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ABSTRACT
ZHOU TENG. Surface-based 3D object modeling, detection, and pose estimation
in cluttered environments for robotic manipulation. (Under the direction of DR.
JING XIAO)

Automatic identification and pose estimation of a target object through robotic
perception is necessary for many robotic tasks, such as object manipulation, scene
reconstruction and view planning. However, general object recognition and pose
estimation in cluttered 3D environments is still an unsolved and challenging prob-
lem, due to occlusions, complicated background, and great variation in object ap-
pearance caused by different illuminations or viewpoints.

In this dissertation, an appearance-based approach to general 3D object detec-
tion and pose estimation is introduced based on segmented 3D surfaces and their
teatures, taking full advantage of RGB-D information. Our approach can detect
and estimate the poses of occluded objects effectively, including occluded multiple
instances of the same object, in cluttered environments. The results of the detected
objects and their poses with respect to the current RGB-D camera frame can be
used directly for robotic manipulation, and the reconstructed 3D scene can also be
used directly for robot motion planning.

Leveraging the scene reconstruction results of our surface-based approach, a
learning-based approach is further developed for evaluating scene recognizabil-
ity of a cluttered scene with objects occluding one another from a single view and
ranking views based on their scene recognizability. Our approach of evaluating

scene recognizability provides a more accurate assessment of how good a view is



iv
for autonomous robotic tasks in cluttered environments than conventional evalu-
ation based only on object visibility.

Last but not the least, this dissertation also explores interleaving RGB-D percep-
tion and robotic manipulation for automatic modeling and handling of unknown
objects. Using a fixed RGB-D camera and starting from the first view of the ob-
ject, our approach gradually builds and extends a partial model (based on what
has been visible) into a complete object model. In the process, the partial model
is also used to guide a robot manipulator to change the pose of the object to make
more surfaces visible for continued model building. The alternation of perception-
based model building and pose changing continues until a complete object model
is built with all object surfaces covered. Our approach provides more flexibility to
enable observing all object surfaces and building a complete object model, and can
be further developed to facilitate manipulation of unknown objects in cluttered

environments.
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CHAPTER 1: INTRODUCTION

A brief overview of the problem of robotic perception is first provided. Existing
sensing technologies of different kinds are then introduced, and their advantages
and disadvantages are discussed. Next, robotic perception is compared to classic
computer vision, and major differences are discussed. The problem of view plan-

ning through robotic perception is also introduced.
1.1  Robotic Perception

Robotic perception is to perceive the real world and understand the environ-
ment through sensing for robotic tasks. A great variety of sensors can be used
for sensing, such as digital cameras, RGB-D cameras, laser rangefinders and force
sensors. The perceived information can provide useful cues for robotic tasks, for
example, to guide the robots to develop better strategies for motion planning, or
to provide real-time feedback of robotic operations to improve the operations and
ensure success.

Compared to classic computer vision, which is mainly focused on understand-
ing 2D images, robotic perception is more related to providing spacial information,
such as 3D positions and orientations of objects needed in most robotic tasks. In
a typical computer vision task, such as recognizing road signs, as long as all road

signs are correctly detected, the goal is achieved. However, in a typical robotic per-



Figure 1: A typical scene of an autonomous robotic manipulation problem. Co-
ordinate systems (CSs) are introduced to describe the relations among the target
objects, the robot, and the world.

ception task, for example, to pick up a mug, not only should the mug be identified,
its position and orientation have to be perceived as well.

Fig. 1 illustrates a scene of an autonomous robotic manipulation problem, where
the objects shown have to be grasped. To successfully grasp a target object, it is
necessary to not only recognize the object and but also obtain the exact position
and orientation of the target object, which can be expressed in terms of a 4 x 4

homogeneous transformation matrix 'Y T between the object coordinate system O



and the world coordinate system as follows:

Vo = , (1)

where X, Y and Z are 3 x 1 unit vectors representing the directions of the x, y, and
z axes of the object coordinate system described in the world coordinate system,
and P is a 3 x 1 position vector of the origin of the object coordinate system in the
world coordinate system.

The 6 degrees of freedom (DoF) position and orientation, i.e., the 6DoF pose, of
the object with respect to the coordinate system of a robot hand can be obtained
based on the perceived information of the object (i.e., its shape, size, colors, etc),
and its estimated pose with respect to the world coordinate system. Such 6DoF
object pose can be used to guide the robot manipulator to accomplish object ma-
nipulation.

In general, 3D object detection and 6DoF pose estimation is a necessary step to

enable many robotic tasks.
1.2 Existing Sensing Technologies

There are a great variety of sensors that are commercially available. They are
based on different sensing techniques and capture different information from the
environment. Of particular interest to robotic perception are vision and range sen-
sors. Some sensors, such as the Microsoft Kinect, combine visual and range sens-
ing, called RGB-D sensors, because both visual (color) information and depth in-

formation of a 3D object can be sensed. A stereo vision sensor can also provide



Table 1: Comparative evaluation of range sensing capabilities of several sensors

Bumblebee2 SR4000 Microsoft Kinect Sick LMS200
Techniques Stereo vision based on Infrared light; Infrared light; Laser;
multiple digital cameras | Time-of-flight (ToF) | Structured light Time-of-flight (ToF)
Accuracy +1 ~ 2 mm, up £10 mm (typ.) £3 mm within 2 m +15 mm (typ.)
to =2 m within 20 m
Typical Range | 20m +0.8 ~5.0m +0.8 ~35m 10m
Speed Approx. 20 FPS Up to 50 FPS Approx. 30 FPS Approx. 10 FPS
Environments | Indoor & Outdoor Indoor Indoor Indoor & Outdoor
Advantages No distance limit; Fast; Fast; Accurate;
Accurate Less power Accurate within Large range
small ranges;
Affordable
Disadvantages | Expensive; Expensive; Background light; Expensive;
Affected by Background light; Objects’ reflective Slow;
patterned textures; Objects’ reflective properties; Heavy weight
Requirements of properties; Multiple reflections;
good Illumination Multiple reflections; | Interference of
Interference of multiple cameras
multiple cameras

both visual and depth information. Range sensors can only provide depth infor-
mation.

Table 1 compares depth sensing capabilities of several sensors, which adopt dif-
ferent sensing techniques and are commonly used in robotic perception. More
detailed comparisons can be found in [101, 93, 50].

Other types of sensors can also be used in robotic perception, for example,
force/torque sensors can measure the force/torque applied to the robot by objects
during robotic manipulation. Sonar sensors can also be used to measure distances
to the objects based on sound propagation. In this dissertation, the focus is on

robotic perception through RGB-D sensing.
1.3 Computer Vision vs. Robotic Perception

Since vision-related techniques have been well studied in the computer vision
research field in the past decades, we first present a broad overview of different as-

pects in solving computer vision problems and then explain the major differences
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Figure 2: An overview of different aspects in solving computer vision problems.
The figure is revised based on similar figures in the surveys [118] and [30].

of techniques and purposes between computer vision and robotic perception tasks.
Several researchers [87, 30, 118] have conducted comprehensive surveys of exist-
ing computer vision techniques. As illustrated in Fig. 2, existing computer vision
techniques focus on object categorization and object localization as key tasks. Ob-
ject categorization is to determine if any target objects appear in the input image,
while object localization requires to further acquire the exact regions of the tar-
get objects if some of them appear in the input image. On the basis of these key
tasks, different kinds of offshoots and applications can be further developed, for
example, to understand the scene based on the relations of all detected objects.
The core techniques used in solving computer vision problems are briefly de-
scribed as follows: first, appropriate low-level image features and object appear-
ance models need to be chosen for robust high-level object visual representation;

next, efficient and effective similarity measures and classification or clustering al-
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gorithms need to be adopted both in the training and testing processes. To locate
the objects in an input image, it is also required to choose suitable localization ap-
proaches, such as sliding-window and segmentation based approaches.

Robotic perception, on the other hand, requires additional core technologies.
Fig. 3 illustrates an overview of different aspects in solving robotic perception
problems. In robotic perception, researchers mainly focus on the key tasks of ob-
ject detection and object pose estimation. Object detection is to determine if any
target objects appear in the input image and acquire their exact regions if some
of them appear. Object pose estimation is to further estimate the positions and
orientations of the target objects with respect to the world coordinate system if
some of them appear in the input image, which is related to but different from the
problem of object localization in classic computer vision. On the basis of these key
tasks, different kinds of offshoots and applications, such as object modeling, object
grasping, and view planning can be further developed.

Besides the core techniques used in solving classic computer vision problems,
to further estimate the poses of the detected target objects, it is also necessary to
develop robust keypoints or features matching algorithms to directly find out the
correct correspondences between the 2D or 3D characteristics of the target objects
in the test process and the 2D or 3D characteristics of the target objects in the train-
ing process. Based on these correspondences, suitable transformation estimation
algorithms are then chosen to eliminate the effect of noisy correspondences and

obtain correct pose estimates of all detected target objects.
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Figure 3: An overview of different aspects in solving robotic perception problems.
The figure is revised based on similar figures in the surveys [118] and [30].

14  View Planning for Robotic Perception

In robotic perception, it is often necessary to recognize objects or understand
scenes through multiple views. Thus, a key problem is how to find an optimal set
of views as few as possible to most effectively and efficiently meet the objective
of recognition or reconstruction. The study of autonomous views-selection ap-
proaches is usually called next-best-view (NBV) planning, or view planning prob-
lem (VPP).

Connolly [24] introduced the term next-best-view in 1985. NBV planning is al-
ways real-time, and some NBV planning approaches require training processes

from which some prior knowledge can be learned, but the training process is not
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always necessary. Existing work on view planning has been focused on object
modeling and object recognition.

3D object modeling, also called 3D object reconstruction, is usually performed
as a preprocessing or learning step for subsequent 3D object detection and pose
estimation tasks. Researchers from Stanford University have succeeded in accu-
rately reconstructing some of the sculptures and architectures of Michelangelo in
the Digital Michelangelo Project [1, 52], using laser rangerfinders and algorithms
developed for combing multiple range and color images. However, the whole pro-
cedure is manual and considerably time-consuming and effort-consuming for hu-
man operators. Obviously, reliable autonomous approaches can greatly facilitate
such a project.

Scott et al. [113] presented a comprehensive survey of most NBV algorithms
proposed for autonomous 3D object reconstruction before 2002. More recent work
can be found in [38, 56].

Real-time active perception for 3D object recognition through multiple views
also requires good strategies of view planning. Most literature proposed for active
recognition through view planning before 2002 has been well surveyed in [86].

More recent work can be found in [63, 61, 39, 16, 5].



CHAPTER 2: RELATED LITERATURE

In this chapter, we focus on the main challenges in robotic perception and dis-
cuss related state-of-the-art literature. First, we review the most relevant core
techniques in visual representation, learning algorithms, keypoints matching and

transformation estimation.
2.1  Object Visual Representation

To effectively and efficiently recognize objects, it is important to describe objects
with appropriate visual signatures and structures, which are discriminative from
other objects but also are robust to image variations, caused by different cameras,
illuminations and viewpoints.

Fig. 4 illustrates the process of generating high-level object visual representa-
tions from low-level image features.

Existing literature in the past decades has proposed different kinds of low-level
features to describe the characteristics of an image, for example, grayscale, color
[69], shape [72, 10, 79, 8, 44], texture [69, 42, 31] and gradient [66, 116, 73, 9, 29].
A set of well-defined color and texture descriptors, which have been approved for
the Final Committee Draft of the MPEG-7 standard, can be found in [69]. Devel-
opment of local feature descriptors has made great progress in recent years. The

scale invariant feature transform (SIFT) descriptor [66] is the most well-known lo-
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Figure 4: An overview of the procedure of generating high-level object visual rep-
resentations from low-level image features. The figure is revised based on similar
tigures in the surveys [118] and [30].

cal feature descriptor, which has been widely used in existing object recognition

approaches. Several modifications have also been proposed based on the origi-

nal SIFT, for example, PCA-SIFT [116] is proposed to make the feature description

and matching more efficient, and ASIFT [117] is proposed to make the algorithm

more robust to viewpoint changes. Histogram of oriented gradients (HOG) [29]

has been demonstrated to be very powerful in detecting structured objects, espe-

cially in pedestrian detection.

There can be different structures of visual representation of objects, such as
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global models [29, 112], part-based models [34, 40], and mixed models [35]. With

global models, objects are described as single regions in training and testing; with
part-based models, objects are described with a set of object parts and the geomet-
rical relations between them; mixed models [35] combine both global models and
part-based models together to better describe the characteristics of objects. Note
that more complicated models usually bring in more parameters to tune in the

training process.
2.2 Learning Algorithms

There exist a great variety of machine learning algorithms, which can be used
for object classification. Popular machine learning algorithms used in computer
vision can be categorized based on their similarities as: linear models, clustering
methods, kernel methods, decision tree, artificial neural networks, Bayesian net-
works, boosting methods, and so on. More detailed and systematic analysis of
existing machine learning algorithms can be found in [12]. Support vector ma-
chines (SVMs) [17], which are one of the kernel methods, have been one of the
most widely used algorithms since 2000, because of the flexibility in the choice of
kernel functions, the unique solution of a convex optimization problem, and the
good out-of-sample generalization. Recently, deep learning [62, 97], based on neu-
ral networks of many layers, has become a hot topic in solving big data problems

and achieved good performance in different kinds of applications.
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2.3  Keypoints Matching and Transformation Estimation

Keypoints matching is one of the common ways to directly establish the corre-
spondences between the 2D or 3D characteristics of the target objects in the test
process and the 2D or 3D characteristics of the target objects in the training pro-
cess. Features used for extraction and description of keypoints or keypoint pairs
play a significant role in matching.

In 2D images, the SIFT [66] keypoint has been demonstrated to be very robust
in dealing with scaling, rotation and illumination changes. However, it is only
partially invariant to affine distortion caused by viewpoint changes, which is a
common problem in 3D robotic perception. [117] extends it to Affine-SIFT (ASIFT)
and improves its performance for matching under serious affine distortions.

Compared to features based on color, geometric features are more invariant to
viewpoint changes. The simplest geometric features could be just 3D coordinates
of points, which can be used by the iterative closest point (ICP) algorithm [11]
to register two similar 3D point clouds. However, the ICP algorithm requires a
good initial pose estimation, which is difficult or nearly impossible from images
of real-world scenes with multiple occluded objects shot in random viewpoints.
Surface normals and curvature estimates [90, 89], which can be computed fast and
easily, are also commonly used geometric features. [89] proposed pose-invariant
keypoints by combining geometric relations between the nearest k neighbors of
these keypoints based on estimated surface normals.

However, individual geometric primitives, such as normals, curvatures, lines,
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and planes, are not very discriminative; as a result, researchers developed vari-
ous oriented point pair features [32, 22, 21]. Pair features are more discriminative
than individual primitives, which provide more informative characteristics. Based
on keypoint pairs, an approach [22] combined both oriented surface points and
boundary primitives, such as boundary points with directions and boundary line
segments, to enhance the accuracy and efficiency of the algorithms for detection
and pose estimation. The work was focused on parts for assembly with many
geometric details.

As for calculating a transformation matrix based on matched keypoint pairs,
a comprehensive survey [33] provides detailed comparision results for four ma-
jor algorithms: singular value decomposition (SVD), orthonormal matrices (OM),
unit quaternions (UQ) and dual quaternions (DQ). The random sample consen-
sus (RANSAC) [37, 89] algorithm can also be utilized here to make the calculation
more robust to noise. The ICP [11] algorithm can be adopted appropriately later to
refine the results of localization and pose estimation after coarse estimation results

are obtained from the approaches described above.
2.4 Challenges in Robotic Perception

Automatic identification and localization of a target object through robotic per-
ception is necessary for autonomous robotic manipulation tasks. However, gen-
eral object recognition in a cluttered 3D environment is still an unsolved and chal-
lenging problem in computer/robot vision, due to occlusions, complicated back-

ground, and great variation in object appearance caused by different illumination
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conditions or viewpoints. To further estimate the pose of an identified object,
which consists of the position and orientation of the object in the 3D scene, is even
more difficult. The emergence of advanced and inexpensive RGB-D cameras, such
as the PrimeSense 3D sensor and Microsoft Kinect, which capture both vision and
depth information, provide new opportunities for researchers to seek effective and

efficient solutions to those problems.
241  Object Detection and Pose Estimation

Given an RGB-D image of a scene, existing approaches use different strategies to
identify known objects and estimate their poses (which are either 3DoF or 6DoF).
Object detection and pose estimation are processed either simultaneously or se-

quentially.
2411 Keypoint-based Object Detection and Pose Estimation

With characteristics such as keypoints [90, 89] or keypoint pairs to describe
known object models, some recent work [32, 23, 22, 21] proposes to extract, de-
scribe, and match keypoints or keypoint pairs directly between the point cloud of
an entire test image and each trained 3D object model to find correspondences.
In those approaches, objects are detected with their poses estimated simultane-
ously by either Hough voting [7, 32] or pose clustering in the pose parameter space
[23, 21] based on recognized keypoints or keypoint pairs.

However, those approaches process the whole image as a single entity, which
has several related drawbacks if the scene is cluttered and objects are partially

occluded. One drawback is unnecessary and even incorrect processing of back-
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ground or regions other than the target object, such as incorrect matches between
some background regions and object models. Another drawback is likely insuffi-
cient treatment of the object regions, e.g., if the target object is heavily occluded
and there are only small visible parts, there may not be sufficient number of key-
points or keypoint pairs for the correct object model to obtain enough votes to en-
sure correct pose estimation. Moreover, there are many parameters used in Hough
voting or pose clustering, and the parameter values are empirically and manually
decided, which depend on the objects and scenes considered. Hence, such ap-
proaches are not automatically adaptive to different kinds of objects and scenes
and can have difficulties in dealing with the problems of noise and multiple in-
stances of the same object.

Using the sliding window methods [29, 35, 59, 60, 58] as preprocessing can help
reduce the candidate region of each target object, so that the keypoints or key-
point pairs can be extracted and matched subsequently to establish the correspon-
dence between the candidate region and the target object model for more accurate
pose estimation. Nevertheless, as the candidate region is usually represented as a
bounding box, it often contains some parts of the background or other objects that
occlude the target one in a cluttered scene. There can still be significant inaccuracy
for keypoints at the boundaries of objects, especially in cluttered environments
where objects are stacked together or physically attached. The sliding window
methods are also not well suited for dealing with partially visible objects and mul-
tiple instances of the same object appearing side-by-side or occluding one another.

