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ABSTRACT 
 
 

JENNIFER ANNE RETTEW. Sexual dimorphism in sepsis susceptibility: effects of 
reproductive hormones on microbial pattern recognition receptor expression. (Under the 

direction of DR. IAN MARRIOTT) 
 
 

Sex-based differences in innate immune responses to bacterial infection are 

evident in human patients and animal models of disease.  Females are less susceptible to 

the development of bacterial infections and subsequent bacteremia and/or sepsis while 

males exhibit a greater incidence of such infections and are more likely to develop fatal 

sequelae.  While the precise effects and mechanisms of action remain to be determined, it 

is apparent that male and female reproductive hormones can have direct effects on the 

expression and function of key bacterial pattern recognition receptors on innate immune 

cells.  Changes in the expression of these receptors are likely to have profound effects on 

the production of the inflammatory mediators responsible for the lethal nature of septic 

shock and may underlie the observed sexual dimorphism demonstrated in immune 

responses to bacterial endotoxins.  In the present studies, we have determined the role of 

testosterone and estradiol on TLR4 expression from murine macrophages.  Testosterone 

suppresses both total and cell-surface TLR4 expression from macrophages, both in vitro 

and in vivo, and decreases inflammatory mediator production following LPS challenge.  

Estradiol, however, exhibits much more complicated effects on pattern recognition 

receptor expression.  Long-term exogenous estradiol treatment in vivo augments cell-

surface but not total TLR4 expression, with a corresponding increase in inflammatory 

mediator production following LPS challenge.  However, acute treatment of macrophages 

with estradiol results in an opposite effect with decreased levels of cell-surface TLR4 
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expression and inflammatory mediator production, and this effect was found to be 

mediated by the novel estrogen receptor GPR30.  As such, estrogens may be able to 

reduce the devastating inflammation associated with acute overactive host responses such 

as septic shock without compromising long-term defense against infectious organisms.   
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CHAPTER ONE: INTRODUCTION 
 
 

While it has long been known that sex is a contributing factor in the incidence and 

progression of disorders associated with immune system dysregulation, it is recently 

come to light that sex also plays a role in susceptibility to infectious disease.  

Specifically, responses to bacterial infections and endotoxin differ based on sex as well as 

reproductive status.  In discussing sex bias to bacterial infection, it is important to note 

that disease severity and outcome following bacterial infection are often dependant on the 

host inflammatory responses elicited by endotoxins produced by many bacterial species 

(Figure 1).  Systemic inflammatory response syndrome (SIRS) describes the 

physiological changes associated with an overactive and systemic host response that can 

be due to either an infectious stimuli, such as endotoxin, but can also be caused by 

physiological responses to challenges such as hemorrhage.  Patients with SIRS exhibit 

symptoms such as fever or hypothermia, tachycardia, tachypnea, and can also be 

associated with white blood cell count abnormalities (Martel 2002).  The term SIRS 

encompasses sepsis, bacteremia, and endotoxemia.  Sepsis occurs when organisms at a 

local site of infection proliferate and gain access to the blood stream via tissue damage 

and/or invasion mechanisms.  Bacteremia and endotoxemia occur when bacteria or 

endotoxins such as lipopolysaccharide (LPS) are present in the blood stream, 

respectively.  LPS is a structural component of the cell wall of Gram-negative bacteria 

that, while not actively secreted by these organisms, is often released into the 
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extracellular milieu of the host following bacterial lysis.  The systemic circulation of 

microbes and/or endotoxin often leads to a systemic inflammatory response, and 

frequently sepsis (Figure 1).  Severe sepsis can lead to septic shock, which is categorized 

by a catastrophic drop in blood pressure that results in diminished perfusion of tissues, 

hypoxia, and dysfunction of organs, including the kidneys, liver, lungs, and CNS.  This 

loss of function may lead to multiple organ failure and death (Martel 2002).  In fact, 

sepsis and the multiple organ failure associated with septic shock is the most common 

cause of late post-injury death in surgical intensive care units (Sauaia et al. 1995). 

Sex based differences in the immune response to bacterial infection are evident at 

multiple levels.  Both innate and adaptive immunity exhibit sexual dimorphism in human 

patients and mouse models of disease.  While disparities between men and women in B 

cell activity and antibody production in response to bacterial infection and vaccination 

are well known and are discussed elsewhere in this volume, it is also apparent that 

marked differences exist between males and females in the frequency, severity, and 

outcome of severe sepsis and septic shock.  In the following chapter, we will discuss the 

sex based differences in susceptibility to bacterial infection and discuss the mechanisms 

that may account for such sexual dimorphism. 

 

1.1  Sex based differences exist in susceptibility to bacterial infection and sepsis with 

males exhibiting higher incidence and severity 

Animal studies have provided evidence that males exhibit greater susceptibility to 

bacterial challenge than their female counterparts.  Sex based differences have been 

observed in susceptibility of mice to Mycobacterium marinum infection, with males 
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showing higher disease severity, bacterial burden, and mortality than infected female 

mice (Yamamoto et al. 1991).  Similarly, Helicobacter pylori infections in females show 

delayed onset of intestinal dysplasia relative to infected males, and show less intestinal 

inflammation and histopathology (Ohtani et al. 2007).  This difference is not limited to 

bacterial burden as animal models of endotoxemia indicate that female mice demonstrate 

higher survival rates than males when subjected to severe sepsis.  For example, 

administration of V. vulnificus derived LPS leads to endotoxic shock in male rats with a 

mortality rate of 82%.  In contrast, females treated in the same manner exhibit only 21% 

mortality following LPS challenge (Merkel et al. 2001).  Studies in mice have yielded 

similar results.  In one study, all female mice survived LPS induced sepsis, but only 70% 

of their male counterparts survived a similar treatment (Laubach et al. 1998).  In the cecal 

ligation and puncture induced model of sepsis, female mice similarly survived at a much 

higher rate (44%) relative to males (5%) (Kahlke et al. 2002).   

Findings in human patients appear to correspond with these animal studies, with 

men exhibiting greater susceptibility to bacterial infection than women.  A study of 

patients at Boston City Hospital in 1972 with bacteremia found that the incidence of 

infection was significantly higher in male patients than in females (McGowan et al. 

1975).  In addition, it has been shown that men exhibit increased mortality associated 

with nosocomial infection compared to their female counterparts (Dinkel and Lebok 

1994), and the male sex has been identified as a major risk factor for bacterial infection 

following severe injury with a study showing that male patients exhibit a 58% greater risk 

of developing major bacterial infections following trauma (Offner et al. 1999).   
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Again, it is apparent that these sex differences in the incidence and/or severity of 

bacterial infection are mirrored by similar differences in the development of severe sepsis 

and septic shock.  Vibrio vulnificus infection, which occurs following ingestion of raw or 

undercooked seafood, elicits endotoxic shock in humans with a fatality rate of almost 

60%, but 80% of V. vulnificus associated mortality is observed in males (Oliver 1989).  In 

addition, reviews of hospital cases have revealed that significantly fewer female patients 

were referred to the intensive care unit, and of all patients referred, men developed severe 

septic shock more frequently than women (Wichmann et al. 2000, Dosset et al. 2008).  

Women have also been found to have lower organ dysfunction scores than men following 

the development of severe sepsis (Adrie et al. 2007).  Furthermore, the outcome 

following the development of sepsis and severe sepsis also differs based between the 

sexes, with men again exhibiting greater mortality than women (Schroder et al. 1998, 

Adrie et al. 2007).   

 As such, it appears that females are less susceptible to the development of 

bacterial infections and subsequent bacteremia and/or sepsis while males exhibit greater 

incidence and severity of bacterial infections and are far more likely to develop lethal 

sequelae.  While these sex based differences have been appreciated for many years, the 

mechanisms that may account for such differences are only now becoming apparent.  It is 

conceivable that the divergence in sepsis severity could stem from differences in 

circulating endotoxin levels.  Indeed, one study has found that female rats exhibit 

significantly lower endotoxin levels following cecal ligation and puncture (Erikoglu et al. 

2005).  However, this has not been a consistent observation with other groups reporting 

contradictory results (Kono et al. 2000).  A more likely mechanism for sex based 
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differences in sepsis severity lies in the relative production of key inflammatory 

cytokines that precipitate the lethal consequences of bacterial septic shock. 

 

1.2  Sex based differences exist in the production of key inflammatory cytokines by 

immune sentinel cells that underlie the development of bacterial septic shock 

The development of sepsis is driven by the overproduction of cytokines including 

tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 (Blackwell and Christman 

1996).  The importance of these molecules in the development of septic shock is 

underscored by the observation that sera levels of IL-6, TNF-α, and IL-8 were 

significantly lower in sepsis patients that survived than those succumbing to this 

condition (Dosset et al. 2008, Majetschak et al. 2000).  The rapid onset and progression 

of septic shock are testaments to the role played by innate immunity in the development 

of this often self destructive host response.  Macrophages can perceive bacteria and 

endotoxins to rapidly produce large amounts of these potent inflammatory cytokines.  As 

such, the lethal nature of septic shock is mediated, in large part, by the widespread 

activation of macrophages and the subsequent overproduction of inflammatory mediators.   

Several studies have indicated that sexual dimorphism exists in the circulating 

levels of these inflammatory cytokines following infection and/or septic shock.  For 

example, male sepsis patients have been found to have higher circulating levels of TNF-α 

than female patients, and this observation correlates with a worse prognosis (Schroder et 

al. 1998).  In mice, Escherichia coli derived LPS has been found to elicit higher 

circulating levels of IL-6 in males than similarly treated female mice (Marriott et al. 

2006).  Interestingly, female sepsis patients have been found to exhibit higher levels of 
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the anti-inflammatory cytokine IL-10 than age and disease severity matched male 

patients (Schroder et al. 1998).  While these studies appear to support the contention that 

the overproduction of inflammatory cytokines or diminished production of 

immunosuppressive cytokines correlates well with susceptibility to septic shock, it is 

important to note that some studies have failed to detect such sex based differences (May 

et al. 2008, Schroder et al. 1998), and the reason for this discrepancy is not clear. 

Importantly, there is a considerable body of work to support the hypothesis that 

sex based differences exist at the level of inflammatory cytokine production by isolated 

immune sentinel cells.  In vitro studies employing acutely isolated human peripheral 

monocytes and macrophages isolated from animals show male/female differences in the 

production of inflammatory cytokines and chemokines following in vitro LPS challenge.   

For example, peripheral monocytes from male patients produce higher levels of TNF-α 

than females derived cells following LPS challenge (Asai et al. 2001, Temple et al. 2008, 

Tiberio et al. 2004) and peripheral blood cells derived from young adult men produce 

significantly more TNF-α following LPS challenge than that released by similarly treated 

cells derived from young adult women (Moxley et al. 2002).  Similarly, peritoneal 

macrophages isolated from male mice subjected to cecal ligation induced sepsis secrete 

greater amounts of TNF-α than their female derived counterparts (Kahlke et al. 2002). 

These sex based differences do not appear to be limited to TNF-α.  Male derived 

macrophages produce significantly larger amounts of the inflammatory chemokine IP-10 

than macrophages from female mice (Marriott et al. 2006).  This effect seems to be 

chemokine-specific as no sex based differences were observed in the production of MCP-

1 (Marriott et al. 2006).  In addition, in vitro studies using peritoneal macrophages show 
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that cells derived from young male mice produce higher levels of IL-1β and IL-6 

following LPS challenge than similarly treated female derived cells (Kahlke et al. 2000).  

Furthermore, peripheral blood monocytes isolated from male patients produce higher 

levels of IL-6 following LPS challenge than female derived cells (Tiberio et al. 2004).  

However, the findings for IL-6 do not appear to be as consistent as those for TNF-α and 

IL-1β as several studies have reported contradictory results.  For example, LPS 

stimulated female peripheral monocytes have been found to produce more IL-6 than male 

monocytes, even as these same cells produce less TNF-α (Asai et al. 2001).  Furthermore, 

macrophages isolated from female mice after thermal injury produce higher levels of IL-6 

upon LPS stimulation (Kovacs et al. 2002), and hypoxia stimulated IL-6 secretion was 

greater in female derived Kupffer cells, the resident macrophages of the liver (Zheng et 

al. 2006).  While these results appear to contradict the male/female differences seen in 

TNF-α production, it is important to note that interpreting changes in IL-6 levels is 

complicated by its role in the development of TH2 T-helper cell responses.  

Interestingly, sex based differences have been observed in the production of anti-

inflammatory cytokines such that female derived macrophages produce significantly 

more than that released by male derived cells.  For example, peritoneal macrophages 

isolated from male mice have been shown to produce significantly lower amounts of the 

potentially immunosuppressive prostanoid PGE2 than female derived cells (Marriott et al. 

2006).  This finding would appear to agree with previous studies showing that female 

cells can be induced to secrete more prostanoids than males (Du et al. 1984, Leslie et al. 

1987, Gregory et al. 2000a).  Furthermore, in vitro studies employing female-derived 

splenic macrophages have shown that these cells secrete higher levels of the 
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immunosuppressive cytokine IL-10 than male derived cells (Kahlke et al. 2000).  

However, it should be noted that some studies have failed to detect such sex based 

differences in IL-10 secretion (Asai et al. 2001, Temple et al. 2008), while one group 

found greater production of mRNA encoding IL-10 following LPS stimulation of male 

derived mononuclear cells (Temple et al. 2008).  In one study, male/female differences 

were observed in inflammatory cytokine production from mononuclear cells following 

LPS challenge, but not in IL-10 production, indicating males have proportionally less 

anti-inflammatory signals to balance the inflammatory cytokines (Tiberio et al. 2004).  

Interestingly, a study of cecal ligation and puncture induced sepsis found that exogenous 

IL-10 treatment increased male survival but had no effect on female survival (Kahlke et 

al. 2002). 

Finally, it appears that the male/female differences in LPS-induced inflammatory 

mediator production observed in monocytes/macrophages extends to other sentinel cell 

types such as neutrophils (Spitzer and Zhang 1996), and may also include non-leukocytes 

cells.  For example, LPS induced lung inflammation in male mice has been shown to be 

associated with higher levels of TNF-α than that seen in the airway fluid of female mice 

(Card et al. 2006).  Gastric tissue from male mice infected with H. pylori demonstrates 

higher expression of TNF-α than that seen in infected female tissue (Ohtani et al. 2007).  

In addition, cardiomyocytes isolated from male mice produce greater amounts of TNF-α 

following LPS challenge than do female derived cells (Zhu et al. 2009). 

As such, the majority of the data supports the idea that females can be protected 

from potentially lethal endotoxic shock in two ways: first by producing lower levels of 

the inflammatory mediators that precipitate the systemic effects associated with sepsis, 
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and second by elevating the production of immunosuppressive molecules that could serve 

to attenuate endotoxin-mediated systemic inflammation.  Despite the consensus that male 

and female derived immune cells appear to differentially produce inflammatory 

mediators following bacterial or endotoxin exposure, the mechanisms that underlie these 

differences remain poorly defined.    

 

1.3  Sex based differences exist in the expression and/or functionality of receptors 

for conserved bacterial motifs 

 The recent discovery of a family of pattern-recognition receptors with a high 

degree of homology to the Toll family of proteins in Drosophila has shed light on the 

means by which innate immune cells recognize a wide range of pathogens without the 

need for prior exposure (Wright 1999, Medzhitov and Janeway 2000).  To date, at least 

eleven members of the Toll-like family of receptors (TLR) have been discovered in mice 

and humans.  These receptors detect the presence of conserved microbial motifs and 

initiate the production of cytokines, chemokines, and co-stimulatory molecule expression 

(Barton and Medzhitov 2003).   

 As shown in Figure 2, the detection of LPS involves Toll-like receptor 4 (TLR4) 

and several co-receptors and binding proteins.  LPS binding protein (LBP) is a type I 

acute phase protein that catalyses the monomerization of LPS and mediates its transfer to 

CD14 (Schumann et al. 1990, Wright 1999).  CD14 is a co-receptor for LPS and is either 

expressed within the plasma membrane of innate immune sentinel cells such as 

macrophages or is present as a soluble molecule in the surrounding milieu.  Since neither 

CD14 nor LBP contain a cytoplasmic component, cellular responses are initiated through 
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binding with TLR4 (Poltorak et al. 1998, Chow et al. 1999, Lien et al. 2000, Akira 2006).  

TLR4 is expressed by immune sentinel cells including monocytes/macrophages and 

dendritic cells (Medzhitov et al. 1997).  However, TLR4 also exhibits a broader 

expression pattern on non-leukocytic cell types capable of inflammatory cytokine 

production including epithelial cells in a variety of tissues (Diamond et al. 2000; Kumar 

et al. 2004; Quintar et al. 2006; Hornef et al. 2002), smooth muscle cells (Quintar et al. 

2006), endothelial cells (Rock et al. 1998), and resident CNS cells such as astrocytes 

(Lewis et al. 2008).  All of these cells can therefore respond to LPS and have the 

potential to contribute to a systemic inflammatory response.  Ligation of TLR4, 

facilitated by CD14 and LBP, initiates an intracellular signaling cascade that results in the 

activation of NF-κB, a pivotal transcription factor in the regulation of inflammatory 

cytokine expression.  As such, widespread activation of cells via TLR4 can precipitate 

the overproduction of soluble immune mediators that can lead to the development of a 

systemic inflammatory response that underlies the lethal nature of septic shock (Palsson-

McDermott and O’Neill 2004). 

 Importantly, male/female differences appear to exist at the level of expression of 

these LPS receptors, and could therefore underlie the observed differences in LPS-

mediated responses in male and female-derived cells with regard to inflammatory 

mediator production.  Male mice have been found to have significantly higher circulating 

levels of LBP after LPS challenge than female mice and macrophages isolated from male 

mice express higher levels of cell surface CD14 than female-derived cells (Marriott et al. 

2006).  Interestingly, this difference appears to exist at the level of protein expression 

rather than at the level of gene transcription, as levels of mRNA encoding CD14 were not 
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significantly different between male and female derived cells (Marriott et al. 2006).  

However, it should be noted that another group has largely failed to detect such 

differences, with male peritoneal macrophages demonstrating a non-significant trend to 

express greater amounts of cell surface CD14, while splenic macrophages showed no 

difference between male and female derived cells (Eisenmenger et al. 2004).  Temple and 

coworkers also found no sex-based difference in membrane CD14 expression on human 

mononuclear cells; however, their use of permeabolization to examine total TLR4 protein 

expression on those same cells could have had confounding effects on the measurement 

of CD14 levels (Temple et al. 2008).  

Consistent with the notion that male sentinel cells express higher levels of 

receptors for LPS than their female counterparts, macrophages isolated from male mice 

have been shown to express more TLR4 than female-derived cells (Marriott et al. 2006, 

Frisancho-Kiss et al. 2007).  Furthermore, mononuclear cells isolated from male patients 

also express significantly higher levels of total TLR4 protein than do cells from female 

patients (Temple et al. 2008, Tiberio et al. 2004).  Again, this difference appears to occur 

at the level of protein expression as expression of mRNA for this pattern recognition 

receptor was not found to significantly differ between the sexes under naive conditions 

(Marriott et al. 2006, Zhu et al. 2009).  In contrast, at least one study has reported that 

hypoxia can significantly induce TLR4 mRNA expression in male Kupffer cells, the 

resident macrophages of the liver, over that seen in female cells (Zheng et al. 2006).  

Also, following LPS challenge of murine cardiomyocytes, cells derived from male 

animals were found to contain significantly higher levels of mRNA encoding TLR4 than 

cells from their female counterparts (Zhu et al. 2009), indicating that perhaps mRNA 
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levels can increase in male cells following challenge with infectious or endogenous 

“danger-signals”.  Finally, male peritoneal macrophages exhibit a non-significant trend to 

express more cell surface TLR4 following trauma hemorrhage than cells from similarly 

treated females (Eisenmenger et al. 2004).  However, in this study there were no 

significant differences in such expression in naive macrophages or splenic macrophages 

following trauma hemorrhage. 

