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ABSTRACT

YUNFENG SUI. Architecture estimation from sparse images using grammatical
shape priors for cultural heritage. (Under the direction of DR. ANDREW WILLIS)

The estimation and reconstruction of 3D architectural structures is of great in-

terest in computer vision, as well as cultural heritage. This dissertation proposes a

novel approach to solve the di�cult problem of estimating architectural structures

from sparse images and e�ciently generating 3D models from estimation results for

cultural heritage. This approach takes as input one plan drawing image and a few

façade images, and provides as output the volumetric 3D models which represent

the structures in the sparse images. Support of this research goal has motivated

new investigations in underlying structure estimation problems including detecting

structural feature points in 2D images, decomposing plan drawings into semantically

meaningful shapes for medieval castles, estimating rectangular and Gothic façades

using shape priors, and estimating complete 3D models for architectural structures

using a novel volumetric shape grammar. Major outstanding challenges in each of

these topic areas are addressed resulting in contributions to current state-of-the-art

as it applied to these di�cult problems.
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CHAPTER 1: INTRODUCTION

The estimation and reconstruction of 3D architectural structures plays an impor-

tant role in a number of research domains, such as computer vision [60], computer

aided design [27], computer graphics [93], virtual 3D modeling [1], reverse engineering

[49], cultural heritage [94], medical treatment [62] and navigation [82]. Due to the

importance of this topic, it has drawn attention from computer vision researchers

for over two decades. This dissertation fuses concepts of 3D structure estimation

from imagery with procedural models for 3D shapes to create a novel technique for

estimating complete architectural models from a sparse collection of façade images

and a plan drawing using a shape grammar. Recent research [19, 63, 28] has shown

that modeling 3D structures using shape grammars allows researchers to e�ciently

generate complex models that are tedious to build manually. This dissertation ex-

tends these models by de�ning a volumetric shape grammar (VSG) which is capable

of representing a broader class of shapes. Further, this work seeks to demonstrate

that a VSG can be used to impose shape priors on 3D-shape-from-image estimation

methods by constraining the space of plausible solutions which allows 3D models to

be estimated more e�ciently. This chapter introduces the motivation and goal for

this dissertation, and details the challenges encountered and the novel approaches

proposed to achieve the goal.

§ 1.1 Motivation and Goal

Estimation and reconstruction of photo-realistic 3D models of buildings and cities is

crucial to a variety of applications, such as cultural heritage and preservation [94,
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(a) (b)

(c) (d)

Figure 1.1: Examples of model estimation data source in cultural heritage applica-
tions. (a) is a photo of the remaining of Arsuf castle in Israel, (b) is the plan drawing
of Arsuf castle, (c) is a photo of Harlech castle in Wales, (d) is a recti�ed façade image
of a church.

58, 31], 3D city mapping and city simulation [63, 90, 100], and virtual reality in

entertainment [1, 27, 93]. This dissertation is focuses on the context of cultural

heritage and preservation. Here, the 3D models estimated provide a 3D �snapshot�

of the buildings or structural complexes at a speci�c point in time. Such snapshots

preserve the 3D state of the building(s) and its environment to analysis by researchers

in the present and future. It also allows for preservation of the site by providing a

detailed record of the location and appearance of all objects within the structure at the

time the data was collected. Virtual tourism has been exploring the use of 3D building

and site models to allow virtual tours inside the generated 3D models. Archaeologists

and anthropologists use 3D models of structures to track the condition of structures,

detect potential hazards/instabilities within the structure. Virtual models of ruined

structures may also be manipulated to virtually piece together portions of fallen

architecture when the resources to do the actual reconsolidation and reconstruction
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work are not available.

Traditionally, 3D models are estimated and generated using multiple stereo 2D

images [13, 92, 14]. Current approaches require multiple images to be captured using

a digital camera (typically 60-120 for large architectural structures) at relatively close

camera poses. The complete collection of images is referred to as a dense set of views.

3D models of the surfaces visible in the dense set of views are generated based on

automatically computed feature points within images that are found to correspond

in 2 or more images from the dense set of views [71]. Recent research in [31, 100]

shows recent systems that are capable of generating 3D surface models directly from

3D imaging devices by estimating 3D models from 3D scan data. However, the cost

of 3D scanning devices makes these approaches less suitable for cultural heritage

researchers whose resources are typically strained.

The proposed approach draw inspiration from techniques in architectural de-

sign. Architects typically summarize complex building structures through three major

types of 2D drawings from which the 3D structure of the building may be erected by

construction crews. There are three types of drawings: (1) �oor plan drawing, (2)

cross-section drawing, and (3) façade (or elevation) drawing. Given that the ground

plane is the (x,z) plane and the y-axis is associated with the direction of gravity.

One may generate a basic �oor plan or cross-section drawing by intersecting the 3D

structure with a xz-plane or a xy-plane respectively. Façade drawings are distinct

from �oor plans and cross-sections and may be created by performing an orthogonal

projection of the façade into an image. As these drawings are commonly the basis of

contemporary building construction they must therefore provide a vast majority of

the required information to reconstruct the 3D structure. This dissertation seeks to

model an estimation pipeline that uses similar imagery of �oor plans and façades to

provide estimates of the unknown 3D geometry. The resulting architecture estimation

system may be viewed as an attempt to solve the inverse problem of deriving the 3D
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structure of a building or building complex using as input a small set of 2D images

which must include a plan drawing image and one or more views of the building

façades.

This dissertation seeks to develop an architecture estimation and model generation

system, to solve the di�cult problem of estimating and reconstructing architectural

structures from sparse images using grammatical shape priors for cultural heritage.

This approach takes as input one plan drawing image and a few façade images from

sparse views, estimates structures using grammatical priors, and provides as output

the volumetric 3D model, which approximates shapes and appearances of structures in

the images. In our approach, shape parameters of façades in each 2D façade image and

shape parameters for structures in the plan drawing are estimated separately. These

estimates are then integrated to generate complete 3D model estimation. Finally, an

estimate of the 3D model is generated using the volumetric shape grammar (VSG).

§ 1.2 Challenges and Contributions

In recent years and many methods [92, 14, 31, 100, 60, 73] have been proposed re-

garding 3D architecture estimation. The proposed system has several attributes that

make it distinct from current approaches. Considering data capturing devices, many

proposed methods require expensive 3D imaging devices [31, 100] or calibrated 2D

cameras [92, 14]. The system proposed in this dissertation only requires un-calibrated

2D consumer cameras. In contrast to existing systems, this system does not require

large collections of 3D image data [31, 100] or a dense sequence of 2D images taken at

relatively close points [92, 14]. It requires only a few images that may be taken from

signi�cantly di�erent points of view. For the above two reasons, the input images to

this system are less constrained than most 3D-from-image system and can often be

easily generated or sometimes directly found from existing photograph repositories

available on the internet. Work in [60, 73] provides methods for reconstruction of
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Figure 1.2: A brief overview of a system proposed in this dissertation. This system
takes as input one plan drawing image and a few façade images, and provides as
output the 3D models that approximate the structures in the input images.

independent façades, yet there is no global model that allows these façades to be

integrated seamlessly. In contrast, this system integrates estimates from multiple 2D

images and generates complete 3D building models.

The problem of estimating and reconstructing architectural structures from a

sparse collection of 2D images present novel challenges because each image may be

taken from signi�cantly di�erent points of views. In this context, it is di�cult both

to estimate the structures from each view alone and to integrate multiple estimates

together to generate a comprehensive 3D model.

Creation of this prototype system for architectural reconstruction required investi-

gation of several underlying problems, each of which are of relevance to existing open

problems generic to the disciplines of computer vision, image processing or pattern

recognition research. This dissertation discusses speci�c research and results as they

apply to the following topics:
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1. Detecting structural features in 2D images (corner detection),

2. Segmenting architectural façades and estimating rectangular structures within

façades (image segmentation for façades),

3. Segmenting vaults, arches, and windows in Gothic façades using shape priors

(if Gothic architecture exists inside the façade),

4. Segmenting plan drawings into semantically meaningful shapes with application

to medieval castles and fortresses,

5. Integrating multiple 2D estimation results into 3D model representation,

6. Generating volumetric models using volumetric shape grammar,

Work on the problems listed above consists of two conceptually distinct compo-

nents: (a) a system for image analysis and segmentation (topics 1 to 4) and (b) a

3D structure estimation system that uses segmented façade and �oor plan images

together with a VSG to e�ciently generate 3D models (topics 5 and 6).

The input images provide data regarding the speci�c assemblage of architectural

components in the xz-plane (�oor plan) or for vertical planes (façade images), i.e.,

planes perpendicular to the xz plane.The volumetric shape grammar imposes con-

straints on the valid arrangements of 3D shapes, i.e., the �nal 3D model estimate is

constrained to come from the space of shapes representable by the shape grammar. In

theory, one could generate all of the shapes that may be represented by the VSG and

then choose the shape that is best supported by the observed image data. This allows

the VSG to act as a a shape prior, i.e., the grammar restricts the set of plausible 3D

models, where the data must be �t to a model that exists within the space of shapes

attributed to the grammar.

There are �ve steps to the architecture estimation and 3D model generation pro-

cess (as shown in �gure 1.2): (1) rectifying and segmenting structure façades cap-
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(a)

(b)

(c)

(d)

Figure 1.3: (a) shows an image of architecture where edges often correspond to struc-
tural details, (b,c,d) each show three 13x13 pixel windows taken from (a). Shown
from left to right are (i) the edge magnitude image, (ii) binary edge image, and (iii)
the lines of the hyperbolic asymptotes that jointly model the local corner structure
and whose intersection is taken as the estimated corner location.

tured by a collection of 2D images into a group of rectangular regions, (2) estimating

Gothic structures and masonry details within a façade using shape priors, (3) esti-

mating architecture from a plan drawing image by decomposing the plan drawing into

semantically meaningful shapes, (4) integrating estimates from steps 1 to 3 and gen-

erating a complete set of 3D model shape parameters, and (5) creating a volumetric

shape grammar program that uses the shape parameters of step (4) to generate a 3D

model. Steps 1 to 5, which estimate architectures from rough structure boundaries

and layouts to �ne local geometry details, are internal to the structure estimation sys-

tem, and step 5 uses the structure estimation results together with volumetric shape

grammar to generate 3D volumetric architecture models. The speci�c challenges and

contributions introduced above are described in detail in the remaining part of this

chapter.
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§ 1.3 Detecting Structural Features within 2D Images

Structural feature point detectors are used to detect important points within the

image where a change in structure may occur. As such, these features are commonly

used for segmentation and estimation of architectural structures. The detection of

feature points, also known as corner points, is often an initial step for many higher

level estimation problems, such as those encountered in image matching for stereo

reconstruction [51] and view-based object recognition [18]. This dissertation revisits

this classical problem by modeling the structural feature points as the intersection

points of structural edges, i.e., the structural corners. A technique is proposed based

on �tting algebraic shape models to contours in the edge image. This method for

corner detection is targeted for use on structural images, i.e., images that contain

man-made structures for which corner detection algorithms are known to perform

well. Further, this detector seeks to �nd image regions that contain two distinct

linear contours that intersect. In contrast to previous approaches such as the Harris

detector, the spatial coherence of the edge points is considered as an important aspect

to stable corner detection, i.e., the fact that the edge points must lie close to one of

the two intersecting lines.

Comparisons are made that show results for the proposed method and results

for several popular feature detectors using input images that exhibit a number of

standard image variations, including blurring, a�ne transformation, scaling, rota-

tion, and illumination variation. A modi�ed version of the repeatability rate [70]

is proposed for evaluating the stability of the detector under these variations which

requires a 1-to-1 mapping between matched features. Using this performance metric,

this method is found to perform well in contrast to several current methods for cor-

ner detection. Discussion is provided that motivates our method of evaluation and

provides an explanation for the observed performance of our algorithm in contrast to
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other algorithms. This approach is distinct from other contour-based methods since

it need only compute the edge image, from which one may explicitly solve for the

unknown linear contours and their intersection points which provide estimates of the

unknown image corner location.

Using di�erent window sizes, this method is used to detect structural corners at

di�erent structural scales as feature points in the architecture estimation system. The

detected corner points, together with edge lines, are features of structure boundaries

at di�erent scales. These features assist the process of segmenting façades from back-

ground, as well as segmenting semantic sub-structures within façades. The approach

may also be customized to detect 90 degree corners with one horizontal edge and

one vertical edge, which is particular interested when processing recti�ed images of

building façades.

The key bene�ts to this approach are: (1) performance (in space and time); since

no image pyramid (space) and no edge-linking (time) is required and (2) compact-

ness; the estimated model includes the corner location, and direction of the incoming

contours in space, i.e., a complete model of the local corner geometry. The detected

structure feature points are used to assist detecting and segmenting structures which

is discussed in the integrated structure estimation system.

Previous Work

A large percent of feature point detectors seeks to detect corner points. But the

detections are mostly based on the local gradient values without any structural con-

straints. The most popular approach for corner detection is the Harris corner detector

originally proposed in [23] for which there now exist many variants. The Harris corner

detector computes the eigenvalues of the matrix A (see equation (1.1)) which can be

viewed as the scatter matrix of the image gradient computed over a small region of
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the image.

A =

 ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

 (1.1)

Corners are detected by thresholding some function of the two positive eigenvalues

of equation 1.1 (see [72] for one possible variant) where positive corner detection

results lie at (x, y) locations where both eigenvalues of A are large. There is also a

collection of works that compute contours from the edge image and then estimate

the curvature of the contour [2, 89, 52]. Contours having large magnitude curvature

are then considered to include. Horaud [32] groups edge contour into lines and then

looks for local intersections of these �t lines.

A second class of feature detection algorithms, which we refer to as region-based

methods, look for �blobs,� i.e., simple closed regions in the image that have some

distinctive characteristic and are often referred to as �blob detectors�. Early work

on these methods include [47] which proposed a scale-space approach to detecting

blobs by computing a scale-space generated by convolving the image with a Gaussian

kernel with increasing variance and subsequently detecting scale-space maxima of the

Laplacian of Gaussian (LoG) operator. A number of researchers have adopted this

approach or the closely related Di�erence of Gaussian (DoG) proposed in [4] that pro-

vides similar results at a reduced computational cost. Scale invariant versions of cor-

ner detectors include [47, 46] and [54] which provide increasingly sophisticated models

for corner detection that are a�ne-invariant and robust to illumination changes. Fur-

ther, in two separate papers Scha�alitzky [68] and Mikolajczyk [54] discuss scale-space

extensions to the (LoG) based on the Hessian matrix H (see equation (1.2)) for which

performance functionals may be de�ned for scale-space blob detection.

H =

 ∑ Ixx
∑
Ixy∑

Ixy
∑
Iyy

 (1.2)
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The second order derivatives gives strong responses on blobs and ridges.

Other important feature detectors include the very popular Scale Invariant Fea-

ture Transform (SIFT) proposed by Lowe [50] that includes many of the concepts

above in a novel framework and has been shown to perform well under a wide va-

riety of conditions as well as methods designed for real-time applications that have

low computation cost such as Features from Accelerated Segment Test (FAST) [66],

Smallest Uni-value Segment Assimilating Nucleus (SUSAN) [75], and a detector sim-

ilar to SUSAN proposed in [84].

Contribution

A novel structure feature point detector is proposed in this dissertation which has good

detection performance in terms of its repeat rate and speed in comparison to several

state-of-the-art feature point detectors. The proposed method works on structural

feature points and locally �ts a shape model to these structural edges that consists

of a pair of intersecting lines. This approach is distinct from other structure-based

methods since it needs only compute the edge image which is used to explicitly solve

for the unknown linear contours that intersect to form corners in the image. The key

bene�ts to this approach are: (1) performance (in space and time); since no image

pyramid (space) and no edge-linking (time) is required and (2) compactness; the

estimated model includes the corner location, and direction of the incoming contours

in space, i.e., a complete model of the local corner geometry. In contrast, methods

based on the image gradient such as [23] or image surface curvature do not enforce

that the structure represented within the image region be spatially coherent, i.e., that

locations having large �rst and second order derivatives lie along a continuous curve.

Our model enforces this constraint which we consider to contain signi�cant structural

information. The detected structure points together with structural edges are used

as features to assist in detecting and segmenting structures.
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§ 1.4 Estimating Rectangular Façade Structures

Façade images contain a complex variety of information which must be extracted

for building reconstruction. Details of interest in these images include the building

contour and the structural details inside a façade such as the location of �oors and

windows. The topic of façade estimation has seen recent interest with grammar-based

approaches described in [60, 38, 81] and a purely geometric estimation approach

proposed in [92, 14]. The façade segmentation step of the architecture estimation

system uses an approach similar to that of [81] and seeks to detect and segment

structures in a façade image as a collection of semantically-meaningful rectangular

regions representing building structures and the background.

This estimation proceeds in six steps: (1) rectify the façade image, i.e., convert a

façade image into an approximation of an architectural elevation view; (2) the user

selects regions within the image associated with semantically distinct image elements

that presently include windows, �oors, and the background; (3) a Gaussian-mixture

model is estimated using the EM (Expectation Maximization) algorithm which pro-

vides a probability distribution for each semantic class that may be evaluated at each

pixel location; (4) the distributions from step (3) are used to classify each image pixel

resulting in a initial segmentation result using a minimum error classi�er; (5) a col-

lection of vertical and horizontal locations are identi�ed as candidate splitting points

by processing the vertical and horizontal edge information in the façade image; (6) a

dynamic programming search algorithm searches the space of all rectangular decom-

positions of the façade image to �nd the collection of rectangular façade regions that

maximize the joint probability of the façade image data. The background is then

removed as all remaining non-façade rectangular regions.

As a by-product of the dynamic programming search algorithm, a hierarchical

relationship between rectangles is found that generates a semantic tree for each rect-
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angle that is found that is not enclosed by a larger rectangle. Each of these trees

encodes the semantic organization substructures that lie within some large semanti-

cally meaningful element of the façade. For example, a wall within a façade will form

a semantic tree where children of this �wall� tree might be one or more �oors and

children for each �oor might be zero or more windows. The proposed segmentation

method was inspired by the shape grammar estimation techniques described in [81]

which is based on approaches de�ned in [77].

Previous Work

Shape grammar based structure estimation has generated much recent interest within

the computer vision and pattern recognition community and is a particularly active

sub-topic within the generic area of estimating 3D structure from imagery. Early work

[13, 92, 14] in 3D model estimation and generation de�nes a set of parametric prior

models and estimates shape parameters as a structure-from-motion problem. Much

research has followed that has improved both the 3D model estimation and generation

approaches. [60, 81] estimate façade structure details using shape grammars and prior

models from a single segmented and recti�ed façade image. Similar recent work [38]

estimates 3D architectures using grammatical shape priors from two perpendicular

façades in a single image. [88] estimates Manhattan world structures, i.e., 3D blocks,

from a few sparse views using a Manhattan world grammar proposed in this paper.

[59] improves the 3D model generation method using shape grammar based procedural

modeling approach, which is introduced in the next section of 3D model generation

method.

