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ABSTRACT 

BALASUBRAMANIAN KARTHIK KUMAR. Experimental and computational 
strategies for enhancing mass transport and cryopreservation of biological tissues   
(Under the direction of Dr. ROBIN N. COGER and Dr. CHARLES Y. LEE) 
 

A bioreactor is a large-scale engineered in vitro device that maintains a 3D 

arrangement of functioning cells for use in various bioengineering applications. The 

current work is focused on heat and mass transfer issues related to the bioreactor’s 

performance and applications. Firstly, for bioreactors to achieve high functional output, 

the cells within its 3D tissues constructs must have adequate supplies of nutrients and 

gases (O2, CO2 etc). Among these, O2 transport has been a major challenge since regions 

of hyperoxia and hypoxia can develop. Hence, in the first phase of this work, an O2 

transport based computational model is proposed to help simulate the distribution of O2 

through the volume of the 3D tissue constructs under various operational conditions.  The 

advantage of such a predictive model is that it can supply preliminary data, helpful for 

optimizing O2 delivery to the cells. Secondly, the off the shelf availability of the cells and 

tissues utilized in the bioreactors is maintained mainly through cryopreservation 

techniques. In the case of large tissues, cryopreservation success is governed by the 

cryopreservation protocol used. Therefore, in the second phase of this work, a user 

friendly computational tool able to predict and compare the effectiveness of various 

cryopreservation protocols is developed. The computational tool’s predictions are briefly 

validated against experimental results to verify its predictive accuracy. The package is 

designed to offer a cost effective solution for designing protocol’s for cryopreserving 3D 

tissues and tissue equivalent. Thirdly, with specific relevance to the cryopreservation of 

liver cells and tissues, it was hypothesized that increased aquaporin (AQP) (integral 
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membrane proteins which aid water transport) expressions on the cellular membrane 

would improve cellular water transport and thereby improve the cryopreservation 

efficiency. Experimental results showed increased cell viability following 

cryopreservation of liver tissues equivalents treated for translocation of AQPs to the 

cellular membrane, thus confirming the hypothesis to be true. Overall, the computational 

and experimental strategies proposed in the current work would help enhance heat and 

mass transport to biological tissues, resulting in potential improvement in the 

performance of bioreactors and other large scale tissue replacement systems. 
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CHAPTER 1: INTRODUCTION 

Tissue engineering is a field that aims to address the clinical problem of tissue 

failures in the human body. It combines the principles and methods of engineering and 

life science for the purpose of designing and developing biological replacements to 

restore, maintain or improve the functions of tissues or organs [1]. It involves 

understanding the principles, behavior and functions of cells, tissues and/or organs and 

applying it to produce biological substitutes for structural and functional disorders of 

tissues and organs [2]. Tissue engineering utilizes the process of combining living cells 

with biomaterials for implementation in clinical applications such as therapeutic 

treatments, diagnostics and generation of in vitro tissues and organs for implantation [3], 

life support [4,5] and pharmaceutical testing [6,7]. 

One major challenge in the tissue engineering field is to develop devices to house, 

support and grow functional cells and tissues in large scales. This led to the development 

of bioreactors. Bioreactors are engineered devices or systems capable of maintaining a 

physiological environment for the growth of large number of cells and tissues [8]. One of 

the design configurations that has been used for these devices , supports functioning cells 

(e.g., liver hepatocytes or stem cells)  immobilized in a porous scaffold or extra cellular 

matrix (ECM) – which will be referred to in this study as “tissue constructs”. The 

bioreactor facilitates the transport of nutrient and metabolites to these tissue constructs 

and also provides the necessary chemical and mechanical stimuli to sustain high cell 

functionality.  
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Bioreactors are used for a wide variety of applications ranging from the in vitro 

growth of cells/tissues for bioremediation [3, 9, 10]; to extracorporeal patient support 

devices (eg: Bio-artifical liver devices) [4, 5, 11, 12]; to pharmaceutical test devices [6, 7, 

13, 14]. With such a variety of applications, various types of bioreactors have been 

developed for the tissue engineering of tissues including skin [15], liver [9, 11, 12], 

muscles [10], retina [16], and cartilage [17].  Fig 1.1 shows some of the types of 

bioreactors used. The difference in the designs of these bioreactors are based on a number 

of different factors such as the bioreactors’ requirements and applications, the type of 

cell/tissue employed, the scaffold choice, its mass transport properties, etc.  

 
FIGURE 1.1: Examples for some of the bioreactor designs. The arrow indicates the 
direction of media flow within the device. Reprint from [18]. 

 
However, despite of the advent of different types of bioreactors, its capability and 

applications are currently restricted by a number of factors. Some of the limiting factors 

include: total number of cells that can be supported, cell density, transport of adequate 

nutrients and metabolites, off the shell availability, ease of use etc. Therefore, in order to 

address these limitations, there is a need for developing new strategies and techniques in 

the field of Tissue Engineering.  

In the current work, two major factors that restrict the capability and utilization of 

bioreactors are analyzed. Firstly, the functional performance and efficiency of a 
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bioreactor is mainly limited by its mass transport capabilities, i.e., the ability to transport 

nutrient, O2, CO2, waste, etc. to and from cells. Among these, viability and function of 

cells in the bioreactors have been found to be particularly sensitive to the quantity of 

oxygen (O2) to which the cells are exposed [19]. Exposure of the cells to low levels of O2 

(i.e., hypoxic conditions) results in decreased cell function as well as cell death [20-22].  

Contrastingly, exposure to very high levels of O2 (hyperoxic condition) can lead to 

oxidative stress resulting in deteriorating cell function [23, 24]. Thus the effectiveness 

and efficiency of a given bioreactor design is at least partially dependent on its ability to 

sustain optimal O2 levels required of cells being supported within its 3D cellular space. 

Unfortunately, this task has proven to be a major challenge [25]. For those 

designs that rely on liquid-based nutrient flows (e.g., blood, plasma, nutrient media, etc..) 

as the main source of O2 to the cells of the bioreactor, O2 content then gets transported to 

the cells through permeation, diffusion, and/or convection [22, 26-28]. This transport of 

O2 to the cells is thus affected by multiple factors specific to the bioreactor's design.  For 

instance, for bioreactor designs consisting of ECM, transport properties of the ECM add 

resistance to O2 diffusion from the source flow to the cells. Also the O2 capacity of the 

source (i.e., the nutrient media) and the rate, in which it is replenished, influence the level 

of O2 available to the cells.  Then the continuous consumption of O2 by the cells reduces 

the levels of O2 available to adjacent cells within the cell space [29].  Consequently, if the 

thickness of the 3D cell space within a given bioreactor is not optimized, there will be 

heterogeneous O2 transport across the thickness resulting in regions of hypoxia [30].  

Such hypoxic conditions can lead to poor cell viability and function, resulting in 

deterioration of the bioreactor's performance and effectiveness over time. 
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These challenges to O2 transport in bioreactors have been identified and addressed 

by various research groups in the literature. One solution involves increasing the supply 

of O2 to the cells by introducing additional sources of O2. This can be done by increasing 

the level of O2 in the supply media [31], introducing oxygenators [32, 33], incorporating 

O2 generating materials [19, 34, 35], etc. Another solution is to improve the O2 transport 

mechanism. This can be achieved by improving the diffusive and convective properties 

within the bioreactor by using various flow conditions and patterns, by employing 

different ECM materials, and by enhancing the diffusivity of the ECM [36-39]. 

Additionally, to elucidate the dynamics of O2 transport in bioreactors, several 

mathematical and computational models have been developed [26, 27, 40, 41]. Yet 

effective tools for quantifying and visualizing the O2 available to the cells housed within 

their 3D spaces are still needed.  Such a capability would enable the cells' functional 

output to be quantitatively correlated to the degree of O2 exposure.  It would also provide 

valuable information for use in optimizing bioreactor designs to enhance their 

performance and effectiveness. 

In Chapter 2, Computational Fluid Dynamics (CFD) based modeling [42] is 

utilized to quantify and visualize the O2 distribution in relevant 3D cell spaces. The CFD-

based computational model of this study is developed around a simple experimental test 

setup that incorporates key basic features common to many bioreactor designs. The test 

system enables experimental conditions such as flow conditions, type and number of 

cultured cells, ECM material, dimensions of the 3D cell space, level of O2 content in the 

supply media etc., to be varied as needed.  Next, a steady state, CFD-based O2 transport 

model based on this test setup, and quantified by the Navier Strokes and mass transport 
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equations, was developed.  The model combines approaches presented by Ledezema et al 

[43] which uses the Navier Stokes equation to simulate and predict steady state O2 

transport in a radial micro-channel and that of Williams et al [44] which uses CFD to 

compute steady state momentum and mass transport of O2 in a bioreactor for cartilage 

tissue engineering.   

Furthermore, to aid the model’s adaptability for broader use, the CFD model of 

this study was deliberately built using a commercially available software platform.  

Consequently, the model's results can be correlated and extended to the cell spaces of 

various bioreactors designs, to provide preliminary and predictive O2 transport 

information. Because of its predictive capabilities, the model can be used as an effective 

tool in understanding the mechanism of O2 transport within a bioreactor system; and in 

the planning and development stages of new bioreactors.  

Another factor that influences the applicability of bioreactors for clinical uses is 

the off-the-shelf availability of cells/tissues. The off-the shelf availability of the 

cells/tissues is critical to enabling physicians to treat the patients with tissue failures as 

the need arises.  One method that addresses this issue is the use of cryopreservation 

techniques to safely store cells and tissue at sub-zero temperatures then thaw them for use.  