It has been suggested that sex based differences in LPS responses may also stem 

from differences in the intracellular signaling pathways initiated following TLR4 

ligation.  Specifically, hypoxia has been shown to initiate a MyD88-dependant signaling 

cascade resulting in IL-6 release from female Kupffer cells.  In contrast, male-derived 

Kupffer cells appear to rely upon a MyD88-independent signaling pathway for 

production of this cytokine (Zheng et al. 2006).  Consistent with this finding, female 

Kupffer cells demonstrated greater expression levels of the adaptor protein MyD88 than 

males (Zheng et al. 2006).  Interestingly, while Src expression levels were higher in 

female derived liver macrophages, hypoxia initiated a decrease in such expression in 

female-derived cells while eliciting an increase in Src expression in male Kuppfer cells 

(Zheng et al. 2006).  Ligation of TLR4 initiates a MAP kinase signaling and subsequent 

activation of NF-κB and female-derived peritoneal macrophages have been demonstrated 

to shown a greater degree of p38 MAP kinase phosphorylation, and hence activation, 

following LPS challenge than that found in male cells (Angele et al. 2003).  Furthermore, 

Kupffer cell NF-κB activity has been reported to be three times higher in females 

following alcohol-induced liver injury than similarly treated male-derived cells (Kono et 

al. 2000).  However, at least one study found greater ERK1/2 and p38 MAP kinase 
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phosporylation in male derived cardiomyocytes than in female derived cells following 

LPS challenge (Zhu et al. 2009). 

Taken together, evidence is accumulating that male/female differences exist at the 

level of expression of those pattern recognition receptors that can perceive bacterial 

components and can influence the signaling pathways that result in inflammatory 

cytokine production.  Because activation of TLRs and their co-receptors is responsible 

for LPS-mediated cytokine production, sex differences in these activation pathways may 

underlie the sexual dimorphism observed in immune responses during sepsis and/or 

septic shock.  While the higher expression of TLR4 and its co-receptors on male sentinel 

cells and the more efficient LPS-induced signaling pathways in female cells appear to be 

contradictory, it is important to note that TLR induces both inflammatory and 

immunosuppressive cytokine production.  As such, it is possible that the differences seen 

in female signaling pathways could result in higher anti-inflammatory cytokine 

production rather than elevated inflammatory mediator release.  Clearly, more research is 

required to validate such a hypothesis. 

 

1.4  Susceptibility to bacterial infection and sepsis differ with age and reproductive 

status 

The differences in immune responses between males and females have generally 

been assumed to be a consequence of reproductive hormones.  Circumstantial evidence 

for such a hypothesis comes from the documented differences in susceptibility to 

bacterial infection and sepsis/septic shock observed with age and changes in reproductive 

status. 
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A study of sepsis cases in children has revealed that there are no male/female 

differences in susceptibility or mortality due to sepsis in pre-pubescent children over the 

age of one and this absence of sex based differences correlate with very low levels of 

reproductive hormones (Bindl et al. 2003).  This study did show male/female differences 

in sepsis susceptibility in neonatal infants with boys exhibiting greater severity similar to 

that seen in adults males (Bindl et al. 2003), but it is important to note that this effect may 

well be due to the presence of residual sex hormones that are present at high levels during 

fetal development but that rapidly decrease within the first year of life.  Similarly, sepsis 

susceptibility changes in the elderly.  While these effects may be a result of the 

physiological changes associated with aging, changes in susceptibility to bacterial 

challenge appear to be at least partially attributable to alterations in circulating levels of 

sex hormones.  In a mouse model of aging, Kahlke and co-workers (2000) found that 

peritoneal macrophages from aged mice release lower levels of the inflammatory 

cytokines IL-1β and IL-6, and greater levels of the anti-inflammatory cytokine IL-10 

upon LPS stimulation compared to young mice.  Importantly, the sexual dimorphism 

observed in cytokine production release in young mice is not apparent in aged mice 

(Kahlke et al. 2000).  Similarly in humans, elderly sepsis patients do not display 

differences between the sexes in either the incidence of septic shock or shock-associated 

mortality seen in younger patients (Angstwurm et al. 2005).  However, at least one 

review of hospital cases found that women had a lower risk of mortality associated with 

severe sepsis than men, but only in the above 50 years of age category (Adrie et al. 2007).  

Presumably, this would indicated that the sex difference in susceptibility to sepsis occurs 

post- and not pre-menopausal, however the authors note that low mortality and small 
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sample size in the younger than 50 category, as well as the potential of hormone 

replacement in post-menopausal women, could have confounded their results (Adrie et al. 

2007). 

Major changes in reproductive hormone production occur during female 

menopause and a growing body of evidence suggests that changes in immune cell 

populations and functions occur at this time. The ovary can function in humans from the 

teenage years through to the fifth decade of life.  However, during the perimenopause, the 

first hormonal changes occur that lead to the final menstrual period.  During 

perimenopause, circulating estrogen concentrations fluctuate greatly from low (< 120 

pM) to high (2 µM) but do not become significantly different until close to the final 

menstrual period (Sherman and Korenman 1975, Metcalf 1988, Shideler et al. 1989).  

Postmenopause, plasma estrogen is undetectable and progesterone levels are consistently 

less than 2 nM.  Ovariectomy of mice, which models surgically induced menopause, 

results in a decreased immune response and increased mortality following bacterial 

infection.  Female mice that lack endogenous estrogen due to ovariectomy show an 

increased mortality following cecal ligation and puncture induced sepsis than age-

matched intact females (Knoferl et al. 2002).  Similarly, ovariectomized female mice 

exhibit twice the lung bacterial burden following M. avium infection than age-matched 

intact females (Tsuyuguchi et al. 2001) and mortality associated with LPS challenge is 

significantly elevated in ovariectomized female rats (Merkel et al. 2001).  Importantly, 

these effects were reversed following exogenous estrogen replacement confirming that 

the elevated bacterial burden and susceptibility to endotoxin administration are directly 
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attributable to the loss of endogenous estrogen (Tsuyuguchi et al. 2001; Merkel et al. 

2001). 

In humans, LPS sensitivity and endotoxin-associated mortality increase with age 

with postmenopausal women displaying a higher incidence of sepsis (Meyers et al. 1989, 

Beery 2003).  Peripheral monocytes isolated from post-menopausal women produced 

significantly higher levels of inflammatory cytokines following LPS challenge than 

similarly stimulated cells from pre-menopausal women (Majetschak et al. 2000, Moxley 

et al. 2004).  Majetschak and colleagues (2000) showed that post-menopausal female-

derived monocytes secreted inflammatory cytokines at the same level as male cells.  In 

contrast, one study showed that LPS-stimulated monocytes from post-menopausal 

women failed to produce comparable levels of TNF-α to those release by similarly 

challenge male-derived cells (Moxley et al. 2004).  However, it must be noted that 

interpretation of this finding is complicated by the fact that half of the post-menopausal 

women monitored were receiving hormone replacement therapy (Moxley et al. 2004). 

Finally, normal mucosal flora has been shown to vary following menopause and 

the subsequent fall in estrogen levels.  Reductions in circulating estrogen levels correlate 

with loss of lactobacilli species in the vagina, which causes an increase in pH and 

coliform microorganisms, promoting growth of pathogenic bacteria and predisposing 

patients to infection (Gupta et al. 2006).  Hormone replacement therapy appears to 

reverse this effect and women not receiving hormone replacement therapy have greater 

incidences of E. coli and bacteroids (Gupta et al. 2006).  Such a hormone-dependent 

change in mucosal flora has important implications for the development of chronic 

inflammatory diseases and it is interesting to note that post-menopausal women receiving 
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hormone replacement therapy demonstrate a reduced incidence of inflammatory bowel 

disease (Kane and Reddy 2008). 

  As such, there is a considerable body of evidence that age and reproductive status 

can significantly influence the severity of bacterial infections and the incidence of sepsis.  

The lack of male/female differences in sepsis susceptibility in post-neonatal and pre-

pubescent children, and the increased sepsis susceptibility of post-menopausal females 

that is reversed following hormone replacement, strongly indicate that reproductive 

hormones underlie the observed sex based differences in bacteremia and sepsis/septic 

shock. 

 

1.5  Sex hormones have direct effects on susceptibility to bacterial infection 

While variations in sepsis susceptibility seen with changes in age and 

reproductive status imply a role for reproductive hormones in the incidence and outcome 

of bacterial infections, more direct evidence exists that sex hormones influence acute 

immune responses to bacteria challenge.  In general, estrogen has been considered to be 

“immunoprotective.”  However, this term fails to delineate whether estrogen acts as an 

immunoenhancer to combat bacterial infection, or is an immunosuppressor and protects 

against the overactive and damaging immune response associated with sepsis.  

Testosterone, on the other hand, is widely accepted to be immunosuppressive and causes 

an increased susceptibility of both males and females to bacterial infection.  For example, 

exogenous testosterone administration increases female mouse susceptibility to M. 

marinum infection while castration of males, and hence removal of endogenous 

testosterone, attenuates such infections (Yamamoto et al. 1991).   
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Several studies have shown that both male and female sepsis patients exhibit 

abnormally low circulating levels of testosterone (Christeff et al. 1992, Fourrier et al. 

1994) and death of males due to septic shock has been associated with extremely low 

levels of this androgen (Christeff et al. 1988).  To date, the mechanisms underlying these 

observations are not clear.  However, LPS has been reported to inhibit testosterone 

synthesis (Reddy et al. 2006) and so decreased testosterone levels could result in a more 

robust inflammatory immune response, and hence septic shock. 

It should be noted that some animal studies appear to contradict the suppressive 

effects of testosterone on sepsis-induced mortality.  In one study (Torres et al. 2005), the 

A/J mouse strain was reported to show less sepsis susceptibility following orchidectomy 

than intact males, an effect that was reversed following administration of 

dihydrotestosterone (DHT).  Furthermore, another study has reported that castrated 

neonatal mice exhibited decreased sepsis susceptibility as adults (Bernhardt et al. 2007).  

However, a caveat of this study is that this model features the disruption of the 

hypothalamic-pituitary-gonadal axis and thereby preventing the formation of a normal 

male brain. 

While a small number of studies have failed to show an effect of estrogen receptor 

agonists on monocyte responses to intracellular Gram-positive bacterial pathogens such 

as Listeria monocytogenes (Opal et al. 2005, Cristofaro et al. 2006), there is an 

overwhelming body of evidence indicating that estrogens, and in particular 17β-estradiol 

(E2; estradiol), are protective for bacterial infection and sepsis susceptibility.  For 

example, estrogens have been demonstrated to increase resistance to streptococcal 

infections (Nicol et al. 1964).  Estradiol administration has been found to increase 
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survival and decrease the oxidative stress along the rat gastrointestinal tract following 

intraperitoneal LPS challenge (Sener et al. 2005).  Similarly, rats treated with 

intramuscular injections of estradiol and progesterone had lower endotoxemia and 

exhibited less liver and lung congestion following cecal ligation and puncture induced 

sepsis regardless of sex, while females receiving these agents had less liver inflammation 

and less lung edema (Erikoglu et al. 2005).  Consistent with these observations, female 

rats treated with estrogen receptor agonists demonstrated lower circulating endotoxin 

levels and higher survival rates following Pseudomonas infection than untreated animals 

(Opal et al. 2005, Cristofaro et al. 2006).  Furthermore, similar treatment of male and 

female mice increased survival following cecal ligation and puncture, while an estrogen 

receptor-beta agonist, but not an estrogen receptor-alpha agonist, decreased bacteremia in 

these animals (Opal et al. 2005, Cristofaro et al. 2006).  Finally, human uterine epithelial 

cells treated with estradiol in culture have been found to have increased antibacterial 

activity following infection with S. aureus (Fahey et al. 2008). 

In addition to experiments employing the administration of exogenous estrogen or 

estrogen receptor agonists, numerous studies have assessed the role played by 

endogenous estrogen on bacterial infection outcome and sepsis.  For example, 

ovariectomy has been shown to markedly increase the severity of M. avium infection and 

this effect was reversed following estrogen replacement (Tsuyuguchi et al. 2001).  

Similarly, ovariectomy increased mortality following cecal ligation and puncture induced 

sepsis in female mice (Knoferl et al. 2002), and exacerbates H. pylori infection such that 

the severity of infection becomes comparable to that seen in males (Ohtani et al. 2007).  
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Again, this effect is reversed following exogenous estrogen treatment (Ohtani et al. 

2007). 

Removal of endogenous estrogens following ovariectomy also increases mortality 

associated with LPS challenge in rats and this effect is absent in animals that receive 

exogenous estrogen administration (Merkel et al. 2001).  In the same study, androgenized 

females that have never been exposed to endogenous estrogen or progesterone, 

demonstrate a significantly higher mortality rate following LPS challenge than sham-

androgenized females (Merkel et al. 2001).  Finally, E. coli infections in dogs are most 

prevalent during diestrus, when estrogens are at their lowest levels (Surgiura et al. 2004). 

Taken in concert, a large body of evidence suggests that estrogens are protective 

against bacterial infection and septic shock.  However, it should be noted that some data 

suggests that high estrogen levels, such as those that might be seen in late proestrus and 

early estrus, have the potential to exacerbate such infections.  For example, estradiol 

treated mice exhibit greater bacteremia and death following gonococcal infection than 

untreated animals (Kita et al. 1985).  In addition, ovariectomized mice receiving high 

dose exogenous estrogen replacement demonstrate a higher incidence of E. coli infection 

in the kidney due to urinary tract infection than untreated mice (Curran et al. 2007).  

Furthermore, acute injection of the estrogen, estriol, was found to dramatically increase 

LPS-associated mortality in rats (Ikejima et al. 1998).  Also, estrogen levels have been 

found to be higher in patients that develop an acute infection (within one day) following 

traumatic injury (Gee et al. 2007).  

Finally, and perhaps more importantly, the increased incidence and severity of 

sepsis in humans correlates with sera estrone and estradiol levels.  Female patients that 
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were admitted to the intensive care unit for sepsis had 10-20 times higher levels of these 

hormones than non-sepsis patients, while male sepsis patients exhibited 3-5 times higher 

estrogen levels (Fourrier et al. 1994).  These results are in agreement with another recent 

study demonstrating that estradiol levels are significantly higher in non-surviving sepsis 

patients, regardless of sex (Dosset et al. 2008).  Furthermore, the probability of death due 

to septic shock was found to be lowest when circulating sera estradiol levels were within 

the physiological range (0.01-0.37 ng/ml in females and 0.02-0.06 ng/ml in males), but 

increases sharply when levels were beyond this range (May et al. 2008).  Interestingly, it 

was found that while all male sepsis patients had elevated estrone and estradiol levels in 

the first two days following admission to the intensive care unit, men that subsequently 

succumbed to septic shock were found to have maintained and even elevated estrogen 

levels in contrast to sepsis survivors (Christeff et al. 1992).  Indeed, the correlation 

between sera estrone levels and sepsis severity was such that the authors of this study 

proposed that the levels of this hormone could be a useful predictor of outcome for sepsis 

patients.  The increases in estrone and estradiol levels associated with sepsis do not 

coincide with increases in LH or FSH levels, indicating that these changes are due to 

increased synthesis of estrogens in the periphery (Fourrier et al. 1994).  Interestingly, it 

has been found that the presence of LPS and/or inflammatory cytokines can increase 

activity of aromatase, the enzyme responsible for converting androgens into estrogens 

(Schmidt et al. 2000, Singh et al. 1997).  Furthermore, it has been found that 

macrophages can actively convert androgens into the estrogen estriol (Schmidt et al. 

2000).  As such, high levels of circulating LPS and inflammatory cytokines in patients 
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with sepsis may have the ability to exacerbate symptoms by increasing production of 

estrogens. 

Taken together, these findings indicate that while testosterone tends to increase 

susceptibility to bacterial infection and estrogen generally provides protection.  However, 

it is important to note that super-physiological levels of female reproductive hormones 

may exert a contrary effect and negatively influence the outcome following sepsis.   

 

1.6  Sex hormones have direct effects on immune cell function and modulate sentinel 

cell responses to bacterial motifs 

Sexual dimorphism in acute immune responses to bacterial infections and the 

effects of reproductive hormones on susceptibility to such challenges indicate direct 

endocrine effects on the function of sentinel cells.  Such a hypothesis has been supported 

by the presence of receptors for reproductive hormones in a variety of leukocyte types.  

Macrophages have been widely demonstrated to express estrogen receptors (Olsen and 

Kovacs 1996, Angele et al. 2000) and this sex hormone can modulate macrophage 

function by normal genomic or alternative non-genomic events.  In vitro treatment with 

estradiol has been found to initiate the rapid activation of lipid secondary messengers, 

including phosphatidylinositol 3-kinase, in this cell type (Ghisletti et al. 2005).  While 

classical androgen receptors do not appear to be expressed by macrophages, recent 

studies suggest that these sentinel cells possess non-classical cell surface receptors for 

testosterone (Benten et al. 2004).  Treatment with this male sex hormone elicits an 

increase in intracellular calcium in macrophages and a resulting down-regulation of LPS-
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induced c-fos promoter activity, while estrogen has the opposite effect (Benten et al. 

2004). 

Since testosterone appears to suppress immune responses to bacterial challenge 

and the overproduction of cytokines underlies the lethal nature of sepsis, one might 

anticipate that androgens directly alter the secretion and production of these 

inflammatory mediators.  A considerable body of evidence has shown that male sex 

hormones suppress the responses of immune cells to endotoxin challenge.  Removal of 

endogenous testosterone following castration results in an increase in LPS-induced IL-1 

and IL-6 production by mouse peritoneal and splenic macrophages (Wichmann et al. 

1997).  In vitro treatment of murine peritoneal macrophages with testosterone decreases 

secretion of IL-1β following LPS challenge (Savita and Rai 1998), and causes a modest 

reduction in TNF-α secretion by such cells isolated from male but not female animals 

(Chao et al. 1995).  Furthermore, it has been found that in vitro DHT treatment reduces 

IL-6 expression in LPS-stimulated umbilical chord endothelial cells via androgen 

receptors (Norata et al. 2006). 

In addition to inflammatory cytokines, testosterone has been shown to attenuate 

the production of other immune molecules used to combat bacterial infections.  Notably, 

macrophages isolated from castrated male mice produce more nitric oxide (NO) upon 

LPS stimulation indicating that endogenous testosterone suppresses NO release by these 

cells.  Consistent with this conclusion, in vitro testosterone treatment results in decreased 

NO release by stimulated primary macrophages (Savita and Rai 1998) and RAW 264.7 

macrophage-like cells with both pre- and post-transcriptional effects on the expression of 

inducible nitric oxide synthase (Friedl et al. 2000).  It is clear that the immunosuppressive 
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effects of testosterone are not due to the peripheral aromatization and conversion of 

testosterone to estradiol because DHT, which is not converted to estrogen, also has 

suppressive effects and these actions are not affected by estrogen receptor inhibitors 

(Norata et al. 2006). 

Finally, there is some evidence that the immunosuppressive actions of 

testosterone are specific to certain challenges and may be restricted based on sex.  For 

example, it has been suggested that testosterone does not depress immune function in 

healthy animals but can suppress immune responses following insults such as trauma-

hemorrhage (Angele et al. 1999), and female mice treated with DHT have been 

demonstrated to have higher in vivo TNF-α responses to LPS than untreated females and 

beyond that seen in male mice (Card et al. 2006).  While the reasons for these 

discrepancies are presently unclear, it is possible that they stem from the fact that the 

suppressive effects of testosterone may be somewhat non-selective as androgens have 

also been implicated in the suppression of anti-inflammatory mediators.  Orchidectomy 

has been shown to result in increased sera IL-10 levels after LPS challenge compared to 

intact males (Torres et al. 2005) and DHT can attenuate IL-10 production by LPS 

stimulated macrophages (Angele et al. 1999).  Futhermore, orchidectomy has been shown 

to decrease inflammation due to infectious myocarditis.  This effect is mediated by an 

increased proportion of anti-inflammatory regulatory M2 macrophages in the heart, 

indicating that testosterone inhibits anti-inflammatory populations of macrophages 

(Frisancho-Kiss et al. 2009).  

