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ABSTRACT

MOHAMMAD RASHEDUL HASAN. Topology-aware approach for the emergence
of social norms in multiagent systems. (Under the direction of DR. ANITA RAJA)

Social norms facilitate agent coordination and conflict resolution without explicit

communication. Norms generally involve restrictions on a set of actions or behaviors

of agents to a particular strategy and can significantly reduce the cost of coordination.

There has been recent progress in multiagent systems (MAS) research to develop a

deep understanding of the social norm formation process. This includes developing

mechanisms to create social norms in an effective and efficient manner. The hypoth-

esis of this dissertation is that equipping agents in networked MAS with “network

thinking” capabilities and using this contextual knowledge to form social norms in

an effective and efficient manner improves the performance of the MAS. This disser-

tation investigates the social norm emergence problem in conventional norms (where

there is no conflict between individual and collective interests) and essential norms

(where agents need to explicitly cooperate to achieve socially-efficient behavior) from

a game-theoretic perspective. First, a comprehensive investigation of the social norm

formation problem is performed in various types of networked MAS with an emphasis

on the effect of the topological structures on the process. Based on the insights gained

from these network-theoretic investigations, novel topology-aware decentralized mech-

anisms are developed that facilitate the emergence of social norms suitable for various

environments. It addresses the convention emergence problem in both small and large

conventional norm spaces and equip agents to predict the topological structure to use
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the suitable convention mechanisms. It addresses the cooperation emergence prob-

lem in the essential norm space by harnessing agent commitments and altruism where

appropriate. Extensive simulation based experimentation has been conducted on dif-

ferent network topologies by varying the topological features and agent interaction

models. Comparisons with state-of-the-art norm formation techniques show that pro-

posed mechanisms facilitate significant improvement in performance in a variety of

networks.
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CHAPTER 1: INTRODUCTION

Social norms are expectations of an agent about the behavior of other agents in

society. They involve imposing restriction on a set of actions or behaviors of agents

to a particular strategy. By adhering to a social norm, agents are able to achieve

coordination and resolve conflicts without explicit communications. Social norms

can reduce the uncertainty and complexity, and increase the reliability of the sys-

tem [53, 68]. They help to reduce coordination overhead through simplifying agents’

decision-making process by prescribing action choices in specific situations [78]. For

example, by forming social norms, agent behavior can be regulated in an efficient

manner in virtual societies such as electronic institutions [17] and agent-supported

virtual enterprises [18]. Also, coordination and conflict resolution in the emerging

field of social services computing [36] and ad-hoc sensor network applications [5] can

be achieved efficiently by creating social norms. Therefore, establishing a social norm

acts as a useful mechanism for deciding the dominant coordination strategy and fa-

cilitating consensus.

Open and dynamic Multiagent systems (MAS) require a social norm formulation

approach that is distributed and evolves to adapt to changes in the environment.

Unlike social systems in which the objective is to understand and predict the popula-

tion level behavior based on empirically supported interaction rules (e.g., emergence

and evolution of languages [46] or opinion formation [11]), artificial societies require
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participants to use mechanisms that give rise to fast and efficient convergence to a

global norm. Therefore, designing mechanisms suitable for dynamic and large-scale

MAS is the main concern of this dissertaion.

1.1 Motivation

With the increase of the number of users in online social networks (in March 2014

Facebook reported to have 802 million daily active users on average1) and growing

interest in virtual communities for entertainment, business, commerce and socio-

political reasons, the issue of norm emergence or global consensus formation in a

decentralized fashion has become more topical [60, 38, 22]. We discuss three applica-

tion scenarios below that underscore the importance of understanding and developing

norm emergence mechanisms in virtual societies.

Motivating Application 1: Data on online social networks have great commercial value

to marketing companies, competing networking sites and identity thieves. With the

emergence of new web technologies, public developers are able to interface and extend

the online websites services as applications (for example, in Facebook). Proposing

a fine-grained access control model for controlling application access to the online

social network user data does not solve the problem of extension vulnerabilities. This

is because users might deny all the permissions or deny a subset of the permissions,

thereby rendering the app non-usable. Moreover, it would be difficult for the app

developers to design apps based on these diverse policy preferences. Therefore, it

would be preferable for the users to reach a consensus on a preferred set of privacy

1http://newsroom.fb.com/company-info/
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settings or privacy conventions so that the app developers could easily design their

apps to target these small number of privacy conventions [27]. For example, users

with conservative privacy inclinations [33] would align with a group of other users in

their neighborhood that share the similar preferences. It would enable the users to

select exactly one from the set of privacy profiles instead of specifying their preference

for each of the requested permissions. This would ensure security with minimum user

intervention as well as allow the users to enjoy the advanced app features.

Motivating Application 2: In collaborative tagging systems, such as Flickr, del.icio.us,

CiteULike or Connotea, human web-users self-organize a system of tags to create

and maintain social networks for sharing information [13]. This categorization sys-

tem is useful for navigating through a large and heterogeneous body of resources.

The existing works that are grounded in real tagging sites indicate the significance

of developing deeper mechanisms for understanding the complex statistical behav-

ior of the tagging dynamics. The key problem that requires deep investigation is:

how does microscopic tagging activity of users result in the emergence of global cat-

egorization/convention in a decentralized fashion and how could such categorization

formation be made faster?

Motivating Application 3: In the social networking and microblogging site Twitter2,

a common way of adding additional context and metadata to the short text messages

or tweets is by using hashtags. It is a community-driven activity to create conven-

tions. Hashtags are similar to tags used in Flickr. These are added inline to the tweet

posts. It is a simple way for users to search for tweets that have a common topic.

2https://twitter.com/
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Unlike traditional tagging systems used for information archival, Twitter hashtags

can serve either as a label for identifying topically relevant streams of message or a

prompt for commenting and sharing. Hashtags are more than labels for contextualiz-

ing statements, objects for bookmarking, or channels for sharing information. They

are active virtual sites for constructing communities. Hashtags are used both as a

topical identifier (e.g., #samsunggalaxy) and a symbol of a community membership

(e.g., #worldforpeace) [39]. During the “Arab Spring” and other protests, activists

used hashtags to coordinate their actions. There are several issues regarding hash-

tagging in Twitter that require deeper understanding, such as: how the use of novel

hashtags co-evolve with the needs of their users in the presence of other hashtags?

Why do some hashtags persist while others are just momentary blips? How do simi-

lar hashtags compete for attention? Why do users adopt some hashtags while reject

others?

The issues and questions discussed in relation to the above three application scenar-

ios motivate us to formulate the central research question in this dissertation which is

to understand the process of norm emergence in virtual societies and to develop agent-

based mechanisms to make such emergence faster and effective. The problem of norm

emergence in these virtual societies characterized by large size, dynamic structure and

complex network properties (e.g., degree-distribution in Facebook follows power-law

form [12]), require an understanding of the structural properties of these systems and

the effect of these properties on the process of norm formation. While the problem

of norm emergence is not new in MAS, formulating the problem within the space

of virtual societies enables this research to break novel ground in computer science
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research. Our initiative is inspired by John Hopcroft’s remark on the importance of

creating a scientific base for understanding the dynamics of the emerging large sys-

tems for which the existing tools in computer science are not sufficient3. The research

goal of this dissertation is to perform a systematic and detailed investigation of the

norm emergence problem in virtual societies. To do this, we develop a framework

that captures the core research challenges of these real-world applications and uses

a multiagent simulation based approach to investigate the various dimensions of the

problem.

1.2 Problem Description

The study of the collective behavior of agents that includes social norm emer-

gence in social and artificial systems has recently witnessed a burgeoning body of

literature emphasizing the topological properties of these systems [21, 10]. These

approaches consider the agents (social or artificial) to be situated on the nodes of

connected graphs and their interactions are captured through the edges among the

nodes. It has been observed that many of these agent networks exhibit complex net-

work properties such as heterogeneity in the connectivity pattern, short path-length,

high clustering and assortativity [42]. Therefore, it is our belief that Network Science

is the natural framework for investigating the emergent global behavior of these sys-

tems. Advances in the understanding of complex networks have made it possible to

investigate the potential implications of the topological properties of the networks on

various dynamical processes including social norm formation in networked MAS.

3“Future Directions in Computer Science Research”, WI-IAT keynote address, Atlanta, Georgia
Nov. 19, 2013.
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A rich stream of MAS research is devoted to the investigation of the influence of

agent social network of interactions on the evolution of the norm emergence pro-

cess [31, 19, 53, 76, 68, 56, 75, 1, 23]. Due to agent’s partial observability of their

neighborhood in networked MAS, norm propagation and adaptation becomes chal-

lenging. The existing mechanisms include various strategy update rules and social

instruments to create norm in MAS organized as different types of networks (see

Figure 1). Some researches make a strong claim that some networks are supposed

to be better than others for promoting norms. For example, scale-free topologies

are more efficient than small-world topologies for norm emergence [19, 23]. Many

of these works use narrow investigations (with limited and fixed network parameters

settings) to derive such generic conclusions. However, if we dig deeper into this is-

sue, we observe that the performance of the scale-free networks significantly differs

with the variation of topological properties of the network. For example, the algo-

rithm [19] that claims the performance superiority of scale-free networks in general

has been shown to fail in sparsely-connected scale-free networks [28]. Also, problems

where an agent’s preference over an action/norm is in conflict with the social welfare,

highly-connected scale-free MAS networks are shown to be the most detrimental for

cooperation (norm) formation [47]. Therefore, in many cases it is misleading or even

false to claim that some topologies are in general better than other topologies. These

observations motivate us to extensively investigate the role of network topology on

the process of norm emergence. More specifically, we intend to investigate: which

parameter configurations of a specific topology facilitate efficient norm formation and

under what conditions?
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State Update Rules 
(Imitation, Social 
Learning, Natural 
Selection, etc.) 

Topology-Aware 
Techniques 
(Our Contribution) 

X 

Z 

Figure 1: Mechanism design landscape.

While there have been some works that study the influence of network topol-

ogy on norm creation, there is a lack of effort to harness the topological knowledge

gained from these studies into the agent’s decision-making process. To the best of

our knowledge, none of the existing mechanisms use topological insights to facili-

tate topologically-aware decision-making. In open and dynamic MAS where the local

neighborhood topology of the agents continuously changes, it is imperative for agents

to adapt their norm emergence mechanisms and include topology-awareness in their

decision-making process. Moreover, the knowledge that Network Science offers on the

relationship between the topological properties and the dynamical processes can be

used by the agents to make the norm emergence mechanisms more efficient.

To summarize, the central theme of this work that crosscuts a conglomerate body of

research concerning norm emergence is the enhancement of this process by endowing

the agents with topology-awareness (Figure 1). For informed decision making, agents

are enabled to use the knowledge that is hidden in the topological structure of their
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neighborhood. Therefore, they are endowed with the capability of “network thinking”.

This includes the ability of agents to (i) predict of the global topological structure of

the network based on local agent neighborhood data and use convention formation

mechanisms suitable for that network topology, (ii) leverage social influence based on

the degree-distribution of the agent neighborhood to augment norm formation, (iii)

use the best possible network formation parameters to facilitate norm convergence.

The main hypothesis of this dissertation is that equipping agents in networked MAS

with “network thinking” capability facilitates the emergence of social norms in an

effective and efficient manner.

1.3 Overview of the Approach

Previously we argued that sparsely-connected scale-free networks do not favor con-

vention emergence [19] while the same network configurations are ideal for cooperation

emergence [47]. This apparent contradiction leads us to identify another dimension

of the norm emergence problem namely different types of agent interactions in MAS.

In his work [74], Villatoro used a taxonomy of social norms that is based on Cole-

man’s categorization [16]. We use Villatoro’s taxonomy that splits the general prob-

lem of social norm emergence into two categories from a game-theoretic perspective:

conventional norms and essential norms (Figure 2). These two categories differenti-

ate the inherent challenges present in each type of interaction and formulate suitable

mechanisms.

In conventional norms4, a group of agents tries to decide to adopt a behavioral

4Henceforth this is referred as conventions.
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Norm 
Emergence

Conventional 
Norm

Essential 
Norm

Emergence 
of 

Cooperation

No conflict between 
individual & collective 
interests

Conflict exists 
between individual & 
collective interests

Emergence 
of 

Convention

Figure 2: Villatoro’s taxonomy for the norm emergence problem.

strategy from a given set [74]. There are no good reasons to prefer one strategy

over the other and even the collective selection is arbitrary. It assumes no conflict

in interest between the individual and the collective interests. Typically this type of

problem is modeled using a pure-coordination game in which two equally beneficial

convention alternatives exist [19], i.e., the available convention space is small. We

also investigate convention emergence problems that involve large convention spaces.

A special type of game, i.e., language game, is used to model these large convention

space problems [23].

Essential norms, on the other hand, try to resolve conflicts between the individual

and collective interests in applications where the individual and collective goals can

be widely different [74]. It is applicable for scenarios in which individuals do not have

incentives for cooperation. Formation of essential norms enables agents to cooperate

and thereby achieve socially-efficient behavior. Similar to Villatoro’s work, we ap-

proach the the problem of essential norm formation in the light of the “Emergence
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of Cooperation”. The Prisoner’s Dilemma game captures the inherent social dilemma

between the individual and the society and hence is used to model the emergence of

cooperation problem.

In this dissertation, we investigate the problem of convention emergence within the

space of conventional norms and cooperation emergence within the space of essential

norms in the context of a MAS (Figure 2). Agents in the MAS can be organized

as regular, random, small-world or scale-free networks. We consider both static and

dynamic networks. In a dynamic network the links between the agents change over

time while in static networks links remain unchanged.

We perform an especially detailed investigation of scale-free networks. In scale-

free networks the node degree follows power-law distribution independent of the scale

of the network, a feature suitable for large-scale MAS. Also the scale-free structure

is robust against self mutation and environmental perturbation. Many real-world

networks from biological to artificial domains, such as protein interaction networks,

Internet, World Wide Web, etc., display similar scale-free property [8, 9]. Unlike many

previous approaches, we distinguish the challenges inherent in different types of scale-

free networks and perform an exhaustive investigation. For example, we address the

challenges of norm emergence in sparse, moderate, and densely-connected scale-free

networks. Also we investigate scale-free networks with various levels of clustering.

We adopt a network-theoretic approach towards the norm formation problem. This

approach aims to develop a comprehensive understanding of the problem of social

norm formation in various types of networked MAS with an emphasis on the effect of

the topological structures on norm formation process (Figure 3). We investigate two
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Convention Space

Topology 

Small Large

Sparse
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Connected
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Low-
Clustered

Dynamic

Static

Figure 3: Norm emergence landscape.

types of agent interactions that include situations with no conflict in interest among

the agents (conventional norm) and conflict in interest (essential norm). For conven-

tional norm, both the small and large convention space is considered. In our work,

small convention spaces have exactly two convention alternatives while large conven-

tion spaces have three or more alternatives. For example, in our language convention

problem we considered a convention space of size 1010 (Chapter 3). Then, based on

the insights gained from network-theoretic investigations, we develop novel topology-

aware mechanisms that in conjunction with socially-inspired techniques facilitate the

emergence of social norms suitable for various environments. We emphasize the abil-

ity of the agents in networked MAS to adopt “network thinking” capability to form

social norms in an effective (a large majority of the society converges into a stable
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norm) and efficient (fast convergence) manner.

1.4 Research Goals

Since we address the problem of social norm emergence from two perspectives, we

require different set of tools to solve the problems. Therefore, for the sake of clarity,

we distinguish two sets of research goals for the two categories of norm.

Research Goals Set 1 - Emergence of Convention: We plan to explore the problem

of emergence of convention both in small and large convention space (Figure 4).

Following are our research goals with respect to these two convention spaces:

Norm 
Emergence

Conventional 
Norm
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Cooperation
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Figure 4: Research goals for convention and cooperation emergence.

Small Convention Space:

• RG1: We will investigate whether the existing simple distributed mechanisms

are able to create a convention across various topologies. If not, then we need
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to figure out which mechanisms work across which networks or whether new

mechanisms are needed to be designed for a particular topology. Due to the

small size of convention space, we will not consider the time efficiency of the

mechanism and will only focus on its solvability.

• RG2: We will identify the convention formation related challenges inherent

in various types of scale-free networks (various average degree networks) and

propose an efficient technique to resolve that.

• RG3: We plan to design a topology-aware meta reasoning process that enables

agents to predict the topology of the network and automatically apply the

suitable convention formation mechanism for that topology.

Large Convention Space:

• RG4: With the increase of the size of convention space, the problem becomes

complex and requires more time and resource to converge into a single con-

vention. Therefore, the key challenges of large convention space are to form

conventions faster and to ensure that the quality of the emergent convention is

high. We plan to design a topology-aware mechanism that is able to create a

high-quality convention fast as compared to the state-of-the-art mechanisms.

• RG5: Unlike small convention space, existing approaches did not consider dy-

namic networks in large convention space. Therefore, we plan to implement

a dynamic network model in large convention space that augments convention

emergence process.

• RG6: We intend to identify the challenges of convention formation over different

types of scale-free networks.
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Research Goals Set 2 - Emergence of Cooperation: We address the emergence of

cooperation problem for MAS that are organized as scale-free networks. Our litera-

ture review on this topic (in Chapter 2) indicates that the existing mechanisms are

able to form cooperation in scale-free networks with only limited success when the

networks are sparsely connected (average node degree is small) [29]. Moderate and

highly-connected scale-free networks remain mostly unexplored domains for coopera-

tion emergence. We plan to design two mechanisms to solve this problem (Figure 4).

The first mechanism (discussed in Chapter 4.1) uses commitment based dynamic

coalition formation technique and complex network dynamics to form cooperation in

moderately-connected scale-free networks (where the average node degree is 20). The

second mechanism (discussed in Chapter 4.2) considers highly-connected scale-free

networks (where the average node degree is up to 50) and uses heterogeneous system

design that includes a small fraction of altruistic agents. Following are our research

goals with respect to these two mechanisms:

Dynamic Coalition Formation:

• RG7: We plan to build a dynamic coalition formation approach based on the

topological features of the agent scale-free network. More specifically, we want

to enable the agents to reason about the commitment based coalition formation

using the topology of the network. Our goal is to both analytically and empir-

ically establish the correlation between the coalition formation process and the

scale-free network topology.

• RG8: We will investigate how the agents can self-organize the network of their

neighborhood such that it augments the global coalition formation. We will



15

build a computational model to design an appropriate partner selection strat-

egy for the agents that results in the emergence of a single coalition. This

computational model will exhaustively investigate the process of coalition for-

mation by varying the model parameters of scale-free networks such as minimum

node-degree, degree-heterogeneity and clustering coefficient.

Altruistic Agent Based Approach:

• RG9: We plan to design a heterogeneous system design approach based on

altruistic agents to establish cooperation.

• RG10: We will investigate exhaustively the efficacy of the altruistic agent based

approach by varying the model parameters.

1.5 Contributions

The problem of social norm emergence in MAS spans across multiple dimensions

and the existing works have covered only a fraction of this challenging terrain [63, 78,

31, 19, 53, 61, 20, 41, 76, 68, 56, 75, 1, 23]. Some of the relevant works are reviewed in

Chapter 2. While these approaches offer useful mechanisms for creating norms, often

times over-simplified assumptions limit the applicability of the solutions in real-world

domains. For example, many works consider the MAS to be a static system [23]

or consider fixed parameter settings for network investigation to arrive at a general

conclusion [19]. This dissertation contributes to the existing gaps in the state-of-

the-art approaches by exploring two dimensions of the norm emergence landscape

(Figure 3). In the mechanism design landscape, our proposed novel topology-aware

approach adds a new dimension to the space previously consists of strategy update
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rules and socially inspired instruments (see Figure 1). Our main contributions, C1

- C3, cover the two social norm categories: convention emergence and cooperation

emergence. The first contribution involves convention emergence while the last two

are on cooperation emergence:

C1: Topology-Aware Mechanisms to Facilitate Convention Emergence

We accomplish the research goals RG1-RG6 by proposing topology-aware (TA)

mechanisms that enable agents to adopt “network thinking” to form conventions both

in small and large convention space. For problems involving small convention space,

we argue that no existing single simple distributed mechanism can create convention

across various topologies. This hypothesis is both analytically and experimentally

verified. We identify that while the existing state-of-the-art mechanism claims to form

conventions across small-world, random and scale-free networks, it actually fails to

resolve the stable sub-convention problem in sparse scale-free topologies. We propose

a novel socially inspired technique to solve the convention emergence problem in sparse

as well as in dense scale-free networks. The need for recognizing the neighborhood

topology has been emphasized in order to use suitable convention mechanisms. A

topology-aware convention selection mechanism is proposed that solves the convention

emergence problem across both random and various types of scale-free networks.