Approaches that solely rely on matching keypoints or keypoint pairs also suffer
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from several problems. First, the number of keypoints (pairs) increases consider-
ably as the number of objects in the dataset increases. In a large object dataset, it
can be very expensive to find one-to-one correspondences between the extracted
keypoints (pairs) in each test image (averaged over 10,000 in [23], as an example)
and all the keypoints (pairs) in the dataset based on keypoint (pair) descriptors.
How to balance accuracy and speed properly is an unsolved problem. Second,
by using only keypoint (pair) matching for object detection, such approaches can-
not utilize many other useful object features and associated machine learning al-
gorithms. Third, the more objects need detection and pose estimation, the more
robust is required of the keypoint (pair) descriptors for distinctiveness and re-
peatability. However, [110] shows that finding robust 3D keypoints itself is also an
unsolved and difficult problem. Therefore, approaches relying only on matching
keypoints (pairs) are not effective enough to deal with complicated object recogni-

tion tasks, especially with a large dataset.
2412 Segment-based Object Detection

The emergence of powerful and affordable RGB-D sensors inspires new ap-
proaches focusing on object detection from segmentation of RGB-D data [53, 115,
98, 83, 46]. With the exact region of each object instance completely separated from
the test image point cloud, object pose estimation can be achieved based on match-
ing between a separated object region and the target object model.

Recently, Richtsfeld et al. [84] introduced object segmentation following a hi-

erarchical framework of four levels: signal level, primitive level, structural level,
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and assembly level. Through learning the relations of both neighboring and non-
neighboring surfaces of the same object from Gestalt principles, they propose a
graph-cut approach based on the probabilities returned by SVMs to group the test
surface segments as belonging to the same object instance. A major limitation of
their approach is the inability to split correctly pre-segmented surface patches if
surface parts of different objects are aligned to the same plane. Stein et al. [100]
used over-segmentation of a 3D image point cloud to obtain all the supervoxels
tirst and then introduced a novel, strictly local criterion to classify all the edges
between the supervoxels as convex or concave. Object regions are obtained by re-
gion growing of locally convex and connected supervoxels. However, if an object
instance consists of more than one convex region or some concave regions, how to
tind the exact region of the object instance is still a problem. Schiebener et al. [96]
integrated robotic manipulation and sensing capabilities to segment objects in an
unknown and cluttered environment. The above approaches [84], [100] and [96]
only address object detection but not 6DoF pose estimation.

Some existing work for semantic scene labeling [98, 83, 43, 115, 46] also relies
on 3D surface segmentation, which, however, does not require 6DoF pose estima-
tion. On the other hand, 6DoF pose estimation is necessary for object grasping and
manipulation tasks.

Using the sliding window methods for preprocessing, Zhu et al. [120] presented
an approach based on known silhouette shapes of each object for pose estimation.
The approach over-segments the hypothesis bounding box obtained from an S-

DPM classifier into superpixels at first, and then selects a set of superpixels that
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best match a known silhouette of the object model for detection. The object pose is
recovered by aligning the object model projection with the foreground silhouette.
However, this approach is only focused on 3D objects without complex textures
and also requires high distinctiveness of silhouette shapes of different objects from
different views.

The approaches in [102, 13] are focused on recognizing object point clouds but
cannot be applied to cluttered scenes directly for object detection, because they
assume that from the segmentation of the test image with some simple clues, the
point cloud of each target object can be isolated, separate from those of the other

objects.
24.1.3 Appearance-based 3D Object Modeling

In order to build 3D models of objects, existing work [21, 77, 99] has achieved
impressive results but with very controlled environment set-ups. Object models
are usually built from plenty of RGB-D images captured continuously. In [77],
researchers move a Microsoft Kinect sensor around the target objects and utilize
large overlaps between neighboring views to register different views. In [21, 99],
objects are placed on a turntable with cameras around them, and a chessboard is
used to register different views. In those approaches, objects are usually fixed, and
the bottom surfaces are never observed. It is difficult to obtain complete object
models even if a RGB-D sensor can capture all the surface points. If an object
surface contains transparent regions, the current RGB-D sensors cannot capture

them.
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2.4.2  View Evaluation

In computer vision, 3D object recognition via perception through multiple views
has also been well studied. Rosenfeld [85] proposed to represent an object with a
series of 2D “characteristic views” or “aspects” for fast and robust recognition.
In [54, 18], how to select a set of views to represent an object appropriately was
addressed in different methods. Plantinga and Dyer [80] introduced an efficient
aspect representation to represent the appearance of polyhedra from all view-
points by an aspect graph in more general situations. Aspect-based recognition
algorithms are especially suitable for objects with complicated geometric models.
Many approaches [28, 65, 58, 35, 120] later were focused on how to take advan-
tage of various visual features, geometrical features, or feature combinations, and
create different kinds of object representation to improve recognition.

In real-time recognition and pose estimation of 3D objects, rather than choos-
ing views randomly, researchers proposed “active perception” to recognize objects
more efficiently. Bajcsy [6] first introduced active perception as a study of mod-
elling and control strategies for purposefully changing a sensor’s state parameters
for better perception. Wilkes and Tsotsos [114] applied this concept to the task of
3D object recognition. Roy et al. [86] presented a comprehensive survey of the
research work before 2002 on active recognition through next-best-view planning.

More recently, many novel strategies of viewpoint selection for active object
recognition have been introduced [63, 61, 39, 16, 5]. Laporte and Arbel [61] pre-

sented their viewpoint selection criterion for maximally distinguishing objects of
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various classes at different orientations by Bayesian classifiers. Forssen et al. [39]
implemented their recognition system by combining active view planning with
bag-of-features and geometric matching techniques for ranking potential objects.
Browatzki et al. [16] proposed a perception-driven, multisensory exploration and
recognition scheme to actively resolve ambiguities that emerge at certain view-
points for a humanoid robot.

Most of the existing work is only focused on recognizing individual objects, but
it is more important to evaluate how well a cluttered scene with many objects
occluding and interacting with one another can be perceived through an image of
a certain viewpoint. The challenge is to enable effective selection of good views
that can facilitate automatic object recognition and scene reconstruction efficiently

for cluttered scenes, which is important for many robotics applications.
2.5 Combining Perception and Manipulation

Industrial robots have been proven to be very effective and efficient in mass
production, and they have been widely used in modern manufacturing. However,
robot manipulation in those environments are repetitive without variation. It is
still an open challenge to manipulate unknown objects autonomously in uncon-
trolled environments. The difficulties come from dynamic changes of the environ-
ment, real-time constraints, unknown object placement and pose, obstacles, and so

on [49]. As a result, it is necessary to incorporate perception in manipulation.
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25.1  Perception Incorporated with Manipulation

There already exist a great variety of approaches to combine visual perception
and robotic manipulation, for the purposes of either improving the solutions of
existing problems or providing solutions for new problems. In [74], a database
which includes visual features, the CAD model, and a set of feasible grasps of
each object is first created offline. Then, in real-time perception, once an object is
recognized and localized, a grasp can be immediately selected from the database
for execution taking into account the pose of the object. The approach requires
good object models from training. In [15], an object of interest is placed in the
hand of a humanoid robot and rotated to produce more views for perception, so
that the object model can be trained and recognized fast and reliably. However, the
approach starts with objects already grasped and located in the hand of the robot;
in addition, objects are set to be always located approximately in the center of the
observed image; hence object manipulation is relatively simple.

Without the requirements to build object models, [94] learns to identify good
grasping locations of unknown objects by using different visual features and train-
ing on a large object dataset. By coupling manipulation and perception, [47] suc-
cessfully extracts kinematic models of unknown tools, which can further be used to
perform purposeful manipulation. Nevertheless, the approaches of both [94] and
[47] are only tested in structured and uncluttered environments. [95] introduces
a method for autonomously learning the visual appearance representation of an

unknown object through integrating visual perception and simple object push-
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ing by a robot hand. However, the proposed strategy for generation of pushing
movements cannot be extended to unknown objects of arbitrary shapes and sizes.
[20, 48, 78, 68] focus on some specific object manipulation tasks in unstructured
and cluttered environments, such as arranging and sorting objects in piles, but still

have not achieved satisfactory solutions for general applications.
2.5.2  Automatic 3D Object Modeling

Interacting perception with manipulation can also be introduced to help auto-
matic 3D object modeling. How to build a 3D object model based on geometric
and visual appearance of an object is an important problem, because many robotic
manipulation tasks require the knowledge of 3D object models of the target objects.

3D object modeling has been studied for a long time with many methods intro-
duced by researchers. Existing literature can be classified in two categories: passive
approaches and active approaches.

Passive approaches are defined by fixing the cameras and viewpoints. A set of
sensor views are usually pre-determined to collect the 2D or 3D information of a
target object from different viewpoints. In [21, 99], objects are placed on a turntable
so that they can be rotated. Multiple cameras mounted around the turntable, and
a chessboard is used to register different views. Although the speed of rotation of
the turntable and the positions of the cameras can be changed, the camera views
are still limited in such a setting. Given a target object of arbitrary shape, Some
parts of the object may not be visible by any of those fixed cameras even with

the rotating turntable due to self-occlusion. Besides, the bottom part of the target
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object is always occluded by the turntable.

Active approaches for 3D object modeling refer to moving cameras carried by
either human operators or robots. Human-guided object modeling can achieve
accurate 3D reconstruction results in [52, 77]. Robot-guided object modeling is
usually considered as a view planning problem (VPP), or next-best-view (NBV)
[24] planning problem.

In a classic view planning problem for 3D object reconstruction, target objects
are usually placed on a table, and a sensor is mounted on a robot manipulator. The
research focus is on how to find a minimum set of views to enable reconstruct-
ing 3D object models reliably and accurately. Based on a comprehensive survey
of most NBV algorithms proposed before 2002 [113], those algorithms can be clas-
sified as model-based or non-model-based. Model-based algorithms focus more
on the space for sensor viewpoints and try to theoretically find an optimal set of
sensor views which can achieve 100% object surface coverage, such as set theory
methods [103] and graph theory methods [14]. Non-model-based algorithms focus
more on obtaining object information and reducing uncertainty step by step and
view by view, such as surface-based methods [71] and volumetric methods [70].
More recent non-model-based algorithms can be found in [38, 56, 111].

Most of the work on model-building often involves manual operations, which
can be tedious and time-consuming for human operators. Some recent work uses
certain special-purpose hardware, such as a turntable for rotating an object, to
speed up the model-building process, but manual intervention is still needed in

order to build a complete model that covers all surfaces of an object. Specifically,
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there is always some part of the object, such as the bottom surface on a table, that
cannot be viewed and requires further pose changing before a complete object
model cannot be built.

Some recent work explores 3D object model building by changing the pose of a
target object with robotic manipulation [55, 67, 15]. However, the effectiveness of
those approaches are limited by several factors. First, a robust real-time tracking
algorithm is required to track the position and orientation of the target object and
the robot end effector in [55, 67], but tracking can fail in some cases, such as track-
ing from certain oblique perception angles and tracking an object of uniform color
and geometry. Second, the target object is assumed held by a robot manipulator
before object model building [55], which is a strong assumption. The held object
is always occluded by the robot end effector during perception [55, 67], especially
if the object has a similar size as that of the end effector, which complicates object
model building. Moreover, if some parts of the object are always occluded in all
feasible grasps, a complete object model cannot be achieved. Finally, how to sepa-
rate the target object from the end effector in perceived images is also an issue. A
3D model of the robot manipulator is required in [55], and [67] assumes some prior
knowledge of the color of the robot end effector. In addition, in-hand manipulation
itself is still a challenging problem [15].

Hence, automatic 3D model building for objects of arbitrary shapes is a chal-

lenging problem not yet fully solved.



25
2.5.3  Grasp Strategies of Objects

As for a successful grasp of an object, three main aspects should be considered
[64]: contact models, grasp analysis, and grasp synthesis. Contact models deter-
mine how the forces and torques are exerted on the object by the robot end effector.
Given a contact model, an object and a set of contacts which define a specific grasp,
grasp analysis is used to evaluate if the grasp satisfies force-closure, form-closure
or some other properties. Grasp synthesis is to study how to find an appropriate
set of contacts for grasping to achieve those properties, given some constraints of
the allowable contacts according to the object and the robot end effector. More de-
tailed mathematical formulation can be found in [64, 45, 81, 26, 75]. Recently, [91]
presented a survey on different algorithms for 3D object grasp synthesis before

2011.



CHAPTER 3: RESEARCH OBJECTIVES AND APPROACHES

This chapter starts with a problem description and assumptions, followed by an

overview of our proposed approaches.
3.1  Problem Description and Assumptions

This dissertation is focused on the problem of detection and pose estimation
of 3D object instances in cluttered environments, where objects are usually stacked
together or physically attached. Thus, most target objects may occlude one another
in all views. It is further assumed that all objects in a scene can be either character-
ized through built object models as known objects or classified as belonging to the
background (i.e., are part of a trained object dataset or the trained background).
For evaluating the scene recognizability of a view, the number of the target objects

is also assumed known.
3.2 Approaches

The central theme of the dissertation is to develop appearance-based methods
based on 3D object surfaces from RGB-D sensing for effective 3D object detection
and pose estimation in cluttered environments to enable robotic manipulation of

objects.
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3.21 Surface-based Approach to Object Detection and Pose Estimation

The focus is on 3D object detection and pose estimation based on object appear-

ance.
3.2.1.1 Overview

Our approach includes the following strategies.

e A robust and convenient strategy to establish object models based on seg-
mented smooth surfaces of RGB-D images from different sensor views of dif-

ferent object poses

Such an object model consists of automatically segmented and registered 3D
smooth surfaces from the RGB-D images, their visual features, and relative pose
information to form a 3D reconstruction of the object. Our strategy works even
for objects with disconnected surface patches and missing surface information in
object images, such as due to transparent regions that cannot be captured by an
RGB-D camera. It does not require precise information of the locations of the object
and the camera where images were taken and thus facilitates autonomous object
model building. As the object models are based on noisy appearance from RGB-D

images, they are inherently robust to noise in object detection and pose estimation.

e A robust surface-based strategy for automatic appearance-based object de-

tection and 6DoF pose estimation from a single image

Our strategy takes full advantage of our appearance-based object models com-

posed of smooth 3D surfaces and powerful visual signatures of each surface to
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detect an object based on only its visible surface region and to estimate its pose.
Thus, our strategy effectively detects partially visible objects due to either occlu-
sion or surface transparency and estimates the 6 DoF poses of each entire object
in a cluttered 3D scene. Our strategy also detects multiple instances of the same

object in a cluttered scene with ease.

e An algorithm based on graph-cut to remove redundant and incorrect object

recognition results

Our algorithm integrates the recognition and pose estimation results of all sur-
faces from the single test image in a graph, groups surface segments detected as
belonging to the same object instance, and then selects the best-fit 6DoF pose esti-
mate. As the result, even if certain surface segments of other objects are incorrectly
recognized as belonging to an object instance A, as long as one surface segment of
A is correctly recognized as belonging to A, A can be reconstructed with correct
pose estimate from that single surface segment. That is, the combined accuracy of
recognition and pose estimation of object instances by our overall system is much

higher than that of object recognition alone based on surface segments.
3.21.2 Comparison to Existing Work

Table 2 compares several representative existing approaches to our approach.
As shown in the table, existing approaches of [13, 84, 102] either do not consider
cluttered scenes or do not perform 6DoF pose estimation for the objects in a scene.

Compared to existing approaches that solely rely on matching keypoints (pairs)

for both object detection and 6DoF pose estimation [32, 21, 23], our surface-based
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approach avoids some significant disadvantages as discussed in Section 2.4.1, and
can still perform robustly in cluttered scenes. As outlined in Table 2, our approach

has several advantages:

e Our approach for recognition of surface segments is flexible to use various

kinds of existing mature object features and learning algorithms.

Whereas, the performance of object detection in [32, 21, 23] only relies on the
distinctiveness and repeatability of the descriptors of keypoints or keypoint pairs,

which can be weakened as the number of objects in the dataset increases.

e The time complexity of our approach is constant with respect to the number

of objects in the dataset.

Let N is the number of objects in the dataset, n is the average number of training
keypoints (pairs) of each object, and m is the average number of keypoints (pairs)
in each test image. If brute-force search is considered, then the time complexities
of the approaches [32, 21, 23] are O(nmN ), while the time complexity of our ap-
proach is O(nm'), where m’ < m is the number of the keypoints (pairs) from the

recognized object regions, rather than from the whole test image.

e Our approach does not need manually setting many threshold values.

The approaches of [32, 21, 23] are algorithms based on voting or clustering. For
those approaches, many thresholds have to be decided to distinguish multiple ob-

ject instances from noise, which are usually object-related or scene-related. How-
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ever, our approach does not require such additional thresholds to distinguish mul-
tiple object instances from the noise; as the result, our approach is more adaptive
to different scenes.

Moreover, the approach of [23] assumes that keypoints that are close enough
belong to the same object instance; however, a threshold for closeness has to be
chosen and can affect the performance of the algorithm. Our approach does not
have such an assumption.

Recently, an algorithm [76] was proposed to search for the best interpretation of
the observed sensor data, by hypothesizing possible scenes with known 3D object
models. However, they assume the number of objects in the scene is known and

objects in the scene vary only in 3DoF (2DoF position and yaw).
3.22  Learning-based View Evaluation

In order to assess automatically how good a view is for machine vision to rec-
ognize objects that partially occlude one another in a scene, we also introduce a
learning-based approach for evaluating scene recognizability from a single view.
We are interested in developing an evaluation approach to compare images from
different viewpoints for scene recognizability by machine vision. If an image has
better scene recognizability than another image, its viewpoint is considered a bet-
ter viewpoint for both recognition and reconstruction of the scene. The following
factors are considered, formulated in terms of related parameters, in evaluating
the recognizability of a cluttered scene with objects occluding one another from a

single view:
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1. the recognition confidence of each object from the view;

2. the fitness of each object, measuring the accuracy of pose estimation for the
object in the scene (in terms of a 4x4 homogeneous transformation matrix

with respect to the world coordinate system);

3. the recognition uncertainty, reflecting poorly recognized or wrongly recog-

nized objects from the view;

4. the recognition confidence of the background from the view.

Higher confidence values and higher accuracy in pose estimation mean better
recognition results; whereas lower uncertainty is better.