Since the consensus is that testosterone is immunosuppressive and generally 

decreases inflammatory cytokine production by immune sentinel cells, one might 
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anticipate that estrogen would conversely increase the production of these mediators by 

cells such as macrophages.  Indeed, several studies would seem to support this 

hypothesis.  The production of inflammatory cytokines within the brain following 

intracerebral injection of LPS has been found to be attenuated in ovariectomized animals, 

an effect that is reversed following exogenous estrogen administration (Soucy et al. 

2005).  In addition, an intermediate dose of estradiol (0.1 ng/mL) results in a significant 

increase in TNF-α secretion by rat peritoneal macrophages stimulated with LPS (Chao et 

al. 1995), and acute in vivo estriol treatment has been shown to increase sera TNF-α 

levels and Kupffer cell TNF-α mRNA expression in rats challenged with LPS (Ikejima et 

al. 1998).  Exposure to estradiol or estriol has been shown to increase sera TNF-α levels 

in female mice following in vivo LPS challenge, an effect that was antagonized by an 

agent that can serve as an estrogen receptor antagonist (Zuckerman et al. 1995, 

Zuckerman et al. 1996).  Furthermore, treatment of isolated human peripheral monocytes 

with estradiol was found to increase TNF-α production from male derived cells (Asai et 

al. 2001), and peritoneal macrophages isolated after acute in vivo LPS treatment 

demonstrated a modest increase in the expression of mRNA encoding TNF-α after in 

vivo estriol exposure (Zuckerman et al. 1996).  Removal of endogenous estrogens 

following ovariectomy has been shown to result in dramatic reductions in LPS-induced 

elevations of TNF-α mRNA expression in the brain, an effect that is reversed following 

estradiol replacement (Soucy et al. 2005).  Finally, peripheral monocytes isolated from 

post-menopausal women with low levels of estradiol secrete significantly lower amounts 

of TNF-α following stimulation than cells isolated from pre-menopausal women 

(Verthelyi and Klinman 2000). 
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 In addition to TNF-α, there is also evidence that estrogen can augment the 

production of other inflammatory cytokines.  For example treatment of human peripheral 

monocytes with estradiol has been found to increase IL-6 production from male derived 

cells both before and after LPS stimulation (Asai et al. 2001).  Interestingly, one study 

has found that while there is no difference in maximal IL-6 production in female mice 

following estrogen treatment, females treated with estriol produced IL-6 with faster 

kinetics following LPS challenge than that seen in untreated females, and this effect was 

inhibited by an agent that can antagonize estrogen receptors (Zuckerman et al. 1996).  

Peritoneal macrophages isolated from mice exposed in vivo to estradiol have been shown 

to exhibit increased expression of mRNA encoding for IL-6, IL-1β, IL-12, and iNOS 

following LPS challenge (Calippe et al. 2008).  Furthermore, in vitro treatment of mouse 

peritoneal macrophages with estradiol has been found to increase LPS-stimulated IL-1β 

production (Savita and Rai 1998), while in vivo treatment of rodents with estradiol has 

been found to increase sera NO levels (Ikejima et al. 1998) and splenocyte production of 

IL-1α and IL-1β following in vitro restimulation (Dai et al. 2007).  Lastly, estrogen may 

promote immune responses by limiting the production of the immunosuppressive 

cytokine IL-10, as one study has shown that in vitro estrogen treated male human 

peripheral monocytes produce lower amounts of this cytokine following in vitro 

stimulation (Asai et al. 2001). 

 Having made the case for estrogens enhancing the production of inflammatory 

mediators it might be surprising to learn that the preponderance of evidence appears to 

contradict this idea.  For example, lower levels of IL-6 and TNF-α have been observed in 

the peritoneal fluid following cecal ligation and puncture in mice that were treated with 
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an estrogen receptor agonist (Cristofaro et al. 2006), and acute intraperitoneal treatment 

with estradiol attenuates LPS induced elevations in sera TNF-α levels in rats (Sener et al. 

2005).   Both low (less than 10-5 ng/mL) and high (greater than 1ng/mL) doses of 

estradiol have been shown to decrease secretion of TNF-α by LPS treated rat peritoneal 

macrophages (Chao et al. 1995).  Estradiol can decrease LPS induced TNF-α expression 

by murine macrophages (Salem et al. 2000) and human peripheral monocytes (Vlotides et 

al. 2007, Asai et al. 2001).  This effect does not appear to be limited to 

monocytes/macrophages, as gastric tissue infected by H. pylori produced more TNF-α 

following ovariectomy, an effect that was reversed by estradiol replacement (Ohtani et al. 

2007).  Furthermore, in vitro estradiol treatment of astrocytes decreased LPS induced 

TNF-α expression (Kipp et al. 2007, Lewis et al. 2008), and this decrease was inhibited 

by an estrogen receptor antagonist (Kipp et al. 2007).  Finally, a study of trauma patients 

found that sera estradiol levels were negatively correlated with levels of TNF-α, though 

not sera levels of IL-6 or IL-8 (Gee et al. 2007). 

The effects of estrogens on IL-6 levels appear to be in agreement with the 

findings for TNF-α production in that estrogen decreases the production of this cytokine 

following bacterial challenge and/or exposure to endotoxin.  Acute in vivo exposure to 

estradiol has been found to decrease IL-6 levels following endotoxin challenge 

(Zuckerman et al. 1995) and macrophages elicited from estradiol treated mice expressed 

lower levels of mRNA encoding IL-6 than untreated mice following in vitro restimulation 

(Zuckerman et al. 1995).  In addition to immune sentinel cells, other cell types capable of 

responding to LPS have been shown to produce lower levels of IL-6 following estrogen 

treatment.  Human retinal pigment epithelial cells have been shown to have lower LPS 



28 

 

induced IL-6 responses following exposure to estradiol, and this effects has been 

demonstrated to be reversed following treatment with an estrogen receptor antagonist 

(Paimela et al. 2007).  Acute estradiol treatment has also been found to attenuate LPS 

induced IL-6 production from human uterine and endometrial epithelial cells (Lesmeister 

et al. 2005, Fahey et al. 2008) and murine astrocytes (Cerciat et al. 2009).  

In addition to TNF-α and IL-6, estrogens have been shown to decrease production 

of bacterial/endotoxin induced production of other inflammatory mediators, including IL-

1β, inflammatory chemokines, and NO.  Resident CNS cells that exert sentinel immune 

functions, including microglia and astrocytes, exhibit diminished LPS induced IL-1β 

production following exposure to estradiol or estrogen receptor agonists (Lewis et al. 

2008).  Similarly, gastric tissue from ovariectomized females infected by H. pylori has 

been found to contain higher levels of IL-1β than that seen in infected intact females, an 

effect that was reversed following estradiol replacement (Ohtani et al. 2007).  Short-term 

in vitro exposure to estradiol has also been found to decrease murine peritoneal 

macrophage expression of mRNA encoding for IL-1β, IL-12, and iNOS following LPS 

challenge, an effect contrary to what was seen due to the presence of in vivo estradiol 

(Calippe et al. 2008).  CXCL8 (IL-8) secretion attracts immune cells to the site of 

bacterial infection, and excess infiltration of leukocytes, including neutrophils, can 

contribute to the pathogenesis of sepsis.  Treatment of female human peripheral 

monocytes with estradiol results in a dose dependent decrease in LPS induced mRNA 

expression and secretion of IL-8 (Pioli et al. 2007).  Similarly, estradiol decreases 

expression of mRNA encoding another inflammatory chemokine, CXCL2 (MIP-2), in 

LPS treated macrophages (Ghisletti et al. 2005).  This effect was driven by effects on NF-
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κB function, as estradiol decreases p65 binding to the MIP-2 promoter (Ghisletti et al. 

2005).  Acute estradiol treatment has also been found to attenuate LPS induced MIP-3α 

production from uterine epithelial cells (Soboll et al. 2006).  Murine astrocytes have been 

shown to have decreased levels of the inflammatory chemokine IP-10 following LPS 

challenge in vitro (Cerciat et al. 2009).  The presence of in vivo estradiol has been 

reported to decrease inflammation in the brain of rats by decreasing the proportion of 

MHC class II immunoreactive microglia following LPS treatment.  However, the dose of 

estradiol associated with this effect is dependant on sex, with only low doses decreasing 

immunoreactive microglia in male brains and only high doses of estradiol suppressing 

inflammation in female brains (Tapia-Gonzales et al. 2008).  Finally, ovariectomy results 

in the elevated production of NO by macrophages upon stimulation with LPS indicating 

that endogenous estrogen decreases NO secretion.  Consistent with this notion, in vitro 

treatment of macrophages (Savita and Rai 1998) and microglia (Vegato et al. 2000) with 

estradiol leads to diminished LPS-induced NO release, an effect reversed following 

exposure to an agent that can inhibit estrogen receptors (Savita and Rai 1998).  Also, 

treatment of macrophages with endocrine disruptors results in decreased LPS-induced 

NO production and NF-κB activation, an effect that was found to be at least in part 

mediated by the classical estrogen receptors (Yoshitake et al. 2008). 

The idea that estrogen limits inflammatory responses is further supported by its 

documented effects on the production of the immunosuppressive/anti-inflammatory 

cytokine IL-10.  For example, estradiol treatment of orchidectomized male mice 

increases IL-10 secretion from LPS stimulated Kupffer cells (Angele et al. 1999).  

Furthermore, exogenous estradiol treatment causes a significant increase in IL-10 
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production in ovariectomized mice infected with H. pylori (Ohtani et al. 2007), and long 

term in vivo treatment of male mice with estradiol was found to increase splenocyte IL-

10 production following in vitro concanavalin A challenge (Dai et al. 2007).   

 Taken together, there appears to be a consensus that testosterone limits the 

production of key inflammatory mediators consistent with an immunosuppressive role for 

this hormone.  In contrast, the effects of estrogen appear to be far more controversial.  

While data is available to support the enhancement of immune sentinel cells responses by 

this hormone, a large body of work contradicts these findings and points to a suppressive 

action of estrogens on inflammatory cytokine and chemokine release by a number of host 

immune cell types.  While the reasons for these disparate results are unclear, it is possible 

that the effects of estrogen are dependent on the particular challenges faced by the host, 

the kinetics of the immune response, and the effective dose of estrogen.  For example, it 

is possible that while intermediate doses of estrogen enhance cytokine release, very low 

or very high doses can have the opposite effect.  Alternatively, these often confusing 

results may again stem from the differences between immunosuppressive versus 

immunoprotective actions.  It is important to note that in order to protect an individual 

during sepsis, a decreased production of potent inflammatory cytokines such as TNF-α, 

IL-6, and IL-1 would be desirable.  Obviously, further study is necessary to clarify this 

issue. 

 

1.7  Sex hormones have direct effects on the expression of pattern recognition 

receptors and their signal transduction pathways in immune sentinel cells 
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As discussed previously, it has now become apparent that acute immune 

responses of key sentinel cells to bacterial pathogens are initiated via the recognition of 

conserved microbial motifs including LPS and bacterial lipoproteins by receptors, TLR4 

and TLR2, respectively.  In addition, the recognition of LPS is facilitated by co-receptors 

such as CD14 and molecules including LBP.  Recognition of bacterial components by 

these receptors initiate MAP kinase cascades and NF-κB activation via adaptor molecules 

including MyD88.  The activation of NF-κB will then alter gene transcription of pro- and 

anti-inflammatory cytokines precipitating the "cytokine storm" that underlies bacterial 

septic shock. 

In accordance with the inhibitory effects of androgens on cytokine production, 

testosterone has been shown to attenuate LPS-induced activation of p38 MAP kinase but 

not ERK1/2 or JNK/SAPK activation in macrophages (Benten et al. 2004), while DHT 

appears to interfere with the ability of NF-κB to bind to DNA promoters in umbilical 

cord endothelial cells (Norata et al. 2006).  Similarly, and in agreement with the 

documented ability of estrogen to limit inflammatory cytokine production, female sex 

hormones have been shown to inhibit NF-κB activity.  For example, treatment with an 

estrogen receptor agonist can cause a decrease in cellular NF-κB reporter activity (Opal 

et al. 2005) and acute estradiol treatment has been found to decrease DNA binding of NF-

κB (Paimela et al. 2007, Ghisletti et al. 2005).  It appears that estradiol can regulate NF-

κB activity at the level of nuclear translocation.  Estradiol retains p65/Rel-A and c-Rel in 

the cytoplasm of immune cells following stimulation (Ghisletti et al. 2005, Dai et al. 

2007), regardless of IκBα synthesis, phosphorylation, or degradation (Ghisletti et al. 

2005), and appears to target the microtubule-associated transport system used by NF-κB 
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subunits (Ghisletti et al. 2005).  Interestingly, estradiol was not found to inhibit the 

nuclear translocation of the p50 subunit and increases the expression of Bcl-3, a protein 

that binds to p50 homodimers to permit transcription of NF-κB responsive genes (Dai et 

al. 2007).  Furthermore, estradiol has been found to affect the activation of the PI3K/Akt 

pathway, which in turn inhibits NF-κB activity and resulting inflammatory cytokine 

secretion.  While short-term in vitro treatment with estradiol enhances murine 

macrophage phosphorylation of Akt, chronic in vivo estradiol exposure results in the 

opposite phenomenon, as well as inhibition of PI3K activity, following LPS challenge of 

these cells (Calippe et al. 2008).  As such, these effects might provide several 

mechanisms underlying the seemingly paradoxical ability of estrogen to both inhibit and 

promote inflammatory gene expression. 

While reproductive hormones may have specific effects on the amount or function 

of signal transduction components, it is clear that endocrine-induced changes in the level 

of expression of pattern recognition receptors, their co-receptors, or adaptor molecules 

would have a profound influence on downstream cellular events including NF-κB 

activation and cytokine production.  Importantly, one recent study indicated that sex 

hormones can directly alter the expression of innate receptors for bacterial components as 

summarized in Figure 2.  It has been shown that rat prostate cells from orchidectomized 

animals express higher levels of TLR4 following E. coli infection compared to intact 

males but were restored to normal levels following testosterone replacement (Quintar et 

al. 2006). 

Once again, while the effects of testosterone appear to be consistent, the effects of 

estrogens on pattern recognition receptor expression are more complicated as acute 
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administration of estrogen fails to alter such expression in vitro.  For example, acute 

estrogen treatment of macrophage-like cell lines (Vegato et al. 2004, Vlotides et al. 

2007), and Kupffer cells (Ikejima et al. 1998), or LPS challenged human monocytes 

(Pioli et al. 2007), fails to significantly alter TLR4 or CD14 expression.  In contrast, a 

number of studies show that estrogen can have significant effects on pattern recognition 

receptor expression in vivo.  For example, in vivo administration of estriol can elevate 

expression of mRNA encoding CD14 and LBP in Kupffer cells (Ikejima et al. 1998), and 

ovariectomy results in markedly lower TLR2 transcription in the brain in response to LPS 

compared to that seen in intact females, an effect that can be reversed following 

exogenous estrogen replacement (Soucy et al. 2005).  One study with low sample size 

found that macrophages from estradiol treated ovariectomized mice expressed slightly, 

but not significantly, higher levels of cell surface CD14 (Calippe et al. 2008).  Finally, 

expression of MyD88, an important adaptor protein in TLR signaling, was found to be 

increased following in vivo treatment of male mice with estradiol (Zheng et al. 2006).  

However, it has been found that chronic in vivo treatment of ovariectomized mice with 

estradiol fails to alter total cellular TLR4 protein content in peritoneal macrophages 

(Calippe et al. 2008).  While hormone replacement therapy has not been reported to alter 

the levels of TLR4 expression in circulating monocytes isolated from elderly post-

menopausal women undergoing exercise training (Flynn et al. 2003), it must be noted 

that the results of this study are difficult to interpret due to the physiological effects of 

aging and exercise. 

 That being said, at least one study has shown contrary effects of estradiol on TLR 

expression.  Levels of mRNA encoding for several TLRs have been found to vary with 
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the estrous cycle in the human uterine endometrium.  Higher levels of mRNA encoding 

for TLR2, TLR3, TLR4, and TLR9 correlate with low levels of estradiol.  Furthermore, 

endometrial cells treated in vitro with estradiol for 72 hours, but not 24 or 48 hours, 

exhibited reduced expression of mRNA encoding for TLR4, but not TLR2, TLR3, or 

TLR9 (Hirata et al. 2007).  Interestingly, progesterone treatment of endometrial cells for 

72 hours yield higher levels of mRNA encoding for TLR4, and normalized levels when 

co-treated with estradiol (Hirata et al. 2007). 

 

1.8  The novel G protein coupled receptor GPR30 binds to estradiol and elicits rapid 

cellular responses 

One explanation for the apparently contradictory actions of estrogens could be 

due to the existence of multiple types of receptors for this hormone.   Rapid signaling 

events and genomic actions of estrogen have previously been exclusively attributed to the 

actions of the classical nuclear hormone estrogen receptors, ERα and ERβ.  These 

receptors bind to estrogen intracellularly and typically translocate to the nucleus where 

they bind to estrogen response elements on DNA to activate or repress transcription 

(reviewed in Beato 1989).  However, the recent discovery of a non-classical membrane 

estrogen receptor that also mediates rapid non-genomic events has shed light on different 

actions of estrogen.  The G protein coupled receptor GPR30 is a seven transmembrane 

receptor that has very high affinity for 17β-estradiol and not other estrogens, 

progesterone, or testosterone (Thomas et al. 2008, Revankar et al. 2005).  While 

structurally unrelated to the classical estrogen receptors, overwhelming evidence has 

shown that GPR30 binds to estradiol and mediates rapid actions of this hormone.   
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Estrogen bound GPR30 has been found to initiate several rapid cellular effects 

that are not mediated by the traditional estrogen receptors.  GPR30 promotes estradiol 

activation of the MAP kinase signaling molecules ERK1 and ERK2 via the Gβγ protein 

subunit (Filardo et al. 2000).  The Gα subunit has been found to cause activation of 

adenylyl cyclase and an increase in cAMP after GPR30 binding to estradiol (Filardo et al. 

2002, Hsieh et al. 2007a).  Importantly, both of these effects were found to be estrogen 

receptor independent.  The actions of estradiol binding to GPR30 are very rapid, with an 

increase in activation of adenylyl cyclase and cAMP found within 10 to 15 minutes of 

binding (Thomas et al. 2008, Filardo et al. 2002, Filardo et al. 2007).  GPR30 has also 

been found to initiate an intracellular calcium influx (Revankar et al. 2005, Filardo et al. 

2002, Funakoshi et al. 2006, Wang et al. 2008).  Intracellular calcium is elevated by 10 

seconds after estrogen treatment, and calcium stays elevated for over 5 minutes 

(Funakoshi et al. 2008). 

Importantly, the selective estrogen receptor modulator 4-hydroxytamoxifen and 

the classical estrogen receptors ERα and ERβ antagonist ICI 182780, are both agonists 

for GPR30 (Thomas et al. 2008, Pang et al. 2008).  ICI 182780 has previously been 

considered a pure anti-estrogen because of its inhibitory effects on the nuclear hormone 

estrogen receptors.  However, recent evidence has shown that this compound is in fact an 

agonist for GPR30, mimicking the effects of estradiol (Filardo et al. 2000, Pang et al. 

2008, Teng et al. 2008, Kamanga-Sollo et al. 2008).  ICI 182780 and tamoxifen have 

competitive affinity for GPR30, at about 10% of the affinity of estradiol (Thomas et al. 

2008).  It has been found that the molecule G1 is a specific agonist for GPR30, and 

initiates activity in this receptor similar to estradiol (Pang et al. 2008, Teng et al. 2008, 
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Kamanga-Sollo et al. 2008, Kuhn et al. 2008).  G1 has no activity for the classical 

estrogen receptors, nor does it cause effects in cells lacking GPR30 (Bologa et al. 2006).  

GPR30 alone, and not the classical estrogen receptors, has been found to mediate 

important effects of estradiol in several cell types (Wang et al. 2008, Kuhn et al. 2008).  

In some cases, GPR30 has been found to work in conjunction with ERα to induce 

proliferation (Kamanga-Sollo et al. 2008, Sirianni et al. 2008).  Crosstalk between these 

two receptors can be important for cellular function.  Whereas G1 and PPT (GPR30 and 

ERα agonists, respectively) initiate estrogenic effects, ICI 182780 blocks the effects of 

estrogen because of inhibition of the ERα component of signaling (Sirianni et al. 2008).  