In order to address the problem within a large convention space, we design a

topology-aware mechanism that is able to create a social convention on various types

of dynamic networks. We hypothesize that if agents are endowed with the capability

of “network thinking” for decision-making, the convention formation process becomes

faster and efficient. To validate this hypothesis, we use a language coordination prob-
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lem for investigation. According to this problem, a society of agents construct a

common lexicon in a decentralized fashion. Agents’ interactions are modeled using a

language game in which agents send their lexicons to their neighbors and update their

lexicon based on the utility values of the received lexicons. A topology-aware utility

computation mechanism is proposed that enables the agents to expedite the conven-

tion formation process. Moreover, to further augment this process, a socially-inspired

technique, the power of diversity, is used. Agents are enabled to bring diversity in

the population through a novel network reorganization technique that is based on

the lexicon utility. Extensive simulation results indicate that the proposed mecha-

nism is both effective (able to converge into a large majority convention state with

more than 90% agents sharing a high-quality lexicon) and efficient (faster). In addi-

tion to this, the efficacy of the topology-aware mechanism is tested by varying the

topological features to develop an understanding about how the topology influences

convention formation process. The conditions under which diversity brings benefit

are also investigated.

C2: Emergence of Cooperation using Commitment based Dynamic Coalition Forma-

tion and Complex Network Dynamics

This contribution accomplishes research goals RG7-RG8. In order to achieve the

emergence of cooperation in self-interested agent societies operating on moderately-

connected scale-free networks, agents are enabled to control topological features dur-

ing the network formation phase. Based on an extensive investigation of complex

networks dynamics, agents are endowed with the “network thinking” capability for

informed decision-making. A commitment-based dynamic coalition formation ap-
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proach is proposed that results in a single coalition where agents mutually cooperate.

Agents play an iterated Prisoner’s Dilemma game with their immediate neighbors

and offer commitments to their wealthiest neighbors in order to form coalitions. A

commitment proposal, that includes a high breaching-penalty, incentivizes opponent

agents to form coalitions within which they mutually cooperate and thereby increase

their payoff. We argue analytically, and substantiate experimentally, how the value of

the penalty should be set with respect to the minimum node degree and the payoff val-

ues such that convergence into optimal coalitions is possible. Using a computational

model, we determine an appropriate partner selection strategy for the agents that

results in a network facilitating the convergence into a single coalition and thereby

maximizing average expected payoff.

C3: Emergence of Cooperation in Highly-Connected Networks Using Altruistic Agents

We achieve the research goals RG9-RG10 through this contribution. We investi-

gate the importance and challenges of establishing cooperation among self-interested

agents in MAS operating on highly-connected scale-free networks that are prevalent

in society and nature. Existing imitation-based approaches for cooperation do not

fare very well in these highly-connected networks. We proposed a stochastic influ-

encer altruistic agent (StIAA) mechanism in which a small proportion of altruistic

agents are introduced in the self-interested MAS. These altruistic agents, irrespec-

tive of their payoff, always cooperate with their neighbors while the self-interested

agents try to maximize their payoff by imitating the wealthiest agents in their neigh-

borhood. To determine optimality of their action choices, the self-interested agents

imitate the cooperative action of their altruistic neighbors (should there be one) with



19

a small exploration probability. We show, both analytically and experimentally, that

StIAA performs significantly better in highly-connected networks than the existing

imitation-based approaches. A comprehensive study of the performance of StIAA

shows that it is both robust and scalable.

1.6 How to Read this Dissertation

This dissertation is structured in five chapters that includes:

Chapter 2 provides a background discussion and review of related literature on

the convention emergence and cooperation emergence problems. It scans the existing

body of works that tried to solve these problem in a decentralized fashion. While

following the progress made in this line of research, it identifies some of the gaps and

limitations that are addressed in the next two chapters.

Chapter 3 defines the convention emergence problem suitable for small convention

space first. It presents an argument on why any single distributed mechanism is

unable to create convention across various topologies and substantiates this with

an analytical discussion. It hypothesizes the need for topology prediction by the

agents. A socially inspired technique for convention formation in various types of

scale-free networks is presented followed by a topology-aware convention selection

mechanism. Results from extensive computational investigation supports the tenets

of the proposed mechanism. Then follows the mechanism on large convention space. It

hypothesizes that equiping agents with “network thinking” capability would augment

the convention formation mechanism. It uses a lexicon convention problem to validate

the proposed approach. A topology-aware mechanism is used to solve the problem and
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the comprehensive simulation results are compared with the existing state-of-the-art

mechanisms. Detailed network-theoretic investigations are performed to understand

how various degree-distribution and network reorganization approaches influence the

convention formation process.

Chapter 4 identifies the importance of solving cooperation emergence problem in

both moderately and highly-connected scale-free networks. It presents two mecha-

nisms for solving the problem. First mechanism provides a commitment-based dy-

namic coalition formation technique. A theoretical analysis, substantiated by an

extensive computational investigation, on the relationship between the commitment

parameters and the network properties is discussed. It also equips agents with “net-

work thinking” capability to control network formation and thereby to enhance a

single coalition formation for better cooperation. Second mechanism solves the coop-

eration problem in highly-connected scale-free networks using a heterogeneous system

design technique in which a small fraction of altruistic agents are used. A compre-

hensive simulation validates the robustness and scalability of this approach.

Chapter 5 draws conclusions of various research efforts implemented in this disser-

tation. It also identifies some of the directions in which this research could evolve in

future.



CHAPTER 2: RELATED WORK

This chapter presents a discussion of related literature on the convention and co-

operation emergence problems respectively. It also aims to clearly identify the goals

of this dissertation with respect to the problem of convention emergence that are in

the next two chapters.

2.1 Review of Related Literature on Convention Emergence

Coordination of agent activities in large multiagent systems (MAS) is central to

cooperatively achieving goals. A social convention is considered to be a technique

for increasing coordination [20, 68]. It helps to reduce the overhead of coordination

by simplifying agents’ decision-making process through the determination of action

choices [78]. For example, in online social networks (such as in Facebook) creation

of privacy-setting policy convention for third party applications could be useful for

the both the users and app developers. It could help by tailoring apps based on

the conventions and reduce users privacy risks [27]. Also the mechanism for pre-

dicting conventions in online communities (such as in Twitter) could be useful for

understanding various socio-political phenomena [14, 32].

The distributed convention emergence mechanism has been used to understand,

predict and create conventions in large structured systems including online social

networks [14, 32, 27]. There exist copious amounts of literature that provide useful
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tools to solve this type of convention emergence problem [63, 78, 31, 19, 53, 61, 41, 76,

68, 56, 75, 1, 23]. The first MAS-based decentralized approach to the problem of the

emergence of convention solely through local interaction was addressed by Shoham

and Tennenholtz [62, 63, 64]. They undertook the challenge of designing an appropri-

ate strategy update function as a representation of the agents decision-making pro-

cess that when followed by the entire society would bring global coordination. They

modeled the agent interactions using a 2-dimensional pure coordination (Pure-CG)

and Prisoners Dilemma (PD) game. Their proposed strategy update function called

Highest Cumulative Reward (HCR) rule that uses a reinforcement learning approach.

According to HCR, agents choose the strategy that yielded the highest reward in the

past m interactions. The approach is memory intensive since it stores information on

the history of strategies and the associated rewards. The significance of this strategy

update rule is that when it is followed by the entire society, it converges into a global

convention. The authors have shown that the convention emergence is affected by

the rate of strategy update and interval between memory flushes. The contribution

of their work to the field lies in the fact that it demonstrated how agents strategy

update rule that is based on local information can lead to self-coordination from ini-

tial disorder. However, the agents in their model are able to communicate with any

other agents and their interactions are random. In other words, they did not consider

a structured agent society.

Kittock [31] was the first researcher to investigate the impact of the agent soci-

ety structures on convention emergence. He also used Pure-CG and PD to model

agent interactions and a variation of the HCR strategy update function. He observed
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that the choice of the global structure affects the evolution of the convention. In

particular, he conjectured that the diameter of a network is directly related to the

rate of convergence. His experimentation was limited to regular and fully-connected

networks.

In 1995, Walker and Woolridge [78] modeled the convention problem based on a

Hunter-Gatherer society. According to this model, agents are enabled to move around

the space and can choose a rule from a set of four rules. They proposed a simple

intuitive strategy update function called the Simple Majority Rule that is based on

the strategy of the majority in an agents neighborhood. They experimented with

seven variations of this strategy with a small number of agents on a grid topology.

The proposed simple majority rule brings 100% convergence at a faster rate due to

the agent’s ability to move around the grid

The realm of complex networks was first investigated by Delgado [19]. He used

HCR as well as proposed the Generalized Simple Majority (GSM) strategy update

function that is a stochastic version of Walker and Woolridges Simple Majority Rule.

By modeling agent interactions using Pure-CG, he has shown that both GSM and

HCR successfully converge into a 90% convergence state in complex networks (scale-

free and small-world) as in fully-connected networks. In other words, he proved that a

global convention can be reached at a lower cost (average degree in complex networks

is smaller than that in fully-connected networks). Also he observed that convergence

rate is slower in small-world networks than scale-free networks. He confirmed Kittocks

conjecture that the rate of convergence is proportional to the diameter of the network.

However, GMS fails to create a single convention in sparse scale-free networks.
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The works discussed above that use Pure-CG to model agent interactions do not

distinguish between the quality of the convention alternatives. Pujol et al. [53] varied

the utility of the alternative conventions in a 2-dimensional CG. He experimented

with two types of networks: low-clustered (random and SF) and high-clustered (SW

and fully-connected). He observed that high-clustered system always converged to

the most efficient convention (pareto-efficient) and that convention is stable.

Different types of multiagent learning algorithms were extensively studied by Sen

and Airiau [61]. Instead of trying to select the appropriate strategy update function,

agents use a social learning mechanism, that is similar to the one used by Shoham and

Tannenholtz, in which they learn convention concurrently over repeated private inter-

actions with randomly selected members from the society. They experimented with

three reinforcement learning algorithms and studied the influence of the population

size, the set of possible actions and the heterogeneity of the population on convention

emergence. In addition to attempting to marry between convention emergence and

multiagent learning, they contributed by investigating the impact of fixed-strategy

and non-learning agents on the convention process. However, their agent society

didn’t have any structure and any agent potentially could interact with any other

agent in the society. Mukherjee et al. [41] extended their work by investigating the

impact of the neighborhood size on convention formation using a grid topology. More-

over, they investigated the effect of heterogeneous learning populations on the speed

and nature of norms that emerge through social learning. They have shown that such

distributed and individual learning is indeed a robust mechanism for evolving stable

social norms.
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None of the previous works investigated convention formation in dynamic net-

works except Walker and Woolridge. Another notable exception is the work done by

Savarimuthu et al. [59] in which they used a dynamic network to model the agent

society. Agent interactions are captured using Ultimatum Game and a role model

based mechanism is used to solve the convention problem. In their work, the network

of the agents dynamically changes as they move in a grid world. The authors show

that this dynamic aspect facilitate 100% convergence into a single convention.

In the works discussed thus far, agents choose actions or strategy update functions

based on its utility. Urbano et al. [73] used the weight of the agents to bias the

decision-making process. The weight of the agents is defined based on a measure of

force. The proposed strategy update function Recruitment based on Force with Rein-

forcement (RFR) enables agents to increase their force with successful interactions.

However, in unsuccessful interactions, agents with lower force copies the force and

strategy of the winner. According to RFR, agents first compare its force with its

interaction partner. If the interaction partner’s force is larger than the agent’s force,

it adopts both the convention and the force of its partner by increasing the force a

factor of one. The force attribute should not be considered as the strength of an

individual agent because as it diffuses through imitation it no more belongs to any

agent. Instead it represents the force of the strategy the agent is adopting. The more

the strategy is diffused, the more it will have stronger representatives. This approach

performs well across random, regular, small-world and scale-free networks. However,

Urbano et al. does not associate the force attribute of an agent with its position in

the network (social status).
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To expand the scope of the social learning, Villatoro et al. [75] use two social in-

struments, viz. rewiring and observation, to enhance the emergence of convention.

Rewiring allows agents to control the links they share with other agents by replacing

them intelligently. This direct control of the topology of the social network allows

agents to control whom they interact with, resulting in increased reward without ac-

tually altering the reward function. On the other hand, observation allows agents to

obtain partial information of the convention emergence process by observing other

agents in the neighborhood. They used a 2-person m-action game to model agent

interaction and three strategy selection rules, such as Best Response Rule (BRR),

Highest Cumulative Reward Rule (HCRR) and Memory Based Rule (MBR). They

identify that the meta-stable convention states or sub-conventions prevent the forma-

tion of full convention because of the existence of stable barriers at frontiers. This

phenomenon of sub-conventions is referred as frontier effect. In order to eliminate

this frontier effect, agents are enabled to acquire partial global view (observation)

and control over selecting interacting partners (rewiring). However, their work does

not discuss the cost of using social instruments.

Abdallah [1] solves the problem of frontier effect by adopting an alternative tech-

nique to enable the agents to have a global view of the state of the system. It uses a

hierarchical coordinator based scheme to overcome the frontier effect and establishes

full convention without requiring topological reconfiguration. Agents are grouped

into clusters being monitored by a coordinator and the clusters are organized hier-

archically. Coordinators in each cluster recommend conventions for their clusters.

Leveraging the hierarchical structure, the inconsistencies among the different coordi-
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nators are resolved. It uses a 2-person m-action pure coordination game for agent

interaction and Q-learning method to select actions. In this work, agents of a cluster

acquire partial global view through the coordinators that observe the state of conver-

gence of other clusters. The random hierarchical cluster formation scheme, however,

does not take into account the effect of underlying topological constraints and the

cost of communication between the coordinator and the cluster members.

The space of alternative conventions discussed in the above works is limited only

to two dimensions and these works can be broadly categorized as searching in a

small convention space for a global convention chosen from two possible convention

alternatives. However, in large and open MAS, other challenging issues need to be

considered. First, multiple convention alternatives may exist and hence the conven-

tion space could be complex. Second, it is possible that the existing convention seeds

are not appropriate or of better quality. Therefore, agents may need to create new

convention seeds as well as form a higher-quality convention. Two significant mech-

anisms for solving this type of convention problem are provided in Salazar et al. [56]

and Franks et al. [23]. They investigated a language coordination problem where a

group of agents tries to create a lexicon convention through repeated interactions.

This problem is inspired by Luc Steels’ Naming Game model [65]. Luc Steels focused

mainly on the formation of vocabularies, i.e., a set of mappings between words and

meanings (for instance physical objects). In this context, each agent develops its

own vocabulary in a random private fashion. But agents are forced to align their

vocabularies in order to obtain the benefit of cooperating through communication.

Thus, a globally shared vocabulary emerges as a result of local adjustments of in-
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dividual word-meaning association. The communication evolves through successive

conversations, i.e., events that involve a certain number of agents (two, in practical

implementations) and meanings. The agent society that plays the naming game is

composed of a small number of agents and lacks any structural framework. Moreover,

the scalability of this approach has not been investigated.

The significance of the Salazar et al. [56] and Franks et al. [23] approaches is that

they consider large population of agents modeled using complex small-world and scale-

free networks. In Salazar et al., a sophisticated agent architecture design is proposed

to create high-quality language convention. On the other hand, in Franks et al., a

set of privileged agents (influencer agents) equipped with high-quality lexicons are

deployed to influence and expedite the convention formation process. However, these

approaches do not reason about the costs associated with the sophisticated agent

architecture design to those for the deployment and maintenance of the influencer

agents. Moreover, the agent network is assumed to be static and requires a long time

to converge into a large majority convention state.

The above discussion on related literature reveals lack of attention in the following

areas: (1) although agents use smart strategy update functions and various instru-

ments to expedite the speed of convergence, no work seems to leverage the topological

knowledge for intelligent decision-making; (2) a rigorous and extensive study on all

types of complex networks with variation of topological-parameters is missing; (3)

there is no silver bullet to solve the convention problem; different mechanisms are

needed for different environments with varying topologies, interactions etc.; there-

fore, there is a need for the agents’ ability to predict the topology in which they are
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situated and then to use the most suitable mechanism; (4) there is a lack of extensive

research on dynamic networks and finally (5) a deeper investigation on mechanisms

for larger convention space is required.

2.2 Review of Related Literature on Cooperation Emergence

Essential norms cover the space of social norms that aims to resolve collective action

problems in which there exists conflicts between individual and collective interests. In

this type of problem, individuals are tempted not to contribute towards the common

goal and their individual behavior may affect the welfare of the society. This conflict

between the individual and the collective interests can be resolved by creating a social

norm of cooperation. Therefore, formulating the problem as a cooperation emergence

problem captures the characteristics of the essential norm problem. Here we present

a discussion of related literature on the emergence of cooperation problem.

There has been a great deal of interest in the MAS community about the emergence

and maintenance of cooperation among artificial agents. One of the challenging ques-

tions addressed is to design autonomous systems in which agents work together to

achieve common shared goals. Traditionally the tension between personal and social

goal is modeled by the Prisoner’s Dilemma (PD) game. The PD game offers a power-

ful metaphor for understanding the challenges of the emergence of cooperation in the

face of myopic selfish behavior. In PD, selfish and rational agents try to maximize

their utility while interacting with each other. In a one-shot version of this PD game,

the only dominant strategy equilibrium is defection which is not Pareto-efficient [45].

For cooperation to emerge, agents need to play the PD game repeatedly and use
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suitable strategy update functions. Axelord [7] has shown that the “tit-for-tat” strat-

egy facilitates cooperation when PD game is played repeatedly among two agents.

However, in unstructured MAS, repeated random interactions do not guarantee the

evolution of cooperation [29]. Nowak [43] argues that in well-mixed populations solely

natural selection based strategy update functions do not facilitate cooperation. He

provided five rules or mechanisms that along with natural selection helped to emerge

cooperation.

Unlike well-mixed populations, in structured societies where agents interact only

with a sub-set of the population, socially inspired strategy update functions has been

shown to emerge and sustain cooperation. Nowak and May [45] successfully used a

simple deterministic imitation based strategy update function (imitate-best-neighbor

or IB) on grid topology in which agents imitate the strategy of their best performing

neighbors including itself (those who has the largest aggregate payoff from the PD

game). Santos et al. [58] used a stochastic version of this imitation-based strategy

update function (stochastic-imitate-random-neighbor or SA) to achieve cooperation

on moderately-connected SF networks. According to this stochastic imitation rule,

for each agent i one neighbor j is chosen randomly. Then if j’s payoff is larger than

i’s payoff, i imitates j’s strategy with a probability. SA increases the final fraction

of cooperators with the heterogeneity of the degrees. However, these strategy update

functions do not always guarantee cooperative behavior in structured MAS, nor do

they establish full cooperation. Moreover, these imitation based approaches fail to

facilitate cooperation in highly-connected scale-free networks [47, 29].

One significant approach towards solving the cooperation problem in highly-connected
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scale-free networks used the evolution of social network of interactions as well as the

evolution of strategies [49]. These two evolutions follow different time-scales and it

has been shown how this variation could affect the process of cooperation evolution.

However, the cost of link rewiring is not included in the payoff calculation of the

agents.

To solve the problem of evolution of cooperation with the goal of establishing full co-

operation, several coalition formation mechanisms have been proposed. The dynamic

coalition formation approach that is reviewed here differs from the existing coali-

tion/team formation approaches in the MAS research community. Coalition/team

formation mechanisms require the agents to consider all other agents in the network

making the process computationally intractable for large networks [54, 24]. Moreover,

their agents are constrained to stay in a coalition until the goals of the coalition are

accomplished. While these works emphasize the design of negotiation protocols and

efficient task distribution, the goal of the following works is to promote cooperation

at the network level.

Salazar et al. [55] used a single coalition emergence approach for achieving full

cooperation in MAS structured as complex networks. Using Axelrod’s tribute/tax

framework, they developed a centralized leader based coalition formulation model over

complex networks where the agents pay an amount of tax to the leaders in order to join

a coalition. They have shown that their distributed information sharing consensus

mechanism effectively reduces the tax rate imposed by the leader. However, both the

leader tax collection and information sharing require maintenance of network-wide

multi-hop communication which would incur overhead cost. Moreover, they did not
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investigate the variation of topological features and its impact on their algorithms,

and considered the underlying network as a pre-established, fixed configuration and

static platform.

Peleteiro et al. [51] developed a similar coalition formation approach for enhanc-

ing cooperation over complex networks. Agents use learning automata techniques

to adopt appropriate actions. After joining a coalition agents decide their actions

towards the coalition members and the outsiders using a centralized voting method.

However, no analysis of the voting method is given and hence it’s not clear whether it

is a centralized or decentralized scheme. Also the independent agents require to keep

histories of their previous actions, but the impact of memory size is not analyzed.

Han et al. [4] used commitment to facilitate the emergence of cooperation in a pop-

ulation of agents that play non-iterated PD game. They have used a variant of the

PD payoff matrix is defined to incorporate the penalty and commitment management

cost and thereby to provide sufficient incentives for the agents to consider the advan-

tage of mutual cooperation. Their work is based on an unstructured population with

random interactions among the agents that use a social learning model and mutation

for strategy adaptation. However, they did not consider the effect of their approach

in iterated PD game and the role of network topology.