Cryopreservation is a branch of cryobiology [45], where cryopreservation 

techniques are usually carried out in the presence of cryoprotective agents (CPAs). The 

CPAs are high molecular weight chemicals that help prevent cell damage during the 

cooling process. These CPAs protect the cells by increasing the solute concentration in 

the cells and lowering the freezing point temperature of the intracellular water [46].  
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Traditionally, cryopreservation techniques are carried out via two methods, either 

by vitrification or by the freeze-thaw method. Vitrification is a cooling process in which a 

liquid solidifies into an amorphous glass state [47]. It requires very rapid cooling (~10000 

0C/min) of the liquid sample to its glass transition temperature.  Care should be taken to 

maintain a high viscosity of the sample to avoid crystallization. Consequently, 

vitrification processes require high concentrations of cryoprotectant agents to avoid 

crystallization and achieve the desired vitrified form. Introduction of such high 

concentrations of CPAs can lead to toxicity in the cells and tissue and also cause osmotic 

stress due to excessive dehydration of the cells [48], all of which are magnified when 

seeking to vitrify large 3D tissues and tissue equivalents.  Hence, vitrification in practice 

has most commonly been applied to the cryopreservation of cell suspensions and small 

tissues. 

Freeze-thaw cryopreservation methods involve transitioning biological samples 

from the liquid phase to the ice phase and back under controlled thermal conditions, 

known as cryoprotocols, using either constant cooling/warming rates or by applying a 

sequence of cooling/warming rates over time. These cryoprotocols have been 

demonstrated to be successful for cryopreserving cartilages, sperm, skin, embryos, blood 

and suspensions of liver cells [49-53]. Yet with larger 3D tissue equivalents and organs, 

the process is complicated by cell damage due to the escalation of several possible 

occurrences: 1) The formation of extracellular ice could cause mechanical damage and 

rupture the cell membrane; 2) Excessive dehydration of the cell; 3) Solution effects that 

expose the cells to heightened solute concentrations, especially during slow cooling 

processes; and 4) The formation of intracellular ice effects due to either supercooling or 
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the development of high osmolarity gradients [54, 55]. Among these the latter, 

intracellular ice formation (IIF), has been found to be the most common cause of cell 

damage during freeze-thaw cryopreservation processes. 

Furthermore, the cryopreservation of 3D tissues and organs has inherent problems 

due to the large dimensions as compared to individual cells and suspensions. Different 

regions within the tissue/organ can experience different thermal and concentration 

histories during the process of freezing, leading to differences in cell survival at various 

regions [56]. As such, the thermal and concentration histories are dependent on the 

cryoprotocol adopted for the freezing process. Therefore, an understanding of the thermal 

and concentration histories associated with various protocols, and the corresponding 

biophysical processes that govern freeze injury, can be useful to achieving the safe 

cryopreservation of 3D tissues or organs.  

Currently, the development of cryoprotocols for tissues is largely achieved 

through empirical approaches. Such empirical approaches involve high costs and time, 

thus emphasizing the need to utilize computational models to predict and analyze the 

effects of cryoprotocols in cryopreserving tissues. Although many cryopreservation 

relevant computational models already exist [57-60], most of them are based on specific 

devices, application or experimental conditions, limiting their potential for use by persons 

who are not specialists in the field of cryobiology, yet interested in cryopreserving 

biological samples.  Members of the clinical, research, and commercial communities in 

this category require a user-friendly model to aid them in the design of effective 

cryoprotcols.  
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Chapter 3 describes the development of one such user friendly mutli-scale 

computational model that seeks to optimize freeze-thaw cryopreservation protocols for 

3D tissue samples. The multi-scale modeling tool (MMT) is designed to predict the cell 

injury occurring due to IIF based on the thermophysical events the sample experience 

during the freezing process.  

The MMT was developed by combining two sub-models. The macro sub-model 

was based on the work by Balasubramanian and Coger [61] which predicts the 

temperature and concentration (for CPA) distribution within the sample at any point of 

time during the freezing process, for a given cryoprotocol. The temperature distribution 

over time within the sample is modeled based on the heat transfer equation and 

incorporated solid-liquid phase transition which takes place during the freezing process 

[62]. The concentration distribution of CPA is governed by the mass transport equation 

[63]. These equations are discretized and solved using successive relaxation method in 

Matlab. 

The micro sub-model of the MMT was developed based on Mayur’s model [64], 

and makes use of the thermal and concentration gradients acquired from the macro sub-

model. Based on the thermal history experienced by the sample, the micro sub-model 

predicts the cellular water transport and the probability of IIF within the sample. The 

micro sub-model utilizes nucleation theory [65] and the water transport equation [66] to 

predict cell survival from the probability of IIF.  Furthermore, the MMT is coupled to a 

HTML and database management system (DBMS), thus making it user friendly and easy 

to use. The user friendly feature enables practitioners with minimal computational 

capabilities and technical background to use the MMT.  As such, the MMT 
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computational model was designed to enable practitioners to identify the best suitable 

freezing protocol for safely storing their tissue samples – thus reducing cryopreservation 

cost and time. 

The predictive capability of the MMT was then compared to experimental results 

to verify the accuracy of the model. During the process, isolated rat hepatocytes were 

cultured on a collagen gel ECM and subjected to two different cryoprotocols. The frozen 

samples were then thawed back after 3 days in -80oC, and a Live/Dead assay was used to 

estimate cell viability. The experimental results where then compared to the predictions 

from the computational model to establish the accuracy of the MMT model. 

Completion of the MMT’s validation experiments also had another benefit.  It 

revealed that the post-thaw viability of the hepatocytes seeded in the collagen gel matrix 

was significantly less than the viability of cell suspensions reported in literature. To date, 

while the cryopreservation of hepatocytes has yielded considerable success for individual 

cells and cell suspensions, the successful cryopreservation of liver tissue or tissue 

equivalents still presents challenges. One of the reasons is that the probability of IIF 

formation has been found to be high for liver tissue equivalents compared to the liver cell 

suspensions, thus resulting in low viability of cells [67, 68].  Hence accomplishing the 

successful cryopreservation of liver tissue and tissue equivalents by reducing the 

probability of IIF is a step towards the safe storage of whole livers. 

One method of reducing the probability of IIF during cryopreservation of liver 

tissue is by improving its water transport properties. Theoretically, during freezing, the 

extracelluar space becomes more concentrated and water permeates out through the cell 

membranes due to osmotic gradients. This process continues until a crystalline ice form is 
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achieved. However, if water permeation rate though the cell is low, the increasing 

osmotic gradient causes intracellular water to freeze, resulting in IIF [54, 55, 66]. 

Therefore, if the water permeability of the cell membrane can be increased, the 

probability of IIF may be considerably reduced. 

In fact, the permeability properties of the cell membrane of hepatocytes have been 

found to be less than that of kidney, embryos, oocytes – all of which have been 

successfully cryopreserved [69-72]. Generally, water movement through the cell 

membrane occurs through aqueous pores created by hollow protein cylinders embedded 

in the membrane and through direct diffusion across the lipid bilayer [73]. There are also 

a variety of water transport pores, known as aquaporins, that exists in certain cells.  

Aquaporins (AQPs) are water transport channels embedded in the cell membrane [74]. 

The presence of such water channels can assist in transporting of water in and out of the 

cells in accordance to the osmotic changes that occur during croprotocols [75]. 

Manipulation of AQPs can aid in preventing intracellular ice toxicity as well as IIF 

during freeze-thaw processes. 

Such a strategy for regulating AQPs in the cellular membrane for 

cryopreservation has been successfully performed for oocytes, larvae and embryos [70-72, 

76]. In these cases, the cells were treated to artificially express AQP3 prior to 

cryopreservation, and the post thaw survival rate was found to be significantly high. 

Similarly, regulation of AQPs during cryopreservation of kidney IMCD cells has been 

conducted [69] and it was seen that upregulation of AQPs resulted in a 25% increase in 

viability whereas down-regulation of AQPs resulted in a 55% decrease in viability. 
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However, no such research has been reported for hepatocytes despite the fact that AQPs 

are known to exist in hepatocytes.  

In primary rat hepatocytes, aquaporins AQP0, AQP8, AQP9, AQP11 and AQP12 

are known to exist.  AQP0 is found mainly in the intracellular space and does not express 

itself on the cell membrane [77]. Little is known about AQP11 and AQP12. Hence AQP 

0, 11 and 12 are not currently considered to be significant to cryopreservation goals. 

AQP9 is located on the basolateral side of the cell membrane [77, 78] but cannot be 

regulated.  Yet AQP9, also known as an aquaglyceroporin, is a major transport channel 

for glycerol [79], a fact that can be taken advantage of during cryopreservation of liver 

slices when glycerol is used as the cryoprotective agent (CPA). AQP8 is present in large 

extent in the pericanalicular vesicles in the intracellular space, and also appears on the 

apical side of the cell membrane. However, the AQP8 present in the pericanalicular 

vesicles can redistribute themselves on the apical side of the cell membrane under the 

influence of a choleretic stimulus such as Bt2cAMP and glucagon [77, 80].  Hence AQP8 

is the aquaporin type in liver that is most significant to cryopreservation and water 

transport regulation goals. Therefore, Chapter 4 of this dissertation focuses on 

experimentally verifying the hypothesis that translocating AQPs in hepatocytes can 

increase the cryopreservation success of liver tissue equivalents.  