As such, estradiol has the potential to initiate several different cellular responses, some of 

which could be contradictory, depending on the type of receptor to which it binds. 

 

1.9  Summary 

Male/female differences in innate immune responses to bacterial infection are 

evident in human patients and rodent models of disease.  Females are less susceptible to 

the development of bacterial infections and subsequent bacteremia and sepsis, whereas 

males exhibit a greater incidence of such infections and are more likely to develop fatal 

sequelae.  Females are protected from septic shock in two ways: 1) by producing lower 

levels of the proinflammatory cytokines responsible for the lethal nature of septic shock; 

2) by elevating the production of anti-inflammatory molecules.  Although evidence is 

accumulating that sex differences exist at the level of expression of PRRs for bacterial 

motifs and downstream signaling pathways, the mechanism of action is controversial as 

cells from males express higher levels of TLR4 and its co-receptors, whereas LPS-
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induced signaling pathways in female cells are more efficient at recognizing bacterial 

pathogens than are male cells. 

The observed differences in susceptibility to bacteria and endotoxin between the 

sexes may be caused by the actions of sex steroids.  Both age and reproductive status 

significantly influence the severity of bacterial infections and the incidence of sepsis.  

Testosterone also increases susceptibility to infection in rodent models, whereas estrogen 

generally reduces susceptibility.  Androgens, however, limit the production of key 

inflammatory mediators by immune cells following bacterial endotoxin exposure.  

Conversely, the role played by estrogens is debated, with evidence for both enhancement 

and suppression of immune responses.  A possible mechanism for the effects of sex 

hormones on immune responses to bacterial pathogens may be that testosterone and 

estrogen exert direct effects on the expression of PRRs, including TLR4 and its co-

receptors, and can modulate the signal transduction pathways employed by these 

receptors to initiate cytokine expression.  Consequently, sex hormones affect 

proinflammatory cytokine expression.  As such, it is the goal of this dissertation to 

elucidate some of the controversy surrounding the roles of reproductive hormones in 

susceptibility to sepsis. 
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1.10 Figures 
 

 
 
 

FIGURE 1:  Physiological changes associated with sepsis.  Immune sentinel cells 
responding to LPS release inflammatory mediators (panel A) that in turn act on target 
tissues to cause vasodilation, decreased perfusion, inflammation, and tissue damage 
(panels B and C).
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FIGURE 2:  Mechanisms underlying LPS-induced inflammatory cytokine production by 
host sentinel cells and possible points of regulation by reproductive hormones.  LBP: 
lipopolysaccharide binding protein, LPS: lipopolysaccharide, TLR4: Toll-like receptor 4,  
p38 MAPK: mitogen-activated protein kinase p38, NF-κB: nuclear factor kappa B, E2: 
estrogens (and pink arrow), T: testosterone (and blue arrow).  Plus sign indicates a 
stimulatory effect while negative sign indicates an inhibitory effect, and question mark 
indicates unknown or unclear. 
 



 

 

 
 
 
 
 

CHAPTER TWO: MATERIALS AND METHODS 
 
 
2.1  Macrophage-like cell line culture 

RAW 264.7 macrophage-like cells originally derived from male cells (CRL-2278; 

ATCC, Manassas, VA, USA) were grown on Cellstar culture plates (Greiner Bio-one, 

Monroe, NC) in RPMI 1640 (Cellgro, Washington, DC) containing 2% NuSerum (BD, 

Franklin Lakes, NJ) to minimize exposure to reproductive hormones.  According to the 

determinations of NuSerum reproductive hormone content provided by the manufacturer, 

cells cultured under these conditions are exposed to less than 2.6 X 10-10M testosterone, 

less than 2.5 X 10-10M 17β-estradiol, and less than 3.1 x 10-10M progesterone.  Some 

cells were co-cultured with varying doses of estradiol (Sigma Aldrich Co., St. Louis, 

MO), testosterone (Sigma Aldrich Co., St. Louis, MO), ICI 182780 (Tocris Bioscience, 

Ellisville, MO), or G1 (Cayman Chemical, Ann Arbor, MI). 

 

2.2  Surgical orchidectomy and ovariectomy, and hormone replacement 

Male and female C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME, USA), 8 

weeks of age, underwent bilateral gonadectomy under inhalant isoflurane anesthesia.  

Male mice underwent orchidectomy via scrotal incision to remove the main endogenous 

source of testosterone.  Female mice underwent bilateral ovariectomy under inhalant 

isoflurane anesthesia to remove the main endogenous source of estrogens.  Groups of 

adult mice were bilaterally gonadectomized or sham gonadectomized and allowed to 
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recover for five weeks.  This time period not only ensures that androgens produced by the 

testis and estrogens produced by the ovary have been metabolized and are no longer 

present in the blood (Merkel et al. 2001), it is also sufficient to allow the turnover of 

immune cells generated under the influence of these reproductive hormones.  Mice in the 

sham-operated group underwent the same anesthesia and incision procedure but the 

gonads were not excised.   

Hormone replacement was achieved as follows.  Male orchidectomized mice 

received subcutaneous injections of testosterone proprionate in corn oil (5 mg/kg) every 

three days for five weeks.  Female hormone replacement was achieved essentially as 

described previously by Cohen and collegues (1993).  Immediately following 

ovariectomy, silastic tubing (Dow Corning; Midland MI) containing 17β-estradiol (3.97 

+/- 0.18 mg/implant) and/or progesterone (4.74 +/- 0.18 mg/implant) (Sigma Aldrich Co., 

St. Louis, MO) was implanted subcutaneously to deliver exogenous hormone throughout 

the five week experimental period.  Hormone packed in silastic tubing implants have 

previously been shown to provide elevated levels of hormone for this time period (Cohen 

et al. 1993).  This resulted in five in vivo groups: intact sham operated animals (SHAM), 

ovariectomized animals (OVX), ovariectomized animals receiving progesterone implants 

(OVX+P4), ovariectomized animals receiving estradiol implants (OVX+E2), and 

ovariectomized animals receiving both progesterone and estradiol implants 

(OVX+E2+P4).  All procedures were approved by the Institutional Animal Care and Use 

Committee of The University of North Carolina at Charlotte. 

 

2.3  In vivo endotoxin treatment 
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 Gonadectomized, sham operated, and gonadectomized animals receiving hormone 

replacement were given intraperitoneal (i.p.) injections of lipopolysaccharide (LPS) (5 

mg/kg) isolated from E. coli (> 500,000 EU/mg; Sigma Chemical Co., St. Louis, MO).  

At varying time points post-treatment, animals were studied for behavior and appearance 

prior to euthanasia and analysis of sera content.  The severity of endotoxic shock was 

scored according to a system modified from that previously employed by Liu et al. 

(2005), in which a score of 1 was given to mice with ruffled fur but no detectable 

behavioral differences compared to untreated mice, a score of 2 was given to mice with 

percolated fur and a huddle reflex but that were still active, a score of 3 was given to 

mice that were less active and were relatively passive when handled, a score of 4 was 

assigned to inactive mice that exhibited only limited response when handled, and a score 

of 5 was given to moribund mice. 

 

2.4  Isolation of murine peritoneal macrophages 

Elicited peritoneal macrophages were isolated as previously described by our 

laboratory (Marriott et al. 1998, Marriott et al. 2000, Marriott et al. 2006).  Briefly, mice 

from each treatment group received intraperitoneal injections of 200 µl incomplete 

Freunds adjuvant (Sigma-Aldrich, St. Louis, MO).  Three days later, the peritoneal 

cavities were lavaged with RPMI 1640 (7 x 1.5 ml per animal) containing 10% FBS 

(Atlanta Biologics, Norcross, GA) to remove the peritoneal macrophages.  After washing 

twice in RPMI 1640, adherent macrophages were cultured in RPMI 1640 containing 2% 

FBS and gentamycin.  Some cells were co-cultured with varying doses of testosterone 

and estradiol. 
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2.5  Isolation and cell culture of bone marrow-derived macrophages 

Mice were euthanized and marrow was flushed from isolated femurs with RPMI 

1640 (Cellgro, Washington, DC) containing 10% FBS (Atlanta Biologics, Norcross, GA) 

to isolate bone marrow cells.  After washing twice in RPMI 1640, adherent cells were 

cultured in RPMI 1640 containing gentomycin, 2% NuSerum (BD, Franklin Lakes, NJ, 

USA) to minimize exposure to reproductive hormones, and 25% LADMAC media as a 

source of macrophage colony stimulating factor (M-CSF) to elicit macrophage 

development.  Cells were cultured for up to two weeks, and some groups were co-

cultured with varying doses of estradiol (Sigma Aldrich Co., St. Louis, MO). 

 

2.6  Assessment of TLR4/MD-2, CD14, and LPS binding by flow cytometry 

Immunofluorescence analysis (FACSCalibur, Becton Dickinson, San Jose, CA) 

was performed to determine the presence of CD14 or TLR4 associated with the 

permissive molecule MD-2 on the surface of macrophages as previously described by our 

laboratory (Marriott et al. 2006).  Cells were isolated and a phycoerythrin-conjugated 

antibody directed against TLR4/MD-2 (Clone MTS510, eBioscience) or a FITC-

conjugated antibody directed against CD14 (Clone rmC5-3) was added for 45 min at 4ºC.  

Cells were then washed and assayed by FACS analysis for the proportion of CD14 or 

TLR4/MD-2 positive cells relative to fluorescence obtained in cells stained with an 

FITC- or PE-conjugated antibody directed against an irrelevant peptide as appropriate.  In 

some experiments, cells were permeabilized during immunofluorescent staining to assess 

total cellular TLR4 content using a CytoFix/CytoPerm kit according to directions 
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provided by the manufacturer (BD PharMingen, San Diego, CA).  In some experiments, 

Alexa Fluor 488 labeled LPS (E. coli serotype 055:B5; Invitrogen, Eugene, OR) was used 

to measure binding of endotoxin to isolated macrophages.  Macrophages were co-

cultured with 400 ng/ml labeled LPS for 45 minutes prior to washing and assessment of 

the proportion of positive cells.  In all cytometric analyses, a minimum of 50,000 cells 

were analyzed from at least three separate cell isolation procedures and results are 

presented as the geometric means of the fluorescence intensity. 

 

2.7  Quantification of TNF-αααα, IL-6, IL-10, LBP, and PGE2 production 

Capture ELISAs were performed to quantify interleukin 6 (IL-6) levels using a 

commercially available capture antibody against IL-6 (clones MP5-20F3; BD 

PharMingen), a biotinylated anti-mouse IL-6 antibody (clones MP5-32C11; BD 

PharMingen), and streptavidin-horseradish peroxidase (BD Pharmingen).  A standard 

curve was constructed using varying dilutions of mouse recombinant IL-6 (BD 

PharMingen).  Tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), and LBP 

levels were quantified using commercially available ELISA kits according to the 

directions provided by the manufacturers (TNF-α and IL-10; R&D System, Minneapolis, 

MN. LBP; HyCult Biotechnology, Canton, MA).  The minimum detectable levels in 

these assays were 4 pg/ml for IL-6, 16 pg/ml for TNF-α, 8 pg/ml for IL-10, and 3 ng/ml 

for LBP.  Prostaglandin E2 (PGE2) levels were quantified using a commercially available 

EIA kit according to the directions provided by the manufacturer (Assay Designs, Ann 

Arbor, MI), and the minimum detectable level in this assay was 39.1 pg/ml for PGE2.  All 

determinations were made in duplicate from the indicted number of sera samples. 
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2.8  Quantification of sera hormone levels 

 Sera estradiol and progesterone levels were quantified at the time of sacrifice 

using commercially available EIA assays according to the directions provided by the 

manufacturer (Oxford Biomedical Research, Oxford, MI). 

 

2.9  Isolation of RNA and semi-quantitative reverse transcribed PCR 

Total RNA was isolated from macrophages using TRIzol reagent (Invitrogen, 

Carlsbad, CA) and was reverse transcribed in the presence of random hexomers using 

200 U RNase H-, Moloney leukemia virus reverse transcriptase (RT) (Promega, Madison, 

WI) in the buffer supplied by the manufacturer.  Polymerase chain reactions (PCR) were 

performed to determine the expression of mRNA encoding GPR30.  Positive and 

negative strand PCR primers used, respectively, were 5’-

AAGCCATGGATGCGACTACT-3’ and 5’-CGCCAGGTTGATGAACA-3’ to amplify 

mRNA encoding murine GPR30 (311 bp fragment).  Primers were designed by using 

Oligo 4.0 primer analysis software (National Biosciences Inc., Plymouth, MA) based on 

their location in different exons of the genomic sequences for GPR30 in addition to their 

lack of significant homology to sequences present in GenBank (MacVector Sequence 

analysis software, IBI, New Haven CT).  The identity of the PCR amplified fragments 

was verified by size comparison with DNA standards (Promega).  The input RNA was 

normalized to the expression of the housekeeping gene, glyceraldehyde 3-phosphate 

dehydrogenase (G3PDH). 
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2.10  Western blot analysis for GPR30 

 Protein samples were collected from macrophages using a SDS protein buffer 

containing 125 mm Tris Base, 20% glycerol, 2% lauryl sulfate, 0.01% BPB, and 2% 2-

mercaptoethanol.  Protein samples were electrophoresed on SDS-polyacrylamide gels and 

transferred to Immobilon-P Transfer Membranes (Milipore, Bedford, MA).  A rabbit anti-

human polyclonal primary antibody (which cross reacts with mouse) as used to detect 

GPR30 (MBL International, Woburn, MA) at a 1:500 dilution.  After reacting with the 

primary antibody, blots were washed and incubated in the presence of an anti-rabbit IgG 

antibody conjugated to horseradish peroxidase (Cell Signaling Technology, Beverly, 

MA).  Bound enzyme was detected with the enhanced chemiluminescent (ECL) system 

(Amersham Pharmacia Biotech, Arlington Heights, IL).  Blots were exposed to Pierce 

CL-X Posure Film (Pierce, Rockford, IL) for one hour and developed. 

 

2.11  Silencing RNA-mediated GPR30 knockdown 

        Three validated Stealth RNAi™ siRNA duplexes targeting murine GPR30, as well 

as universal negative control siRNA not homologous to anything in the vertebrate 

transcriptome, were purchased from Invitrogen (Carlsbad, CA).  RAW 264.7 cells were 

transfected with siRNAs using Tfx-20 transfection reagent (Promega, Madison, WI) 

according to the directions provided by the manufacturer.  GPR30 siRNA duplex Oligo 

ID: MSS233774 was chosen based on optimization experiments using RAW 264.7 cells 

and the Tfx-20 transfection reagent.  Serum-free media was replaced with complete 

media following one hour transfection.  At 48 hours after transfection, cells were assayed 
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for efficiency of knockdown, as assessed by PCR, and TLR4 levels, as assessed by flow 

cytometry. 

 

2.12  Statistical analyses 

Geometric means of immunofluorescence histogram plots were obtained using 

commercially available software (CellQuest, Becton Dickinson).  Geometric means of 

immunofluorescence histograms or mean cytokine levels were tested statistically against 

values for these parameters obtained from untreated cells or cells derived from sham 

operated animals using a Student's t test, a paired Student’s t test, or a one way ANOVA 

as appropriate using commercially available software (SAS v9.1.3, SAS Institute Inc., 

Cary, NC).  In all experiments, results were considered statistically significant when a P-

value of less than 0.05 was obtained.  Results are presented as the mean or the geometric 

mean of fluorescence intensity +/- SEM. 



 

 

 
 
 
 
 

CHAPTER THREE: TESTOSTERONE REDUCES MURINE MACROPHAGE 
EXPRESSION OF TOLL-LIKE RECEPTOR 4 

 
 
3.1 Rationale 

Sex differences have long been known to be a contributory factor in the incidence 

and progression of disorders associated with immune system dysregulation (as reviewed 

in Beery et al. 2003).  More recently, evidence has accumulated that sex may also play an 

important role in infectious disease susceptibility (as reviewed in Marriott and Huet-

Hudson 2006).  In general, females generate more robust and potentially protective 

humoral and cell-mediated immune responses following antigenic challenge than their 

male counterparts.  For example, influenza infection elicits greater severity and 

hospitalization in male patients (Quach et al. 2003), and females generate greater humoral 

and cell mediated responses to herpes simplex viruses (Knoblich et al. 1983) and 

cytomegalovirus (Villacres et al. 2004).  Women have been found to have higher 

circulating levels of IgM than men (Butterworth et al. 1967) and this difference is most 

apparent at puberty (Lichtman et al. 1967, Grundbacher 1972) suggesting a role for 

reproductive hormones in the development of this gender bias.  Furthermore, cell-

mediated host responses have also been suggested to exhibit sexual dimorphism and 

female mice have been shown to mount more vigorous T-cell responses to exogenous and 

allogeneic antigens than males (Weinstein et al. 1984).  This notion is further supported 

by the observation that early cell-mediated immune responses to thermal injury are more 

robust in females than their male counterparts (Gregory et al. 2000b).   
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Differences in immune responses between males and females have generally been 

assumed to be a consequence of the actions of reproductive hormones. Androgens have 

been shown to have suppressive effects on immune functions following trauma or 

trauma-hemorrhage and subsequent sepsis (Wichmann et al. 1996, Angele et al. 1999, 

Angele et al. 2000).  Furthermore, testosterone and other androgens such as 

dihydrotestosterone, have been shown to decrease immunoglobulin and cytokine 

production, and to limit lymphocyte proliferation (as reviewed in Angele et al. 2000 and 

Olsen and Kovacs 1996).  These observations are consistent with the demonstration that 

exogenous testosterone administration increases female susceptibility to M. marinum 

infection, and castration attenuates such infections in male mice (Yamamoto et al. 1991).  

While classical androgen receptors do not appear to be expressed by macrophages, recent 

studies suggest that these important sentinel cells possess non-classical cell surface 

receptors for male sex hormones (Liu et al. 2005).  The presence of such receptors could 

explain the documented ability of testosterone to down-regulate LPS-induced activation 

of the pro-inflammatory transcriptional regulators and immune responses in isolated 

macrophages (Benten et al 2004).  To date, it is unclear how testosterone alters the 

immune responsiveness of macrophages.   

In the present study we demonstrate that testosterone reduces expression of TLR4 

on a macrophage cell-line and cultured primary macrophages.  Furthermore, we have 

extended these in vitro findings to an in vivo analysis of TLR4 expression on 

monocytes/macrophages and report an increase in TLR4 levels on these cells in the 

absence of endogenous testosterone.  Taken together, these data are in agreement with the 

recent observation that TLR4 expression is increased in the prostate following castration 
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(Quintar et al. 2006) and provides a potential mechanism underlying the 

immunosuppressive effects of testosterone. 

 

3.2 Results 

To begin to determine the in vitro effects of testosterone on cell surface TLR4 

expression we have utilized a murine macrophage-like cell line, RAW 264.7.  This cell 

line was cultured in media containing 2% NuSerum, conditions designed to minimize 

exposure to reproductive hormones.  These cells were exposed to varying concentrations 

of testosterone propionate (1-1000 nM) for various time periods prior to analysis of cell 

surface TLR4 by flow cytometry.  As shown in Figure 3A and 3B, testosterone elicited 

an approximately 10% reduction in fluorescence attributable to cell surface TLR4 at 

doses as low as 100 nM (final ethanol concentration of 0.0002%) and this effect was 

significant (n = 16 per group, p < 0.05) at a dose of 1 µM (final ethanol concentration of 

0.002%).  This effect was most apparent at 24 hours following testosterone 

administration (Figure 3C). 