A common point of these estimation approaches is that a shape grammar [77] is

designed in each approach to model the shapes to be estimated from imagery and

the process how the shapes are modi�ed. But these works are limited in the two

ways: (1) they only estimate rectangular geometry and (2) they only generate model

shells instead of volumetric models. The complete architecture estimation approach
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proposed in this dissertation is similar to prior shape grammar work in the way that

a shape grammar is designed and is used as a prior model for estimation as well. But

our approach estimates volumetric architectural models, which are more complex than

simple 3D block-based models.

The �rst step of processing input façade images is to rectify the image where the

key objective is to estimate a set of unknowns that de�ne the projective transforma-

tion matrix. Many methods for rectifying images are introduced in [25, 45]. A method

described in [3] estimates the projective transformation for rectangular façades from

vanishing points using a conditional random �eld and is capable of directly recon-

structing simple 3D models. Work in this dissertation assumes input images have

little camera distortion and that the transformation matrix can be estimated from

one vertical vanishing point and one horizontal vanishing point. This approach is

e�cient and intuitive, since structural horizontal and vertical edges may be robustly

detected in structural images.

The second step in façade image processing is segmenting the recti�ed façade

regions. Many methods [5, 85, 33, 20] are proposed to segment interested region from

background and from other interest regions within 2D images. Some methods use

additional information, such geometric information from 3D surface data [11, 100], to

segment interest regions. [12] segments street-side building façades from foreground

objects, such as cars and pedestrians, using both stereo cameras and structure from

motion estimation techniques.

However, this estimation approach considers only a single 2D image at each time,

and due to a variety of environment factors and architecture styles, it is very di�cult

to develop a comprehensive automatic approach that provides accurate and robust

segmentation results [7].

Contribution

The method proposed for façade segmentation represents a �rst step in architecture
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estimation. It semi-automatically converts each 2D façade image into an approxima-

tion of an architectural elevation drawing, i.e., a drawing that details the geometric

shape of the �oor and window structures within each façade. Rectangular structures

that represent windows and �oors in a multi-level building are typically the most

common shape found in architectural façades. The proposed approach segments these

structures within a façade image and estimates the parameters for each segmented

structure. Discussion about estimating non-rectangular architectural structures, such

as arches present within Gothic façades is provided in the next section.

§ 1.5 Estimating Gothic Façade using Shape Priors

A novel method is proposed to extend the rectangular façade structure estimation by

estimating the shape of masonry elements present in the façade of a Gothic build-

ing from a single image. The approach takes as input a recti�ed 2D Gothic building

façade image, and provides estimates of structural elements, e.g., doorways, windows,

arches and cornices, within the façade as output. Façade estimation proceeds in two

steps: (1) estimation of arches and rectangular openings and (2) estimation of the

masonry, i.e., mortar and bricks, surrounding these structures. Arches and rectan-

gular façade elements are detected and extracted using a 2-pass algorithm. Pass 1

detects and estimates individual façade elements using active contours with integrated

shape-preserving constraints. Pass 2 groups elements based on their shape similarity,

proximity, and horizontal and vertical positions and re-estimates shape parameters

for grouped elements. Pass 1 and 2 are iterated multiple times to extract hierarchical

arrangements, i.e., arches within arches that are typical to Gothic architecture. Those

pixels not included as part of the architectural elements are considered masonry and

are segmented into two classes: (a) mortar and (b) bricks.

The estimation approach for Gothic façade images assumes that the elements,

i.e., arches, windows, and doors, of Gothic buildings are highly organized, i.e., their
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global structure exhibits self-similarity and symmetry. The properties allow one to

predict the shape and position of structural elements that may otherwise be di�cult

to detect and estimate. For example, buildings have foundations, �oors, and a roof.

Exterior walls can be either plain, adorned with some geometric detail, e.g., cornice,

or perhaps include sub-structures such as windows. These components and their

substructures adhere to rigorous geometric constraints, e.g., windows are generally

rectangular and are oriented to align with the rectangular geometry of the wall that

includes the window.

In terms of scope, this research has generic relevance to researchers wishing to

impose strict constraints upon a deformable model to ensure that solutions represent

plausible instantiations of the object(s) that are being recognized within an image.

It is also relevant to the emerging area within vision and pattern recognition concen-

trating on cultural heritage applications. In this regard, the work herein represents

an important �rst step towards developing applications that can help archaeologists

and cultural heritage researchers in documentation, visualization, and virtual tourism

as it pertains to historic Gothic buildings.

This work extends the previous work of estimating rectangular architectural struc-

tures by estimating Gothic structures at the highly detailed level of bricks and mortars

from a single 2D image, i.e., a model of the actual façade components. Such mod-

els can expedite preservation e�orts by providing detailed records of the geometry

of these structures which may collapse or require repair and provides quantitative

measurements of building components for use in research on the methods and tools

used to construct these buildings.

Previous Work

The research on procedural model based structure estimation may be divided into

three categories: (1) procedural model-based estimation, (2) methods that incorpo-

rate 3D data, and (3) estimation from single image.
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(a) (b)

Figure 1.4: A method for estimating detailed 3D models for Gothic architecture
from imagery is introduced. The proposed method takes recti�ed images of buildings
as input (shown in (a)) and generates 3D geometric models (with texture) of the
underlying façade masonry construction as output (shown in (b)).

Procedural models as presented in [59, 9, 48, 80] apply custom-speci�ed shape

grammars that are applied to automatically generate buildings including archaeolog-

ical structures such as the Mayan Puuc building from [58]. Work in [60] and [31]

combines imagery with procedural models for the purpose of estimating repeated

façade elements, particularly rectangular structures, within façades. Here the au-

thors estimate a grid that divides the façade into tiles such that each tile can be

decomposed into elements. The shape and size of the façade elements in each tile are

estimated with the aid of a shape grammar and a database of 3D models to generate

the �nal 3D model. We also mention similar work in [37] that uses a grammar-like

method to segment large structural elements within façades. These approaches have

been shown to work well for contemporary buildings which tend to be de�ned on a

rectangular grid, e.g., apartment buildings and o�ce buildings. These models also

represent walls with texture-on-plane 3D model which prohibits manipulation and

shape measurements on individual stones within wall sections.

A number of methods have been proposed that integrate 3D measurements with

texture data to extract structural estimates of building façades. In most cases depth

measurements are obtained via multi-view reconstruction [69, 92, 83, 14] but some
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work incorporates the use of triangulation-based laser scanning [74] or LIDAR (LIght

Distance and Ranging) [11]. Of these methods, only [74] attempts to estimate the

underlying structure of stones within wall elements.

Work in [37, 30, 29, 42, 41] use single images to estimate the shape of stones within

walls. [29, 42, 41] concentrates uses multi-spectral imaging (conventional and infra-

red cameras) and pattern recognition techniques to segment bricks for the purpose of

identifying regions where a wall has been damaged. [30] discusses �eld work where

photogrammetry was used to compute recti�ed images that were manually traced to

generate wall drawings for the St. Petri cathedral in Bautzen, Germany.

Contribution

The proposed system for estimating the structure of a Gothic façade extends the

state-of-the-art in this area in three ways:

1. A MLE model is speci�ed that estimates entire elements within the façade

image rather than piecing together contours where these elements are non-trivial

in shape (Gothic arches) and include shape-constraints that ensure that MLE

solutions estimated from our model represent plausible real-world elements.

2. The proposed approach incorporates considerations for important architectural

patterns such as the self-similarity of building elements and hierarchical nesting

as they manifest themselves for rectangular shapes and Gothic arches.

3. The architectural structures estimated from our approach provide building-

block-level detail which is unprecedented in the literature and is of importance

for archaeological, architectural and cultural heritage applications.

§ 1.6 Decomposing Plan Drawings into Semantically Meaningful Shapes

Plan drawings are graphical documents critical to the documentation of architectural

features at historic sites. These drawings include important geometric information
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such as the location, shape, and size of architectural features, which, for decaying

or collapsed structures, may be the only existing records of the intact structure. At

large scales, these drawings can incorporate information that indicate the structure

of settlements or perhaps districts within settlements. Smaller scale plan drawings

often indicate the structure of just one or two buildings and the spatial arrangement

of rooms within these buildings.

This dissertation proposes an algorithm that decomposes plan drawings of me-

dieval castles and fortresses into a semantically meaningful collection of shapes; a

problem that we refer to as architectural shape grammar parsing. The estimation

problem is cast as a parsing problem as is typically encountered in computer lan-

guages and linguistics, where parsing algorithms are responsible for extracting tokens,

e.g., words or syntax elements, from written documents/programs to determine their

functional or grammatical structure. Our parsing problem seeks to extract shape

tokens coming from an alphabet of shape primitives (boxes, circles, etc.) that corre-

spond to pieces of architecture. Shape estimation methods allow for shape primitives

and their semantic labels to be estimated for each detected geometric shape token.

The estimated primitive geometries provide initial parameters for creating the rough

structural boundaries. The estimated semantic meanings represent the organization

of the primitive shapes, and give semantic information regarding the purpose or func-

tion that the geometric structure provides within the building complex. Heuristics

are used in a bottom-up clustering procedure that groups together tokens to estimate

higher-order semantic labels that are constructed from groups of grammatical shape

tokens. Since the shapes are derived from plan drawings where the architectural con-

tour is well-de�ned, the approach automatically provides near-pixel level accuracy at

all locations which are very di�cult and time-consuming to guarantee when manually

constructing computer models from drawings using computer aided design software.

Hence, these automatically-produced models can provide high-detail accuracy to the
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(a) (b) (c) (d)

Figure 1.5: Estimation and initial reconstruction result for a crusader fortress at
Apollonia-Arsuf in Israel is described in (a), (b), (c) and (d).

in-situ remains that is di�cult to generate with conventional manual model-building

techniques.

Finally, coarse 3D models are generated using both the estimated geometry and

the semantic results to visualize the plan drawing estimation results as shown and

described in �gure 1.5

Previous Work

The proposed approach for semantic parsing of plan drawings relates to research

from two somewhat distinct areas. The shape estimation aspects of this approach are

related to ongoing research in document analysis where researchers seeks to automat-

ically extract semantic information from architectural plan drawings. The semantic

label estimation aspects of this approach is related to research in shape modeling via

shape grammars or, more generally, procedural modeling which has recently gained

popularity within the graphics modeling community.

There have been several approaches provided in the document and image analysis

literature that seek to parse objects within images. A generative approach for image

parsing using Bayesian models is provided in [85]. Here the authors focus on models

that combine structure and appearance classify speci�c types of objects within the

image; speci�cally faces and letters in an image. While this work is an important

example of how Bayesian models apply to parsing problems, the models and train-
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ing proposed are purposefully built for faces and text letters in images and requires

considerable generalization for parsing of generic images.

A method introduces in [17] is an early example of a method built for processing

architectural plan drawings. This method seeks to extract text information, various

geometric information, and small-scale building substructures such as windows using

a sequence of algorithms, each of which are speci�cally designed to detect and extract

a speci�c shape, structure or some types of drawing annotation. Unfortunately, this

method is geared towards contemporary architectural drawings that use standardized

representations for structures such as windows, doors, stairways, interior / exterior

walls etc. Archaeological structures often exhibit unique features or period-speci�c

substructures, e.g., arrow-slits for a castle, which can vary widely in size and shape.

Likewise, drawings of these structures do not have a standardized representation

and the graphical representation of any given structure or sub-structure can vary

signi�cantly, even for di�erent plan drawings of the same architecture.

A method described in [44] presents a solution for matching shapes modeled as a

sequence of lines. Each simply closed contour de�ned by a collection of lines de�nes

a region and lines are grouped by the regions that they bound. A region adjacency

graph is then constructed where each region is a node in the graph and adjacent

regions share an edge in the graph. Sub-graph matching techniques are then used

to recognize instances of various shapes within a drawing. The method is applied

to hand-speci�ed drawings including hand-written architectural drawings. We also

propose a graph-based model for the shape and topology of architectural structures.

However, our graph is de�ned di�erently and allows for processing lines and open

regions which are shortcomings of the approach described in [44].

[15] presents a method for vectorization of line drawings via a Space Pixel Vector-

ization (SPV) algorithm. The approach seeks to approximate shapes in terms of the

medial axis of the lines present in the plan drawing image. Much attention is given to
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proper preservation of junctions such as right-angle junctions. The method is applied

for line drawings of mechanical parts. This approach fails to accurately preserve junc-

tions between lines and arcs especially when the junction angle between these two

contours is particularly small, i.e., when the two contours are nearly tangential.

[99] provides an informative survey on methods for parsing contemporary architec-

tural drawings. In addition to outlining several popular approaches for this problem,

the authors also demonstrate how these methods can integrate with procedural mod-

eling techniques to generate 3D models of modern buildings. This work builds upon

their previous work on procedural modeling for buildings [59] that could automat-

ically generate synthetic models of cities and ancient structures such as a Mayan

Puuc palace [58]. However, these earlier building models, while having believable

exteriors, were not geometrically consistent with the actual buildings inside and out.

Hence, such models are suitable for some visualization contexts but are not suitable

for detailed archaeological analysis.

Contribution

Work on this topic within this dissertation addresses several new issues that have not

been studied in prior work:

1. Estimating structural objects and their shape parameters from plan drawings

provides important information regarding structural geometries and layout. Es-

pecially in cases where the architectural structures no longer exist. Here the

plan drawings represent one of the best available sources for geometric informa-

tion regarding these structures. Systems that respect the exact dimensions (or

relative-dimensions) of the plan drawing provide new capabilities for extracting

shape information from these drawings.

2. Rigorous research requires careful consideration of all previous documentation.

For historic structures, much (almost all) of this documentation is recovered on
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paper (photographic, hand drawn, or the written word). Practitioners of digital

archaeology must respect these old data sources while simultaneously recording

new data using contemporary recording technologies and analysis tools. Soft-

ware such as that proposed in this dissertation can facilitate bridging the gap

between new digital photographic and pre-existing plan drawings of the same

building.

The proposed software is a tool that address these issues by greatly expediting the

time-consuming process of converting pre-existing analog pen-and-paper data into

digital format that can be e�ciently stored, transmitted, and analyzed. Since the

shapes are derived from plan drawings, accuracy of the reconstructed 3D model is

comparable to that of the original drawing, i.e., our 3D model is an accurate ge-

ometric reproduction of the apparent contour of the structure as indicated in the

plan drawing. Our approach automatically provides near-pixel level accuracy at all

locations which is very di�cult and time-consuming to guarantee when manually

constructing 3D models from similar (or the same) drawings. Hence, the proposed

method automatically-produces models that are highly detailed and accurate to the

in-situ remains which is di�cult to reduce with conventional manual model-building

techniques.

§ 1.7 Integrate Multiple 2D Estimates into a 3D Model Representation

Prior work in sections 1.3-1.6 focus on solving speci�c local estimation problems for

a particular image. This section introduces a concept for integrating these partial

estimates of the global unknown architectural 3D structure to generate a single set of

shape parameters that allow a 3D model to be constructed. Work from prior sections

makes available the following inputs to for integration: (1) 2D (height/width) mod-

els for windows and �oors within façade images and (2) 2D (width/depth) models

of straight and cylindrical walls within the plan drawing. This section proposes a
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technique to integrate estimated shape parameters from these two sources to gen-

erate a hierarchical collection of 3D shapes, where each shape also has a semantic

label. Since estimated parameters for the plan diagram and façade images have been

performed independently, there may be con�icting parameter estimates, e.g., two dis-

tinct heights for a wall from two separate images. The proposed approach �nds a

complete set of globally consistent parameters required to generate the volumetric

shapes that represent the architecture present in all of the available façade and �oor

plan images.

Contribution

Existing approaches do not consider multiple sources of information for a single build-

ing façade. Hence, the proposed work represents a �rst step towards processing data

from multiple sources that all describe the same architectural structure.

§ 1.8 E�ciently Generating Volumetric Models using VSG

The creation of 3D models plays an important roles in many areas, such as cultural

heritage [31, 58], city planning [90] and entertainment [93]. However, it can be tedious

to generate highly detailed models having satisfactory visual quality using conven-

tional 3D modeling tools. In recent years, an emerging research direction [19, 63, 28]

seeks to apply a shape grammar to e�ciently generate models that may be tedious

for humans to construct manually using 3D modeling software.

This section introduces a new shape grammar, which is referred to as a volumetric

shape grammar (VSG), that is used to generate volumetric models from user speci�ed

shape grammar. This dissertation de�nes a method to automatically create a VSG

program from estimated shape parameters to create a 3D model of architecture.

VSG generates architectural models by incrementally breaking down large �primitive�

shapes into more detailed structures by adding local geometric details and potentially

changing the appearance of smaller detailed shapes at each level in the decomposition.
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The VSG plays a very important role in the architecture estimation and model

generation system since (1) the �primitive� models available in the shape grammar

imposes shape constraints for the types of structures that can be detected within

façade and �oor plan images and (2) it directly utilize the estimated shape parameters

for each semantic object to generate a reconstruction of the architecture as a virtual

3D model. Applying the VSG using values derived from the integration step is the

�nal step in the structure estimation and reconstruction system.

The major challenge for this aspect of the system is to convert the estimated

values into constants that are referenced within a VSG program. To initialize the

global approximate model for the architecture, constants must be speci�ed that detail

the locations and relative positions for all semantic primitives. The union of these

primitives form the basic �mass model� of the reconstructed architecture. Additional

constants must be speci�ed that specify constants used by rules within the VSG

program that split each façade into �oors and subsequently split �oors into portions

that may be wall segments or windows. This process of converting the estimated

parameters into a set of constants that may be used by a VSG program is the focus

of this work.

Previous Work

Recent research [19, 63, 28] shows that procedural modeling techniques can e�ciently

generate shapes and textures that can be time consuming and tedious to manually

build. Procedural modeling technique uses a set of modeling rules, which are de�ned

by their own formal grammar, to construct and modify models. Designing the formal

grammar is the core of challenge in the development of a procedural modeling tool.

A formal grammar [24] is a set of grammar rules which generates formal language

using formal strings. A shape grammar [77] is a speci�c type of formal grammar

for generating geometric shape model. It consists a set of shape grammar rules and

some programming language that de�nes a syntax for these rules. A complete shape
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(a) (b)

(c)

Figure 1.6: A reconstructed 3D volumetric model of crusader fortress at Apollonia-
Arsuf in Israel. (a) shows the plan drawing. (b) is the drawing of the destroyed
fortress façade. (c) shows the reconstructed model.

grammar consists of three types of grammar rules: construction rules, modi�cation

rules, and termination rules. A language interpreter parses the user speci�ed rules,

compiles the interpolated information, and constructs the created models for visual-

ization. The proposed VSG is a variant of the L-system formal grammar [64], but

new extensions for modeling architectures.