Specifically, rat hepatocytes cultured in collagen gel ECM were treated with 

choleretic stimulus (Bt2cAMP/ glycerol) to initiate translocation of AQP8, and with 

HgCl2 to inhibit the water channels [81].  The treated and untreated (controls) were then 

subjected to a freeze-thaw process with DMSO/glycerol as the CPAs. The results indicate 



 
 

    12 

a significant increase in the cell survival rate due to the increased AQPs quantity on the 

cellular membranes. Thus the hypothesis was found to hold true for hepatocytes. 

To summarize, this dissertation explores two important strategies for improving 

the capabilities and applicability of bioreactors in clinical use: 1) Assisting in developing 

better bioreactor designs by implementing an O2 transport model to understand and 

analyze the distribution of O2 within such systems; and 2) Aiding the success of 

cryoprotocols for storing cells/tissues, thereby advancing the off-the-shelf availability of 

cells/tissues for use in bioreactors and other applications. Furthermore, Chapter 4 focuses 

specifically on the cryopreservation of liver tissue, introducing a new experimental 

strategy to improve its cryopreservation efficiency.  

  



CHAPTER 2: OPTIMIZATION AND VISUALIZATION OF OXYGEN TRANSPORT 
IN BIOREACTORS USING COMPUTATIONAL MODEL 

2.1 Summary 

The availability of suitable levels of oxygen (O2) to the cells maintained within 

tissue bioreactors is critical to their functionality and performance. Hence having a good 

understanding of the O2 transport mechanism and O2 distribution throughout the cell 

space of such systems is valuable to optimizing their performance. This can be achieved 

with the help of predictive computational models.  In the current chapter, transport of O2 

and its distribution in a 3D cell space configuration is modeled computationally. The 

model investigates the O2 transport through a porous cell space by the mechanisms of 

convection, permeation, and diffusion of the O2 dissolved-media circulated through the 

device. The model’s accuracy in predicting transport was first confirmed by comparison 

with experimental results, and then applied to the study of O2 transport within a liver 

tissue bioreactor system. The computational model captures the dynamics of nutrient 

media flow through the bioreactor system. The model also predicts the level of cellular 

O2 exposure as a function of position within the 3D cell space. This enables the 

identification and visualization of hypoxic, normoxic and hyperoxic regions with the 3D 

cell space. The results show hypoxic regions existing near the walls of the bioreactors 

wherein the media flow is restricted by boundary layer effects. This suggests that the 

cells' survival and thereby their functionality are most successfully maintained in those 

regions more thoroughly perfused with media. The current work also analyzes the 
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penetration characteristics of O2, with respect to the media’s flow dynamics, its dissolved 

O2 levels, and the number of cells within the cell space. This can subsequently be used to 

develop and test design criteria -- such as the optimum O2 content of the inlet media and 

the relationship between cell seeding density and maximum cell survival for a range of 

flow and cell culture conditions -- of future bioreactor systems.  As such this predictive 

model has the potential to aid tissue engineers in the design and optimization of future 

bioreactor systems. 

2.2 Introduction 

Bioreactors are in vitro devices for maintaining cultured cells. These devices have 

become increasingly important due to their ability to perform the critical functions of the 

natural cell-based systems they seek to replicate [8]. Bioreactors are typically used for 

three main applications: 1. Maintenance of cell sources to carry out chemical processes 

(e.g., bioremediation applications) [82]; 2. Pharmaceutical testing [83]; or 3. As 

temporary extracorporeal organ replacement devices to bridge patients until a suitable 

organ transplant is available [84, 85]. For example, bioreactors consisting of hepatocytes 

have potential for use in extending the life of patients suffering from liver failure [4, 5]. 

With the increase in the usability of bioreactors in recent years, it is not surprising 

that various designs have been proposed. [83, 86, 87]. Despite the variations, the majority 

of the designs manage a large number of viable cells in a 3D arrangement with the goal 

of expressing high levels of functionality.  Sustaining this performance output over a 

period of time requires the bioreactor to provide the cells it contains with adequate levels 

of nutrients and gases (O2, CO2, etc) [88].  Among these, the viability and function of 

cultured cells have been found to be particularly sensitive to the quantity of oxygen (O2) 
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the cells are exposed to [89]. Existence of hypoxic and/or hyperoxic regions within the 

system might prove to be detrimental to the cells [20-24]. Thus, it is important to 

understand the mechanism of O2 transport and also determine the distribution of O2 for 

developing effective bioreactor designs.   

In most bioreactors, the main source of O2 is the nutrient media flow supplied to 

the device. The transport of this O2 to the cell space of the bioreactor may be through 

permeation, diffusion, and/or convection [22, 26, 27, 90]. Such a transport of O2 is 

affected by multiple factors.  The current investigation identifies some of these factors 

and their effects on the O2 distribution with a bioreactor system. This is achieved with the 

help of a Computational Fluid Dynamics (CFD) model.  

The CFD model predicts the O2 availability within 3D cell spaces when one or 

more of the factors affecting O2 transport are varied.  It also visually presents the O2 

distribution within the 3D cell space, to aid in identifying regions of normoxia, hypoxia, 

and hyperoxia. By employing such a model, bioreactor designers and practitioners can 

gain valuable information for selecting key variables such as the ECM choice, 

dimensions of the cell space, cellular density and O2 content of the media prior to 

building the prototype or commencing an experiment.  

In the current study, the model's capabilities are presented for the specific case of 

predicting O2 transport for a cell space consisting of hepatocytes (i.e,. the parenchymal 

cell of the liver) seeded within collagen sponges. 
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2.3 Computational Methods 

2.3.1 Design of the Test Device 

The goal of this work is to present a computational model helpful for assisting in 

the design and interpretation of bioreactor experiments reliant on O2 transport. 

Developing such a model required a complementary test setup for evaluating various 

experimental conditions. The key design criteria of the test setup were as follows: 

• It must have a logical geometry, able to maintain both static and dynamic flows of 

nutrient medium. 

• It must be able to sustain a 3D cellular space composed of cells packed within 

ECM for the duration of at least 3 days. 

• It should enable the function of cultured cells to be assessed. 

• The cell density and the thickness of the cellular space should both be adjustable. 

• It should enable investigation of permeation and convection of media, through 

and across the 3D cell space, respectively. 

• It should provide options for investigating multiple samples simultaneously, thus 

enabling the effects of ECM attributes, or the O2 level in the medium, or the cell 

density in the cell space to be compared. 

Fig 2.1 depicts the Pro E (PTC, Needham, MA) model of the generalized test 

device of this study. The device will be more fully described in the Materials and 

Methods section (2.4.1).  Once the generalized test device was designed and developed, 

the next step in the modeling process was to develop its CFD analog.  The CFD model 

was developed using Ansys 11 - CFD software packages [Ansys Inc, Canonburg, PA]. 
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FIGURE 2.1: Pro-E design of the novel test device developed to test various 
experimental conditions*. 
 

 
FIGURE 2.2: Isometric view of the half symmetry Ansys model of the flow region in the 
test device.  

                                                        
i. * The Pro-E design of the test device was done with the help of James Cassell from UNC, 

Charlotte. 
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2.3.2 Geometry and Mesh 

The model's first requirement was to simulate the regions through which the 

nutrient media would flow. This was achieved using the Ansys Workbench 11.0 as 

shown in Fig 2.2.  (Note: Although Fig 2.1 and Fig 2.2 represent the same geometry, Fig 

2.1 is a Pro E design of the actual test device, whereas Fig 2.2 is a half symmetry Ansys 

11 design of the flow region within the test setup). The Ansys design (Fig 2.2) neglects 

the trough region of the test setup, since it does not influence O2 transport within the cell 

space. The "porous domain", indicated in Fig 2.2, represents the 3D cell space through 

which media permeation (and thus O2 transport) takes place. Meshing of the generated 

volume was done using Ansys CFX mesher 11.0.  Prismatic meshes were used in the wall 

boundary layer region to account for boundary layer effects whereas fine tetrahedral 

meshes (mesh size < 0.2 cm) were used everywhere else. 

2.3.3 Governing Equations 

For the simulation process it was necessary to provide the governing equations 

and boundary conditions that would accurately define media flow dynamics and O2 

transport mechanism within each 3D cell space.  

2.3.3.1 Law of conservation of mass 

First and foremost, the flow of the working fluids in the bioreactor system must 

satisfy the law of conservation of mass [91].  

 ,
( ) .( ) .( )i

i i m i m
Y V Y D Y S

t
γρ γρ ρ γ

→∂
+∇ = ∇ ∇ +

∂
 (2.1) 

where ρ is the density of the working fluid, iY is the mass fraction of the working fluid, 

(∇ ∙) is the divergence operator, V
→ is velocity vector, γ is the porosity of the porous 
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material, ,i mD is the diffusivity of ith substance in medium m, and 𝑆𝑚 is the mass source 

(positive if mass is generated, negative if mass is consumed). 

2.3.3.2 Law of conservation of momentum 

For problems involving fluid dynamics, the flow dynamics of the fluid is 

governed by the law of conversation of momentum. In the current model, since we 

consider a multi-phase fluid – a mixture of media and oxygen, law of conversion of 

momentum has to be satisfied for both the phases. The momentum conversation equation 

used for the model is as follows 

 
( ) 2.( ) . ( ) .