To determine whether the reduction in cell surface TLR4 expression was due to 

receptor internalization, we have assessed the effect of testosterone on relative TLR4 

protein content in permeabilized cells by flow cytometry.   In these studies, 24 hour 

treatment of RAW 264.7 cells with 1 µM testosterone elicited a statistically significant 

7.3% decrease in cellular TLR4-asssociated fluorescence (fluorescence geometric means 

of 7.37 +/- 0.14 versus 6.83 +/- 0.13 in untreated and testosterone treated cells, 

respectively; n = 12 per group, p < 0.05) indicating that receptor internalization does not 

account for the apparent decrease in cell surface TLR4 expression in this cell line. 
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To begin to assess the functional significance of testosterone-mediated decreases 

in TLR4 expression in this macrophage-like cell line, we have determined whether 

testosterone alters the sensitivity of these cells to the TLR4 ligand, LPS.  RAW 264.7 

cells were exposed to testosterone (1 µM) for 24 hours prior to challenge with LPS (250 

ng/ml) and the production of the inflammatory cytokine, TNF-α, was assessed after 12 

hours by specific capture ELISA.  We report that testosterone significantly decreased 

LPS-induced TNF-α production from 703 +/- 15 pg/ml to 620 +/- 20 pg/ml (n = 12 per 

group, p < 0.05) consistent with a decreased functional responsiveness of these cells to 

this TLR4 ligand. 

 Having determined optimal doses and kinetics using a cell line, we have 

confirmed the effect of testosterone on TLR4 expression in primary murine peritoneal 

macrophages.  Macrophages were elicited from orchidectomized animals that are largely 

devoid of endogenous androgens, sham orchidectomized mice, and orchidectomized mice 

with testosterone replacement.  Cells were cultured either in the presence or absence of 1 

µM testosterone and TLR4 cell surface expression was assessed at 24 hours post 

testosterone treatment by flow cytometry.  As shown in Figure 4, testosterone treatment 

again elicited a modest but significant decrease in cell surface expression of TLR4 on 

macrophages derived from orchidectomized mice (n = 16 per group, p < 0.05, paired 

Student's t test).  In contrast, cells derived from orchidectomized mice that received in 

vivo testosterone replacement or sham orchidectomized mice failed to show sensitivity to 

in vitro testosterone addition, suggesting that the effects of this hormone are long lasting 

and maximal at even endogenous levels. 
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To determine whether the reduction in cell surface TLR4 expression was due to 

receptor internalization or decreased TLR4 protein levels, we have assessed the effect of 

testosterone on relative TLR4 protein content in permeabilized cells by flow cytometry.   

In these studies, 24 hour treatment of primary macrophages with 1 µM testosterone 

decreased TLR4-associated fluorescence in cells from 5 of 7 orchidectomized animals 

with an average decrease of 13.8% (fluorescence geometric means of 7.60 +/- 0.62 versus 

6.55 +/- 0.58 in untreated and testosterone treated cells, respectively; n = 5, p < 0.05) 

indicating that testosterone induced decreases in cell surface TLR4 expression cannot be 

explained on the basis of receptor internalization. 

To begin to assess the functional significance of testosterone-mediated decreases 

in TLR4 expression in primary macrophages, we have determined whether testosterone 

alters the sensitivity of these cells to LPS.  Peritoneal macrophages were again isolated 

from orchidectomized and sham orchidectomized animals, and orchidectomized mice 

with testosterone replacement, and cells were cultured either in the presence or absence 

of 1 µM testosterone.  At 24 hours post testosterone treatment, cells were challenged with 

LPS (250 ng/ml) and the production of the inflammatory cytokine, TNF-α, was assessed 

by specific capture ELISA.  As shown in Figure 5, testosterone significantly decreased 

LPS-induced TNF-α production by cells derived from orchidectomized mice (n = 16 per 

group, p < 0.05, paired Student's t test) consistent with a decreased functional 

responsiveness of these cells to this TLR4 ligand.  In agreement with the inability of 

testosterone to reduce TLR4 expression on cells derived from sham orchidectomized 

mice or orchidectomized mice that received testosterone replacement (Figure 4), 
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testosterone failed to elicit significant decreases in LPS sensitivity in these cells (Figure 

5). 

 To confirm that testosterone suppresses cell surface TLR4 expression on these 

immune cells in vivo, we have examined TLR4 expression on monocytes/macrophages 

acutely isolated from orchidectomized, sham orchidectomized, and orchidectomized mice 

that received testosterone replacement.  As shown in Figure 6A, orchidectomy elicits a 

significant decrease (n = 16 animals per group, p < 0.05) in animal body weight that is 

prevented by exogenous testosterone replacement as previously reported (Hooper et al. 

1986).  Peritoneal monocytes/macrophages from sham orchidectomized animals express 

very low levels of cell surface TLR4 (Figures 6B and C).  Importantly, cells from 

orchidectomized mice express approximately 25% greater TLR4 expression (n = 16 

animals per group, p < 0.05) than sham operated animals.  This effect was largely 

abolished in cells derived from animals that received exogenous testosterone replacement 

(Figures 6B and C).  These data indicate removal of endogenous testosterone, and hence 

elimination of its suppressive effects, elevates in vivo TLR4 expression on this key 

sentinel immune cell type. 

 To begin to test the physiological relevance of these changes in TLR4 expression, 

we have investigated the susceptibility of male mice to endotoxic shock following 

removal of endogenous testosterone.   Orchidectomized, sham orchidectomized, and 

orchidectomized mice that received testosterone replacement, were challenged with a 

sub-lethal dose of LPS (5 mg/kg, i.p.).  At 24 hours post-treatment the severity of 

endotoxic shock was assessed according to appearance and behavior using a scoring 

system modified from that employed by Liu and colleagues (2006).  Animals were then 
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euthanized and sera isolated for inflammatory cytokine content.   As shown in Figure 7, 

orchidectomized  mice exhibited a markedly elevated susceptibility to endotoxin to that 

seen in sham treated animals with a close correlation between severity scores and sera 

levels of the inflammatory cytokine, IL-6 (n = 6-7 animals per group, p < 0.05).  

Importantly, this effect was abolished in animals that received exogenous testosterone 

replacement (Figures 7A and 7B).  These data indicate removal of endogenous 

testosterone elevates susceptibility to endotoxic shock and is consistent with the observed 

in vivo increase in TLR4 expression on immune cells. 

 

3.3 Conclusions 

It has recently been recognized that sex based differences may influence host 

responses to infectious organisms.  Examples include the observation that female deer 

have lower parasite loads than males and the finding that helminth infections are 

generally more severe in males than females (Zuk and McKean 1996, Poulin 1996).  

These phenomena appear to correlate with clinical and laboratory studies demonstrating 

that females generally exhibit greater adaptive immune responses following antigenic 

challenge than males (as reviewed in Marriott and Huet-Hudson 2006).  Importantly, 

many of these differences become apparent at puberty (Lichtman et al. 1967, 

Grundbacher 1972) suggesting a role for reproductive hormones in their development and 

this hypothesis has been supported by the finding that receptors for reproductive 

hormones have been found in a variety of immune cells types (as reviewed in Angele et 

al. 2000).  Androgens have been shown to have suppressive effects on immune functions 

following trauma or trauma-hemorrhage and subsequent sepsis (Wichmann et al. 1996, 
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Angele et al. 1999, Angele et al 2000).  Furthermore, male reproductive hormones have 

been shown to decrease immunoglobulin and cytokine production, and to limit 

lymphocyte proliferation (as reviewed in Angele et al. 2000 and Olsen and Kovacs 1996).  

These observations are consistent with the demonstration that exogenous testosterone 

administration increases female susceptibility to M. marinum infection, and castration 

attenuates such infections in male mice (Yamamoto et al. 1991).  Recent studies suggest 

that macrophages, a key sentinel immune cell type, possess non-classical cell surface 

receptors for androgens (Liu et al. 1005) and that testosterone can decrease LPS-induced 

activation of transcription factors that regulate inflammatory responses (Benten et al. 

2004).  However, it is currently unclear how testosterone alters the immune 

responsiveness of macrophages. 

In the present study we demonstrate that in vitro exposure to testosterone elicits 

significant decreases in the expression of cell surface TLR4 in a macrophage-like cell 

line and we have confirmed this effect in primary murine macrophages.  Interestingly, we 

show that the ability of testosterone to decrease TLR4 expression on primary 

macrophages is only apparent on cells derived in the absence of endogenous gonadal 

androgens as cells isolated from sham orchidectomized animals or orchidectomized 

animals that receive testosterone replacement fail to demonstrate such sensitivity.  This 

finding suggests that endogenous testosterone exerts sustained effects on cell surface 

TLR4 molecule expression and is characteristic of the long lasting actions of reproductive 

steroid hormones on cellular machinery.  The testosterone-mediated decrease in cell 

surface TLR4 expression does not appear to be due to receptor internalization as 

significant decreases in TLR4 expression were also observed in permeabilized cells. 
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Furthermore, we have demonstrated the ability of endogenous testosterone to 

decrease TLR4 expression on immune cells in vivo by showing that levels of this 

microbial pattern recognition receptor on acutely isolated peritoneal 

monocytes/macrophages derived from orchidectomized mice are significantly higher than 

those seen on cells obtained from sham orchidectomized animals or orchidectomized 

animals that received testosterone replacement.   Importantly, this elevation in TLR4 

expression in vivo correlates with a dramatic increase in endotoxin susceptibility in 

orchidectomized animals.  Taken together, the present findings demonstrate that the 

presence of testosterone in vitro or in vivo significantly decreases the cell surface 

expression of a critical receptor for microbial components and inflammatory signals 

liberated from injured tissues on an important sentinel immune cell type. 

In our in vitro studies, acute administration of exogenous testosterone evoked 

maximal reductions of 7-10% in TLR4 expression on macrophages and one might be 

tempted to question the functional significance of such an effect.  However, it is 

important to note that the number of these receptor molecules on the surface of immune 

cells is relatively low and so even modest changes in the level of expression may have 

marked effects on cellular responsiveness.  In this study, we have begun to assess the 

functional relevancy of testosterone-mediated reductions in TLR4 expression by 

measuring inflammatory cytokine production elicited by a TLR4-specific ligand.  We 

show that testosterone significantly decreases LPS-induced TNF-α production by 

primary macrophages generated in the absence of endogenous androgens and a 

macrophage-like cell line and, while we cannot rule out possible effects of testosterone 

on the signal transduction pathway, its effects on inflammatory cytokine production 
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correlate well with the observed changes in TLR4 expression.  If these in vitro findings 

were reproduced in vivo, then a 10% difference in inflammatory mediator production 

would be anticipated to have profound effects on disease outcome.  However, it is quite 

possible that our in vitro studies underestimate the chronic influence of testosterone on 

immune cell function.  This notion is supported by our in vivo studies showing that the 

removal of endogenous testosterone elicits a more marked effect on TLR4 expression on 

in situ monocytes/macrophages that that seen in vitro.  Importantly, this effect correlates 

with a profound increase in susceptibility to in vivo endotoxin challenge. 

Our results are in agreement with a recent study demonstrating that the androgen, 

dihydrotestosterone can inhibit the expression of mRNA encoding TLR4 in human 

endothelial cells derived from neonatal tissue and can reduce LPS-mediated 

inflammatory mediator production by this cell type (Norata et al. 2006).  In addition, the 

present in vivo studies also support the findings of Quintar and colleagues (2006) 

showing that prostate TLR4 protein expression is elevated in castrated rats.  Furthermore, 

the present study could provide a mechanism underlying the ability of testosterone to 

down-regulate LPS-induced activation of the pro-inflammatory transcriptional regulator, 

p38 MAP kinase, and reduce nitric oxide production in macrophage-like cell lines 

(Benten et al. 2004).  However, it is important to note that the cellular effects of 

reproductive hormones are complex and so ascribing specific roles to each hormone is 

fraught with peril.  For example, while a number of studies indicate that testosterone 

alters inflammatory cytokine release by macrophages following bacterial endotoxin 

exposure (Angele et al. 1998a and 1998b), others have provided contrary evidence and 

this has led to the suggestion that male reproductive hormones only exert such effects in 
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immunocompromised hosts (Angele et al. 1999).  As such, while it is apparent that the 

precise role of testosterone in the regulation of immune function remains contentious, the 

present demonstration that testosterone can modulate the expression of a key receptor for 

"danger signals" in vitro and in immune competent animals may represent an important 

mechanism underlying the immunosuppressive effects of this androgen. 
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3.4 Figures 
 

 
 
 
FIGURE 3:  Testosterone decreases cell surface TLR4 expression on a macrophage-like 
cell line in a dose and time dependant manner as determined by flow cytometry.  RAW 
264.7 cells were cultured in 2% NuSerum-containing media to minimize exposure to 
reproductive hormones and were untreated (0) or exposed to varying concentration of 
testosterone for indicated times and analyzed for cell surface TLR4 by flow cytometry.   
Panel A is a representative experiment showing changes in TLR4 immunofluorescence 
following 24 hr exposure to 1 µM testosterone.  Trace labeled Irrelevant indicates 
fluorescence obtained with a control antibody directed against an irrelevant antigen.  
Panel B shows the average immunofluorescence intensity (as geometric means) following 
exposure to increasing doses of testosterone (1-1000 nM).  N = 10 per group, asterisk 
indicates significant difference from untreated cells.  Panel C shows average 
immunofluorescence intensity (as geometric means) following exposed to testosterone (1 
µM) for 12, 24 or 48 hrs.  N = 16, asterisk indicates significant difference from untreated 
cells. 
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FIGURE 4:  Testosterone decreases cell surface TLR4 expression on cultured primary 
macrophages derived from animals largely devoid of endogenous androgens.  
Macrophages were isolated from orchidectomized (Orch) or sham orchidectomized 
(Sham Orch) mice or animals that were orchidectomized and received s.c. injections of 
testosterone (Orch + T).  Cells were untreated or exposed to testosterone (1 µM) for 24 
hrs and analyzed for cell surface TLR4 by flow cytometry.  Panel A is a representative 
experiment showing changes in TLR4 immunofluorescence on macrophages from an 
orchidectomized mouse following exposure to 1 µM testosterone.  Trace labeled 
Irrelevant indicates fluorescence obtained with a control antibody directed against an 
irrelevant antigen.  Panel B shows average TLR4 immunofluorescence intensities (as 
geometric means) following exposure to testosterone (T).  N = 16 animals per group, 
asterisk indicates significant difference from untreated cells as determined by paired 
Student's t test. 
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FIGURE 5:  Testosterone decreases TLR4-mediated inflammatory cytokine production 
by cultured primary macrophages derived from animals largely devoid of endogenous 
androgens.  Macrophages were isolated from orchidectomized (Orch) or sham 
orchidectomized (Sham Orch) mice or animals that were orchidectomized and received 
s.c. injections of testosterone (Orch + T).  Cells were untreated (0) or exposed to 
testosterone (T; 1 µM) for 24 hrs.  These cells were then challenged with LPS (250 
ng/ml) for 12 hrs and culture supernatants were assayed for the presence of TNF-α by 
specific capture ELISA.  N = 16 animals per group, asterisk indicates statistically 
significant difference from cells that were not exposed to testosterone in vitro as 
determined by paired Student's t test. 
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FIGURE 6:  Endogenous testosterone decreases cell surface TLR4 expression on 
monocytes/macrophages in vivo.  Elicited peritoneal monocytes/macrophages were 
acutely isolated from orchidectomized (Orch) or sham orchidectomized (Sham Orch) 
mice or animals that were orchidectomized and received s.c. injections of testosterone 
(Orch + Testosterone) and analyzed for cell surface TLR4 expression by flow cytometry.  
Panel A shows changes in body weight with each treatment regimen and indicates that 
testosterone replacement reverses the weight loss observed following orchidectomy.  
Panel B is a representative experiment showing changes in TLR4 immunofluorescence 
on monocytes/macrophages derived from each treatment group.  Trace labeled Irrelevant 
indicates fluorescence obtained with a control antibody directed against an irrelevant 
antigen.  Panel C shows the average immunofluorescence intensities (as geometric 
means) of TLR4 expression on cells from each treatment group.  N = 16 animals per 
group, asterisk indicates significant difference from cells derived from sham 
orchectomized animals. 
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FIGURE 7:  Removal of endogenous testosterone elevates susceptibility to endotoxic 
shock in vivo.   Orchidectomized (Orch), sham orchidectomized (Sham), and 
orchidectomized mice that received testosterone replacement (Orch+T), were challenged 
with a sub-lethal dose of LPS (5 mg/kg, i.p.) for 24 hours.  Panel A: severity of endotoxic 
shock assessed according to appearance and behavior and reported as a severity score for 
each animal in the three treatment groups.  Severity was scored from 1 (no detectable 
behavioral differences) to 5 (moribund).  Panel B: sera IL-6 content for each animal in 
the three treatment groups.  Bars indicate group averages and asterisks indicate 
significant differences from sham orchectomized animals. 



 

 

 
 
 
 
 

CHAPTER FOUR:  ESTROGEN AUGMENTS CELL SURFACE TLR4 EXPRESSION 
ON MURINE MACROPHAGES AND REGULATES SEPSIS SUSCEPTIBILITY IN 

VIVO 
 
 
4.1 Rationale 

It has become increasingly apparent that sexual dimorphism exists in infectious 

disease susceptibility (as reviewed in Marriott and Huet-Hudson 2006).  In general, 

females generate more robust and potentially protective humoral and cell-mediated 

immune responses following antigenic challenge than their male counterparts.  For 

example, it has been found that female deer have lower parasite loads than males, and 

helminth infections are generally more severe in males than females (Zuk and McKean 

1996, Poulin 1996).  In addition, influenza infection elicits greater severity and 

hospitalization in male patients (Quach et al. 2003).  Furthermore, this sexual 

dimorphism in susceptibility to infectious disease extends to cases of sepsis, where male 

patients exhibit a 70% mortality associated with sepsis, but females only show 26% 

associated mortality (Schroder et al. 1998).  Interestingly, women have been found to 

have higher circulating levels of IgM than men (Butterworth et al. 1967) and this 

difference is most apparent at puberty (Lichtman et al. 1967, Grundbacher 1972) 

suggesting a role for reproductive hormones in the development of this male/female bias.  

Estrogens have been found to promote increased resistance to streptococcal 

infections (Nicol et al. 1964) while androgens have been shown to suppress host immune 

responses (as reviewed in Angele et al. 2000 and Olsen and Kovacs 1996).  Indeed, high 
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levels of estrogens can elevate immune responses to a point at which they are detrimental 

to the host.  For example, estradiol or estriol treated rodents exhibit greater mortality 

following gonococcal infection (Kita et al. 1985) or endotoxin challenge (Ikejima et al. 

1998), respectively, than untreated animals.  Furthermore, it has been found that sera 

levels of estradiol are increased in human sepsis patients, and the highest incidence and 

severity of sepsis is associated with high circulating levels of estrogens regardless of sex 

(Schroder et al. 1998, Fourrier et al. 1994, Dossett et al. 2008, May et al. 2008). 

The mechanisms underlying innate immune responses to bacterial endotoxins are 

only now becoming apparent.  As such, it is feasible that reproductive hormone-based 

differences in the level of expression of molecules that perceive bacterial motifs could 

lead to significant differences in the magnitude of inflammatory host responses following 

endotoxin exposure.  In this study, we show that removal of endogenous estrogens 

decreases circulating levels of key inflammatory mediators following in vivo endotoxin 

challenge.  Furthermore, we demonstrate that these changes are associated with decreased 

circulating levels of LBP and diminished cell surface expression of TLR4 on 

macrophages.  In contrast to our findings with testosterone, we show that acute in vitro 

exposure to exogenous estradiol fails to elicit significant changes in pattern recognition 

receptor expression on a macrophage-like cell line or authentic primary macrophages.  

However, in vivo administration of supra-physiological levels of estradiol result in a 

marked increase in endotoxin susceptibility and this effect is associated with significant 

increases in LBP levels and cell surface TLR4 and CD14 expression on macrophages.  

Taken together, these data provide a potential mechanism underlying the immuno-

enhancing effects of estrogens. 
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4.2 Results 

To begin to determine the in vivo effects of female reproductive hormones, 

ovariectomized animals that are largely devoid of endogenous estrogens and sham 

ovariectomized animals were challenged with a sub-lethal dose of LPS (5 mg/kg, i.p.).  

Sera levels of estradiol were decreased by 61.4% in ovariectomized animals.  At 20 hrs 

after treatment the severity of endotoxic shock was assessed according to appearance and 

behavior using a scoring system modified from that employed by Liu et al. (2005).  