However, for two different views, if one is better in some factors but worse in
some other factors, it can be difficult to decide which view is better overall. For
example, if more objects can be recognized with high confidence from one view
than the other view, but the objects recognized in the latter view have more accu-
rate pose estimation, which view is better cannot be easily determined and may
depend on the specific task environment. Hence, we propose a learning-based
optimization method to best combine factors 1) and 2) in characterizing the rec-
ognizability of each object from a view. The optimization result separates objects
of high-recognizability from those of low-recognizability. Different optimization
criteria are considered. We further introduce a learning-based view evaluator to
determine which view has a better overall scene recognizability by taking into ac-
count all the factors above. Our approach only requires intuitive human obser-

vation to aid the learning (i.e., training) process, but the trained view evaluator
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can provide more accurate view evaluation results than a human observer for the
purpose of autonomous perception and action. Our learning-based approach also
makes it easy for the view evaluator to adapt to the characteristics of specific types

of task environments or scenes.
3.2.3 Interleaving Perception and Robotic Manipulation

The integration of RGB-D perception of an object and robotic manipulation of
the object is also a focus topic to facilitate both object modeling and object manip-
ulation. Using robotic manipulation can enable automatic object model building.
RGB-D perception is applied to capture the information for appearance-based ob-
ject modeling and also guiding robotic manipulation, and robot manipulation is
introduced to move the target object for better RGB-D perception or to change the
poses of the object to facilitate surface-based model building. Such techniques of
interleaving perception and manipulation can also be extended to handling un-
known objects in a scene, such as moving an unknown obstacle away in order to
gain access to a target object, as well as modeling unknown objects encountered to
expand the database of appearance-based object models for recognition and pose
estimation.

Here, we address automatic building of a complete 3D model of a rigid object
by covering all its surfaces. In our modeling set up, an RGB-D camera is placed
at a fixed position with a fixed direction to view the target object, which is placed
on a table. After the first image is taken, the object is rotated slightly by a robot

manipulator to make new surfaces visible, and the following process of alternating
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perception and manipulation is conducted:

Repeat:

e take a new image;
e extend the partial object model based on adding the new image;

e plan and execute a manipulator motion based on the partial object

model to change the object pose;

until images have been taken for all object surfaces.

In the above procedure, perception and manipulation are very much interdepen-
dent. Perception guides manipulation, which assists further perception.

Fig. 5 provides a high-level flowchart of our approach. Note that there are two
loops in the flowchart to distinguish two kinds of manipulation to change object
poses. One kind is to rotate the target object on table (in a consistent direction)
gradually through pushing until after 360 degrees to cover side surfaces of the ob-
ject; and the other kind is to change the support surface of the object, i.e., rotate the
object to expose its previous bottom surface, which can be achieved by a greater
push or by picking up the object, rotating it in the air, and placing it down (on a dif-
ferent surface), in order to cover unseen surfaces. We extend existing approaches
for object model building based on registering images of overlapping views [11, 88]
for our purpose and focus on the issue of how to adjust the pose of the target ob-
ject through robotic manipulation to expose unseen surfaces based on the partial

object model at the moment, especially for the kind of manipulation that changes
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the bottom (support) surface of the object.

We use a common volumetric representation [111, 92, 51, 57, 27] for our object
model in order to facilitate the determination of the next object pose and how to
perform object manipulation to achieve the desired next pose. We introduce an
evaluation function of a candidate object pose by taking into account the image
region of previously unseen surfaces vs. that overlapping with existing images, the
stability of the pose, how easy to manipulate the object to change its current pose
to the candidate pose considering manipulator constraints, and the effect on the
quality of the (partial) object model. The volumetric representation also enables
the detection of a complete model, if all surfaces of the object can be observed

through manipulation.
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CHAPTER 4: SURFACE-BASED 3D OBJECT DETECTION AND POSE
ESTIMATION

In this chapter, a new appearance-based approach to general 3D object detection
and pose estimation [107] is presented based on surface features in cluttered en-
vironments, taking full advantage of RGB-D information. Our approach identifies
known object surfaces and subsequently both identifies the corresponding objects
and their homogeneous transformation matrices w.r.t. the camera coordinate sys-
tem in the 3D scene, even if the objects are partially occluded and may be partially
transparent. Our approach can also effectively solve the problem of detection and
pose estimation of multiple instances of the same object in a scene, which can be in
occlusion of one another. The key characteristic of our approach is that we build
object detection and pose estimation on the basis of smooth 3D surface segments

and their visual signatures.
41  Object Representation and Model Building

Appearance-based object representation starts from a sufficient number of RGB-
D images of different viewpoints of an object (captured by Microsoft Kinect). First,
images are segmented based on smooth surfaces, where a smooth surface is de-
fined by the continuity of depth and surface normal values, and its boundary
is characterized by depth and surface normal discontinuity [106]. Each object is

characterized in terms of surface segments from multiple views and the visual sig-
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natures of the surface segments. Both HSV color histogram and ASIFT keypoint
histogram [117] are used as the visual signatures because of their robustness to
viewpoint and illumination changes. As an example, Fig. 6 shows a common ce-
real box and its smooth 3D geometric surfaces in terms of the corresponding image

segments from different views.

Figure 6: A common cereal box and images of its smooth 3D surfaces from different
views

In the representation of an object, after surface segments are obtained from all

images of different views, keypoint matching is then conducted to establish cor-
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respondence among surface segments of the same 3D smooth object surface in
different images. A coarse 3D model of the entire object is next established based
on the matching results, and an object frame (i.e., coordinate system) is specified!.
This is done by applying SVD [33] and RANSAC algorithms. Fig. 7 shows some

reconstruction results.

Figure 7: Examples of reconstructed objects, from left to right: cereal box, cup
noodle, milk box 1 and milk box 2

42  Object Detection and Pose Estimation

To detect objects in a 3D test image, smooth geometric surfaces in the test image
are first segmented, and their corresponding visual signatures are described. By
applying the k-nearest neighbor algorithm [25], surface segments in the test image
are identified and labeled by the objects they belong to respectively even if they
are partially occluded.

Once object labels are provided to the surface segments in a test image, the pose
of an object can be estimated in terms of a homogeneous transformation matrix
with respect to the camera coordinate system. For each surface segment with the
detected object label in the test image, our algorithm searches for the most similar

image of the surface segment with the same object label in the object database. It

!Note that every surface segment has its own frame w.r.t. the object frame.
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then matches the keypoints between the surface segments in the two images to
estimate the pose of the corresponding object in the test scene. The ICP algorithm
is further used to fit the predicted object model under the estimated pose to the
corresponding actual point cloud in the test image to achieve a more accurate pose
estimation.

To evaluate how well a predicted object model fits the surface segment in the test
image, we introduce a fitness cost measure as a distance function between the point
cloud of the surface segment s and the corresponding point cloud of the projected
object model M(s). For each point g, in the point cloud of the surface segment s
(v =1,---,N;), we can find a matched nearest point p(q,) in the point cloud of

the projected object model M(s), and the fitness cost is computed as follows:

1 N
fe(s,M(s)) = E;H%—P(%)H, (2)

where N is the total number of the points in the surface segment s.

Multiple surface segments of the same object can provide different object pose
estimates. If these estimates are quite similar, i.e., consistent, we can simply choose
one of them as the object pose. However, with small segments, sometimes the pose
estimates are quite different and inconsistent. In such a case, we use the fitness
measure to choose the correct object pose estimate as the one with better fitness
values from all segments. Fig. 8 shows an example, where two surface-based pose
estimates for the blue milk box were inconsistent, and the best-fit predicted object
model was chosen. Note that the viewpoint used to display the reconstructed

scene is different from the viewpoint of the original test image, as evident from
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the red milk box — two sides of the red milk box not visible in the original test

image were shown in the reconstructed images.

(b)

Figure 8: An example of handling inconsistent pose estimates: (a) original scene
captured by a RGB-D camera, (b) intersecting projections of the model for the blue
milk box at two inconsistent, initial object pose estimates, (c) object models at the
best-fit pose estimates

43  Comparison of Two Types of Keypoints Matching

It is important to emphasize the major difference between our method for pose
estimation and existing literature: we match keypoints between each pair of cor-
responding surface segments of two images respectively rather than between the
two entire images directly. By providing corresponding surface segments as inputs
to the matching algorithm, our method provides more accurate results of matching
and subsequent object pose estimation.

First, for a partially occluded object, by focusing on its visible surfaces, we can
provide a substantially greater number of valid matches of keypoints as input to
the SVD algorithm to estimate the object. It is thus less likely to result in wrong
registration or insufficient matched keypoint pairs for registration.

Fig. 9 shows an example: (a) shows the two images used to model the cereal box,
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Figure 9: Comparison of keypoints matching and pose estimation results: (a) the
original images for matching, (b) the matched keypoints and the result of estimated
object model based on matching the whole images, and (c) the matched keypoints
and the result of the estimated object model based on matching the common side
surface visible in both images
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(b) shows the keypoints matched based on the two whole images and the estimated
object model, which suffers the singular problem, and (c) shows the keypoints
matched based on the side surface detected in both the images and the estimated
object model. Note that since only three surfaces of the cereal box can be seen in
the two images, the result of estimation consists of just the three surfaces. Clearly,
through focusing on surfaces, our algorithm obtained more correctly matched key-
points pairs and subsequently a much better estimation result. This is because both
images are resized to the same size initially for keypoints extraction and matching.
As the result, small surface segments obtain better resolutions after being resized
when matching is done between only the surface segments. However, this does
not work for matching based on the whole images.

Second, by extracting keypoints on the target object surfaces instead of an entire
image, our method avoids the extraction of invalid keypoints, such as those on the
boundaries between the target object and other objects or on the background in
the image of a cluttered scene. For objects of regular and symmetric shapes with
fewer discrimitive visual features on the boundaries, matching errors caused by
invalid keypoints are very likely if an entire image is used for matching. Even if
some sliding window is used to localize the target object, with objects occlude one
another in a complex scene, matching errors can still occur. Our approach effec-
tively avoids such errors by focusing on each surface segment itself, so that both
the extraction and description of keypoints are not affected by anything outside
the surface segments.

Fig. 10 shows an example: (a) shows two images used to model the yogurt cup,
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Figure 10: Comparison of keypoints matching and pose estimation results: (a)
the original images for matching, (b) the matched keypoints based on the whole
images and the result of estimated object model displayed in front and top views,
(c) the matched keypoints based on matching the common top side surface visible
in both images and the result of the estimated object model displayed in front and
top views
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(b) shows the keypoints matched based on the two whole images and the estimated
object model displayed in both front and top views, and (c) shows the keypoints
matched based on the top surface detected in both original images and the esti-
mated object model displayed in both front and top views. From Fig. 10(b), we can
see that the reconstructed model of the yogurt cup is quite distorted (from the front
view image) and the blue spindle shape on the top surface is also clearly distorted
(from the bottom view image). Whereas, the results in Fig. 10(c) are more accu-
rate. By focusing on surfaces, our approach avoided a great number of incorrectly
matched keypoint pairs and subsequently achieved a much better estimation re-

sult.
44  Detection of Multiple Instances of the Same Object

One important advantage of our approach is that it can directly detect multiple
instances of the same object conveniently even if the object instances are occluded
in different ways. In contrast, most existing approaches use the Hough voting
or pose clustering schemes to determine object instances based on votes, which
require setting some threshold values and can be subject to noise, especially for

heavily occluded objects.
45 Experiments and Analyses

We have built an object database of four objects, including a cereal box, a cup
noodle, and two different milk boxes, each from 24 images of different views. The
four objects are shown in Fig. 11.

To verify the performance of our approach efficiently, we have also created 15
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Figure 11: Examples of images in the dataset: top two rows show some images of
the four objects used for training; bottom row shows some background images for
training
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different test images of cluttered environments, which include different objects or
multiple instances of the same object. Each image includes 3—6 mutually occluded

objects or object instances, as shown in the first column of Fig. 12.

Figure 12: Examples of object detection and pose estimation results: each row start-
ing with an original test image followed by four images from left, back, right, and
top views that display the corresponding reconstructed scene

Fig. 12 shows the results of our approach for object detection and pose estima-
tion for the example test images. The 1st column shows four test images captured
by a RGB-D camera. The 2nd—4th columns display the corresponding object detec-
tion and pose estimation results in four different views: left, back, right, and top

views. By localizing all the known objects in the current scene and estimating their

poses correctly, our algorithm reconstructed the whole scene based on a test image
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from a single viewpoint, as shown in the images of the reconstruction results from
multiple views.

As described above, we use the k-nearest neighbor algorithm to recognize all
the detected surface segments in the testing scene and then estimate their poses. A
surface segment is labeled by the most voted label among its most similar k surface
segments in the training dataset. Euclidean distance is used here as our distance
metric in the HSV color and the ASIFT feature spaces.

Selecting a proper value for k is essential for the performance of the recognition
of the object surface segments. Fig. 13 and Fig. 14 show the precision-k curves and
the recall-k curves for all the objects in the dataset. We can see that for the value of
k in the range of 5-10, both precision and recall rates are quite high for all known

objects in the dataset. In our experiments, we set k = 10.
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Figure 13: The precision-k curves for all the objects in the dataset

On the other hand, for very large k values, labels with most samples in the train-
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Figure 14: The recall-k curves for all the objects in the dataset

ing dataset tend to dominate the prediction of the labels for test samples. Since
we had more background surface segments than object surface segments for each
object used for training, with very large k values, the recall rates for all the objects
in the dataset eventually approach zero, because segments of background tend to
donimate the results of labeling. For k values set in the middle range of the charts,
objects with more surface segments tend to affect the labeling of surfaces with sim-
ilar features. For example, our experiments show that surfaces of milk box 2 tend

to be misclassified as the cup noodle due to similar color features for k > 10.

Table 3: Detection and pose estimation (PE) results with k=10

cereal box | cup noodles | milk box 1 | milk box 2
#Instances 16 11 12 14
Correct PE 14 9 9 13
Wrong PE 1 1 0 0
Missing 1 1 3 1
Fitness(mm) 5 29 6.1 6.1
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Table 3 shows the detection and pose estimation results for all the objects in our
dataset with k = 10. Most of the object instances are detected with pose estimation
correctly. Note that the fitness shown under each object is the average of fitness
values associated with all tested instances of the same object, where for each object
instance, the fitness value is the average of fitness values associated with all the
surface segments that correctly detect the object. The accuracies of each average
titness is quite consistent with the accuracy of the raw data captured by Microsoft
Kinect, which is about 3mm for objects within 1m from the camera. For the few
missing and wrong detections, possible reasons include: wrong surface segments
were detected based on visual features, or the detected surface segments were too

small to provide sufficient information for generating reasonable poses.
4.6  Conclusions of this Chapter

To conclude, in this chapter, we have introduced a new appearance-based ap-
proach for general 3D object detection and pose estimation based on segmented
3D surfaces and their features, taking full advantage of RGB-D information. Our
approach can detect and estimate the poses of occluded known objects, including
occluded multiple instances of the same object, effectively in cluttered environ-
ments. In the following chapters, we will introduce more objects with more com-
plicated shapes and surfaces to test and further improve and extend our approach;
we will also integrate our work with robotic manipulation and motion planning

approaches to enable automatic 3D object modeling based on sensing in real-time.



CHAPTER 5: EXTENSION TO SURFACE-BASED 3D OBJECT DETECTION AND
POSE ESTIMATION

In this chapter, a significant extension to the work in Chapter 4, is presented
[109]. With a new strategy for object model building, we expand the object dataset
by including objects with transparent or semi-transparent regions. We also add the
algorithm based on graph-cut to remove redundant or incorrect detection results.
We further report new object detection and pose estimation results that were not
reported in Chapter 4. Moreover, we provide a comparative study of the intro-

duced approach vs. related existing approaches.
51 A Robust and Convenient Strategy for 3D Model Building

We now introduce a robust and convenient way to build 3D object models using
keypoints from both object surfaces and the environment to register different object
views. RGB-D images used for building object models are captured from different
camera views of different object poses.

Although a chessboard is widely used to register different views of the same ob-
ject, it still requires manual annotation to obtain the orientation of the chessboard
when the camera view changes dramatically.

Instead, we use two images with rich visual information, called landmarks, as
shown in Fig. 15, and put them by the side of target object as the reliable and main

source of required keypoints in the environment to help registering different views
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Figure 15: Two landmarks are placed by the side of a milk box to register different
object views

of the same object.

(b)

Figure 16: The geometric shape of an object, no matter how complicated, can al-
ways be simplified as having up to 6 sides.

For each object, we choose 6 different stable object poses for training, and each
pose corresponds to having one of the six sides (see Fig. 16) roughly on top, as
shown in Fig. 17.

For each object pose, we capture 5 RGB-D images from different views, as shown

in Fig. 18. A RGB-D sensor is always placed on the side of the object where the
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Figure 17: 6 different stable poses used for modelling a juice container

Figure 18: The whole space is roughly divided into 5 even spaces, and for each of
them, an RGB-D image is captured for training.



54

landmarks are placed so that most of the landmark surfaces can be observed all
the time. The whole space is roughly divided into 5 equal regions, and for each
of them, the sensor is moved above the object and captures an RGB-D image for
training. No accurate measurement or set up are required. Fig. 19 shows 5 images
captured for modelling a cereal box from different views of a particular pose of the

box.

Figure 19: 5 images from different views captured for a single pose of a cereal box

We register different object views as follows for each object:

e For each set of RGB-D images from different camera views of the same object
pose, we match keypoints from the landmarks in the environment to register

different camera views.

e From the set of RGB-D images of different object poses, we choose a pair
of images of different poses that have the most matched keypoint pairs on

common object surfaces to register different object poses.

We use ASIFT [117] keypoints to register different RGB-D images of the same
object. For each object O, a coarse point cloud model of the object M is next estab-
lished based on the registration results, and an object frame (i.e., coordinate sys-
tem) is specified for M. This is done by applying SVD [33] and RANSAC [89, 37]

algorithms.
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We also take images of the background without registering them.

Consider N objects plus the background in our training dataset, denoted as
Q" ={0y, 01,0y, -+ ,0n}, where Oy indicates the background.

Now, suppose N is the total number of RGB-D images in our training dataset,
each RGB-D image I, I € {1, I,---, Iy}, is associated with an object (or back-
ground) label L(I), L(I) € QF, and a 4 x 4 transformation matrix T(I) with re-
spect to the corresponding object frame, so that each training RGB-D image can be

characterized as:
{L,L(I), T(I)}. 3)

Since the background does not have a point cloud model, T(I) is assigned NULL
if I is an RGB-D image of the background.