Procedural modeling includes a number of techniques to create 3D models with

textures from a set of grammatical rules. The idea of using a shape grammar with

production rules to iteratively create more details to model architectural structures

was proposed by [63] where the authors propose a technique to generate large ur-

ban environments where each 3D building is represented as collection of 2D planar,

�shell�, surfaces. [59] improved this approach addressing the problems related to the

intersections of model elements, and improving the grammatical split rules that allow

for more complex shapes. [88] de�nes a grammar for representing changes in building
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geometry that follow a Manhattan-world assumption, and create 3D building models

by exploiting existing mapping and navigation databases. Similar to [59], this ap-

proach is still limited in the shape representation. Generative Modeling Language,

which represents some similar procedural modeling tools from a di�erent approach,

is a very simple programming language [28]. It generate models by lists of operations

rather than lists of objects. This approach can generate complex shapes. However,

this approach is not e�cient enough to generate huge amount of shapes needed in

large architectural 3D models.

Method discussed in [90] simulates a 3D urban model over time which build a com-

plete and inherently geometric simulation. The method proposed in [59] is applied in

[58] to reconstruct Puuc-style buildings found in Xkipché, Mexico using Geograph-

ical Information Systems (GIS) data. Many architecture estimation methods which

assist procedural modeling use two major sources for measurement: plan drawings

and façade images.

Plan drawings are graphical documents that provide a top-down view of a site

or a geographical region within a site. They indicate the structure of settlements or

perhaps districts within settlements. [99] describes several methods for estimating

modern architectures and their semantic structures for 3D reconstruction. Work in

[95] is similar in content, but it is targeted for a special type of architecture: medieval

castles.

Due to their rich information content, façades images are the most popular way

of capturing architectural data. Work in [97, 60] demonstrates a method for creating

detailed geometric and realistic looking building façade models using recti�ed 2D

façade photos as input. The estimated façade elements in this approach consists of

only rectangular elements. [96] extended this research to a more challenging area:

Gothic façades. The method proposed in [38, 14] estimates architectural façades

using un-recti�ed 2D images. Works in [31, 100] used both scanned 3D point cloud
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and 2D photographs of architectural façades to estimate 3D façade models.

Contribution

This section introduces a novel volumetric shape grammar that e�ciently generates

3D models that are attributed with semantic labels. In contrast to 3D surface shell

models, volumetric models are capable of representing structures at the building block

level, i.e., as a union of small volumetric elements rather than a collection of exterior

surfaces, which is the case with shell models. The process, by which estimated shape

parameters are converted into constants usable within VSG rules, is a new challenge

receiving relatively little attention in the literature. Hence, work in this regard de-

�nes some initial techniques that merge results of image-based estimation with the

execution of a-priori de�ned formal shape grammars.

Successful estimation and conversion of these shape parameters to be compatible

with a VSG can result in building block based models, i.e., volume based models,

where semantic information is associated with each volume. This is a fundamental

shift in representation of 3D structures, which is of particular use in archaeology where

the size, dimension, volume, and weight of these individual objects have signi�cance

in analysis. Such models also allow unprecedented interactions such as physical mod-

eling, i.e., knocking down walls, and the ability to peel away layers, i.e., see structures

internal to the building not readily visible from the exterior. These attributes allow

these models to represent structures in new ways that may be useful in a variety of

applications apart from archaeology.



CHAPTER 2: DETECTING STRUCTURAL FEATURES IN 2D IMAGES

This chapter proposes a method for detecting structural feature points within 2D

images for assisting the detection and segmentation of structures in images. The de-

tection of feature points, also known as corner points, is often an initial step for many

higher level estimation problems, such as those encountered in image matching for

stereo reconstruction [51] and view based object recognition [18]. This dissertation

revisits this classical problem by modeling the structural feature points as the inter-

section points of structural edges. A technique is proposed based on �tting algebraic

shape models to contours in the edge image.

Comparisons between results for the proposed method and results for several pop-

ular feature detectors are provided using input images exhibiting a number of standard

image variations, including blurring, a�ne transformation, scaling, rotation, and il-

lumination variation. A modi�ed version of the repeatability rate [70] is proposed for

evaluating the stability of the detector under these variations which requires a 1-to-1

mapping between matched features.

This method is used to detect structural features at di�erent structural levels in

recti�ed structure images. Since the images are recti�ed, each structural corner to

be detected has one horizontal edge and one vertical edge, and the corner angle is of

approximately 90 degrees. Instead of detecting general feature points, this method can

detect structural corner points for this special circumstance with minor modi�cation.

§ 2.1 Methodology

Our approach of detecting structural features consists of �ve steps:
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1. Compute the edge image (see �2.1.1).

2. For each (x, y) point in the edge image, compute the shape model, i.e., the coef-

�cients of the hyperbolic curve �t a local region about (x, y) that approximates

the local shape of the image contours (see �2.1.2).

3. Extract estimates of the corner location and the lines that best approximate

the image contours (see �2.1.3).

4. Compute a vector of features which are functions of the edge image data and

extracted curve coe�cients (see �2.1.4).

5. Apply a threshold on the feature vectors to identify the set of salient features

in the image (see �2.1.5).

§ 2.1.1 Computing the Edge Image

Let I(x, y) denote the recorded image. Compute the edge image, E(x, y, σ), by com-

puting L(x, y, σ) = ∇ (I(x, y) ? G(x, y, σ)) where G(x, y, σ) is a Gaussian �lter having

(x, y) dimensions W ×W , zero mean and standard deviation σ and ∇ denotes the

gradient operator implemented by convolving the image with a central di�erence �l-

ters: hx(x, y) =

[
1 0 −1

]
and hy(x, y) =

[
1 0 −1

]t
. Edge points within

the edge image image, E(x, y, σ) = ‖L(x, y, σ)‖2, are thinned as in the Canny edge

detector [10], i.e., by locally applying non-maximum suppression in the direction of

the computed image gradient. Finally, a set of candidate corner positions, Ê(x, y), is

generated by discarding all edge points having magnitude less than the average edge

magnitude value over the entire image, i.e., Ê(x, y) =
{
E(x, y)|E(x, y) > E(x, y)

}
where E(x, y) = 1

N

∑
x

∑
y E(x, y) and N is the total number of image pixels (omit-

ting pixels at the image edge). Results generated in this chapter use W = 13 and

σ = 1.4.
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§ 2.1.2 Fitting Hyperbolic Curves to the Edge Magnitude Image

Using the same W × W window we then visit each non-zero edge pixel to apply

our local corner detector. Using our knowledge of the arc-length of potential edge

patterns, we quickly discard short and noisy image contours by discarding those corner

candidates that include less W edge points within their window.

For the remaining edge points, we �t a hyperbola to the set of (x, y) locations

within the window having non-zero gradient magnitudes. Let

D =

{
(x1, y1), (x2, y2), . . . (xNw , yNw)

}
denote the (x, y) locations of Nw edge points lying within each candidate corner's

window. Our �tting method is a variant of that originally proposed by Bookstein

[8] which now has many variants, some of which are discussed in [22] and [78]. This

approach estimates the coe�cients of a quadratic polynomial de�ned implicitly as

shown in (2.1) where the coe�cient vector α =

[
a b c d e f

]t
.

f(x, y,α) = ax2 + bxy + cy2 + dx+ ey + f = 0 (2.1)

The 2D curve �t to the (x, y) data is taken as the zero-set of the implicit function,

i.e., all (x, y) locations where f(p,α) = 0. As in [8], we minimize the squared algebraic

distance between the implicit function and the data which is an approximation of the

Euclidean distance (for details see discussion in [78]).

The �tting approaches in [8] and [22] focus on �tting ellipses to data which is

accomplished by forcing the quadratic discriminant J(α) to be a positive number,

i.e., J(α) = 4ac−b2 = 1 = 4

∣∣∣∣∣∣∣
a b

2

b
2

c

∣∣∣∣∣∣∣. Since the zero-set of f(p,α) remains unchanged

when the coe�cients are scaled by a constant, i.e., f(p,α) = 0 = f(p, kα) for all

scalars k, the particular value we constrain J(α) to have is unimportant.

In general, we wish to �t a pair of intersecting lines to the data. Yet, implemen-



32

tation of such a �tting method requires enforcing non-linear (cubic) constraints on

the values of the polynomial coe�cients. Instead, our method �ts a hyperbolic curve

which requires a quadratic constraint on the polynomial coe�cients, a problem that

can be explicitly solved. However, to �t hyperbolic curves we must change the sign

of the quadratic discriminant constraint: J(α) = 4ac− b2 = −1.

Algebraic curve �tting is accomplished by de�ning a monomial matrix, M, where

the ith row of the matrix, mi, consists of the quadratic monomials computed from

one of the edge positions in D weighted by the value of the edge magnitude at that

image position (see equations (2.2) and (2.3)).

mi =
∥∥∥Ê(xi, yi)

∥∥∥2
[
x2
i xiyi y2

i xi yi 1

]
(2.2)

M =

[
mt

1 mt
2 mt

3 . . . mt
Nw

]t
(2.3)

The design matrix, C, is used to constrain the coe�cients such that the �t is

a hyperbolic curve. Given only this constraint, it is theoretically possible that the

algebraic �t could be two intersecting lines; yet, this solution is very unlikely to occur

due to noise, and, as one will see as we proceed, these instances do not adversely

e�ect the proposed algorithm.

C =



0 0 −2 0 0 0

0 1 0 0 0 0

−2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.4)

The constrained �tting problem is then solved by introducing a Lagrange multi-
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plier as shown in (2.5). (
MtM− λC

)
α = 0 (2.5)

The solution to (2.5) is taken as the eigenvector associated with the smallest

eigenvalue of (MtM)
−1

C which we denote as α, the coe�cients of the hyperbolic

curve that minimizes the squared algebraic distance.

§ 2.1.3 Computing the Corner Location and Local Shape

The designed corner detector seeks to �nd image regions where two linear con-

tours intersect. Our shape model for these linear contours are the asymptotes of

a hyperbolic algebraic curve �t to the edge image data. The coe�cients of these

lines are an explicit function of the hyperbolic coe�cients that can be computed

directly from the coe�cients. This may be accomplished by bringing the �t polyno-

mial into standard position, i.e., Euclidean transforming the equation (2.1) such that

f(x
′
, y

′
,α

′
) = a

′
x

′2 + c
′
y

′2 + d
′
x

′
+ e

′
y

′
+ f

′
= 0 such that a′ > 0 (this implies c

′
< 0).

The Euclidean rotation may be found by diagonalizing the matrix of quadratic coe�-

cients, i.e., rotating by −θ as de�ned in equation (2.6), and the Euclidean translation

may be found by completing the square (see [91] for details). The asymptotic lines

v1,v2 are represented in parametric form as li = βvi+c where c is the (x, y) position

of the corner location and vi is a 2D unit vector in the direction of the asymptotic

line (i = 1, 2). Note that the estimated corner position, s, is taken as the position in

the image where the asymptotic lines intersect. Explicit equations for s, v1, and v2

are provided below in terms of the coe�cients of the �t hyperbolic function.

 x

y

 =

 cos θ sin θ

− sin θ cos θ


 x′

y′


where
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cot(2θ) =
c− a
b

(2.6)

the corner location s is:

s = (− d′

2a′
,− e′

2c′
) (2.7)

where

a′ = a cos2 θ − b sin θ cos θ + c sin2 θ, d′ = d cos θ − e sin θ

c′ = a sin2 θ + b sin θ cos θ + c cos2 θ, e′ = d sin θ + e cos θ

f ′ = f

and the directions of the asymptotes is:

v1,2 =

 cos θ sin θ

− sin θ cos θ


 √

a′

±
√
−c′

 (2.8)

Since these parameters are explicit functions of the hyperbolic parameters, esti-

mating the shape model from the coe�cients requires very little computation. Using

the computed asymptotes, the Euclidean distance between each point and the closest

point on the shape model is computed which may be obtained quickly using the equa-

tions of the lines l1 and l2 mentioned above. As an optional step, we can re-estimate

both the corner location and asymptote directions by discarding outliers, i.e., discard

those (x, y) edge points that lie far from the �t shape model, for the results presented

in this chapter we discard edge pixels whose Euclidean distance is larger than 1 pixel.

Figure (1.3) shows results that arise when �tting within small windows of the image,

and Figure (2.1) shows a global result for the same image.
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Figure 2.1: An example of corners detected using our algorithm.

§ 2.1.4 Compute Features From the Data and Curve Coe�cients

Interest points are detected based on a feature vector having four components Φ =[
ε λ ∆ ψ

]t
. A brief explanation of each component follows: (i) ε, the average

Euclidean distance between the edge points and the closest line from the shape model,

(ii) λ, the proportion of inliers associated with each linear model, (iii) ∆, an algebraic

shape parameter (see equation (2.9)), and (iv) ψ, is the angle between the two line

models. All of these features may be computed quickly given from the �t coe�cient

and the pair of lines from the shape model.

A value proportional to the angle between the lines of the shape model is computed

as ψ = tan−1
(

v2

v1

)
. Both ε and λ are easily computed by matching the edge points

from the curve �tting with the lines l1 and l2 of the shape model. Speci�cally, for each

candidate corner, the edge points are divided into two sets based on their proximity to

the two lines present in the shape model. Let set L1 be the set of points associated with
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line l1 and L2 be the set of points associated with line l2. Then ε = Σi∈L1d(l1,pi) +

Σi∈L2d(l2,pi) where pi =

[
xi yi

]t
is an edge point in the vicinity of the shape model

and λ = card(L1)
card(L1)+card(L2)

where card(S) denotes the cardinality, i.e., the number of

elements in the set S. Finally, ∆ is computed from the coe�cients of the hyperbolic

algebraic curve as indicated in equation (2.9).

∆(α) =

∣∣∣∣∣∣∣∣∣∣
a b d

b c f

d f g

∣∣∣∣∣∣∣∣∣∣
(2.9)

§ 2.1.5 Identify the Set of Salient Image Features

Recognition of corners in this 4-dimensional feature space, for expediency, is per-

formed by simple thresholding on the parameter vectors of the candidate corners. Our

thresholds for corner recognition is speci�ed as a collection of thresholds that bound

each of the components of Φ as follows: ε < 0.5, 0.3 < λ < 0.7, −10−6 < ∆ < 10−6,

0.2rad < ψ < 1.3rad.

Results from algebraic geometry state if ∆(α) < 0 and J(α) < 0, then the

quadratic curve must be a real-valued hyperbola [6] and the quadratic curve is a

pair of real-valued intersecting lines i� ∆(α) = 0. Hence, small values of ∆(α) and ε

correspond to curves that are �close� to a pair of intersecting lines in terms of their al-

gebraic coe�cients and �t the image edge pattern well. Note that, as an eigenvector,

our coe�cient vector is unit length, i.e., ‖α‖ = 1, which makes the determinant of the

coe�cients,∆(α), small (typically on the order of 10−5 or smaller). The resulting set

of candidate corners is then reduced by applying non-minimum suppression on the

corners in terms of their ∆(α) values in a W ×W window. Results for the algorithm

are shown in Figure (2.1).



37

Figure 2.2: The criterion required for a feature correspondence between image O1

(on left) and image Oi (on right) as de�ned in [55] is shown in green. Our proposed
evaluation requires symmetry and uniqueness when matching features between images
(in red and green), i.e., if Tpi → pj then T−1pj → pi.

§ 2.2 Evaluation Method

As others have in the past, we wish to compare our feature detection algorithm

against some popular existing approaches. When examining the various approaches

for evaluating feature detection algorithms, we considered the extensive work on the

topic by Mikolajczyk and Schmid [70, 57, 55, 56, 87]. However, recent work in their

comparative analysis [53, 55, 56] has concentrated on similarity metrics for blob de-

tection. Since our method returns interest points from images, we initially adopted

the repeatability rate, R, metric suggested in [70] which measures the consistency of

interest point detections under of di�erent varieties of image variations, e.g., illumina-

tion, a�ne projection, etc. In [70], the repeatability rate for a pair of images (I1, I2)

having (n1, n2) interest points each and a known relative a�ne transformation T is

provided in equation (2.10)

R(I1, I2,T) =
# correspondences

min(n1, n2)
(2.10)

where two interest points, s1 = [x1, y1]t ∈ I1 and s2 = [x2, y2]t ∈ I2 are said to
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correspond i� dist(Ts1, s2) < r0 where r0 is a pre-de�ned threshold. In other words,

the a�ne-transformed position of the interest point in I1 is within a radius r0 of any

corner in image I2. Given the number of shape constraints enforced with our detection

scheme, our method tends to provide a small number of detected features. However,

these features satisfy a number of signi�cantly distinct characteristics; hence we have

found that the computation of these features is repeatable for our test images. The

authors of [70] acknowledge that the measure (2.10) tends to favor methods that

produce large numbers of corners such as the Harris detector which can (and often

does) generate many thousands of detected interest points. In light of our highly

constrained interest point detector, we made a small modi�cation to the repeatability

rate by adding a second requirement: Two interest points, s1 = [x1, y1]t ∈ I1 and s2 =

[x2, y2]t ∈ I2 are said to correspond i� minsi∈I2 dist(Ts1, si) = s2 and dist(Ts1, s2) <

r0 and minsi∈I1 dist(si,T
−1s2) = s1 and dist(s1,T

−1s2) < r0 . This criterion requires

that corresponding feature points be nearest neighbors to each other under forward

and inverse transformation and that their point-to-point distance be less than r0 (see

Figure (2.2)). Algorithms evaluated in this chapter were performed with a value r0 =

5.

§ 2.3 Discussion

Implementations for the Harris-Laplacian, Hessian-Laplacian, DoG, LoG were ob-

tained from [16] and implementation of the SIFT and FAST algorithms were provided

by code available at the authors websites [50, 66]. One can see that, while our method

does not always outperform others, it consistently places among the top two methods.

We feel that such results show promise for the application of this feature detector for

images containing man-made structures. Notable high-points in the performance of

this algorithm are the results in Figure (2.4 a,b) obtained for the data sets shown in

Figure (2.3 a,b) which exhibit a large amount of structure and many linear contours
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(a) (b)

(c) (d)

Figure 2.3: (a-d) show examples from a standard set of test images from [55]. These
images were used to evaluate our detector and compare it against several other ap-
proaches (see Figure (2.4)).

which are incrementally blurred (a) and have decreasing amounts of illumination (b).

Lower performance is observed in Figure (2.4 c,d) obtained for the data sets shown

in Figure (2.3 c,d) which exhibit changes in orientation and scale respectively. For

data set (c), one can expect lower performance since this is a natural scene that

exhibits contours that are rarely linear. Results for data set (d) are somewhat sur-

prising given that our method does not currently include any modi�cations to cope

with scale variation. A partial explanation of this unexpectedly high performance

is that the overlapping region between the di�erent scales is small and contains few

corners from our method Figure (2.4 d-right) which arti�cially in�ates the number

of matches. Also, many structural edges have scale larger than our 13x13 window in

both images which accounts for many correct matches.

§ 2.4 Conclusion

A new method for detecting structural features from 2D images has been proposed

that models feature points as the intersection of two linear contours within a local

region of the image. The method is designed to assist detecting and segmenting
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(a)

(b)

(c)

(d)

Figure 2.4: (a-d) show pairs of graphs. For each pair, the left graph shows the
repeatability rate between images that have increasingly di�erent content over a set
of 6 images (see Figure (2.3) for details) and the right shows the number of interest
points detected in each image. Results for seven di�erent methods are shown, our
method (IPFIT) is shown in red (see �2.2 for details).
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structures from 2D images. The method �ts hyperbolic implicit polynomial curves to

patterns of edge points within small local regions of the image. The asymptotes of

the hyperbolic curve are used as a shape model for the linear contours in the image.