The impact of the topological features of complex networks on the emergence of

cooperation has been studied by a band of physicists in the framework of evolutionary

game theory. Santos et al. [57] has shown that the heterogeneous degree distribution

in scale-free networks affects the cooperative behavior significantly. However in the

context of social systems there are other topological features that need to be consid-
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ered, e.g. impact of average degree, degree-degree correlation, clustering coefficient

etc. The impact of average degree is tested on the scale-free, small-world and random

networks by Tang et al. [71], and it has been shown that the outcome of the PD game

is affected by the average degree of networks as the density of cooperators reaches its

peak at specific values of average degree. The effect of high clustering over scale-free

networks has been studied by Assenza et al. [6] where each node plays a PD game

with its neighbors, and it is observed that cooperation can be significantly enhanced

when clustering coefficient of the network is very high. Vukov et al. [77] has shown

that if the players of the PD game over scale-free networks are endowed with basic

cognitive abilities, such as the ability to distinguish their partners by remembering

their last action, they could adopt reactive strategies by taking into account the past

actions of the neighbors to establish high level of cooperation. This mechanism iso-

lates the defectors and converts them into cooperators. But this approach requires

memory-enabled agents and incurs extra cost.

The above topology-based works investigates only the domain of static complex

networks. These networks are neither dynamic, nor they change/grow over time.

Poncela et al. [52] studied the emergence of cooperation using a network growth model

that is based on an evolutionary preferential attachment algorithm. The fitness of each

node is defined as proportional to the accrued payoff from the PD game. New nodes

are preferentially linked with the high fitness existing nodes and play the PD game

with its neighbors accordingly. The resultant network is shown to be heterogeneous

with the scale-free property. This work provides a useful understanding about how

the microscopic dynamics could lead to the co-evolution of the structure and the
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macroscopic behavior of the SF network. However, the emergence of full cooperation

seems to be impossible if the payoff for the temptation to defect is larger than the

payoff for the reward.

The above research makes room for further investigation in the following direc-

tions: (1) both the coalition formation and commitment based approaches do not

extensively study the impact of the variation of the topological features on coopera-

tion emergence; for example, it needs to be investigated how the cost associated with

the commitment based approach, such as penalty, is related to the topology of the

network; (2) highly-connected complex networks pose challenge to emerge and sustain

cooperation and the only existing approach relies on expensive rewiring mechanism;

therefore, it is important to figure out a less-expensive solution for highly-connected

networks (3) a more realistic system-design approach could be pursued to complement

the strategy update functions for cooperation formation; for example, instead of us-

ing a homogeneous agent society, it would be interesting to investigate the impact of

heterogeneous agents (that may include both self-interested and altruistic agents) on

cooperation emergence.



CHAPTER 3: EMERGENCE OF CONVENTION

In a convention emergence problem, typically agents have to choose conventions

from a set of convention alternatives or convention seeds. Hence, the size of the con-

vention space could be small or large. In this chapter we present two mechanisms for

convention emergence suitable for both small and large convention spaces respectively.

3.1 Topology-Aware Mechanism for Small Convention Space

3.1.1 Research Goals

Convention emergence problems for small convention space is typically modeled

using pure-coordination game [63, 78, 31, 19, 53, 61, 41, 76, 68, 1]. In this type of

problem, agents has two convention alternatives to choose from.

Previously we discussed (in Chapter 2) that although the state-of-the-art Gener-

alized Simple Majority (GSM) mechanism [19] claims that it is able to form a single

convention in scale-free and small-world networks, it fails to do so across all types

of scale-free networks. This motivates us to propose a simple distributed mechanism

that works across all types of scale-free networks. Our hypothesis is that no single

distributed mechanism is able to form convention across all topologies. Therefore, it

is important to design a mechanism that enables the agents to first recognize their

global topological structure and then to choose a suitable mechanism for convention

convergence for that particular topology.
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To summarize, we emphasize the significance of employing “network thinking”

by the agents to control their dynamics (choosing appropriate convention-selection

mechanism) and the dynamical processes of the network (convention emergence).

We set the following sub-goals with regard to the emergence of convention in small

convention space (EC-SCS) to achieve research goals RG1 - RG3 that we outlined in

Chapter 1(page 12):

• EC-SCS1: Show that the existing state-of-the-art mechanism (that is the Gen-

eralized Simple Majority (GSM) mechanism) [73, 34] fails to form convention

over sparse SF networks. This enables us to establish our hypothesis that no

simple distributed mechanism, such as GSM, works across all types of networks.

• EC-SCS2: Design an efficient mechanism that forms convention in sparse as

well as all types of scale-free networks.

• EC-SCS3: Design a topology-aware meta mechanism that enables the agents to

predict the global topological structure of their network based on local neigh-

borhood information and use suitable convention selection algorithms.

3.1.2 Problem Formulation

A formal definition of the convention problem includes the following components:

(a) the interaction model that describes the interaction architecture, (b) a coordina-

tion game model that captures the agent interaction, and (c) the information propa-

gation model that specifies the amount, type and direction of information exchange.

A solution to this convention problem is the one in which a large majority of the

agents converge into a single convention in a reasonable amount of time.
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3.1.2.1 The Interaction Model

The agent interactions in the MAS are purely local and are constrained by an

undirected graph G(V,E) where V is the set of vertices (or nodes), E ⊆ V x V

is the set of edges and n is the number of nodes. Once the graph or the network

is formed by the agents, it becomes fixed. Two nodes vi and vj are neighbors if

(vi, vj) ∈ E. The neighborhood N(i) is the set of nodes adjacent to vi. That is,

N(i) = {vj|(vi, vj)} ∈ E ⊂ V and |N(i)| is the degree of node vi. The adjacent

agents (within single-hop distance) are defined as the neighbors.

Two types of graphs are used for investigation, (1) Barabasi-Albert (BA) model of

scale-free network [8] and (2) random network. In future, other graph types can be

considered.

3.1.2.2 The Coordination Game Model

The agent interactions are captured by a 2-person, 2-action symmetric coordination

game. This game is used to model a small convention space. Every agent is equipped

to play this game with each one of its neighbors and their interactions are represented

by the network links. The agents start playing the coordination game after the

network is formed and the final network is considered as a closed system.

Every agent either chooses convention X or convention Y while playing the game

with each one of its neighbors. Therefore, the convention space consists of two al-

ternative conventions: X or Y. A social convention is reached when a large majority

of the agents choose either X or Y convention consistently. The game is perfect but

incomplete information based so that the agents do not know the payoff of their
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neighbors but are able to see the current conventions of their neighbors.

In a 2-person, 2-action coordination game setting these two conventions intersect

at four possible outcomes represented by designated payoffs: RXX and RY Y for both

adopting the same convention; and RXY and RY X for adopting different conventions.

The payoff matrix is represented by Table 1. A pure coordination game is used that

satisfies the following payoff conditions: RXX = RY Y = +1 and RXY = RY X = -1.

Therefore, while reaching a convention is profitable, agents do not distinguish between

the quality of the two conventions.

Table 1: Payoff matrix for the coordination Game

X Y
X (RXX) (RXY )
Y (RY X) (RY Y )

3.1.2.3 Information Propagation Model

A spreading-based mechanism is used for the information propagation model be-

cause of its appealing speed of reaching a convention [19, 53]. In these spreading-based

approaches, agents propagate some characteristics (conventions) over the members of

the society to influence them to adopt it. Agents have access to the state of the

current conventions of their neighbors. Neighbors provide this information when an

agent makes such request. From real-world applications perspective, this assumption

seems feasible. For example, in online social networks, participants are able to see

their neighbors conventions [27]. The communication channel is assumed to be error-

free. Since the agent communication is limited only within their local neighborhood,

the cost associated with their communication is not considered.
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3.1.2.4 GSM’s Failure in Scale-free Networks

In this Subsection the previous theoretical argument that GSM leads to the con-

vergence into a single convention in SF networks is disproved.

Theorem 1. For any undirected random scale-free graph the Generalized Simple Ma-

jority (GSM) action update rule does not always lead the network towards a single

convention.

Proof. Theorem 1 is proved by using a counter example that negates the theoretical

argument in [19] and establishes the claim made in Theorem 1.

X

X

Y

X Y

X

Y

X

Figure 5: Small SF network.

Figure 5 shows a small SF network of 8 agents in which the minimum node de-

gree is 1. Agents play a pure coordination game with their immediate neighbors and

update their actions using the GSM rule. Figure 5 captures a snapshot of the con-

vention evolution process where 5 agents adopted convention X and 3 agents adopted

convention Y. As long as the network follows GSM, the two middle nodes would not

change their current conventions in a reasonable amount of time. Therefore, it can be

noticed that a stable barrier exists between the two middle nodes that is preventing

the convergence into a single convention. In this type of setting, emergence of a single
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convention is not guaranteed as two sub-conventions may emerge concurrently and

remain stable. The existence of stable barriers that prevents the emergence of a single

convention is referred as frontier effect [75, 1]. Sparse SF networks such as this in

Figure 5 where minimum node degree is 1 might occasionally experience the frontier

effect and GSM is unable to resolve this problem. Therefore, in any undirected SF

network the GSM does not always guarantee the emergence of a single convention.

It is also noted that the analytical evidence in [19] to prove GSM’s effectiveness

in SF networks relies on a strong assumption of the homogeneity condition. This

assumption implies that the two conventions (X and Y) are uniformly distributed

among the neighbors of each agent. Although it is generally true for complete and

random networks, in sparse SF networks it does not hold because of the highly skewed

degree-distribution and very low connectivity (as illustrated in Figure 5). This means

the analysis of the mean-field equation in [19] does not guarantee convergence in sparse

SF networks or in general SF networks that suffer from the frontier effect.

To address the limitation of the GSM, a convention selection algorithm for SF net-

works that includes sparse SF topologies is presented in the next section. However,

this convention selection algorithm does not work as well in random networks as GSM

does (this observation is experimentally verified this in Subsection 3.1.4). Therefore,

in Subsection 3.1.3 a topology-aware convention selection algorithm (TACS) is pro-

posed that works across both SF and random networks.
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3.1.2.5 Accumulated Coupling Strength

In human society, people often prefer to join social cliques that is most beneficial

to them. By joining the clique they inherit the status that the members of the

clique maintain. The ACS convention selection algorithm is inspired by this social

phenomenon. We assume that agents might find it beneficial to adopt the conventions

of their socially influential neighbors. During initialization of the game, this social

influence of an agent is captured by its Coupling Strength (CS) that is represented by

its degree [76]. Therefore, initially agents with higher-degree have large CS and are

in a position to induce greater influence over their neighbors to adopt its convention.

Agents with lower CS value imitate their larger CS neighbors. When an agent adopts

the convention of its largest CS neighbor, its own CS gets accumulated (that we refer

as the Accumulated Coupling Strength or ACS) by adding the degree of all the agents

that belong to the same convention in that subnetwork. This enables every new agent

that adopts the convention of the subnetwork to inherit the social influence (with a

large value of ACS) of that subnetwork. However, this ideal ACS requires every node

to have global knowledge about the degree of every other node which is usually not

feasible in distributed networks. Hence a fully distributed and approximately efficient

variation of the ideal ACS is presented, as follows.

It requires that the CS of each agent gets accumulated by adding the degree of

the its neighbor node from which it has adopted the convention. In other words,

whenever a new node i adopts its neighbor j’s convention, its coupling strength gets

increased by the addition of the coupling strength of j with which it has coupled, i.e.,
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ACSi = CSi + CSj, where CSi <= CSj.

Therefore, even though initially only agents with large ACS could induce their

conventions to their comparatively low ACS neighbors, as the game proceeds their

coupling influence is propagated beyond their immediate neighborhood with the in-

crease of their neighbors’ ACS. This gradual accretion of the precedent builds up a

social pressure that makes the emergence of a single convention possible.

We now provide a theoretical justification on why the Accumulated Coupling

Strength (ACS) algorithm performs better in SF networks.

The ACS encodes the history of all previous influences and thereby acts as a so-

cial pressure to promote a specific convention. While a regular and homogeneous

distribution may allow many equally strong social pressures to exist and sustain, the

highly skewed degree-distribution of SF networks reduces the the chance of emerging

multiple social pressures and aids convergence into a single convention.

In SF networks there are few high-degree nodes that influence their low-degree

first-hop neighbors to adopt their conventions. As a consequence, the ACS values of

these first-hop neighbors would be larger than that of their source-of-influence high-

degree nodes. Therefore, these neighbors, with their accrued large ACS values, would

propagate their influence (their conventions) in their respective neighborhoods. Due

to the existing age-correlation among the high-degree nodes [8], a single convention

gets propagated over the entire network.
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Algorithm 1: Topology-Aware Convention Selection (TACS) Algorithm

input : Node n for which to select a convention, list L of topologies to consider
with corresponding degree probability distribution Pl∀l ∈ L, and a list
of corresponding convention selection algorithms Al∀l ∈ L that is
suitable for each topology

output: Selected convention C.
1.1 begin
1.2 Dn ← the list of degrees of the local neighborhood for Node n (including

node n itself).
1.3 for every topology type l ∈ L do
1.4 Sl ← 1
1.5 for every node degree d ∈ Dn do
1.6 Sl ← Sl × Pl(Dn(d))
1.7 end

1.8 end
1.9 l∗ ← argmaxlSl

1.10 C ← Al∗(n)

1.11 end

3.1.3 Topology-Aware Convention Selection Algorithm

Algorithm 1 shows the Topology-Aware Convention Selection (TACS) algorithm.

The purpose of the TACS algorithm is to dynamically choose the most suitable con-

vention selection algorithm based on the network topology. Due to partial observabil-

ity, each individual agent is not aware of the overall network topology. The algorithm

is executed from an agents perspective and we assume that the entire population

simultaneously execute this algorithm. TACS first estimates the current network

topology based on the available local information and using the maximum likelihood

principle (Lines 1.2 - 1.9). Since the agents only use the degree-distribution informa-

tion of their immediate neighbors, we assume that the cost associated with memory

usage would be small and we ignore it. Then TACS selects a convention using the

best-suited Convention-Selection algorithm for the estimated topology (Line 1.10).
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The maximum likelihood principle works as follows. For the node under considera-

tion (that is choosing a convention), it computes the probability of having neighbor

with the current degrees under different topologies. Given that, identify the most

likely topology and choose a convention selection algorithm that is most suitable for

that particular topology.

We anticipate the possibility of making prediction error by the agents. However, the

idea of this approach is to maximize the probability of identifying the right topology

given the limited view an agent has. Increasing the agent view to more than one hop

will decrease the chance of error at the expense of more overhead (cost of memory

and processing would increase). Thus the agents are restricted to see the degree of

their single-hop neighbors.

This work focuses on two types of topologies (random and scale-free) but the pro-

posed algorithm can be extended to include other network types if needed. In what

follows we provide the techniques for the calculation of the degree-distribution prob-

abilities for both types of topologies.

Random Network: In random networks, the agent degrees are normally distributed

and in SF networks degrees follow power-law distribution. Computation of the normal

distribution function is trivial. For a given agent’s degree x, the normal distribution

is defined as following:

Prandom(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

The parameter µ in this formula is the mean of the degree-distribution. The pa-
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rameter σ is its standard deviation; its variance is therefore σ2.

Scale-Free Network: In scale-free (SF) networks, the degree-distribution of the nodes

follow power-law form. The probability distribution for a quantity x that follows

power-law can be represented as

P (x) ∝ x−α

where α is a constant scaling parameter. Its value typically lies in the range of

2 < α < 3.

For distributions where the quantity of interest takes a discrete set of values (such

as in our case), the following probability function is used [15]:

Pscale−free(x) =
α− 1

xmin

(
x

xmin

)α

Typically power-law is applicable only for values greater than some minimum xmin.

Determination of xmin is a non-trivial task because all values of x may not follow the

power-law distribution. Since we generate the SF network in a controlled simulation

environment by using the BA model, our SF network nodes follow power-law degree

distribution starting from the minimum node degree to the maximum. Hence, the

value of xmin is set to be equal to the minimum node degree of the SF network.

In case of empirical data, there are standard estimation techniques for computing

x(min) [15].

The scaling parameter α is calculated using the method of maximum likelihood

(MLE) [15] which is a standard statistical approach for parameter estimation.
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α = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1

3.1.4 Simulation and Results Analysis

We conduct extensive simulations with the following goals: (a) to investigate

whether the generalized simple majority (GSM) rule and the ACS algorithm con-

verge into large majority convention states on both random and SF networks and

then (b) to investigate how the proposed topology-aware convention selection algo-

rithm (TACS) performs on these networks.

3.1.4.1 Setup

The agents are situated in a connected topology that limits the communications

of each agent to their immediate neighbor set. An edge between two nodes of the

network indicates that the agents interact and play the coordination game. Two

types of networks of varying sizes are used: scale-free networks (SF) and random

(RN) networks.

SF topologies are generated using the BA model [8]5. Initially a small mesh network

consisting of three nodes is formed and then each new node is added according to

the preferential attachment rule of the BA model. We set the default minimum node

degree as 1 in both models (m = 1). As a consequence, each new node gets connected

to at most 1 existing node. Sparse SF topology (where minimum node-degree is 1) has

been chosen for implementation because this type of topology generally experiences

frontier effect [1] that the ACS algorithm tries to resolve.

5This model is described in Appendix A.
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The random (RN) networks are generated first by adding a random node to every

node in the network. This ensures that no node is isolated. Then edges are added

between two randomly selected nodes. The number of these randomly added edges

is double the network size.

The size of the RN and SF networks are varied starting from size 25 to 10000.

Initially one of the two conventions, X or Y, is randomly assigned to every node

in the network. Then the coordination game proceeds in rounds and each round

has two phases: (i) the agents play the game with all the neighbors based on their

current state of conventions and (ii) update the state based on the convention selection

algorithm6. Three convention selection algorithms are used: the Generalized Simple

Majority (GSM) [19] rule, Accumulated Coupling Strength (ACS) and Topology-

Aware Convention Selection (TACS) algorithm.

Since state updates depend on the local neighborhood, synchronous update is con-

sidered in which the entire society updates their states simultaneously in discrete

time-steps that gives rise to a discrete-time macro-level dynamics [69].

50 simulations are conducted by creating distinct instances of the networks. Each

simulation consists of 1000 time-steps where a time-step refers to a single run of the

program.

A converged single convention is considered as the one in which 90% or more agents

have adopted the same convention [31]. Two tailed t-tests are used to evaluate the

statistical difference of the performance of the action update rules.

6The convention selection algorithm refers to the action or state update rules in literature [19]
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3.1.4.2 Results

Comparison of GSM & ACS: Table 2 shows the performance of the GSM and the

ACS for various size RN and SF networks. For each network size and type we created

fifty network instances and used both the GSM and the ACS to observe the con-

vergence process. The results indicate that in RN networks, GSM successfully leads

the network to converge into a single convention. ACS performs extremely poorly

in RN networks as the network size increases. Applying a two tailed t-test on this

data shows that the difference in converging into a single convention between GSM

and ACS is significant with p-values < 0.05. The reason for the poor performance

of ACS in RN networks is following. Initially ACS enables nodes to cluster around

the higher degree nodes in their neighborhood. Unlike SF networks, there aren’t very

high-degree nodes or hubs in RN networks. As a consequence, many clusters are

formed. A cluster with comparatively very high ACS value could bias other clusters

to converge into it. However, in RN networks, none of the clusters would have very

high ACS value due to the absence of hub nodes. This results in poor performance

of ACS in RN networks.

On the other hand, in SF networks ACS performs better than GSM, as expected.

Only in the 25 agents SF network, GSM performs slightly better. But as the size of

the network increases, GSM fails to lead the network towards the a single convention.

The p-values (< 0.05) clearly indicate this performance difference between these two

approaches. The reason for the poor performance of GSM in SF networks is that it

fails to resolve frontier effect that we analytically explained in Subsection 3.1.2.4.
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Table 2: Performance comparison between GSM & ACS in random (RN) & scale-free
(SF) networks

Type Size GSM ACS t-test Values
25 50 44 t=2.532183794 p=0.014590637
100 50 20 t=8.034033595 p=1.69493E-10
500 49 1 t=17.7044527 p=3.939E-28

RN 1000 50 4 t=18.29325883 p=1.53687E-23
2000 50 2 t=20.19918638 p=2.08895E-25
5000 49 1 t=15.96306336 p=1.37358E-26
10000 49 1 t=18.95149434 p=1.64739E-31

25 18 37 t=-3.091860652 p=0.002610898
100 4 35 t=-10.39464223 p=1.88831E-17
500 0 33 t=-15.63800236 p=1.54961E-24

SF 1000 0 27 t=-13.9046204 p=7.265E-21
2000 0 34 t=-19.51279059 p=6.58889E-27
5000 0 31 t=-20.75669196 p=4.08026E-27
10000 0 27 t=-22.9619313 p=1.49407E-28

Performance of the TACS: Table 3 shows the performance of the TACS in comparison

with the performance of GSM and ACS for various size RN and SF networks. For each

network size and type, fifty network instances are generated and used TACS, GSM

and ACS. For RN networks, it can be noticed that TACS performs as well as GSM.

Overall the difference in the performance between TACS and GSM in RN networks is

not significantly different with p-value greater than 0.05. The exceptions are the 100,

1000 and 2000 node networks where the p-values are less than 0.05. However, even

in these networks both TACS and GSM always lead to a single convention. TACS

performs well in RN networks, because it enables agents to recognize the RN topology

and to use GSM. In contrast, the performance of ACS and TACS differs significantly

in these RN networks with p-values always less than 0.05.