Fig. 20 shows all the reconstructed object models in our current dataset. As
object models are built under the most common in-door lighting conditions and
based on noisy appearance from RGB-D images, our approach is more robust in
detecting objects under similar noisy conditions.

Our approach does not require any precise information of object poses and cam-
era poses, and a complete coarse object model can be achieved easily (from the
point clouds that an RGB-D camera can capture). It thus facilitates autonomous

object model building.
5.2 Surface-based Object Representation and Classification

On the basis of all RGB-D images captured from different views of different

poses for each object, we next establish an appearance-based representation of the
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Figure 20: All the reconstructed object models in our current dataset, including
objects with transparent or translucent surfaces (shown in the last column)

object. First, the target training object is segmented out from the background in
each object RGB-D image. Next, the target object is further segmented based on
smooth surfaces, where a smooth surface is defined by the continuity of depth
and surface normal values, and its boundary is characterized by depth and sur-
face normal discontinuity [106]. Each RGB-D image of the background is directly
segmented into smooth surface patches.

Then, each object (or background) is described in terms of surface segments from
different views of different poses and the visual signatures of the surface segments.
We use both HSV color histogram and ASIFT keypoint histogram [117] as the vi-
sual signatures because of their robustness to viewpoint and illumination changes.

Let Ns be the total number of surface segments from all images in the training
set, where each surface segment S, S € {51,5,--- ,SNS}, belongs to a unique

training RGB-D image I(S), I(S) € {I1,Io,---,In,}. Then, each training surface
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segment can be characterized by:

{S,L(1(5)), T(1(5)), h(S),a(S)}, 4)

where (S) is the visual feature in terms of the extracted HSV color histogram of S,
and a(S) is the visual feature in terms of the extracted ASIFT keypoint histogram
of S.

As an example, Fig. 21 shows a common cereal box and its smooth 3D geometric
surfaces in terms of the corresponding image segments from different views of
different poses.

Note that our object representation only uses a segmentation of geometric sur-
faces obtained automatically, which makes it flexible to model daily objects with
irregular shapes other than those of special shapes, such as cuboid or cylinder, and
to tolerate small bulges on a surface.

Using all surface segments Sy, - - -, Sy, and all the corresponding features, we
train a multi-class classifier based on support vector machines (SVMs) [19], which

can be used to classify the surface segments of each test scene to different objects.
5.3  Object Detection and Pose Estimation Using Graph-cut

In this section, we explain our surface-based approach for 3D object detection

and pose estimation in detail.
53.1 Initial Detection and Estimation

To detect objects from an RGB-D test image, smooth geometric surfaces in the

test image are first segmented [34], and their corresponding visual signatures are



58

Figure 21: A common cereal box and images of its smooth 3D surfaces from differ-
ent views of different poses



59

described. Next, surface segments in the test image are recognized by the trained
classifiers based on their visual signatures and labelled by the corresponding ob-
jects respectively.

Suppose s is one of the segmented smooth surfaces from the test image I’, with
its visual signature described as h(s) and a(s), the normalized recognition proba-
bilities for each object (or background) O, O € O, returned by the trained multi-
class SVMs classifier is denoted as P(O|h(s),a(s)), and then the surface segment s
is labelled as belonging to the object (or background) label O(s) corresponding to

the greatest probability:

O(s) := arg max P(Olh(s),a(s)),
()
s.t. OX=XO}

Once the surface segments of a test image are assigned object labels, the 6DoF
poses of the corresponding predicted objects can be estimated in terms of homo-
geneous transformation matrices with respect to the camera coordinate system in
the following steps.

First, suppose the surface segment s is recognized as belonging to one of the
training objects, O(s) € {O1,0,,---,0n}, then the most similar surface segment

S(s) with the same object label in our training dataset in terms of ASIFT keypoint
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histogram can be obtained by:
S(s) := argrrgin Dist(a(s),a(S)),
s.t. L(I(S)) = O(s), (6)
Se{S51,5, - ,SNng},
where Dist(a(s),a(S)) is the Euclidean distance between the ASIFT keypoint his-
tograms fs(s) and fs(S).
It then matches the ASIFT keypoints between the surface segments s and S(s). If
a sufficient number of matched keypoint pairs are found, our algorithm predicts a
candidate object model M(s) with the object label as O(s), and its pose H(M(s)) is
estimated by combining two 4 x 4 transformation matrices: (1) T(I(S(s))), which
indicates the transformation from the camera frame of the surface segment S(s) to
the basic frame of the object model M(s), and (2) a transformation matrix ©(s, S(s)),
obtained based on the matched keypoint pairs by using SVD [33] and RANSAC
[89, 37] algorithms, which indicates the transformation from the camera frame of

the surface segment s to the camera frame of the surface segment S(s), so that
H(M(s)) = ©(s,S(s)) "' T(I(S(s))) " (7)

Finally, the pose H(M(s)) indicates the transformation from the basic frame of
object model M(s) to the current camera frame of the surface segment s in the test
image.

If necessary, the ICP algorithm [11] can be further utilized to fit the point cloud

object model under the estimated pose H(M(s)) to the corresponding actual point
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cloud in the test image I’ to achieve a more accurate pose estimation H(M(s))'.
As the result, a candidate object model M(s) from the surface segment s in the test

image I’ can be finally described as:

{s,0(s), H(M(s))'}. (®)

5.3.2  Scene Reconstruction

For all surface segments in a test image, which are identified as belonging to
some trained objects and successfully assigned corresponding candidate object
models as described in Section 5.3.1, we next reconstruct the scene of the test image
to validate all the recognized objects and their estimated poses as follows.

To reconstruct the scene, we project all the predicted object models back to the
original test image. This can be done very easily since the pose of each predicted
object model indicates the transformation from its own object coordinate system
to the camera coordinate system of the test image.

Then, we check if each predicted object model fits its own surface segment well.
We introduce a rough threshold value 6 = 10 mm for the fitness cost, as defined
in Section 4.2. If the fitness cost of a predicted object model is greater than J, then
it is ruled out as incorrect estimation and is abandoned. Our experimental results
show that the threshold value 4 is mainly related to the accuracy of the sensor (e.g.,
Microsoft Kinect) and the SVD algorithm.

Fig. 22 (a) ~ (c) illustrate the step-by-step procedures of the initial scene recon-
struction described above: (a) shows the original test image; (b) shows the coarse

segmentation result based on smooth surfaces; as shown in the figure, surface seg-
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(a) The original test image (b) The coarse segmentation (c) The initial reconstruction re-
result sult

(d) The complete graph (e) The graph cut result (f) The refined reconstruction re-
sult

Figure 22: An example of selecting the best object model using a graph-cut based
algorithm: in (b) and (c), both surface segments C and F predict the same object
model of the blue milk box with very similar pose estimates, while surface seg-
ments D and E also predict the same object model of the red milk box but with
inconsistent pose estimates. After applying the result of our graph-cut algorithm,
we can see that the previous red milk box with inaccurate pose estimate in (c) is
eliminated in (f).
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ments A ~ F successfully predict various object models, and the fitness costs of
those object models to their corresponding surface segments are within the thresh-
old value 4 according to their initial pose estimates; (c) shows the scene reconstruc-
tion result after the initial object detection and pose estimation.

Note that an object instance usually has multiple surface segments visible in a
test image so that some redundant object models of the same object instance are in
the result. For example, in Fig. 22 (b) and (c), both surface segments C and F predict
the same object model of the blue milk box with very similar pose estimates so
that their projections back to the original test image coincide and look like just one
object. However, although both surface segments D and E also predict the same
object model of a red milk box, the pose estimates for the model based on D and
E are not very consistent, and there are obvious distortions on the top side from
two predicted red milk boxes after we project both of them back to the original test
image.

Hence, we propose a general graph-cut based algorithm to remove redundant
object models, no matter if they provide similar or inconsistent pose estimates.

First, our method builds a graph based on all the predicted object models and
their corresponding surface segments after the fitness cost of each predicted object
model is validated. As shown in the example in Fig. 22(d), each surface segment
represents a node in the graph; every node is connected to every other node to
form a complete graph. The complete graph enables our algorithm to apply also
to disconnected and partial surface segments, which are usually caused by either

occlusion (so that only disconnected surface patches are visible) or transparency
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(so that the transparent region of a surface is not visible).

The weight of each edge that connects two nodes is assigned as follows. Sup-
pose there are two nodes A and B, which represents their corresponding surface
segment s, and s;, respectively, and their corresponding predicted object models
are denoted as M(s,) and M(s,). Now, the weight w(A, B) of the edge that con-

nects nodes A and B is defined as

fe(sa,5p, M(sq)) = max (fc(sa, M(sq)), fe(sp, M(Sa))), )
fe(sa,sp, M(sp)) = max (fe(sa, M(sp)), fe(sp, M(sp))), (10)
w(A, B) = min (fc(sq, 85, M(8a)), fc(Sa, 5, M(sp))), (11)

where fc(sq,sp, M(s,)) and fc(sq, sp, M(sy)) are the fitness costs of using the ob-
ject models M(s,) and M(s;) to fit both surface segments s, and s;, respectively.
Therefore, w(A, B) indicates the best fitness (minimal fitness cost) if both surface
segments s, and s; share the same predicted object model.

Once the graph is built, we use the graph cut algorithm [36] to group the surface
segments that belong to the same object instance. The only required threshold

function T in [36] is set as:

o

T=+—,
@]

(12)

where ¢ is the threshold for fitness cost introduced above, and |®| denotes the
number of the nodes in the group .
Fig. 22(e) shows the grouping results of surface segments using the graph built

in Fig. 22(d). Based on the grouping results, for all surface segments that are
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grouped to indicate the same object instance, only the object model predicted from
one surface segment that has the minimum fitness cost of fitting into all these sur-
face segments in the group is kept, and the predicted models from the rest of the
surface segments are discarded.

To summarize, for all predicted object models of the same object instance, only
the one with the best fitness cost is chosen and the rest are discarded.

Fig. 22(f) shows the final refined result of object detection and pose estimation
from Fig. 22(c). After applying the graph-cut algorithm, we can see that the pose
inconsistency of the previous red milk box is resolved with the incorrect pose elim-

inated.
54  More Experiments and Analyses

In this section, we first provide more detailed description of the training process
for establishing our object models. Then, we briefly introduce our test scenes and
test images. We next compare the recognition results of all test surface segments
from all test images with the combined detection and pose estimation results of
all the object instances and discuss why the latter has much higher accuracy. We
further show example results of scene reconstruction and discuss time efficiency
of our approach. Finally, we compare the performance of our approach to the
MOPED approach [23] using two different clustering algorithms: one is Mean Shift
clustering, and the other is Projection clustering with Q-Score ranking, which is
the overall best-performer in [23], and discuss the advantages and disadvantages

of each approach.
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541 Training

As described in Section 5.1, we capture 5 x 6 RGB-D images for each object and
12 RGB-D images for the background for training. Coarse point cloud object mod-
els and surface-based object representations are generated subsequently.

We use a k-dimensional bag-of-words ASIFT histogram as one of the visual sig-
natures for each object surface segment. First, we cluster all training ASIFT de-
scriptors using the k-means algorithm, where k is the number of clustering cen-
troids (or codewords). In order to select a proper value of k for good recognition
performance, we tested five different values of k: 128, 256, 512, 1024, and 2048.

We use the SVMs and apply the kernel based on the radial basis function to them
as the classification model for the recognition of the object instance from a surface
segment. We also use K-fold nested cross validation in the training of the SVMs.
Fig. 23(a) shows optimal accuracies achieved by the trained SVMs classifiers using
only HSV or ASIFT visual signature as the number of folds K changes in cross val-
idation, while Fig. 23(b) shows optimal accuracies achieved by the trained SVMs
classifiers as K changes using the combination of HSV and ASIFT visual signatures
for classification. Based on the performances, k = 512 is chosen as the dimension
of the ASIFT histogram; C = 6.73 and v = 0.04 are chosen as the SVMs training

parameters.
5.4.2  Test Scenes and Images

We have created 17 test sets [105] including a total of 92 RGB-D images, which

were captured by Microsoft Kinect from different views of different cluttered scenes.
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Figure 23: Optimal accuracies achieved by the trained SVMs classifiers using dif-
tferent descriptions of visual signatures as the number of folds K changes in cross

validation for different k values



68

Each test image includes 6 ~ 14 occluded objects or object instances of the same
object. Fig. 24 shows examples of test images of different scenes, and Fig. 25
shows examples of test images from different views of the same scene. As the

view changes, we can observe the obvious changes of both the illumination and

occlusion for each object.

Figure 24: Test images of different scenes

Figure 25: Test images from various views of the same scene

5.4.3 Comparison of the Test Results: Surface Segments vs. Object Instances

For all test images, we always use the same set of fixed parameters and values
for smooth surface segmentation. Fig. 26 shows the precision-recall curves based
on classifying all test surface segments to object labels in all test images and for all
objects in our dataset. As described in Section 5.3.1, for a surface segment from a
test image, we always use the object label which corresponds the greatest proba-

bility returned by the trained SVMs classifiers as the recognized object label of the
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test surface segment. This strategy is equivalent to choosing a very small recogni-

tion confidence threshold, and the recognition results usually achieve the highest

recalls for all objects but with low precisions.
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Figure 26: Precision-recall curves based on classifying all test surface segments to
object labels in all test images and for all objects in our dataset

Table 4 shows the combined detection and pose estimation results for all the ob-

jects in the test images. The 1st column shows all the objects in our dataset; for

each object, the 2nd column shows the ground truth of the total number of in-

stances of each object in all the test images; the 3rd column “CRCP” shows the

number of correctly detected object instances with correct pose estimation; the 4th

column “WR” shows the number of wrongly recognized object instances; the 5th

column “CRWP” shows the number of detected object instances which are cor-
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rectly recognized but either redundant or with incorrect pose estimation; the 6th
column shows the average fitness cost values of all the detected instances with

correct pose estimation.

Table 4: Combined object detection and pose estimation results

Objects Total | CRCP | WR | CRWP Fltrgf;’;)m“
cereal box 1 52 47 1 0 3.39 + 1.34
cereal box 2 104 83 1 0 3.60 +1.32
cookie box 1 52 46 0 1 2.34 + 0.85
juice container 1 | 52 50 0 0 1.77 £ 0.97
juice container 2 | 52 36 1 2 2.13 +0.78
milk box 1 104 83 0 0 3.33 £1.62
milk box 2 52 43 0 1 3.23 +1.49
coffee can 1 52 32 0 3 243 +1.42
coffee can 2 52 39 0 5 2.67 +1.09
plate 1 52 19 0 0 3.38 £ 1.76
plate 2 52 41 0 1 1.78 + 0.61
tray 1 52 37 0 0 2.54 + 1.58

In the total 572 detected object instances in our final test results, only 3 of them
are wrongly recognized, even though the precisions of classifying test surface seg-
ments to object labels alone in Fig. 26 are relatively low when the highest recalls for
most objects are achieved. This result shows the unique strength of our approach:
if multiple surface segments match an object, even if some of the matches may be
wrong, as long as there is one correct match, the wrong results can be eliminated
because of the following reason. If a wrong object is recognized from a test surface
segment, there can be two cases: (i) there will not be sufficient number of matched
keypoint pairs for correct pose estimation when the test surface segment is next
matched to a training surface segment of the wrong object so that the wrong object

is not predicted, or (ii) a high fitness cost will likely result when the wrong object
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model is predicted and projected to the test surface; in this case, our graph-cut
based algorithm can effectively remove such incorrect detection results.

Table 4 also shows that, for the 569 correctly recognized object instances, most of
them are detected with pose estimation correctly. Note that the fitness cost shown
under each object is the average of fitness cost values associated with all tested
instances of the same object, where for each object instance, the fitness cost value
is the average of fitness cost values associated with all the surface segments that
belongs to the object. The accuracies of each average fitness cost is quite consistent
with the accuracy of the raw data captured by a Microsoft Kinect, which is about
+3 mm for objects within 1 m from the camera.

However, Table 4 shows that a large number of object instances of plate 1 are
not detected (i.e., missing). This happened sometimes when the flat and shallow
plate 1 was directly put on the background table and the surface segmentation
could not separate the plate well from the table. Introducing more clues for better
surface segmentation could resolve this problem. Possible reasons for the other
few cases of missing and wrong results include: wrong surface segments were
detected based on visual features, or the detected surface segments were too small

to provide sufficient information for generating reasonable poses.
5.4.4 Example Results of Scene Reconstruction and Discussion of Performance

Fig. 27 shows the results of our approach to object detection and pose estimation
for some example test images. The 1st column shows five test images captured by a

RGB-D camera. The 2nd ~ 4th columns display the corresponding object detection
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and pose estimation results in four different views: front, left, right, and top views.
By localizing all the known objects in the current scene and estimating their poses
correctly, our algorithm reconstructed the whole scene based on a single test image
(i.e., from a single viewpoint), as shown in the images of the reconstruction results

from multiple views.

Figure 27: Examples of object detection and pose estimation results: each row start-
ing with an original test image followed by four images from front, left, right, and
top views that display the corresponding reconstructed scene

Note that in Fig. 27, the red milk box in the 3rd row (in a green circle) is oc-
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cluded much less than the one in the 4th row (also in a green circle); however,
our approach obtained better pose estimation results for the red milk box in the
4th row than the one in the 3rd row. For another example, the cereal box in the
2nd row (in a blue circle) is obviously occluded more than the one in the 3rd row
(also in a blue circle); however, our approach successfully detects the cereal box
in the 2nd row with pose estimation correctly but fails to detect the one in the 3rd
row. Thus, the extent of occlusion to an object does not seem to affect the results
of object detection as much as how distinctive the unoccluded regions of the object
are.

From our test results, it is interesting to see the effects of different kinds of sur-
faces: some surfaces are indistinctive and cannot be used effectively for object
recognition, but some distinctive surfaces for object recognition are ill suited for
object pose estimation, such as object surfaces with constant colors; surfaces with
rich graphics or text information are effective for both object recognition and pose
estimation with our approach.

All our algorithms are currently implemented in single threads. It takes about 20
~ 30 seconds to process each surface segment for the recognition and pose estima-
tion in a test image. Most of the time is spent in computing and matching ASIFT
keypoints.