Their equations and that of their intersection point, i.e., the corner, may be computed

explicitly from the coe�cients of the �t hyperbolic curve. Four features are extracted

from the shape model that include the angle between the lines, their goodness-of-�t

to the edge points, the distribution of edge points along each line and a similarity

measure that expresses the distance between the �t hyperbolic curve and a quadratic

curve de�ned to be the intersection of two real lines. Fast classi�cation of signi�cant

image features is accomplished using a set of de�ned thresholds in the feature space.

We can report that the method shows good performance computationally in terms of

space and time. A modi�ed version of the repeatability rate is included that shows

that the proposed method performs well for structural scenes and produces stable and

accurate matches. Compelling modi�cations to this algorithm include incorporating

a region with the detected feature points and the inclusion of scale invariance using

LoG or DoG concepts as others have done for the Harris detector. The detected

structural corners are important features for detecting and segmenting structures

within 2D images. The good performance of the proposed feature point estimation

method contributes to the overall estimation system.



CHAPTER 3: ESTIMATING RECTANGULAR FAÇADES STRUCTURES

This chapter describes a semi-automatic system for estimating the structure of

an architectural façade from a small collection of images. This technique estimates

structures within a façade region and segments façade regions within the input images.

It is the �rst component of the 3D architecture estimation system, which is the system

component labeled as �1� in �gure 1.2. The algorithm takes as input a collection

of images containing architectural façades, and provides as output estimates of a

hierarchical collection of rectangular structures within each input image. Chapter

5 discusses how these estimated rectangular façades are integrated with estimates

derived from a 2D plan drawing to generate a set of parameters that allow a 3D

model to be reconstructed (described in chapter 6).

§ 3.1 Methodology

The approach for segmenting architectural façades consists of six steps:

1. Recti�cation of the façade image, i.e., converting a façade image into an eleva-

tion view image, which is a ��at� representation of a façade.

2. Supervised training via user-selected regions within the image that are asso-

ciated with semantically distinct elements in the image that include windows,

�oors, and the background.

3. Using the training data from step (2), a Gaussian-mixture model is estimated

for each semantic class using the EM (Expectation Maximization) algorithm

that provides a probability distribution for each semantic class.
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(a) (b)

Figure 3.1: Recti�cation of a façade image taken from an arbitrary pose into an ele-
vation view. (a) is a façade image taken from arbitrary pose. (b) is the automatically
converted elevation view image using the method described in section 3.1.1.

4. The distributions from step (3) are used to classify each image pixel resulting

in a initial segmentation result using a minimum error classi�er.

5. A collection of locations are identi�ed as candidate points for vertical and hor-

izontal splits. Vertical and horizontal edge information is used to facilitate

e�ciently �nding appropriate split locations.

6. A dynamic programming search algorithm searches the space of all rectangular

decompositions of the façade image to �nd the collection of rectangular façade

regions that maximize the joint probability of the façade image data.

§ 3.1.1 Rectify Façade Images

This step seeks to convert a façade image taken from an arbitrary pose into an ele-

vation view. After conversion, a box shape having unknown 3D depth is represented

by a rectangular region in each image (as shown in �gure 3.1). The transformation

matrix H that converts a façade image into an elevation view can be decomposed into

a concatenation of a similarity matrix S, an a�ne matrix A and a �pure projective�

transformation matrix P [45]:

H = SAP
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where

P =


1 0 0

0 1 0

l1 l2 l3


and l∞ = (l1, l2, l3)T is the line that connects the horizontal vanishing point ~Vh and

vertical vanishing point ~Vl. This matrix can be directly computed from the horizontal

and vertical vanishing points. Assuming that the camera distortions are insigni�cant,

the a�ne matrix is approximated using an identity matrix

A = I

The similarity matrix is

S =

 sR t

0T 1


where R is a rotation matrix, t is a translation vector, and s is a scale factor. It

can be solved if the following two conditions are satis�ed: (1) there exist two lines

in the original image, such that the angle θ between the two lines in the elevation

view is known, and (2) there exist four lines in the original image as two pairs of

angles edges and the two angles are equal, such that the parameters for the four

lines are known. In our estimation problem, we know that the angle θ between any

pair of lines that go through the horizontal and vertical vanishing points separately

will have an intersection at a 90 degree angle in the elevation view, which satis�es

both conditions. Using the above constraints, the transformation matrix H can be

computed from vanishing points

H =

 ~Vh ~Vv ~0

1 1 1


−1
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(a) (b) (c)

Figure 3.2: Detect and select horizontal and vertical edges. (a) indicates all straight
edges detected using Hough transform. (b) and (c) highlight the automatically de-
tected horizontal and vertical edges that converge to vanishing points.

where ~Vh, ~Vv and ~0 are 2× 1 vectors (see [25] for details). And the new pixel position

p′ in the recti�ed image can be computed from original position p as

p′ = Hp

This simple model doesn't correct for camera distortion, since camera intrinsic pa-

rameters are unknown. However, the camera distortions in many available images

are assumed to be insigni�cant in scale with respect to the size of a façade structure

that is to be detected and can be ignored in this particular application.

The method proposed in this dissertation is capable of automatically rectifying

a façade image by automatically computing the horizontal and vertical vanishing

points. Fundamentally, it is a problem of detecting groups of converging vertical and

horizontal edge lines from the input image. [67] proposed a method that divided

the 2D vanishing point solution space into limited cells and computed the vanishing

points as the majority votes from the intersection points of pairs of intersecting edge

lines. The proposed approach is similar to [67], but less computationally intensive,

since no accumulation cells are required and only two vanishing points are estimated.

An input façade image should satisfy the requirement that there exist at least

two groups of salient edges that allow computation of two distinct vanishing points.
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Detection of these line segments within the images is the focus of the algorithm

(as shown in �gure 3.2). Edge line segments within an input image are detected

by applying the Hough transform on edge pixels obtained from the Prewitt edge

detector and detecting the local maxima in the transformed image. Edge pixels

associated with the detected maxima are divided into horizontal and vertical groups

based on their directions. Then a collection of line segments is computed to estimate

each vanishing point where membership to the collection is determined using random

sample consensus (RANSAC) method [21]. RANSAC iteratively selects a random

subsets of the edge line segments and estimates the hypothetical vanishing points

from the selections. Since the nth edge line segment ln can be represented as

anx+ bny + cn = 0

The �tting error for a vanishing point (xv, yv) to the nth line segment is

en = anxv + bnyv + cn

The weighted minimum square error solution

Ṽ = arg min
V

∑
n

|wnen|2

is the hypothetical vanishing point, where weight wn is the length of the nth edge line

segment. Each candidate vanishing point is then compared against all of the edge

lines. The vanishing point that has smaller weighted error (computed from equation

3.1) is taken as the new estimated vanishing point.

e =
∑
n

wnϕn (3.1)
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(a) (b)

(c) (d)

Figure 3.3: The process of training the pixel classi�er and classifying façade pixels
is depicted. (a) A user selects representative window pixels (green), wall pixels (ma-
genta) and background pixels (red). (b) Initial two class minimum error segmentation
result identi�es the foreground (white) and background (black) pixels. (c) and (d)
show the probability of each pixel as façade/background. Red means high probability,
and blue means low probability.

where ϕn is the angle between the nth edge line segment and the line connecting the

center point of the nth edge line segment and the vanishing point. If the automatic

method fails, the user can override the results by manually selecting at least two

horizontal edges and at least two vertical edges which manually determines the the

collection of edge line segments. Using the manually speci�ed edge line segment

groups, the vanishing points may be directly computed.

§ 3.1.2 Interactive Selection of Training Data

Façade images may contain a very large variety of architectural styles. This makes

the design of a generic and robust classi�er very hard for generic façade images. A

supervised learning approach is taken where users train the classi�er for each façade

image by selecting small sub-regions within the façade image that are associated with



48

semantically distinct image elements, including windows, walls, and the background

(as shown in �gure 3.3(a)). For a better performance, it is preferred that all repre-

sentative regions associated with a semantic element are selected. For example, if a

background contains blue sky, white clouds and green hills, it is preferred that the

background region be speci�ed in terms of several selected regions that contain pixels

including all of these objects.

§ 3.1.3 Train Gaussian Mixture Classi�er

Since one semantic component may have multiple representative appearances, Gaus-

sian mixture distributions are used to model the feature distribution of each semantic

component. Taking the example mentioned above, the background for some façade

images may be modeled as a mixture of three Gaussian distributions, where each

one corresponds to a sky, a cloud and a hill component respectively. The probability

distribution of a Gaussian mixture model is

P ( ~X|w, ~u,Σ) =
M∑
i=1

wiN( ~X|~ui,Σi)

where ~X is a feature vector, M is the number of mixed Gaussian distributions, wi,

~ui and Σi are the weights, mean vectors and covariance matrices of the ith Gaussian

in the mixture distribution. The feature vector ~X for each pixel includes its RGB

values and a collection of texture features. The texture features are derived from the

pixel values within a small square window centered at each pixel. The size of the

window is L× L× 3, where L is the size of the square window. For our experiments

the value L = 21 is used. Due to the high dimension of the texture features, principle

component analysis method [34] is used to reduce the texture features from dimension

3LL to 15 dimensions (5 dimensions for R, G and B each). Hence, the dimension of

the feature vector ~X is 18.
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The Expectation Maximization (EM) algorithm is applied to estimate the param-

eters of the Gaussian mixture distribution for each semantic element θ = {w, ~u,Σ}

[26]. The number of Gaussian models M is provided through the supervised learning

step and is equal to the number of regions that a user selected for a semantic element.

§ 3.1.4 Initial Segment of Each Pixel Using Trained Classi�er

The semantic class likelihood Pkj for a pixel k is computed using the trained Gaussian

mixture classi�er.

Pkj = P ( ~Xk|θj) =
M∑
i=1

wjiN( ~Xk| ~uji,Σji)

where the index j is associated with a semantic class, and the index i indicates

Gaussian within the mixture model for class j. An initial segmentation can be made

by choosing the semantic index that corresponds to the largest semantic element

likelihood Pj for every pixel. Based on the user selected training data (shown in

�gure 3.3(a)), the semantic element likelihood is computed (shown in �gure 3.3(c)-

(d)), and an initial two class segmentation result is computed (shown in �gure 3.3(b)).

This segmentation result only considers the local appearance likelihood, but does not

consider any global shape constraint. Hence, the segmented region can be of any

shape.

§ 3.1.5 Parametric Façade Hierarchy Model

To generate segmentation results that divide the façade image into semantically mean-

ingful regions, a parametric façade hierarchy model is applied to the classi�ed pixel

data. This model has two parts: (1) a semantic hierarchical tree structure of façade

elements, and (2) each semantic element is associated with a rectangular shape (see

�gure 3.4). In this dissertation, the term �architectural façade model� or �architec-

tural façade� refers to this model. The root of the hierarchy is the façade boundary,

which is associated with a rectangular region. The parametric representation of this
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Figure 3.4: A parametric façade hierarchy model with �ve �oors and four windows
in each �oor.

region is in the form of top left corner (xfl, yft) and bottom right corner (xfr, yfb).

Each façade boundary is divided vertically into �oors, which are the children of façade

boundary in the hierarchy tree. The height of the �oors are labeled as hn, and the

number of �oors NL is estimated. Each �oor can be divided into windows and walls.

The shape parameters for windows within a �oor include the window dimensions

(window width ww and height wh) and window positions (wx, wy). It is also possible

that a �oor contains no window Nw = 0.

§ 3.1.6 Simpli�cations and Assumptions

Since we are focusing on simplistic architectural façades, the following assumptions

have been made when the façade parameters are estimated. Since structures in a

façade are often repeated vertically in �oors, it is assumed that if a façade contains

more than three �oors, all �oors except the ground �oor and the top �oor have the

same height 3.2:

h2 = h3 = · · · = hNL−1 = h (3.2)

Additionally, since the windows are often repeated within a �oor and are both verti-

cally and horizontally aligned within a façade, it is assumed that the vertical spacings
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and heights in the middle �oors (except the ground �oor and the top �oor) are iden-

tical as speci�ed in equation 3.3 and 3.4.

wh2 = wh3 = · · · = whNL−1 = wh (3.3)

wy2 = wy3 = · · · = wyNL−1 = wgrd (3.4)

The window spacings and heights in the ground �oor and the top �oor are equal to

w′h, w
′
grd, wh” and wgrd”

wh1 = w′h, whNL
= wh”

wy1 = w′grd, wyNL
= wgrd”

The horizontal positions of windows are also constrained to follow a pattern such

that the left-most window has distance woff , the window widths are equal to ww,

and distances between adjacent windows are equal to wgap. Lastly, the maximum

number of �oors within a façade and the maximum number of windows within a �oor

is constrained to be 10.

Under these assumptions, the façade model 18 parameters:

Ω = {xfl, yft, xfr, yfb, h1, h, hNL
, NL, woff , ww, wgap, wh, wgrd, w

′
h, w

′
grd, wh”, wgrd”, Nw}

(see �gure 3.4). Since one image can have multiple façades, the number of parameters

estimated from each image is 18 × NF , where the number of façades in the image,

NF , is unknown. Due to the large number of unknown model variables, the plausible

parameter space is too large to exhaustively search even after the assumptions have

been made.
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§ 3.1.7 Global MLE Estimation of Façade Tree Parameters

By imposing the hierarchical model on the image, the image is divided into rectangular

semantic regions, and each pixel in the image is associated with a semantic element.

The likelihood of the hierarchical model is computed as the joint probability all pixels

within all semantic regions:

P (Ω| ~X, θ) =
∏
j

∏
kεRj(Ω)

Pkj( ~Xk|θj),

where Rj(Ω) is a rectangular image region associated with semantic element j de�ned

by Ω, and Pkj is the probability that pixel k within region Rj(Ω) being a semantic

element j, which is computed in section 3.1.3. and 3.1.4. The union of all semantic

label regions Rj(Ω) is the whole image. A pixel k may be associated with di�erent

semantic element j under di�erent façade model parameters Ω. The parameter Ω̂mle

that maximizes the value of P (Ω| ~X, θ) is the taken as the best estimate for the

unknown semantic label. For computation, it is more convenient to work with the

sum of logarithm of the likelihood function

F (Ω| ~X, θ) =
∑
j

∑
kεRj(Ω)

ln(Pkj( ~Xk|θj))

The maximum likelihood estimation of Ω is

Ω̂mle = arg max F
Ω

(Ω| ~X, θ)

In the remaining of this chapter, this function F (Ω| ~X, θ) is referred to as the merit

function and the value of this function is named merit value.

Having reduced the shape parameter space to 18 dimensions, a fast searching algo-

rithm is described in that e�ciently processes solutions within this space to attempt to
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(a) (b)

Figure 3.5: Estimated façade boundaries. (a) is a façade that has been over-
segmented. Since the roofs are not �at, a façade region is segmented for each dis-
continuous roof region. (b) merges the similar over-segmented neighbor regions to
generate the �nal façade estimation result.

�nd the global MLE of the shape parameters. This is accomplished by assuming that

speci�c subsets of the 18 dimensional shape parameter vector are probabilistically in-

dependent of each other in the joint distribution P (Ω| ~X, θ). For example, one assump-

tion asserts that we can �rst estimate the number of façades NF and the boundary for

each façade {xfl, yft, xfr, yfb} independently. Another assumption asserts that when

estimating �oor and window parameters, window height and window to ground dis-

tances at ground �oor {w′h, w′grd}, middle �oors {wh, wgrd} and top �oor {wh”, wgrd”}

may be estimated separately. And a third assumption asserts that parameters that

subdivide the façade in the vertical direction {h1, h, hNL
, NL, wh, wgrd, w

′
h, w

′
grd, wh”, wgrd”}

may be estimated separately from parameters that subdivide the façade in the hori-

zontal direction {woff , ww, wgap, Nw}.

During the initial segmentation, only two classes of semantic elements are consid-

ered: a background class and a façade class that contains both windows and brick

walls. The plausible parameter space for the façade vertical boundaries is limited to

a collection of peaks detected in the horizontal gradient of the image. The problem

of searching façade boundary parameter space is turned into a problem that seeks to

select the best combination of horizontal and vertical locations where there is a peak

in the image gradient.
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(a) (b) (c) (d)

Figure 3.6: The estimation result of a façade as a hierarchical collection of rectangular
shapes, where the estimated semantic hierarchy is shown in (a), and the estimated
shape parameters for each semantic element are shown in (b). (c) and (d) are prob-
ability of each pixel as window/wall. Red means high probability, while blue means
low probability.

A dynamic programming search is implemented that �nds the global MLE of

the shape parameters assuming that these values are a function of detected peak

locations. The research algorithm starts by dividing a façade image into vertical strips

by de�ning top and bottom boundaries inside the strip, each strip is then subdivided.

The search algorithm starts by �nding the the best top and bottom boundaries that

generate a local maximum for the merit function within a strip. Then neighboring

strips are considered in a bottom-up merge procedure to determine if combinations of

two or more strips can further increase the value of the merit function. The process

stops when all possible combination of strips have been considered. To avoid over-

segmentation, adjacent sub-regions with close horizontal boundaries are merged into

one sub-region. An example façade segmentation result is provided in �gure 3.5.

Floor and window parameters are then estimated inside each segmented façade.

In this step, the windows and the wall bricks are considered as di�erent classes.

Since the façade boundaries are �xed at this step, there are three free �oor param-

eters {h1, hNL
, NL}, and h can be computed as h = (yfb − yft)/NL. Since win-

dow height and window to ground distances at ground �oor, middle �oor and top

�oor are independent, and the window parameters regarding the horizontal direction

{woff , ww, wgap, Nw} are independent as well, �ve parameters are estimated jointly at
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(a) (b)

(c)

Figure 3.7: More façade segmentation results.

most. Since façade regions typically include a small number of peaks in the gradient

value (10-50), an exhaustive search is used to compute the MLE of �oor and window

parameters that generate the maximum merit value.

§ 3.2 Results and Discussion

Our approach is inspired by [81]. While [81] only estimates �oors and windows within

a segmented rectangular façade region, our method starts with a façade image that

contains unknown number of façades, then automatically recti�es these façades and

segment each façade into semantic regions. Methods are proposed to automatically

convert façade images into elevation views and to e�ciently segment rectangular

façade regions within recti�ed images.

Façade images are used to test the performance of the the façade segmentation

method. Example results are provided in �gure 3.7, where one can see that the

approach can be robust to di�erent façade contents and environment variation due
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(a) (b) (c) (d) (e) (f)

Figure 3.8: Estimated �oors and windows within a segmented façade image. Test data
are provide by [81]. (a) is a façade image. (b) is the color coded initial segmentation
result. (c) is the detected �oor and window structures as �nal result. (d)-(f) represent
the probability of each pixel as window/wall/background computed using expectation
maximization Gaussian mixture model.

to environmental e�ects (shadows, etc.). The method only takes a few seconds to

search the 18-dimensional parameter space to �nd the MLE solution. However, two

limitations are noticed from these tests. First, the Gaussian mixture model is used

to train the classi�er, but this may not be a good model for all feature data. When

di�erent semantic elements have similar appearances, users have to carefully select

the training data to distinguish di�erent elements. Second, the rectangular shape

model may not be su�cient enough to handle complicated geometric situations, such

as occlusions and damaged structures (such as case shown in �gure 3.7(c)).

