of cavities on a chip. 

3.3 Normal mode splitting in the spectral images 

Although the monodispersive spheres can be obtained due to the WGM 

temperature tuning methods described above we decided for this purpose to use an 

alternative approach in this thesis. This approach is based on individual inspection of 

tenths of spheres on the substrate in order to select more uniform spheres. Similar 

approach has been used in previous studies of bispheres [82] and chains [85]. In our work 

we improved the accuracy of selection of supermonodispersive spheres up to a theoretical 

limit δ~1 / Q, where δ - size dispersion of spheres, Q-quality factor of WGMs on the 

substrate. For example for 5 µm spheres we achieved δ ~ 0.03 %, highest uniformity 

reported for microspheres up to date. 

3.3.1 Experimental setup 

In these experiments dye-doped polystyrene spheres with diameter of 5 µm 

(refractive index 1.59) are used to investigate the coherent coupling properties.  A drop of 

dye-doped microsphere suspension was cast on the glass substrate and dried for at least 
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24 hours. Once the spheres dried completely, their spectra were measured using the 

imaging spectrometer. The pumping through a narrow band filter (450-490 nm) from the 

mercury lamp was provided using an inverted microscope. The pumping intensity was 

lower than the lasing threshold for the dye-doped microsphere. At the resonant conditions 

a small fraction of the broad band fluorescence emission (510 -560 nm) of the dye 

molecules inside the spheres is coupled into WGMs. (The fluorescent (FL) excitation 

(510 -560 nm) is coupled into the WGMs of the spheres.) 

The fluorescence spectrum and corresponding spectral image of the source sphere 

with 5 µm diameter are shown in Figure 3.16. The top image shows the spectrum with 

the modal orders which are characteristic numbers in Mie [137] resonance of a spherical 

particle. The interpretation of spectral peaks can be achieved [51, 52, 86] due to 

comparison of the peak positions with calculated positions of Mie resonances. In our 

work it was achieved using the principle of scaling of the WGM wavelength with the size 

of the spheres on the basis of similar interpretation of the peaks performed by other 

groups [80, 85] for spheres with similar sizes.  In our work we used the fact that the FL 

spectra of spheres with close sizes are qualitatively similar in terms of proportions of 

separations between different groups of WGM peaks with different polarizations and 

numbers. This allows our results to be compared with the peak positions and 

interpretations achieved by other groups [56, 57, 85]. In principle it should be noted that 

such an interpretation can also be achieved through FDTD modeling similar to that 

described in the previous chapter, as it was done by Kanaev et al. [88]. 

The left bottom image in Figure 3.16 shows the 5µm diameter sphere on a 

substrate. The narrow slit (50-100 µm) has the vertical orientation that is perpendicular to 
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the direction of the spectral image which is on the right. There are three peaks 

corresponding to three angular numbers l for the first and second radial order modes with 

transverse electric (TE) and transverse magnetic (TM) polarization in the spectral 

window (510 – 550 nm). The first radial mode peaks are 1
42TE , 1

41TE , and 1
40TE for TE 

and 1
39TM , 1

40TM , and 1
41TM  for TM polarization. The second radial modes are 2

35TE , 

2
36TE , 2

37TE for TE and 2
34TM , 2

35TM , 2
36TM for TM polarization. The azimuthal mode 

numbers are omitted due to the fact that we are not able to resolve the ultrafine structure 

of these modes in the spectrum presented in Figure 3.16. The spectral image shows that 

the vertical stripe, such for example as 1
41TE , manifests itself as a straight streak, which 

means the sphere has a very good spherical shape with a negligible eccentricity. 

 

 
 

FIGURE 3.16: Spectroscopy of 5 µm dye-doped sphere. 
Spectrum (top), spectral image (bottom), and measurement geometry with the 
narrow slit of spectrometer. 
 
 
The spectral image from the spectrometer shows very narrow multiple peaks with 

Q-factors of about 4×103 of Mie resonance with a broad background emission of the FL 

between 510-550 nm. These narrow peaks appear due to coupling of spontaneous 
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emission of dye molecules into WGMs in spheres. It is possible to identify the third radial 

orders in the spectrum of 5 µm sphere but their linewidths are broad and overlapped with 

lower order peaks. Interestingly, the second radial order peaks show stronger intensity 

compared to the first orders. This feature has been noticed by other groups [84-86], 

though the reason for this behavior is not completely understood. As the wavelength 

increases, the free spectral range (FSR) increases. 

In order to select monodispersive pairs of spheres, spectra of more than 50 dye-

doped microspheres were measured and brought into a pool of similar spheres. The most 

identical two spheres were selected from the pool on the basis of spectroscopic 

characterization of the WGM peak positions, as explained later. This selection process is 

time consuming. The two sorted spheres were placed at the edge of a clean glass 

microscope slide by using the micromanipulation. A tapered fiber tip, fabricated in the 

clean room, was used to manipulate the spheres. The capabilities of this technique are 

used to assemble the first character of Korean as shown in the SEM image of Figure 3.17 

(a). 

 

 
 
FIGURE 3.17: SEM images of microspheres manipulated by a tapered fiber. 

(a) First Korean character formed by micromanipulation using the tapered fiber 
tip. Bi-sphere aligned parallel (b) and perpendicular (c) to the edge of the 
substrate. 
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Two identical spheres are brought into contact to form a coupled resonator as 

shown in the SEM images of Figure 3.17 (b) and (c). Figure 3.17 (b) shows the 

orientation of the bi-sphere parallel to the edge line of the substrate. This orientation is 

very useful for measuring the emission spectrum from the contact point between the two 

spheres and from the edges of the spheres where the strong scattering intensities from the 

coupled modes can be captured. 

Another interesting geometry is the perpendicular orientation of the bi-sphere 

with respect to the edge line of the substrate as shown in Figure 3.17 (c). This geometry 

allows access to the emission along the photonic molecular axis. In order to interpret the 

spectral images from the same bi-sphere, all the different measurement geometries should 

be considered. Some resonant peaks are very close to each other and can be overlapped or 

superimposed, which makes their interpretation to be complicated. 

3.3.2 Spectral images detected in various configurations 

The schematic diagram of the two spheres on the substrate with large separation 

and their spectral images with mode numbers are shown in Figure 3.18 (a). The two 

preselected almost identical microspheres are placed on top of the substrate and the 

spectrometer slit is aligned parallel to the two spheres. The optical pumping of the 

spheres and the detection of their fluorescence was performed perpendicular to the 

substrate planes. The spectral image shows that all peaks aligned very well with each 

other in two spheres. This means that for the selected spheres the size disorder was 

limited at the level ~0.03 % determined by the factor of 1 / Q. 

The resolution of the spectrometer is equal to the product of the linear dispersion 

of a given model of spectrometer and the slit width. The linear dispersion of Acton Pro 
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spectrometer with 1200 line/per mm grating is 1.4 nm/mm. With the slit width of 100 

micron it provides a resolution of 0.14 nm. 

 

 
 

FIGURE 3.18: Spectral images from different measurement geometries. 
(a) Two identical spheres with big separation and their spectral images. (b) Bi-
sphere aligned along the edge of the substrate and the spectrometer slit, and its 
spectral image. (c) Axis of bi-sphere perpendicular to the edge line of substrate 
and the spectrometer slit, and its spectral image.  
 