More data and results from our experiments can be found in [105].
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5.4.5 Comparison to the MOPED Approach

In order to compare our approach to the MOPED approach [23] more quantita-
tively, we implemented the MOPED approach and applied it to our testing dataset.
Table 5 compares the detection and pose estimation results for all the objects
in all the test images of our approach vs. those of the MOPED approach using
Mean Shift clustering and the MOPED approach using Projection clustering with

Q-Score ranking.

Table 5: Comparison of the test results: Mean Shift, P. Clust. (Q-Score), and our
approach

Mean Shift | P. Clust. (Q-Score) | Our Approach

Objects Total | CR | WR| CR |CR|WR| CR |CR|WR|CR

CP WP | CP WP | CP WP
cereal box 1 52 |52 | 0 |22 |52 | O 1 47 | 1 0
cereal box 2 104 [100| O | 87 |100| O 4 83 | 1 0
cookie box 1 52 | 51 | 0 | 40 |50 | O 1 46 | 0 1
juice container1 | 52 | 50 | 0 | 23 | 49 | O 1 50 | O 0
juice container2 | 52 | 37 | 0 | 43 | 38 | O 0 36 | 1 2
milk box 1 104 [101| O |[119 |101| O 3 8| 0 0
milk box 2 52 | 50 | 0 |32 49| O 1 43| 0 1
coffee can 1 52 | 46 | 0 | 12 | 46 | O 0 32| 0 3
coffee can 2 52 |15 | 0 | 10 |19 | O 7 39| 0 5
plate 1 52 | 51 | 0 | 42 |51 O 1 19| 0 0
plate 2 52 | 52 | 0 |17 |51 | O 1 41| 0 1
tray 1 52 |50 | 0 | 22 |50 | O 2 37 | 0 0

Table 6 compares the precisions and recalls of our approach vs. those of the
MOPED approach using Mean Shift clustering and the MOPED approach using
Projection clustering with Q-Score ranking. To compute the precisions, we con-
sider a detected object instance to be false positive if it is redundant or wrongly

recognized or if its pose is wrongly estimated. In the test results of the MOPED
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approaches, all the false positive results come from the redundant object instances
or object instances with incorrect pose estimation.

Table 6: Comparison of the test results in precisions and recalls: Mean Shift, P.
Clust. (Q-Score), and our approach

Mean Shift P. Clust. (Q-Score) | Our Approach

Objects Precision | Recall | Precision | Recall | Precision | Recall
cereal box 1 0.7027 1.0 0.9811 1.0 0.9792 | 0.9038
cereal box 2 0.5348 | 09615 | 0.9615 0.9615 0.9881 | 0.7981
cookie box 1 0.5604 | 0.9808 | 0.9804 0.9615 0.9583 | 0.8846

juice container 1 0.6849 0.9615 0.98 0.9423 1.0 0.9615
juice container 2 | 0.4625 | 0.7115 1.0 0.7307 09474 | 0.6923

milk box 1 04591 | 09711 | 09711 | 09711 1.0 0.7981
milk box 2 0.6097 | 0.9615 0.98 09423 | 0.9773 | 0.8269
coffee can 1 0.7931 | 0.8846 1.0 0.8846 | 0.9143 | 0.6153
coffee can 2 0.6 0.2884 | 0.7308 | 0.3654 | 0.8864 0.75

plate 1 0.5484 | 0.9808 | 0.9808 | 0.9808 1.0 0.3654
plate 2 0.7536 1.0 0.9808 | 0.9808 | 0.9762 | 0.7885
tray 1 0.6944 | 09615 | 09615 | 0.9615 1.0 0.7115

In the MOPED approach, the pose clustering results using Mean Shift cluster-
ing are used to initialize the input of Projection clustering with Q-Score ranking
to remove noisy pose hypotheses. In essence, Projection clustering with Q-Score
ranking is a voting procedure, which assigns each matched keypoint pair to the
best fit pose hypothesis and only keep those pose hypotheses which are voted by
matched keypoint pairs exceeding a threshold number as the final results.

As shown in Table 6, the MOPED approach using Mean Shift clustering achieves
high recalls but pretty low precisions for all objects. This is because the MOPED
approach uses loose thresholds with a large number of RANSAC iterations to gen-
erate as many object pose hypotheses as possible at the beginning. However, the

pose hypotheses that are false positive are often too distant from any correct hy-
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pothesis; as the result, they cannot be merged into the clusters of correct pose hy-
potheses and are considered as independent clusters by regular clustering algo-
rithms, such as Mean Shift.

By further introducing the Projection clustering with Q-Score ranking, the
MOPED approach does greatly improve the precisions and can achieve compa-
rable precisions as our approach does. However, our approach has advantages in
several aspects as explained below.

The MOPED approach using Projection clustering with Q-Score ranking requires
far more manually decided thresholds than our approach. Besides the thresholds
used in clustering keypoints, pose hypothesis generation with RANSAC and pose
hypothesis validation, this approach also introduces many thresholds in cluster-
ing and voting to remove redundant pose hypotheses and eliminate wrong pose
hypotheses. For example, there are a radius threshold for similarity searching in
clustering pose hypotheses with Mean Shift, a minimum size threshold of the clus-
ter after clustering to remove noisy pose hypothesis clusters, a minimum number
threshold of votes to remove the noisy or wrong pose hypotheses, and a pose sim-
ilarity threshold to merge the final similar pose hypotheses. The values of those
thresholds were empirically and manually determined in our implementation in
order to achieve good performance. There is no strategy for automatically adjust-
ing those threshold values [23].

In contrast, our approach does not introduce manually decided thresholds to
solve pose ambiguities. As the result, our approach is more adaptive and robust to

different objects and scenes.
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As pointed out in Section 2.4.1.1 and Table 2, the performance of object detection
of the MOPED approach strongly relies on the distinctiveness and repeatability of
the descriptors of the SIFT keypoints. However, the SIFT keypoint descriptors,
while robust for image registration, can be ill-suited for object recognition due to
keypoint mismatches, especially for a dataset with a large number of objects. As
shown in Table 6, keypoint mismatching has caused both the low precision and
the extremely low recall in the test results of coffee can 2. From the experimental
results, we can find two different kinds of keypoint mismatching here: (1) global
keypoint mismatching between coffee can 2 and other objects, and (2) local keypoint
mismatching between different parts of coffee can 2.

Fig. 28 shows the global keypoint mismatching between coffee can 2 (in a green
circle) and other objects, where the test keypoints matched to the same object are
displayed in the same color. Hence, many different colors of the test keypoints
on coffee can 2 indicate that many of them are wrongly matched to other objects.
Global keypoint mismatching usually leads to failed detection of the target object
instance or incorrect detection of other object instances with similar shapes. Also
note that, there are many mismatched keypoints on the boundaries between ob-
jects or between objects and the background, as discussed in Section 4.3.

Local keypoint mismatching usually causes incorrect pose estimation, as shown
in Fig. 29, and even the failure to detect the target object instance, as shown in
Fig. 30. In both Fig. 29 and Fig. 30, there are a lot of test keypoints matched to the
correct object coffee can 2, as indicated by that many keypoints on coffee can 2 share

the same color, but they are not matched to the correct training keypoints on coffee
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Figure 28: Keypoint matching results: keypoints matched to the training keypoints
on the same object are displayed with the same color.

can 2.

In contrast to the MOPED approach, the performance of object detection in our
approach depends on combining different kinds of useful features and also the
learning algorithm. Keypoint matching in our approach is only used between two
similar images for pose estimation in its classic way and not for object detection.
Compared to using keypoint matching for object detection, our approach is more
robust for detection involving a large number of objects. The correct detection
results by our approach in Fig. 29 and Fig. 30 show the advantage of using visual

features of surface segments to detect objects in our approach.
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(d)

Figure 29: Incorrect pose estimation of coffee can 2 caused by local keypoint mis-
matching in the MOPED approach using Projection clustering with Q-Score rank-
ing: (a) the original scene, (b) the keypoint matching results, (c) the test results
with the MOPED approach, and (d) the test results with our approach

Figure 30: Failure of detecting coffee can 2 caused by local keypoint mismatching
in the MOPED approach using Projection clustering with Q-Score ranking: (a)
the original scene, (b) the keypoint matching results, (c) the test results with the
MOPED approach, and (d) the test results with our approach
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5.5  Conclusions of this Chapter

To conclude, in this chapter, we have significantly extended the work in Chapter
4, by providing a new strategy for object model building and proposing an algo-
rithm based on graph-cut to remove redundant or incorrect detection results. We
have expanded the object dataset by including transparent or semi-transparent ob-
jects, added more results based on the new dataset, and presented a comparative
study of our approach vs. related existing approaches. Our approach is shown to
have advantageous over related existing approaches. The results of the detected
objects and their poses with respect to the current RGB-D camera frame can be
used directly for robotic manipulation, with the pose of the camera frame to the
robot base frame known, and the reconstructed 3D scene can also be used directly

for robot motion planning.



CHAPTER 6: LEARNING-BASED VIEW EVALUATION

Leveraging the scene reconstruction results of our surface-based approach, this
chapter presents a learning-based approach [108] for evaluating scene recogniz-
ability from a single view, taking into account the quantity and quality of recog-
nition of object instances in the scene, the recognition uncertainty, and the recog-
nizability of the background. The introduced approach can be used to assess au-
tomatically how well a scene can be understood from an image without having a
complete view of everything. It can be used to guide view planning in a cluttered
environment for tasks requiring automatic recognition and reconstruction of ob-
jects, where there is no complete visibility of anything from any view. Even in case
certain objects can be seen entirely through a sequence of views, using the intro-
duced evaluation approach of scene recognizability could improve the efficiency
of view planning because a shorter sequence of views or even a single view could

be sufficient to recognize and reconstruct the objects correctly.
6.1  Evaluation Factors

We evaluate the scene recognizability of an image taking into account the afore-
mentioned factors that affect both the quantity and quality of object instances rec-
ognized in a scene and the quality of background recognition. We describe those

factors in detail below.
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6.1.1  Recognition Confidence

In general, each known object instance has a model or classifier that can be used
to identify the object, and the classifier often returns some measure of confidence
in terms of the probability that a target object is a particular known object instance.
We use such a confidence measure in our evaluation of recognizability of an object
from a view.

For example, an appearance-based object model is used to characterize object
instances based on visual features of their surface segments in [107], and support
vector machines (SVMs) are used to classify a target object with a probability out-
put [19] for each known object instance to indicate the confidence of classifying the
target object to that object instance.

Suppose there are M objects plus the background in the object model dataset,
denoted as ¢y, c1,c3, ..., cp, Where cg indicates the background. Given ng surface
segments in the current image, denoted as Sy, Sy, ..., S,,. Suppose n object instances
in the scene are recognized and reconstructed (excluding the background) [107],
denoted as O1, 0y, ..., O,,.

As we can see from Fig. 31, an object instance is usually enclosed by several
surface segments. Let ¥; denote the set of surface segments that belong to the ith

object instance, as follows:

¥; = {Si, Siz, s Sin,, } € {S1,S2, ., Su.}, (13)

ng; is the number of surface segments that belong to the ith object instance, or the
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Figure 31: An example of object recognition and pose estimation by [107]: the left
image is the original view captured by a Microsoft Kinect; the right image is the
reconstructed scene with the projected 3D object models.

cardinality of the set ¥;.

The recognition confidence of the ith object instance can be defined as

cf(0;) = v?g)élpij(LASij)/ j=12,..,n4, (14)
ijS i

where L; is the recognized object label for the ith object instance, ie., L; €
{c1,c2, ., cm}, Pij(Li|S;;) is the probability that the surface segment S;; belongs to
the object category L; returned by the SVM classifiers, 0 < P;;(L;|S;;) < 1. Here we
use the greatest probability as the recognition confidence of the object instance be-
cause it corresponds to the surface segment that captures the most representative
and discriminating characteristics of the object instance.

Note that the recognition confidence introduced above only captures the reli-
ability of the recognition based on the characteristics of the target object’s visual

appearance, regardless of its pose.
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6.1.2  Fitness Cost

It is also important to measure how well the identified target object in a scene
matches the projection of the object model to the scene, i.e., how fit the pose esti-
mation of the identified object is.

We introduce the fitness cost of the recognized ith object instance as a distance
function between the point cloud A; of the projected ith object model,i = 1,2, ..., 1,
and point cloud IT; of all the surface segments that are recognized as belonging to
the ith object. Let T; be the number of points in I1;.

For each point g, € Il;,k = 1,2, ..., T;, we can find a matched nearest point in the
point cloud A;, denoted as p(gx) € A, then the fitness cost ft(O;) of the ith object
instance can be defined as the average Euclidean distance between all the points

in the point cloud I1; and their matched nearest points in the point cloud A;:

1 &
fHO) = T}{Z e = p(ae)l- (15)
i k=1

6.1.3  Recognizability of Object Instance

We introduce the harmonic mean function combining the recognition confidence

and fitness cost to characterize the recognizability of each object instance.
6.1.3.1  Definition of Recognizability

First, we normalize the values of the fitness cost by using an exponential func-
tion of the negative fitness cost e ~*/*(0) to make the values fall between 0 and 1,
as shown in Fig. 32, where « is a parameter. The smaller the fitness cost value,

the better the predicted object model fits its corresponding surface segments in a
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Figure 32: A monotonically decreasing exponential function is used to normalize
the values of the fitness cost.

Now, we define the recognizability of the ith object instance as the harmonic mean

[3] of the confidence and fitness cost:

(i) = 2cf(0;)e4ft(01)
ST R0 e Or

(16)
Typically, the harmonic mean is appropriate for situations when the average of
rates is desired. In our problem, both c¢f(O;) and e~*/*(%) are in the range of (0,1);
therefore, a high recognizability value from this definition requires both high con-
fidence and low fitness cost.

Fig. 33 shows the distribution of the object recognizability values as the recog-
nition confidence and fitness cost vary in their own value ranges respectively for

different values of the parameter a. For each a value, a color contour in the cor-

responding distribution represents a single value of object recognizability, which
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Figure 33: The distributions of the object instance recognizability values as the
recognition confidence and fitness cost vary in their own value ranges respectively
for different a values. Different colors in each figure indicate different object rec-
ognizability values. As a increases, the influence of fitness cost on recognizability
increases.
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comprises different pairs of values of the recognition confidence and fitness cost.
Clearly, as a increases, the influence of fitness cost on recognizability increases.
Each color contour also divides the distribution into two regions. We are inter-
ested in finding an optimal threshold value ¢ together with an optimized value
of o to achieve the best separation of the distribution into a high-recognizability

region (with values greater than {) and a low-recognizability region.
6.1.3.2  Optimization of « and ¢

The choices of & and ¢ values determine the standard for high object recogniz-
ability. However, the values of these parameters can be quite dependent on spe-
cific types of task environments or task scenes. Therefore, for a certain type of
task scenes, our approach is to learn « and ¢ values from a sufficient number of
examples of recognition and reconstruction results of different views and scenes.
For each recognized and reconstructed object instance, we manually label it as ei-
ther “correct” or “incorrect” as the ground truth, based on whether the object is
correctly identified and its pose correctly estimated (i.e., with sufficient accuracy)
from comparing the reconstructed 3D object model (which can be viewed from all
viewpoints) against the target object in the original scene. Also included in the
data for each recognized and reconstructed object instance is the corresponding
recognition confidence and fitness cost values. We aim at finding a pair of values
for « and ¢ that can effectively distinguish the correctly recognized and accurately
estimated object instances, which indicate high recognizability, from the rest of the

object instances, i.e., finding a binary classifier.
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Since a given dataset normally consists of more correct recognition results than
incorrect ones as the results of a reasonable object identifier (i.e., one with more
than 50% correct rate of recognition), the dataset is not balanced for learning,
and the examples of incorrect recognition are important for determining the de-
cision contour of our intended binary classifier of recognizability. Therefore, we
use the classification criteria called the sensitivity, or true positive rate (TPR), and
the specificity, or true negative rate (TNR).

From each pair of a and ¢ in our problem, the sensitivity (TPR) is defined as
the ratio of the number of object instances in the “correct” or high-recognizability
region (with recognizability values > ¢) to the number of object instances labelled
“correct” in the ground truth; the specificity (TNR) is defined as the ratio of the
number of object instances in the “incorrect” or low-recognizability region to the
object instances labelled “incorrect” in the ground truth.

We propose two types of optimization criteria to obtain suitable & and ¢ as fol-

lows:

1. Maximize the harmonic mean of sensitivity and specificity:

2.TPR-TNR
H= . 17
MaX PR ¥ TNR (17)

The harmonic mean function H requires both high TPR and TNR to achieve

a high value.

2. Given a minimum tolerance ¢ on the specificity (TNR), maximize the sen-

sitivity (TPR). Different values of ¢ provide different standards for qual-
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ity. A low ¢ value means tolerating more “incorrect” object instances in the
high-recognizability region (i.e., with recognizability values > (), whereas a
high o value means tolerating fewer “incorrect” object instances in the high-

recognizability region.

Fig. 34 shows the optimized results of classification using two optimization cri-
teria, a) maximizing the harmonic mean H and b) maximizing TPR given ¢ = 0.7,
respectively. In each subfigure, a set of recognized and reconstructed object in-
stance examples are divided into two regions, the high-recognizability red region
and the low-recognizability blue region, as determined by the optimized « and ¢
values. A red or blue circle indicates a given recognized and reconstructed object
instance labelled “correct” or “incorrect” respectively. The different effects of the
two optimization criteria on the results are quite apparent: the result of using crite-
rion a) includes fewer incorrect samples in the high-recognizability (red) region at
the expense of including fewer correct samples in the red region; whereas, the re-
sult of criterion b) includes more correct samples and also more incorrect samples
in the red region. Depending on the task objectives, different types of optimization
criteria can be used, and for the type 2), different o values can be selected.

Note that some blue circles either have high confidence and high fitness cost
or vice versa; this is because an incorrect result may have correct object recogni-
tion but wrong pose estimation or vice versa. Therefore, it is important that our
binary classifier distinguishes high-quality results of both recognition and estima-

tion from low-quality ones instead of simply distinguishing correct vs. incorrect
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Figure 34: A set of reconstructed object instances based on recognition and pose es-
timation from several views or scenes, with corresponding recognition confidence
and fitness cost values. Each small circle represents a reconstructed object instance.
Each red one indicates a correct result, while each blue one indicates an incorrect
result.
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recognition results based on the confidence measure alone.
6.14  Recognition Rate and Uncertainty

Given the results of binary classification of object instances into high-
recognizability region and low-recognizability region, we can compute the recogni-
tion rate © as the ratio of the number of object instances in the high-recognizability

region, denoted as ny,, to the total number m of object instances in a scene:
Npy
0=— 18
o (18)

We can also compute the recognition uncertainty ® as

n—ny
- .