3
Tm m

m m m m m m m m
V V V p V V V I g A B

t
γρ γρ γ γ µ γρ

→
→→ → → → →∂

+∇ = − ∇ + ∇ ∇ + − ∇ + + +
∂

  

(2.2) 
 
where 

 , ,.( )k k dr k dr kA v p V V
→ →

= ∇ ∑  (2.3) 

 
2

m
m m

CB V Vµ ρ
α

→ → = − + 
 

 (2.4) 

 ,dr k k mV V V
→ → →

= −  (2.5) 

In Eq. 2.2, p is the partial pressure, µ  is the viscosity of the phase m, and g is the 

gravitational effect. There are two additional factors included to the momentum 

conversation equation – terms A and B. The term A accounts for the momentum 

conversation of the diffusing species (diffusion of O2 in the media) and given by the    Eq. 

2.3. In Eq. 2.3, ,dr kV
→

represents the relative velocity of the diffusing species (O2) in the 

working fluid (media). The term B accounts for the resistance offered by the porous cell 

space domain and is given in Eq. 2.4, where C is the coefficient of resistance. The term B 
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comes into consideration only for the region in which the fluid flow takes place in the 

porous domain.  

2.3.3.3 Mass transport equation 

To predict the diffusion of O2 in the test system, the mass transport equation     

(Eq. 2.6) is considered.   

 
( ) .( ) .( )m

m m mV S
t φ

γρ φ γρ φ γ φ γ
→∂

+∇ = ∇ Γ∇ +
∂

 (2.6) 

where φ  is the concentration of the diffusing species in medium m and S is the mass 

source – representing the consumption of O2 by the cells in the cell space.  

Thus with the above mentioned governing equations as its foundation, the model 

for predicting the O2 transport from the supply media to the cells distributed throughout 

the cell space was obtained.   

2.3.4 Heat Transport Model 

Directly verifying the accuracy of the model’s mass transport predictions requires 

mass transport through the small volumes of the 3D cell space of the test setup to be 

experimentally measured. Since this is difficult to accomplish without evasively altering 

the transport kinetics, an indirect method was devised for evaluating the model’s 

accuracy.  An analogous heat conduction problem was setup experimental, the details of 

which are discussed in Section 2.4.2 and a corresponding computational model was 

generated. The governing equation consider for the heat transport model is as follows.  

 
( (1 ) )

.( ) .( )f f s s
f f eff f

E E
V E k T S

t
γρ γ ρ

ρ
→∂ + +

+∇ = ∇ ∇ +
∂

 (2.7) 

 (1 )eff f sk k kγ γ= + −  (2.8) 

where E is the heat energy, effk is the effective heat diffusivity between the fluid phase f 

(water) and solid phase s (walls and porous domain), and T is the temperature. 
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The analogies between the principles and governing equations of heat and mass 

transport enabled the transient heat conduction problem (governed by Eq. 2.7) to be used 

as an appropriate benchmark experiment for O2 transport through the thickness of the 3D 

culture space of this study. To clarify this point, considering the similarities between Eq. 

2.6 and Eq. 2.7, it is evident that the forms of the two equations are equivalent.  Hence to 

evaluate the accuracy of the CFD model's predictions, transient heat conduction through 

the volume of the 3D cell space was measured using water as the working fluid (instead 

of media), and using Teflon for the porous domain.   

2.3.5 Mass Transport Model 

Once the transport model's predictions were validated with the help of the 

benchmarking experiments and the heat transport model, the simulations of O2 transport 

through the 3D cell spaces of the test device commenced. For these simulations the 

working fluid (O2 dissolved media) was modeled as a two phase mixture, where the 

media was taken as the primary phase, while the dissolved O2 was modeled as the 

secondary phase.  The 3D cell space of the test system was considered to be collagen 

sponge and was modeled as the porous domain.  The cells were assumed to be uniformly 

distributed within the collagen sponge and were modeled as a constant negative source of 

mass for the secondary phase, i.e., constant consumers of O2 within the porous domain.  

Consequently each 3D cell space had a constant O2 consumption rate, Soxy. As such, the 

O2 consumption rate Soxy of the cell space would increase if either the consumption rate 

per cell (Roxy) increases or the number of cells (N) it contains increases. This resulted in 

the following relationship for Soxy,   

 
* *

*
oxy ECM

oxy
cell

R N Vol
S

Volγ
=  (2.9) 
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In addition to the Soxy value, the model of this study requires other key inputs such 

as the inlet flow rate, the initial level of O2 in the nutrient media, the material properties 

of the ECM, working fluid, etc.  By varying and/or adjusting these inputs, different 

scenarios can be simulated to determine the corresponding O2 distribution pattern within 

a given 3D cell space. In the current study, the computational model was used to evaluate 

the effects of six inlet flow rate variations ranging from 0-10 ms-1, six O2 capacity levels 

of the media ranging from 5-10 mg/l of O2; and ten variations of Soxy for the 3D cell space. 

2.4 Material and Methods 

To help ensure the accuracy of the computational model, several complementary 

experiments were conducted to evaluate key material properties for use as input to the 

computational model, and to calibrate the model's predictions.  The details of each will 

now be described. 

2.4.1 Test Device and the Circulation System  

 
FIGURE 2.3: The experimental test device fabricated from a steel block based used to 
perform the benchmarking experiments†.  
                                                        

ii. † The test device was fabricated by James Cassell from UNC, Charlotte. 
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Recall that Fig. 2.1 illustrated the experimental test setup designed for this study. 

It was designed in Pro-E, based on the criterion discussed in the Computational Methods 

section, then fabricated. Fig 2.3 shows the experimental test device fabricated from a 

steel block. The device consists of three inlet ports through which pump-driven flow 

media is able to enter the main cubical region, after travelling from a media reservoir 

source. The bottom face of the main section has three holes, designed for the placement 

of transwells culture dishes (Falcon Becton Dickinson labware, Model: 353091) for 

supporting individual culture samples. Since the base of each transwell consists of a 

semi-permeable membrane of 3 micrometers pore size, depending on the contents and 

permeative properties of the cell space, a fraction of the media would permeate through 

the cell space - to the bottom trough. The rest of the media would exit directly through 

the top outlet. 

An Ismate peristaltic pump (BVP, Model: CP78002-01) pumps media in to the 

main section of the device via three inlet ports (refer to Fig. 2.4). The flow settings of the 

pump, as well as the permeation characteristics of the cell space direct the level to which 

the nutrient media is able to permeate through the thickness of each individual 3D cell 

space sample. The outputs from the two outlets of the device i.e., the top outlet and outlet 

connected to the trough are then collected, re-oxygenated in the gas chamber. The re-

oxygenated media is then recombined in the media reservoir and recirculated – as 

illustrated in Fig. 2.4. 
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FIGURE 2.4: Schematics of the circulation system of the test setup circuit consisting of 
the test device (flow chamber) and other components which enables maintaining cell 
culture. 
 
2.4.2 Benchmarking Experiments 

In order to verify the accuracy of the CFD model’s transport predictions, the 

models prediction for an analogous heat conduction problem was compared to 

experimental results. For these benchmarking experiments, and their corresponding CFD 

simulations, water was used as working fluid, and the 3D sample space in the transwell 

portion of the test device was packed with Teflon powder. The experiment was designed 

to measure the thermal transport through the 3D sample space where a higher 

temperature working fluid (i.e., H2O) was supplied to the setup.  

More specifically, in this benchmarking experiment 90oC source water from the 

reservoir was pumped through the inlet ports at a velocity of 6.25 ms-1, where the initial 
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temperature of the test device and the Teflon sample space were both 22oC.  The hot 

water then flowed over and through the 3D Teflon sample space, resulting in thermal 

variation across the sample space.  The water was then collected and directed back to the 

reservoir for reheating to 90oC and re-circulation. Also to minimize the effects of radial 

thermal variations along a given horizontal plane of the 3D sample space, the outside of 

each transwell was insulated using heat insulation tape [Model# 5541, Summit 

Equipments].  This resulted in an adiabatic boundary condition around the radial 

circumference of the sample - effectively reducing it to a 1D transient heat conduction 

problem. 

 
FIGURE 2.5: A representation of the test device depicting the positioning of the 
thermocouples in the porous subrate (packed Teflon) during the benchmarking 
experiments. 
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During the process, the transient change in the temperature at four locations (0, 

5.25, 8.05, and 11.25 mm from the base – Indicated in Fig 2.5) along the vertical axis of 

each Teflon sample was recorded over time using T-type thermocouples connected to a 

multimeter (Keithley 2000. Model: 0703538).  A minimum of three independent 

experiments were completed, and the averaged results were then compared to the CFD 

model's predictions of the transient thermal history of the Teflon sample space. 

In a complementary experiment, the net volume of permeated fluid through the 

sample and into the bottom outlet of the trough of the test setup was collected in a 

graduate cylinder at specific time points, to quantify the rate of volumetric outflow 

through each individual sample space. These measurements were also available for 

comparison with the model's predictions. 

2.4.3 Evaluation of Material Properties 

A computational model is only as accurate as its inputs.  Hence the accuracy of 

the CFD model of this study required measured values of the density of the working 

fluids and porous materials of the sample space; the viscosity of the working fluids, and 

the porosities and permeabilities of the ECM and Teflon, since these were not readily 

available in the literature for the conditions of this  investigation.  How each was 

determined is now briefly described. 