 
The second order radial order peaks also show the large intensity at the edges of 

the sphere. The first order peaks show relatively uniform intensity along the cross-section 

line of the sphere. For example, 2
36TE  and 2

35TE  show two large peaks that are located at 

the edge of the spectral image whereas 1
41TE  and 1

40TM  show fairly uniform (even) 

intensity across the spectral image. Free spectral ranges (FSR) for the second radial order 
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modes with TM polarization (between 2
36TM  and 2

35TM , and between 2
35TM and 2

34TM ) 

which are well isolated from other modes, are shown to be about 12 nm. The value of 

NMS can be estimated as [138] 

1
)1arctan(

2 2

22

−
−=Δ

n
n

rFSR π
λλ     (1) 

where λ is the free space wavelength, n refractive index of sphere, and r radius of the 

sphere. This formula for the sphere with experimental parameters (r = 2.5 μm, λ = 530 

nm, and n = 1.59) gives an estimate for FSR around 12.9 nm that is close to the 

experimentally observed value about 12 nm.  

In order to study WGM coupling phenomena two sorted almost identical spheres 

are brought into contact and aligned parallel to the edge line of the substrate as shown in 

Figure 3.18(b). The spectrometer slit is also aligned parallel to the axis of the bi-sphere. 

Excitation through the narrow (less than 100 μm) spectrometer slit is captured 

simultaneously and dispersed perpendicular to the orientation of the slit as shown in the 

right of Figure 3.18(b). In this geometry the slit is mainly capturing the coupled 

molecular modes located in the equatorial plane.  These modes correspond to coupling 

between fundamental modes (n=1, m=l) in individual spheres. The spectral image on the 

right of Figure 3.18(b) shows the mormal mode splittings (NMSs) at the three interfaces 

(1, 2, and 3 in the schematic image in Figure 3.18(b)). The two main observations in this 

image are: (i) the split components are seen only at the three interfaces, and (ii) the 

coupled states are dominated by these three areas, edges and center of bi-sphere, there are 

no coupled modes detected at other areas of the spectral images. 
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In order to explain these two observations, not only should the spectral and spatial 

distributions of WGMs be taken into consideration but also their scattering efficiencies. 

Since the direction of WGM scattering has a tangential direction in spheres, the spectral 

peaks observed at the edges of bispheres and at the touching point between the spheres 

have maximal contributions to the observed spectral manifestations of WGMs. The 

scattering efficiency reaches maximum for the collection of light perpendicular to the 

axis of the bi-sphere. Therefore, the three interfaces can be the best locations for 

observing the splitting states. In addition, the slit is located in the equatorial plane of each 

sphere where the two fundamental modes are coupled. Therefore, the coupling of the two 

fundamental modes of each sphere results in the largest splitting detected in spectral 

images presented in Figure 3.18(b). 

The second observation in this spectral image is that only the uncoupled states of 

the individual sphere are detected in the sphere regions between these interfaces 1-3 in 

Figure 3.18(b). As mentioned earlier it can be explained by poor efficiency of scattering 

of low order azimuthal modes into the collection optics in our experimental set up in this 

configuration. In addition, these very low azimuthal modes have poor coupling efficiency 

due to the small mode overlap with the same order of mode in the opponent sphere. Only 

several azimuthal modes from the fundamental modes (m = l) for the given WGM 

eigenstate show reasonable coupling to produce resolvable split components. Therefore, 

the straight lines in the sphere region can be associated with low order of azimuthal 

modes (m<<l). This will be discussed in the following section. 

The two split components are defined as the antibonding (AB, light blue) and 

bonding (B, red) states [78, 80] as shown in Figure 3.18(b). with respect to the normal 
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modes (dotted line, green) of the second radial order with TM polarization. These Bs and 

ABs are identified by the red dotted arrows and the light-blue dotted arrows, respectively, 

for the second radial order modes with TM polarization. For instance, the AB for 2
36TM  

is shown in light-blue dotted arrow at wavelength of 520.63 nm and B in red dotted arrow 

is at wavelength of 522.51 nm. The separation between B and AB split components is 

shown as NMS in Figure 3.18(c). For 2
36TM  peak it is equal to 1.88 nm. The NMSs for 

2
35TM and 2

34TM  are 2.05 and 2.19 nm, respectively. 

Therefore, the NMS for the second radial modes gets larger as the angular mode 

number decreases, i.e., the wavelength increases. This trend looks the same for all the 

other order modes and more detailed analysis will be discussed in the next section. 

Interestingly, in this geometry, the ABs molecular states are shown at the two outer 

interfaces whereas the Bs states are located in the center interface. This means that the 

two outer interfaces provide more scattering intensities from ABs compared to the 

scatterings from the Bs. However, at the central interface the B states are stronger than 

the AB states due the fact that the spatial distribution of B states is strongly peaked at the 

center of bi-sphere. 

The schematic diagram in Figure 3.18 (c) shows the geometry of the measurement 

that reveals interesting features of the coupling properties in bi-spheres. In this 

measurement geometry, the axis of the bi-sphere is perpendicular to the edge line of the 

substrate and the slit of the spectrometer. In addition, the slit of the spectrometer is 

perpendicular to the substrate. The optical axis of light collection optics is aligned with 

the axis of bi-sphere. Therefore, the scattering intensity from the first sphere located close 

to the edge line of the substrate is collected along the direction of the axis of the bi-sphere. 
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The weakly coupled WGMs with small azimuthal numbers are not well pronounced in 

Figure 3.18 (c) since the slit located at the center provides poor efficiency of collection of 

light scattered at the right and left boundaries of the spheres. The scattered light 

originating from coupled azimuthal modes with large numbers is collected more 

efficiently in this geometry. The reasoning for this behavior is not completely understood 

but can be connected with the depth of focus for our experimental setup. This will be 

investigated in further studies. 

The spectral image in Figure 3.18(c) shows that characteristic kite shape features 

occur near position of each uncoupled WGM peak. The second radial order modes 

( 2
36TM , 2

35TM , and 2
34TM ) especially show clearly the kites in the spectral images due to 

the fact that they are well separated from the neighboring peaks.  

The bonding (B) and antibonding (AB) states are shown in Figure 3.18 (c).These 

states can be associated with the horizontal vertices of kites. The corresponding states 

have maximal separation along spectral axis (in wavelengths) indicating that their 

coupling is strongest for a given set of azimuthal modes. These horizontal vertices of 

kites have the same spectral positions as B and AB states shown in Figure 3.18 (b). The 

horizontal vertices of the kites in Figure 3.18 (c) are located at the center of the spectral 

image of a sphere (along vertical axis). This spatial location is the place where the 

fundamental modes are circulating and the contact point between the two spheres is 

located. The splitting strength gets smaller away from the center of the spectral image of 

the sphere. This can be explained by the reduced spatial overlap of the lower order 

azimuthal modes similar to the previous results obtained for bi-spheres in microwells [80]. 
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Another experimental configuration is shown in Figure 3.19. In this geometry, the 

axis of the bi-sphere is perpendicular to the edge line of the substrate. The slit is oriented 

parallel to the substrate as shown in the schematic images in the left part of Figure 3.19. 

Three dotted red circles in the spectral images on the right show the split components in 

the vicinity of the position of uncoupled 2
35TM  WGM resonance for three different 

locations of the slit. Three dotted green arrows correspond to the center of the image of 

the sphere in vertical direction. In Figure 3.19(a) the slit is located in the center of the 

image of sphere with the corresponding spectral image on the right. The coupled 

components of 2
35TM  WGM resonance is shown inside the circle. The triangular shape 

for the B states to the right of the normal mode peak is clearly seen. In contrast, the AB 

states seem to manifest themselves as several streaks shifted to the left from the 

uncoupled WGM resonance rather than as a triangular shape. 

 

 
 

FIGURE 3.19: Spectral images by shifting the slit location. 
The slit is located with respect to the sphere on the central position (a), right (b), 
and right edge (c). Splitting states for different azimuthal modes for Bs in 2

35TM  
gets smaller as the slit moves to the right of the sphere. 
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The explanation of the observed asymmetry in the spectral images of the coupled 

states in this configuration requires further studies. The reason for the asymmetry has 

been explained by intermodal coupling [76]. There may be another reason connected to 

the different type of spatial distributions for the detuned bisphere coupling in the 

theoretical calculation [88] which is consistant with our results. One of the factors which 

can be important in further studies is connected with the role of the depth of focus for our 

imaging optics. Typically, we adjusted the depth of focus inside the first sphere in order 

to obtain most clear spectral images. However in our experiments the depth of focus was 

not controlled precisely. 