D= (19)

where 7 is the total number of object instances recognized and reconstructed.
The recognition uncertainty reflects the number of object instances in the low-
recognizability region. We use the term “uncertainty” to capture the fact that object
instances of low recognizability based on one view may become ones with high
recognizability from a different view, and thus, they provide clues for next-view

exploration to further identify and estimate objects in a scene.
6.1.5 Background Recognizability

Background recognizability is used to measure the quality of scene recogni-
tion from an image (or the corresponding view) from the perspective of the back-
ground.

For each surface segment recognized as the background, there does not exist
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a specific object model to align with. Hence, we only consider the recognition
confidence based on the characteristics of visual appearance.

Given nyp surface segments recognized as the background in the current image,
denoted as SBy, SBy, ..., SByu,,, SB1,5By, ..., SBu,. € {51,S2,..., Su, }, and their sizes,
Wi, Wy, ..., Wy, where W; (1 < i < npy) is defined as the number of the pixels in a
2D image, the background recognizability can be defined as the weighted average of
the recognition confidences of all background surface segments:

Mpk

Q= Z w;P;(co|SB;), (20)

Wi
Wi+ W+ .+ Wy,

w; = i = 1,2, ooy Npks (21)

where P;(cg|SB;) is the probability that the surface segment SB; belongs to the ob-
ject category co (the background) returned by the SVM classifiers, 0 < P;(co|SB;) <

1.
6.2  View Evaluation

Now we can consider how to compare two views and evaluate which view has a
better overall scene recognizability based on the recognition rate, recognition uncer-
tainty, and background recognizability of each view. Since it is not obvious how
those factors interact to affect the overall scene recognizability of a view as that
may depend on different task environments, it is difficult to come up with an ana-
lytical formula and numerical value for scene recognizability. Therefore, we again
propose a learning approach to determine which view has a better scene recogniz-

ability.
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Given an image (corresponding to a view), we characterize its scene recogniz-

ability v by combining its background recognizability () with a set of pairs:
0 = {Q, (@1,@1), (@2,@2),..., (@j,q)])} (22)

where each pair shows the result of recognition rate and recognition uncertainty
based on a different optimization criterion or a different quality standard (i.e., a
different o value of criterion type 2), and ] is the number of different optimization
criteria or quality standards considered.

Next we use a set of K images corresponding to different views for a scene to
produce samples for learning. All these images are first ranked by a human ob-
server from the reconstruction results. Human observation considers the following
three factors in the order of priority: the greater the number of correctly recognized
and reconstructed object instances the better, the smaller the number of incorrect
object instances the better, and the greater background recognizability the better.
Views can have the same rank if neither is clearly better than the other. Based on
the ranking results, for each pair of images A and B among the K images, if A is
ranked better than B, a positive sample (v4 — vp, 1) is generated; otherwise, a neg-
ative sample (v4 — vp, —1) is generated. For K images, a maximum of K(K — 1)
samples can be generated automatically.

We then train a classifier using the samples. The resulting classifier, which we
call the view evaluator, can be used to rank the scene recognizability of different
views (i.e., corresponding images) of a scene, based on learned high-recognizability

and low-recognizability regions, which are optimized by taking into account recog-
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nition rate, recognition uncertainty, and background recognizability with respect
to different optimization criteria. For a specific task environment, such a learning
process also reveals which optimization criteria are most effective for evaluating

scene recognizability.
6.3  Experiments and Analyses

In order to validate our approach for evaluating scene recognizability of a view,
we use 15 different scenes cluttered with object instances of four known objects: a
cereal box, a cup noodle, and two different milk boxes. The object dataset includes
appearance-based models of the four objects and a background model. Each object

model was built from 24 images of different views [107].

Figure 35: An original RGB-D image captured by Microsoft Kinect (leftmost) and
the 3D recognition and reconstruction result displayed from 3 different views

For each scene, 8 images from distinct views are captured, and object instances in
each image are recognized and reconstructed based on the approach in [107]. The
3D recognition and reconstruction (i.e., pose estimation) result can be displayed
in our system from any viewpoint so that one can easily check by eyeballing if
each object instance is correctly recognized and reconstructed. Fig. 35 shows an

example.
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6.3.1  Training of View Evaluator

We use the images and the corresponding recognition and reconstruction results
from 10 scenes to form a dataset for the training required in our approach (for
parameter optimization — see Section 6.1.3 and for evaluating scene recognizability
— see Section 6.2). We used | = 10 different optimization criteria to generate 10
pairs of optimized « and ¢ values: one of the criteria is maximizing the harmonic
mean H and the rest are corresponding to 9 different ¢ values ¢ = 0.1,0.2, ...,0.9
respectively (see Section 6.1). Next the 10 binary classifiers are used to compute
the corresponding pairs of recognition rate and uncertainty for each image so that
we can form samples to train a view evaluator (Section 6.2).

We use the support vector machines (SVMs) and apply the kernel based on the
radial basis function to it for classification. We also use 5-fold nested cross vali-
dation in the SVM training, as shown in Fig. 36. First, the optimal parameters are
search in the large scale, then the search scale is narrowed down until the optimal

values are found.

Lngzc

D it 1015202530 1013151820
Log.,y Log,y Log,y
(a) large scale (b) medium scale (c) small scale

Figure 36: Optimal parameters are searched in the large scale first, then the search
scale is narrowed down until solutions are found. Optimal accuracy = 86.43% can
be achieved when the SVM parameters c = 1 and y = 2.38.

Fig. 37 shows an example scene for training with 8 images from different views.
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5 correct 5 correct 4 correct 3 correct 3 correct 3 correct 2 correct 2 correct
1 incorrect 2 incorrect

Figure 37: An example scene for training: top row: 8 images from different views;
bottom row: corresponding reconstructed scenes; the images are in the order
ranked by a human observer from the best to the worst, and the ranks are 1, 1,
3,4,5,6,7,7 as ground truth.

The scene consists of m = 6 object instances: two instances of the same cereal
box, two instances of the same blue milk box, one different red milk box, and one
cup noodle. The top row shows the 8 images, and the bottom row shows the
corresponding results of scene recognition and reconstruction in the order from
the best to the worst ranked by human observation as ground truth. From left to
right, theranks are 1,1, 3,4,5,6,7, 7.

Note that in the scene of Fig. 37 no view can produce perfect recognition result
in terms of correct recognition of all the objects and background because of occlu-
sion, varied illumination effects (such as caused by shadowing), and weak visual
features in certain objects. Sometimes an object is recognized correctly but its pose
estimation is incorrect due to insufficient information provided by the visible parts
of the object. For example, from the 6th view, both the blue and the red milk boxes
are recognized, but their pose estimations are incorrect. Sometimes an object or
background surface is incorrectly recognized as a surface of another object, see, for

example, the recognized cereal box in the front from the 5th view. Sometimes an
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object surface is incorrectly recognized as a part of the background (shown as small
surface pieces in the reconstruction results), which lowers the score of background
recognizability. Therefore, it is justified to take into account the effects of all those

factors in evaluating scene recognizability of a view.
6.3.2  Test of View Evaluator

We use the images and the corresponding recognition and reconstruction results
of the remaining 5 scenes for testing our approach. The testing scenes must have a
similar number of objects as in the training scene. For each pair of views from each
testing scene, we apply the trained view evaluator to detect which one has a better
recognizability and to rank all the views from the results of pair-wise comparison.
If the ranking order is circular for some views, these views are assigned the same
rank. Fig. 38 shows the ranking results for views in 3 different testing scenes.

Note that the ranking results from the trained view evaluator may not exactly
match those based on human observation. This is because the view evaluator has
more precise information about object instance recognizability (Section 6.1.3 ) and
background recognizability than a human observer, who can only roughly judge
if an object instance is correctly recognized with its pose correctly estimated by
eyeballing. Sometimes a human observer has difficulties in distinguishing which
view has better scene recognizability between two views.

With training samples of sufficient quantity and diversity, our learning-based
approach for view evaluation can provide better view evaluation results for the

purpose of autonomous perception and action than a human observer. Fig. 39
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Scene 1

rank 1 rank 2 rank 2 rank 2 rank 2 rank 6 rank 6 rank 8

Scene 2

rank 1 rank 1 rank 3 rank 4 rank 4 rank 6 rank 7 rank 8

Scene 3

rank 1 rank 1 rank 3 rank 3 rank 5 rank 5 rank 5 rank 8

Figure 38: Testing results for Scene 1, Scene 2 and Scene 3. Top row for each scene:
8 original images from different views; bottom row for each scene: corresponding
reconstructed scenes. Rank of each view by the view evaluator is shown below the
corresponding image of the reconstructed scene.
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object instances of ranked eight views for each scene in Fig. 38

respectively.
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Figure 39: Recognized and reconstructed object instances of the eight different
views V] ~ Vg in Scene 1 (left image), Scene 2 (middle image), and Scene 3 (right
image) respectively. The displayed regions of high recognizability (red) and low
recognizability (blue) is the result of optimizing the harmonic mean H. However,
the view evaluator takes into account the effects of 10 different optimization crite-
ria to create the ranking.

The experimental results provide strong evidence that increasing visibility does
not necessarily lead to better recognizability and pose estimation of objects, due

to occlusion, illumination effect (including shadowing), and weak visual features
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of objects. For example, in Scene 2 of Fig. 38, the blue milk box at the back of the
3rd view is more visible in the 8th view, but it can be recognized and reconstructed
from the 3rd view and not from the 8th view, due to different occlusion effect. In
Scene 1, even though the front cereal box on the table is more visible in the 7th
view than in the 6th view, it is still not recognizable from the 7th view because part
of its top surface is turned white due to the illumination effect. Also, it is more
challenging to recognize the cup noodles based on its side appearance than its top
appearance because of weak visual features.

The view evaluator is trained offline. After the testing scenes are reconstructed
from different views, it takes less than 1 second for our trained view evaluator to

rank all the views based on their overall scene recognizabilities.
6.4  Conclusions of this Chapter

To summarize, in this chapter, we have proposed a novel learning-based ap-
proach for evaluating scene recognizability of a cluttered scene with objects oc-
cluding one another from a single view and ranking views based on their scene
recognizability. Scene recognizability of a view is evaluated by taking into ac-
count the quality and quantity of recognized and reconstructed objects and the
background from the view rather than mere visibility through learning. The ap-
proach is validated by experimental results, which also provide evidence that bet-
ter visibility does not necessarily lead to better recognizability of objects because
of the effects of occlusion, illumination, and weak visual features. Those effects are

captured and reflected in our learning-based approach for view evaluation. Our
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approach of evaluating scene recognizability points to a way for more accurate as-
sessment of how good a view is for autonomous robotic tasks that require scene
understanding for object recognition and manipulation in cluttered environments.
As the next step, this approach can be further incorporated in viewing planning

algorithms for robotic manipulation tasks.



CHAPTER 7: OBJECT MODELING THROUGH PERCEPTION AND
MANIPULATION

As introduced in Section 2.5, perception is useful to guide object manipulation,
and robotic manipulation can also assist object modeling. The interaction of per-
ception and manipulation is necessary for manipulating unknown objects, espe-
cially in unstructured and cluttered environments. However, integrating percep-
tion and manipulation is a relatively new problem, and existing research is limited.

In this chapter, we introduce a method to build complete 3D object models
for unknown objects from RGB-D images automatically by interleaving percep-
tion with robotic manipulation [104]. We assume that objects are small and light
enough to be grasped by a robot end effector, and the appearance and geometrical
characteristics of objects will not be changed by robotic manipulation.

Here the key idea is that perception and manipulation depends on each other:
perception will provide partial information of the object necessary for the robot
manipulator to change the pose of the object, and manipulation will, in turn, en-
able the perception of more object information. By alternating perception and ma-
nipulation, a complete object model can be built. The framework of our approach
is outlined in Section 3.2.3. In the following, the related algorithms are introduced

in detail.



103
7.1 Aspect Graph of Object Poses

First of all, to build a complete model of a target object, all the surfaces of the
target object should be observed at least once from the perspective of the fixed
camera during the object modeling procedure. This is similar to the full view cov-
erage problem in the research topic of view planning, and an aspect graph [80] is
usually introduced to capture all different aspects/views, as illustrated in Fig. 40,
which are discrete, to solve the problem.

In our problem of modeling an unknown object, to capture all the aspects/views
of the target object, we generate an oriented bounding box (OBB) [2, 41] based on
some rough, initial information about the target object and also update the OBB
along the way as new information of the object is sensed, as shown in Fig. 41.
The six sides of the OBB partition the whole view space of the object into six main
viewing regions, Vi, ..., Vs, and the viewing region V; is a Voronoi region of the i-
th side that captures all lines of sights to that side of the OBB. Depending on the
actual shape of the object covered by the i-th side of the OBB, multiple (discrete)
views can be needed to obtain all aspects of V;.

Our strategy is to fix the RGB-D camera and manipulate the target object to
expose each viewing region V; to the camera and all the different aspects in the
region. Starting from a stable pose of the object on a table, where one viewing
region Vs contains the support surface of the object and is occluded by the table,
the robot manipulator is used to rotate the object on the table, one small step at a

time, 360 degrees to obtain every aspect in the viewing region on top of the object



104

(c)

Figure 40: An example of the aspect graph of a tetrahedron: (a) shows the model
of a tetrahedron; (b) shows the viewpoint space partition for the tetrahedron; and
(c) shows the aspect graph for the tetrahedron. All the figures (a), (b) and (c) are
the original figures from [80].
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Figure 41: An example of the oriented bounding box, generated from the point
cloud of a partial model of the object milk box blue

and also the four viewing regions that are perpendicular to V;, see Fig. 42. Once
images of the object are captured for all those aspects, the robot manipulator is
used to change the pose of the object by changing the support surface of the object.
Next, it rotates the object step by step again 360 degrees to capture the images from
the new set of aspects, and so on. Once all viewing regions and their aspects are
exposed to the camera so that their corresponding images are captured, the target
object is considered completely seen.

The above strategy works well for many daily objects. However, for objects
with many concavities and extremely complicated self-occlusion, such as a sculp-
ture with many small details, the approach may not be able to expose every small
surface of the object to the viewing range of the fixed camera. For such cases, mak-

ing the robot hold the object in certain poses rather than putting it on a table can
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Camera

. Table
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Figure 42: A top view of the set up for our object modeling procedure, including a
tixed camera and different poses of the target object after being rotated on the table
step by step for about 360 degrees
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help complete the coverage, as discussed in Chapter 8.
7.2 Image Registration in Perception

Image registration serves two main purposes in our object modeling process:
one is to merge the currently sensed object point cloud (through the RGB-D cam-
era) into the gradually built point cloud of the (partial) object model, in order to
obtain a complete object model eventually; the other is to obtain the accurate pose
(i.e., position and orientation) of the target object in the scene to enable object ma-
nipulation.

Image registration is conducted in three ways in our approach:

e pairwise registration between the object point cloud of one image and the
point cloud of the subsequent image in the step by step rotation of the object

on table for a total of 360 degrees;

e global registration of all object point clouds of the images captured from the

same 360° rotation loop;
e registration between the point clouds of two partial object models.
The detailed algorithms for the above three ways of registration are described in
the following sections.

7.2.1  Pairwise Registration of Neighboring Object Point Clouds

We use the following strategy to register neighbouring object point clouds ob-
tained from RGB-D images taken at two adjacent steps from the same 360° degree

rotation loop:
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e Extract and match ASIFT [117] keypoints between the two RGB-D images of

the objects, as shown in Fig. 43; if the matched keypoint pairs are sufficient,

compute a transformation matrix based on their 3D coordinates, using the

RANSAC [37, 89] and SVD [33] algorithms;

e Apply the ICP algorithm [11]; if a transformation matrix is computed from
the previous step, use it as the initial input to the ICP algorithm; otherwise,
use an identity matrix as the initial estimate. Note that as each rotation step is
very small, our approach avoids large jumps in coordinates from one image
to the other, which can cause the ICP algorithm to fail. Each rotation step can

always be further reduced to guarantee robust registration if necessary.

S T e raam
-

Figure 43: Two images of neighbouring object point clouds and their keypoints
matching results

With an initial transformation estimate from the keypoints matching, the ICP
algorithm converges much faster and also achieves registration results in better
quality.

To make the registration more robust, we consider the following factors in eval-

uating the quality of matching of point pairs in the ICP algorithm:

o the distance between two points;

e the color similarity of two points based on RGB color values;
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e the normal difference of two points;
e the distance from one point to the plane where the other point lies in;

A weighted sum of the above factors forms the evaluation function.
7.2.2  Global Optimization of Pairwise Registration Results

In order to reduce the accumulated registration error from pairwise registration,
our approach further register all object point clouds obtained in each step of the
rotation from the same 360° rotation loop using a global optimization algorithm,
developed based on the virtual mate approach [82].

Suppose there are m RGB-D images captured from the same 360° rotation loop,
and their corresponding object point clouds are also segmented out, denoted as
C1, G, ..., Cy. The frame (i.e., coordinate system) of point cloud C;, i = 1, ...m, is
denoted as O;.

Using the strategies described in the section 7.2.1, the transformation from the
frame of each object point cloud to the frame of its next neighbouring object point
cloud is computed, denoted as Oz Tol, O3 TOZ, .., Om TOHH- Here, each 9i+1 TO,-/ 1=
1,2,..,m —1, is the locally optimized estimate of the transformation Oit1 To, from
O; to O;41 by registering the point clouds C; and C;; directly, without considering
globally the other object point clouds in the same 360° rotation loop.

Note that after 360° rotation of the object (on the table), the object point cloud C;,
should be very similar to the object point cloud C;, and the pairwise transforma-
tion from O, to O; can also be estimated locally by registering C;;, and C; directly,

denoted as 91Ty, . Fig. 44 shows the frames of all the object point clouds obtained
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Figure 44: The frames of all the object point clouds in the same 360° rotation loop
and their relations, illustrated as a closed loop

in the same 360° rotation loop and their relations.