2.4.3.1 Working fluids and its properties 

The working fluid of the benchmarking experiments was de-ionized water, while 

the working fluid of the oxygen transport predictions was liquid minimum essential 

media (MEM).  Liquid MEM was prepared by dissolving 12.5g of MEM dry powder 

(Mediatech Inc, Manassas, VA), 2.75 g of sodium bicarbonate in 1L of distilled water 
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and adjusting the pH value to 7.4.  The densities of the working fluids at room 

temperature 22oC and human body temperature 37oC were measured by weighing 1 ml of 

the target fluid using an analytical balance (Mettler Toledo Excellence Plus XP 

Analytical Balance, Model XP205DR, Columbus, OH).  The viscosity of each working 

fluid was also measured at 22oC and 37oC, using the Cannon-Fenske Routine Viscometer 

(Standard test ASTM DD 45, IP 71 and ISO 3104, State College, PA).  In all cases, the 

fluid temperate was carefully monitored and regulated using a thermometer (Sper 

Scientific, Range: 0 - 260oC, Accuracy 0.1oC) and a hotplate (VWR, Model: VMS C7 S1, 

Radnor, PA), respectively.  

2.4.3.2 Teflon column preparation and their properties 

The Teflon PTFE powder (Dupont) was used as the porous material in the cell 

space region for the benchmarking heat transport experiments. The cell space region for 

these experiments was prepared by uniformly packing 2g of the Teflon PTFE powder in 

the transwells. Then the density of the Teflon was calculated by measuring the volume 

occupied by the Teflon in the transwell. 

The porosity and permeability of the Teflon packing were also important as they 

directly affect the permeation success of the working fluid through the cell space.  For the 

Teflon columns, the packing firmness directly influences the porosity.  As such the 

porosity of each Teflon column was calculated as the ratio of the difference between the 

measured volume (i.e., the physical volume occupied by the uniformly packed Teflon in 

the transwell insert) and the calculated volume, against the measured volume. The 

calculated volume of the Teflon column of each transwell was calculated by multiplying 

the theoretical mass density of the Teflon PTFE powder by its known mass of 2g. 
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2.4.3.3 Collagen sponge preparation and their properties 

For the oxygen transport model, Gelfoam absorbable gelatin collagen sponge 

(Pharmacia and Upjohn) was considered for the 3D cell space. Determining the density of 

the ECM sponge required a slightly more elaborate approach due to its changes in 

hydrated cell culture environments.  Specifically, the dry ECM sponge was initially cut 

into 35 mm diameter disks of 1 cm thickness each, and measured on an analytical balance 

to determine its dry weight. Next to condition the sponges for tissue culture, each sponge 

was placed in a Redi-Pak straight wall glass jar (VWR, Radnor, PA) and soaked in 25ml 

of antibiotic/antimycotic solution (sterile de-ionized water containing 400 Unit penicillin 

G, 400 g streptomycin and 1g amphotericin B per ml). The glass jar was then placed in 

the Fisher Isotemp 280A vacuum oven (ThermoFisher Scientific) with a relative pressure 

of -28 inHg for 12 hours to degas the sponge completely. The prepared sponges were 

then transferred to a standard 6-well plate and soaked for one hour in 5ml of 1x Hanks 

Buffered Salt Solution (HBSS) to sufficiently dilute the antibiotic/antimycotic solution. 

Next the HBSS was aspirated and 5 ml of liquid MEM was added to each sponge, 

followed by 1 hour of incubation. The prepared sponge’s wet weight and dimensions 

were then measured using an analytical balance and caliper, respectively. The mass 

densities were then calculated as the measured mass per measured volume.  

The porosity of each prepared ECM sponge was measured using the water 

displacement method.  For this method a wet sponge of known mass (m1) was dropped 

into a known mass of water (m2), then after equilibration the combined mass (m3) is 

measured. Thus the ratio difference between the total mass (m1+m2) and the combined 

mass (m3) to the mass of the sponge (m1) yields the porosity of the prepared ECM sponge. 
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The permeability of the Teflon column and the ECM sponge samples were measured 

using the Constant Head Permeability test. In this process, a constant water head, h, is 

maintained over a known thickness L and the discharge of water, Q, in time, t was 

measured. This allowed the hydraulic permeability, k, to be calculated as: 𝑘 = 𝑄𝐿
Aht

. 

2.5 Results 

2.5.1 Validation of the Transport Model 

The aim of this study was to develop CFD model able to predict O2 transport and 

distribution through 3D cell spaces. To confirm the model's accuracy, its ability to 

successfully predict the analogous thermal transport through a specified sample volume 

was first evaluated (using parameters shown in Table 2.1) and compared to the transient 

heat conduction experimental results.  

 FIGURE 2.6: Time vs temperature comparison obtained during the benchmarking 
process via the transient heat conduction problem. The solid lines indicate data obtained 
from experiments and the dotted lines denote the results obtained from the computational 
model. 
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As shown in Fig 2.6, the experimentally measured (solid lines) and 

computationally predicted (dotted lines) temperatures for four positions (Refer Fig 2.5) 

throughout the columnar sample, with respect to time, are plotted. From the plot it is clear 

that there is a close correlation between the two methods, with few exceptions.  One 

notable exception is visible in the initial time periods, for thermocouple positions 3 and 4.  

These two thermocouples are positioned closest to the convective bulk fluid flow of the 

sample surface.  It is thus probable that these variations are attributable to unavoidable 

experimental fluctuations incurred as the flow’s streamlines adjust during the early 

timepoints of the experiment. Specifically, the discrepancy visible for thermocouple 4 is 

surmised to be due to the thickness and position of that sensor, such that instead of being 

fully embedded in the Teflon column, it is instead partially exposed to the hot water 

inflow of the test setup.  In contrast, since the simulated position 4 is modeled as fully 

embedded in the Teflon substrate, it is unsurprising that its temperature rise is predicted 

to be more gradual. Excluding that, the computational model otherwise matches the 

experimental results with 98% accuracy. 

In addition to the temperature measurements of these benchmarking experiments, 

the volumetric flow rates of the water through the bottom outlet (i.e., the water collected 

in the trough following permeation through the pores of the Teflon test sample) -- were 

also measured. Its value was 0.115 ± .002 ml/min from the experiments, and 0.11596 

ml/min from the model's prediction. These two sets of benchmarking results thus confirm 

the accuracy of using the CFD model for transport predictions, within reasonable 

tolerances. 
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2.5.2 Oxygen Transport Model 

Once the model was validated, simulations for O2 transport were generated for 

specific scenarios of 3D liver systems. For each, liquid MEM media served as the 

flowing fluid, while collagen sponges embedded with primary rat hepatocytes comprised 

the 3D cell space. The number of cells was taken to be 4 million. Thus the value of the O2 

consumption rate for the 3D cell space Soxy was calculated to be approximately 1e-11 

kg/m3 (Refer Table 2.1 for the values used). The initial level of oxygen in the media was 

taken to be 6.85 mg/l and the velocity of media at the inlet was 6.25 ms-1. With these sets 

of conditions and properties from Table 2.1 as inputs to the model, the O2 transport 

model was generated. 

TABLE.2.1 Values of material properties and key parameters used for the simulations of 
the CFD model. 
Symbol Description Material Value Unit Reference 
      
ρ Density Water 1000 kg/m3 measured 
  Media 1009.67 kg/m3 measured 
  Collagen 1120 kg/m3 [154] 
  PTFE 2200 kg/m3 MFG 
  Oxygen 11 kg/m3 [155] 
      
µ Dynamic viscosity Water (22oC) 0.9594 g/m.s measured 
  Water (37oC) 0.6627 g/m.s measured 
  Media (22oC) 0.70232 g/m.s measured 
      
m Molar mass Water 18 g/mol [155] 
  Media 52.461 g/mol calculated 
  Oxygen 32 g/mol [155] 
      
m  Mass flow rate Outer inlet 0.201934 g/s measured 
  Middle inlet .100967 g/s measured 
      
Cp Specific heat capacity Water  4.18 J/kg K [155] 
  PTFE 1040 J/kg K MFG 
      
      
(Continued)     
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(Continued)     
γ Porosity PTFE 0.45 - measured 

  Collagen 
sponge 0.66 -  

measured 
      
ĸ Darcy’s permeability PTFE 1.53E-9 mm2 measured 

  Collagen 
Sponge 2.88E-8 mm2  

measured 
      
D Diffusivity in media Oxygen 2.415E-5 cm2/s [156] 
c Coefficient of resistance PTFE 2420238 - calculated 

  Collagen 
sponge 243900 - 

 

calculated 

      

Roxy 
Oxygen consumption per 
cell 
 

Hepatocytes 6.4x10-
12 mg/s 

[157] 

N 
Total number of cells in the 
cell space 
 

Hepatocytes 4x106 - 
 

Vol Volume Cell space 5x10-6 m3 measured 

Soxy 
Oxygen consumption rate 
per unit vol. of cell space Hepatocytes 5.1x10-6 kg/m3s 

 

calculated 

      
 
2.5.2.1 Visualization and analysis of the O2 distribution 

Fig 2.7 and Fig 2.8 illustrates the simulated contour plots of O2 distributions for a 

25mm diameter and 12mm length cylindrical collagen sponge seeded with hepatocytes.  

In the contour plots the O2 distribution results have been expressed in terms of the 

volume fraction of O2 in the media, since this is a convenient equivalent to partial 

pressure. In Fig. 2.7 and Fig. 2.8, the red regions represent regions of the 3D cell space 

that have the maximum O2 availability value of 6.85 mg/l (equal to the O2 content in the 

input media), while blue regions have negligible O2 presence (hypoxic condition). It is 

important to mention  that only half of the test setup is shown in the figures because of 

half symmetry exists for this geometry of this test setup, such that transport within the  

omitted regions are exact mirrors of the displayed regions.  
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FIGURE 2.7: 3-D translucent image of the contour plot showing the O2 distribution 
obtained in the test device with an inlet mass flow rate of 60 ml/min and dissolved O2 
level in media of 6.85 mg/l. The right hand side shows the bottom view perspective of the 
contours at the boundaries. 