 The results presented in Figure 3.19 (b) correspond to a configuration where the 

slit is shifted a little bit to the right from the center of the sphere as illustrated in the 

schematic sketch. In this case, the slit is aligned with the azimuthal modes with smaller 

than l numbers. These modes spread inside the spheres away from the equatorial plan. As 

a result they have smaller spatial overlap. Their coupled components have smaller 

spectral splitting. This is generally consistent with the experimental observations in 

Figure 3.19 (b). The peaks along the green dotted arrow become weak and the separation 

between the normal mode and B state gets smaller. This is because the slit captures the 

splitting states from the lower order azimuthal modes and their splitting strengths are 

smaller. The spectral trends described above become more obvious with further shifting 

of the position of the slit illustrated in Figure 3.19(c). From this measurement, it is seen 

clearly that the lower order azimuthal modes have a smaller splitting strength.  
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3.4 Analysis of coupling states 

In order to understand the spectral image with the kite shape, the spatial mode 

distribution for each azimuthal mode has to be considered as shown in Figure 3.20. This 

is a simple schematic image which represents the distribution of field only qualitatively. 

The cross-sectional spatial mode distribution for the fundamental mode (m = l, n=2) and 

the lower order azimuthal mode (m <  l, n=2) are shown schematically in Figure 3.20(a) 

and (b), respectively. When the two spheres are separated by long distance, the two 

normal modes are defined with respect to the substrate. The fundamental modes are 

elevated from the substrate and so the interaction with the substrate is very small. 

Therefore, the leakage of the fundamental modes to the substrate must be small [56] 

resulting in large Q-factor. 

 

 
 

FIGURE 3.20: Two spheres with a big separation for the fundamental modes. 
(a) and lower order azimuthal modes (b).  
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On the other hand, the lower order azimuthal modes as shown in Figure 3.20(b) 

have smaller separation from the substrate. As the azimuthal mode number gets smaller, 

the largest peak of the mode moves closer to the substrate.  Due to this leakage to the 

substrate, lower azimuthal modes have smaller Q-factors [56] compared to the 

fundamental mode.  The exact number of azimuthal modes with sufficiently high Q-

factors is difficult to estimate.  On the basis of previous experimental work performed on 

spheres with comparable sizes [80] it can be assumed that at least about ten azimuthal 

modes with m numbers approaching that for the fundamental mode have sufficiently high 

Q-factors (Q>1000) that can couple with each other when the two spheres get in touch. 

 Once the two spheres are in touching position on the substrate, the evanescent 

field from the modes will overlap. This overlap will split the normal mode peak into B 

and AB states. In other words, the optical path length of one sphere will change due to 

touching the other sphere that has higher refractive index compared to the air. In Figure 

3.21(a) and (b) two configurations are shown where the two spheres are in contact and 

the two pairs of normal modes of 2
36TM  with different azimuthal modes are overlapped at 

the contact point. Their coupled components are detected at the center of the spectral 

image (line A) resulting in the maximal splitting along the horizontal diagonal of the kites 

shown in Figs. 3.21(c) and (e). This splitting is indicated as normal mode splitting (NMS) 

in Figure 3.18(c).  

On the other hand, the azimuthal modes with |m|<l have the maxima of intensity 

some distance from the equatorial plane, as shown in Figure 3.21(b). Their coupled 

components are detectable at the positions B and C indicated in Figs. 3.21(e). They are 

characterized with smaller splitting compared to that in the position A, as seen in Figure 
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3.21(d). The least coupled WGMs have positions approaching the vertical corners of the 

kites near the edges of the spectral image. The kites appear as continuous lines because of 

the limited resolution of our spectrometer (~0.1 nm). In fact, they are expected to be 

formed by a finite number of coupled pairs of azimuthal modes. Similar effects have been 

observed using off-axis excitation [80] in bispheres confined in microwells. The observed 

kites thus allow the unambiguous connection of NMS to corresponding WGM eigenstates 

identifiable by the positions of the kites’ vertical corners. 

 
 

FIGURE 3.21: Kite shape (◊) from coupling between the two normal modes ( 2
36TM ). 

Schematic image of the fundamental mode (a) and lower order azimuthal mode 
(b) in the bisphere. (c) and (e) Spectral images with splitting states from the 
fundamental mode (dotted line A) and the lower order azimuthal modes (two 
dotted line B, C). (d) Spectra from the dotted line A, B, and C. The central 
column illustrates the corresponding imaging points between the sphere and the 
spectral image. 
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3.5 Splitting strength dependence on optical parameters 

We measured and analyzed the spectral response of the bi-spheres with different 

sizes in order to quantify the splitting with respect to the optical mode numbers (l, n, and 

polarization) as shown in Figure 3.22. In spite of the difficulties with interpretation of 

coupled components due to the overlap of multiple peaks originating from different 

WGMs, we were able to measure the splitting from the bi-spheres with sizes from 2.9 up 

to 6 μm by considering all the detection configurations comparatively as illustrated in the 

previous section. Since the emission band of the green dye doped spheres spans the range 

of wavelengths from 510 to 550 nm with the same refractive index (n = 1.59) for all the 

spheres, the angular quantum numbers and the radial order numbers vary for different 

sphere sizes. The second order radial modes were analyzed for spheres with sizes from 4 

µm. The third radial modes can be measured for 6 µm spheres but their coupling 

strengths are comparable to the detection limit due to small separation and broad line 

width. The characteristic kite shapes in spectral images are shown to be very useful in 

relating the coupled states to their uncoupled eigenstates, which are WGMs in well 

separated spheres. 
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FIGURE 3.22: Coupling parameters as a function of the angular mode numbers. 
(a) First radial order dependency with TE (square dot) and TM (circular dot).  (b) 
Second (triangle) and third (star) radial order dependency with TE (hollow) and 
TM (filled). 
 

  The coupling parameter [76] was defined as half of the normalized splitting in 

wavelengths in the vicinity of the uncoupled resonant wavelength between the AB and B 

states. In most cases, the two split components are not symmetric with respect to the 

normal modes, so the coupling parameters can be considered as an average splitting 

strength. These two splitting states are from the coupling between the two fundamental 

modes that make the largest spatial mode overlap resulting in the maximum splitting  

The most apparent result from Figure 3.22 is the dependence of the coupling 

parameters on the angular mode numbers or sphere diameter regardless of the 

polarization and the radial order number. This can be explained by considering the fact 

that the smaller the sphere size or the angular mode number, the more evanescent electric 
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fields outside spheres, which results in bigger coupling parameters due to larger mode 

overlap [76].  

Another observation is that TE polarization shows larger coupling parameters 

than TM polarization for the first radial order numbers as shown in Figure 3.22(a). 

However, for the second radial order numbers TM polarization shows bigger coupling 

parameters and they are comparable for the third radial order numbers as shown in Figure 

3.22(b). The dependence of coupling parameters on the second radial order numbers in 

Figure 3.22(b) shows quite similar results as in Figure 3.22(a) for the first radial order 

numbers.  

3.6 Conclusions 

In conclusion, we have investigated the NMS and various coupling effects by 

means of the spatial and spectral distribution of the coupling of bi-spheres. We selected 

supermonodispersive bi-spheres by monitoring the spectrum of individual sphere. We 

observed characteristic and peculiar kites in spectral images of such bi-spheres. It is 

shown that such kites simplify the interpretation of dense spectral images of coupled 

cavities. This peculiar kite’s shape reveals that coupling between the respective azimuthal 

modes gets smaller with a decrease of azimuthal number. We have quantified the 

dependence of the coupling parameters on three mode numbers (l, n) by measuring the 

maximum splitting from the coupling between the fundamental modes (l=m, n=1). 