The next step is to merge all the point clouds together. The issue is that, for
each pair of the neighboring object point cloud frames O; and O;,1, the inverse
Oi Toz. ., of their locally optimized transformation estimate Ois1 Tol. from the pairwise
registration of the object point clouds C; and C;; is not always exactly equal to
the transformation transition result ©: TOH .02 Tol O1 Tom ..Oixs Toi +Zoi+2 TO,- .,» which
is estimated based on the relations among all the other object point cloud frames,
on the path Ojy; — > Oj40 — > ... — > Oy — > 01 — > ... — > O; from the
360° rotation loop. Take the frames of the object point clouds O;;, and O; as an
example, ideally, the inverse of the local transformation estimate 1T = from the
pairwise registration of the point clouds C; and C;; should be exactly equal to the
transformation transition result 9= Tom_lom—l Tomfz...o?’ Tonz Tol- However, due to

the accumulated registration error in the transformation transition, they could be
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quite different from each other.

To build a partial object model out of those point clouds, we first create a ba-
sic frame of the object model, denoted as D, which initially has the same origin
and axes as the frame of the last object point cloud O;,. Then, the pose of each
object point cloud frame O;, i = 1, ..., m, with respect to the object model frame D,

denoted as P To,, is estimated from the transformation transition as follows:
Pto, =1, (23)

PTo, = PTo,,, O To, i=m—1,m-2,.,1. (24)

In order to reduce the accumulated registration error embedded in the transfor-
mation transition result P Tol., i =1, ..., m, our approach is to further refine D Toi
by registering the point cloud C; to both its neighbours C;_1 and C;;; based on
virtually generated matched point pairs [82].

The virtually generated matched points purely based on the transformation ma-
trix are also called virtual mates. To generate virtual mates between C; and its neigh-
bours C;_1 and C; 1, we first sample points from C; in the overlap regions between
C; and C;_; and between C; and C; respectively.

Suppose p is a sampled point from C;, with its position in the object point cloud

frame O; denoted as p, and let g be the virtually generated mate of p:

e if pissampled from the overlap region between C; and C;, 1, then the position
of its virtual mate “*1q is obtained by transforming p from the frame O; to

the frame O, ; based on ©i+1 Toi ;
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e if pissampled from the overlap region between C; and C;_1, then the position
of its virtual mate ‘~!q is obtained by transforming p from the frame O; to

the frame O;_; based on 91 Toi/ and 9i-1 Toi is the inverse matrix of 9 Toi—l'

Notice that virtual mates do not really exist in the point clouds C;_; or C;;1. They
are introduced as the constraints of both ©i TOH and Oi+1 Tol- in the optimization

A

to refine the pose b TO,-- Oi To, , and Oit1 Tol- cannot be directly used as constraints,
because it is difficult to directly measure the change of the registration result from
the change of the rigid 3D transformation matrix in the optimization.

Finally, we further transform all the positions of the generated virtual mates
i+1q and ~!q to the object model frame D, based on the current poses of their
corresponding object point cloud frames P To, ., and PTo. ., respectively. The re-
fined pose PTp, is computed based on all of those virtually generated point pair
positions p and q with respect to the object model frame D.

Our algorithm starts from the refinement of T . If the difference of the pose
D Toi (in terms of the sum of the absolute differences of all matrix elements between
two transformation matrices) before and after the optimization is greater than a
tolerance threshold, then P Toi—l and P Toi ., also need to be refined; each pose b TOi
may be refined more than once, depending on C;_; and C; ;. Our algorithm ends
when no more object pose needs to be refined or a maximum number of iteration
is reached, and the globally optimized estimate Ty, for each object point cloud

frame O; is obtained. The algorithm can be implemented using a double-ended

queue.
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The pseudo code of our algorithm is given as follows:

Procedure: Global Optimization

SET PTp, =1

FORi=(m—1)to1
Dy, =D Tp,, Oy,

END FOR

SET Queue = @

Queue «+ P Tom

WHILE Queue # @ and num_iterations < maximum_num_iterations
PTo, = Queue.pop_front()

DTOi = Align(C;, C;_1,Cj11), subject to DTOH, DTO,-H, OifH. , and

i—17/
Oi1 TOi
IF the change of PTo, > tolerance_threshold
Queue.push_back(PTo, P To,,,)

END IF

END WHILE
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7.2.3  Registration of Partial Object Models from Different Rotation Loops

Once an optimized partial object model is obtained from each 360° object rota-
tion loop, the next task is to register such partial models from different rotation
loops. We still apply the ICP algorithm. Since changing rotation loops means
changing the object pose by robotic manipulation, the transformation matrix for
changing the object pose is used as the initial estimate of the transformation for
the ICP algorithm. Notice that there usually exists a large overlap between two
optimized partial object models, since a 360° rotation loop usually covers most of
the side and top surfaces of the target object, which makes the registration more ro-
bust. A similar global optimization algorithm, such as [82], can also be introduced

for the registration of all partial object models, if necessary.
7.3 Manipulation for Perception

As mentioned in Section 3.2.3, two kinds of manipulation are used to change ob-
ject poses in our approach: one is rotating the target object in small steps by push-
ing during each 360° rotation loop, and the other is changing the object support
surface by grasping, rotating, and pushing the object down at a different surface
after each 360° rotation loop. In the following sections, we describe the details of

the algorithms used for the two kinds of manipulation.
7.3.1  Pushing

Given that the target object sits stably on a table (or some other support struc-

ture), after the first RGB-D image of the object is taken, our strategy is to detect
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the leftmost edge from the object point cloud C; and the corresponding leftmost
surface segment and choose a point with position u; on the surface segment that
is close to the middle of the leftmost edge as the point on the object for pushing.
The direction for pushing vy is oppose to the normal of the surface segment. Both
u; and v; are with respect to the frame O;. After the push, the camera can view
more of the target object, and the next point cloud C; is obtained.

In general, given a point cloud C; 1, i=1, ...,m, the pushing position and direction

u;4+1 and vjq with respect to frame O, can be computed as:

Uji1 Oirm uj
= O Ty , (25)

1 1

Vi1 .| Vi
T =0ty |, (26)

0 0

where Oi+1 Toi is the transformation from O; to O, 1, as explained in Section 7.2.2.
The position and direction of each (ith) push can then be transformed to be with
respect to the robot base frame, the corresponding robot hand frame to realize the
pushing can be computed as the starting hand configuration, and the ending hand
configuration can next be computed based on the pre-determined push distance.
Subsequently, an automatic planner [119] is used to plan the robot arm motion to

execute the push.
7.3.2  Change of Object Support Surfaces

After each 360° rotation loop, a decision has to be made, either to terminate

the current object modeling procedure or to continue the model building using a
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different 360° rotation loop with a new support surface.

First, we update the oriented bounding box (OBB) of the current (partial) model
of the target object, which consists of the object surface information from all the
previous perception steps, as shown in Fig. 41. Based on the aspect graph of object

poses (see Section 7.1), our approach simultaneously determines:

1. if new object surfaces can be observed by changing the support surface of the

object, and how to change the support surface;

2. if no new object surface can be found so that the model building process can

be terminated.

The basic idea of our approach is to form a finite set of candidate tasks for chang-
ing object support surfaces based on considering all possible sides of the current
OBB and evaluate each candidate task based on a set of constraints/criteria to ei-
ther (1) find the best task to execute or (2) to discover that the termination condition

for model building is satisfied.
7.3.2.1  Candidate Tasks for Changing Object Support Surface

With the target object sitting on a table so that one side of the object OBB corre-
sponds to the support surface of the object, there are five available OBB sides above
the table that can be considered for the selection of a new support surface. With-
out losing generality, as shown in Fig. 41, we denote each OBB side based on their
position in the OBB frame as the +-X, —X, +Y, —Y, +Z, and —Z OBB sides, where
the first five sides are the available ones above the table, and the corresponding

object surfaces are already modeled (during the 360° rotation loop).
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A robotic task to change the current object support surface s to a new sup-
port surface s’ can be described at a high level in terms of two available sides
of the object OBB involved: one side S; defines the approach vector of the robot
hand/gripper by its normal pointing into the object, and the other side S; is the
side for the new support surface. Thus, we denote a high-level candidate task sim-
ply as 5157, and there are a total of 17 high-level candidate tasks: +X — X, +X + Z,
X+ X, -X+Z+Y =Y, +Y+Z, -Y+Y, Y+ 2, +Z2+ X, +Z-X,+2Z+Y,
+Z-Y,+X+X, - X—-—X,+Y+Y,—-Y —Y,and +Z + Z. These candidate tasks
will be evaluated so that the best one can be chosen. Once a candidate task is
chosen and the actual change of the support surface is complete, the object can be
pushed again in a new 360° loop to continue model building.

For each of the first 12 candidate tasks, the corresponding low-level robot motion
can be described as the following: let the hand/gripper move along the inward-
pointing normal of S;, and squeeze two adjacent sides of S; that are not the side
of the current support surface to grasp the object (note that there is already cor-
responding surface model of the object for both adjacent sides of S; to facilitate
grasping); lift the object, and rotate it so that the side S, of the new support sur-
face faces the table; put the object on the table by moving it downward along the
normal of the new support surface, which is relatively flat surface corresponding
to S;. How to choose the new support surface given S, is described later. We call
such a robot motion one-step motion to change the support surface of the object.

Note that each of the last 5 candidate tasks uses the same OBB side both for

the approach vector of the hand/gripper and for deciding the new support sur-
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face. Hence, the corresponding low-level robot action actually consists of two one-
step motions, with the first one-step motion landing the object on an intermediate
support surface, and the second one-step motion setting the object on a support
surface defined by the task. One may wonder why we even consider the last 5
candidate tasks instead of viewing each as a combination of two candidate tasks
from the first 12 tasks. This is because not all support surfaces facilitate push-
ing well due to kinematic constraints of the robot manipulator and the relative
arrangement between the target object and the robot manipulator, and an interme-
diate support surface could be one that does not facilitate pushing as well as the
final support surface defined by one of the last 5 candidate tasks.

To either choose one of the above candidate tasks as the best one for execution
or to discover that the modeling process can terminate, our algorithm evaluates
both the requirements of object modeling and the manipulation constraints for

task execution. We describe them in detail below.
7.3.2.2  Requirements of Object Modeling

Given a candidate task, which describes a new support surface side of the OBB,

we evaluate the following factors:

o if there is enough overlap between the new visual images and the previous
ones used for building the current partial model of the object to ensure robust

registration,

e if the new object surfaces that can be observed are all the remaining surfaces

for completing the object model, and
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e if the quality of the object model is improved.

Note that there are only 5 new candidate OBB sides for a new support surface,
and the observation of the target object under each new support OBB side is sim-
ulated in the following way: instead of actually rotating the object step by step in
a 360° rotation loop under the new OBB side for support surface, our algorithm
virtually move the camera around the object to capture the simulated view of the
object after each rotation step via the ray tracing algorithm [51].

We further use a voxel map [111, 92, 51, 57, 27] to organize the existing observed
information of the object within its current OBB and to facilitate evaluation of the
simulated observation of the object for each candidate task. The voxel map dis-
cretizes the OBB into a grid of voxels, where each voxel can be in one of five states
depending on whether and how it is observed: unlabeled to indicate that the status
of the voxel is not known, empty to indicate that it is observed as not occupied by
the object, occupied to indicate that it is observed as occupied by the object, occluded
to indicate that it is observed as occluded by occupied voxels, and occplane to indi-
cate that it is observed as occluded but with neighboring empty voxels or it is on
the boundary of the voxel map.

The voxel map is built in the following way. It is first initialized with all vox-
els unlabeled. Next, occupied voxels are labeled based on the point cloud of the
current (partial) object surface model, and then, from each previous camera view
(i.e., each previous RGB-D image), empty and occluded voxels are labeled using

the ray tracing algorithm [51]. Finally, occluded voxels adjacent to empty voxels



120

are labeled as occplane voxels.

Note that both occupied and occplane voxels are the voxels on the surface of the
target object, which can be observed during the modeling procedure. The main dif-
ference between them is that: occupied voxels have already been observed on the
object surface from the previous perception, while occplane voxels are the hypo-
thetical voxels on the object surface, which need to be validated from the planned
perception. With new observation, occplane voxels could become empty or occu-
pied voxels. If occplane voxels are found to be empty, then new occplane voxels
could be generated based on the new empty voxels. Occluded voxels are always
occluded by occupied or occplane voxels, and they are inside the hypothetical
model of the target object. Fig. 45 shows a cross section of the voxel map built

based on the partial object model.

Figure 45: A cross section of the voxel map built based on the point cloud of the
current partial model of the object milk box blue blue - empty voxels; green - occu-
pied voxels; red - occluded voxels; white - occplane voxels

Based on the voxel map, for a given candidate task, we can further detect both

new and overlap surfaces for evaluation: the occupied voxels observed in simu-

lated camera views (from the candidate task) indicate overlap surfaces, while the
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occplane voxels observed indicate new surfaces. We compute the area factor farea
proposed in [111] that combines both the ratios of occupied and occplane voxels
for evaluation purpose.

If, after evaluating all candidate tasks, the following two conditions are satisfied,

our object modeling procedure can be terminated:

1. No more occplane voxel can be observed, which means the model of the tar-
get object cannot be further improved, and the object model could be com-

plete?.

2. Occplane voxels do not exist any more, which means the object model is

complete.

Note that when either one of the above two termination conditions is achieved,
farea becomes zero.

The model quality fquaiity is used to estimate the quality of further model build-
ing, given a candidate task for changing the object support surface. Suppose there
are Noceupied OCCUpied voxels from 7icamera simulated views with the new support

surface, the model quality is computed as:

1 Moccupied

camera
Jquatity = ——— max 1y; - 1j, (27)
quatity Moccupied ]; =1 ;o

where 7; is the normalized camera orientation vector from the occupied voxel to
the (simulated) camera origin, and 7; is the object surface normal of the occupied

voxel. Similar algorithms have been used in [4, 111].

2However, it could still be incomplete, if the surface of the target object is very complicated with
many small concavities, and in such cases, the modeling procedure would require more viewing
directions than the current procedure considers, as discussed in Chapter 8.
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7.3.2.3  Manipulation Constraints

Given a candidate task, we evaluate the following factors to assess how easy the

task can be executed:

o if the target object can be grasped from the given OBB side for the approach

direction;

e if an approximately flat surface s” exists for the given OBB side for support,

and if the target object can stand stably on the surface s’;
o if the target object can be pushed effectively with the new support surface;
e if the manipulation utility is sufficient.

Theoretically, to make an object stable, two conditions must be satisfied: the
support surface should define a surface region (i.e., at least consists of three points)
that has a sufficiently large area, and the projection of the center of gravity of the
object on the surface of the support region falls inside the support region. In our
approach, we use the center of the OBB as the estimated gravity center and look
for a nearly flat surface based on the support surface side of the OBB, in which the
projection of the center of the OBB falls.

We use a Boolean function fgpiiity to measure the stand stability of the object.
If the above conditions are satisfied, we simply assign the value of fstabihty as 1;
otherwise, it is assigned the value 0.

We also use a Boolean function f,¢h to measure if the target object can be pushed

effectively during the new 360° rotation loop for the considered candidate task. In
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our current experiment setting, if the target object is too narrow compared to the
size of the gripper, it is difficult to be pushed in a consistent way. Therefore, we
introduce a threshold as the minimum object width, beyond which the object can
be rotated by pushing effectively. f,usn is assigned as 1 or 0, depending on if the
requirement of the minimum object width is satisfied.

We further use a Boolean function fgasp to measure if the target object can be suc-
cessfully grasped from the considered approach vector. We use a simple gripper
model with two fingers, and check if two approximately parallel surfaces (based
on their surface normals) on the two contacted OBB sides can be found for grip;
we also check if the approached OBB side is too wide to fit into the gripper. fgrasp
is assigned a value 1 or 0, depending on if both the above grasp constraints can be
satisfied.

The manipulation utility f,amcost is used to evaluate the path cost of the robotic
motion for changing the object support surface, given a candidate task. We use a
mathematical function [111] that is monotonically decreasing with respect to the
path cost for the evaluation. The greater the path cost, the smaller the numerical

value of the manipulation utility fpatheost-
7.3.2.4  Evaluation of Candidate Tasks

To evaluate all the candidate tasks for the change of the current object support
surface, we use a combination strategy similar to [92, 111] to combine all the factors

described above as follows:

0= f area f stability f pushf grasp (1 + f pathcost + f quality)- (28)
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If the © of one candidate task equals zero, then it is an invalid task. Based on all

the valid candidate tasks, we choose the one with the greatest ® for execution.
Notice that when ® becomes zero for all candidate tasks, it indicates that one of

the two termination conditions of our object modeling procedure has been achieved,

as described in Section 7.3.2.2.
74  Experiments and Analyses

In this section, our experiments are described, and detailed experiment analyses

is also presented.

Barrett WAM

1 1]

Calibration Landmarks \

Figure 46: The set up of our experiments: a Microsoft Kinect camera is used for the
perception and a Barrett WAM arm is used for the object manipulation
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74.1  Set Up of Our Experiments

Fig. 46 shows the set up of our experiments for automated 3D object modeling.
The target modeling object is positioned on a table, in the center of the field of
view of the Microsoft Kinect camera. Colorful images on the table are used as
landmarks for the calibration between the robot and camera coordinate systems.

A Barrett WAM arm with 6 degrees of freedom is used for object manipulation.
7.4.2  Experiments

The two important procedures in our automatic model-building process, the
360° rotation loop and the change of object support surfaces, are illustrated as fol-
lows, using the object milk box blue as an example.

Fig. 47 provides a few snapshots of the object milk box blue, rotated by the Bar-
rett WAM arm through pushing step by step in the 360° rotation loop for model
modeling.

Fig. 48 provides a few snapshots of the change of the support surface, for the
model building of the object milk box blue. The task executed was chosen from
the candidate tasks that use the same OBB side for both the approach vector and
the new support surface, and thus, it was completed in two consecutive one-step
motions. Notice that the top side of the object milk box blue is used as both the
approached side for grasping and the new support surface side in this example.