Animals were then euthanized and sera isolated for cytokine content by specific capture 

ELISAs.  As shown in Figure 8, ovariectomized animals exhibited markedly lower LPS-

induced sera levels of IL-6 (Figure 8A) and TNF-α (Figure 8B) than age matched intact 

females (n = 6-7 animals per group; P < 0.05).  It is important to note that we did not 

observe significant differences in endotoxic shock severity scores between these groups 

(Figure 8C).  However, this observation could be explained by our finding that sera levels 

of the anti-inflammatory cytokine, IL-10, were also significantly higher (P < 0.05) in 

sham ovariectomized animals than in gonadectomized mice (Figure 8D).  Together, these 

data show that removal of endogenous estrogens results in reduced host cytokine 

responses to endotoxin challenge.   

Having established that removal of endogenous estrogens reduced in vivo 

cytokine responses to LPS, we next investigated the influence of these reproductive 

hormones on the expression of key molecules used in the perception of this microbial 

product.  We have determined the circulating levels of LBP in sera isolated from 

ovariectomized and sham gonadectomized animals.  As shown in Figure 9A, circulating 
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levels of LBP were significantly lower in female mice following the removal of 

endogenous estrogens (n = 8-12 animals; P < 0.05).  To further determine the 

mechanisms underlying the effects of estrogens on LPS sensitivity, we have investigated 

the expression of pattern recognition receptors on acutely isolated macrophages from 

intact and gonadectomized female animals.  As shown in Figure 9B, peritoneal 

macrophages isolated from ovariectomized mice demonstrated a reduced ability to bind 

fluorescently labeled LPS than their intact animal-derived counterparts (n = 7-8 animals, 

P < 0.05).  Importantly, the diminished capacity of macrophages to bind LPS was 

mirrored by a significant reduction (n = 8-12 animals, P < 0.05) in the cell surface 

expression of TLR4 as determined by flow cytometry (Figure 9C).  Interestingly, this 

effect appears to be limited to TLR4, as the LPS co-receptor CD14 failed to demonstrate 

detectable differences in expression in the absence or presence of endogenous estrogen 

(Figure 9D).  Together, these data suggest that endogenous levels of estrogens in intact 

females may augment innate immune responses by elevating LBP production and cell 

surface TLR4 expression on a critical sentinel immune cell type. 

To determine if acute treatment of macrophages with estradiol can similarly 

elevate TLR4 expression on macrophages, we investigated the effects of exogenous 

estradiol on the macrophage-like cell line, RAW 264.7, and cultured primary 

macrophages derived from ovariectomized and sham ovariectomized animals.  As shown 

in Figure 10A, 24 hr treatment with estradiol (1 X 10-8 M and 1 X 10-10 M) failed to elicit 

significant effects on cell surface TLR4 expression on RAW 264.7 cells cultured in 

media containing 2% NuSerum to minimize exposure to reproductive hormones.  

Similarly, TLR4 expression was not altered on primary macrophages derived from either 



68 

 

ovariectomized or sham ovariectomized animals (Figure 10B).  Consistent with the data 

presented in Figure 10C, unstimulated cells from ovariectomized animals expressed 

significantly less cell surface TLR4 than cells derived from sham operated animals (7.72 

+/- 0.47 arbitrary units of fluorescence intensity versus 9.06 +/- 0.17, respectively) (P < 

0.05).  Together, these data indicate that acute in vitro exposure to physiological levels of 

estradiol is not sufficient to alter cell surface TLR4 expression on macrophages. 

To test the hypothesis that female reproductive hormones elevate the expression 

of key microbial pattern recognition receptor expression on innate immune sentinel cells 

in vivo, we tested the susceptibility of gonadectomized female mice to endotoxin 

challenge following long term high level estradiol and/or progesterone replacement.  

Mice were ovariectomized or sham ovariectomized and a group of the gonadectomized 

animals received silastic implants containing either estradiol, progesterone, or one 

implant of each estradiol and progesterone.  Such implants have been previously been 

shown to continually release hormone for at least 35 days (Cohen and Milligan 1993).  In 

the present study, the implants were not depleted at 5 weeks following ovariectomy.  

After sacrifice, implants were removed and weighed, and the presence of hormone 

contents confirmed visually.  On average, estradiol implant content weight decreased 

from 3.97 +/- 0.18 mg to 2.83 +/- 0.20 mg, and progesterone implant content weight 

decreased from 4.74 +/- 0.18 mg to 1.99 +/- 0.08 mg.  Sera levels of estradiol were 390 

+/- 42 pg/ml at the time of sacrifice in animals receiving estradiol implants, far in excess 

of the sera levels of estradiol in intact females (56 +/- 38 pg/ml).  At sacrifice, sera levels 

of progesterone were 7.31 +/- 1.32 ng/ml in animals with progesterone implants, 

significantly higher than progesterone levels in intact females (3.35 +/- 0.67 ng/ml).   
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Interestingly, mice with estradiol implants showed a significant increase in 

susceptibility to LPS challenge (5 mg/kg, i.p.) over that seen in either intact mice or 

ovariectomized animals that did not receive estradiol replacement.  As shown in Figure 

11A, ovariectomized animals receiving exogenous estradiol showed significantly higher 

inflammatory cytokine levels at 8 hrs following endotoxin challenge than untreated 

gonadectomized or intact animals (n = 15, P < 0.05), an effect that was not seen in 

ovariectomized animals receiving exogenous progesterone treatment.  Furthermore, 

ovariectomized animals receiving both estradiol and progesterone showed similar 

elevations in inflammatory cytokine levels (n = 7-15, P<0.05).  This difference in 

inflammatory cytokine expression was associated with a dramatic increase in endotoxin 

susceptibility as assessed by severity scoring with almost all animals in the estradiol 

treatment group, as well as animals receiving both estradiol and progesterone, becoming 

moribund as rapidly as 8 hrs post-challenge (Figure 11B).  While there was a trend for 

increased sera levels of the anti-inflammatory cytokine IL-10 in animals receiving 

estradiol treatment, this difference was not statistically significant. 

Importantly, these differences cannot be attributed to treatment-induced changes 

in body weight.  Prior to surgery, there was no significant difference among groups (18.0 

+/-0.3, 18.2 +/- 0.3, 18.3 +/- 0.3, 18.3 +/- 0.2, 17.9 +/- 0.4 g in SHAM, OVX, OVX+P4, 

OVX+E2, OVX+E2+P4, respectively).  While ovariectomized animals weighed 

significantly more than sham ovariectomized animals (20.6 +/- 0.2 versus 22.1 +/- 0.3 g 

in SHAM and OVX, respectively, P < 0.05), there was no difference between 

ovariectomized groups, regardless of hormone treatment (22.5 +/- 0.4, 22.0 +/- 0.3, 22.3 

+/- 0.4 g, in OVX+P4, OVX+E2, and OVX+E2+P4, respectively).  It is interesting to note 
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that neither of the groups receiving exogenous estradiol demonstrated a decrease in body 

weight following long-term ovariectomy.  While this was somewhat unexpected, it is 

possible that this result may be due to the long-term administration of high doses of this 

hormone.  Indeed, others have reported that ovariectomy and long-term exposure to 

estrogens either do not alter body weight or elicit only transient changes (Bryson and 

Bischoff 1979, Game et al. 2008). 

To investigate the mechanisms underlying the increased susceptibility of mice 

receiving high levels of exogenous estradiol to endotoxin challenge, we have assessed the 

relative expression of critical innate immune receptors for LPS in these animals.  Mice 

were ovariectomized, sham ovariectomized, or ovariectomized and given silastic 

implants containing estradiol, progesterone, or both estradiol and progesterone prior to 

isolation of sera and peritoneal macrophages.  As shown in Figure 12A, circulating levels 

of LBP were significantly higher in gonadectomized mice receiving exogenous estradiol 

than those in mice that did not receive this hormone or intact females (n = 3-8 animals; P 

< 0.05: ANOVA with Tukey’s post-hoc analysis).  Furthermore, peritoneal macrophages 

isolated from ovariectomized mice receiving estradiol replacement demonstrated a 

significantly greater ability to bind fluorescently labeled LPS (n = 4-8 animals, P < 0.05: 

ANOVA with Tukey’s post-hoc analysis) than those derived from animals that did not 

receive implants (Figure 12B).  Importantly, the increased ability of macrophages to bind 

LPS was mirrored by significant increases in the cell surface expression of CD14 (Figure 

12C) and TLR4 (Figure 12D) as determined by flow cytometry (n = 4-12; P < 0.05: 

ANOVA with Tukey’s post-hoc analysis).  Interestingly, this difference was not due 

simply to increased total cellular TLR4 expression, as evidenced by the absence of such 
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effects in permeabilized cells (Figure 12E).  Rather, these differences were due to a 

reduction in the relative proportion of these receptors on the cell surface. 

An ability of exogenous estradiol to reverse, and indeed augment, the 

susceptibility of ovariectomized female mice to endotoxin challenge suggests that this 

hormone alone mediates gonadectomy-induced effects on LPS sensitivity.  However, 

these data do not preclude the involvement of other female reproductive hormones 

including progesterone.  To investigate the role of this hormone on LPS receptor 

expression on a critical sentinel immune cell type, we also examined the effects of 

progesterone replacement on ovariectomy-induced changes in macrophage pattern 

recognition receptor expression.  As shown in Figure 12, the presence of progesterone-

containing implants failed to augment sera levels of LBP (Figure 12A), levels of LPS 

binding to macrophages (Figure 12B), cell surface levels of CD14 on these cells (Figure 

12C), or either cell surface TLR4 expression or total TLR4 content in macrophages 

(Figures 12D and 12E, respectively).  Similarly, co-administration of progesterone with 

estradiol failed to significantly effect expression of most of these parameters compared to 

estradiol treatment alone (Figure 12). While co-administration of progesterone with 

estradiol did significantly increase LPS binding to acutely isolated macrophages (Figure 

12B), it is important to note that no significant changes in cellular CD14 or TLR4 

expression were observed and so the mechanisms underlying this effect are unclear. 

 

4.3 Conclusions 

It has recently been recognized that sex based differences may influence host 

responses to infectious organisms.  In general, females generate more robust and 
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potentially protective humoral and cell-mediated immune responses following antigenic 

challenge than their male counterparts (as reviewed in Marriott and Huet-Hudson 2006).  

Studies have found that females generate greater immune responses and exhibit less 

hospitalization associated with viral infections (Quach et al. 2003, Knoblich et al. 1983, 

Villacres et al. 2004).  Furthermore, males have been found to have more severe parasitic 

infections than their female counterparts (Zuk and McKean 1996,  Poulin 1996).  

Importantly, many of these differences become apparent at puberty (Lichtman et al. 1967, 

Grundbacher 1972) suggesting a role for reproductive hormones in their development and 

this hypothesis has been supported by the finding that receptors for reproductive 

hormones have been found in a variety of immune cells types (as reviewed in Angele et 

al. 2000).  Estrogens have been demonstrated to increase resistance to streptococcal 

infections (Nicol et al. 1964) while the removal of endogenous estrogens have been 

shown to markedly increase the severity of M. avium infections, an effect that can be 

reversed following estradiol replacement (Tsuyuguchi et al. 2001).  However, the role 

played by estrogens and other female reproductive hormones in susceptibility to acute 

infection and/or sepsis has not been defined. 

In the present study we demonstrate that removal of endogenous estrogen results 

in reduced production of cytokines following endotoxin challenge.  While circulating 

levels of the inflammatory cytokines, IL-6 and TNF-α, are decreased following estrogen 

removal, levels of the anti-inflammatory cytokine, IL-10, are also reduced.  This finding 

could account for an apparent lack of significant effects of ovariectomy on endotoxin 

susceptibility as assessed by severity scoring.  Indeed, it has been suggested that the 

immunosuppressive effects of IL-10 limit the lethal sequelae associated with excessive 
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pro-inflammatory cytokine production and protect against endotoxemia (Londono et al. 

2008, Emmanuilidis et al. 2001, van der Poll et al. 1995).  IL-10 deficient mice exhibit 

increased bacteriemia, increased inflammatory TNF-α secretion, and increased mortality 

associated with bacterial infection (Londono et al. 2008). 

Importantly, this decreased cytokine response to endotoxin administration 

following removal of estrogens occurs in association with a corresponding decrease in the 

cell surface expression of a key microbial pattern recognition receptor for LPS, TLR4, 

and diminished sera levels of the permissive protein LBP.  These findings are consistent 

with the recent observation that ovariectomy results in lower expression of another TLR 

family member, TLR2, in the brain following LPS challenge as compared to intact 

females (Soucy et al. 2005).  As such, the reduced expression of critical molecules used 

in the recognition of LPS, provides a potential mechanism underlying diminished in vivo 

cytokine responses following endotoxin administration in gonadectomized females.  

Furthermore, these data suggest that physiological levels of estrogens augment innate 

immune pattern recognition receptor expression on this important sentinel immune cell 

type. 

We have previously demonstrated that acute in vitro application of exogenous 

testosterone can reduce both the cell surface and total cellular expression of TLR4 in 

RAW 264.7 macrophage-like cells and primary macrophages derived from androgen 

depleted mice.  In this study, we have assessed the acute in vitro effects of estradiol on 

pattern recognition receptor expression on innate immune sentinel cells.  We report that 

this female reproductive hormone fails to exert demonstrable effects on TLR4 levels on 

either RAW 264.7 cells or primary macrophages.  This is consistent with previous studies 
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showing that acute estriol treatment of Kupffer cells (Ikejima et al. 1998), or estradiol 

treatment of macrophage-like cell lines (Vegato et al. 2004, Vlotides et al. 2007) or LPS 

challenged human monocytes (Pioli et al. 2007), does not significantly alter TLR4 or 

CD14 expression.  The actions of endogenous in vivo estradiol on macrophage pattern 

recognition receptor expression in the absence of acute effects in vitro suggests either that 

this hormone exerts delayed and sustained changes, such as those that may be envisaged 

to occur via genomic effects, or alternatively, occur as a consequence of an as yet 

undetermined intermediary effect in vivo.  Such indirect secondary effects may include 

estrogen influences on macrophage progenitor cells during hematopoiesis, or effects on 

other cell types that could in turn alter macrophage function.   

The decreased level of pattern recognition receptors for LPS in ovariectomized 

mice implies an ability of estrogens to augment the expression of these molecules.  To 

further test this hypothesis, we have assessed the effects of exogenous estradiol 

replacement on the level of expression of innate receptors for LPS.  We demonstrated 

that supra-physiological levels of estradiol following hormone replacement resulted in 

markedly higher sera levels of LBP and cell surface TLR4 and CD14 expression on 

macrophages that were associated with greater inflammatory cytokine secretion and 

dramatically higher endotoxin susceptibility.  These findings concur with previous 

studies showing that in vivo administration of estriol elevates expression of mRNA 

encoding CD14 and LBP in Kupffer cells, and that this effect corresponds with increased 

LPS-associated mortality in rats (Ikejima et al. 1998).   

While estradiol treatment resulted in increased TNF-α secretion and greater 

susceptibility to endotoxin, it did not result in significantly higher sera levels of the anti-
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inflammatory cytokine, IL-10.  Since IL-10 provides protection against sepsis (Londono 

et al. 2008, Emmanuilidis et al. 2001, van der Poll et al. 1995), lower levels of IL-10 

secretion would be expected to correlate with increased susceptibility to endotoxin 

challenge.  Consistent with this notion, pregnant mice which have high circulating 

estrogen levels demonstrate increased TNF-α expression, suppressed IL-10 levels, and 

increased mortality following LPS challenge (Vizi et al. 2001).   

Our findings indicate that estradiol treatment alters cell-surface expression of 

TLR4 but not total protein levels of this pattern recognition receptor.  This is consistent 

with previous studies that fail to detect changes in cellular TLR4 levels in whole cell 

protein isolates from peritoneal macrophages after chronic in vivo estradiol treatment 

(Calippe et al. 2008).  As such, it appears that estradiol does not alter production of TLR4 

at the protein level, but rather, affects trafficking of this receptor to the cell surface by an 

as yet unknown mechanism.   

It is interesting to note that macrophages isolated from animals that received 

replacement of both estradiol and progesterone demonstrated higher total LPS binding 

capacity than those that received estradiol alone without significantly different levels of 

TLR4 or CD14 expression.  As such, we suggest that progesterone in concert with high 

levels of estradiol may be capable of augmenting LPS binding in an as yet undetermined 

manner. 

In general, estrogens have been considered to be “immunoprotective.”  However, 

this term fails to delineate whether estrogens act as immunoenhancers to combat bacterial 

infection, or are immunosuppressors and protect against the overactive and damaging 

immune response associated with sepsis.  The present study sheds light on this paradox 
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by showing that the effects of estrogens have to be considered in the context of both 

duration and level of exposure.  At physiological levels seen during the menstrual cycle, 

we suggest that estrogens are protective and contribute to a more robust immune response 

to bacterial endotoxin challenge compared to their ovariectomized counterparts.  

However, such immune responses do not render these mice more susceptible to endotoxic 

shock, perhaps due to a concurrent increase in anti-inflammatory cytokine levels.  In 

contrast, animals that have supra-physiological levels of estrogens demonstrate sensitized 

innate immune cells resulting in a more rapid and elevated inflammatory response 

following endotoxin challenge and hence greater sepsis severity.  Such a hypothesis is 

supported by recent studies in human patients showing that the probability of septic 

shock mortality is lowest when sera estrogen levels are within the normal physiological 

range but is significantly higher in non-surviving sepsis patients, regardless of sex 

(Dossett et al. 2009, May et al. 2008).
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4.4  Figures 

 
 
FIGURE 8:  Removal of endogenous estrogen reduces circulating levels of cytokines 
resulting from in vivo endotoxin challenge.  Mice were sham ovariectomized (SHAM: n 
= 6) or ovariectomized (OVX: n = 7) and received an i.p. challenge with LPS (5 mg/kg).  
At 20 hrs post challenge, sera was isolated and assayed for the presence of IL-6 (Panel 
A), TNF-α (Panel B), or IL-10 (Panel D) by specific capture ELISA.  Panel C shows 
severity of endotoxic shock assessed according to appearance and behavior and is 
reported as a severity score for each animal in the three treatment groups.  Severity was 
scored from 1 (no detectable behavioral differences) to 5 (moribund).  Asterisk indicates 
significant difference from sham ovariectomized animals. 
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FIGURE 9:  Removal of endogenous estrogen decreases expression of key molecules 
necessary for the innate immune recognition of LPS.  Mice were sham ovariectomized 
(SHAM) or ovariectomized (OVX) five weeks prior to sera collection and isolation of 
peritoneal monocytes/macrophages.  Sera levels of LBP were assessed by specific 
capture ELISA (Panel A: SHAM n = 8, OVX n = 7).  Total LPS binding (Panel B: 
SHAM n = 7, OVX n = 8), and cell surface TLR4 (Panel C: SHAM n = 11, OVX n = 12) 
and CD14 (Panel D: SHAM n = 7, OVX n = 8) expression on isolated macrophages was 
determined by flow cytometry.  Data is shown as the average fluorescence intensity (as 
geometric means) for each group. Asterisk indicates significant difference from sham 
ovariectomized animals. 
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FIGURE 10:  Acute in vitro exposure to exogenous estradiol fails to augment cell surface 
TLR4 expression on a macrophage-like cell line and primary macrophages.  Panel A: 
RAW 264.7 cells were untreated or exposed to estradiol (E2: 1 X 10-10 M or 1 X 10-8 M) 
for 24 hours prior to analysis of cell surface TLR4 expression by flow cytometry (n = 
18).  Panel B: peritoneal macrophages derived from sham ovariectomized (SHAM) or 
ovariectomized (OVX) mice (n = 8 animals in each group) were untreated or exposed to 
estradiol (E2: 1 X 10-10 M or 1 X 10-8 M) for 24 hours prior to analysis of cell surface 
TLR4 expression by flow cytometry.  Data is shown as the average fluorescence intensity 
(as geometric means) for each group.  Asterisk indicates a significant difference between 
the average of all ovariectomized mice and the average of all intact animals. 
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FIGURE 11:  Administration of high levels of exogenous estradiol renders females more 
susceptible to endotoxic shock.  Mice were sham ovariectomized (SHAM: n = 15), 
ovariectomized (OVX: n = 15), ovariectomized and received exogenous progesterone 
replacement (OVX+P4: n = 7), ovariectomized and received exogenous estradiol 
replacement (OVX+E2: n = 15), and ovariectomized and received exogenous estradiol 
and progesterone replacement (OVX+E2+P4: n = 7), for five weeks prior to LPS 
challenge (5 mg/kg i.p.).  At 8 hrs post-challenge, sera was isolated and assayed for the 
presence of TNF-α (Panel A) by specific capture ELISA.  The severity of endotoxic 
shock was assessed according to appearance and behavior and is reported as a severity 
score for each animal in the three treatment groups (Panel B).  Severity was scored from 
1 (no detectable behavioral differences) to 5 (moribund).  Asterisk indicates significant 
difference from sham ovariectomized animals, pound symbol indicates significant 
difference from ovariectomized animals that did not receive estrogen replacement, and 
plus symbol indicates significant difference between progesterone treated animals in the 
absence or presence of estradiol co-treatment.  All data was analyzed statistically by one-
way ANOVA with Tukey’s post-hoc analysis. 
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FIGURE 12:  Administration of exogenous 
estradiol elevates cell surface expression of 
pattern recognition receptors for LPS on murine 
macrophages.  Mice were sham ovariectomized 
(SHAM), ovariectomized (OVX), or 
ovariectomized with estradiol (OVX+E2) or 
progesterone (OVX+P4) replacement, or 
received replacement of both hormones 
(OVX+E2+P4), prior to sera collection and 
isolation of peritoneal monocytes/macrophages.  
Sera levels of LBP were assessed by specific 
capture ELISA (Panel A; n = 3-8).  Total LPS 
binding (Panel B; n = 4-8), and cell surface 
CD14 (Panel C; n = 4-8) and TLR4 (Panel D; n 
= 7-12) expression on isolated macrophages was 
determined by flow cytometry.  In Panel E, 
peritoneal macrophages were permeabilized and 
total cellular content of TLR4 was assessed by 
flow cytometry (n = 4-8).  Data is shown as the 
average fluorescence intensity (as geometric 
means) for each group.  Asterisk indicates 
significant difference from sham ovariectomized 
animals, pound symbol indicates significant 
difference from ovariectomized animals, double 
dagger indicates significant difference between 
estradiol treated animals in the absence or 
presence of progesterone co-treatment, and plus 
symbol indicates significant difference between 
progesterone treated animals in the absence or 
presence of estradiol co-treatment.  All data was 
analyzed statistically by one-way ANOVA with 
Tukey’s post-hoc analysis. 