The façade segmentation method is tested using the images provided by [81] (�g-

ure 3.8). When compared with [81], in which nine semantic classes are trained,

the model employed in this approach is simpler as it only contains three semantic

classes. However, the results generated from our approach are satisfactory. The

Gothic façade image test shown in �gure 4.1 also produces satisfactory results. Al-

though this method cannot estimate the Gothic window shape, accurate detection of

window locations and rough rectangular boundaries are provided in the result.
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§ 3.3 Conclusion

This chapter proposes a new method for estimating façade hierarchy models within

a façade image. A tree model is used to represent the façade hierarchy. Users train

the GMM classi�er by interactively selecting representative pixels for each semantic

element. The classi�er provides the local likelihood of each pixel for each semantic el-

ement. The global MLE of the tree models is achieved by searching an 18-dimensional

shape parameter space. The method for computing the MLE is inspired by [81], but

the estimation is not limited to structures within a façade, it starts with converting a

façade image into an elevation view and segmenting each rectangular façade regions.

This method is tested on façade images related to cultural heritage and Parisian

architectural façade images provided by [81], and satisfactory results are generated.



CHAPTER 4: ESTIMATING GOTHIC FAÇADE STRUCTURES

This chapter continues the e�ort of estimating architectures from sparse images

by extending semi-automatic estimation tools developed in chapter 3 to Gothic ar-

chitectures. A new method is proposed for estimating the shape of masonry elements

present in the façade of a Gothic building from a single image. It is the second com-

ponent of the architectural façade estimation system, which is the system component

labeled as �2� in �gure 1.2. The approach takes as input a 2D image which is a rec-

ti�ed image of a Gothic building façade and provides a semantic segmentation of the

façade into structural elements, e.g., doorways, windows, arches and cornices, within

the façade image as output.

§ 4.1 Gothic Window Parametric Model

Façade estimation proceeds in two steps: (1) estimation of façade elements; doors,

windows, and arches and (2) estimation of the masonry, i.e., mortar and bricks, sur-

rounding these structures. Such estimation results can expedite preservation e�orts

(a) (b) (c)

Figure 4.1: Estimate Gothic windows using method proposed in this chapter. (a) is
the estimation result. (b)and (c) are the probability of each pixel as window or wall.
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(a) (b) (c) (d)

Figure 4.2: (a) parameters for a Gothic arch, (b) a view of 4 window panes as they
appear in an edge image, (c) the distance transform of the edge image, (d) the initial
seeds (green contours) and �nal MLE values for the 4 elements (pink contours).

by providing detailed records of the geometry of these structures which may collapse

or require repair and provides quantitative measurements of building components for

use in research on the methods and tools used to construct these buildings.

We proceed by specifying a parametric model for Gothic arches similar to that

described in [27]. Our model assumes that the façade image has been recti�ed such

that the ground plane of the building is aligned with the image x − axis, i.e., the

façade elements are assumed to be oriented vertically within the image. In this case,

the window can be summarized in terms of �ve parameters which collectively make

up the unknown parameter vector Θ = [x0, y0, h, w, v]t (see Fig. 4.2 for a de�nition

of each of these parameters). In other words, this model represents a Gothic as a

combination of a box and two symmetric fans. For purposes of visualization, we

de�ne a sequence of �ve 2D points p1,p2,p3,p4,p5 that may be easily computed

from the parameter vector as indicated in Fig. 4.2. The relative positions for these

points is highly constrained to ensure that the window shape and orientation remains

consistent with real-world Gothic arches using four constraint equations:



60

p2 = p1 +

[
w 0

]t
p3 = p2 +

[
0 h

]t
p4 = p3+p5

2
+

[
0 v

]t
p5 = p1 +

[
0 h

]t
(4.1)

Since both p3 and p5 depend on the same parameter, h, the 5 2D points have 5

constraints and 5 free parameters. Elements within the façade image may correspond

to doorways, windows, and cornices on the building and may have a rectangular

shape or the shape of a Gothic arch. Typically these elements generate contours in

the edge image of the building. This is particularly true for windows and doorways, as

they are typically constructed of di�erent materials (stone/glass or stone/wood). Yet

detection of protruding elements is more di�cult as they tend to be constructed of the

same material (stone/stone). For this reason it is particularly di�cult to extract these

structures using edge detection and contour linking as there are large gaps created in

the contours that make up the element boundary (see Fig. 4.2(b)).

§ 4.2 Estimation Methodology

We adopt a Bayesian model for estimation of complete elements, i.e., arches or rect-

angular structures, that expresses the likelihood of the image data given a speci�c

instance of a arch/rectangular element, i.e., p(D|Θ) where D denotes image data and

Θ denotes the element. The probability is determined by contour integration, i.e., we

traverse the window contour C in the image speci�ed by Θ and integrate the distance

between the element contour and the closest edge pixel. Hence, values of Θ that pass

through a large number of edge pixels will have higher likelihood. For implementa-

tion, we perform edge detection (Prewitt's method) to produce an edge image (Fig.

4.2(a)) (note no edge linking should be done). We then compute the distance trans-
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(a) (b)

(c) (d)

Figure 4.3: (a) the recti�ed original color image, (b) edge image for the image from
(a), (c) distance transform of the edge image, (d) optimization of MLEs for the façade
elements are shown with initial values (green contours) and �nal values. Signi�cant
variation can exist in the estimated elements due to local minima within the likelihood
function. A second step merges similarly shaped elements and and re�nes their shape
parameter values (see Fig. 4.4).

form (pseudo-Euclidean) of the edge image, D(x, y) (Fig. 4.2(c)), which provides the

minimum distance to an edge pixel for each (x, y) position. We may then specify

a likelihood distribution for the unknown element parameters which is assumed to

be an exponential distribution de�ned over the values of the distance transform in-

tegrated at the locations speci�ed by the element contour, i.e., the contour integral
¸
D(C|Θ)ds as shown in (4.2).

p(D|Θ) =
1

k
e−
¸
D(C|Θ)ds (4.2)

where ds denotes a di�erential portion of the contour arc-length. Estimation then

reduces to searching through parameter space for maxima of p(D|Θ), i.e., maximum
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(a) (b) (c)

Figure 4.4: (a) detected arches after MLE estimation and merging (b) detected group-
ings of arches and their hierarchical relationships (c) a textured 3D model obtained
from (b).

likelihood estimation. Note that there will be many local maxima and multiple in-

stances of elements will generator multiple local maxima in the likelihood distribution

in parameter space.

Detection of these elements may then be accomplished via peak detection on

the likelihood distribution. Yet, exhaustive computation of all possible values for Θ

and subsequent peak detection is similar in many ways to a generalized version of the

Hough transform for detection of Gothic and rectangular elements and is prohibitively

expensive in terms of computation. Instead, we proceed by seeding small windows

within peaks of the distance transform, i.e., we guess at values for Θ, and then use

conjugate gradient methods to compute the closest local maxima of the likelihood

distribution (Fig. 4.2(d)). Seeds are initialized at peaks in the distance transform

and only those parameter vectors having signi�cant probability after maximization

are kept as detected façade elements. In this regard, maximization of the likelihood

distribution is very similar to �tting a constrained snake as in [35, 98].

Once elements have been detected, we detect repeated elements that may exist

within the façade. This is accomplished by clustering the detected elements based on

their shape estimated shape parameter values; (h,w, v). Clustered elements are then

merged into a single model having a distinct sequence of (x0y0) parameters (one for

each element) and a single set of shape parameters (h,w, v) and maximum likelihood
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estimation as previously described is performed again over these parameters. This

step serves to group together self-similar elements and provides a re�ned the estimate

of the element shape parameters by utilizing all of the available image data for com-

putation of a global solution (blue elements of Fig. 4.4(c)). Using prior knowledge

of the geometric hierarchy's present in Gothic architecture, we then guess at new

values for Θ = [x0, y0, h, w, v]t that correspond to plausible arches that may contain

grouped elements and perform MLE, peak detection, and self-similarity merging for

these elements (red elements of Fig. 4.4(c)).

Image pixels associated with the estimated façade elements are removed from

the image and the remaining pixels are considered free-form masonry. We apply a

watershed algorithm and custom-merging criterion approach to segment these pixels

into two classes: (a) stones and (b) mortar. Our watershed algorithm is that described

in [5] and our merge criterion is based on color similarity. Such simple merge criterion

can e�ectively segment highly contrasting mortar and stone masonry such as granite

and cement but is prone to failure when contrast between these elements is more

subtle. For each extracted stone boundary, a 3D model is estimated by extruding the

boundary a user-speci�ed distance. The resulting brick and element blocks together

specify our 3D block-level estimate of the façade geometry.

§ 4.3 Results

Figure 4.4 shows our results for two di�erent Gothic façades: (1) the side of a Medieval

church exhibits 2-level grouping and group self-similarity and (2) a façade from a

Medieval chapel. Note that self-similarity and grouping is a necessary part of the

estimation process since there is signi�cant variation present in the compute MLEs.

Further, detection of the Gothic arch hierarchy would be very di�cult without a good

initial guess for the parameters which can be obtained via grouping.

Figure 4.6 shows results for our automatic segmentation of mortar and bricks for a
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(a) (b) (c) (d)

Figure 4.5: (a) another example of Gothic façade, (b) detected arches after MLE
estimation and merging (c) detected groupings of arches and their hierarchical rela-
tionships (d) a textured 3D model obtained from (c).

façade. In this situation, many of the façade stones may be accurately estimated yet

there are locations where the segmentation fails. Current methods for documenting

walls based on hand drawings require much time and artistic ability and use of 3D laser

scanning for stone detection can also be time consuming aside from the requirement of

owning this costly and highly specialized equipment. Our initial results show promise

for semi-automatic image-based identi�cation of stones within mortar.

§ 4.4 Conclusion

This chapter proposes an important method in the sparse view architecture estimation

system by estimating a special structure, a Gothic façade, from a single view. This

novel method estimates detailed 3D model of Gothic façades that consist of rectangu-

lar and arched elements. Bayesian MLE methods are used to estimate parameters for

the façade elements and then clustering is used to �nd elements having similar shapes.

MLE is performed iteratively to re�ne the shape parameters of elements within a sin-

gle group and for detecting hierarchical (nested) instances of Gothic arches typical

to this architectural style. Detailed 3D models are constructed from the estimated

element parameters that provide an unprecedented level of detail for building model-
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(a) (b)

(c) (d)

Figure 4.6: (a) shows a façade consisting of irregularly shaped bricks and windows
where the mortar generally contrasts well with the wall stones. (b) shows our
watershed-based binary segmentation of the façade into stones (black) and mortar
(white). (c) shows a small region of this façade image and (d) shows our segmen-
tation. In these highly contrasting regions, automatic segmentations of mortar and
brick can provide accurate estimates of stone shapes. However, such methods break
down in regions of low contrast as is the case in regions around the windows.

ing which is of particular import for archaeologists, architects and cultural heritage

researchers.



CHAPTER 5: PARSING ARCHITECTURAL PLAN DRAWINGS

This chapter describes an algorithm to decompose plan drawings of medieval cas-

tles and fortresses into semantically meaningful collection of shapes using grammatical

shape priors; a problem that we refer to as architectural shape grammar parsing. It is

another important component of the 3D architecture estimation system, which is the

system component labeled as �3� in �gure 1.2. The algorithm takes a plan drawing

as input, and provides a collection of parsed geometric shapes and associated seman-

tic meanings for each shape as output. These plan drawing estimation results are

integrated with façade estimations (from chapter 3 and 4) using method proposed in

chapter 6.

§ 5.1 Methodology

Our approach for decomposing plan drawings into semantically meaningful shapes

consists of seven steps:

1. Digitize the manuscript of interest with a digital camera or scanner.

2. Pre-process the image to remove text and line-drawing annotations.

3. Estimate a skeleton shape model for architectural elements present in the pro-

cessed image.

4. Vectorize the estimated skeleton into simple, i.e., non-intersecting, curve frag-

ments connected at a collection of special (x, y) locations denoted nodes.

5. Estimate grammatical prior shape models for the curve fragments.
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(a) (b) (c)

(d) (e)

Figure 5.1: A summary of the proposed method for parsing an archaeological plan
drawing. (a) original digitized image, (b) binary image with non-architectural features
removed, (c) semantic labels are assigned to portions of the image, (d) a 3D model is
estimated using the semantic labels, (e) an aerial view of the actual in-situ remains
of the castle.

6. Use the estimated values from steps 1-5 and hand-speci�ed heuristics, each pixel

in the binary image is assigned a semantic label.

7. Based on the label for each curve fragment, we construct a 3D model over the

extent of the curve fragment.

Steps 1-5 are generic to the problem of estimating architectural features from a plan

drawing. However, steps 6 and 7 utilize a-priori knowledge regarding the structure

and geometric patterns typical to the architectural style being processed. For our

examples, we incorporate a-priori knowledge regarding the structure and layout of a

typical medieval castle.

§ 5.1.1 Digitize the Manuscript

The method used for the digitization of a plan drawing typically involves either (1)

taking an aerial photograph of the document (non-contact) or (2) scanning the doc-
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(a) (b)

Figure 5.2: (a) An original plan drawing of Caerlaverock Castle. (b) A binary version
of the image in (a). Note that some content has been manually removed before
processing such as the inset gate detail in the top left corner and the front arrow-slit
detail on the lower left side. Typically these modi�cations can be done quickly (<
5mins.) by �lling-in or removing the problematic drawing components.

ument. As in any analog-to-digital process noise is generated in the conversion and

aliasing may occur especially for sharply varying structures and small-scale variations

in the drawing. Geometrically accurate recordings of the printed document is the goal

during the capture process and this topic has received considerable attention over the

past two decades [25] and we refer the reader to this reference for details. For our

experiment, we used a �atbed document scanner to capture plan drawing image at a

resolution of 300 dpi (Figure 5.6(a)-top row). We also applied out method on publicly

available images from the web (Figures 5.6(a)-middle and bottom rows). As pointed

out in � 5.2, the automatic parsing algorithm can generate incorrect results due to the

high degree of variability present in plan diagrams (see Figure 5.2). We also assume

that the plan drawing contains an indication of the enclosing castle walls, i.e., the

castle walls form a closed contour within the image.

§ 5.1.2 Pre-Processing the Digitized Manuscript

The goal of this step is to remove all information that does not relate to the archi-

tectural complex from the digitized drawing. We assume the drawing is a greyscale

scan of a black and white drawing and proceed by estimating a binary image, I, from

the digitized greyscale image using a simple threshold. Connected components, i.e.,
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groups of contiguous 1s and 0s in the binary image are grouped together and assigned

distinct region labels. The connected components computes a disjoint set of regions

that covers the scanned image.

At this point we adopt mathematical notation to refer to each of the connected

image regions. Black regions and white regions are given distinct symbols. White

image regions in plans typically denote an open space, i.e., locations not occupied by

architectural building elements. For reasons that will become clear later, we refer to

these regions as faces, and assign each such region a face index denoted Fi. Black

image regions that remain after processing are assumed to be due to architectural

features in the plan drawing and are the focus of processing for subsequent steps.

Architectural plan drawings often contain information that indicates the loca-

tion small-scale architectural building elements within the larger complex. Common

structures include staircases, windows, and doorways. However, for the purposes of

estimating the general building shape, we remove these structures by replacing them

with black pixels. Let card(Fi) denote the number of pixels within the ith white

region. Our replacement procedure �lls in all faces that occupy less than 0.05% of

the total image, where the �lling operation replaces all white pixels in the face with

black pixels.

There is often a large amount of additional, i.e., non-structural, information con-

tained in plan drawings. These often include line-drawing annotations, i.e., thin lines

within the image, examples of these lines include topographical lines, geographical

grid lines, excavation grid lines etc. These thin-line features in the plan drawing

are removed by a sequence of open and close morphological operations using a 3x3

structure element S:

Inew = I ◦ S • S

where ◦ denotes the open morphological operation and • denotes the close morpho-
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Figure 5.3: Skeletonization and vectorization

logical operation.

Apart from line-drawing annotations, there are often text annotations, and other

small graphical markings, e.g., special features indicated by a legend, commonly in-

cluded on plan drawings. These annotations are detected as small isolated black

regions and removed using the same criterion as that used for the faces earlier, i.e.,

all connected black regions that occupy less than 0.05% of the total image are replaces

with white pixels.

In summary, our processing of the image consists of �ve steps: (1) convert the

image to a binary image; (2) group together contiguous sets of pixels having identical

values in the binary image; (3) �ll-in small white regions with black pixels; (4) perform

morphological operations to remove lines in the image; (5) �ll-in small isolated black

regions with white pixels. Note that the order of this procedure is important given

the non-linearity present in the morphological operations of step (4).

§ 5.1.3 Extracting a Skeleton from the Processed Image

The goal of this step is to convert each of the black regions associated with an ar-

chitectural structure from a volumetric, i.e., pixel-based, representation to a curve,

i.e., vector-based, form. Typical models applied for this are the edge thinning [40],

skeleton computation [76], and the medial axis [43]. While researchers have indicated
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that the medial axis is a more accurate and stable representation, we opt to use the

skeleton representation. This decision has both a pragmatic and theoretical motiva-

tion. Pragmatically, we wish to use each pixel within the plan drawings as a grid upon

which we can place volumetric elements, i.e., building blocks. Hence, we only require

assignment of labels to each pixel location. Additional accuracy a�orded beyond this

grid is wasted computation given this model. Theoretically, the skeleton provides us

with a result that has the same form as the original data, i.e., the skeleton consists

of a sequence of pixels in the image. Curve-based representations such as the medial

axis require careful conversion between their continuous representation and the dis-

crete manifestation of that shape model in the digital image. While these challenges

have been tackled by researchers, we feel that the shape representation provided by

a skeleton model is su�cient for this application due to: (a) the simplicity typical of

large-scale ancient structures and (b) the algorithmic and computational complexity

associated with using continuous shape models.

Our skeleton extraction process follows the method described in [76] and uses a

sequence of eight di�erent morphological hit-or-miss operations that thin black image

regions. The morphological elements are applied iteratively on the image until there

are no changes in the image. This approach iteratively thins black image regions,

i.e., regions indicating the presence of architectural structure, to a skeleton that is

4-connected almost anywhere (exceptions occur in black pixel regions similar to a

disk).

§ 5.1.4 Vectorizing the Skeleton

This step converts the skeleton from a collection of (x, y) pixel locations to a sequence

of curve fragments. Curve fragments are delimited at each end by vertices which cor-

respond to special points on skeleton. Speci�cally, a node is located at each (x, y)

pixel location where a skeletal curve ends or where three or more skeletal curves meet.
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Pairs of vertices serve as delimiters, i.e., end points, where skeletal curve fragments

start and end. We then model the connectivity (topology) of the architectural struc-

tures using a graph model G(V,E) where V denotes a set of vertices and E denotes

a set of edges. For our graph, each vertex is an (x, y) vertex position extracted from

the skeleton and denotes either: (a) a location where a wall ends or (b) a location

where a wall junction occurs. Each of the skeletal curves extracted in the vectoriza-

tion process corresponds to an edge in the graph and indicates the presence of a wall

in-between these two vertices.