Coupling parameters are inversely related to the angular mode numbers and similar 

splittings are observed for different radial mode numbers. TE modes with first radial 

order show larger splittings whereas TM modes show larger splittings for second radial 

orders.  
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It maybe be possible to perform a massively parallel sorting of spheres with 

similar size resolutions which has been theoretically predicted [19] for microspheres 

based on using size-selective radiative pressure. Such supermonodispersive microsphere 

resonator circuits (MRCs) allow the control of tight binding photonic dispersions that can 

be used in many devices such as slow light structures, filters, arrayed resonator LEDs, 

sensors and microspectrometers. 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

CHAPTER 4: NIMS IN DETUNED MICROSPHERE CHAINS 
 
 
4.1 Introduction 

4.1.1 Optical transport in size-detuned microsphere chain 

 Recently optical transport in size-detuned microsphere chain has been studied due 

to WGMs coupling [87, 89] and NIMs [90]. The microsphere chains arranged as a linear 

chain provide optical transport due to two different mechanisms: (i) tight binding 

between WGMs, (ii) coupling occurring as a result of focusing produced by cavities 

operating as a series of periodically coupled microlenses [95]. Each sphere in the chain 

produces the photonic nanojet that has elongated shape and subwavelength lateral size. In 

a chain of spheres, such photonic nanojets result in periodic modes called NIMs [90].  

The strong coupling [76] between WGMs have been observed experimentally 

[76] in systems of supermonodispersive cavities selected using spectroscopic 

characterization. On the other hand, in size-detuned bispheres and in the chains of 

disordered cavities, WGM-related optical coupling was observed [87, 88] by use of 

evanescently coupled dye-doped spherical cavities pumped above the lasing threshold for 

WGM peaks [87]. Figure 4.1 shows the scattering spectra obtained from undoped 9 µm 

spheres (1-5) coupled to a source of light (dye-doped 10 µm sphere S). The scattering 

peaks originate from the WGMs resonances in the S sphere [87]. In this case, the ratio of 

signals measured for a peak at λ = 546.6 nm from the fifth and first undoped spheres 

corresponds to average attenuation of 3.7 dB per sphere [87].  The size dependence of the 
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transport efficiency is illustrated in Figure 4.2 for different chains with sphere sizes 

varying in 3-20 µm range. It is seen that the attenuation per sphere is ~3-4 dB and 

independent of the size of the spheres. This value of attenuation can be attributed to the 

fact that the exact WGM coupling conditions are improbable in the chains when ~1 % 

size variations occur [87]. 

 

 
 

FIGURE 4.1: Spectra from undoped spheres coupled to a dye-doped sphere. 
Five 9 µm spheres (1-5) are coupled to a source of light (dye-doped 10 µm sphere 
S) [87]. 

 
 

In this work [87], the S sphere possesses not only the evanescent fields but also 

radiative and scattering modes. Therefore, a possible mechanism of such optical transport 

can be connected with the formation of localized photonic nanojets at the shadow-side of 

each sphere illuminated by a plane wave [95]. In this mechanism the chain of spheres 

operates as a series of nonevanescently coupled microlenses for such modes [95]. The 

properties of NIMs in this size-detuned microsphere chains are different from the 

coupling of WGMs due to the radiative nature of photonic nanojets studied previously in 

single spheres under conditions of plane wave illumination [93, 94]. The existence of 
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NIMs in size-detuned microsphere chain has been demonstrated for the first time in dye-

doped microsphere chains [90]. These results [90] were presented in Chapter 1 in Figure 

1.13.  They showed that the losses are maximal in the vicinity to the source of light and 

gradually reduce along the chain down to ~0.5 dB per sphere. 

 

 
 

FIGURE 4.2: Dependency of the intensity of scattering peaks from different spheres. 
The intensities for different spheres (N=1, 2, 3, …) along the chain are 
normalized on the intensity of the same peak in the first undoped sphere 
[IN(λ)/I1(λ)] as a function of the distance between the centers of these spheres [87]. 
 
 
Some questions still remained open after all these studies. It was shown that the 

level of losses is decreased along the chains. However the level of these losses has not 

been studied in very long chains of cavities. 

The geometrical properties of NIMs such as their periodicity also require 

additional study. 

Transmission measurements have been performed [90] without spectral resolution 

for the transport of NIMs. This has been done using scattering techniques. Although 

NIMs are not strong resonant modes, it is interesting to study their transmission 
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properties with the spectral resolution. It is also important to perform such measurements 

by using more direct measurements of the transmitted light. 

In theory [95], the photonic nanojets are created by plane wave illumination. 

However in experiments [87, 89] it is possible to use evanescently coupled sources of 

light with WGMs such as dye-doped microspheres. In such cases one can expect a 

complicated interplay between different mechanisms of light transport to occur along the 

chains. These studies also require sufficiently long chains which have not been available 

previously. 

This chapter presents the results of such studies in extremely long (up to about 

100 spheres) chains. The results were achieved by using a combination of microscopy, 

spectroscopy, self-assembly and micromanipulation techniques.  

4.2 Spectroscopic measurement of losses of NIMs 

4.2.1 Fabrication of a microsphere chain 

It is critical to fabricate a very straight microsphere chain for this experiment. 

Two different kinds of microspheres, undoped with diameter of 4.1 µm and dye-doped 

(red, green, and blue) microspheres are shown in Figure 4.3(a) and (b), respectively as 

examples. In this experiment, chains of monodispersive (~1 % size dispersion) undoped 

polystyrene spheres (Duke Scientific Corp.,) with refractive index n = 1.59 and mean 

diameter 5.0 µm were fabricated on glass substrates by using the self-assembly technique 

[148].  

When a liquid drop with particles evaporates, the boundary between air and the 

liquid is pinned, that is, immobilized on surface defects. Then, the capillary flow pushes 

the particles to the boundary so that the particles can form certain shape as the 
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evaporation proceeds. Under certain conditions straight lines can be formed. The three 

conditions are: (1) evaporation occurs between partially wetting surfaces such as 

microscope slides, (2) the presence of pinning points, and (3) the presence of foaming 

surfactants [148]. 

 

 
 
FIGURE 4.3: Images of undoped and dye-doped microspheres. 

(a) Undoped polymer spheres in suspension with diameter of 4.1 µm, (b) dye 
doped polymer spheres for red, green, and blue fluorescence. 
 
 
In order to fabricate chains of spheres we used the self-assembly method 

developed previously for manipulating submicron spheres [148]. In this experiment, a 

drop of sphere suspension was deposited on the glass substrate and then another glass 

substrate was overlaid so that the sphere suspension became sandwiched between the two 

substrates as shown on top of Figure 4.4. It is observed that the liquid film shrinks down 

inside the two glasses due to the surface tension as it dries. The microspheres in the liquid 

were forced to move along the surface of the liquid and form a chain inside narrow liquid 

channel. By “pinning point” we mean an area on the substrate where the evaporating 

liquid tends to stay or aggregate. Such a point can be formed by a large cluster of 

touching spheres, by a single sphere of larger size, or by a defect on the substrate. The 

straight channels are typically formed as a result of stretching of microfluidic flows from 
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the areas with large deposits of microspheres to such pinning points, as illustrated on the 

bottom of Figure 4.4. 

 

 
 

FIGURE 4.4: Fabrication of chains by self-assembly method. 
Liquid suspension with microspheres sandwiched between the two substrate 
glasses (top) and two sphere chains start forming toward the pinning points 
(bottom) [148].  
 