 

 

 
 
 
 
 

CHAPTER FIVE: LONG-TERM BIPHASIC EFFECTS OF ESTROGEN EXPOSURE 
ON MURINE BONE MARROW-DERIVED MACROPHAGE TLR4 EXPRESSION 

 
 
5.1 Rationale 

Evidence is accumulating that a sexual dimorphism exists in susceptibility to 

infectious disease.  In general, females generate more robust and potentially protective 

humoral and cell-mediated immune responses following antigenic challenge than their 

male counterparts.  This difference in immune responses has generally been assumed to 

be a consequence of the actions of reproductive hormones. Androgens have been shown 

to have suppressive effects on immune functions following trauma or trauma-hemorrhage 

and subsequent sepsis (as reviewed in Marriott and Huet-Hudson 2006).  The role of 

estrogens, however, appears to be more complex.  Numerous studies have shown that 

estrogens augment immune responses and have been demonstrated to increase resistance 

to infection.  For example, estrogens have been found to be protective with treatment 

resulting in increased resistance to streptococcal infections (Nicol et al. 1964).  However, 

some groups have shown that estrogens can exacerbate the symptoms of microbial 

challenge.  Estrogen treated rodents exhibit greater mortality following gonococcal 

infection (Kita et al. 1985) or endotoxin challenge (Ikejima et al. 1998) than untreated 

animals.  As such, the mechanisms by which estrogens can exert immunoprotective 

effects continue to be debated. 

Reproductive hormones have been found to modulate the immune responsiveness 

of macrophages.  Our lab has shown that testosterone suppresses the expression of a key 
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microbial pattern recognition receptor TLR4, consistent with the immunosuppressive 

actions of testosterone.  Furthermore, we have recently discovered that the presence of 

high levels of estradiol in vivo increases cell-surface TLR4 expression on macrophages, 

while 24 hours in vitro exposure to this female reproductive hormone fails to elicit such 

effects.  However, the mechanism by which estradiol augments TLR4 expression remains 

unclear.   

In this study, we have addressed the hypothesis that estradiol increases TLR4 

expression during macrophage development and maturation.  We show that bone 

marrow-derived macrophages isolated from ovariectomized animals that received high 

dose estradiol treatment in vivo have significantly less cell surface TLR4 expression than 

those derived from sham treated mice or untreated gonadectomized animals following 

short-term culture.  However, longer-term culture of these cells resulted in an apparent 

reversal of this pattern with restoration of TLR4 expression on bone marrow-derived 

macrophages isolated from estradiol treated animals and reduction in the expression of 

this pattern recognition receptor on cells from untreated gonadectomized mice in a 

manner that is consistent with our previous observations in acutely isolated murine 

peritoneal macrophages.   

 

5.2 Results 

To begin to examine the effects of estrogen on bone marrow-derived 

macrophages, myeloid precursors were isolated from the bone marrow of ovariectomized 

or sham ovariectomized mice or animals that were ovariectomized and received implants 

of estradiol.  Adherent myeloid precursors were cultured and induced to differentiate into 
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CD11b+ cells as confirmed by staining with a fluorescent antibody against CD11b and 

analysis by flow cytometry.  Bone marrow-derived macrophages were stained for TLR4 

and examined via flow cytometry.  As shown in Figure 13A, bone marrow-derived 

macrophages isolated from ovariectomized animals receiving high levels of estrogen 

replacement had significantly lower expression of cell-surface TLR4 expression 

following eight days in culture (n = 10-23 per group, p < 0.05, ANOVA) than either 

macrophages obtained from intact females or from ovariectomized mice.  To determine 

whether the reduction in cell-surface TLR4 expression was due to decreased total protein, 

we have assessed the relative TLR4 protein content in permeabilized cells by flow 

cytometry.  As shown in Figure 13B, total TLR4 expression is not significantly altered 

due to the presence or absence of in vivo estrogen during culture of bone marrow-derived 

macrophages (n = 10-15).   

 To determine the long term effects of estrogen on myeloid precursors, bone 

marrow-derived macrophages were co-cultured with varying doses of estradiol and 

assayed for cell surface TLR4 expression following long-term (sixteen days) exposure.  

As seen in Figure 14, neither low physiological dose (10-10M estradiol) nor high 

physiological dose (10-8M estradiol) altered cell surface TLR4 expression on bone 

marrow-derived macrophages from ovariectomized females, intact females, or 

ovariectomized mice that received estradiol implants (n = 4).  However, following sixteen 

days in culture, bone marrow-derived macrophages from ovariectomized mice express 

significantly lower levels of cell surface TLR4 than cells from their sham operated 

counterparts (Figure 15).  Furthermore, we found that bone marrow-derived macrophages 

from ovariectomized mice receiving high doses of in vivo estradiol express significantly 
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higher levels of cell surface TLR4 than cells from either of the other two groups (Figure 

15), contrary to what is seen following short-term (eight days) culture.   

  

5.3 Conclusions 

Numerous studies have shown that estrogens augment immune responses and 

have been demonstrated to increase resistance to infection.  For example, estrogens have 

been found to be protective with exposure resulting in increased resistance to 

streptococcal infections (Nicol et al. 1964).  However, the mechanisms by which 

estrogens can exert immunoprotective effects continue to be debated.  Previous studies in 

our lab have shown that the absence of endogenous estrogens results in a significant 

decrease in cell surface, but not total, TLR4 expression on peritoneal macrophages, while 

supra-physiological levels of exogenous estradiol replacement elicits a significant 

increase in cell surface TLR4 on these cells above what is seen in cells derived from 

normal cycling females.  As these effects are seen only in vivo and not when 

macrophages are treated with estradiol in vitro for 24 hours, one hypothesis is that 

estradiol requires long-term exposure to exert its effects on cell surface TLR4 expression, 

as might be envisaged to occur during macrophage development.    

In this present study, we demonstrate that CD11b+ bone marrow-derived 

macrophages from ovariectomized animals receiving estradiol replacement exhibit 

decreased expression of cell-surface TLR4 following 8 days in culture.  This reduction is 

approximately 20% lower than TLR4 levels on cells derived from intact and 

ovariectomized animals.  These results are not consistent with our previous studies 

showing in vivo estrogen exposure elevates cell-surface expression of TLR4 on 
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peritoneal macrophages.  Importantly, bone marrow-derived macrophages from 

ovariectomized animals receiving estradiol replacement did not exhibit changes in total 

protein levels of TLR4 as compared cells derived from their ovariectomized or intact 

counterparts.  As our previous studies also found no difference in total macrophage TLR4 

protein expression, this indicates that, despite conflicting effects of estradiol on cell 

surface TLR4 expression, in vivo estradiol replacement does not affect the total cellular 

production of TLR4 protein.  Other groups have also failed to detect differences in total 

cellular TLR4 protein levels following in vivo exposure to estrogens (Ikejima et al. 1998, 

Calippe et al. 2008), indicating that estradiol exposure exerts its effects only on the 

proportion of TLR4 on the surface of macrophages by an as of yet undetermined manner. 

We show that long-term two week culture of myeloid precursors resulted in an 

apparent reversal of the pattern shown following one week of culture.  Bone marrow-

derived macrophages isolated from estradiol treated animals exhibit restored levels of 

cell-surface TLR4 that are significantly higher than levels observed from intact females.  

Furthermore, cells isolated from ovariectomized mice exhibited significantly lower levels 

of cell-surface TLR4 than cells isolated from either intact of estradiol treated animals.  

This finding is consistent with our previous observations of cell-surface TLR4 expression 

from peritoneal macrophages.  Interestingly, in vitro treatment of bone-marrow derived 

cells with varying doses of estradiol during this two week period failed to mimic these 

effects.  The temporal pattern shift of TLR4 expression of bone marrow-derived 

macrophage occurred in the absence of any apparent stimulus other than long-term 

culture and development of cells.  These findings suggest that estradiol may exert effects 

in vivo prior to macrophage maturation. 
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Taken together, our previous studies have shown that in vivo exposure to estradiol 

elevates cell surface expression of a critical microbial pattern recognition receptor on a 

key sentinel immune cell type.  However, these studies demonstrate that long term in 

vitro treatment of estradiol during macrophage development fails to mimic such effects.  

Importantly, the present study shows that while myeloid precursors derived from animals 

with supra-physiological levels of estradiol initially have lower cell-surface TLR4 

expression, bone marrow-derived macrophages from these mice exhibit significantly 

higher levels of TLR4 following two week culture, similar to that seen in mature isolated 

peritoneal macrophages.  As such, these results suggest that the in vivo effects of long-

term estradiol on TLR4 expression occur prior to macrophage development.  Supra-

physiological levels of estradiol in vivo can exert biphasic and sustained effects on cell-

surface TLR4 expression during maturation of this key immune sentinel cell. 
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5.4  Figures 
 

 
 
 
FIGURE 13:  Supra-physiological levels of in vivo estradiol decreases cell surface TLR4 
expression but not total TLR4 protein in bone marrow-derived macrophages after 8 days 
in culture.  Bone marrow cells were isolated from ovariectomized (OVX) or sham 
ovariectomized (SHAM) mice or animals that were ovariectomized and received implants 
of estradiol (OVX+E2) and induced to differentiate into CD11b+ cells.  Cells were 
analyzed for TLR4 expression by flow cytometry.  Cell surface TLR4 expression (panel 
A) and total TLR4 protein (panel B) are shown for bone marrow-derived macrophages 
after 4-8 days in culture (N = 10-23).  * indicates significant difference from cells derived 
from sham ovariectomized animals, and # indicates significant difference from cells 
derived from ovariectomized animals. 
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FIGURE 14:  Long-term (16 day) in vitro estradiol treatment fails to elicit changes in 
TLR4 expression on bone marrow-derived macrophages.  Bone marrow cells were 
isolated from sham ovariectomized (SHAM), ovariectomized (OVX), or ovariectomized 
with estrogen replacement (OVX+E2) and induced to differentiate into CD11b+ cells.  
Cells were exposed to estradiol (10-10M E2 and 10-8M E2) for two weeks, and then 
analyzed for TLR4 expression by flow cytometry (N = 4 animals).   
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FIGURE 15:  Supra-physiological levels of in vivo estradiol exert sustained effects on 
cell-surface TLR4 expression of macrophages during 16 days of culture.  Bone marrow 
cells were isolated from sham ovariectomized (SHAM), ovariectomized (OVX), or 
ovariectomized with estrogen replacement (OVX+E2) and induced to differentiate into 
CD11b+ cells.  Cells were analyzed for TLR4 expression by flow cytometry after 16 days 
in culture (data pooled from Figure 14).  * indicates significant difference from cells 
derived from sham ovariectomized animals, and # indicates significant difference from 
cells derived from ovariectomized animals.  



 

 

 
 
 
 
 

CHAPTER SIX:  GPR30/GPER-1 MEDIATES RAPID DECREASES IN TLR4 
EXPRESSION ON MURINE MACROPHAGES 

 
 

6.1 Rational 

It has become increasingly apparent that sexual dimorphism exists in 

susceptibility to infectious diseases (as reviewed in Marriott and Huet-Hudson 2006).  In 

general, females generate more robust and potentially protective immune responses 

following antigenic challenge than their male counterparts.  Furthermore, this sexual 

dimorphism extends to bacterial sepsis, where male patients exhibit 70% mortality while 

it is lethal in only 26% of females (Schroder et al. 1998).  Such differences in immunity 

have generally been assumed to be a consequence of the actions of reproductive 

hormones.  Consistent with such a hypothesis, estrogens have been found to promote 

increased resistance to streptococcal infections (Nicol et al. 1964) while we have shown 

that androgens suppress acute host immune responses to bacterial endotoxin challenge.  

However, ascribing precise roles in immune responses to estrogens has proven 

challenging as the literature is rife with apparently contradictory observations 

demonstrating that estrogens can both augment and limit host immunity. 

While the ability of estrogens to evoke opposite effects on immune function may 

depend on the level of these sex hormones and/or the acute or chronic nature of the host 

response, an alternative explanation may lie in the expression of both classical and non-

classical estrogen receptors by immune cell types.  G protein-coupled receptor 30 

(GPR30; also known as G protein-linked estrogen receptor 1) is a membrane-bound 
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molecule that has been found to mediate several rapid cellular effects of estrogen 

including the activation of the MAP kinase signaling cascade, cAMP activation, and 

intracellular calcium mobilization (Filardo et al. 2002, Filardo et al. 2007).  As such, it 

has been suggested that GPR30 is a non-classical receptor for estrogen although this 

notion remains controversial (as discussed in Langer et al. 2010).  GPR30 has been found 

to be expressed by a wide variety of tissues and cell types (as reviewed in Prossnitz et al. 

2008) including those that exhibit immune functions (Kanda and Wantanabe 2003, 

Blasko et al. 2009).  It is therefore conceivable that estrogen could elicit rapid changes in 

the immune responses of these cells via this membrane-bound receptor. 

Cellular responses to gram-negative bacteria-derived lipopolysaccharide (LPS) 

are mediated by Toll-like receptor 4 (TLR4).  Ligation of TLR4 activates transcription 

factors that initiate the production of inflammatory cytokines and chemokines.  These 

molecules promote protective immune responses but their over-production leads to 

systemic inflammatory responses and the catastrophic drop in blood pressure associated 

with bacterial septic shock (as reviewed in Akira 2006, Palsson-McDermott and O’Neill 

2004).  We have previously demonstrated the ability of super-physiological levels of 

17β-estradiol to significantly elevate TLR4 expression on macrophages and to increase 

susceptibility of mice to in vivo LPS challenge.  In agreement with this finding, other 

groups have shown that long term treatment of mice with estrogens increases 

inflammatory mediator production following challenge with bacteria or their products, 

and that this effect is mediated by the classical nuclear estradiol receptor, estrogen 

receptor alpha (ERα) (Soucy et al. 2005, Calippe et al. 2008).  In the present study, we 
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demonstrate that 17β-estradiol can conversely elicit rapid decreases in cell surface TLR4 

expression on macrophages and show that such effects are mediated by GPR30. 

 

6.2 Results 

To begin to determine the acute direct effects of estrogens on macrophages, we 

have exposed RAW 264.7 macrophage-like cells cultured in charcoal-stripped FBS to 

minimize the effects of reproductive hormones to 17β-estradiol for various periods prior 

to analysis of cell-surface TLR4 by flow cytometry.  As shown in Figure 16A, 17β-

estradiol treatment failed to elicit significant changes in cell-surface TLR4 expression at 

24 to 72 hours following exposure.  However, cell-surface TLR4 expression on RAW 

264.7 cells was significantly decreased by approximately 20% (p < 0.05) one hour after 

17β-estradiol addition (Figure 16B). 

To begin to determine whether estrogen elicits rapid decreases in TLR4 levels on 

macrophages via a non-classical membrane receptor, we confirmed the expression of 

GPR30 in these cells.  As shown in Figure 17A, both RAW 264.7 cells and primary 

murine peritoneal macrophages constitutively express mRNA encoding GPR30 as 

determined by semi-quantitative PCR.  Importantly, we have confirmed that resting 

macrophage-like cell line and primary macrophages derived from male and female mice 

express GPR30 protein as determined by immunoblot analysis (Figure 17B). 

To assess the role of GPR30 in acute estrogen-mediated reductions in TLR4 

expression, we have used silencing RNA to knockdown expression of this receptor in 

RAW 264.7 cells.  Cells were transfected with either siRNA directed against GPR30 or a 

negative control duplex 48 hours prior to experimentation, and we have confirmed that 
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the GPR30 specific siRNA duplex markedly attenuates GPR30 mRNA levels in RAW 

264.7 cells (Figure 18A).  We then assessed the effects of estrogen on TLR4 expression 

by RAW 264.7 cells following transfection.  As shown in Figure 18B, 17β-estradiol 

elicits a significant decrease in cell-surface TLR4 expression on cells transfected with a 

negative control duplex at 60 to 120 minutes following treatment.  Importantly, such 

treatment failed to elicit significant changes in cell-surface TLR4 expression following 

transfection with siRNA directed against GPR30 (Figure 18C). 

To further confirm that the ability of estrogens to elicit rapid decreases in TLR4 

expression on macrophages is mediated by GPR30 we have examined the effects of 

GPR30 specific agonists.  RAW 264.7 cells were acutely treated with ICI 182780, a 

compound that has been widely employed as an inhibitor of the classical nuclear estrogen 

receptors but is also thought to act as a GPR30 agonist (Thomas et al. 2005).  As shown 

in Figure 19A, ICI 182780 elicited a significant decrease cell-surface TLR4 expression at 

60 and 120 minutes following treatment, with maximal reduction of approximately 18%.  

We have also employed a second GPR30 agonist, G1, which does not bind to ERα or 

ERβ (Bologa et al. 2006).  As shown in Figure 19B, treatment of cells with G1 results in 

a significant decrease in cell-surface TLR4 expression as rapidly as 10 minutes post 

exposure with a maximal reduction at 120 minutes of approximately 27% (Figure 19B). 

We have extended our findings with this macrophage-like cell line to primary 

cells in experiments employing peritoneal macrophages isolated from male C57BL6 mice 

and we show that G1 similarly elicits a significant decrease in cell-surface TLR4 

expression on primary peritoneal macrophages within 10 minutes following treatment 

(Figure 19C).  Furthermore, we have confirmed that the ability of G1 to down-regulate 
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TLR4 expression is mediated via GPR30 using silencing RNA directed against this 

receptor.  As shown in Figure 19D, G1 induced a reduction in TLR4 expression in RAW 

264.7 cells transfected with a negative control duplex.  Importantly, this effect was absent 

in cells transfected with siRNA directed against GPR30 (Figure 19E). 