Let Vi = {p} denote the ith vertex location within the computed graph contain-

ing the pixel location, p = (x, y)t, where the skeletal curve junction occurs. Let

Ej =
{

(i0, i1)
∣∣p1,p2, . . . ,pNj

}
denote the skeletal curve fragment that joins the pair

of vertices having indices (i0, i1) in the graph via a sequence of Nj pixel locations. It

is important to note that multiple edges may exist between any pair of graph ver-

tices which makes our graph representation somewhat di�erent from those typically

encountered in graph theory. Such situations tend to occur in drawings of highly

symmetric structures which, due to noise in the drawing digitization and skeleton

estimation processes, seem to occur rarely in practice. Our approach deals with these

situations without need for special treatment. We express the vectorized skeleton in

terms of the computed graph G(V,E) where V = ∪iVi and E = ∪jEj.

G(V,E) is a simply-connected planar graph by virtue of the source data and our

de�nitions for nodes and edges. Hence, we augment our graph with the de�nition

of faces, i.e., regions bounded by edges, including the outer, in�nitely-large region.

Since edges correspond to skeletal curve fragments in the image, faces cover all of the

open spaces in the image, i.e., every white pixel in the binary image will lie within

some unique graph face. For notational purposes, let Fk = {∪jEj |p1,p2, . . . ,pNk
}

denote the kth region of white pixels bounded by the set of edges ∪jEj and containing

a set of Nk pixel locations that denote white pixels lying inside the region covered
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(a) (b) (c)

Figure 5.4: Fitting grammatical shape priors to graph loops and edges. Many leaf
edges present in the original skeleton have also been pruned, as they do not a�ect the
topology of the graph. (a) is a plan drawing after pre-processing. (b) �ts grammatical
prior shapes to graph loops (red for circles and blue for boxes) and to graph edges
(green) which are recognized as defensive walls. Shapes are expanded based on the
thickness of the structure. (c) �ts lines (blue) and circular arcs (green) to graph
edges. Black lines indicate points lying on the vectorized skeleton.

by the kth face. Our augmented graph is then G(V,E, F ) where F = ∪kFk and each

face contains references only to those white pixels lying within the region delimited

by the face edges. The graph faces are computed using the classical wall-following

algorithm which is capable of identifying all simple loops within graphs of this type.

§ 5.1.5 Fitting Grammatical Shape Priors

A shape grammar, Volumetric Shape Grammar (VSG), is designed to model the

medieval architectures. 18 volumetric shapes are designed in this grammar. More

complicated shapes can be represented as the combinations of them. Details of the

VSG are provided in chapter 6. Since we are parsing the plan drawing in this chapter,

the 2D shapes representing the plan drawing are projections of these shapes which

allows for some of the unknown 3D shape parameters to be estimated. For medieval

structure, these projected shapes can be represented by rectangles and circular arcs

or some combination of the two. This step of the algorithm seeks to estimate the best

representation of plan drawings as a collection of these curve fragments in vectorized

skeleton.
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The rectangle and circle models are �tted to the curve fragments associated with

graph loops �rst. If the �tting result is not accurate enough, graph loops are decom-

posed into curve fragments associated with each graph edge, and linear curve models

and circular arc models are �tted to the graph edges. The graph loop associated

with the outer castle boundary is also decomposed into graph edges, and linear curve

models and circular arc models are �tted to each graph edge. Fitting solutions are

quickly computed using the method speci�ed in [79] which provides an explicit solu-

tion for �tting generic algebraic curves to 2D data. We then compute the Euclidean

error between the �t model and the curve fragment data as indicated in equations

(5.1) and (5.2).

εcircle(Ej) =
1

Nj

Nj∑
j=1

‖pj − c‖ − r (5.1)

εline(Ej) =
1

Nj

Nj∑
j=1

|pj · (a, b)t + c|√
a2 + b2

(5.2)

where c, r from equation (5.1) denote the (x, y) location and radius, respectively,

of a circle �t to the sequence of curve fragment points and (a, b, c) from equation (5.2)

denote the coe�cients of the �t algebraic line f(x, y) = ax+ by + c. The parameters

of the shape model having smallest �tting error are associated with each edge. These

classi�cations are then utilized by the procedural model to determine the style and

type of masonry used to construct the wall.

§ 5.1.6 Estimating Semantic Labels

The �nal estimation step seeks to assign semantic labels to each pixel within the

binary image. These labels are divided into two groups: face labels; semantic in-

formation associated with white pixel regions in the binary image and edge labels;

semantic information associated with black pixel regions in the binary image. Spe-

ci�c labels associated with faces and edges depend largely on the type of architectural
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structures included within the drawing. Our approach concentrates on drawings of

medieval castles and fortresses and uses a set of semantic labels appropriate for these

structures.

Prior to estimation of the semantic labels, we simplify the computed graph by

pruning, i.e., removing, leaf edges, i.e., edges that connect isolated vertices into the

graph. These edges typically represent buttresses that stabilize and fortify the struc-

ture, extensions to the existing structure, or areas where a portion of the original

wall has collapsed leaving a void in the plan drawing. While important for a holistic

interpretation of the drawing, the structures associated with leaf edges in the graph

are not used for semantic interpretation and we remove these edges before performing

our semantic analysis of the graph structure. We also make a subsequent pass over

the graph vertices to identify vertices that, after removing the leaf edges, have only

two edges. These vertices are removed from the graph and the edges connected to

these vertices are merged into a single graph edge. As an example, Figure 5.3 shows

several leaf edges that have been pruned in Figure 5.4.

Semantic labels are assigned using a sequence of heuristics that assume the archi-

tectural complexes present in the image is a castle. We have a top-down approach for

assigning face and edge labels that starts with large regions and iteratively decreases

in scale until all of the edges and faces within the graph have been assigned a semantic

label. This approach assumes that the drawing includes the entire castle complex and

is based on observations of >150 castle plan drawings from a variety of sources (e.g.,

[36]). The heuristics are stated as an ordered sequence of steps where, at each step,

semantic labels for graph faces or edges are assigned. In our listing italics denote a

semantic label associated with bold elements that come from the estimated graph

G(V,E, F ) :

1. The castle surroundings label (dark blue) is assigned to all faces, Fk, that

include the boundary of the image.
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2. The castle outer walls label (yellow) is assigned to all un-classi�ed edges, Ej,

that bound the faces found in (1) as part of the castle surroundings.

3. The courtyard label (blue) is assigned to the un-classi�ed face, Fk, having

largest area.

4. The tower wall label (orange) is assigned to un-classi�ed edges, Ej, that are

part of the castle outer walls class and extend signi�cantly towards the exterior

of the castle. Detecting towers is accomplished by comparing the curve fragment

associated with the tower edge to a straight-line curve fragment that connects

the vertices spanned by the edge and applying Jensen's inequality; a test for

convexity.

5. The tower face label (green) is assigned to un-classi�ed faces, Fk, that include

at least one tower wall as a bounding edge as speci�ed in (4).

6. The great hall label (light blue) is assigned to the un-classi�ed face, Fk, having

largest area.

7. The great hall wall label (light red) is assigned to un-classi�ed edges, Ej, that

bound the great hall speci�ed in (6).

8. If more than three faces remain unclassi�ed, we assume the castle contains a

chapel. The chapel label (cyan) is assigned to the face, Fk, having largest area

from the list of un-classi�ed faces.

9. If a chapel was found, the chapel wall label (red) is assigned to the un-classi�ed

edges, Ej, that bound the chapel speci�ed in (8).

10. Remaining faces are classi�ed as unknown (light green) and likewise for edges

(white).
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(a)

Figure 5.5: The original archaeological plan drawing for the Crusader fortress at
Apollonia-Arsuf in Israel. Results for this image are shown in Figure 5.6 (top row).
The proposed method does not use information from some annotations such as the
topographical lines in this plan drawing.

We also note that, in some cases there exist long thin white in plan drawings often

associated with passageways and typically occurring in the gate area. As a pre-

processing step, these faces are eliminated from the list of faces and marked as un-

known regions (white).

§ 5.2 Shortcomings of Our Approach

While this method performs well for a number of Medieval castles, there are a number

of potential sources of error which may occur:

• Potential problems with the input image data,

• Errors in classi�cation, i.e., limits to the generality of our heuristic rules,

• Errors in geometric accuracy

Typically a user will need to dedicate a short period of time (<5mins) to �clean up�

the input image for our system (see � 5.1.1). Typical problems due to the input image

data occur when:
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1. the size of the castle within the image is either too small (< 10% of the image)

or too big (extends o� the image boundary).

2. the image includes other structures apart from the castle, e.g., the image con-

tains a building separated the castle.

3. the castle is surrounded by another structure / forti�cation in the image, e.g.,

if present, the outer-bailey/enceinte of the castle must be manually removed.

4. the castle boundary is not a closed, thick contour in the image, i.e., the boundary

is not distinguishable from other annotations in the image such as topographical

lines, grid-lines, etc (see � 5.1.2 for details).

Note that issue (1) is a resolution-related problem and issues (2,3,4) are issues that

relate to the topological structure of the graph extracted from the image (see � 5.1.4).

While our proposed method is completely new and works well for a number of

castles it may incorrectly identify some parts of the castle. The generality of the

heuristics applied in � 5.1.6 is also limited and applies generically only to fortresses

and castles constructed within the Medieval period. While castles from other periods

generally share the same structure, heuristics for internal structural complexes as

speci�ed in rules 6-10 are more likely to generate incorrect classi�cations for castles

built before or after the Medieval period.

At the moment, no e�orts are placed to extract topological, i.e., height information

with respect to the �ground plane,� which are present in some archaeological drawings

(see Figure 5.5). Hence geometric errors may exist in the model due to two sources:

(1) the exact topography of the ground in the vicinity of the castle is assumed �at

and (2) the height of the castle structures is not available from the plan drawings, our

approach assumes pre-de�ned heights and proportions for classi�ed structures based

in their class-label.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5.6: Results for two castles are provided as separate rows: (top) A Crusader
fortress at Apollonia-Arsuf in Israel (bottom) Harlech castle in Northern Wales (see
Figure 5.1) for a similar set of results computed for Caerlaverock castle in Southern
Scotland. (i) and (j) are the photos of Apollonia-Arsuf fortress and Harlech castle.

§ 5.3 Generating the 3D Model

The 3D models are generated using volumetric extrusions of the semantic labels esti-

mated in the previous step. Semantically distinct regions are extruded to a di�erent

z-value with towers having the highest extruded o�set, tower rooms having the second

highest o�set, followed by outer walls, great hall walls, great hall room, chapel walls,

chapel room, unknown walls, unknown rooms, the courtyard and �nally the castle

surroundings which are placed in the z = 0 plane. More sophisticated models can

exploit the semantic labels to generate detailed geometry using methods such as [59]

to �ll-in missing information procedurally in a manner appropriate to the identi�ed

semantic type.
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§ 5.4 Results

The parsing and recognition results are shown in Figures 5.1 and 5.6. In general,

we are pleased with these results which reliably classify the castle surroundings face,

the castle outer walls, the castle towers, tower rooms, and the courtyards for each of

the shown examples. As demonstrated by comparing the actual buildings to those

reconstructed automatically, the semantic labels provide important information that

provide a good coarse estimate of the structure.

§ 5.5 Conclusion

We have presented software that processes archaeological plan drawings for the pur-

pose of identifying signi�cant semantic sub-structures present within the drawing.

While other methods exist for processing architectural documents, our approach dif-

fers from previous approaches in both goal and methodology. Our goal is to be

able to process documents, old and new, that describe historic sites, parse seman-

tic meaningful structures, and estimate structure geometries. The parsing result is

integrated with estimation results from other perspectives to assist in generating vol-

umetric models. Our approach generates semantic labels from scanned manuscripts

using a process that is fully-automatic in most tested cases and in some cases re-

quires a modest amount of user interaction. The shape-and-topology model a�orded

by using a skeleton model for shape and a graph model for topology allows heuris-

tics to be de�ned that can identify important semantic structures within the plan

drawing. E�ective heuristics for medieval castles and fortresses were discussed that

led to satisfactory classi�cation of semantic labels for architecture of these structures

and the rooms within these structures. The process results in several useful products

including the �nal parse of the plan drawing into semantic labels. These products

include:
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• Software that provides fully-automatic methods for extracting architectural

structures from digitized documents. If necessary, this process can be controlled

interactively to e�ciently extract structural data from plan drawings.

• A combined shape-and-topology model for building complexes. The shape com-

ponent of the model represents the complex as a connected group of curve-

elements where each curve element corresponds to areas where the walls are

linear or cylindrical in shape which are shapes typical to medieval castle con-

struction. The topological component of the model uses a simple planar graph

having edges associated with each wall, vertices at wall junctions and faces for

open spaces that bound the complex (including the castle exterior).

• Heuristics are used to assign semantic labels to each architectural curve-element

and each open space within the image.

• A virtual 3D model of the architecture is estimated using the estimated semantic

labels and the estimated binary image.

• An explicit list is provided that details issues that may cause erroneous outputs

and issues that relate to the accuracy of the generated 3D model.

Since the 3D model is derived from plan drawings where the architectural contour

is well-de�ned, the approach automatically provides near-pixel level accuracy at all

locations which is very di�cult and time-consuming to guarantee when manually

constructing 3D models from the same drawing. Hence, these automatically-produced

models can provide unprecedented accuracy to the in-situ remains not feasible with

conventional manual model-building techniques.



CHAPTER 6: INTEGRATING MULTIPLE 2D ESTIMATES

This chapter describes a technique for integrating parameters that provide partial

estimates of some architectural 3D structure having unknown global shape to generate

a complete hierarchical 3D model of this architecture. It is the �nal component in

the architectural shape estimation system and is labeled as �4� in �gure 1.2. This

portion of the system seeks to integrate shape estimates provided by several di�erent

estimation methods to create a single collection of consistent shape parameters that

enable a 3D model to be constructed. Prior work makes available the following

inputs for integration: (1) 2D façade hierarchical models of rectangular façades (from

chapter 3) and Gothic façades (from chapter 4), and (2) a collection of 2D shapes

within a plan drawing associated with semantic labels (from chapter 5). A hierarchical

3D architectural model, which includes both semantic and geometry information, is

generated by integrating the available input estimates. A method that utilizes the

integrated shape parameters to create 3D models is described in chapter 7.

§ 6.1 Methodology

The approach for integrating multiple partial 2D estimates into a complete 3D hier-

archy model consists of four steps:

1. The user interactively speci�es (with a mouse) correspondences between hier-

archical façade models and 2D shapes estimated from a plan drawing.

2. The parameters estimated from the façade images are automatically scaled to

be consistent with shape parameters from the plan drawing. In some circum-

stances, con�icting values from shape parameters may exist. In such case, the



83

Figure 6.1: Three pairs of façade models to plan drawing shapes correspondences
generated by user selected points in a plan drawing image and a façade image.

con�icting parameters are re-estimated to generate a single set of globally con-

sistent values.

3. A complete semantic hierarchy is generated by integrating corresponding façade

semantic hierarchies with semantic elements estimated from a plan drawing.

4. Following the semantic hierarchy generated in step 3, a single collection of glob-

ally consistent 3D shape parameters that enables 3D models to be constructed

is generated by integrating 2D shape parameters computed in step 2.

§ 6.1.1 Interactively Specifying the Correspondences

In this step the user interactively speci�es the correspondences between the estimated

façade models and elements parsed from a 2D plan drawing by selecting (with the

mouse) a point inside a segmented façade boundary and a point (or two points for

circle) inside a plan drawing shape. Since a building may have multiple façades,

multiple façade models can be mapped to a single shape in the plan drawing. If the

plan drawing shape is a rectangle, a façade is mapped to a side of the rectangle, which

is the façade representation in a plan drawing, that has the minimum distance to the

user selected point. If the plan drawing shape is a circle, a façade is mapped to a

part of this circle as a circular arc. The user needs to select the starting point and
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(a) (b) (c) (d)

Figure 6.2: Integrate con�icting model parameters from two façade images. Floor
and window parameters are estimated independently �rst in (a) and (b). Con�icting
parameters are re-estimated and the optimized global consistent values are taken in
(c) and (d).

the ending point for the circular arc in a counter-clockwise order. For example, three

pairs of correspondences are speci�ed from the user selected points in �gure 6.1.

§ 6.1.2 Resolving the Inconsistent Parameters

Inconsistencies between independently generated shape estimates must be resolved

to a collection of consistent parameters that enable 3D models to be constructed.

Since the input façade images and plan drawing are provided at di�erent scales, the

estimated shape may also include a scale factor con�ict. Since each façade is estimated

locally, the global shape parameters, such as building heights and �oor heights, may

con�ict, especially when multiple façades are mapped to a single shape from the plan

drawing.

Scale con�icts are resolved by scaling the façade estimates to match the plan draw-

ing estimates. The re-scaling proceeds by multiplying the façade shape parameters

by a factor s so that the width wf of the rectangular façade boundary is equal to

the width of the façade as represented in the plan drawing wp. For example, if the

plan drawing shape is a rectangle, then the scaled façade boundary width w′f = swf
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is equal to the width wp of the façade representation in the plan drawing, which is

either the length or the width of the rectangle. Hence, the scale factor di�erence s

is given by s = wp

wf
. If the plan drawing shape is a circle, then the scaled façade

boundary width w′f is equal to the diameter of that circle dp, estimated from the plan

drawing. Hence, s = dp
wf
. If the architect's scale in plan drawing is provided, the

integrated 3D parameters can be scaled so that the generated model is 1:1 in scale to

real world objects.

If multiple façades are mapped to a plan drawing shape, a globally consistent set

of parameters must be re-estimated using all the façade data simultaneously. Before

re-estimating parameters, the height of each overlapping façade image Hn is scaled

by a factor syn such that they all have the same height H̄. The building height H̄ is

computed as the average of all estimates

H̄ =
1

N

∑
n

Hn

The scale factor syn for each façade is given by syn = H̄
Hn

. Then, using all the façade

data simultaneously, the parameters for all façade sub-structure

{h1, h, hNL
, NL, woff , ww, wgap, wh, wgrd, w

′
h, w

′
grd, wh”, wgrd”, Nw}

are jointly estimated using the method proposed in section 3.1.7 with additional

constraints that the parameters regarding the vertical direction:

{h1, h, hNL
, NL, wh, wgrd, w

′
h, w

′
grd, wh”, wgrd”}

are equal in all façades (see parameter de�nition in section 3.1.6). In this way, the

estimated parameters from di�erent façades are made to be globally consistent (see

examples in �gure 6.2).
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(a) (b) (c)

Figure 6.3: An example of a semantic tree generated by merging the semantic ele-
ments using the correspondences speci�ed in �gure 6.1. (a) are the semantic elements
associated with a rectangular shape in the plan drawing. (b) is a façade semantic
hierarchy estimated from the façade image of �gure 6.1. (c) is the integrated seman-
tic hierarchy generated by merging (a) and (b) where the symbol �Wall1� has been
replaced by its corresponding façade symbol �Facade1�.