In contrast, the performance of TACS in SF networks is reasonably good. Agents

are able to recognize the SF topology using TACS and correctly select ACS for con-
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Table 3: Performance of the TACS in random (RN) & scale-free (SF) networks

Type Size TACS /GSM t-test Values
25 50 /50 t=1 p=0.322223406
100 50 /50 t=4.149242849 p=0.000132341
500 49 /49 t=0.362917143 p=0.717481569

RN 1 x103 50 /50 t=12.35106344 p=1.1612E-16
2 x103 50 /50 t=17.07825128 p=2.84876E-22
5 x103 50 /49 t=-0.710770264 p=0.480596257
10 x103 50 /49 t=-0.689176472 p=0.493962921

25 34 /18 t=-3.262565143 p=0.001555407
100 31 /4 t=-9.6111065 p=8.45531E-16
500 27 /0 t=-19.64977344 p=9.59525E-34

SF 1 x103 16 /0 t=-14.57863053 p=6.73781E-23
2 x103 17 /0 t=-21.6798235 p=3.46767E-31
5 x103 17 /0 t=-23.47521492 p=1.15992E-30
10 x103 9 /0 t=-21.7111511 p=9.78724E-28

Type Size TACS /ACS t-test Values
25 50 /44 t=0.00825891 p=0.016517819
100 50 /20 t=-7.90979507 p=2.6252E-10
500 49 /1 t=-16.6143261 p=5.67608E-28

RN 1 x103 50 /4 t=-18.1241733 p=2.28718E-23
2 x103 50 /2 t=-20.03074525 p=3.01478E-25
5 x103 50 /1 t=-19.02586291 p=2.83241E-24
10 x103 50 /1 t=-22.66426789 p=1.26534E-27

25 34 /37 t=-0.056375585 p=0.955158569
100 31 /35 t=1.380074681 p=0.170736207
500 27 /33 t=0.789952988 p=0.431703075

SF 1 x103 16 /27 t=1.455369065 p=0.148898696
2 x103 17 /34 t=2.5304794 p=0.013128434
5 x103 17 /31 t=1.758085406 p=0.082023001
10 x103 9 /27 t=2.629977583 p=0.009931446

The (TACS/GSM) columns show the number of times each algorithm succeeded to converge

into a single convention (out of 50 simulations).

vention formation. The difference in the performance between TACS and ACS is not

significant for smaller networks (size less than 2000) with p-values greater than 0.05.

However, as the network size increases TACS appears to perform poorly as indicated

by its performance difference with that of ACS with p-values less than 0.05. We
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explain this phenomenon in the following.

Table 4: Topology identification by the agents in TACS

Size Type #GSM Followers #ACS Followers Type #GSM Followers #ACS Followers
25 24.9 0.1 1.56 23.44
100 99.24 0.76 4.6 95.4
500 496.3 3.7 22.4 477.6
1 x103 RN 991.7 8.3 SF 47.36 952.64
2 x103 1985.8 14.2 90.08 1909.92
5 x103 4962.14 37.86 229.26 4770.74
10 x103 9920.72 79.28 450.22 9549.78

For each network type and size columns 3-4 and 6-7 show the average number of the agents

that identified the topology as random (GSM followers) and as SF (ACS followers).

The number of times TACS is successful in leading the networks into a single

convention in SF networks is smaller compared to RN networks. This is due to the

comparatively smaller number of nodes in SF networks that correctly identify the

topology compared to the number of nodes that correctly identify the topology in

RN networks (see Table 4). This table shows the average number of agents that

identified the local topology as RN and adopted the GSM rule (these nodes are

denoted as the GSM followers); and the average number of agents that recognized the

local neighborhood structure as SF and adopted the ACS rule (the ACS followers).

We observe that when the network size becomes larger (≥ 2000) the difference in

numbers between the GSM followers (in RN networks) and the ACS followers (in SF

networks) becomes significantly larger. As a consequence more nodes in RN networks

use GSM than the nodes in SF networks that use ACS. This contributes to the

comparatively poor performance of the TACS in SF networks. The majority of the

agents in SF networks has smaller degree due to its power-law degree-distribution.

Since the agents only use their single-hop neighbors’ degree-distribution for computing
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the probability functions (both normal and power-law), for many agents it could

represent a normal degree-distribution. Hence, these agents incorrectly identify their

neighborhood topology as RN network use GSM instead of ACS resulting in poor

performance.

3.1.5 Conclusions

The goal of this work is to design a mechanism that allows a population of agents

to adapt towards forming a single convention in various types of complex networks. It

is based on the need that emergence of a social convention can reduce the overhead of

coordination in MAS. An evolutionary game theoretic approach is used here to solve

the convention problem. Our hypothesis is that no single distributed mechanism is

able to form convention across various topologies. Two types of MAS networks are

chosen for investigation that are scale-free (SF) and random (RN) networks. First,

we analytically show, and later experimentally substantiate, that the state-of-the-art

Generalized Simple Majority (GSM) action update rule does not perform successfully

across all different types of SF networks, particularly in sparse SF networks. Then

an accumulated coupling strength (ACS) convention selection algorithm is presented

that is able to create a single convention both in sparse and highly-connected SF

networks. ACS encodes the history of all previous influences and thereby acts as a

social pressure to promote a specific convention. However, ACS does not perform as

well in RN networks as GSM does. Hence, we propose a topology-aware convention

selection (TACS) algorithm that enables the agents to predict their local neighbor-

hood topology and then to select a suitable convention emergence algorithm. An
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extensive simulation study has been conducted on RN and SF networks. We show

that a large majority of the agents correctly recognize their topology and use either

GSM (for RN networks) or ACS (for SF networks) that leads to the convergence into

a single convention.

We have accomplished the research goals EC-SCS1-3 by:

• Showing theoretically and experimentally that the GSM mechanism fails to

converge in some SF networks and explain the flaw in the previous reported

theoretical analysis [19].

• Proposing a simple mechanism (ACS) for SF networks that is based on a so-

cially inspired technique. ACS only requires the agents’ knowledge about their

immediate local neighborhood and encodes all past interactions in the agents’

state to create a social pressure that expedites the convention convergence.

• Proposing a topology-aware meta mechanism (TACS) that recognizes the un-

derlying topology and select a suitable simple mechanism. Agents use their

single-hop neighbors’ degree-distribution to predict the global topology of the

network.

• Experimentally verifying the hypothesis that no simple distributed mechanism

are able to form convention across various topologies and that TACS performs

significantly better than any single mechanism.
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3.2 Topology-Aware Mechanism for Large Convention Space

3.2.1 Research Goals

Previously we discussed (in Chapter 2) two significant mechanisms by Salazar et

al. [56] and Franks et al. [23]7 that addressed the convention emergence problem

suitable for large convention space. We identified the following key limitations of

these two mechanisms: agent networks are assumed to be static and are unable to

form a Large Majority Convention State (henceforth referred as LMCS for short) in

which 90% or more agents adopt a single convention in a reasonable amount of time8.

In real-world applications, speeding up the convention formation process is a major

concern and challenge [40].

We propose a topology-aware convention formation mechanism for large conven-

tion space that is able to overcome the limitations of SRA and FGJ. To validate our

approach, similar to FGJ, we investigate a language coordination problem that cap-

tures the challenges involved in creating high-quality convention in large and dynamic

MAS. The topology-aware mechanism enables agents to use their social influence to

expedite the convention formation process.

In real-world applications the structure of agent society could be of different types.

Therefore, we consider a large number of agents in the MAS being organized as var-

ious types of networks that include regular, random (RN), Small-World (SW) and

Scale-Free (SF) networks. However, we emphasize scale-free topologies due to its

7Henceforth these two approaches are referred as SRA and FGJ respectively.
8Both in SRA and FGJ the time-period for investigating the emergence of lexicon convention

is comprised of 100,000 time-steps of the simulation. We use this duration as a definition of a
reasonable amount of time for convergence to occur.
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omnipresence in social and artificial systems. Every agent starts off with an internal

lexicon that consists of a set of concepts and randomly assigned word mappings. These

agents engage in repeated and pairwise interactions with their immediate neighbors.

Agents’ interactions are modeled using a language game in which they send lexicons

to their neighbors and update their lexicons based on the utility values of the received

lexicons. We propose a topology-aware utility computation mechanism that enables

the agents to use contextual knowledge to expedite the convention formation process.

According to this mechanism, if agents with the largest degree in their neighborhood

has a high quality lexicon, they would increase the utility of their lexicons in propor-

tion to their degree. As a consequence, these socially influential high-utility-lexicon

agents bias their neighbors to accept their lexicons. This phenomenon expedites the

convention formation process.

Moreover, to further augment this process, we use a socially-inspired technique

which is the power of diversity. In [50], it has been shown from a social science

perspective that diversity improves organizational productivity. It emphasizes that

not all diversity is helpful and that the benefits rest on conditions. Being inspired

by this approach, agents in our work are enabled to bring diversity in the population

through a novel network reorganization technique that is based on the lexicon utility.

According to this technique, an agent stochastically removes the smallest-lexicon-

utility-neighbor from its neighborhood and rewires with a randomly chosen neighbor

of the removed agent. This increases the chance of getting better-lexicon-utility-

neighbor in the neighborhood and thereby improves the quality of lexicons. We

show that the topology-aware mechanism along with the link diversity expedite the
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emergence of a stable and high-quality convention. In addition to this, we evaluate

the efficacy of the topology-aware mechanism by varying the topological features to

develop an understanding about how the topology influences convention formation

process. We also investigate the conditions under which diversity brings benefit. For

example, we implement both random reorganization and reorganization of links based

on the lexicon utility and see which facilitates language coordination more efficiently.

We set the following sub-goals concerning the problem of emergence of convention

in large convention space (EC-LCS) to achieve research goals RG4 - RG6 that we

outlined in Chapter 1(page 13):

• EC-LCS1: Design a topology-aware mechanism that is both (i) effective (able

to converge into LMCS as well as the quality of the most common convention

is high) and (ii) efficient (speed of reaching LMCS is fast).

• EC-LCS2: Model a dynamic network scenario that facilitates convention emer-

gence.

• EC-LCS3: Investigate how the average degree of the SF topologies influence

the convention formation process.

• EC-LCS4: Investigate various types of link diversity approaches in SF topologies

and their influence on convention formation .

3.2.2 Problem Formulation

A formal definition of the convention problem includes the following components:

(a) the interaction model that describes the interaction topology, (b) a language game

model that captures the agent interaction, (c) convention space defines the number of
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alternative conventions and (d) the information propagation model that specifies the

amount, type and direction of information exchange. A solution to this convention

problem is the one in which the MAS converges to LMCS in a reasonable amount of

time.

3.2.2.1 The Interaction Model

The agent interactions in the MAS are purely local and are constrained by an

undirected graph G(V,E) where V is the set of vertices (or nodes) and E ⊆ V x V

is the set of edges. Each node corresponds to an agent. The numbers of nodes are

referred by n. Two nodes vi and vj are neighbors if (vi, vj) ∈ E. The neighborhood

N(i) is the set of nodes adjacent to vi. That is, N(i) = {vj|(vi, vj)} ∈ E ⊂ V and

|N(i)| is the degree of node vi. The adjacent agents (within single-hop distance) are

defined as the neighbors. The network is dynamic in that the nodes change their

edges (social ties).

Four types of graphs are used for investigation: (1) regular network in the form of

ring topology, (2) Watts-Strogatz small-world network [79], (3) random network and

(4) Barabasi-Albert (BA) model of scale-free network [8].

3.2.2.2 The Language Game Model

Agent interactions are based on the FGJ language game model which is a variation

of Luc Steels original language game [67]. Steels designed a paradigm that enables

artificial agents to play language games about situations they perceive and act upon

in the real world; and self-organize communication systems from scratch. Initially

the agents start off with randomized internal lexicons. Each lexicon has a set of
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mappings from concepts (C) to words (W). Because of the random allocation of

the concept-word mapping, some concepts may have more than one word. In other

words, synonymy may exist in the lexicon. The game is initialized with multiple

convention alternatives or convention seeds (as defined previously). Agents spread

their convention seeds through repeated interactions. We assume that agents are

rational and hence accept conventions with high utility values. Agents adopt and

adapt high-quality convention and keep on creating better convention seeds. Finally,

one high-quality seed emerges as the dominant convention in the network. A high-

quality lexicon is the one that has reduced or zero synonymy.

3.2.2.3 Convention Space

The number of concepts and words are assumed to be equal (|C| = |W |). Therefore,

the size of the convention space is bounded by (|W ||C|). Similar to FGJ, 10 fixed

concepts for 10 words are used; hence the possible size of the convention space is

quite large (1010).

3.2.2.4 Information Propagation Model

We use spreading-based mechanism for information propagation model because

of its appealing speed of reaching a convention [19, 53]. In these spreading-based

approaches, agents propagate some characteristics (conventions) over the members

of the society to influence them to adopt it. Agents have access to the state of the

current conventions (utility of the lexicons) of their neighbors. Neighbors provide

this information when an agent makes such request. The communication channel

is assumed to be error-free. Since the agent communication is limited only within
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their local neighborhood, the cost associated with their communication is ignored.

Moreover, the information propagation is bidirectional. Even if the edge from agent

A to B is removed, the edge from B to A remains.

3.2.3 Topology-Aware Convention Formation Mechanism

In each round of the language game, agents perform the following four tasks: (i)

communication, (ii) lexicon spreading, (iii) lexicon update, and (iv) Network Reor-

ganization. The first three steps are based on FGJ. The lexicon update model is

implemented as an asynchronous process in which agents spread and update their

lexicons probabilistically.

(i) Communication: Every agent chooses a random neighbor and sends one word

mapping for a randomly selected concept. The communication is successful if the

receiving agent uses the same mapping. The sending agent i computes its commu-

nicative efficacy (CEi) as the proportion of successful communications (succComm)

over the last 20 time-steps: CEi = #succComm/20.

(ii) Lexicon Spreading: An agent sends its partial lexicon to its neighbors with a

sending probability psend. Every agent has a fixed lexicon transfer length. It sends

a contiguous set of mappings from its lexicon equal to this transfer length starting

from a randomly selected mapping. A receiving agent that updates its lexicon using

this mappings start from the same random point.

(iii) Lexicon Update: Each agent compares the utility of all the received mappings

and choose the mapping with the largest utility. An agent updates its lexicon from

the received mappings from its neighbors with an update probability pupdate.
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Utility Computation Mechanism: In FGJ, an agent computes its lexicon utility by

adding its communicative efficacy with its lexicon specificity. Agents calculate lexicon

specificity of a single concept (Sc) in a lexicon using the formula Sc = 1
|Wc| where Wc

is the set of words associated with that concept. The specificity of a lexicon is the

average of the specificity of all concepts:

S =
∑
c∈C

Sc/|C| (1)

The approach taken here augments the computation of lexicon utility by adding

a topological factor. Therefore, an agent i computes the utility of its lexicon (ui)

by summing up its communicative efficacy (CEi), lexicon specificity (Si) and a the

topological factor (TFi) as follows:

ui = aCEi + bSi + cTFi (2)

where a, b and c are constants to adjust weights of these three parameters. The

topological factor is introduced to expedite the convention formation process. Agents

with the largest degrees (higher social status) in their neighborhood and better quality

lexicons (high-quality seeds) are enabled to acquire large values for their topological

parameter which increases their lexicon utility. As a consequence these high-degree

nodes are able to influence a large number of agents to adopt their conventions quickly.

Our hypothesis is that within a local neighborhood, some agents would have larger con-

nections (higher influence capability) and these agents could be empowered to strongly

influence their neighbors to adopt the better quality lexicons that they have. This would
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significantly enhance the speed of convention formation and improve the quality of

the dominant lexicon.

Algorithm 2: Topological Factor Computation

2.1 for each agent i:= 1 to n do
2.2 if LargestDegreeinNeighborhood(i) AND LexiconSpecificity(i) ≥ α then
2.3 TopologicalFactor(i) = Degree(i)

2.4 end
2.5 if LexiconSpecificity(i) ≥ λ then
2.6 TopologicalFactor(i) = µ

2.7 end

2.8 end

Algorithm 2 describes the computation of the topological factor. Agents with the

largest degree in their neighborhood and with lexicon specificity greater than or equal

to a threshold value (α) set their topological factor to be the value of their degree

(Lines 2.2 - 2.3). It increases the lexicon utility of these largest degree agents and

thus these agents expedite the convention formation process. However, it is possible

that initially the largest degree agents may not have lexicons with high specificity.

Therefore, in order to facilitate these agents to adapt high-quality lexicons, any agent

with lexicon specificity equal to or above a threshold value (λ) is enabled to set its

topological factor as equal to a very large number (µ) as in lines 2.5 - 2.6. These

agents then influence their neighbors, including the larger-degree agents, to adapt

the high-quality lexicon mappings in fewer time-steps. Once a larger degree agent

acquires high-quality lexicon, it begins to influence its larger neighbor base as in lines

2.2 - 2.3.

(iv) Increased Diversity through Network Reorganization: Individual agents are ca-

pable of making rational choices to remove and rewire a link; and thereby increase
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the diversity in their neighborhood. Our assumption is that by removing the lowest-

lexicon-utility neighbors and then by rewiring to randomly chosen neighbors beyond

their neighborhood, agents can improve the chance of increasing their lexicon speci-

ficity by having neighbors with potentially better quality lexicons. In other words,

this link diversity contributes to the creation of better convention seeds that results

in facilitating high-quality convention formation. With a given probability, an agent

removes an existing link with a neighbor with the lowest lexicon utility. However,

it will do so only if its own lexicon utility is larger than its lowest-lexicon-utility

neighbor. This is to ensure that agents will not remove neighbors (including the

lowest-lexicon-utility neighbor) that happen to have better lexicons than the agent.

It then rewires with a randomly chosen neighbor of its removed neighbor. This way

the diversity in the network is conditioned. Only a small number of agents would take

part in network reorganization based on the assumption that the entire society may

not get involved in reorganization. Another assumption is that only one neighbor

would be removed to add a new neighbor. This way the total number of links can be

maintained at a constant level and the degree-distribution of the nodes would remain

unchanged.

Figure 6 shows how this reorganization works. At time t1, agent A has two neigh-

bors B and C. The lexicon utility of agent B is the lowest in A’s neighborhood.

Moreover, B’s lexicon utility is smaller than that of A. Therefore, agent A stochasti-

cally removes its link with B and rewire with a randomly chosen neighbor of B (that

could be D or E). Since the network is bi-directional, removing a link from agent A

to B does not remove the link from B to A. At time t2, agent A removes its link
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Figure 6: Network reorganization (t1 < t2).

with B and rewire with one of B’s neighbor with a probability given by the Fermi

function [48] p = [1 + e−β(uA−uB)]−1. The parameter β controls the intensity of se-

lection in that for larger values of it (β → ∞) the edges of the lowest-lexicon-utility

agents are deterministically removed and rewires to a randomly selected neighbor of

the removed agent. It is assumed that only a small fraction of randomly selected

agents take part in this network reorganization process.

3.2.3.1 Algorithm for Convention Formation Mechanism

Algorithm 3 describes the distributed convention formation mechanism. This algo-

rithm is executed by each individual agent in the network. Initially mappings for the

lexicons are randomly assigned among the agents. Then each agent sends one ran-

dom mapping to a randomly chosen neighbor and computes communicative efficacy,

lexicon specificity (Lines 3.2 - 3.5), topological factor and lexicon utilities (Lines 3.6
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Algorithm 3: Topologically-Aware Algorithm

3.1 for each agent i:= 1 to n do
3.2 randomLexiconAssignment()
3.3 sendOneMappingToRandomNeighbor()
3.4 computeCommunicativeEfficacy(#succComm/20)
3.5 computeLexiconSpecificity(Equation 1)
3.6 computeTopologicalFactor(Algorithm 2)
3.7 computeLexiconUtility(Equation 2)
3.8 probabilisticLexiconSpreadingtoNeighbors()
3.9 probabilisticLexiconUpdate()

3.10 networkReorganization()

3.11 end
3.12 iterate (Lines 3.1 - 3.10)

- 3.7). They then probabilistically spread their partial lexicons and update their lex-

icons (Lines 3.8 - 3.10). This process repeats (Lines 3.1 - 3.10) over multiple rounds

and a majority lexicon convention emerges.

3.2.4 Simulation and Results Analysis

We conduct simulations with the following goals: (i) compare the performance

of two state-of-the-art lexicon convention formation mechanisms with the topology-

aware (TA) mechanism on various types of networks including regular (ring), small-

world (SW), random (RN) and scale-free (SF) networks, (ii) investigate how the

TA mechanism performs across various degree SF networks and (iii) understand the

amount of network reorganization required for emerging and sustaining convention

across various topologies.

The dominant lexicon convention is defined as the one that is shared by the largest

number of agents.

The following metrics are used for comparison:

• Effectiveness: A mechanism is defined to be effective if it is able to converge into a
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LMCS within a reasonable amount of time.

• Efficiency: This parameter measures how fast a network converges into a LMCS.

• Dominant Lexicon Specificity (DLS): It represents the lexicon specificity that belongs

to the dominant convention. DLS helps to understand how lexicon specificity of the

dominant convention evolves (improves) over time.

• Average Communicative Efficacy (ACE): It provides a measure of the average com-

municative efficacy of the system. ACE is used to understand the level of coordination

of the system at each time-step.