To determine the biological significance of GPR30-mediated reductions in 

macrophage cell-surface TLR4 expression, we have assessed the effects of GPR30 

agonists on the LPS-induced immune responses of these sentinel cells.  As shown in 

Figure 20A, G1 treated RAW 264.7 cells demonstrated reduced ability to bind 

fluorescently labeled LPS as determined by flow cytometry.  Importantly, RAW 264.7 

cells acutely treated with this GPR30 agonist produced significantly lower levels PGE2 

(Figure 20B; approximately 46% less) at 2 hours following LPS challenge, and the 

reduced production of the key inflammatory cytokines IL-6 (Figure 20C; approximately 

34% lower) and TNF-α (Figure 20D; approximately 12% lower) at 24 hours after 

exposure to LPS. 

 

6.3 Conclusions 

Sex-based differences in host responses to microbial pathogens have been 

proposed to result from the direct effect of reproductive hormones on immune cells that 

bear receptors for these sex steroids.  Such a hypothesis is supported by findings that the 

greatest sex dimorphisms in immune responses is seen in adults of reproductive age.  

Furthermore, recent research has shown that reproductive hormones, in particular 

testosterone and estrogen, have significant effects on immune responses.  Testosterone is 

widely accepted to be immunosuppressive and can increase susceptibility of both males 
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and females to bacterial infection.  In contrast, estrogens are suggested to be 

immunoprotective and have been found to increase resistance to both bacterial infection 

(Ohtani et al. 2007, Nicol et al. 1964, Tsuyuguchi et al. 2001) and endotoxin challenge 

(Sener et al. 2005, Erikoglu et al. 2005).  However, studies employing exogenous 

estrogen treatment have yielded conflicting results that may result in differences in 

concentrations of estrogens used or the treatment regimen.  Indeed, recent in vivo studies 

in our laboratory have shown that endogenous levels of estrogens promote robust 

immune response to LPS in mice without increasing susceptibility to endotoxin 

challenge, but long-term super-physiological doses of 17β-estradiol elevates LPS-

induced inflammatory cytokine production and dramatically increases sepsis severity.  

Finally, it has been reported that short term in vitro treatment with 17β-estradiol 

attenuates macrophage responses to LPS, while chronic in vivo estrogen exposure 

dramatically increases LPS-induced inflammatory cytokine expression, an effect that was 

mediated by ERα (Calippe et al. 2008).  To date, the mechanisms that underlie this 

apparent paradox have not been identified. 

GPR30 is a membrane bound molecule that has been shown to mediate rapid 

cellular events in a variety of cell types and has been proposed to serve as a non-classical 

estrogen receptor (as reviewed in Prossnitz et al. 2008).  It should be noted that while 

several groups have provided experimental evidence that GPR30 serves as a novel 

estrogen receptor, others suggest that this molecule functions to modulate classical 

estrogen receptor-mediated effects (Levin 2009).  Defining the role of GPR30 has been 

further complicated by the current absence of reliable GPR30 deficient mouse models (as 

discussed in Langer et al. 2010).  This putative membrane-bound estrogen receptor is 
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expressed by a variety of cell types including those that have immune functions.  GPR30 

has been reported in myeloid cells including the monocytic cell line THP-1, human 

peripheral blood monocytes, and rat microglia (Kanda and Wantanabe 2003, Blasko et al. 

2009).  In the present study, we have demonstrated that both primary murine peritoneal 

macrophages and a macrophage-like cell line constitutively express this molecule at the 

level of both mRNA and protein expression.  As such, the presence of this molecule in 

macrophages could represent a means by which female sex steroids can rapidly alter 

immune cell function. 

We have demonstrated that short term in vitro treatment with 17β-estradiol elicits 

rapid decreases in TLR4 expression on macrophages and this could explain the finding 

by Calippe and co-workers (2008) that such treatment attenuates macrophage responses 

to LPS.  Importantly, we show that two GPR30 specific agonists that do not employ 

classical nuclear estrogen receptors can mimic such effects in both RAW 264.7 cells and 

primary macrophages.  Furthermore, we have established that the rapid effects of 17β-

estradiol on TLR4 expression are due to the presence of GPR30 and confirmed that the 

actions of G1 are similarly mediated by this putative estrogen receptor by employing 

siRNA techniques to knockdown GPR30 expression in a transfectable macrophage-like 

cell line.  Taken together, these experiments clearly demonstrate that GPR30 mediates the 

ability of estrogens to rapidly down-regulate the expression of a critical microbial pattern 

recognition receptor on this sentinel immune cell. 

Finally, we have established the functional significance of GPR30-mediated 

reductions in cell surface TLR4 expression on macrophages by demonstrating that these 

cells have a decreased ability to respond to bacterial endotoxin challenge.  We show that 
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pre-treatment of macrophage-like cells with a GPR30 specific agonist significantly 

reduces LPS binding to these cells and inhibits LPS-induced production of an 

inflammatory prostanoid and key inflammatory cytokines.  Again, these findings could 

help to explain the previous report that two-hour 17β-estradiol treatment significantly 

reduces LPS-mediated increases in inflammatory mediator mRNA expression in murine 

peritoneal macrophages (Calippe et al. 2008).  Furthermore, the present demonstration 

that GPR30 can mediate rapid changes in innate immune receptor expression by myeloid 

cells appears to be consistent with the recent demonstration that exposure of human blood 

mononuclear cells to G1 for one hour is sufficient to reduce TNF-α and IL-6 production 

initiated by a ligand for the pattern recognition receptor(s) TLR3 and/or MDA5 (Blasko 

et al. 2009). 

While estrogens are generally considered to be “immunoprotective", this term 

fails to distinguish between their ability enhance host immune defenses to combat 

infection and their ability to suppress such responses to protect against potentially lethal 

inflammation.  The balance between the immunosuppressive and immunoenhancing 

activities of reproductive sex steroids appears to be influenced by both the duration and 

level of exposure of immune cells to them.  The present study may shed light on this 

issue by showing the functional presence of a membrane-bound molecule on 

macrophages that has been suggested to function as a non-classical estrogen receptor, and 

the demonstration that this molecule can mediate rapid cellular effects that modulate this 

cell's sensitivity to microbial motifs.  As such, estrogens may be able to reduce the 

devastating inflammation associated with acute overactive host responses such as septic 

shock without compromising long-term defense against infectious organisms.  Finally, 
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the present demonstration that G1 is effective in limiting inflammatory responses, in 

concert with the previous finding that this GPR30 ligand can reduce disease severity of a 

mouse model of CNS inflammation (Blasko et al. 2009), raises the exciting possibility 

that such agonists may have therapeutic potential. 
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6.4 Figures 

 
 

FIGURE 16:  Estrogens decrease macrophage cell-surface TLR4 expression following 
short but not long term in vitro exposure.  RAW 264.7 cells were untreated (ctrl) or 
exposed to long-term (1-3 days; Panel A, n = 6-18) or short-term (10-120 minutes; Panel 
B, n = 12) 17β-estradiol (E2; 1 x 10-6 M) treatment and then assayed for cell-surface 
TLR4 expression.  Asterisk indicates a statistically significant difference from untreated 
cells as determined by ANOVA. 
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FIGURE 17:  GPR30, a putative membrane-bound estrogen receptor, is expressed by 
macrophages.  Panel A: primary murine macrophages and the RAW 264.7 macrophage-
like cell line express mRNA encoding GPR30 as assessed by semi-quantitative RT-PCR.  
Panel B: primary murine macrophages and RAW 264.7 cells express protein for GPR30 
as assessed by Western blot analysis.  Positive controls for mRNA encoding GPR30 
(uterus) and GPR30 protein expression (brain) are shown (+).  Results shown are 
representative of 4 separate experiments. 
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FIGURE 18:  Estrogen-mediated reductions in TLR4 expression are abolished following 
GPR30 knockdown.  RAW 264.7 cells were transfected with either siRNA directed 
against GPR30 or a negative control duplex.  Panel A: GPR30 mRNA expression was 
assessed by RT-PCR in cells transfected with the negative control duplex (ctrl) and cells 
in which GPR30 was knocked down (siRNA).  Panel B shows cell-surface TLR4 
expression of untreated cells (ctrl), or following 17β-estradiol (E2; 1 x 10-6 M) treatment 
of cells transfected with a negative control duplex (n = 6).  Panel C shows cell-surface 
TLR4 expression of untreated cells (ctrl), or following 17β-estradiol (E2; 1 x 10-6 M) 
treatment of cells transfected with siRNA directed against GPR30 (n = 6).  Asterisk 
indicates statistically significant difference from untreated cells as determined by 
ANOVA. 
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FIGURE 19:  GPR30 agonists decrease 
cell-surface TLR4 expression on 
macrophages.  Panel A:  RAW 264.7 
cells were untreated (ctrl) or treated with 
ICI 182780 (ICI; 1 x 10-5 M) and then 
assayed for cell-surface TLR4 
expression (n = 6).  Panel B: RAW 
264.7 cells were treated with G1 (1 x 10-

6 M) and then assayed for cell-surface 
TLR4 expression (n = 12).  Panel C: 
primary peritoneal macrophages were 
treated with G1 (1 x 10-7 M) and then 
assayed for cell-surface TLR4 
expression (n = 6).  Panel D shows the 
effect of transfection of RAW 264.7 
cells with siRNA directed against 
GPR30 on G1-mediated reductions in 
TLR4 expression (n = 4).  Panel E 
shows the absence of effects of 
transfection of RAW 264.7 cells with 
negative control duplex on G1-mediated 
reductions in TLR4 expression (n = 6).  
Asterisk indicates significant difference 
from untreated cells as determined by 
ANOVA. 
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FIGURE 20:  GPR30 ligation attenuates endotoxin-induced macrophage immune 
responses.  Panel A: RAW 264.7 cells were untreated (ctrl) or treated with G1 for 30 
minutes and then assayed for their ability to bind fluorescently labeled LPS by flow 
cytometry (n = 4).  Panel B: RAW 264.7 cells were treated with G1 for 2 hours prior to 
the addition of LPS and PGE2 production was assessed at 2 hours following endotoxin 
challenge (n = 5).  RAW 264.7 cells were treated with G1 for 2 hours prior to exposure to 
LPS and IL-6 (Panel C) and TNF-α (Panel D) content was assessed at 24 hours following 
endotoxin challenge (n = 12).  Asterisk indicates significant difference from control cells 
as determined by Student’s t-test. 
 
 



 

 

 
 
 
 
 

CHAPTER SEVEN:  SUMMARY AND CONCLUSIONS 
 
 
7.1  Reproductive hormones alter pattern recognition receptor expression on 

macrophages 

Sex-based differences in innate immune responses to bacterial infection are 

evident in human patients and animal models of disease.  Females are less susceptible to 

the development of bacterial infections and subsequent bacteremia and/or sepsis while 

males exhibit a greater incidence of such infections and are more likely to develop fatal 

sequelae.  While the precise effects and mechanisms of action remain to be determined, it 

is apparent that male and female reproductive hormones can have direct effects on the 

expression and function of key bacterial pattern recognition receptors on innate immune 

cells.  Changes in the expression of these receptors are likely to have profound effects on 

the production of the inflammatory mediators responsible for the lethal nature of septic 

shock (as shown in Figure 1) and may underlie the observed sexual dimorphism 

demonstrated in immune responses to bacterial endotoxins.   

 Androgens, such as testosterone, are widely accepted as immunosuppressive.  We 

have shown that testosterone decreases TLR4 expression on macrophages, both in vitro 

and in vivo.  This implies a direct effect of testosterone to suppress the ability of 

macrophages to recognize and respond to bacterial LPS.  Indeed, testosterone decreases 

both total and cell-surface TLR4 expression, indicating that this reproductive hormone 

either alters recycling and/or gene expression of TLR4, and that this decrease is not 
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simply due to receptor internalization.  Importantly, testosterone also suppresses 

inflammatory mediator production from macrophages following LPS challenge.  As such, 

the evidence that testosterone can modulate the expression of a key receptor for LPS may 

represent an important mechanism underlying the immunosuppressive effects of this 

androgen. 

Estrogens, such as estradiol, are generally considered to be immunoprotective.  

However, this term fails to distinguish between their ability enhance host immune 

defenses to combat infection and their ability to suppress such responses to protect 

against the overactive and damaging inflammatory immune response associated with 

sepsis.  The balance between the immunosuppressive and immunoenhancing activities of 

estrogens appears to be influenced by both the duration and level of exposure to immune 

cells. 

We have shown that estradiol significantly increases cell-surface TLR4 

expression on macrophages, enhancing the ability of these cells to recognize and respond 

to LPS.  At physiological levels seen during the menstrual cycle, we suggest that 

estrogens are protective and contribute to a more robust immune response to bacterial 

endotoxin challenge.  However, such immune responses do not render intact female mice 

more susceptible to endotoxic shock, perhaps due to a concurrent increase in 

immunosuppressive responses.  In contrast, animals that have supra-physiological levels 

of estrogens demonstrate sensitized innate immune cells resulting in a more rapid and 

elevated inflammatory response following endotoxin challenge and hence greater sepsis 

severity.  This notion is supported by a study of peripheral monocytes from pre-

menopausal women with normal menstrual cycles.  Interestingly, the activity of 
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monocytes correlated with the menstrual cycle.  As sera estradiol levels increased, 

cytokine production from monocytes also increased.  Likewise, when sera estradiol levels 

decreased over time during a normal cycle, so did cytokine levels (Verthelyi and Klinman 

2000).  

Estradiol treatment in vivo increased cell-surface TLR4 expression, but not total 

protein levels, indicating that estradiol is somehow involved in trafficking of this receptor 

to the cell surface.  As we found that estradiol only augmented TLR4 expression in vivo 

and not following short-term in vitro treatment, we then analyzed the effects of long-term 

culture of bone marrow-derived macrophages with estradiol.  We have shown that culture 

with estradiol for two weeks fails to alter cell-surface TLR4 expression.  However, 

macrophages derived from animals receiving long-term supra-physiological levels of 

exogenous estradiol over time develop higher levels of TLR4 compared to cells from 

intact females, in the absence of any other known stimulus.  This indicates that the long-

term effects of estradiol that increase cell-surface TLR4 expression may be indirect.  

Furthermore, these effects occur prior to macrophage development and exert sustained 

effects during maturation of this key immune sentinel cell.  The long lasting sustained 

effects of estradiol could be due to the well known epigenetic effects of this reproductive 

hormone and environmental estrogens (Prins et al. 2008, McLachlan et al. 2006, 

Guerrero-Bosangna et al. 2005).  Verification of such a hypothesis would require further 

study. 

Finally, we have shown that acute in vitro treatment of macrophages with 

estradiol reduces TLR4 expression, an opposite effect to what is seen due to long-term 

exposure to estradiol in vivo.  The roles of estrogens in modulating immune responses are 
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clearly complex, but we have shed some light on this issue by showing the functional 

presence of the non-classical estrogen receptor GPR30, and the demonstration that this 

molecule can mediate rapid cellular effects that modulate macrophages’ sensitivity to 

microbial motifs.  The rapid decrease in sensitivity to LPS would be especially important 

during the onset of sepsis.  While chronic infections may last for months or even years, 

the development of sepsis occurs much more quickly, within one to a few days post 

exposure to endotoxin.  The potential for estradiol to limit overactive host immune 

responses to LPS could provide a mechanism by which pre-menopausal women are less 

susceptible to the development of sepsis than men.  Furthermore, the demonstration that 

the GPR30 specific agonist G1 is effective in limiting inflammatory responses raises the 

possibility that such agonists may have therapeutic potential. 

In summary, we have shown the immunosuppressive effects of testosterone are 

fairly simple compared to the dichotomous effects of estradiol.  Testosterone decreases 

TLR4 expression, and suppresses subsequent inflammatory responses and susceptibility 

to sepsis.  The effects of estrogen, however, are contingent on the dosage, timing, and 

manner of treatment.  As such, estrogens may be able to reduce the devastating 

inflammation associated with acute overactive host responses such as septic shock 

without compromising long-term defense against infectious organisms.  In this way, the 

effects of estradiol resemble a balancing seesaw, in which two extremes can push the host 

immune response off balance.  Supra-physiological long-term estradiol can exacerbate 

the symptoms of sepsis by increasing damaging inflammatory responses.  However, too 

little estradiol can limit immune responses and compromise the ability of the host to 

respond to pathogens.  Such a hypothesis is supported by recent studies in human patients 
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showing that the probability of septic shock mortality is lowest when sera estrogen levels 

are within the normal physiological range but is significantly higher in non-surviving 

sepsis patients, regardless of sex (Dossett et al. 2009, May et al. 2008).  We suggest that 

the perfect balance of physiological levels of estradiol, as seen in normal cycling females, 

balancing the seesaw at the point where females exhibit greater resistance to both 

infectious challenge and the development of sepsis.  As such, cycling levels of estradiol 

in the physiological range has earned the term “immunoprotective.” 

 

7.2 Potential for future studies 

Sex steroid hormones can elicit demonstrable changes in the expression and 

function of microbial pattern recognition receptors and can significantly alter the 

production of soluble immune mediators responsible for lethal septic shock.  However, 

linking these effects to the sex differences in susceptibility to bacterial infection and 

sepsis severity remains challenging as the two ideas are in some cases seemingly 

paradoxical.  For example, testosterone suppresses the production of inflammatory 

mediators and decreases susceptibility to sepsis, yet men exhibit greater severity and 

higher mortality associated with sepsis than do women.  While the precise mechanisms 

remain to be determined, we propose a scenario, summarized in Figure 21, in which male 

sepsis patients exhibit reduced levels of immunosuppressive testosterone due to inhibition 

of testosterone production by LPS (Reddy et al. 2006), and highly elevated levels of 

estrogen, perhaps due to increased activity of aromatase from LPS and/or inflammatory 

cytokines (Schmidt et al. 2000, Singh et al. 1997).  This, at least in males, leads to an 

excessive and damaging systemic immune response.  Together, reduced testosterone and 
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elevated estrogen levels in males would facilitate expression of TLR4, CD14, and LBP 

rendering sentinel immune cells more sensitive to bacterial LPS and leading to markedly 

elevated levels of soluble inflammatory mediators thereby precipitating septic shock.  

These effects are on top of already increased levels of TLR4, CD14, and LBP found in 

males compared to females (Marriott et al. 2006).  Further research is required to validate 

such a hypothesis and to develop a therapeutic intervention during the development of 

sepsis to counter these effects. 

Estradiol has been proposed by a wide variety of investigators as a therapeutic 

treatment for patients suffering from trauma induced septic shock (Angele et al. 1999, 

Ghisletti et al. 2005, Hsieh et al. 2007b, Knoferl et al. 2002, Ohtani et al. 2007, Sener et 

al. 2005, Raju et al. 2008).  However, estradiol has complicating effects if dosage is too 

high or treatment too prolonged.  Also, estradiol has multiple receptors to which it can 

bind and activate a variety of cellular responses.  The recent discovery of GPR30 and its 

specific ligand G1, which does not bind to the classical nuclear estrogen receptors, has 

opened the door to specifically targeting certain estrogenic effects without initiating 

responses from all estrogen receptors.  We demonstrated that G1 significantly decreases 

TLR4 expression within 10 minutes, and it effectively limits inflammatory responses 24 

hours after treatment, indicating it exerts sustained effects.  This is in concert with the 

previous finding that this GPR30 ligand can reduce disease severity of a mouse model of 

CNS inflammation (Blasko et al. 2009), which raises the exciting possibility that such 

agonists may have therapeutic potential.  As such, further research is warranted to 

investigate the ability of G1 or other GPR30 specific targets to limit immune responses in 

patients exhibiting symptoms of severe sepsis and septic shock. 
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7.3  Figures 
 

 
 
 

Figure 21:  Putative mechanism by which testosterone and high levels of exogenous 
estrogen can exacerbate the symptoms of sepsis by affecting levels of TLR4.  LPS 
inhibits testosterone synthesis thereby removing the inhibitory effect of testosterone on 
TLR4 expression on sentinel cells.  Elevation of estrogen levels (perhaps via a direct 
action of LPS) increases TLR4 expression.  LPS is recognized via TLR4 on these 
sensitized cells resulting in a massive release of inflammatory mediators precipitating 
septic shock. 
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