§ 6.1.3 Integrating the Semantic Hierarchy

A semantic hierarchy for 3D architecture is generated by merging the semantic ele-

ments estimated from a plan drawing and façade images using the correspondences

speci�ed from a user. The semantic meaning of the root for each architectural struc-

ture is taken to be the semantic label assigned during the plan drawing estimation.

The children of the semantic root consists of wall elements and an interior element.

For example, a hollow rectangular architecture, such as rectangular towers, rectan-

gular keeps and rectangular rooms, have four wall elements and an interior space

element as children. A hollow cylindrical architecture, such as a circular tower, has

two children: a wall element and an interior space. A solid architecture, such as a

defensive wall, has wall elements and an interior ��ll� volume element as children. If

a façade estimate is mapped to a wall element in the semantic hierarchy, the wall

element is replaced by the façade semantic hierarchy (see an example in �gure 6.3).
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Figure 6.4: Reconstruction results for three architectural models generated by in-
tegrating shape estimates of these structures from a plan drawing and one façade
photograph from �gure 6.1 are shown.

§ 6.1.4 Generating the 3D Model Geometry

The 3D shape parameters associated with each semantic element in the hierarchical

semantic tree are generated by merging corresponding 2D shape parameters. The �oor

plan estimation (from chapter 5) results in a collection of elements, each of which has

a semantic meaning and a shape that is either a box or a portion of a circular arc. The

position, orientation (in the xz-plane), and dimension (in the xz-plane) for each of

these shapes are stored as output from the �oor plan estimation process. The façade

estimation (from chapter 3 and 4) results in a façade hierarchy tree. For each semantic

element within the tree, the positions (in the plane perpendicular to the xz-plane)

and dimensions (in the plane perpendicular to the xz-plane) of the shape are provided

as output. Since the 2D semantic elements are mapped to 3D semantic elements (in

section 6.1.3) and the 2D estimates are taken from perpendicular directions, the

3D shape parameters can be generated by simply merging the 2D shape parameters

associated with the same 3D semantic elements.

§ 6.2 Limitation

The integrated 3D architecture estimation system is limited in three ways. First, since

the proposed system seeks to estimate 3D architecture from sparse images using a

plan drawing and at least one façade image, the provided input information is limited.
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The images regarding the roof or the interior of the architecture are not provided, as

a result, the estimation to these structures is not addressed in this dissertation. In

some cases, not all façades of a building are provided, so only the visible structures are

estimated. Second, the actual architectural semantic elements present in a façade are

more varied than what have been estimated by the method in this dissertation. For

example, doors, stairs and crenelations are not discussed in this dissertation. Third,

the shapes that the integrated system can estimate is limited. Only rectangular shapes

and circular shapes can be parsed from plan drawing, and the façades are recti�ed to

be planar rectangular shapes. When a façade contains extruded structures, such as

balconies, and the façade image is not taken with the viewing direction perpendicular

to the façade, the estimated structure parameters will contain non-planar projective

errors (such as the second window to the left on the third �oor in �gure 6.2).

§ 6.3 Results

A Harlech castle 3D architecture model is generated from only a plan drawing and �ve

façade images (�gure 6.5). This castle consists of six circular towers, two main-keeps,

six defensive walls and ten internal rooms. With the exception of the internal rooms,

which are not visible in the façade images, all other structures are estimated from

the façade images and plan drawing. Since the current system is not able to estimate

smaller elements within the façades of circular towers and defensive walls, only the

building boundaries are estimated for these structures. Floor and window structures

are estimated for the façade of the main keep. 3D boundary models resulting from

the estimation are provided in �gure 6.5. In chapter 7, 3D models are generated from

the shape parameters extracted in �gure 6.5.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Estimation of a 3D model for the Harlech castle using �ve façade images,
which include an image in �gure 6.1. Left column includes four façade images. Right
column include four views of the 3D model from corresponding poses.
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§ 6.4 Discussion

This chapter proposes a method to integrate partial 2D shape parameter estimates

of some global unknown architectural 3D structure to generate a set of complete 3D

model parameters. The correspondences between the façade hierarchy models and

2D shapes estimated from a plan drawing are interactively speci�ed by the user.

Since previous estimates are computed independently, shared shape parameters may

con�ict. Con�icting parameters are re-computed to determine a single set of shape

parameters that maximize the global merit. 3D architecture semantic hierarchy and

parameters are generated by integrating corresponding estimates from the 2D plan

drawing and façade images. The integration results in a collection of primitive shapes

whose shape parameters and associated semantic label are known, which provides a

complete part-based representation of the previously unknown architecture.



CHAPTER 7: EFFICIENTLY GENERATING VOLUMETRIC MODELS

This chapter introduces a new shape grammar, which is referred to as a Volumet-

ric Shape Grammar (VSG). A VSG seeks to e�ciently generate volumetric models

using a sequence of VSG rules. The VSG is the �nal component in the architecture

estimation and reconstruction system, which is the system component labeled as �5�

in �gure 1.2. This work uses values of 3D shape parameters and their semantic label

to automatically create a VSG program. By running the VSG program, a 3D model is

created which is taken as a 3D reconstruction of the estimated architectural objects.

§ 7.1 Volumetric Shape Grammar

Shape grammars provide a dynamic way of describing complex but highly structured

geometries as a shape grammar program. The shape grammar program speci�es some

initial shape that is decomposed into smaller shapes using a sequence of grammar

rules. Each grammar rule replaces the predecessor symbol with one or more successor

symbols. A VSG is a formal grammar that assigns 3D shapes to grammatical symbols,

where each VSG rule must follow the syntax of (7.1) below

predecessor : condition : successor : probability (7.1)

where predecessor is a symbol associated with some VSG shape, condition is a logical

expression which allows the rule to be executed if true, successor is a collection of

one or more symbols that replace the predecessor symbol, and probability is a number

between 0 and 1 which evaluates the probability of executing the rule. The condition

and the probability aspects of each rule are optional. The default values of condition
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and probability are true and 1 if not speci�ed. Each symbol within the grammar is

de�ned to be a terminal symbol or a non-terminal symbol. A non-terminal symbol is

de�ned to be any symbol that can be replaced by another non-terminal or terminal

symbol. A terminal symbol is de�ned to be any symbol that cannot be replaced.

§ 7.1.1 VSG Functions

Each VSG rule describes how a symbol (speci�ed as the predecessor) is replaced with

new symbols (speci�ed as one or more successor) given that the condition is true

and the probabilistic event having probability is observed. As a volumetric shape

grammar, each symbol is associated with some 3D shape. The 3D shape associated

with the predecessor/successor is referred to as a predecessor/successor shape, and

a shape associated with non-terminal/terminal symbol is referred to as a nonter-

minal/terminal shape. Successor shapes generated by executing each rule may be

modi�ed by rule functions that may be declared before the list of successors. Hence,

a successor may have a rule function that modi�es some attributes of the successor

shapes.

The VSG functions can be divided into three categories: (1) instantiation func-

tions, (2) transformation functions and (3) termination functions. An instantiation

function instantiates a new primitive shape and associates the instantiated shape with

a successor. A transformation function de�nes how predecessor shapes are geometri-

cally transformed and associates the transformed shapes with the successor symbols.

A termination function converts non-terminal predecessor shapes into terminal shapes

and adds the terminal shape to a 3D model to be viewed.

Instantiation function: There is only one type of instantiation function, which

is applied in the following form:

A :: I(”sType”, {params}){sym}
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where A is the predecessor; I(”sType”, {params}) is the instantiation function; and

sym is the successor. This rule instantiates a 3D shape and associates it with the

successor sym. The instantiation function speci�es the 3D shape type as sType (sup-

ported shape types are listed in table 7.1) and the 3D shape parameters as params

(the shape parameters for each shape type are also listed in table 7.1). The in-

stantiated shapes are non-terminal shapes with their centers in the coordinate origin

without rotation.

Rotation and translation functions: The orientation attributes of a shape can

be changed using the rotation function R(Rx, Ry, Rz) and the position attributes are

modi�ed using the translation functions T (Tx, Ty, Tz). These functions are applied

before the instantiation function and modify the attributes of the successor shape

A :: R(Rx, Ry, Rz)T (Tx, Ty, Tz)I(”sType”, {params}){sym}

Multiple shapes can be constructed simultaneously using multiple insert functions.

For example two shapes may be created as follows:

A :: I(”Type1”, {params1})R(a, b, c)T (x, y, z)I(”Type2”, {params2}){sym1, sym2}

where the shape instantiated by the �rst instantiation function is associated with

sym1, and the shape instantiated by the second instantiation function is associated

with sym2, and the translation and rotation attributes for the shape associated with

sym2 are modi�ed by the rotation and the translation functions.

Direct split function: The direct split function and the repeat split function

transform the geometry of a 3D shape. The direct split function divides a shape into

multiple shapes along speci�ed direction at speci�ed locations. The form of the direct

split function is:
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split(”direction”, {lengths})

where the direction is the direction along which the predecessor shapes are split,

the lengths are a sequence of numbers specifying the split locations along the split

direction, and the symbols are the symbols associated with the newly generated

shapes. For example, the following rule uses the direct split function to divide the

predecessor Box given in �gure 7.1(a) into three smaller boxes shown in �gure 7.1(b),

and associates these three box shapes with symbols B1, B2 and B3 respectively.

Box :: split(”X”, {1, 3, 2}){B1, B2, B3}

The successor shape types generated via the split operation may be di�erent from

predecessor shape type. For example, given a cylindrical shape that is split along the

radius direction, two groups of distinct 3D shape are generated: (1) a cylinder and

(2) a sequence of extruded rings. For each VSG shape, the allowed split directions

and the corresponding generated shapes are listed in table 7.1.

Repeat split function: The repeat split function works in a way similar to the

direct split function:

repeat(”direction”, {lengths}, offset)

The di�erence is that the repeat split function starts at the position given by the

value o�set, and recursively divides the predecessor shape into successors having the

speci�ed lengths until the end of the predecessor shape along the speci�ed direction

is reached. For example, the following rule

Box :: repeat(”X”, {2, 1}, 0.5){B1, B2}
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(a) (b)

(c) (d)

Figure 7.1: The �rst row shows an example of direct split. A box shown in (a) with
length 6 is split into three smaller boxes with length 1, 3 and 2 shown in (b). The
second row shows an example of repeat split. A box shown in (c) with length 7,
starting at o�set 0.5, is recursively split by length 2 and 1 into 4 smaller boxes, 1
o�set box and 1 reminder box shown in (d).

use repeat split function to cut the predecessor Box given in �gure 7.1(c) into smaller

boxes shown in �gure 7.1(d). From left to right, the generated six smaller boxes are

associated with symbols {B2,B1,B2,B1,B2,B1}.

Appearance function: The appearance functions set the VSG shapes' appear-

ances:

appearance(”attribute”, {values}, ..., ”attribute”, {values})

One or multiple appearance attributes, including color, material (or ambient, di�use,

specular, emissive and shine) and texture image, can be set in a function. Default

appearance parameters are used if the corresponding attributes are not speci�ed.

Void function: The void function is a special type of appearance function. It

makes the shape invisible.

void()
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Termination symbol: A termination symbol is a special symbol that may be

used in any rule. It converts the non-terminal shape associated with the predecessor

into a terminal shape having the same 3D shape as the predecessor:

A :: {j3d.terminal}

Typically appearance functions or void functions are speci�ed immediately before the

termination symbol in a VSG rule:

predecessor :: appearance(”attribute”, {values}){j3d.terminal}

§ 7.1.2 VSG Shapes

Each shape associated with a VSG symbol has a volume and is referred to as a

volumetric shape. A diversity collection of 3D shapes may be associated with VSG

symbols and form the �alphabet� of the shape grammar. An alphabet has been

chosen that consists of 18 types of the commonly occurring 3D shapes that enable

the VSG to accurately represent most historic and modern architectures (shown in

�gure 7.2).

The shape attributes are di�erent for terminal shapes and non-terminal shapes.

A non-terminal shape's attributes are compact, which include shape type, shape

parameters, transformation parameters and appearance parameters. Di�erent shape

parameters are required to specify di�erent shape types (details are listed in table

7.1). For example, a box shape requires a three dimension vector (x, y, z) to represent

the length, x, the height, y, and the thickness, z. While a cylinder shape requires

a two dimensional vector (x, y) to represent the radius, x and the height, y. The

transformation parameters include a translation vector (Tx, Ty, Tz) for the translations

in X, Y and Z directions, and a rotation vector (Rx, Ry, Rz) for the rotations around
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 7.2: Primitive shapes de�ned in the VSG. (a) Box, (b) Ramp, (c) Ramp
Frustum, (d) Parallelepiped, (e) Cylinder, (f) Extruded Ring, (g) Extruded Fan, (h)
Cylindrical Sector, (i) Cone, (j) Conic Frustum, (k) Conic Ring, (l) Conic Fan, (m)
Conic Sector, (n) Tetrahedron, (o) Tetrahedron Frustum, (p) Tetrahedron Sector, (q)
sphere, and (r) Spherical Sector

(X, Y, Z) axes. The appearance parameters specify a shape's appearances using color,

material and texture variables. A terminal shape's attributes are represented by a

surface mesh, which is a collection of surface vertices, edges and faces.

Besides the 18 types of primitive shapes, there is one more type of VSG shape,

which is referred to as a unique shape. A unique shape is generated via some vol-

umetric boolean operation [39] which combines VSG shapes as shown in �gure 7.3.

Allowable boolean operations include union, intersection and di�erence (see �gure

7.3). While the 18 primitive shapes can be associated with both terminal symbols

and non-terminal symbols, unique shapes can only be associated with terminal sym-

bols, since the volumetric boolean operations can only be applied to terminal shapes.

This collection of 19 types of shapes is capable of accurately represent a very large
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Primitive
Shape

Shape
Parameters

Split Directions: Generated Shapes

Box length, height,
thickness

X: Box; Y:Box; Z:Box

Ramp length, height,
thickness

X:Ramp; Y:Ramp/Ramp Frustum;
Z:Ramp/Ramp Frustum

Cylinder radius, height R:Cylinder/Extruded Ring; Y:Cylinder;
Theta:Extruded Fan

Cone radius, height Y:Cone/Cone Frustum; Theta:Conic Fan
Tetrahedron edge1, edge2, height,

angle
Y:Tetrahedron/Tetrahedron Frustum;

Theta:Tetrahedron
Sphere radius R:Spherical Sector/Sphere; Theta:

Spherical Sector; Phi:Spherical Sector
Ramp
Frustum

length, height, thick,
top length

X: Ramp/Ramp Frustum/Parallelepiped;
Y:Ramp Frustum; Z:Ramp Frustum

Parallelepiped length, height, thick,
o�set1, o�set2, o�set3

X: Parallelepiped; Y:Parallelepiped;
Z:Parallelepiped

Extruded
Ring

radius, height, inner
radius

R:Extruded Ring; Y:Extruded Ring;
Theta:Cylindrical Sector

Extruded Fan radius, height, angle R:Cylindrical Sector; Y:Extruded Fan;
Theta:Extruded Fan

Cylindrical
Sector

radius, height,
inner radius, angle

R:Cylindrical Sector; Y:Cylindrical
Sector; Theta:Cylindrical Sector

Conic
Frustum

radius, height, top
radius

R:Conic/Conic Frustum/Conic Ring;
Y:Conic Frustum; Theta:Conic Sector

Conic Ring radius, height, top
radius, inner radius

R:Conic Ring; Y:Conic Ring;
Theta:Conic Sector

Conic Fan radius, height, angle Y:Conic Fan; Theta: Conic Fan
Conic Sector bottom radius,

height, angle, top
radius, thickness

R:Conic Sector; Y:Conic Sector;
Theta:Conic Sector

Tetrahedron
Frustum

edge1, edge2, height,
angle, top edge1

R:Tetrahedron/Tetrahedron
Frustum/Tetrahedron Sector;
Y:Tetrahedron Frustum;

Theta:Tetrahedron Frustum
Tetrahedron

Sector
edge1, edge2, height,
angle, top edge1, split

R:Tetrahedron Sector; Y:Tetrahedron
Sector; Theta:Tetrahedron Sector

Spherical
Sector

radius, angle1, angle2 R:Spherical Sector; Theta:Spherical
Sector; Phi:Spherical Sector

Unique Shape - Not allowed

Table 7.1: A list of shape types, shape parameters and the allowable split operations
de�ned in VSG.
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(a) (b) (c)

Figure 7.3: Unique shapes generated by applying the volumetric Boolean operations
onto two cylinders. (a) volumetric union operations, (b) volumetric intersection op-
erations, (c) volumetric di�erence operations.

variety of architectures with highly detailed geometries.

§ 7.1.3 Production Process

The VSG procedurally generates volumetric models by applying (i.e., executing) a

sequence of VSG rules. The production process starts with the instantiation of a

mass model, which is a collection of primitive shapes usually representing the rough

architectural boundary of a given structure. VSG rules incrementally break down the

primitives of the mass model into more detailed structures by adding local geometric

variation and potentially changes in appearance at each level in the decomposition.

The production process terminates when all non-terminal shapes have been converted

into terminal shapes.

The process of decomposing mass models into detailed structures generates a hi-

erarchical collection of VSG shapes, including both non-terminal shapes and terminal

shapes. The shapes generated at each level of the decomposition are associated with

semantically meaningful components of the architectural hierarchy. In a semantic per-

spective, the decomposition process extends the architectural semantic hierarchy tree

by adding detailed successor shapes as children to the parent predecessor shapes. Al-

though volumetric models are only generated for terminal shapes, the non-terminal

shapes are not deleted since (1) the non-terminal shapes and terminal shapes to-



100

(a) (b) (c) (d)

Figure 7.4: An example of creating a simple building using VSG. First, a mass model
is created for the building in (a). Then the building is divided into four façades and a
interior volume in (b). Finally one façade is divided into �oors and windows in (c). A
another similar building model in (d) can be created by simply changing the building
length and height parameters.

gether represent a complete architectural semantic hierarchy, (2) starting from the

non-terminal mass models, the process forces the completeness of model geometry in

3D space, and (3) the non-terminal shapes enable the user to query the 3D architec-

tural models using the semantic labels within the hierarchical tree.

§ 7.2 Generating Volumetric Architectural Models Using VSG

The VSG is designed for, but not limited to, the creation of architectural models.

Users have the freedom to design and virtually create synthetic architectural mod-

els of a variety of styles by programing a sequence of VSG rules. A more e�cient

way of virtually reconstructing architectural models is to utilize prior integrated 3D

estimates by automatically converting the estimates into a sequence of VSG rules

which collectively form a VSG program. Volumetric models can then be generated

by executing the automatically generated VSG program.

§ 7.2.1 Synthetically Generating Volumetric Models

The VSG provides users the freedom to design and create a variety of volumetric

models. To generate a VSG model, users need to design and program the VSG

rules. Two major aspects need to be considered during the VSG design: (1) the
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VSG rules 7.1 A sequence of VSG rules for a simple building.