 
FIGURE 2.8: Contour plots showing the O2 distribution along the walls and the bottom 
plane of the cell space obtained in the test device with an inlet mass flow rate of 60 
ml/min and dissolved O2 level in media of 6.85 mg/l.  
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Fig 2.7 represents 3D - translucent view of the O2 distribution plot displaying the 

various gradients established within the cell space. It can be seen that an O2 gradient was 

observed along the height of the cell space. Also cells located near the top of the cell 

space experience the highest levels of O2 exposure, which then decreases with depth into 

the cell space. This is logical since O2 transport from the media source is subsequently 

hindered by resistances due to the ECM's properties and continuous O2 consumption by 

the cells. Consequently, for the geometry and flow conditions shown in Fig. 2.7, no O2 

was available for use by the cells near the bottom of the cell space. It is thus expected that 

cells in those regions are likely to experience hypoxic conditions, which has the potential 

to negatively affect performance and possibly lead to cell death [20]. 

In addition to the O2 gradient along the axial direction, radial O2 gradients within 

the 3D cell space were also observed.  This is partially visible in Fig. 2.7, where for any 

horizontal plane of the 3D cell space, the O2 availability was considerably higher near the 

center of the plane and lowest adjacent to the walls. This suggests that the equivalent to 

an O2 boundary layer may form adjacent to the walls of the test device. The thickness of 

this O2 boundary layer appears to increase as one advance along the depth of the 3D cell 

space. This can be much more clearly identified from the locations of the dominant blue 

regions in Fig 2.8 -- which shows the O2 levels available to cells positioned along the 

sides of the cells space (along the walls) as well as the bottom most planes of the cell 

space. It can be clearly seen that the regions located near the walls have access to 

negligible O2.   

Another observation arising from Fig 2.8 is that the O2 distribution in the middle 

cell space is higher compared to the outer cell spaces, suggesting that for the conditions 
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evaluated, the cells nearer to the axis of the cell space are likely to benefit with higher 

cell viability and function.  

2.5.2.2 Effect of the media flow pattern 

The patterns of O2 distribution discussed in Section 2.5.2.1 were found to be 

consistent for several simulation scenarios. Hence, in order to understand the factors that 

influence O2 transport and its distribution pattern in the 3D cell spaces, the flow patterns 

of the media were analyzed. Fig 2.9 and Fig 2.10 show the flow pattern of the media in 

the test device for the same conditions as discussed for the O2 distribution. Fig 2.9 clearly 

illustrates ordered streamlines of media flow through the bulk flow region of the device.  

Yet in comparison, permeation flow through the 3D cell space appears to be negligible.  

However, when a detail of the permeation flow through the 3D cell space is visualized 

(Refer Fig 2.10), it becomes clear that a fraction of the nutrient media does percolate 

through the cell space, but with a velocity that is two orders of  magnitude less than that 

in the main bulk flow region. The results from Fig. 2.9 and Fig 2.10 also reveal the 

following observations: In the bulk flow region of the test device, it is the middle cell test 

space that experiences a notable level of media flow uniformity, compared to the outer 

ones (see Fig. 2.10).  The significance of this is that flow uniformity is expected to induce 

more favorable O2 transport through the associated cell test space. This can be confirmed 

by the fact that in the O2 distribution contour plots (Fig 2.7 and 2.8) the central cell space 

has comparatively lesser hypoxic region compared to the outer cell space. 
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FIGURE 2.9: Velocity distribution contour of the flow in the flow region of the test 
device.  

 
FIGURE 2.10: Velocity distribution contour of the flow in the porous substrate region 
contained within the cell space of the test device.  
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Also Fig 2.9 shows a relatively high media permeation rate visible along the 

central axis of the cell space, as compared to near the walls. This variation correlates 

directly to the patterns observed in the O2 distribution plots (Fig 2.7 and Fig 2.8) wherein 

O2 availability to the cells was high closer to the central axis and significantly low near 

the walls. Therefore, it is confirmed that the media flow pattern has a direct influence on 

the O2 distribution patterns within the cell space. 

2.5.2.3 Effect of the O2 consumption rate  

Using the mass transport model, several simulations were generated to analyze the 

effect of varying Soxy, i.e., the O2 consumption rate for the entire cell space on the 

resultant O2 transport. Recall from Eq. 2.9, that the value of Soxy can be altered by 

changing several parameters, including cell number and cell type. Therefore by applying 

the CFD model to such an analysis, it would help identify the optimal Soxy value (thereby 

optimal cell numbers) that can be maintained for a given cell space design.  In generating 

such simulations, it was assumed that the cells in the cell space can maintain high 

viability and performance for O2 volume fractions ranging from 3e-06 to 9e-06 

(equivalent to pO2 of 100 – 300 torr), known as the normoxic range. This assumption 

hold true for primary rat hepatocytes [92] and hence was considered for presenting the 

results in the following sections. 
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FIGURE 2.11: Oxygen distribution contour plots of the cell spaces for four different 
values for the O2 consumption rate (Soxy). 

FIGURE 2.12: Graph showing the volumetric percentage of normoxic regions (i.e., O2 
volume fraction in media > 3 e-6) in the cell space, versus the log Soxy of the cell space -
- for different inlet media velocities [m/s], more clearly visible in the detail view. 
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Some of the results from the simulations for the analysis of the effect of varying 

O2 consumption rate within the cell space are represented in Fig 2.11.  It was found that 

for a model with primary rat hepatocytes cultured in collagen sponge matrix, the most 

significant effects are visible for Soxy values between 1e-12 to 1e-09 kg/m3s. For (Soxy < 

1e-12 kg/m3s), the O2 consumption is low enough for normoxia to prevail throughout the 

entire cell space. On the contrary, for Soxy values greater than 1e-9 kg/m3s, the O2 

consumed by the cells is so high that it impedes O2 transport from occurring within the 

cell space volume. Fig 2.11 depicts the O2 distribution contour within the 3D cell space 

for four Soxy values. In Fig 2.11(I) it can be clearly seen that for a high Soxy of 1e-9 kg/m3s, 

very little O2 (blue colored regions) is available for the majority of the cell space. Also as 

the Soxy value is reduced (Fig 2.11-II, III and IV), there is increased O2 availability for the 

cell space volume. Compressing the data from the contour plot into graphical form yields 

the curve shown in Fig 2.12 - where the volumetric percentage of normoxic region within 

the cell space is plotted against the logarithm of “Soxy” values within the same range (i.e., 

1e-12 to 1e-09 kg/m3s). 

2.5.2.4 Effect of the varying the inlet media flow velocity 

As already discussed in Section 2.5.2.2, the media flow profile has a direct effect 

on the O2 distribution pattern. A factor that can affect the flow profile is the inlet media 

velocity. So the CFD model is used to elucidate the effect of varying the inlet media 

flow-velocity on the resultant O2 distribution through the 3D cellular space, with the 

assumption that the flow remains laminar. This effect is also revealed by Fig 2.12. As can 

be seen, varying the inlet media flow velocity has very little effect - a maximum 
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difference of only 2% (refer to the expanded view insert of Fig 2.12) in the cell space 

volume fraction experiencing normoxic conditionss (i.e. O2 volume fraction > 3e-06). 

2.5.2.5 Effect of the O2 content in the supply media  

 
FIGURE 2.13: Graph showing the volumetric percentage of normoxic regions (i.e., O2 
volume fraction in media > 3 e-6) in the cell space versus a log Soxy of the cell space for 
different values of dissolved O2 levels in the supply media.  

 
Another critical factor that affects the performance of 3D tissue constructs is the 

level of dissolved O2 in the supply media (i.e., the inlet media). The effect of altering the 

quantity of dissolved O2 levels in the supply media is elucidated by the results of Fig 2.13. 

It also depicts the volumetric percentage of normoxic region of the cell space versus the 

logarithmic O2 consumption rate (Soxy) in the cell space, with the family of curves 

representing the effects of varying the level of dissolved O2 in the supply media. As 

expected, increasing the level of dissolved O2 in the media supply enhances the O2 
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distribution within the cell space. In the Fig 2.13, the family of curves is limited to a 

maximum dissolved O2 content in the media to 10 mg/l, since further increase might lead 

to hyperoxic conditions – the effects of which are not considered in the current analysis.  

2.5.2.6 Effect of the thickness of the cell space  

In considering the role of volumetric dimensions in directing O2 transport within 

3D tissue constructs, it has been established that the thickness of the cell space volume is 

a major factor that affects functionality [93]. This is particularly true for cases similar to 

that of the current study, in which O2 is convectively delivered via bulk media flow to the 

surface of the 3D construct.  For such systems, the CFD model can also be used to 

ascertain the maximum thickness of the 3D cell space for which hypoxic regions can be 

avoided.   For the configuration of the test device of the current study, this translates to 

clarifying what height of the 3D cell space that can be used to avoid the formation of 

hypoxic regions near the base of the cell space (e.g., furthest from the O2 supply).  It is 

important to note that the optimal height (or thickness) of the cell space that the CFD 

model would predict would of course strongly depend on the O2 consumption rate (Soxy) 

of the target cell space. This capability is demonstrated in Table 2.2 for 6.25 ms-1 flow of 

media having 6.85 mg/L of dissolved oxygen content.   