 
About 24 hours are required for the liquid to dry completely. After the liquid is 

dried completely, the two glass substrates are separated carefully. Usually the self-

assembled microsphere chains are formed on both surfaces of the two substrates. Each 

glass substrate has to be examined in the microscope to find a straight long chain as 

shown in Figure 4.5(top). Once a chain is identified, a dye-doped sphere in Figure 4.3(b) 

is attached to the one end of the chain as a source of light as shown in Figure 4.5(bottom). 

Spheres are manipulated by a tapered fiber tip attached to the hydro-micromanipulator.   
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FIGURE 4.5: Optical images of a long straight chain. 
A straight chain is assembled from a pinning point (top) and a source sphere is 
attached to a chain (bottom).  

 
 

An example of a microsphere chain obtained by self-assembly is illustrated in 

Figure 4.6. These spheres are coated with gold in order to reduce the charging effect 

produced by the electron beam in the course of SEM characterization (JEOL Scanning 

Electron Microscope). The thin gold film with thickness around 150 nm was deposited 

before the SEM image was taken. There are three parts in this figure: the upper sphere 

cluster, middle sphere cluster and a straight chain on the bottom. The upper sphere cluster 

shows the curved edge lines formed as the liquid with spheres dry in the process of the 

self-assembly. The cluster of spheres in the middle region was broken by the 

micromanipulation. About 40 spheres are formed a straight chain which is shown in the 

bottom of Figure 4.6. Also the edge line of the microsphere slide close to the end of the 

chain is shown. The chains formed by the self-assembly method are fairly straight as seen 

in Figure 4.6 and all spheres are in touching position as shown in Figure 4.7. This SEM 

image is taken without the gold coating and therefore the edge of the spheres is slightly 

smeared out due to the charging effect of SEM.  
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FIGURE 4.6: SEM image of microsphere chain with residual clusters of spheres. 
Upper part of the image shows the curved edge lines formed by the process of 
drying of the liquid with spheres. 

 
 

 
 

FIGURE 4.7: SEM image of straight microsphere chain without gold coating. 
They form a straight chain without gaps between the spheres. 

 
 
 In the process of sample preparation we used size-mismatched spheres with about 

1-3% variation of sizes. Studies of coupling between size-mismatched spheres are 

important for developing applications since in commercially available systems of 

ultrahigh-Q resonators the size variations of the cavities are inevitable. In this work such 
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coupling phenomena were experimentally studied using one of the spheres as a local 

source of light and measuring the scattering spectra of EM energy from a chain of passive 

spheres. In addition, the transmission spectra were measured to investigate the 

transmission losses for very long chain. The numerical calculation was performed to 

understand the experimental observations. 

4.2.2 Experimental setup 

The experimental setup is shown in Figure 4.8 with inverted ΙΧ-71 Olympus 

microscope directly coupled to the imaging spectrometer (Princeton Instruments, Acton 

Pro 550) through the side entrance slit of the spectrometer.  

The image was obtained by the liquid nitrogen cooled CCD camera connected to 

the spectrometer. In the imaging mode the image of the chain is obtained using the white 

light illumination aligned with the slit with large width of about 500 µm. Once the chain 

is aligned well with the slit, the slit width was reduced to 50 or 100 µm allowing the 

detecting of spectrally and spatially resolved distribution of scattering intensity along the 

chain. A dye-doped microsphere (Green Fluorescent) with 5.0 µm diameter was used as a 

source of light. It was attached to one end of the chains using a tapered fiber, as 

illustrated above the microscope objective in Figure 4.6.  

The excitation of the source (green colored sphere) was provided by a Mercury 

lamp through a band pass filter at the absorption band (460-500 nm) of green FL dye of 

the source sphere with the intensity well below the threshold for lasing WGMs. Another 

band pass filter with a transmission window of 500-570 nm between the entrance slit and 

the objective blocks the pumping band and transmits only FL emission band of 

microspheres. The source sphere emits very narrow WGMs superimposed at the top of 
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the broad spectral background determined by the emission band (500-570 nm) of the dye 

molecules embedded in the polystyrene microspheres. 

 

 
FIGURE 4.8: Experimental setup for scattering measurement. 

Inverted microscope is optically coupled to the spectrometer with two gratings 
(600lines per mm and 1200lines per mm) and a mirror installed at the rotating 
turret inside the spectrometer. Liquid nitrogen cooled CCD camera with readout 
dimensions of 2048 × 512 pixels is used for capturing images or spectral images. 
 
 
It is important to stress that in this experiment the WGM eigenstates in the source 

sphere and the undoped spheres in the chain are all detuned due to random ~1% 

variations of the spheres’ sizes. The bi-spheres with a similar size disorder show reduced 

WGM-based coupling efficiency [88] due to the mismatch in resonant peaks. The sharp 

resonant peaks in the source sphere can be perturbed by the neighbor spheres if they have 

the WGM peaks which are sufficiently close in energy. However the coupling is expected 

to be much more efficient [88] under resonant or close to resonant conditions. If the 
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eigenstates are strongly detuned the coupling is still possible but with greatly reduced 

efficiency [88]. 

4.3 Optical transport measurements 

4.3.1 Scattering measurement 

In order to investigate optical coupling and transport through chains of size 

detuned dielectric microspheres, the scattering intensity was measured in two different 

geometries. One of them has the source sphere separated from the chain of passive 

spheres. In this case illustrated in Figure 4.9(a) the evanescent coupling is prohibited by 

large separation of the source sphere from the chain. The source is emitting EM waves 

with spherical wavefronts, however, because of the significant separation of the source, 

the waves incident at the end sphere in the chain can be approximated as quasi plane 

waves. This structure is a very good candidate for the observation of the NIMs in 

disordered chains of dielectric microspheres. 

In the second structure, shown in Figure 4.10(a), the source sphere is attached to 

the sphere chain formed by undoped spheres. The source sphere in this structure can 

provide not only the illumination with radiative modes but also an evanescent coupling 

due to WGMs excited in the source sphere. In this structure, it is possible to observe the 

resonant optical coupling by means of the quasi-WGMs with perturbed shape predicted 

[88] by the numerical modeling for size-mismatched bi-spheres.  

Figure 4.9 (a) shows the optical image of the first experimental configuration with 

a separated source which appears in the image as a white sphere due to FL emission. The 

16 undoped spheres formed a very straight chain acting as an optical waveguide. It is 

clearly seen that the source sphere is separated by a 12 µm gap which is larger than two-
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sphere distance. This is a sufficiently long separation to avoid evanescent coupling of 

WGMs from the source sphere into the chain. Usually a separation of about 1-2 microns 

is sufficient [88] to suppress the mechanisms of evanescent coupling. 

 

 
 

FIGURE 4.9: Spectral response of a chain excited by a separated doped sphere. 
(a) A chain of 5 μm spheres and a doped sphere imaged through the slit of the 
spectrometer, (b) spectrally and spatially resolved distribution of scattering 
intensity, (c) scattering intensity distribution measured at the 521.5 nm which is 
the replication of 2

36TM  WGM peak (red) of the source and at 525.0 nm (blue). 
 
 
The spectrally and spatially resolved distribution of scattering intensity along the 

chain is shown in Figure 4.9(b). In this spectral image, the source spectral image is 

excluded because the scattering intensity of the source is too big compared to the one of 

the passive sphere chain. The white horizontal stripes in Figure 4.9(b) represent the 

spectra of scattered light originating from the areas located close to the contact points of 

spheres. These horizontal stripes with a series of peaks are found to be very similar to the 
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spectrum of the source sphere with WGMs that were shown in Figure 3.16. The fact that 

these peaks appear due to WGMs in the source sphere does not play a significant part in 

the interpretation of the propagation effects in the chain. This is because the WGM peaks 

can only reach the chain through the scattering effects in the source sphere, so that they 

propagate in space in the same way as the waves from the fluorescence background 

region. 