• Average Network Reorganization: It provides a measure of the number of network

reorganization, that includes link removal and rewiring, on average at each time-step.

It helps to understand the required level of diversity for stable convention emergence.

3.2.4.1 Simulation Setup

We conduct experiments on four topologies: ring, SW, RN and SF.

We use Watts and Strogatz model to create small-world networks [79]. The rewiring

probability is set to 0.1 (similar to SRA and FGJ). SF topologies are generated using

the BA model [8]9.

Each type of network consists of 1000 agents represented as nodes in the network.

An edge between two nodes of the network indicates that the agents can interact and

play the language game. The average node degree in these networks are set to 20 for

the purpose of comparison with the two baseline state-of-the-art approaches. Later

average node degree is varied on SF topologies to see its effect on the performance.

Similar to FGJ, initially the internal lexicon of every agent is set with 10 fixed

9This model is described in Appendix A.
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concepts and a randomized mapping of one or more words (from a set of 10 words)

for each concept. The simulation proceeds according to Algorithm 3. For the compu-

tation of the lexicon utility, as in FGJ, the three weight constants are assumed to be

equal to 1 (a = b = c = 1). The spreading and updating probabilities are set to 0.01.

Only 10% of the agents are randomly selected to take part in network reorganization

using the Fermi function in which the value of β is set to 1.0.

Table 5 provides the setting of the threshold levels of the parameters for the TA

mechanism. α is set to be greater than or equal to 0.95 and λ is equal to 1.0. It

enables the largest degree agents in any neighborhood to exert influence (by increasing

their topological factor) only when their lexicon specificity is equal to or above 0.95.

However, any agent (including the smaller degree agents) can increase its topological

factor when its lexicon specificity is maximum. For the calculation of the topological

factor, µ is set to a large number 1000.

For implementing FGJ mechanism, 50 influencer agents are randomly deployed in

the network, as in the original FGJ. These agents start off with a unique lexicon in

which every concept has a single word mapping (lexicon specificity is optimum, i.e.,

equal to 1.0).

All the results reported are averages over 50 realizations for each network. Each

simulation consists of 100,000 time-steps where a time-step refers to a single run of

the program.
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Table 5: Parameter Values for Simulation Configuration.

α λ psend pupdate
TA ≥ 0.95 = 1.0 0.01 0.01

SRA N/A N/A 0.01 0.01
FGJ N/A N/A 0.01 0.01
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Figure 7: Comparison of the number of dominant lexicon agents for the topology-
aware (TA) approach with SRA and FGJ’s approach.
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3.2.4.2 Simulation Results

Convergence to LMCS & Speed of Convention Formation: Figure 7 shows how dom-

inant convention agents evolve over time for TA, SRA and FGJ over Ring, SW, RN

and SF topologies respectively. We observe that TA clearly outperforms the two

state-of-the-art approaches in all four network types. A combination of the topology-

aware lexicon-utility computation and link diversity enables 90% agents to converge

into a single convention much faster than SRA and FGJ over these topologies.

Table 6: Performance Comparison: %ACC refers to % of agents converged into a
convention at timestep t. ACE & DLS are reported at 100,000 time-step.

Ring Small-World
%ACC t ACE DLS %ACC t ACE DLS

TA 80 18757 0.94 0.88 80 1837 0.94 0.87
90 29323 0.96 0.88 90 30222 0.97 0.88

SRA 80 X 80 X
90 X 90 X

FGJ 80 X 80 X
90 X 90 X

Random Scale-Free
%ACC t ACE DLS %ACC t ACE DLS

TA 80 27549 0.94 0.89 80 24375 0.94 0.94
90 47595 0.97 0.90 90 68111 0.97 0.95

SRA 80 X 80 70660 0.96 0.98
90 X 90 X

FGJ 80 43961 0.92 1.0 80 35500 0.96 1.0
90 X 90 X

SRA and FGJ fail to converge into LMCS in RN and SF networks. Table 6 shows

that SRA requires as many as 70,660 rounds to make 80% agents use the dominant

lexicon in SF networks which it fails to do in RN topologies within 100,000 time-

steps. On the other hand, TA requires 24,375 time-steps to have 80% agents to use

a common lexicon in SF networks and 27549 time-steps in RN networks. We observe
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similar poor performance in case of FGJ that requires 35,500 time-steps to have 80%

agents to use a common lexicon in SF networks and 4396 time-steps in RN networks.

The performance of SRA and FGJ is worse in Ring and SW topologies. SRA enables

less than 25 agents to form a single convention over these two topologies; and using

FGJ less than 250 agents converge into a single convention within 100,000 time-steps.

Both in Ring and SW networks, degree-heterogeneity is much less compared to RN

and SF networks. As a consequence the spreading based approaches of SRA and FGJ

require longer time for the convergence into a LMCS. However, TA mechanism enables

agents to use their social influence to bias their neighbors to adopt conventions at a

faster rate. Moreover, according to TA, if an agent has perfect lexicon, it increases

the utility of its lexicon to strongly influence their neighbors. In addition to this,

link diversity through network reorganization increases the chance of having better-

lexicon-quality-neighbors. That’s why spreading of high quality lexicon occurs faster

in TA mechanism.

Average Communicative Efficacy (ACE) & Dominant Lexicon Specificity (DLS): Fig-

ures 8, 9, 10 and 11 show how ACE and DLS values change over time in four topologies

for TA, SRA and FGJ.

In Ring networks, the ACE is significantly better in case of TA than SRA and FGJ

(see Figure 8(a)). It indicates the level of coordination is high when agents use TA

mechanism in Ring networks. We discussed previously that the TA empowers the

agents with perfect lexicons to expedite the convention formation process. Also link

diversity helps to improve the chance of creating better lexicons. However, the DLS

in FGJ is better than TA. The reason is that FGJ has the advantage of initializing
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Figure 8: Comparison of the evolution of average communicative efficacy (ACE) &
dominant lexicon specificity (DLS) in Ring networks. The values are averaged over
50 separate instances of simulation.

a fraction of the agents with the optimum quality lexicon that bias the rest of the

network to adopt their lexicon.

We observe similar behavior of TA in SW networks. Figures 9(a) and 9(b) show

that the ACE is significantly better in case of TA than SRA and FGJ. However, the

DLS is not as good in TA as it is in FGJ.

Figures 10(a) and 10(b) show that, in RN networks, ACE is larger in TA than SRA

and FGJ. The level of coordination for FGJ is better in RN networks than it is in

SW networks, as can be seen from Figure 10(a). DLS for TA is not better than SRA

and FGJ. In other words, although TA converges into LMCS (SRA and FGJ fail to

do so), its DLS is only as high as 0.90 (Table 6).

We follow similar behavior of ACE and DLS for TA in SF networks. Figures 11(a)

and 11(b) indicate that while ACE is the largest using TA, DLS of TA is slightly
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Figure 9: Comparison of the evolution of average communicative efficacy (ACE) &
dominant lexicon specificity (DLS) in Small-World networks. The values are averaged
over 50 separate instances of simulation.
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Figure 10: Comparison of the evolution of average communicative efficacy (ACE) &
dominant lexicon specificity (DLS) in Random networks. The values are averaged
over 50 separate instances of simulation.
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Figure 11: Comparison of the evolution of average communicative efficacy (ACE) &
dominant lexicon specificity (DLS) in Scale-Free networks. The values are averaged
over 50 separate instances of simulation.

less than SRA and FGJ (Table 6). In other words, TA performs significantly better

in SF topologies compared to other networks with respect to fast and guaranteed

convergence to LMCS, and with respect to maintaining a large level of ACE and

DLS.

Performance of TA Across Various Degree SF Networks: We try to understand the

performance of TA across various degree SF networks. Figure 12 shows how dominant

convention agents evolve over various degree SF topologies. We notice that MAS

converges into LMCS only when the average node degree is 20 or above. SF networks

with smaller average degree fail to create LMCS within 100,000 time-steps. As the

network becomes more and more sparse, convention formation becomes slower. For

example, in networks with average degree of 2, evolution of convention formation

occurs very slowly. Smaller neighborhood slows down convention formation process



73

because smaller average degree restrains information propagation. Moreover, the link

diversity cannot reap much benefit due to slow improvement of the lexicon specificity.
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Figure 12: Comparison of the number of dominant lexicon agents for various average
degree SF networks for the topology-aware (TA) approach.

Previous approaches (SRA and FGJ) claim to solve language convention problem

in SF networks, however their investigation is only on networks with average degree

20. In other words, their results on SF networks are based on dense topologies and

do not cover the range of all possible SF topologies. This dissertation points to the

challenge of establishing fast convention in sparser SF networks.

Average Network Reorganization: Figure 13 shows the amount of average network

reorganization that occurs in four topologies when agents use the TA mechanism.

Although initially a lot of reorganization activities can be observed, as the MAS
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evolves towards converging into a dominant convention, the amount of reorganiza-

tion decreases across all topologies. According to TA, agents stop reorganizing their

network if the quality of their neighbors lexicons are better. We notice a sharp

downward transition in SF networks which occurs faster, within 20,000 time-steps.

Moreover, the average reorganization comes down to as small a value as 5 after the

system converges into 80% convention state. It indicates that SF topologies require

comparatively a smaller number of network reorganization to form convention.
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Figure 13: Average network reorganization in the topology-aware (TA) approach
across four topologies.

In SF networks few hub nodes are connected to a large majority of the nodes.

As a consequence, hubs are able to interact with a diverse set of nodes. In other

words, due to the structure of the SF networks, hubs experience link diversity without
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explicit network reorganization. That’s why it requires only a low level of network

reorganization to form faster and high-quality convention.

Reorganization decreases in SW and Ring topologies as well, although TA requires

more reorganization in these topologies. Of the four, RN networks seem to be unruly

and experience more reorganization activities for forming and sustaining a dominant

convention. For example, unlike SF topologies, the decrease in the amount of reorga-

nization in RN networks is not sharp and even after it converges into 90% convention

state the amount of reorganization remains close to a comparatively large value of 15.

Effect of Various Types of Link Diversity Techniques: In order to investigate the

effect of link diversity over the process of convention formation in SF topologies, we

perform a comparative investigation between the proposed link diversity technique

and two of its variants. The proposed technique, that is based on Limited Reorgani-

zation, requires an agent to compare its lexicon utility with its lowest-lexicon-utility

neighbor and if the agent’s lexicon quality is better than that of the lowest-lexicon-

utility neighbor then this triggers a stochastic reorganization. One variant of this

technique, called “Full Reorganization”, requires the agents to stochastically remove

the lowest-lexicon-utility neighbor irrespective of the value of its own lexicon utility

and subsequently rewire. Another variant, called “Random Reorganization”, enables

an agent to randomly choose a neighbor for reorganization. Figure 14(a) shows that

although Full Reorganization mechanism is faster than Limited Reorganization, both

mechanisms converge into LMCS. Random reorganization technique appears to be

slower. The amount of network reorganization in Full Reorganization and Random

Reorganization are significantly higher as can be seen in Figure 14(b). Agents, when
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(b) Comparison of the Average Network Reor-
ganization
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(c) Comparison of Average Communicative Ef-
ficacy (ACE)
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Figure 14: Comparison of the evolution of dominant lexicon agents, average network
reorganization, average communicative efficacy and dominant lexicon specificity in
Scale-Free networks among TA mechanism with full, limited and random network
reorganization. The values are averaged over 50 separate instances of simulation.

using this two techniques, continuously reorganize their neighborhood even after the

system converges into LMCS. This suggests that in situations where network reor-

ganization is expensive, the Limited Reorganization approach pays off more. It also
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suggests that when a system experiences continuous reorganization (in highly dynamic

scenario), Random Reorganization technique is able to create and sustain convention.

Figure 14(c) shows that the average communicative efficacy in Random Reorga-

nization increases slowly. Moreover, the dominant lexicon specificity in Random

Reorganization is much smaller than the other two being less than 0.8 (see Figure

14(d)). Therefore, we observe that although Random Reorganization technique en-

ables agents to create a LMCS, the quality of the dominant lexicon is not good.

The reason is that Random Reorganization process does not ensure the removal of

lowest-lexicon-utility agents and does not increase the chance of having agents with

better quality agents. It could remove agents with better quality lexicon as well. As

a consequence, this “unconditional” reorganization technique does not enhance the

convention formation process.

In contrast, the “conditional” reorganization in both Full and Limited Reorgani-

zation techniques improves both the effectiveness and efficiency of the convention

process. According to these two techniques, agents are enabled to remove the lowest-

lexicon-utility agents and could potentially bring agents with better lexicons in the

neighborhood. This enhances the process of creating high quality lexicon convention.

Therefore, we observe that conditioned link diversity facilitates better convention

formation.

3.2.4.3 Discussion

TA mechanism is clearly better than SRA and FGJ as it enables MAS to converge

into LMCS faster (within 100,000 time-steps) when the MAS is organized as RN and
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SF networks. It is also able to create 80% agent convention state in Ring and SW

networks within this time bound.

The DLS of FGJ is the largest because the influencer agents initialize their lexicon

with the optimum specificity value and therefore are able to enforce their influence.

This mechanism starts off with a best quality convention seed (perfect lexicon) carried

by the influencer agents and hence does not require to improve this seed (or invent a

new one). The speed of convention formation in FGJ is faster than SRA because of

the existence of these influencer agents. However, FGJ does not provide cost estimate

for deploying and maintaining these privileged agents.

Implementing dynamic network is a challenging task as it involves domain-specific

knowledge and assumptions. In our work, we implement dynamic network topology

through link diversity. The network reorganization approach is a result of a simple

and realistic intuition that agents are more likely to disassociate with a neighbor that

is not beneficial and would like to make acquaintance with better quality neighbors.

However, this apparently simple intuition is difficult to implement because, again, it

requires domain-specific assumptions, such as, how many neighbors should an agent

remove from its neighborhood if they have poor quality lexicons? How many new

connections this agent is supposed to create afterwards? Should the entire society

engage into this type of network reorganization or only a fraction of the society would

do so?

To keep the analysis simple and for the sake of a focused investigation, we adopt a

conditioned link diversity mechanism that is based on a simple network reorganization

approach. We intentionally choose a small value for this fraction (10%) based on the
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assumption that the entire society may not get involved in reorganization. The results

from the investigation on two variants of reorganization approach indicate that link

diversity via network reorganization facilitates faster convention formation.

3.2.5 Conclusions

The goal of this research is to design a mechanism that is able to create a social

convention within a large convention space for MAS operating on various types of

dynamic networks. We hypothesize that if agents are endowed with the capability

of “network thinking” and are enabled to use contextual knowledge for decision-

making, the convention formation process becomes faster and efficient. To validate

this hypothesis, we use a language coordination problem from FGJ for investiga-

tion. According to this problem, a society of agents construct a common lexicon in a

decentralized fashion. Similar to FGJ, agents’ interactions are modeled using a lan-

guage game. In this game, agents send their lexicons to their neighbors and update

their lexicon based on the utility values of the received lexicons. We propose a novel

topology-aware utility computation mechanism that enables the agents to reorganize

their neighborhood based on this utility estimate to expedite the convention forma-

tion process. Extensive simulation results indicate that the proposed mechanism is

both effective (able to converge into a large majority convention state with more than

90% agents sharing a high-quality lexicon) and efficient (faster) as compared to SRA

and FGJ.

We have accomplished the research goals EC-LCS1-4 by:

• Enabling the agents to use “network thinking” for controlling the dynamical pro-
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cess of convention formation suitable for a large convention space across various

types of networks. This topology-aware mechanism facilitates the formation

of a large majority convention much faster than the existing state-of-the-art

approaches and ensures high-quality of the convention.

• Modeling dynamic topologies through a novel network reorganization technique.

• Analyzing the correlation between the degree-distribution and the convention

formation process in SF topologies. Identifying the challenge of establishing

convention in sparser SF topologies that slow down the process of convention

formation.

• Investigating various types of link diversity approaches and how these influence

convention formation in SF topologies. For example, the proposed conditioned

link diversity improves the quality of lexicon than random link diversity ap-

proach.



CHAPTER 4: EMERGENCE OF COOPERATION

This chapter presents two mechanisms for the emergence of cooperation in mod-

erate and highly-connected networks. The existing mechanisms are able to form

cooperation in scale-free networks when the networks are sparsely connected (aver-

age node degree is small) that too only with limited success [29]. Moderate and

highly-connected scale-free networks remain mostly unexplored domains for cooper-

ation emergence.

The first mechanism (discussed in Subsection 4.1) uses commitment based dynamic

coalition formation technique and complex network dynamics to form cooperation.

Agents in the MAS are organized as scale-free networks and the proposed mechanism

is able to form cooperation in moderately-connected scale-free networks (where average

node degree is 20). The second mechanism (discussed in Subsection 4.2) considers

highly-connected scale-free networks (where average node degree is up to 50) and

uses a heterogeneous system design that includes a small fraction of altruistic agents.

Highly-connected networks have been shown to be susceptible to defection and are

the most challenging to sustain cooperation [29, 47]. We show that the altruistic

agent based approach ensures cooperation in such networks.
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4.1 Emergence of Cooperation using Commitment Based Dynamic Coalition

Formation and Complex Networks Dynamics

Our aim here is to facilitate the emergence of cooperation in large MAS operating

on scale-free (SF) networks where such cooperation helps maximize the global utility

of the MAS. Agents organized as SF networks have moderate connectivity and play an

iterated PD game with their immediate neighbors. We propose a commitment-based

dynamic coalition formation approach that leverages complex network dynamics.

Dynamic Coalition Formation: Coalition formation provides a mechanism for pro-

moting cooperation in complex networks [51, 55]. A coalition is defined as a group

of agents who have decided to cooperate in order to perform a common task. By

increasing the organizational level through coalitions, cooperation can be enhanced

and maintained. The primary contribution in this research is a dynamic coalition for-

mation approach that is based on commitment between agents. A commitment is a

promise that an agent offers to another agent in order to influence that agent’s strat-

egy. An agent makes use of commitments to exploit the strength of its own strategic

position [26]. It has been shown in [4] that commitments can be used to foster cooper-

ation among self-interested agents in non-iterated PD game. Typically a commitment

proposal includes a penalty to ensure that the breach of commitment would result in

incurring a cost [4]. Self-interested and rational agents are enabled to offer commit-

ments to their wealthy neighbors with whom they intend to form coalitions. Agents

that offer commitments bear the cost of maintaining the coalition and promise to pay

a penalty should they decide to leave the coalition. The penalty threshold is set such
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that it provides sufficient incentive to an otherwise non-cooperative neighbor agent

to join the coalition and thereby cooperate. An agent moves into a different coalition

with better social benefit if it is capable of paying the penalty.

Complex Network Dynamics: The secondary contribution in this work is that it in-

vestigates the effect of the complex network dynamics over the commitment-based

dynamic coalition formation approach. It has been shown previously that although

defection is the dominant strategy in the iterated PD game [29], the likelihood of

cooperation is remarkably increased if the agent interaction is constrained by the un-

derlying network topology [57, 71]. However, in these approaches, agents neither form

the network nor use the network dynamics to enhance the emergence phenomenon.

These works assume a pre-established static complex network platform and then

employ agents on the nodes of the network for mutual interactions. In this work, in-

stead of assuming a given network, agents are enabled to form the desired network by

choosing their interaction partners. It determines the topological insights that, when

embedded into agent partner selection strategy, result in a network always leading

towards the emergence of a stable single coalition.

To summarize, we emphasize the significance of employing “network thinking” by

the agents to control their dynamics and the dynamical processes of the network.

This work advances the state of the art by (i) developing a commitment-based dy-

namic coalition formation approach with an analytical study about how an effective

commitment mechanism is related to the topology of the network and (ii) by deter-

mining the topological insights for the agents to choose their interaction partners to

form a dynamically growing SF network that enhances the overall cooperation with
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maximized average expected utility.

4.1.1 Research Goals

We address the following sub-goals for the emergence of cooperation using the

dynamic coalition formation (EC-DCF) approach to achieve research goals RG7 and

RG8 that we outlined in Chapter 1(page 14):

• EC-DCF1: In a networked interaction scenario, the challenge is to determine a

penalty that facilitates the convergence into a single coalition and at the same

time is high enough to incentivize the opponents to form coalitions. Our goal is

to show both analytically and empirically how the penalty could be set based

on the minimum number of immediate neighbors or minimum node degree of

the SF network and the payoffs; and provide a sufficient condition that requires

to be fulfilled in order for optimal coalitions to emerge.

• EC-DCF2: In order to gain the topological insights for network formation, our

goal is to develop a computational model that investigates the performance

of the dynamic coalition formation algorithm on various types of SF networks

by varying the minimum node-degree, degree-heterogeneity and clustering co-

efficient. Specifically, we intend to investigate how a dynamical process of a

network, namely the coalition formation, is influenced by its structural proper-

ties.

4.1.2 Problem Model

The agent interactions in the MAS are specified by an undirected graph G(V,E)

where V is the set of vertices (or nodes) and E ⊆ V x V is the set of edges. Each
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node corresponds to an agent. The numbers of nodes are referred by n. Once the

graph or the network is formed by the agents it becomes fixed. Two nodes vi and vj

are neighbors if (vi, vj) ∈ E. The neighborhood N(i) is the set of nodes adjacent to

vi. That is, N(i) = {vj|(vi, vj)} ∈ E ⊂ V and |N(i)| is the degree of node vi.