As shown, for different O2 consumption rates (Soxy) values of the cell space, the 

corresponding maximum thicknesses of the cell space experiencing normoxic conditions 

is tabulated. The results indicate that with increases in the Soxy values -- i.e.,with higher 

cell packing densities within the 3D cell space --  the CFD model  recommends the use of 

thinner cell space dimensions. 
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TABLE 2.2: Depth of oxygen penetration with respect to oxygen consumption rate of the 
cells within the cell space for dissolved oxygen content in media of 6.85 mg/l. 

Oxygen consumption 
rate per unit area 

within the cell space, 
Soxy (kg/m3) 

Depth of Oxygen 
penetration  through 

3D cell space  
(mm) 

Oxygen consumption 
rate per unit area 

within the cell space, 
Soxy(kg/m3) 

 

Depth of Oxygen 
penetration  

through 3D cell 
space (mm) 

 
1.00E-09 
1.00E-10 
8.00E-11 
6.00E-11 
4.00E-11 
2.00E-11 
1.50E-11 

 

 
0.01016 
0.08916 
0.149 

0.20611 
0.31492 
0.53039 
0.67109 

 

 
1.00E-11 
8.75E-12 
7.50E-12 
6.25E-12 
5.00E-12 
3.00E-12 
1.00E-12 

 

 
0.84258 
0.92316 
1.02552 
1.13112 

1.2 
1.2 
1.2 

 

 
2.6 Discussion 

In the current work, a computational model was developed to predict and 

visualize the O2 distribution within a 3D cell space. An expectation of developing such a 

model was that it could be used by practitioners during the planning and evaluation stages 

of bioreactor design to help ensure the effectiveness of such flow devices.  While this is 

certainly not the first O2 transport model applied to bioreactors [ 40, 41, 90, 94], its value 

is that its results are applicable to more than one design -- irrespective of the cell type, 

number of cells, media conditions and flow conditions. This was achieved by developing 

the model around a test setup that incorporated some of the broader features that multiple 

bioreactor configurations share in common. More specifically, the results of this study 

can be correlated with fixed wall bioreactors designs such as hollow fiber  [26, 27], flat 

plate [83], and perfused bed bioreactors [18], yet it is not applicable to rotating wall 

bioreactor designs [95, 96]. Furthermore, the fact that the model’s dimensions and 

parameters can be easily altered enables it to be used as a very flexible and versatile 

predictive tool.  
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To demonstrate the accuracy and potential of the model in predicting transport, 

this study took advantage of the analogies between mass and heat transport [97-99]. A 

complementary transient heat conduction acellular experiment was conducted using the 

test device (recall Fig 2.3). The strong correlation between the measurements and the 

computational model’s predictions (whereby differences between the values was 2% or 

less for the majority of the sample regions), enabled the validation of the model’s 

accuracy. 

The model was then applied to predict the steady state O2 transport for a number 

of varied experimental arrangements. Two assumptions were taken into consideration for 

simplifying the computational model.  Firstly, it was assumed that the cells are uniformly 

distributed throughout the 3D cell space. This might not necessarily hold true in practice 

cases unless the cell seeding procedure was done with utmost care. However, such an 

uneven distribution of cells can be approximately modeled by sub-dividing the cell space 

volume in the model into multiple smaller volumes and assuming uniform cell 

distribution and O2 consumption rate within these individual volumes. The more the sub-

divided volumes, the more close it resembles the practical scenario. Secondly, the O2 

consumption by the individual cells was assumed to be constant. But a much better 

approximation would be to assume Michaelis -Menten reaction wherein the consumption 

of O2 by cells is considered to vary with respect to the O2 available to the cells, that is, if 

the O2 available to the cells is low, then the cells can alter their functionality such that 

they can survive by consumption of lower quantity of O2 [100-102]. Though the current 

computational model does not incorporate these two features, the computational model 

has the capability to be further expanded to incorporate them. 
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The strength of the current computational model is that it can be employed for a 

wide range of scenarios with respect to bioreactors. In the following discussions, some of 

the predictive capabilities of the model are discussed with specific reference to a 3D liver 

system (primary rat hepatocytes embedded in a collagen sponge matrix). The concepts 

from these predictions provide us with an insight on some of the major considerations the 

bioreactor users have to account for. 

The most important consideration in designing bioreactors is to avoid regions of 

hypoxia which directly affects the performance of the bioreactors. The model identifies 

such regions and it is found to exist especially adjacent to the walls. The reason for the 

poor O2 transport in near the walls is that the media permeates with a low velocity due to 

flow boundary layer effects along the walls. Therefore, the replenishment of the O2 in 

these regions is impeded, resulting in the formation of an O2 boundary layer near the 

walls. The thickness of this O2 boundary layer is directly dependent on the flow velocity 

and the O2 consumption capacity of the cells. Thus, the boundary layer concept for the 

media flow as well as O2 becomes an important factor for bio-engineered device 

designers. This suggests that avoidance of contours such as sharp corners and dumps, 

which can potentially increase the boundary layer thickness, is important. 

Furthermore, the O2 distribution can be influenced by a number of factors such as 

the number and type of cells embedded in the 3D cell space, the O2 content in the supply 

media, the thickness and dimension of the cell space etc. Using the model, varying one of 

the above factors keeping the other factors unaltered, helps to optimize its value for 

obtaining better O2 distribution. Some of such predictive capabilities of model are 

discussed. 
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One of the significant capabilities of the model is its ability to visualize and 

quantitatively assess the effect of convection on O2 transport. As an illustration, from the 

results pertaining to Fig 2.7 and 2.8, it was seen that the middle cell space had better O2 

transport than the other ones. This is mainly attributed to the fact that a more uniform 

convection flow of media with lesser disturbances prevailed over the middle cell space 

(refer Fig 2.9), thus improving O2 transport [25, 26].  

Another significant capability of the model is its ability to optimize the dimension 

of the cell space and its cell density. As an illustration, if the O2 consumption rate within 

the 3D cell space is very high (either due to high cell density or due to the cell type), 

hypoxic regions would develop if the thickness is not optimized. This is evident from the 

decrease in the percentage of normoxic region with increase in Soxy value in Fig 2.10 and 

2.11.  On the contrary, if the thickness is unaltered, then the number of cells within the 

cell space needs to be optimized to void hypoxia. For example, using the current 

reference of primary hepatocytes in collagen sponge, if the thickness is set to 0.5mm, 

then the number of cells must be optimized such that the calculated Soxy value is less than 

2e-11 kgm-3. 

Also, the O2 content in the supply media can be optimized such that regions of 

hypoxia and hyperoxia are avoided. As an illustration, from Fig 2.13, for a Soxy value of 

1e-11, a 5 mg/ml O2 media supply is able to provide sufficient O2 to only 32.79% of the 

volume of the cell space, in contrast to 78.27% of the volume being normoxic if a 

10mg/ml O2 media supply was used instead. Thus Fig. 2.13 demonstrates how use of the 

computational model can be helpful to tailor the cell space in accordance with level of O2 

it is being supplied.   
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In addition, the model can also be utilized to predict the arrangement of cells 

within 3D cell space region. For example, if we have a media source with 8 mg/ml of 

dissolved O2, then it is recommended to maintain a lesser cell density near wall 

boundaries. On the contrary, if the supply media contains very high levels of dissolved O2 

(> 10mg/ml) then hyperoxic condition may prevail in the cell space and it would be 

recommended to have a very high cell density near the boundary layer region. In such 

cases, having a thick boundary layer can actually have a positive effect on cell survival. 

The model also has the capability to analyze O2 transport within the 3D cell space 

for varying choice of the ECM material. This scenario has not been explicitly illustrated 

in the results. However, from Table 2.2, it can be seen that the O2 transport can extend up 

to a thickness of about 1.2 cm with the collagen sponge. On the contrary, Nui et al.,[39] 

used an enhanced collagen gel matrix to support primary rat hepatocytes and found that 

the maximum thickness for which normoxic condition prevailed was only about 0.5 mm. 

This suggests that the collagen sponge is more effective that collagen gel with respect to 

O2 transport. The high O2 transport in a collagen sponge can be attributed to its porosity 

and permeability, further suggesting that use of high permeable ECM improves the O2 

transport immensely. 

With such predictive capability, the current CFD model can prove to be a useful 

tool in planning and setting up a variety of bio-medical device related experiments. It can 

be used as an effective tool for understanding the mechanism of O2 distribution within a 

3D cell space. Hence this CFD model turns out to be valuable source which could help 

design effective bio-engineered devices as well as help in design optimizing various 

experimental trial and errors, thus reducing experimental time scales and costs. 



CHAPTER 3: OPTIMIZATION OF CRYOPROTOCOL FOR CRYOPRESERVATION 
OF BIOLOGICAL TISSUES AND TISSUE EQUIVALENTS 

3.1 Summary 

Since biologically active cells and tissues are used in research and clinical studies 

for a variety of applications, it would be helpful for them to be readily available as 

needed by the practitioner. One strategy for achieving this is the cryopreservation of 

biological cells and tissues.  Yet cryopreservation success is governed by the 

appropriateness of the cryoprotocol used, and developing suitable cryoprotocols becomes 

more complex as dimensions of the biological increase.  This study was planned to help 

alleviate this obstacle.  More specifically, a user friendly computational package – 

Multiscale Modeling Tool (MMT) has been developed to predict and compare the 

effectiveness of various cryoprotocols in storing biological tissue equivalents. The 

package is a multiscale tool composed of a macroscale model and a microscale model. 