It is seen in Figure 4.9(b) that in a few interfaces closer to the source the 

horizontal stripes show an alternating pattern of larger and smaller intensities along the 

propagation direction. The horizontal stripes with stronger intensity distributions occur at 

the odd interfaces starting from the illuminated surface of the first sphere in the chain. 

This alternation of the intensity distribution can be attributed to the spatial distribution of 

NIMs in such chains. This will be discussed in more detail in the following section. 

The scattering intensity distributions measured at two different wavelengths 

indicated by the two arrows, the red one at 521.5 nm which is corresponds to the 2
36TM  

WGM peak of the source and the blue one at 525.0 nm, are shown in Figure 4.9(c). An 

additional black line connecting the peaks of spectrum displays the alternating peaks of 

the scattering intensities in the first few spheres with a period equal to the size of two 

spheres (10 µm). Both scattering intensity distributions (red and blue) show very similar 

patterns of peaks with alternating intensity which will be explained in the following 

section with the numerical simulation results. This means that the propagation of the 

waves with the wavelengths corresponding to WGMs in the source sphere is very similar 

to the propagation of the waves emitted as a fluorescent background. In addition, beyond 

the first decade of spheres the alternating peaks is gradually damped resulting in the small 
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attenuation (<1dB per sphere) and wavelength independent losses. This is indicative of 

the formation of NIMs as modes having the smallest propagation losses [90] in 

disordered systems.    

In order to extract light attenuation parameters from the experimental result in 

Figure 4.9(c), a semi-empirical model based on using an exponent fitting function 

( )NII β10
010 −=     (4.8) 

was employed, where I0 and I are the initial and final intensities, and β is the attenuation 

levels per individual sphere (in dB), N is the propagation distance expressed in number of 

spheres [90]. 

The pattern of the scattering intensities in the first few spheres is different from 

the previous work [90]. This difference can be related to using much more “plane wave-

like” incident beam in the present work compared to the previous experiments [90] where 

the source of light was created by the local photoexcitation of several dye-doped spheres 

in such chains. However, after passing through several spheres the attenuation of the 

scattering intensity peaks observed in this work is similar to that observed in the previous 

work [90]. The attenuation law is represented by the exponential attenuation with losses < 

1 dB/sphere.   

In order to achieve an evanescent coupling with the local source, the source 

sphere is attached to one end of the chain. Figure 4.10(a) shows the image of a chain with 

a source sphere that is brought into contact with the chain. The source sphere has a broad 

band FL emission spectrum with the narrow peaks superimposed at the top of this 

background due to coupling of a fraction of emission to WGMs. After the image of the 

chain was taken, the slit width was reduced to 50-100 μm allowing the detection of the 
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spectrally and spatially resolved distribution of scattering intensity along the chain shown 

in Figure 4.10(b). 

 

 
 

FIGURE 4.10: Spectral response of a chain excited by a doped sphere in contact. 
(a) A chain of 5 μm spheres imaged through the slit of the spectrometer, (b) 
spectrally and spatially resolved distribution of scattering intensity, (c) scattering 
intensity distribution measured at the 527.3 nm which is the 1

42TE  WGM peak 
(red) and at 524.0 nm (blue).  
 
 
The white horizontal stripes in Figure 4.10(b) represent the spectra of scattered 

light originated from the areas located close to the contact points of spheres. The 

scattered light has broad spectral composition determined by the emission band (500-570 

nm) of the source sphere. A series of WGMs generated in the source sphere is seen due to 

bright vertical streaks superimposed on the stripes. The image brightness of the scattering 

intensity from the source was adjusted by the square root transfer function [149] to have 
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better contrast of the spectrum from the spheres located at longer distance from the 

source. 

In order to do the comparative studies of propagation losses in resonant and 

nonresonant cases, the intensity distribution at two different wavelengths were plotted in 

Figure 4.10(c). The resonant mode propagation represented in Figure 4.10(c) by the area 

filled with red was obtained along the chain at 527.3 nm. The red arrow in Figure 4.10(b) 

corresponds to 1
42TE  WGM resonance. The area filled with blue in Figure 4.10(c) 

illustrates the nonresonant mode propagation at 524.0 nm. 

The comparison of the intensity maxima distributions in Figure 4.10(c) reveals 

striking differences in attenuation of WGMs and nonresonant modes in such chains. It is 

seen that WGMs are very effectively coupled from the source to the first undoped sphere 

in the chain. This can be explained by the excitation of WGMs in the equatorial plane of 

spheres that provides good spatial overlap between the modes in the adjacent spheres. 

The propagation to the next few spheres in the chain is accompanied with significant 

attenuation of ~3 dB per sphere. Such substantial attenuation at the frequency of WGM in 

the source sphere can be explained by the size-mismatch of the spheres leading to 

detuning of their eigenstates that in its turn leads to scattering losses [88]. After passing 

through several spheres the attenuation drops to less than 1 dB per sphere level indicating 

the possibility of mode conversion in the chain. It is also seen that in the case of 

nonresonant excitation at 524.0 nm the attenuation is close to 1 dB per sphere (blue 

dotted line) for all spheres including the ones closest to the source sphere. 

The interpretation of these results is based on the existence of two mechanisms of 

coupling between the size-mismatched spheres with detuned eigenstates. In the case of 
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excitation resonant with WGM at 527.3 nm in the source sphere we provide conditions 

for excitation of “forced oscillations” in series of detuned cavities due to strong 

evanescent field created in the source sphere. These “forced oscillations” are represented 

by quasi-WGMs with perturbed shape predicted [88] in previous work by the numerical 

modeling. The efficiency of such coupling mechanism is typically limited by 20-30 % in 

reasonable agreement with ~3 dB/sphere attenuation observed in this work. Similar losses 

were observed in experiments [87] with excitation above the threshold for lasing WGMs. 

The size-mismatched spheres with their gap controlled have shown [89] very similar 

values of efficiency of coupling. 

In the case of excitation away from WGM resonance in the source sphere (524.0 

nm) the coupling is provided due to radiative modes emitted by the source sphere. The 

chain of cavities operates as a series of radiatively coupled microlenses. In the latter case 

each sphere produces a focused spot termed “photonic nanojet” [93] with elongated shape 

and subwavelength lateral size. This mechanism leads to formation of quasi-periodic 

NIMs due to geometrical lens effect of each microsphere. In this case we prove that 

NIMs can be excited in chains of cavities under nonresonant conditions. 

4.3.2 Transmission measurement 

The optical transport in a size-disordered chain is more directly measured by 

collecting the transmitted light through the chain which is 90 degree rotated in the 

microscope setup compared to the scattering measurement geometries. These 

transmission intensity measurements for the extremely long (88 spheres) chains are 

preferable due to the fact that they represent attenuation properties of the chains more 

directly compared to the scattering measurements. The experimental setup and the image 
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of the chain with a doped source sphere are shown in Figure 4.11(a). In contrast to the 

scattering intensity measurement, the microscope objective collects the light from the end 

sphere in the chain.  

The photoexcitation is provided at the end of the chain through the same 

objective. The source sphere located at the other end of the chain was photoexcited by the 

pump beam with the spectrum corresponding to the absorption band (460-500 nm) of 

green FL dye of the source sphere. It should be noticed that there is a propagation loss for 

the pump beam that was transmitted through the chain. When the dye FL source was 

excited by the pump beam, the FL emission at 500 - 570 nm experiences similar losses as 

the pump beam on a way back from FL microspheres to the collection optics focused at 

the end sphere in the chains. Thus, this structure behaves as a double pass optical 

waveguide system. The losses take place for each direction of propagation. For the pump 

beam the losses occur for a single pass from the first illuminated sphere up to the dye-

doped source sphere. This means that the pumping is effectively stronger for shorter 

chains. For the FL emission propagating in a backward direction the losses occur all the 

way from the source sphere down to the end sphere in the chain imaged at the slit of the 

spectrometer. 
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FIGURE 4.11: Spectral transport of a long chain. 
(a) experimental setup and the image of the chain with source sphere, (b) spectral 
band structure for different number of spheres. 
 