All our algorithms are currently implemented in single threads. To ensure safety,
robotic manipulation is executed at a low speed. The time cost mainly comes from

360° rotation loops. For each step in the 360° rotation loop, it takes about 1 minute
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Figure 47: A few snapshots of the object milk box blue, rotated by the Barrett WAM
arm through pushing step by step in the 360° rotation loop for model modeling
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Figure 48: A few snapshots of the change of the support surface, for the model
building of the object milk box blue
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for the registration of neighbouring point clouds and 2 ~ 3 minutes for the execu-
tion of pushing by the robot end effector. Each 360° rotation loop consists of about
10 ~ 15 steps. Our whole object modeling procedure usually requires more than
two 360° rotation loops, depending on the surfaces of the modeled object. How-
ever, it is important that the whole object modeling procedure is automated by our

algorithms without the time and effort of a human operator.
74.3  Comparison of the Registration Results: before and after Optimization

Fig. 49 compares the registration results before and after global optimization,
using all the point clouds of the object milk box blue, captured from a 360° rotation
loop: (a) shows the partial model of the object milk box blue, built before global
optimization, in which small distortion of the object surfaces (in the red circles)
can be clearly observed; (b) shows the partial model of the object milk box blue,
refined by the global optimization, in which all the distorted parts of the object
surfaces are corrected.

We now provide detailed statistical analysis about how the quality of the partial
model of the object milk box blue is improved by the global optimization in two
different ways, based on the partial models of the object milk box blue, shown in
Fig. 49.

A statistical comparison of the qualities of the partial models of the object milk
box blue, built before and after global optimization is presented in Fig. 50, based
on the mean K-nearest neighbour distances of all the points in the point clouds

of both models (K = 100). As we can see from the histogram in Fig. 50, the
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(a) Before Optimization (b) After Optimization

Figure 49: The comparison of the registration results before and after global op-
timization, using all the point clouds of the object milk box blue, captured from a
360° rotation loop: (a) shows the partial model of the object milk box blue, built
before global optimization, in which small distortion of the object surfaces (in the
red circles) can be clearly observed; (b) shows the partial model of the object milk
box blue, refined by the global optimization, in which all the distorted parts of the
object surfaces are corrected
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object point cloud after global optimization has a greater number of points with
their mean K-nearest neighbor distances in the ranges 1.4 mm ~ 1.7 mm and
2.5 mm ~ 3.4 mm, while the object point cloud before global optimization has
a greater number of points with their mean K-nearest neighbor distances in the
ranges 1.8 mm ~ 2.4 mm and 3.5 mm ~ 5.4 mm. Therefore, the histogram shows
two main distribution changes of the mean K-nearest neighbor distances of all
points in the object point cloud before and after global optimization: many points
have their mean K-nearest neighbor distances reduced from the range 1.8 mm ~
2.4 mm to the range 1.4 mm ~ 1.7 mm; and also many points have their mean K-
nearest neighbor distances reduced from the range 3.5 mm ~ 5.4 mm to the range
2.5 mm ~ 3.4 mm. As the result, Fig. 50 indicates that the points in the point cloud
of the partial model are distributed more closely after global optimization.

Fig. 51 shows a statistical comparison of the qualities of the partial models of
the object milk box blue, before and after global optimization, based on the numbers
of the neighbors of all the points in the point clouds of both models, within the
radius of 3 mm. As we can see from the histogram in Fig. 51, the object point
cloud after global optimization has a greater number of points with their numbers
of neighbors within the radius of 3 mm in the ranges 30 ~ 60 and 155 ~ 215, while
the object point cloud before global optimization has a greater number of points
with their numbers of neighbors within the radius of 3 mm in the ranges of 5 ~ 25
and 65 ~ 150. Therefore, the histogram also shows two main distribution changes
of the numbers of neighbors within the radius of 3 mm of all points in the object

point cloud before and after global optimization: many points have their numbers



131

30000
m Before Optimization @ After Optimization
25000
20000
bl
E
&
E 15000
£
E
3
=
10000
- | ||““ ‘ ‘ ‘ ‘ ‘
|‘ ‘ ‘ ‘ ‘ ‘ I“‘lllllIIIIIIIIIIIIIIII.II-I-I-- [—
14 16 18 2 22 24 26 28 32 34 36 3B 4 42 44 46 48 52 54

Mean Distance to K-Nearest Meighbours (mm)

Figure 50: A statistic comparison of the qualities of the partial models of the object
milk box blue, before and after global optimization, as shown in Fig. 49, based on
the mean K-nearest neighbor distances of all the points in the point clouds of both
models (K = 100)
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of neighbors within the radius of 3 mm increased from the range 5 ~ 25 to the
range 30 ~ 60; and also many points have their numbers of neighbors within the
radius of 3 mm increased from the range 65 ~ 150 to the range 155 ~ 215. Hence,
Fig. 51 also indicates that the points in the point cloud of the partial model are
distributed more closely together after global optimization.

12000

B Before Optimization W After Optimization
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G000
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0 |‘ II | [

5 15 25 35 45 55 65 75 B85 55 105 115 125 135 145 155 165 175 185 185 205 215
Mumber of Meighbours

Mumber of Points

Figure 51: A statistical comparison of the qualities of the partial models of the
object milk box blue, before and after global optimization, as shown in Fig. 49,
based on the numbers of the neighbors of all the points in the point clouds of both
models, within the radius of 3 mm

Both the smaller mean K-nearest neighbor distance and the greater number of
neighbors within the same radius demonstrate that all point clouds of the object

milk box blue used for the current model building are aligned better together after

global optimization.
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744  Analyses of Voxel Maps

As described in Section 7.3.2, a voxel map is built based on the oriented bound-
ing box of the point cloud of the object model, which is updated in real time as
more information of the target object is sensed. In our experiments, the voxel size

issetas 3 mm X 3 mm X 3 mm.

(a) (b) (0

Figure 52: The built complete model of the object milk box blue, visualized from
different viewpoints

The complete model of the object milk box blue, as shown in Fig. 52, is built
using two 360° rotation loops. All the information of the voxel map after each 360°
rotation loop is given in Table 7.

As we can see from Table 7, after two 360° rotation loops, there are only a few
occplane voxels left in the voxel map, and the model of the object milk box blue is
almost complete. From the 1st loop to the 2nd loop, occplane voxels are greatly

reduced, indicating the great reduction of the unobserved region after the 2nd



Table 7: The voxel map after each 360° rotation loop for milk box blue
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Size of Size of #Empty | #Occupied | #Occluded | #Occplane
Loop no. 1 )
OBB (mn’) | voxel map
1 128 = 257 45 = 88 72299 21275 70237 2509
x 119 w 42
2 128 = 261 45 = 90 86826 30902 60448 24
# 123 w444

loop. This is also reflected in the significantly increased number of occupied vox-
els. However, the number of increase in occupied voxels is much greater than the
number of reduction in occplane voxels; this is because the occupied voxels might
come from both the previously occluded and occplane voxels. Besides, due to the
limited depth accuracy of the Microsoft Kinect camera and the sensing noise, af-
ter image registration from multiple views, the object surface is usually thicker
than one voxel, meaning that more occupied voxels are generated. The few re-
main occplane voxels might be caused by the sensing inaccuracy and noise, or tiny
self-occluded surfaces which cannot be observed by more 360° rotation loops.

Fig. 53 shows more built models of daily objects, with their corresponding OBBs.
Notice that, even though many daily objects do not have rectangular shapes sim-
ilar to their OBBs, for example, the object spray shown in Fig. 53, there are still
smooth surfaces corresponding to some OBB sides that can be used in our ap-

proach.

7.5  Conclusions of this Chapter

To conclude, in this chapter, we have introduced a method to build 3D object

models from RGB-D images automatically by interleaving model building with
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Figure 53: More built models of daily objects, with their corresponding OBBs: from
left to right, they are milk box red, spray and coffee box
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robotic manipulation. Using a fixed RGB-D camera and starting from the first view
of the object, our approach gradually builds a complete object model by using a
partially built model (based on what has been visible) to guide the pose change
of the object by a robotic manipulator to make more surfaces visible for contin-
ued model building. The expanded partial model further guides the robotic pose
change, and so on. The alternation of perception-based model building and pose
changing continues until a complete object model is built with all object surfaces
covered.

As shown in Fig. 47, by introducing an automatic push procedure, our approach
does not assume that the robot can achieve a first grasp of the object somehow
[55] without the knowledge of the object model, i.e., we do not assume the need of
human guidance to achieve an initial grasp. Our approach only assumes that the
object is initially placed stably on a support structure, such as a table, so that it can
be pushed, which is usually feasible for most daily objects with otherwise diverse
shapes. After observing many side surfaces of the object through the pushing loop,
automatic grasping of the object becomes possible, as shown in our experiments.

The experimental results also show that our approach tolerates motion uncer-
tainty in pushing the object quite well: the motion does not have to be a precise
rotation, some translation is fine, as long as an adjacent, previously unseen surface
of the object can be seen after the push motion, and the amount of push is small so
that a new image has overlapping regions with the previous image. Our approach
does not require a real-time tracking algorithm. It does not involve the robotic

manipulator in any image of the target object so that there is no need to deal with
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separation of the manipulator (end-effector) from the object in an image.

A global optimization algorithm, especially for the registration of all object point
clouds obtained in each step of the rotation from the same 360° rotation loop, is
developed based on the virtual mate approach [82]. Experiment results show that
our algorithm can effectively improve the quality of the built object model.

The oriented bounding box, updated along the way as new information of the
object is sensed, is introduced to help capture all the aspects/views of the target
object, and also to reduce the difficulty of the real robotic manipulation planning.

Our approach provides a promising solution for automatic 3D rigid object mod-
eling in situations where a camera cannot be moved and re-positioned freely, for
example, in cluttered environments, and where objects cannot be pre-positioned
on any special hardware (such as a turntable) or pre-grasped. Moreover, in many
situations, because of some constraints, such as background occlusion and object
self-occlusion, it is usually difficult to view all surfaces of an object by altering only
the camera viewpoint. Our approach of interleaving perception with manipula-
tion provides more flexibility to enable observing all object surfaces and building

a complete object model.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the contributions of this dissertation and discuss

possible future work.
8.1  Object Detection and Pose Estimation

In Chapters 4 and 5, an appearance-based approach to general 3D object detec-
tion and pose estimation is introduced based on segmented 3D surfaces and their

features, taking full advantage of RGB-D information.
8.1.1  Contributions

Our approach is characterized by the following novel aspects:

e representation of object models, based on segmented smooth surfaces of RGB-
D images from different sensor views of different object poses, which allows
modeling of objects with disconnected surface patches and missing surface
information in object images and does not require precise information of the

locations of the object and the camera where images were taken;

e asurface-based framework for object detection and pose estimation, capable
of detecting partially visible objects due to either occlusion or surface trans-
parency and multiple instances of the same object as well as estimating the 6
DoF poses of each object in a cluttered 3D scene by taking advantage of the

surface-based object models;
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e a model-fitting based global optimization algorithm, which integrates the
recognition and pose estimation results of all surfaces from the single test
image and effectively solves the ambiguities caused by redundant or incor-

rect results.

Compared to existing approaches that solely rely on matching keypoints (pairs)
for both object detection and 6DoF pose estimation, our approach for recognition
of surface segments is more flexible to incorporate various kinds of existing ma-
ture object features and learning algorithms; also, the time complexity of our ap-
proach in keypoints matching is constant with respect to the number of objects in
the dataset.

With our approach, the results of detected objects and their poses with respect
to the current RGB-D camera frame can be used directly for robotic manipulation,
with the pose of the camera frame to the robot base frame known. The recon-

structed 3D scene can also be used directly for robot motion planning.
8.1.2  Future Work

To make 3D object detection in our approach more general and robust, other
different kinds of features can be introduced, such as textures, shapes and other
geometrical features. As for pose estimation, keypoints or keypoint pairs based
on geometrical features, which are more invariant to viewpoint changes, can be
turther integrated; other geometric primitives, such as normals, curvatures, lines
and planes, can be also used to make pose estimation more accurate. More efficient

pose estimation algorithms can help our approach run in real time. However, the



140

detection and pose estimation of non-rigid objects is still an open issue.

Semantic segmentation can greatly improve our approach, even though it is still
an unsolved challenge. First, our current approach cannot deal with some extreme
situations when objects are placed side by side very closely and all their surfaces
are separated as one large smooth surface segment. In such cases, other kinds of
features, domain knowledge or knowledge obtained from learning should be uti-
lized to help the correct segmentation of the input image. Second, in our approach,
objects are represented with all its smooth 3D surfaces, however, with more ad-
vanced semantic segmentation algorithms, objects can be represented with several
semantic surface parts, which are not necessarily smooth but also have a lot of
geometrical details. For example, a bicycle can be roughly represented with the
wheels, the frame, the saddle area and the front set. Given target objects with their
semantic surface parts, our approach can start from semantic segmentation, then
apply 3D object detection and pose estimation based on semantic segments, and
end with graph-cut to merge redundant detected objects and also remove incor-
rectly detected objects. Our approach can be applied in more general situations.

Our approach only provides all the detected objects and their poses in the tar-
get scene, however, more useful information should be further analysed for many
daily tasks, for example, the structure of all the objects in the target scene and how
they are physically related to each other; such kind of information is necessary to
ensure robotic manipulation is successful and safe.

To improve the time efficiency of our approach, many procedures in our pro-

gram, such as normal estimation, feature extraction, and keypoints matching of
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each surface segment, can be readily implemented in parallel. Besides, the time
efficiency of our approach can be further improved by choosing more efficient but

also effective keypoints or features for pose estimation.
8.2  Learning-based View Evaluation

In Chapter 6, a learning-based approach is introduced for evaluating scene rec-
ognizability of a cluttered scene with objects occluding one another from a single

view and ranking views based on their scene recognizability.
8.2.1  Contributions

To evaluate scene recognizability of a view, we take into account the quality
and quantity of recognized and reconstructed objects and the background from
the view rather than mere visibility through learning. Our approach is validated
by experimental results, which also provide evidence that better visibility does
not necessarily lead to better recognizability of objects because of the effects of
occlusion, illumination, and weak visual features. Those effects are captured and
reflected in our learning-based approach for view evaluation.

Compared to most of the existing work which is only focused on how to bet-
ter recognize individual objects, our approach of evaluating scene recognizability
points provides a more accurate assessment of how good a view is for autonomous
robotic tasks that require scene understanding for object recognition and manipu-
lation in cluttered environments. Our learning-based approach also makes it easy
for the view evaluator to adapt to the characteristics of specific types of task envi-

ronments or scenes.
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8.2.2  Future Work

The evaluation result of a view can be even more informative for tasks of dif-
ferent purposes. Besides scene recognizability, for example, if the purpose of the
task is for object manipulation, a good view should indicate enough space to avoid
obstacles and to reach target objects, and also easier object stacking structures. As
another example, if the purpose of the task is only concerned with several specific
objects, these target objects should play more important roles than all the other ob-
jects in view evaluation. All those task-related factors should be taken into account

in the training of view evaluators for different tasks.
8.3  Object Modeling through Perception and Manipulation

In Chapter 7, a method is introduced to build complete 3D object models for
unknown objects from RGB-D images automatically by interleaving perception

with robotic manipulation.
8.3.1  Contributions

We provide a novel and systematic framework that effectively integrates RGB-
D perception of an object and robotic manipulation of the object to facilitate both
object modeling and object manipulation. Our approach enables the building of
a complete object model (if all surfaces of the object can be observed through ma-
nipulation), which cannot be achieved by most of existing work.

By introducing an automatic push procedure, our approach does not assume

that the robot can achieve a first grasp of the object somehow without the knowl-
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edge of the object model, i.e., we do not assume the need of human guidance to
achieve an initial grasp. Our approach only assumes that the object is initially
placed stably on a support structure, such as a table, so that it can be pushed,
which is usually feasible for most daily objects with otherwise diverse shapes. Af-
ter observing many side surfaces of the object through the pushing loop, automatic
grasping of the object becomes possible.

Compared to existing work, our approach does not require a real-time tracking
algorithm, and it tolerates motion uncertainty in pushing the object quite well.
Our approach also does not involve the robotic manipulator in any image of the
target object so that there is no need to deal with separation of the manipulator
(end-effector) from the object in an image.

By using the real-time updated oriented bounding box of the partial model of
the object, our approach nicely balances the requirement of the full view cover-
age for model building and robotic manipulation planning. We have introduced
more factors of manipulation constraints in our modeling procedure, which are
not considered by most of existing work.

In general, our approach provides the flexibility to enable observing all object

surfaces and building a complete object model.
8.3.2  Future Work

Our work of automatic object modeling through perception and manipulation
can be further developed to facilitate manipulation of unknown objects in clut-

tered environments. For instance, in order to reach a known object occluded by
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unknown objects in a cluttered environment, the interleaving perception and ma-
nipulation can guide the robot manipulator to gradually move the unknown ob-
jects away if possible, either for the need of creating models of the unknown objects
or for the need of having just partial models of the unknown objects sufficient to
serve the purpose of guiding the robot to securely grasp them and remove them.

How much perceived information of an object, which results in a partial object
model, is necessary to guide manipulation depends on the feedback from manip-
ulation, e.g., if the robot can successfully push or grasp the object. If the first try of
grasping is not successful, more perception is needed so that the robot can explore
a different way of grasping or pushing, etc. This process of interleaving perception
and manipulation has more to do with (partially) modeling the physical shape,
pose, and weight of the object so that robotic manipulation can be accomplished,
regardless of the reason of manipulation.

To build the models of objects with more complicated shapes through our pro-
posed approach, it is possible to introduce a polyhedron as a more refined bound-
ing volume, which still balances the requirement of the full view coverage for
model building and the difficulty of the robotic manipulation planning well. To
build the models of objects of the same shape and size, the model information of
the first object can help speed up the registration of the captured point clouds of
other objects.

Our approach introduces many factors, such as the stand stability, the push ef-
fectiveness and the grasp validity, for 3D object modeling through perception and

manipulation. Most of them are still open challenges for objects with arbitrary and
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complicated shapes, and better solutions for each of them can also help improve
the robustness and flexibility of our approach.

As for the issues mentioned in Section 7.1 and Section 7.3.2.2, more views of the
target object with complicated surfaces for modeling can be further provided in
two ways: one is to use the robot manipulator to move the camera around the tar-
get object [71, 70, 113, 38, 56, 111], which requires the algorithms of view planning
for guidance, and the other is to use the robot manipulator to hold the target object
in different poses [55, 67, 15], which requires the algorithms for both the tracking
of the target object and the segmentation of the target object from the background
(including the robot manipulator). By systematically integrating both strategies
discussed above into our approach, complete models of most objects can be suc-

cessfully achieved.
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