The graph follows scale-free property in which the distribution of node degree

follows a power-law, Nd ∝ d−γ, where Nd is the number of nodes of degree d and γ is

a constant.

The proposed decentralized coalition formation approach requires the agents to

communicate only with their immediate neighborhood to form coalitions. We assume

that agents are self-interested and rational. To initialize, agents are enabled to form

the network by choosing their interaction partners dynamically. The adjacent agents

(within single-hop distance) are defined as the neighbors. Every agent is equipped to

play a 2-person iterated PD game with each one of its neighbors and their interactions

are represented by the network links. The agents start playing the PD game after the

network is formed and the final network is considered as a closed system.

Agent i’s payoff is denoted by u(i, j) which agent i obtains by playing a PD game

with its neighbor j. After every round of the game, the payoff received by playing the

PD game with the neighbors gets accumulated and the accumulated payoff is defined

as
∑m

j=1 u(i, j), where j refers to the neighbors of i. Agents know the accumulated

payoff of their neighbors. Every agent has a fixed strategy for each one of its neighbors,

which is either to cooperate (C) or to defect (D). In a 2-person PD game setting these

two strategies intersect at four possible outcomes represented by designated payoffs:

R (reward) and P (punishment) are the payoffs for mutual cooperation and defection,
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respectively, whereas S (sucker) and T (temptation) are the payoffs for cooperation

by one player and defection by the other. The payoff matrix is represented by Table 7.

For the PD game, the payoffs satisfy the condition T > R > P > S and for iterated

PD’s we require T + S < 2R.

Table 7: Payoff Matrix for the Prisoner’s Dilemma Game

C D
C (R,R) (S,T)
D (T,S) (P,P)

The iterated PD game proceeds in rounds and each round has three phases: (i)

the agents play the game with all the neighbors using fixed strategies and compute

the accumulated payoff, (ii) based on the payoff information of the neighborhood,

the agents form/join coalition and (iii) update the strategies used in the coalition

formation algorithm.

We define two types of agents: independent agents and coalition member agents.

These two types are mutually exclusive. Initially all the agents are assumed to be

independent. Ind(vi) refers to a set of independent agents i : v1, v2, ......., vn. An

agent vi makes a commitment Comm(vi, vj) to its neighbor agent vj and forms a

coalition Coa(vi, vj). A coalition member agent is committed to the coalition; it

always cooperates with its neighbors belonging to the same coalition and defects

with others. In other words, it implements the strategy: no cooperation without

commitment. However, an independent agent takes the interaction strategy that the

majority of its neighbors adopted in the previous round. The next sub-section defines

the coalition formation process and the algorithm.
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4.1.3 Definitions, Algorithm and Theorem

Definition 1. Commitment: An agent vi makes a commitment Comm(vi, vj) to its

largest accumulated payoff neighbor vi with whom it intends to form a coalition. The

commitment proposal includes the following:

1. vi would bear a small management cost β to maintain the coalition

2. vi would pay a penalty α if it unilaterally breaks the coalition and vice versa

Definition 2. Coalition Formation: If the accumulated payoff of an independent

agent vi ∈ Ind(vi) is smaller than the accumulated payoff of its neighbor vj whose

payoff is the largest in vi’s neighborhood, i. e., if
∑
u(vi) <

∑
u(vj) and (vi, vj) ∈ E,

then vi forms a coalition Coa(vi, vj) with vj by making a commitment Comm(vi, vj)

as defined in Definition 1. Agent vi cooperates with the members of the same coalition

and defects with others belonging to it’s neighborhood.

As in [4], the management cost is very small compared to the reward, i. e., β << R

and the penalty α is larger than the temptation payoff, i. e., α > T in order to offer

enough incentive to an opponent to form a coalition.

Initially there would be multiple coalitions where agents may find it profitable to

leave their existing coalitions and join new ones. The inter-coalition dynamics is

defined as follows:

Definition 3. Inter-Coalition Dynamics: If the accumulated payoff of a coalition

agent vi is smaller than the accumulated payoff of its neighbor vj that belongs to

another coalition, whose payoff is the largest in vi’s neighborhood, i. e., if
∑
u(vi) <
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u(vj), (vi, vj) ∈ E and Coa(vi) 6= Coa(vj), then vi leaves its existing coalition and

joins the coalition of vj if the following condition is fulfilled:

∑
u(vi)

2
> α

Definition 4. Coalition Convergence: After repeating the Inter-Coalition Dynamics

phase multiple times the network converges into a single coalition where no agent

either finds it beneficial to leave the existing coalition or to form a new one.

In what follows, we describe the algorithms for the proposed coalition formation

approach.

Algorithms: The Coalition Formation with Network Dynamics Algorithm (CFNDA)

has 3 steps: network formation, initial coalition formation and decentralized coalition

formation described below by procedures 1, 2 and 3 respectively (page 88, 89 and 90).

Procedure 1: NetworkFormation
Require: m0 initial nodes
Require: number of edges (m) of the newly
connected node: m ≤ m0

1. setInitialAttractiveness() = A;
2. setClusteringProbability() = p;
3. implementBAModel;
4. WHILE(m ≤ m0)

5. {linkToNode(i):
∏

n→i = A+degreei∑
j(A+degreej)

;}
6. end;
7 implementExtendedBAModel;

8. linkToNode(i):
∏

n→i = A+degreei∑
j(A+degreej)

;

9. WHILE(m ≤ m0 − 1)
10. {linkToNeighborOfNode(i)withProbability(p);
11. linkToNode(i)withProbability(p-1):∏

n→i = A+degreei∑
j(A+degreej)

;}
12. end;
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Procedure 2: InitialCoalitionFormation
Require: Accumulated payoff is transparent
only to immediate neighbors
Require: All the agents are Independent
1. networkFormation();
2. randomStrategySelection();
3. playPDGamewithNeighbors();
4. FOR each agent i:= 1 to n
5. IF maximumPayoffNeighbor(j) AND
6. payoff(i) < payoff(j)
7. offerCommitmentTo(j);
8. formCoalitionWith(j);
9. payManagementCostBy(i);
10. ELSE
11. remainIndependentAgent(i)
12. END FOR

Network Formation: In the beginning agents choose their interaction partners and

form the network as described in Procedure 1. Agents may either form the network

according to the Barabasi-Albert (BA) SF model (lines 3-6) or may use an extended

version of the BA model (lines 7-12). Since the BA model [8] suffers from low cluster-

ing, we also use the extended BA model [30]. According to these two models, agents

are enabled to control the degree-heterogeneity of the network by a model parameter

named initial attractiveness parameter (A). The clustering of the networks can be

controlled using the clustering probability (p). These parameters are defined in the

the description of the BA and extended BA model in Appendix A. In the BA model,

all the links (m) of the new node are connected to the existing nodes using the pref-

erential attachment rule (line 5). On the other hand, in the extended BA model only

the first link of the new node is added using the preferential attachment rule (line

8). The remaining links of the new node (m0 − 1) are added to the randomly chosen
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Procedure 3: Decentralized Coalition Formation Algorithm
Require: Accumulated payoff is transparent only
to immediate neighbors
1. initialCoalitionFormation();
2. playPDGamewithNeighbors();
3. FOR each agent i:= 1 to n
4. IF coalitionAgent(i) AND
5. maximumPayoffNeighbor(j) AND
6. payoff(i) < payoff(j)
7. IF (notIndependentAgent(j))
8. IF u(i)/2 > α
9. {offerCommitmentTo(j);
10. joinCoalitionOf(j);
11. payManagementCostBy(i)};
12. ELSE IF (independentAgent(j))
13. GOTO lines 9-11;
14. IF (coalitionAgent(i) AND
15. disconnectedFromCoalition(i))
16. {becomeIndependentAgent(i)};
17. IF (independentAgent(i))
18. GOTO lines 5-13;
19. mutation();
20. END FOR

neighbors of the first neighbor of the new node with the probability p (line 10) or

using the preferential attachment rule with the probability p-1 (line 11). By varying

the value of A, the degree-heterogeneity of the resultant network can be controlled

and p determines the clustering level of the extended BA model. A computational

model, described in Subsection 4.1.4, determines how the agents should set these two

topological parameters such that the resultant network enhances the emergence of a

single coalition when agents form coalitions using algorithms 2 and 3.

Initial Coalition Formation: Procedure 2 depicts how initial coalitions are formed at

the beginning of the game. Every agent starts out as an independent agent and there

is no coalition. Agents choose their interaction strategy randomly and generate the
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payoff according to the payoff matrix in Table 7 by playing a 2-person PD game with

each one of its neighbors (lines 2-3). Then in lines 5-9, for every agent if the largest

payoff neighbor j’s accumulated payoff is larger than the agent i’s payoff, it offers

commitment to j and forms a coalition. It also bears the management cost of that

coalition. An agent without any coalition members remains independent (line 11).

After the first round, there would be multiple coalitions. The number of coalitions

will depend on the size of the network.

Decentralized Coalition Formation: At the beginning of every round each agent

plays the PD game and employs the coalition strategies to join/leave/switch or form

a coalition according to Procedure 3. In lines 4-11 every coalition member agent i

joins the coalition of it’s largest payoff neighbor j if one-half of i’s payoff is larger than

the penalty. Agent i offers a commitment to j and bears the management cost of the

coalition. If j is an independent agent, then i forms a coalition with it by offering a

commitment and bearing the management cost (lines 12-13). If agent i is a coalition

member agent but is disconnected from its coalition members (when an agent does

not have any one-hop link to other members of its coalition, then it is considered to

be disconnected from its coalition), it becomes an independent agent (lines 15-16).

However, if i is an independent agent then it forms a new coalition according to lines

5-13.

Mutation: It is possible that some agents might become stable within sub-optimal

coalitions where the majority of the neighbors do not belong to the agent’s coalition.

In order to allow these agents to move to optimal coalitions (which maximizes their

payoff), they are enabled to explore the strategy space with a small probability. If
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the majority of a coalition-agent’s neighbors are not its coalition members, that agent

becomes independent if one-half of its payoff is larger than the penalty.

Proposition 1. For any connected graph G with n nodes and (sufficiently) high

penalty (α > temptation payoff), the agents increase their payoff through the coalition

formation process.

Proof. Let us consider three agents a1, a2 and a3 are playing an iterated PD game

with their immediate neighbors. Both a2 and a3 are the neighbors of a1. Assume

that after the first round of the game, the accumulated payoff of a2 is the largest

in a1’s neighborhood, i. e.,
∑
u(a2) >

∑
u(a3) >

∑
u(a1). Now according to the

CFNDA, agent a1 will form a coalition with a2 by making a commitment and will

start cooperating with the same coalition members in its neighborhood. This mutual

cooperation may increase a1’s payoff. However, it is possible that a1 was a defector

with its other neighbors; in that case its payoff would not increase after joining a2’s

coalition.

Now, in the next round of the game, after joining the coalition if the majority

of a1’s neighbors belong to the same coalition, its payoff further increases through

mutual cooperation. With this increased payoff a1 will eventually attract its non-

coalition neighbors to join a1’s coalition. This would result in a maximum payoff of

a1. On the other hand, if the majority of a1’s neighbor do not belong to its coalition

and if one of the neighbors’ payoff happens to be larger than that of a1’s payoff,

then a1 will leave its existing coalition and will form/join that neighbor’s coalition if∑
u(a1)/2 > α condition is satisfied. In the new coalition, a1’s payoff is expected to
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increase further because its coalition partner is the wealthiest in a1’s neighborhood

and thereby it would attract more agents to join its coalition increasing the likelihood

of mutual cooperation. However, this process may lead a1 to a situation where it may

get stuck in a sub-optimal coalition. The mutation strategy of the CFNDA could

resolve this problem by allowing a1 to move towards more beneficial coalitions and

thereby increase its payoff.

Using Proposition 1 now it is proved that the coalition formation algorithm guar-

antees maximum average expected payoff in any scale-free random graph.

Theorem 2. For any random scale-free graph G with n nodes and (sufficiently) high

penalty (α > temptation payoff), the coalition formation process converges into a

single coalition and maximizes the average expected payoff, if the minimum node-

degree (mind), penalty (α), reward (R) and punishment (P) payoffs fulfill the following

condition:

mind ≥
4α

R + P

Proof. According to Proposition 1, it is sufficient to prove that in scale-free random

graphs either a node has earned the maximum payoff (when all of its neighbors

belong to the same coalition) or one-half of its payoff is larger than the penalty to

move to another coalition leading towards the convergence into a single coalition that

maximizes its payoff.

In any random scale-free graph, there are few high-degree nodes linked by many

low-degree neighbors. Since initially the nodes interact based on randomly assigned
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strategies, the interaction partners of any node would be a uniform mixture of co-

operators and defectors. This leads the high-degree nodes to generate high accumu-

lated payoffs in their neighborhood. Therefore, most or all of the neighbors of the

high-degree nodes form coalitions with them resulting all (or almost all)-cooperation

sub-graphs around the high-degree nodes.

Let us assume that a2 and a3 are two high-degree nodes in a1’s neighborhood and

that initially in the first round of the game a1 has formed a coalition with a2. Also

assume that the degree of a3 is larger than the degree of a2, i.e., d(a3) > d(a2).

Therefore the number of cooperating coalition members of a3 should be larger than

that of a2. This would increase the payoff of a3. Hence, in the next round of the

game a1 finds it profitable to leave the coalition of a2 and join the coalition of a3 and

thereby increase its payoff if
∑
u(a1)/2 > α. Now we will prove that this condition

is always satisfied until the entire network converges into a single coalition where no

node has any motivation to leave the coalition.

Let us assume that in the first round of the game when a1 belonged to a2’s coalition,

x number of neighbors of a1 cooperates with it (including the node a2) and the

remaining nodes of its neighborhood (which is at least, minimum degree of a1 or

mind(a1)− x) belong to different coalitions and hence are defectors. Therefore, after

the end of the first round, the accumulated payoff of a1 would be

∑
u(a1) = x ∗R + (mind(a1)− x) ∗ P

Now, in the next round, for a1 to move to a3’s coalition for maximizing it’s payoff,
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a1 needs to satisfy the following condition

x ∗R + (mind(a1)− x) ∗ P
2

> α

We know that α > R > P , hence for the above condition to be satisfied, both x

and mind(a1) have to be sufficiently large. Since initially there were equal number

of cooperators and defectors, it is expected that at least half of a1’s neighbors would

belong to the same coalition. Therefore,

mind(a1)
2
∗R + (mind(a1)− mind(a1)

2
) ∗ P

2
≥ α

=⇒ mind(a1)
4
∗ (R + P ) ≥ α

=⇒ mind(a1) ≥ 4α
R+P

Therefore, if the minimum node-degree of G fulfills the above condition, the agents

would tend towards beneficial coalitions, thereby increasing the number of cooperators

in their neighborhood, until all the agents converge into a single coalition in which

mutual cooperation guarantees the maximization of the average expected payoff of

the agents.

4.1.4 Computational Model and Results Analysis

Our plan is threefold: (a) computationally validate the proposed approach by show-

ing that if the penalty is set according to the condition provided in Theorem 2, con-

vergence into optimal coalitions is possible, (b) show that the performance of the
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approach for the emergence of cooperation in moderately connected SF networks is

better than two state-of-the-art approaches and (c) determine the topological insights

that agents could use to choose their partners such that the resulting network facili-

tates cooperation.

For comparison, we specifically use two state-of-the-art action update rules, namely

the imitate-best-neighbor (IB) [45] and the stochastic imitate-random-neighbor (SA) [58],

that has been shown to facilitate the evolution of cooperation in SF networks [29]. The

performance of these rules are studied over varying-degree SF networks. Although

these two approaches do not use coalition formation for the evolution of cooperation,

we investigate these to underscore the challenge of achieving cooperation in moder-

ately connected networks. We use a computational model to conduct extensive simu-

lations for the coalition formation approach by varying the node degree-heterogeneity

and the clustering coefficient of the BA and the extended BA model10. The value

of the initial attractiveness parameter (A) is increased in order to vary the degree-

heterogeneity of the network and increase the value of the clustering probability p

(used in the extended BA model) to generate medium (p = 0.5) and high-clustering

(p = 0.1) networks respectively; and observe the state of convergence of the coali-

tions. Also we investigate how the average expected payoff increases in each type of

network instantiation. Heterogeneity is measured by the standard deviation of the

degree distribution.

10These models are described in Appendix A.
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4.1.4.1 Simulation Setup

The network consists of 5000 agents represented as nodes in the SF network. A

link between two nodes of the network indicates that the agents interact and play the

PD game. The default minimum node degree is set to 10 in both models (m = 10).

The following values for the payoffs are considered: T = 5, R = 3, P = 1 and S =

0. According to Theorem 2, the value of the penalty (α) is set to 10. The value of

the management cost (β) is chosen as 0.005.

All the results reported are averages over 100 realizations for each network for

different values of the network parameters (e.g., degree-heterogeneity, clustering co-

efficient etc.). Each simulation consists of 500 time steps where a time step refers to

a single run of the program. The mutation rate is set to 0.05 [55].

Table 8: IB & SA Rules: The average no. of cooperators (#Coop) and average
expected payoff (ExPoff)

IB SA
Min-
Degree

#Coop ExPoff #Coop ExPoff

1 1337.1 -75.49 1238.28 -78.37
2 2824.55 -31.43 2304.17 -47.41
3 400.81 -111.80 506.15 -108.04
5 0.0 -124.77 49.9 -123.53
10 0.0 -125.31 0.0 -124.92

The results are reported over 100 realizations of the network for various values of the

minimum node degree. Both p and A are zero.

4.1.4.2 Simulation Results

Evolution of Cooperation vs. Minimum Node Degree: The effect of IB and SA

action update rules are investigated over the final fraction of cooperators by varying
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the minimum node degree of the network. BA model (p = 0.0) is used with the initial

attractiveness parameter A set to 0. Table 8 shows that the evolution of cooperation

occurs only when the network is sparse, although extremely sparse networks (where

minimum node degree is 1 or the average node degree is 2) do not facilitate cooper-

ation. The average number of cooperators drops to zero for both update rules when

the minimum node degree exceeds 5. This also results in very low average expected

payoff of the network. However, from Tables 9 and 10 we observe that the proposed

commitment-based dynamic coalition formation approach is able to increase mutual

cooperation by converging into a single coalition and to maximize the average ex-

pected payoff of the agents in moderately connected networks (when minimum node

degree is 10 or average node degree is 20).

Table 9: Commitment-based Coalition Formation in the BA Model: The average no.
of coalitions (#Coa), average expected payoff (ExPoff), average Global Clustering
Coefficient (GCC) and average Degree-Heterogeneity (DH)

BA Model
p = 0.0

A #Coa ExPoff GCC DH
0 1.44 20.21 0.02 52.58
50 1.18 21.76 0.01 27.54
100 1.14 21.74 0.01 25.57
500 1.01 21.98 0.01 23.96
1000 1.04 21.80 0.01 23.73
2000 1.03 21.93 0.01 23.58
5000 1.01 21.89 0.01 23.50
10000 1.00 21.97 0.01 23.48

The results are reported over 100 realizations of the network for various values of p and A.

Convergence of the Network: To observe the performance of the coalition formation

approach over a low-clustering SF network, the initial attractiveness parameter is set
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Table 10: Commitment-based Coalition Formation in the Extended BA Model: The
average no. of coalitions (#Coa), average expected payoff (ExPoff), average Global
Clustering Coefficient (GCC) and average Degree-Heterogeneity (DH)

Extended BA Model
p = 0.5 p = 1.0

A #Coa ExPoff GCC DH #Coa ExPoff GCC DH
0 1.51 20.74 0.13 52.25 1.96 16.46 0.31 52.35
50 2.93 19.60 0.12 34.25 3.66 14.64 0.41 50.65
100 1.08 21.73 0.12 31.43 1.87 20.83 0.42 52.07
500 1.01 22.08 0.12 29.54 3.61 15.85 0.45 49.21
1000 1.10 21.56 0.11 29.19 2.99 17.86 0.45 49.42
2000 1.15 20.62 0.12 29.14 3.11 15.96 0.44 50.07
5000 1.25 20.28 0.12 28.83 1.89 20.38 0.45 50.23
10000 1.19 21.09 0.11 28.99 1.93 20.45 0.46 50.53

The results are reported over 100 realizations of the network for various values of p and A.

to A = 0. Then it is gradually increased from 0 to 10,000. From Table 9 it can be

observed that as A increases, the degree-heterogeneity of the network decreases and

the likelihood of convergence into a single coalition increases. Therefore, clearly the

agents could benefit by selecting their partners by setting a large value of A during

the network formation phase (Procedure I in Subsection 4.1.3). It guarantees the

convergence into a single coalition and maximizes the average expected payoff. The

average global clustering coefficient of the network is very small, as expected from

the standard BA model.

The extended BA model is used to investigate the effect of high clustering and

degree-heterogeneity over the emergence of a single coalition. For both medium-

clustering (p = 0.5) and high-clustering (p = 1.0) networks, the initial attractive-

ness parameter A is increased from 0 to 10,000. From Table 10 we observe that in

the medium-clustered network, very large value of A (> 1000) does not necessar-
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ily improve the convergence.The best convergence can be achieved when A = 500.