 
In order to investigate the propagation losses by the direct measurement of 

transmission, a small number of spheres close to the source sphere were removed by the 

tapered fiber stick controlled by the hydraulic micromanipulators. After that, the same 

source sphere was reattached to the end sphere in the chain to measure the transmission 

intensity for the shorter chain. Different spectra in Figure 4.11(b) were obtained from the 

shorter chains that were illuminated by the same excited FL source. Since we used the 

same spheres for the shorter chains, the source of light has identical spectral properties 

for chains with various lengths. 

The main observation in Figure 4.11(b) is that the transmission spectrum shows 

the periodical modulation in the broadband spectral responses with the same period for 

different lengths of the chain. The interference fringes over the broad spectral range begin 

to appear for the chains with a length about 20 spheres. This chain produced the smallest 
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modulation magnitude among the spectral lines in Fig 4.11(b). Chains with larger lengths 

caused more distinct modulation, and the modulation magnitude became larger in spite 

the fact that the total power is reduced. The peaks (pass bands) and the valleys (stop 

bands) have different attenuation as a function of the number of spheres.  

The spacing λΔ  between maxima of transmission is inversely proportional [150] 

to the separation of the cavity from the equation: 

nd2/2λλ =Δ .    (4.9) 

The period of the fringes is approximately 8.5 nm which is quite small for the cavities 

with cavity separation of 5 µm. The period of fringes of 8.5 nm corresponds to the cavity 

width of 10.4 µm from Eq. (4.9), which is close to the size of the double sphere cavity. 

This means that the chain with 5 µm spheres possess 2D periodicity of spatial 

distributions of NIMs. This requires more theoretical studies that will be discussed in the 

subsequent section  

In order to perform comparative studies of propagation losses, we plotted the 

intensity curves for the stop bands and the pass bands with respect to the number of 

spheres in the chain. Two arrows of red (pass band) and blue (stop band) shown in Figure 

4.11(b) indicate the wavelengths at 516 and 520 nm, respectively, in which the 

propagation intensities were taken for the plot presented in Figure 4.12. The propagation 

intensity curves (solid lines) and their linear fits (dotted line) for the two wavelengths 

(516 and 520 nm) were plotted in Figure 4.12 as a function of the number of spheres. An 

estimate of the attenuation per sphere (β) was obtained by employing a semiempirical 

exponential fitting function (Eq. 4.8), ( )NII 210
010 β−= , where the length of the chain was 

assumed to be 2N due to the double pass geometry of our experiments. This function 
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provides a good fit to the experimental data with β = 0.08 dB per sphere in the pass band 

(red) and β = 0.17 dB per sphere in the stop band (blue) of Fabry-Perot fringes, as shown 

by the straight lines in Figure 4.12. In spite of the fact that the pass bands have smaller 

propagation losses compared to the stop bands, the propagation losses for the two bands 

covering the broad spectral range are fairly small, that is, less than 0.2 dB/sphere. 

 
 

 
 

FIGURE 4.12: Transport curves of the passband (red) and the stopband (blue).  
 
 
This level of attenuation is much smaller than that observed previously [90] in 

shorter chains with the length limited by approximately 20 spheres. In this work [90] the 

losses were also observed to gradually reduce along the chain, but the smallest values of 

attenuation were observed to be about 0.5 dB/sphere. The fact that in this work we 

observed smaller losses can be explained by using much longer chains (up to 100 

cavities). We show that in such long chains the losses continue to decay in the course of 

propagation along the chain. This surprising result means that the propagation mechanism 
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in the region located deeply inside the chain, where the NIMs are dominant, is very 

efficient.  

Another observation from the transmission measurement is that the loss of 

0.08dB/sphere is much smaller than the losses of less than 1dB/sphere of NIMs 

propagation in shorter chains shown in Figure 4.9 and 4.10. This big difference is related 

to the illumination methods to the microsphere chains. A dye doped microsphere is a 

spherical source whose size is very similar to the sizes of the spheres in the chain. This 

dye doped microsphere source is very different from the plane wave illumination from a 

laser source. Due to this poor illumination from a spherical source, the losses in spheres 

close to the source are larger than the losses in spheres in much longer chains where the 

NIMs are dominant. This also requires more theoretical considerations with numerical 

simulations that will be described in the following section. 

4.4 Numerical calculation 

The numerical three-dimensional FDTD modeling [135] of the EM wave 

propagation was performed to understand how the photonic nanojets behave in a chain. In 

this work, the chain contains five identical 5 µm spheres with n = 1.59. A continuous 

plane wave with λ = 530.0 nm was incident from the left along the axis of the chain as 

shown in Figure 4.13(a). This modeling was performed with very limited spatial 

resolution of λ/8 since we did not pursue the task of obtaining high resolution field 

distributions, but rather wanted to estimate the spatial period of these distributions. The 

run time (stop time) was 500 cT which is long enough for the EM wave to propagate the 

whole chain one time. The calculation area was 6.1 × 6.1 × 25.1 µm in x, y, and z 

dimension which requires the estimated memory size (966.2 MB). This factor limited the 



  
124

resolution of the calculation. In spite of this limited resolution, this modeling gives a 

good insight into the properties of the photonic nanojets in a chain. 

The EM amplitude map in the equatorial plane of spheres demonstrates 2D 

periodicity of the photonic nanojets. This 2D periodicity can be explained by small 

reflections (~5%) of the photonic nanojets in the spheres’ contact areas in every two 

spheres along the axis of the chain. This small reflection leads to the formation of Fabry-

Perot fringes with separation between the two maxima, /2λλ =Δ 2dn, where d is the 

length of the cavities. This formula provides a good fit to the experimental transmission 

data in Figure 4.11 (b) using d = 10.4 µm that well agrees with the 2D periodicity of 

nanojets. 

 
 

FIGURE 4.13: Theoretical model of light propagation in a microsphere chain. 
(a) Calculated EM amplitude distribution with plane wave incident at λ = 530.0 
nm. (b) Geometrical optics model of periodically coupled lenses with 2D period. 
 
 
The scattering losses along the chain are localized in the areas between the 

nanojets where the beam is expanded, as shown in Figure 4.13 (a). These locations are 

found to coincide with the positions of the dominating scattering peaks with the 2D 

period in Figure 4.9 (c) detected in the first few spheres illuminated by the separated 
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source sphere. The fact that beyond the first decade of spheres the alternating peaks of 

scattering intensity with the 2D period are found to be damped in Figure 4.9 (c) can be 

explained by the gradual excitation of a second fundamental NIM shifted by D. In real 

physical chains of spheres such NIMs shifted by half a period can be coupled due to 

disorder-induced scattering. 

A schematic diagram of the geometrical optics model, shown in Figure 4.13(b), 

shows that the first sphere focuses light to a spot located close to the contact point with 

the second sphere. The second sphere expands the beam so it propagates as a collimated 

beam from the second to third sphere. Because the expanded beam between the second 

and third sphere makes large incident angle to the third sphere, some fraction of the beam 

intensity is reflected by the third sphere out of axis of the chain. This introduces the 

propagation losses for NIMs. The third sphere focuses the light again, and the process 

repeats along the chain with the periodicity equal to the size of two spheres. 