Axiom : : I (" box " ,{5 ,10 ,3}){ bu i l d i ng } ;
bu i l d i ng : : s p l i t ("Z" , { 0 . 1 , 2 . 8 , 0 . 1 } ) { wallN , midBuilding , wal lS } ;
midBuilding : : s p l i t ("X" , { 0 . 1 , 4 . 8 , 0 . 1 } ) {wallW , i n t e r i o r , wallE } ;
wal lS : : r epeat ("Y" ,{2}){ f l o o r S } ;
f l o o r S : : s p l i t ("Y" , {0 . 5 , 1 , 0 . 5 } ) { brickWall , midWallS , br ickWal l } ;
midWallS : : r epeat ("X" , {1 , 0 . 5 } , 0 . 5 ) { window , br ickWal l } ;
i n t e r i o r : : r epeat ("Y" , { 1 . 9 , 0 . 1 } ) { in t e r i o rSpac e , f l o o rRoo f } ;
wallN : : { j3d . t e rmina l } ;
wallW : : { j3d . t e rmina l } ;
wallE : : { j3d . t e rmina l } ;
br ickWal l : : { j3d . t e rmina l } ;
window : : appearance (" c o l o r " , { 0 . 3 , 0 . 3 , 0 . 7 } , " transparency " , 0 . 5 )

{ j3d . t e rmina l } ;
i n t e r i o r Spa c e : : void ( ){ j3d . t e rmina l } ;
f l o o rRoo f : : { j3d . t e rmina l } ;

architectural semantic hierarchy, and (2) the 3D shape types and shape parameters

associated with the semantic elements in the hierarchy. The freedom of how to design

the architectural hierarchy and how di�erent VSG shapes are used enables the user

to create architectures having a large variety of styles and shapes. Volumetric models

are procedurally generated by executing the programed VSG rules.

This modeling approach is very e�cient especially when the created models have

many repeated or similar sub-structures, such as �oors, windows and bricks. For

example, a simple building (�gure 7.4-c) can be created by executing 14 VSG rules

(list in VSG rules 7.1). The �rst rule instantiates a building mass model (�gure 7.4-a)

using a box shape. Then the mass model is horizontally divided into four walls and

an interior volume using the second and the third rules (�gure 7.4-b). Next, one of

the four walls is divided into �oors and windows using the fourth to the sixth rules,

and the interior volume is divided into an interior space , �oors and a roof using the

seventh rule. Finally, the remaining seven rules convert all the non-terminal shapes

into terminal shapes. The simple building model is generated by executing this VSG

program is shown in �gure 7.4-c. We can also e�ciently convert this model to a
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(a) (b)

(c) (d) (e)

Figure 7.5: Synthetic architectural models generated using the VSG. (a) is a dry
moat 3D surface image generated by a LIDAR scanner, where a drawbridge has
been destroyed. (b) is a virtually reconstructed drawbridge model with the inferred
architectural style and geometry. (c) is a Gothic chapel architectural model. (d) is
the interior view of the Gothic chapel model. (e) is an example a Gothic window
model used in the Gothic chapel model.

similar building model (�gure 7.4-d) by changing parameters, such as the building

height and length.

This approach for generating 3D models can be very useful to cultural heritage

researches. Many historical structures have been destroyed and we don't have a direct

source of measurement to guide the virtual reconstruction. However, the architectural

styles and structures can be estimated from the remaining sites or inferred from liter-

ature. In this case, it is required that the users write down the estimated architectural

semantic hierarchy and geometries in the form of VSG rules as inputs, and the VSG

virtually generates architectural models as outputs by executing these rules. For ex-

ample, a drawbridge model and a Gothic chapel model are virtually reconstructed

from a user-speci�ed VSG program in �gure 7.5.



103

VSG rules 7.2 A simple VSG pseudo-code that summarizes the VSG rules that the
architecture estimation system is evaluating from input images, where the symbol
�...� means repeated values and symbol �?� represents shape parameters.

c a s t l e : :R(? )T(? ) I ( ? ) . . . R(? )T(? ) I ( ? ) { bu i ld ing , . . . , bu i l d i ng }
bu i l d i ng : : d i v id e ( ? ) { facade , . . . , facade , i n t e r i o r Spa c e } ;
facade : containsWindow : d i v id e ( ? ) { f l o o r , . . . , f l o o r } ;
f l o o r : : d i v id e ( ? ) : { window , . . . , window , b r i c k s } ;
facade : noWindow : d iv id e ( ? ) { b r i c k s } ;
window : : appearances ( ? ) { j3d . t e rmina l } ;
b r i ck : : appearances ( ? ) { j3d . t e rmina l } ;
i n t e r i o r Spa c e : : void ( ) { j3d . t e rmina l } ; // not est imated

§ 7.2.2 Generating Architectures Using Integrated 3D Estimates

As discussed in chapter 6, the integrated 3D shape parameters estimated from façade

images and plan drawing can be automatically converted into a sequence of VSG

rules (i.e., a VSG program) to generate architectural 3D models. The conversion

process maps semantic labels from the façade and plan drawing estimates to symbols

in a generic VSG program having the form shown in VSG rule 7.2. The symbol

relationships in the rules follow the semantic hierarchy, and the functions for shape

operations are taken from estimated shape geometries. This VSG program starts with

the instantiation of mass models (on line 1). The following rule divides mass models

into façades and interior space (on line 2). Then each façade is broken down into

detailed structures based on the estimation results for window and brick locations

(on line 3 to 5). Eventually, a hierarchical collection of 3D terminal shapes and

photographically-derived appearances are generated.

It is expected that this VSG program is capable of generating models that have not

only accurate geometries, but also photo-realistic appearances. Since the generated

models have a very high level of geometric detail, which allows for estimated castle

models to include a large number of VSG shapes.

A set of sample texture images for each type of semantic elements may be cre-

ated by manually selecting regions in the input images that represent typical element
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Random texture appearances example. (a) is a generated wall model
consists of bricks. The appearance texture image of each brick is randomly selected
from a sample set. The texture sample set includes four texture images (c) - (f),
which are selected at representative regions from (b).

appearances. Then the texture image for each shape may be generated by making

random selections from the corresponding texture image set through the VSG pro-

gram. For example, a set of texture images for bricks is created by selecting four

regions representing four di�erent materials from input images (�gure 7.6). A wall

model that consists of bricks is also created in �gure 7.6, where the texture image of

each brick is randomly selected from the texture image set.

The e�ciency of converting 3D estimates into VSG rules can be further improved

for a class of common medieval defensive architectures. Based on the study of the

architectural design of near 100 example medieval citadels, castles and fortresses

[36, 61, 86], it is discovered that a lot of medieval defensive architecture share common

semantic hierarchy but have unique shape parameters. As a result, architectures that

have the same hierarchy but di�erent shape parameters can be created using the

same set of VSG rules but di�erent shape parameters. For the convenience of users, a

library of common medieval defensive architectures is created, which includes towers,

gates, defensive walls and main-keeps. An example of a circular tower model with

conic roof from the library is shown in �gure 7.7. In this way, users select appropriate

elements from the VSG program library and set the desired parameters to generate

a speci�c medieval architectural model. This approach also works to convert the
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(a) (b) (c)

Figure 7.7: Parametric cylindrical towers created in the medieval defensive archi-
tecture library. (a) A cylindrical tower model with conic roof. (b) Interior view of
this volumetric model. (c) Another cylindrical tower generated by changing seven
parameters.

integrated 3D estimates into VSG rules, where the choice of program depends on the

estimated semantic hierarchy and the model parameters taken from the estimated

shape parameters.

§ 7.2.3 An Example of 3D Model Estimation

To have a better understanding of the architecture estimation and reconstruction sys-

tem, an example (shown in �gure 7.8) is used to demonstrate the process of generating

3D models from 2D images. In this example, three 3D models are reconstructed based

on estimates computed from two input images: a façade image and a plan drawing.

The 3D models are generated in four steps:

1. Semantic façade elements and shape parameters associated for each semantic

element are estimated from an input façade image using the method proposed

in Chapter 3. The estimated shape parameters are shown in �gures 7.8 (a)

and (b), and the estimated semantic hierarchy for the façade in (b) is shown in

�gure 7.8 (c).

2. A plan drawing is parsed into a collection of semantically meaningful 2D shapes
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 7.8: A demonstration of the semi-automatic 3D model reconstruction process
from a set of two 2D images. From a façade image, the estimated shape parameters
are shown in (a) and (b), and the estimated semantic hierarchy is shown in (c). From
a plan drawing, the estimated translations, rotations and 2D shape parameters for
a rectangle and two circles are shown in (d), and the estimated semantic meanings
are shown in (e) and (f). A user speci�es correspondences between façades and plan
drawing shapes in (g). The integrated semantic hierarchy is shown in (h) and (i), and
the 3D shape parameters are listed in table 7.2. Finally 3D models are reconstructed
in (j).
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using the method proposed in Chapter 5. The 2D translations, rotations and

shape parameters for the three façade elements are shown in �gure 7.8 (d) and

the estimated semantic meanings are shown for the rectangular structure in

�gures 7.8 (e) and for the circular structures in (f).

3. Using the method proposed in Chapter 6, the shape parameters from the façade

estimates (computed in step 1) and those estimated from the plan drawing

(computed in step 2) are integrated with the side information provided by a

collection of the user-selected correspondences (�gure 7.8 (g)). The integrated

semantic hierarchy is shown in �gure 7.8 (h) and �nal values for the shape

parameters are listed in table 7.2.

4. The shape parameters of table 7.2 are substituted into a shape grammar pro-

gram automatically generated from semantic hierarchy of �gure 7.8 (h) (shown

in VSG rules 7.3). The program is run to generate a 3D model as shown in

�gure 7.8 (i).

§ 7.3 Results

First, a volumetric model for the Arsuf citadel is semi-synthetically generated. The

Arsuf (also known as Apollonia) citadel in Israel was a crusader fortress. It was

destroyed 700 years ago, but the foundation of this fortress is still present today (see

�gures 7.9 a-b). From the archaeological study, the researchers have inferred that

the Arsuf castle originally exhibited similar architectural style to the Harlech castle

(illustrated in �gure 7.9 c) [65]. Since Harlech castle is still mostly intact, aspects of

this structure have been used to create a hypothetical Arsuf castle model. The Arsuf

citadel model is procedurally reconstructed following both the parameters estimated

from the plan drawing and the user programmed parameters (�gures 7.9 d to h).

Photos taken at the Arsuf site (example in �gure 7.6) are used as brick textures for
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VSG rules 7.3 A sequence of VSG rules for a simple building.

// parameters f o r the f i r s t tower
f l o a t [ ] t1P = {365 ,105 ,233} ; // x , y , z
f l o a t [ ] t1R = {0 ,0 , 0} ; // rx , ry , rz
f l o a t [ ] t1S = {32 ,210 ,8} ; // radius , height , t h i c kne s s
// parameters f o r the f i r s t keep
f l o a t [ ] k1P = {420 ,87 . 5 , 335} ; // x , y , z
f l o a t [ ] k1R = {0 , 0 . 0 5 , 0 } ; // rx , ry , rz
f l o a t [ ] k1S = {104 ,175 ,200 ,8} ; // dx , dy , dz , t h i c kne s s
f l o a t [ ] k1FlPar = {65 ,50 ,60} ; // f l o o r he ight f o r each f l o o r
f l o a t [ ] k1WinVer = {0 ,0 , 11 ,26 ,11 ,30} ; // window to f l o o r d i s tance s ,

h e i gh t s f o r each f l o o r
f l o a t [ ] k1WinHor = {18 ,30 ,40} ; // window width , gap , o f f s e t
// parameters f o r the second tower
f l o a t [ ] t2P = {369 ,105 ,435} ; // x , y , z
f l o a t [ ] t2R = {0 ,0 , 0} ; // rx , ry , rz
f l o a t [ ] t2S = {32 ,210 ,8} ; // radius , height , t h i c kne s s
// i n s t a n t i a t e bu i l d i ng mass models
Axiom : :T( t1P [ 0 ] , t1P [ 1 ] , t1P [ 2 ] )R(0 , 0 , 0 ) I (" c y l i nd e r " ,{ t1S [ 0 ] , t1S [ 1 ] } )T(k1P

[ 0 ] , k1P [ 1 ] , k1P [ 2 ] )R(k1R [ 0 ] , k1R [ 1 ] , k1R [ 2 ] ) I (" box " ,{ k1S [ 0 ] , k1S [ 1 ] , k1S
[ 2 ] } )T( t2P [ 0 ] , t2P [ 1 ] , t2P [ 2 ] )R(0 , 0 , 0 ) I (" c y l i nd e r " ,{ t2S [ 0 ] , t2S [ 1 ] } ) {
tower1 , keep1 , tower2 } ;

// generate model f o r tower1
tower1 : : s p l i t ("R" ,{ t1S [0]− t1S [ 2 ] , t1S [ 2 ] } ) { tower1 In t e r i o r , tower1Wall } ;
t owe r 1 In t e r i o r : : void ( ) { j3d . t e rmina l } ;
tower1Wall : : { j3d . t e rmina l } ;
// generate model f o r keep1
keep1 : : s p l i t ("X" ,{ k1S [ 3 ] , k1S [0]−2∗k1S [ 3 ] , k1S [ 3 ] } ) {keep1WallS , keep1Mid ,

keep1WallN } ;
keep1Mid : : s p l i t ("Z" ,{ k1S [ 3 ] , k1S [2]−2∗k1S [ 3 ] , k1S [ 3 ] } ) {keep1WallW ,

keep1 In t e r i o r , keep1WallE } ;
keep1WallS : : s p l i t ("Y" ,{ k1FlPar [ 0 ] , k1FlPar [ 1 ] , k1FlPar [ 2 ] } ) {keep1FloorGrd ,

keep1FloorMid , keep1FloorTop } ;
keep1FloorGrd : : { j3d . t e rmina l } ;
keep1FloorMid : : s p l i t ("Y" ,{k1WinVer [ 2 ] , k1WinVer [ 3 ] , k1FlPar [1]−k1WinVer

[2]−k1WinVer [ 3 ] } ) { brickWall , midWallS , br ickWal l } ;
keep1FloorTop : : s p l i t ("Y" ,{k1WinVer [ 4 ] , k1WinVer [ 5 ] , k1FlPar [2]−k1WinVer

[4]−k1WinVer [ 5 ] } ) { brickWall , midWallS , br ickWal l } ;
midWallS : : r epeat ("Z" ,{k1WinHor [ 0 ] , k1WinHor [ 1 ] } , k1WinHor [ 2 ] ) {window ,

br ickWal l } ;
keep1WallN : : { j3d . t e rmina l } ;
keep1WallW : : { j3d . t e rmina l } ;
keep1WallE : : { j3d . t e rmina l } ;
br ickWal l : : { j3d . t e rmina l } ;
window : : void ( ) { j3d . t e rmina l } ;
k e ep1 In t e r i o r : : void ( ) { j3d . t e rmina l } ;
// generate model f o r tower2
tower2 : : s p l i t ("R" ,{ t2S [0]− t2S [ 2 ] , t2S [ 2 ] } ) { tower2 In t e r i o r , tower2Wall } ;
t owe r 2 In t e r i o r : : void ( ) { j3d . t e rmina l } ;
tower2Wall : : { j3d . t e rmina l } ;
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translation
vector
(pixels)

(tx, ty, tz)

rotation
vector
(radius)
(rx, ry, rz)

mass model
dimension
(pixels)

�oor
parame-
ters

(pixels)

window parameters
(pixels)

left
tower

(365,105,233) (0,0,0)

type=cylinder,
radius=32,
height=210,
thickness=8

N/A N/A

keep (420,87.5,335) (0,0.05,0)

type=box,
length=104,
height=175,
depth=200,
thickness=8

h1 = 65,
h2 = 50,
h3 = 60,
NL = 3

wh = 26, wgrd = 11,
wh” = 30,
wgrd” = 11,
woff = 30,

ww = 22, wgap = 32

right
tower

(369,105,435) (0,0,0)

type=cylinder,
radius=32,
height=210,
thickness=8

N/A N/A

Table 7.2: Integrated shape parameters for three architectures shown in �gure 7.8.

the Arsuf citadel model.

Since the Harlech castle is almost intact, a photo-realistic volumetric model is

semi-automatically reconstructed using the architecture estimation and reconstruc-

tion system proposed in this dissertation. The castle semantic hierarchy and the shape

geometries are estimated from a collection of input images that include �ve façade

images and a plan drawing ( �gure 7.10 a). The estimated shape parameters and

the user-speci�ed correspondences between the façade images and the shapes in plan

drawing are highlighted on top of the input images. Finally, the volumetric model

for Harlech castle is virtually reconstructed by running the VSG program generated

from the integrated estimates (�gure 7.10).

§ 7.4 Conclusion

This chapter introduces a new shape grammar, which is referred to as Volumetric

Shape Grammar (VSG). Details regarding the VSG shapes, grammar rules and the

process of generating volumetric models are discussed. The variety of shapes and
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shape operations supported by the VSG enable it to e�ciently create 3D models.

Using this grammar alone, synthetic volumetric models can be e�ciently generated

from user programed VSG rules. The VSG is the �nal component in the architec-

ture estimation and reconstruction system, it automatically converts the estimated

3D shape parameters into a sequence of VSG rules and generates a photo-realistic

architectural model. As examples, a semi-synthetic Arsuf castle model is generated

semi-automatically by combining shape parameters estimated from the Arsuf plan

drawing and the user programmed parameters, and a photo-realistic 3D model of

Harlech castle is semi-automatically generated using the architecture estimation and

reconstruction system from a collection of input images that include �ve façade images

and a plan drawing.



111

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.9: An example of virtually reconstructing a semi-synthetic Arsuf citadel us-
ing both the estimates from a plan drawing and the user designed structures. Figures
in the �rst row are the reference images of Arsuf citadel. (a) is a photo taken above
the current Arsuf citadel. (b) is a plan drawing of the Arsuf site. (c) is a illustration
of the inferred model based on archaeological study. Figures in the second and the
third rows are the main steps in creating the Arsuf citadel model. (d) shows the color
coded plan drawing parsing results, where green represents gate tower, blue represents
gate, light blue represents defensive wall, magenta represents circular tower, pink rep-
resents rectangular tower and red represents main keep. (e) shows the instantiated
mass models in the �rst step of model reconstruction. The mass models are incre-
mentally breaking down into detailed structures in (f). Appearances are generated
for the �nal citadel model shown in (g) and (h).
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 7.10: An example of virtually reconstructing photo-realistic Harlech castle
model using the architecture estimation and reconstruction system proposed in this
dissertation. The estimates from six input images (�ve façade images and a plan
drawing) are integrated in (a), where the estimates for each image are high-lighted.
Figures in the second and the third rows are the generated models from integrated
estimates. (b) is the initially created mass model with façade images mapped as
textures. Figure (c)-(e) show the model geometries from di�erent view points. Ap-
pearances are generated for the �nal castle model shown in (f) and (g).
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