Hence, our expectations about improving the convergence by controlling the value

of A are partially met by the results. On the other hand, in the high-clustered

model, very large value of A (> 5000) is required to improve the convergence. In

the high-clustered model we see that even a very large value of A does not decrease

the degree-heterogeneity of the network significantly. The reason is that according to

the extended model of the BA network with p = 1.0, only the selection of the first

neighbor can be controlled by the parameter A.
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Figure 15: BA & Extended BA model: Increase of average expected payoff for various
values of the clustering probability p.

Average Expected Payoff: Figure 15 shows how the average expected payoff varies

over the iterations for 3 network types: low-clustering (p = 0.0), medium-clustering

(p = 0.5) and high-clustering (p = 1.0). The value of A is set to 0 in these models.

We notice that in all these three types of networks the average expected payoff in-

creases and becomes stable at an optimum value. Also we observe that irrespective of



101

the network clustering the commitment-based dynamic coalition formation approach

improves the average expected payoff of the network and increases it in a similar

fashion.

4.1.4.3 Discussion

The performance of the commitment-based approach depends on how the value

of the penalty is set. The challenge is to determine an appropriate range of the

penalty that is high enough to incentivize an opponent (larger than the temptation

payoff) but not very high to obstruct the process of convergence into a single coalition.

According to the required and sufficient condition in Theorem 2, for a moderately

connected network with minimum node degree 10 (average node degree 20), this value

should be no greater than 10. Using this value, the convergence can be guaranteed.

Experimentation with different values of the node degree and the penalty (the result is

not reported here) generates similar result. Therefore, unlike the existing approaches

(IB and SA), the proposed approach is able to evolve cooperation and maximize the

average expected payoff both in sparser and moderately connected networks.

We are able to fine-tune the performance of the proposed approach by enabling the

agents to control the topological features (such as degree-heterogeneity and clustering)

during the network formation phase. The agents in a MAS choose their interaction

partners according to the preferential attachment rule of the BA model. In the

extended BA model, a fraction of the nodes (depending on the clustering probability

p) form the links according to this rule. In order to guarantee optimal convergence

of the proposed approach, agents during the network formation phase need to choose
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their interaction partners using a large value of the parameter A. This decreases the

node degree-heterogeneity and thereby reduces the number of large multiple coalitions

that otherwise may lead towards converging into sub-optimal coalitions.

We observe that the average expected payoff in the highly-clustered network (p =

1.0) is not as high as in both the low and medium clustered networks. In highly-

clustered network, a node is connected to its neighbor’s neighbors. Therefore, the

shared management costs across every agent’s neighborhood are relatively high com-

pared to low-clustered networks. This indicates that agent’s partner selection strategy

and the network formation affect the overall social benefit.

4.1.5 Conclusions

This research presents a commitment-based dynamic coalition formation approach

to establish mutual cooperation in large MAS organized as moderately-connected SF

networks. Interactions of the self-interested agents with their immediate neighbors are

captured using an iterated PD game. Unlike many previous works that assume given

pre-established networks, we enable agents to dynamically choose their interaction

partners to form their network. Agents offer a commitment to their wealthiest neigh-

bors in order to form coalitions. A commitment proposal, that includes a high penalty

for breaching the commitment, incentivizes opponent agents to form coalitions inside

which they mutually cooperate and thereby increase their payoff.

We have accomplished the research goals EC-DCF1-2 by:

• Determining analytically, and substantiating through experiments, how the

value of the penalty should be set with respect to the minimum node degree and
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the payoff values such that convergence into profitable coalitions is possible.

• Contributing to the state-of-the-art by establishing cooperation in moderately-

connected networks.

• Also this work is novel in that the agents are capable of controlling some topo-

logical features of the network that results in better convergence and increased

average expected payoff.

4.2 Emergence of Cooperation in Highly-Connected Networks by Altruistic

Agents

Many real-world SF networks, such as social networks, exhibit large average con-

nectivity [2, 21, 25]. For instance, the average connectivity of a node in the Face-

book network is reported to be 190 [72]. Previously it has been shown that imita-

tion based rules (e.g., imitate-best-neighbor (IB) [45] and stochastic imitate-random-

neighbor (SA) [58]) that facilitate cooperation in random networks and sparse SF

networks are unable to establish cooperation in highly-connected SF networks [29].

Also, there exists a strong theoretical argument based on natural selection showing

that high-connectivity among the nodes in SF networks results in diminished or no

cooperation [47]. However there are many instances where it is critical to establish

cooperation in highly-connected networks. For example, achieving consensus among

the social network application users about acceptable privacy settings for individual

applications is a key challenge [27]. Multi-agent based approach could offer a solution

to this problem by establishing cooperation among the user community. Therefore,

the central research question being addressed here is: how to establish cooperation in
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MAS operating on highly-connected SF networks?

This work presents the design of a heterogeneous MAS composed of both the al-

truistic and self-interested agents and shows that it performs significantly better in

highly-connected SF networks. We propose a stochastic influencer altruistic agent

(StIAA) mechanism that is motivated by a novel definition of cooperation [44] in

which the otherwise competing agents decide to aid each other within the space of

their self-interested bounded rationality. The goal is to determine the conditions un-

der which such cooperation thrives. In other words, the self-interested behavior of

the agents is biased to make them cooperate with each other. To do this, we intro-

duce a small proportion of altruistic agents in a self-interested society (similar to the

influencer agents in [23, 41]). The altruistic agents are designed to always cooperate

with their neighbors while the self-interested agents may cooperate or defect since

their objective is to maximize their utility by imitating the strategy of the wealthiest

agents in their neighborhood. However, since agents in SF networks typically only

have partial-observability of their environment (have access only to the information

about immediate neighborhood), it is possible that the self-interested agents may get

stuck in a local maxima. Therefore, these agents are enabled to determine the opti-

mality of their strategies by stochastically trying the strategy of the altruistic agents

in their neighborhood with a small exploration probability [55]. By manipulating

the self-interested behavior of the large majority of the population, the altruistic

agents are able to facilitate cooperation. We analytically show that this probabilistic

exploration creates a cluster of cooperators in SF networks that helps cooperation

evolution. A comprehensive empirical study substantiates this claim.
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In summary, this research hypothesizes that cooperation could emerge and be sus-

tained in self-interested networked societies with the help of only handful of altruistic

agents, and that it does not necessarily require the concerted effort of the entire

society.

4.2.1 Research Goals

We set the following sub-goals for the emergence of cooperation using altruistic

agents (EC-AA) based approach to achieve research goals RG9 and RG10 that we

outlined in Chapter 1(on page 15):

• EC-AA1: Develop a heterogeneous system design approach that is composed

of a large majority of self-interested agents and a small proportion of influencer

altruistic agents to establish cooperation.

• EC-AA2: Determine an upper bound for the percentage of the altruistic agents

to establish cooperation.

• EC-AA3: Investigate exhaustively the efficacy of the altruistic agent based ap-

proach by varying the model parameters such as initial number of cooperators,

temptation level and size of the network.

4.2.2 Stochastic Influencer Altruistic Agent (StIAA) Mechanism

The large majority of the agents in the proposed MAS are self-interested, and there-

fore, they try to maximize their payoff by using the IB action update rule. According

to this rule, each agent imitates the action of the wealthiest agent (including itself) in

the next round. A small proportion of influencer altruistic agents are introduced at

random locations that always cooperate with their neighbors. The idea of influencer
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agents is inspired by the influencer fixed strategy agents in [41, 23]. These IAAs

broadcast their presence in their neighborhood to motivate the SIAs to reciprocate

them. As mentioned earlier, the rational SIAs that increase their payoff by always

adopting the action of their wealthiest neighbors may get stuck into local maxima due

to partial observability of their network. Therefore, they are enabled to determine

the optimality of their action choices (pareto-optimality) by trying the action of their

neighbor IAAs with a small exploration probability pexplore.

In the following, we present an analytical argument in support of the better per-

formance of the proposed StIAA mechanism in SF networks.

4.2.2.1 Analytical Discussion on StIAA’s Performance in SF Networks

In SF networks, due to the degree-heterogeneity, some agents have high-degree

connectivity while the majority of the agents have low-degree connectivity. As a

consequence, the high-degree nodes or the hubs always reap higher accumulated pay-

offs as compared to their low-degree neighbors. If the majority of the neighbors

of a hub node are cooperators, then it generates high payoff by cooperating but

even higher payoff by defecting. Let us consider two hubs which are cooperator

and defector (hC & hD) respectively. Since initially cooperators and defectors are

distributed uniformly in the network, these hubs should have approximately equal

number of cooperator (nC) and defector (nD) neighbors, i.e., nC ' nD ' z/2, where

z is the average node degree of the hub. Therefore, the accumulated payoffs (ACP)

of the two hubs should be: ACP (hC) = nC ∗ R + nD ∗ S ' z/2 ∗ (R + S) and

ACP (hD) = nC ∗T +nD ∗P ' z/2∗ (T +P ). Since T +P > R+S, the fitness of the
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defector hubs would be larger than that of the cooperator hubs. This is the reason

why defection prevails when solely the imitation based strategies are pursued.

However, irrespective of the strategies adopted by the hubs, their accumulated

payoffs are always greater than their low-degree neighbors. Let us consider a low-

degree neighbor of a hub that may act as a cooperator (kC) or a defector (kD), and

its accumulated payoff is z1/2 ∗ (R+S) (when it cooperates) or z1/2 ∗ (T +P ) (when

it defects), where z1 is the average degree of this node. In SF networks, since the

average degree of the hubs are much larger than the that of the low-degree nodes, i.e.

z >> z1, ACP (hC) or ACP (hD) is always larger than ACP (kC) or ACP (kD).

Previously it has been shown that when the agents follow the IB or SA state update

rule, the behavior of the high-degree nodes or the hubs determine the asymptotic state

of the network [29]. A defecting hub can lead its imitating neighbors towards defec-

tion. We find a remedy to this problem in a mechanism called “network reciprocity”

that is able to resist or eliminate the invasion of the defectors [45]. According to this

mechanism, if the cooperators are able to form clusters in which they mutually help

each other, then cooperation evolves and sustains in the network. We now discuss

how our StIAA based approach increases the likelihood of the hubs to form clusters

of cooperators and thereby facilitates cooperation.

In StIAA, the influencer altruistic agents (IAAs) persuade their neighbors to co-

operate. According to StIAA, the defector hubs that follow the IB state update rule

may at some stage explore and reciprocate the strategy of its IAA neighbor. After

becoming cooperators hubs would incur highest accumulated payoff as compared to

their low-degree neighbors and thus would influence them to adopt its current action
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of cooperation. The hubs are interconnected due to the age-correlation among the

nodes in the Barabasi-Albert model of SF networks. At one time-step of the iterative

game it is possible that multiple interconnected hubs adopt (through exploration)

the cooperative action of the IAAs in their neighborhood in the current round and

thereby could lead the entire network towards evolving cooperation.

A small SF network is used as depicted in Figure 16 to illustrate this phenomenon.

In (a) all agents are self-interested (SIAs) except one IAA. In the current round three

SIA’s act as defectors while one SIA cooperates. The accumulated payoff of the

hub would be the largest (2T+2P) in its neighborhood and therefore its neighbors

would adopt its defection strategy in the next round leading the network towards

a defection state. The IAA alone is not able to resist this invasion of the defectors.

However, since the SIAs try the action of their IAA neighbor with a small exploration

probability, the hub may adopt the cooperative action of the IAA in one time-step

as in (b). Again its accumulated payoff would be the largest and, as a consequence,

its SIA neighbors would adopt its cooperation strategy. Thereby the entire network

would evolve into a cooperation state in (c). However, it is important to note that

if one of the neighbors of the hub (other than the IAA) is another hub that has

adopted the action of defection, the cooperative hub may imitate its action and the

network would turn into all-defectors. To resolve this problem both the hubs need to

explore the action of the IAA in the current round. Simulation results indicate that

this indeed happens in one of the time-steps as the network uses many iterations to

finally converge into a majority cooperative state.
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Figure 16: StIAA facilitating cooperation in a SF network: (a) One influencer altru-
istic agent (IAA) and four self-interested agents (SIA) of which three SIAs, including
the hub, behave as defectors; (b) based on payoff differentials, the hub SIA might try
IAA’s cooperation strategy and act as a stochastic reciprocator agent (SRA) (c) all
of the SIAs adopt the cooperation strategy of the hub SRA by following the imitate-
best-neighbor (IB) state update rule.

Algorithm 4: Stochastic Influencer Altruistic Agent (StIAA) Mechanism

Require: Accumulated payoff is transparent only to the neighbors
4.1 begin
4.2 randomStrategySelection()
4.3 randomIAAselection()
4.4 playPDGamewithNeighbors()
4.5 computeAccumulatedPayoff()
4.6 for each agent i:= 1 to n do
4.7 r ← randomDouble()
4.8 if r < pexplore AND neighborOfSIA(i)==IAA then
4.9 i reciprocates the IAA

4.10 else
4.11 i follows the IB rule
4.12 end
4.13

4.14 end

4.15 end
4.16 iterate (Lines 4.4 - 4.13)

4.2.3 Algorithm for StIAA Mechanism

Algorithm 4 describes our StIAA mechanism. Initially the strategies (Cooperate or

Defect) are randomly assigned among the agents and the IAAs are randomly selected;

then agents play the PD game with their neighbors and compute the accumulated

payoffs (Lines 4.4 - 4.13). Then (Lines 4.6 - 4.13) the SIAs try the action of their IAA
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neighbor with a small probability pexplore. Otherwise the SIAs update their strategies

according to the IB action update rule. This process repeats (Lines 4.4 - 4.15) over

multiple rounds and leads the network into a cooperation state. Since the updating

of the actions depend on the local neighborhood, we implement synchronous update

in which the entire society updates their states simultaneously in discrete time-steps

that gives rise to a discrete-time macro-level dynamics.

4.2.4 Simulation and Results Analysis

We conduct simulations with the following goals: (i) compare the performance of

our proposed StIAA mechanism with the two state-of-the-art imitation based ap-

proaches (IB and SA) and then (ii) perform a comprehensive empirical study on the

performance of StIAA by varying the percentage of the initial number of cooperators,

percentage of IAAs and the temptation payoff values.

4.2.4.1 Network Topology

The agents are situated on a connected topology that constrains the communica-

tions to the immediate neighbor set. An edge between two nodes of the network

indicates that the agents interact and play the PD game.

The experiments are conducted on SF topologies of varying average degrees. In

addition to this, the performance of StIAA is investigated in random (RN) networks as

compared to the performance of the IB and SA action update rules over RN networks.

The SF topologies are generated using the Barabasi-Albert model. The minimum

node degree is varied from 1 to 25 such that average node degree z lies between 2 to

50.
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The random (RN) networks are generated first by adding a random node with

every node in the network. This ensures that no node is isolated. Then we add links

between two randomly selected nodes. The number of these randomly added links is

varied to create networks with varying z in the range of 2 to 50.

4.2.4.2 Simulation Setup

The network consists of 1000 agents represented as nodes in both the SF and

RN networks. A large majority cooperation state (LMCS) is defined as the one in

which 90% or more agents cooperate with each other [31]. In order to investigate the

scalability of StIAA, experiments on 5000 agents SF networks are conducted as well.

The IAAs maintain their cooperation strategy during the course of the simulation.

These agents not only behave altruistically (being always cooperative), but also try

to influence their neighborhood agents to become altruistic (cooperative). Only 5%

IAAs are considered to be the approximate upper bound (the same reported in [23]).

For most of the experiments this value is maintained. However, this number is varied

within the range of 1% to 7% to observe how it affects the performance of StIAA.

Similar to [55], the exploration probability pexplore is set to 0.05. However, for higher

connectivity networks, this value is increased to 0.1 for getting better performance.

The following values for the PD payoff matrix are used in the simulations: R = 1,

P = 0.1 and S = 0. Hence, the incentive to defect, T, is restricted to 1 < T < 2. For

most of our experiments we use the value 1.1 for the temptation payoff. However, this

value is varied within the range 1.1 to 1.9 to investigate its effect on the performance

of StIAA.
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All the results reported are averages over 100 realizations for each network. Each

simulation consists of 10,000 time-steps where a time-step refers to a single run of the

program.

4.2.4.3 Simulation Results

2 4 8 10 20 30 40 50

Average Degree (z)

#M
C

S

0
20

40
60

80
10

0

IB
SA

(a) Random Network (1000 Agents)

2 4 10 20 30 40 50

Average Degree (z)

#M
C

S

0
20

40
60

80
10

0

StIAA(0.05)
StIAA(0.1)

(b) SF Network (1000 Agents)

2 4 10 20 30 40 50 60

Average Degree (z)

#M
C

S

0
20

40
60

80
10

0

(c) SF Network (5000 Agents)

Figure 17: Plot of average degree (z) vs. number of times each mechanism successfully
converges into a large majority cooperation state (#LMCS) over 100 simulations;
temptation payoff=1.1, initial cooperators=50%, IAA=5%.

Comparison of the Existing Imitation based Approaches with StIAA: Figure 17(a)
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and 17(b) show the performance of the IB, SA and StIAA for various average degree

RN and SF networks respectively. The network size is limited to 1000 agents. For

each average degree category, 100 network instances are created and three approaches

are used to observe the process of evolution of cooperation. In SF networks, when

the average degree is smaller (z in the range of 4 to 5), SA performs better than IB.

However, as the average degree increases, both IB and SA fail to establish LMCS.

We observe a similar pattern in RN networks in which larger average degree result in

increasingly less or no cooperation.

In sparse SF and RN networks (z ≈ 2), StIAA does not converge into LMCS (as

also observed in case of IB and SA). However, for average degree between 4 to 30,

StIAA converges to LMCS in almost all instances with pexplore set to 0.05. However,

when the average degree lies in the range of 40 to 50, this low value of pexplore does not

lead to LMCS. The results indicate that by increasing this value to 0.1, the likelihood

of cooperation in these highly-connected SF networks can be significantly increased.

The performance of the StIAA in RN networks is not as good as in SF networks.

The main reason for this relatively poor performance is that RN networks do not

have the benefit of skewed degree-distribution. In SF networks, StIAA facilitates

the formation of clusters of cooperators due to age-correlation among the hub nodes;

and as a result cooperation evolves. On the other hand, unlike SF networks, in

RN networks the degree of the nodes are neither very large nor are they intricately

connected. As a consequence, clusters of cooperators are less likely to be formed.

However, StIAA significantly outperforms IB and SA in RN networks.
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Table 11: Effect of the variation of various parameters in 1000 agents SF networks.
For each variation, the table shows the number of times the network successfully
converges into a majority cooperation state (#LMCS) among 100 simulations.

Variation of % of Cooperators & Temptation Payoff (T) (%IAA = 5)
%Coop=10 %Coop=30 %Coop=50

T=1.1 T=1.5 T=1.9 T=1.1 T=1.5 T=1.9 T=1.1 T=1.5 T=1.9
z pexplore #LMCS #LMCS #LMCS #LMCS #LMCS #LMCS #LMCS #LMCS #LMCS

2.054 0.05 0 0 0 0 0 0 0 0 0
4.035 0.05 100 27 0 100 27 1 100 28 100
9.981 0.05 100 100 100 100 100 100 100 100 100
19.889 0.05 100 100 100 100 100 100 100 100 100
29.759 0.05 99 62 6 100 73 14 100 78 12
39.579 0.05 20 0 0 56 1 0 68 5 0

0.1 100 54 1 100 68 3 100 67 3
49.349 0.05 0 0 0 7 0 0 27 0 0

0.1 72 0 0 90 1 0 96 0 0

Empirical Analysis of StIAA

In order to perform a comprehensive analysis of the performance of StIAA mecha-

nism in SF networks, we vary the following parameters: (a) percentage of the initial

number of cooperators (%Coopp), (b) temptation payoff values (T) and (c) percent-

age of the IAAs (%IAA).

Variation of % of Initial Cooperators: Table 11 shows the effect of the variation of

the initial percentage of cooperators for various levels of the temptation payoff values.

First, consider the situation when the temptation payoff value is set to 1.1 (columns

3, 6, and 9). The results indicate that when the initial percentage of cooperator is

very low (10%), even in the most highly-connected networks (40 < z < 50) likelihood

of cooperation is high. For example, in networks with z ≈ 50, exploration probability

of 1.1 establishes cooperation in 72% instances. With the increase in the percentage

of initial cooperators, as in 30% and 50% cooperator networks, LMCS occurs 90% and

96% times respectively. Therefore, it appears that the variation in the percentage of

initial cooperators does not affect the cooperation evolution process very much when
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temptation payoff is as low as 1.1. StIAA is able to evolve cooperation even if the

initial fraction of cooperators is very small (e.g., 10%). Therefore, it is robust against

the perturbation in the number of cooperators and can transform a majority defector

society into a cooperative one.

Variation of Temptation Payoff: However, when the temptation payoff increases be-

yond 1.1, even with 50% initial cooperators the network does not evolve towards

cooperation (columns 10 and 11) in very large neighborhoods (where z is approx.

40 ∼ 50). In other words, the performance of StIAA is sensitive to the payoff value

of temptation. Both the IAAs and exploration probability need to be increased to

facilitate cooperation where benefit of temptation is high.