In order to investigate the spot size at the output sphere, the distribution of the 

electromagnetic field was calculated in the vicinity of the end sphere in the chain as 

shown in Figure 4.14. The large size of the computational grid prevents performing 

precise measurements of the last photonic nanojet. However the presence of such nanojet 

in close vicinity to the surface of the end sphere is clearly seen in Figure 4.14. 
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FIGURE 4.14: Magnified field distribution at the output sphere. 
 
In order to investigate the interference fringe patterns in the transmission spectra, 

the spectral response of the chain excited from the left by a plane wave with broadband 

pulse with ramp/pulse time of 5 cT (0.17 ns) was calculated. A built-in time monitor 

whose size is 5 × 5 × 0 in x, y, and z dimension in 3D FDTD modeling [135] is located 

close to the surface of the end sphere to measure the temporal response through the chain, 

as shown in Figure 4.13(a).  

The Fourier transform of the temporal response obtained from the time monitor 

was performed by using a built-in option in RSoft to generate the spectrum that is shown 

in Figure 4.15. For the wavelength range between 510 and 550 nm, the same as the 

experimental result, the calculated spectrum consists of 5 fringes which is the same 

number of fringes as in Figure 4.11(b). The numerical simulation for the chain with only 

5 identical spheres generated a similar spectral power distribution to the experimental 

result. This preliminary calculation result compares only the number of the fringes due to 

the limited capability of calculation resources. Further investigation on a chain with 

comparable number of spheres is required in future work. 
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FIGURE 4.15: Spectral response of the local monitor at the end microsphere. 
The built-in source excited a broadband pulse with ramp/pulse time of 5 cT (0.17 
ns). 

 
 

A good agreement with the experiment can be explained by taking into account 

that the geometrical model in Figure 4.13 (b) correctly represents the period of the actual 

field distribution in Figure 4.13 (a). As mentioned before, the microsphere chain is 

composed of the multiple building blocks of a Fabry-Perot cavity. The cavity interfaces 

can be identified with the touching points between the spheres where we have photonic 

nanojets. Due to the small reflections in the forward and backward directions in these 

areas, the propagation along the axis of the chain can be associated with the light passing 

through a sequence of coupled Fabry-Perot filters. Since the separation between nanojets 

is equal to two spheres the effective thickness of Fabry-Perot filters is equal to the size of 

two spheres. 

4.5 Conclusions 

In this Chapter, we experimentally investigated the two different mechanisms of 

light transport in chains of spheres, transport due to coupling between WGMs and the 

NIMs coupling, for the size detuned chains of coupled spherical cavities. The coupling 
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between WGMs is shown to have a reduced efficiency due to size-disorder of 

constituting spheres. The attenuation for such coupling has a typical magnitude of 

~3dB/sphere in the first few spheres adjacent to the source of light. The mechanism of the 

WGM-based coupling can be associated with excitation of quasi-WGMs with perturbed 

shape which have been described [88] in previous numerical studies of coupling between 

size-mismatched spheres. This result was found to be consistent with previous 

experimental studies [90] of propagation losses in such disordered chains as well as with 

the modeling results performed for size-mismatched bispheres [88]. 

As the optical field propagates beyond the region in which the quasi-WGMs are 

dominant,  which is typically only few spheres long, the coupling and the propagation 

phenomena are ruled by the NIMs which are quite robust to the size disorder. This 

happens due to small propagation losses for NIMs compared to WGM-based coupling. 

This interesting interplay between NIMs and WGM-based propagation was observed for 

the first time in this work. 

Previous measurements of attenuation of NIMs showed [90] that the maximal 

scattering losses occurred in the first few spheres adjacent to the source of light. After 

that the attenuation has been shown to drop to ~0.5 dB/sphere. This has been 

demonstrated for relatively short chains with total number of spheres below 20. In this 

work we showed that beyond the first 20 spheres the attenuation continue to decrease 

reaching an extremely small values such as 0.08dB/sphere in the pass bands and 0.017 

dB/sphere in the stop bands. We associate this level of loss with the inevitable out-of-axis 

scattering of light at the interfaces of the spheres between the photonic nanojets. Such 
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scattering takes place even for perfectly periodic structures formed by identical spheres, 

and for this reason it can be associated with fundamental scattering losses for NIMs.   

The geometrical model of the infinite/infinite conjugate system allows a simple 

understanding of the spatial periodicity of photonic nanojets based on the assumption that 

the focusing length of polystyrene microspherical lenses is close to the radius of the 

spheres. More rigorous understanding of NIM properties was developed due to numerical 

3D FDTD modeling of the propagation effects. The results of this numerical modeling 

were found to be in a good agreement with the experimental measurements.  

This small propagation loss of NIMs can be used in transporting the optical power 

in a straight microsphere chain with small spot size at the output. The mode conversion in 

size disorder chain can convert multimodal input beams into a photonic nanojet at the end 

of the chain. This small spot size can be useful in the medical area and sensor area.  

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

CHAPTER 5:  SUMMARY AND FUTURE DIRECTIONS 
 
 
 In this thesis, we investigate spatial and spectral mode profiles and their optical 

transport properties in single and multiple coupled cavities. In the first part of the thesis 

some advantages of whispering gallery modes (WGMs) along the circumference of the 

micropillars are illustrated and compared to photonic dot states located in the middle of 

the pillars. We observed high quality (Q up to 20 000) WGMs with small mode volumes 

V ~0.3 µm3 in 4-5 µm Al(Ga)As/GaAs micropillars. We showed that WGMs provide at 

least two times larger values of the figure of merit Q/√V for strong coupling applications 

compared to photonic dot states in pillars with comparable size. Soon after publishing our 

results, much higher Q-factors (>105) have been observed for photonics dot states [140]. 

However, the results on WGMs in micropillars have also been improved (Q>60000) 

[Private communication, A.M. Fox 2008]. The future direction of this research is 

connected with studies on the effects of strong coupling between microcavity modes and 

individual quantum dots in such micropillars. 

 The second, and major, direction of this thesis is the spectroscopic 

characterization of the optical transport and coupling in bi-spheres and sphere chains. For 

the size-matched bispheres, normal mode splitting (NMS) of resonant optical modes is 

investigated experimentally in fluorescence from dye-doped polymer bi-spheres with 

diameters from 2.9 to 10μm. Various orientation of the spectrometer slit with respect to 

the axis of bi-sphere reveals the mode splitting as a function of sphere size, polarization, 
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and all three mode numbers (l, m, n). In these studies we selected bi-spheres on a 

substrate as the simplest building block of more complicates systems. Our results show 

that the coupling between the fundamental modes in such systems is sufficiently strong, 

so that these structures can be created with small propagation losses and controllable 

dispersions for photons. Our techniques of size-sorting of microspheres provided 

extremely high uniformity of spheres ~0.03%. Developing this technology in the future 

will require developing more efficient techniques of sorting supermonodispersive spheres 

such as methods [151] based on using radiative pressure effects or using microfludic 

control of spheres with spectroscopic monitering. 

In the size detuned sphere chains, non-resonant coupling by photonic nanojets 

provides good optical transport mechanism due to periodical focusing of light in such 

chains. In the transmission spectra of long (>20 spheres) chains we observed Fabry-Pérot 

fringes with propagation losses of only 0.08dB per sphere in the maxima of transmission 

peaks. Due to mechanical robustness, tight focusing of the beam, high optical throughput, 

and broad spectral transmission properties, such chains can be used in a variety of 

biomedical applications such as optical microprobes with subwavelength spatial 

resolution. In addition, the mode conversion process in size detuned systems can be very 

useful in sensor applications. Some properties of these modes still require further studies, 

such as the robustness of these modes to the size and positional disorder of the 

microspheres. Another interesting problem is connected with the influence of the external 

medium such as a liquid or a biological tissue on the quality of focusing of such 

microprobes. These properties will be investigated in future work.  
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