Table 12: Effect of the variation of IAAs in 1000 agents SF networks. For each
variation, the table shows the number of times the network successfully converges
into a majority cooperation state (#LMCS) among 100 simulations.

Variation of % of IAAs
(%Coop=50, T=1.1)

%IAA=1 %IAA=3 %IAA=7
z pexplore #LMCS #LMCS #LMCS

2.054 0.05 0 0 0
4.035 0.05 99 100 100
9.981 0.05 97 100 100
19.889 0.05 68 100 100
29.759 0.05 29 89 100
39.579 0.05 19 29 92

0.1 32 99 100
49.349 0.05 11 24 26

0.1 21 52 100

Variation of % of IAAs: Table 12 shows the effect of various percentage of IAAs for

a fixed 50% initial cooperators and 1.1 temptation payoff value. It can be seen that

for smaller density of IAA (1% to 3%) StIAA does not always converge into LMCS
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beyond medium average connectivity networks (where z > 20). In case of 1% IAA

the convergence scenario is not satisfactory when the average degree increases. Even

with relatively large value of pexplore (= 0.1), performance does not improve much.

The improvement is not significant in case of 3% IAA. On the other hand, although

7% IAA provides better result, its difference with 5% IAA is not significant (columns

9 and 14). In other words, 5% IAA is a reasonably small number to maintain good

performance. Therefore, this percentage is used as the upper bound for the IAAs.

Scalability of StIAA: In order to study the scalability of StIAA, its performance is

investigated on 5000 agents SF networks with varying degrees within the range 2 to 60.

Figure 17(c) shows that the performance of StIAA is even better than 1000 agents SF

networks. For example, when the average neighborhood size becomes larger (such as

when z is between 40 to 50), more than 80% times LMCS occurs. Further increasing

the neighborhood size (z ≈ 60) shows that more than 70% instances StIAA converges

into LMCS. With an increased exploration rate (pexplore = 0.1), convergence rate is

100% even in very high average degree networks.

4.2.5 Conclusions

This research develops a stochastic influencer altruistic agent (StIAA) mechanism

that is able to establish cooperation in MAS operating organized as highly-connected

SF networks. A small proportion of influencer altruistic agents (IAAs) is introduced

in the self-interested society. The IAAs, irrespective of their payoff, always cooperate

with their neighbors while the self-interested agents (SIAs) try to maximize their

payoff by imitating the wealthiest agent in their neighborhood. In order to check
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the optimality of their actions, the SIAs try the cooperative action of their IAAs

(should there be one) with a small exploration probability. We conduct comprehensive

simulations to evaluate the performance of StIAA.

We have accomplished the research goals EC-AA1-3 by:

• Proposing a heterogeneous system design approach that is composed of a large

majority of self-interested agents and a small proportion of influencer altruistic

agents.

• Showing that StIAA performs significantly better in highly-connected SF and

RN networks than the existing state-of-the-art IB and SA action update rules.

• Determining a realistic upper bound for the percentage of the IAAs (only 5%)

to ensure cooperation.

• Showing that StIAA is robust as it is able to evolve cooperation in societies that

initially has very small fraction of cooperators.

• Showing that StIAA is scalable in that increasing the size of the network does

not degrade its performance.



CHAPTER 5: CONCLUSIONS & FUTURE WORK

In this dissertation, we presented a topology-aware approach that facilitates the

emergence of social norms in Multiagent Systems (MAS) organized as various types

of networks. The motivation was to solve the norm emergence problem in virtual

societies that are of large size and dynamic in nature. The type of MAS we study

requires not only that a large majority of the population share norms but that such

norms should emerge fast. Because of the dynamic nature of the MAS, norm emer-

gence mechanisms have to be adaptive. We hypothesized that equipping agents in

networked MAS with “network thinking” capabilities facilitate the emergence of so-

cial norms in an effective and efficient manner. Our topology-aware mechanisms solve

the problem of convention emergence within the space of conventional norms and co-

operation emergence within the space of essential norms. Therefore, our conclusions

are separately drawn for these two types of norms.

5.1 Convention Emergence

We explored the challenges characteristic of various sizes of convention spaces

within the domain of convention emergence. Since small convention space prob-

lems can be solved quickly, we emphasized the solvability of our mechanisms. Large

convention space problems are complex and more difficult to solve. At times high-

quality conventions may not exist in the system; this means agents need to create
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better conventions as well as search for one. Hence, we emphasized both solvability

and efficiency of the solution approach.

For small convention space problems, we showed that no existing single simple dis-

tributed mechanism could create convention across various topologies. This claim is

both analytically and experimentally verified. We focused our efforts especially in es-

tablishing norms in MAS organized as scale-free (SF) networks for two reasons: first,

SF networks represent theoretical social networks and hence have many real-world ap-

plications; second, previous works don’t address the importance of network topology

and its influence on creating conventions [75]. Most existing works used specific con-

figurations of SF networks (based on fixed parameter settings) and claimed to derive

general conclusions about the norm emergence phenomenon in these networks [19].

We varied the SF model parameters and experimented with SF networks with low,

medium and high connectivity. We explored the challenge of forming conventions in

sparse SF topologies.

To summarize our approach, first we showed that the state-of-the-art Generalized

Simple Majority (GSM) action update rule did not perform successfully across differ-

ent types of SF networks, particularly in sparse SF networks. We, then, presented a

novel socially inspired technique called accumulated coupling strength (ACS) conven-

tion selection algorithm that was able to create a single convention both in sparse and

densely-connected SF networks. ACS encodes the history of all previous influences

and thereby acts as a social pressure to promote a specific convention. However,

ACS does not perform as well in random (RN) networks as GSM does. To address

this problem, we developed a topology-aware convention selection (TACS) mechanism
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that enabled the agents to predict the global topology based on local information and

then to select a suitable convention emergence algorithm. An extensive simulation on

RN and SF networks showed that a large majority of the agents correctly recognized

their topology and used either GSM (for RN networks) or ACS (for SF networks)

that led to the convergence into a single convention.

For large convention space problems, we hypothesized that if agents were endowed

with the capability of “network thinking”, the convention formation process would

become effective and efficient. To validate this hypothesis, we used a language coordi-

nation problem from [23] for our investigation where a society of agents constructed

a common lexicon in a decentralized fashion. Similar to [23], agents’ interactions

were modeled using a language game. In this game, agents send their lexicons to

their neighbors and update their lexicon based on the utility values of the received

lexicons. We presented a novel topology-aware utility computation mechanism that

enabled the agents to use contextual knowledge to expedite the convention forma-

tion process. Moreover, a socially-inspired technique called the power of diversity

was used. Agents were enabled to bring diversity in the population through network

reorganization that was based on the lexicon utility. Extensive simulation results

indicated that the mechanism was both effective (able to converge into a large major-

ity convention state with more than 90% agents sharing a high-quality lexicon) and

efficient (faster) when compared to two state-of-the-art mechanisms [56] and [23]. In

addition to this, the efficacy of the topology-aware mechanism was tested by varying

the topological features to develop an understanding of the influence of topology on

the convention formation process. The conditions under which diversity was beneficial
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were also investigated.

Following are the contributions related to convention emergence problem. We relate

them to research goals discussed in Chapter 1 in page 12 and put them in the context

of Contribution C1 in page 15:

• For small convention spaces, ACS is able to create a convention in sparse as

well as in dense SF networks. The TACS mechanism enables convention emer-

gence in various topologies including RN and SF networks. This is a part of

contribution C1 which is in response to research goals RG1 - RG3 outlined in

Chapter 1(page 12).

• In large convention spaces, TA mechanism provides an effective and efficient

solution that forms another part of contribution C1 which is in response to

research goals RG4 - RG6 outlined in Chapter 1(page 13).

5.2 Cooperation Emergence

Moderately and highly-connected SF networks present the greatest challenge to

evolve cooperation within the space of essential norms. We presented two mecha-

nisms that solved the cooperation emergence problem across these SF networks. The

first mechanism used a commitment based dynamic coalition formation technique and

complex network dynamics to form cooperation. Agents in the MAS are organized as

SF networks and the mechanism is able to form cooperation in moderately-connected

SF networks (where the average node degree is 20). The second mechanism empha-

sized highly-connected SF networks (where the average node degree is up to 50) and

used a heterogeneous system design approach that included a small fraction of al-
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truistic agents. Highly-connected networks are claimed to be susceptible to defection

and are the most challenging to sustain cooperation. We present our conclusions on

these two mechanisms separately in the following two subsections.

5.2.1 Commitment Based Dynamic Coalition Formation Approach

We developed a commitment-based dynamic coalition formation approach to es-

tablish mutual cooperation in large MAS organized as moderately-connected SF net-

works. Interactions of the self-interested agents with their immediate neighbors were

captured using an iterated Prisoner’s Dilemma (PD) game. Unlike many previous

works that assume being given pre-established networks, we enabled agents to dy-

namically choose their interaction partners to form their network. Agents offered a

commitment to their wealthiest neighbors in order to form coalitions. A commitment

proposal, that includes a high penalty for breaching the commitment, incentivizes

opponent agents to form coalitions inside which they mutually cooperate and thereby

increase their payoff. We enabled agents, to reason from a network-theoretic perspec-

tive, about determining the value of the penalty with respect to the minimum node

degree and the payoff values such that convergence into optimal coalitions is possible.

5.2.2 Altruistic Agents Based Approach

We developed a stochastic influencer altruistic agent (StIAA) mechanism that is

able to establish cooperation in MAS operating on highly-connected SF networks.

A small proportion of influencer altruistic agents (IAAs) is introduced in the self-

interested society. The IAAs, irrespective of their payoff, always cooperate with

their neighbors while the self-interested agents (SIAs) try to maximize their payoff by
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imitating the wealthiest agent in their neighborhood. In order to check the optimality

of their actions, the SIAs try the cooperative action of their IAAs (should there be

one) with a small exploration probability. We conducted comprehensive simulations

to show that StIAA performed significantly better in highly-connected SF and RN

networks than the existing state-of-the-art action update rules. Moreover, we have

determined a realistic lower bound for the percentage of the IAAs (only 5%) to ensure

cooperation.

The following are the contributions related to cooperation emergence problem. We

relate them to research goals discussed in Chapter 1 in page 12 and put them in the

context of Contributions C2 - C3 mentioned in page 15:

• Our Commitment based Dynamic Coalition Formation approach evolves coop-

eration in moderately-connected SF networks. It fulfills contribution C2 which

is in response to research goals RG7 and RG8 outlined in Chapter 1(page 14).

• Our altruistic agent based approach facilitates the emergence of cooperation in

highly-connected SF and RN networks. It fulfills contribution C3 which is in

response to research goals RG9 and RG10 outlined in Chapter 1(page 15):

5.2.3 Future Work

There are several directions in which this dissertation could evolve in future. For

example, the TACS mechanism for small convention space can be extended to different

types of networks. Also, the accuracy of the agents’ prediction of the global network

topology can be improved. The topology-aware approach for large convention space

can be implemented on other topologies such as community networks [35], local-
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world evolving networks [37] and multiplex networks [70]. Additional future work

include validating the mechanism on bigger convention space problems; considering

malicious agents and error-prone communication; and extending the mechanism for

solving convention problem to traffic assignment application and ontology sharing in

biomedicine as follows.

• Traffic Assignment: The topology-aware convention formation mechanism can

be used to solve the traffic assignment problem for modeling a transportation

system [3]. Unlike centralized classical approaches in which trips are assigned

to links or routes, a multi-agent approach can be used from the perspective of

road users. These users are modeled as agents that autonomously select their

routes in an adaptive way. This traffic convention problem is complex due to

the large number of agents and the number of choices for alternative routes.

Our topology-aware mechanism can be extended to expedite the process.

• Ontology Sharing in Biomedicine: In biomedicine research, shared ontology de-

velopment is an important research problem [80]. An ontology represents the

concepts and their interrelation within a knowledge domain. In biomedicine,

several ontologies have been developed that provide standardized vocabular-

ies to describe diseases, genes and gene products, physiological phenotypes,

anatomical structures, and many other phenomena. Scientists use these ontolo-

gies to encode the results of their experiments and observations. Ontologies are

used to perform integrative analysis to discover new knowledge. The challenge

is to evaluate an ontology’s representation of knowledge within its scientific

domain. This requires developing a model for ontology sharing. Our language
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convention formation approach can be extended to address the ontology sharing

problem in biomedicine research. A multi-agent based system can be designed

in which each agent represents an ontology [66]. Then the research question can

be formulated as: how can agents develop a shared ontology in a decentralized

fashion?

The commitment-based dynamic coalition formation approach and the altruistic

agent based approach can be implemented on other types of networks such as small-

world, regular, etc.
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[35] A. Lancichinetti, M. Kivelä, J. Saramäki, and S. Fortunato. Characterizing the
community structure of complex networks. CoRR, abs/1005.4376, 2010.

[36] S. Li and Z. Chen. Social services computing: Concepts, research challenges,
and directions. In Proceedings of the 2010 IEEE/ACM Int’L Conference on
Green Computing and Communications & Int’L Conference on Cyber, Physical
and Social Computing, GREENCOM-CPSCOM ’10, pages 840–845, Washington,
DC, USA, 2010. IEEE Computer Society.

[37] X. Li and G. Chen. A local-world evolving network model. Physica A: Statistical
Mechanics and its Applications, 328(1-2):274–286, Oct. 2003.



129

[38] J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal, and J. A. Paradiso.
Metaphor and manifestation - cross-reality with ubiquitous sensor/actuator net-
works. IEEE Pervasive Computing, 8(3):24–33, 2009.

[39] Y.-R. Lin, D. Margolin, B. Keegan, A. Baronchelli, and D. Lazer. Bigbirds never
die: Understanding social dynamics of emergent hashtags. In E. Kiciman, N. B.
Ellison, B. Hogan, P. Resnick, and I. Soboroff, editors, International Conference
on Weblogs and Social Media (ICWSM). The AAAI Press, 2013.

[40] M. Mihaylov, K. Tuyls, and A. Now. A decentralized approach for convention
emergence in multi-agent systems. Autonomous Agents and Multi-Agent Systems,
28(5):749–778, 2014.

[41] P. Mukherjee, S. Sen, and S. Airiau. Norm emergence under constrained inter-
actions in diverse societies. In the Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2008), pages 779–786,
2008.

[42] M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.

[43] M. A. Nowak. Five Rules for the Evolution of Cooperation. Science,
314(5805):1560–1563, Dec. 2006.

[44] M. A. Nowak and R. Highfield. SuperCooperators: Altruism, Evolution, and
Why We Need Each Other to Succeed. Free Press, New York, USA, 1st edition,
2011.

[45] M. A. Nowak and R. M. May. Evolutionary games and spatial chaos. Nature,
359:826–829, 1992.

[46] M. A. Nowak, J. B. Plotkin, and D. Krakauer. The evolutionary language game.
Journal of Theoretical Biology, 200(2):147–162, 1999.

[47] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. A simple rule for the
evolution of cooperation on graphs and social networks. Nature, 441(7092):502–
505, May 2006.

[48] J. Pacheco, A. Traulsen, and M. Nowak. Coevolution of strategy and structure
in complex networks with dynamical linking. Physical Review Letters, 97:258103,
2006.

[49] J. M. Pacheco, T. Lenaerts, and F. C. Santos. Evolution of cooperation in a
population of selfish adaptive agents. In Advances in Artificial Life, volume
4648 of Lecture Notes in Computer Science, pages 535–544. Springer, 2007.

[50] S. E. Page. The Difference: How the Power of Diversity Creates Better Groups,
Firms, Schools, and Societies. Princeton University Press, Princeton, New Jer-
sey, USA, 2007.



130

[51] A. Peleteiro, J. Burguillo, and A. Bazzan. How coalitions enhance cooperation
in the ipd over complex networks. In Social Simulation (BWSS), 2012 Third
Brazilian Workshop on, pages 68–74, 2012.

[52] J. Poncela, J. Gomez-Gardenes, L. Floria, A. Sanchez, and Y. Moreno. Complex
cooperative networks from evolutionary preferential attachment. Public Library
of Science (PLoS) ONE, 3(6):e2449, 2008.

[53] J. M. Pujol, J. Delgado, R. Sangesa, and A. Flache. The role of clustering on
the emergence of efficient social conventions. In L. P. Kaelbling and A. Saffiotti,
editors, the International Joint Conference on Artificial Intelligence (IJCAI),
pages 965–970, 2005.

[54] S. D. Ramchurn, E. Gerding, N. Jennings, and J. Hu. Practical distributed
coalition formation via heuristic negotiation in social networks. In International
Workshop on Optimisation in Multi-Agent Systems (OPTMAS), 2012.

[55] N. Salazar, A. Juan, R. Aguilar, J. L. Arcos, A. Peleteiro, and J. Burguillo-
Rial. Emergence of cooperation on complex networks. In the Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pages 669–676, 2011.

[56] N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos. Robust coordination in
large convention spaces. AI Communications, 23(4):357–372, Dec. 2010.

[57] F. C. Santos and J. M. Pacheco. Scale-free networks provide a unifying framework
for the emergence of cooperation. In Physical Review E, 95 (098104), 2005.

[58] F. C. Santos, J. M. Pacheco, and T. Lenaerts. Evolutionary dynamics of so-
cial dilemmas in structured heterogeneous populations. Proceedings of National
Academic Sciences USA, 103:3490–3494, 2006.

[59] B. T. R. Savarimuthu, S. Cranefield, M. K. Purvis, and M. A. Purvis. Norm
emergence in agent societies formed by dynamically changing networks. Web
Intelligence and Agent Systems, 7(3):223–232, 2009.

[60] B. T. R. Savarimuthu, M. Purvis, M. K. Purvis, and S. Cranefield. Social norm
emergence in virtual agent societies. In M. Baldoni, T. C. Son, M. B. van
Riemsdijk, and M. Winikoff, editors, DALT, volume 5397 of Lecture Notes in
Computer Science, pages 18–28. Springer, 2008.

[61] S. Sen and S. Airiau. Emergence of norms through social learning. In the Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 1507–1512,
2007.

[62] Y. Shoham and M. Tennenholtz. Emergent conventions in multi-agent systems:
Initial experimental results and observations. In The 3rd. Intl. Conf. on Princi-
ples of Knowledge Representation and Reasoning), pages 225–231, Morgan Kauff-
mann, San Mateo, CA, 1992.



131

[63] Y. Shoham and M. Tennenholtz. Co-learning and the evolution of social activity.
Technical report, Department of Computer Science, Stanford University, 1993.

[64] Y. Shoham and M. Tennenholtz. On the emergence of social conventions: mod-
eling, analysis, and simulations. Artificial Intelligence, 94(1–2):139–166, 1997.

[65] L. Steels. A self-organizing spatial vocabulary. Artificial Life, 2(3):319–332, 1995.

[66] L. Steels. The origins of ontologies and communication conventions in multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 1:169–194, 1997.

[67] L. Steels. The Talking Heads Experiment. Volume 1. Words and Meanings. Lab-
oratorium, Antwerpen, 1999.

[68] T. Sugawara. Emergence and stability of social conventions in conflict situations.
In T. Walsh, editor, the International Joint Conference on Artificial Intelligence
(IJCAI), pages 371–378. IJCAI/AAAI, 2011.
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APPENDIX A: NETWORK MODELS

In the context of social systems and in many real world applications we observe

that the network exhibits both node degree-heterogeneity and high clustering. The

standard Barabasi-Albert (BA) scale-free (SF) network model [8], however, suffers

from low clustering. Moreover, the heterogeneous degree-distribution of the BA model

is fixed by the constant power law scaling-exponent. Hence, to emulate more realistic

scenarios, the following two SF network models are presented that is used to build

the computational model in this dissertation.

A Barabasi-Albert Model

The BA SF model [8] is formed as follows:

(i) Growth: Starting from m0 nodes, at every time step a new node is added with

m (m <= m0) edges which connect between the new node and m different previously

existing nodes.

(ii) Preferential Attachment: A node i is chosen to be connected to the new node

according to the probability
∏

n→i = A+ki∑
j(A+kj)

where ki is the degree of node i and

A is a tunable parameter representing the initial attractiveness of each node. This

parameter controls the degree-heterogeneity of the network.

B Extended Barabasi-Albert Model

The extended model [30] follows the growing process of the BA model that starts

with m0 nodes. At every time step a new node i is added to the network and gets

connected with m (m <= m0) of the previously existent nodes. The first link of node
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i is added to node j of the network (with j < i) following the preferential attachment

rule of the BA model. The remaining m−1 links are added in two different ways: (a)

with clustering probability p the new node i is added to a randomly chosen neighbor of

node j and (b) with probability (1−p) node i gets connected to one of the previously

existing node using the preferential attachment rule again. This procedure ensures a

degree distribution of p(k) ∼ p−γ with a tunable clustering coefficient.

With p = 0, the extended model transforms to the BA model with low cluster-

ing coefficient (at γ = 3). For values of p > 0, the clustering coefficient increases

monotonously. Since this model partially follows the preferential attachment rule of

the BA model (the first link of each new node is added through preferential attach-

ment rule), the heterogeneity of the degree distribution of the extended BA model

can also be controlled by A.