The macroscale model predicts the non-linear thermal history and cryoprotective additive 

(CPA) concentration profile across a 3D tissue/tissue equivalent when it is exposed to a 

prescribed cryoprotocol. The microscale model uses results from the macroscale model to 

predict subsequent cellular water transport and probability of ice formation (PIIF) during 

the freezing process.  Since PIIF is directly related to cell death, various cryoprotocols 

can be tested to optimize which cryoprotocol should be used for a given tissue/tissue 

equivalent.  Hence this package is expected to offer a cost effective solution for designing 
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protocols for successful cryopreservation of 3D biologically active tissues, tissue 

equivalents, and organs. 

3.2 Introduction 

Several industries rely on the availability of viable cells, tissues, and/or organs for 

their success. Especially, the tissue and organ transplant industry and the pharmaceutical 

industry, which rely on the availability of suitable tissues and organs to benefit patient 

care [103, 104]. Unfortunately, a major challenge for these industries is the off-the-shelf 

availability of desired cell, tissue, and/or organ, i.e., they are often not readily available 

when needed for the targeted application. One method for increasing their availability is 

to utilize cryopreservation technology for the safe storage of cells, tissues, and organs at 

low temperatures.  

A promising technique for the cryopreservation of tissue equivalents is the freeze-

thaw method. It utilizes controlled rate freezing of tissue equivalents to store them safely 

at low temperatures in a crystalline form [48]. The freeze-thaw method has been very 

effective for cryopreservation of sperm, blood, skin, embryos, and individual liver cells 

[105-108]. The freeze injury occurring during freeze thaw method is often ascribed to 

two biophysically mediated factors: dehydration of cells at slow cooling rates and 

intracellular ice formation (IIF) at high cooling rates [109].  

Extensive studies for various cell types using experimental methods and 

numerical models have been performed to understand the influence of the two 

biophysical factors during freezing [49, 58, 111, 112].  It has been demonstrated that IIF 

propagation in tissues differs significantly from that in isolated cells [112, 113]. This is 

primarily due to the fact that transport (thermal, mass and water) histories experienced by 
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the tissue during cryoprotocols is heterogeneous [114, 115]. Hence, for effective 

cryopreservation of tissues and tissue equivalents, it is critical to optimize the 

cryoprotocols by considering the effects of thermal and concentration gradients, the 

kinetics of water loss and the likelihood of IIF as a function of cooling rate. 

So far, the development of protocols for safely storing tissue equivalents at low 

temperature has mostly been through empirical approaches. To aid such an approach, a 

number of computational models have been proposed [59, 61, 116, 117]. However, these 

models have been developed for specific experimental conditions and devices, restricting 

broader use of the models. So, in the current work, a user friendly multi-scale 

computational package was developed for simple geometries to estimate the probability 

of intra cellular ice formation (PIIF) in tissues based on the cryoprotocol employed.  

The Multisacle Modeling Tool (MMT) package was designed to enable 

comparison of various cryoprotocols numerically, thus assisting in estimating an 

optimized cryoprotocol for specific tissues. Its user friendly features make it easy for a 

wider group of personnel, from diverse fields, to utilize the package. Thus the package 

has the potential to aid the clinical, commercial, and research industries in improving the 

off-the-shelf availability of tissues and tissue equivalents. 

3.3 Computational Methods 

The Multi-scale Modeling Tool (MMT) was developed by combination of two 

sub-models. The macro model was based on the computational model developed by 

Balasubramanian and Coger [61] which predicts the temperature and concentration (for 

CPA) history experienced by the tissue during the freezing process, for a prescribed 

cryoprotocol. The temperature distribution over time within the tissue was modeled based 
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on the heat transfer equation and incorporated solid-liquid phase transition which takes 

place during the freezing process [62]. The concentration distribution of the CPA was 

governed by the mass transport equation [63]. The micro model was developed based on 

the work of Mayur and Coger [65] which utilizes nucleation theory [64] and the water 

transport equation [64] to predict the cell survival from the probability of IIF. In addition, 

the MMT was coupled to a HTML and database management system (DBMS) interface 

to make it user friendly.  

3.3.1 Macro Model 

The macro model of the MMT was used to predict temperature distributions and 

concentration gradients within the tissue at any point of time during the freezing process, 

for a given cryoprotocol. The governing equations of numerically predicting transient 

thermal and concentration distribution are discussed in the following sections. 

 3.3.1.1 Heat transport model 

The thermal history experienced by the cryopreserved tissue is predicted using the 

heat transport equation shown in Eq. 3.1 [118, 119]. It takes into consideration the liquid 

to solid phase transformation that occurs during the freezing process:  

 
2H k T

t
ρ ∂

= ∇
∂
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where C is the specific heat capacity (kJ/kg K) of the tissue in liquid phase l and solid 

phase s, mT is the melting point temperature (K), L is the latent heat of fusion (kJ/ kg), k is 

the thermal conductivity (W/ m K), solT  is the solidus temperature (K) and liqT is the 
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liquidus temperature (K). A mushy region exists in the system when the tissue is partly 

frozen. A linear transition in properties was assumed between the liquid and solid phase, 

as given by the factor β and the thermal conductivity in this region is given by Eq 3.4. 

3.3.1.2 Mass transport model 

In order to represent the distribution of the CPA within the sample, the macro 

model makes use of the mass transport equation, given by Eq 2.5. 

 ( ).c D c S
t
∂

= ∇ ∇ +
∂

 (3.5) 

where c is the concentration of the CPA at any point in the tissue (mol/m3), D is the 

diffusivity of the CPA in the tissue (m2/s) and S is the source term (mol/m3). In the 

current model, there is not generation of CPA within the tissue sample and hence the 

source term S is zero.  It is to be noted that the time scale for this model is different from 

that of the heat transport model. In the former, the time scale is for the duration of the 

CPA loading process where in the latter, the time scale is for the duration of the freezing 

process.  

3.3.2 Micro Model 

The micro model utilizes the thermal and concentration gradients obtained from 

the macro model prediction. Based on the thermal history experienced by the tissue, the 

micro model predicts the cellular water transport and the probability of IIF within the 

sample. 

3.3.2.1 Water transport Model 

The water transport model used in the study was based on the work done by 

Mazur [66] and later modified by Toner and coworkers [111, 120]. Briefly, the osmotic 

balance between the intracellular space and the extracellular space is affected by the 
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solute concentration in the extracellular space during freezing. Eq. 3.6 models the water 

transport across the cell membrane required to achieve chemical equilibrium between the 

intracellular and extracellular space. 
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 (3.6) 

In the above equations, V is the volume of the cell (µm3); T is the absolute 

temperature (K); ,0mT is the reference temperature (273 K); A is the surface area of the 

cell (µm2); R is the universal gas constant (8.314 J/mol K); wv  is the molar volume of 

water (µm3/mol); sv is the disassociation coefficient of salt; dv  is the disassociation 

coefficient of the CPA; sn is the number of moles of salt in the cell (mol); pL is the 

hydraulic permeability of the cell (µm3/N s); and fH∆ is the latent heat of fusion for water 

(kJ/mol). 

Variations in cell membrane permeability were modeled using an Arrhenius 

relationship [119] as given by the following equation: 
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 (3.7) 

where pgL  is the hydraulic permeability (m3/ Ns)at the reference temperature of 273 K; 

and aE  is the activation of energy for water transport across the membrane (kJ/mol).  

 3.3.2.2 Intracellular Ice formation 

 The predictions for the probability of IIF (PIIF) was based on the nucleation 

theory [64].The IIF model used in the study was based on the formulations developed by 

Toner et al. [111]. It incorporates the IIF in the tissue due to heterogenous and/or 
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homogenous nucleation mechanisms. The PIIF as a function of concentration, 

temperature and time is given by Eq. 3.8 
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where ( )A t is an effective plasma membrane surface area for nucleation (m2), I is the 

nucleation rate, mT is the melting temperature of the solution (K), T∆ is the super cooling 

(K), k  is the thermodynamic rate coefficient and Ω is the kinetic rate coefficient (m-2s-1). 

The thermodynamic rate coefficient and the kinetic rate coefficient were determined for 

heterogeneous and homogeneous nucleation mechanism separately as indicated in 

Karlsson et al. [120, 122].  

3.3.3 Discretization of the Equation 

The MMT was modeled to predict the thermal and concentration distribution and the 

resulting probability of IIFfor the two simple geometries shown in Fig 3.1.  Fig 3.1 also 

shows an illustration of the applicability of such geometries to bioreactor designs. 

 
FIGURE 3.1: Geometry of the tissues considered in the MMT package and illustrations 
of their applications. The bioreactors shown are reprint from [18]. 
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Thus the governing equations for the macro and micro model (Eq. 3.1 – 3.9) were 

discretized for two coordinate systems – the rectangular and the cylindrical coordinate 

systems. The equations were discretized using Crank-Nicolson method [123]. It utilizes 

trapezoidal rule for time discretization and forward and backward Euler method for space 

discretization. The Gauss Seidel iteration iterations were used to arrive at the 

approximate solution [124, 125]. The iterations were performed using Matlab 

(MathWorks, Natick, Massachusetts) software. 

3.3.4 User Friendly Interfacing 

 The macro and micro models of the MMT were coupled with a Hyper Text 

Markup Language (HTML) coding to enable the user to input the dimension of the tissue, 

the cryoprotocols, and the required material and biophysical properties for the model. 

Two HTML pages were created using Microsoft Visual Studio 2008 (Microsoft Corp, 

Redmond, WA) to get the input from the users. The HTML pages were designed to be 

assessed through any web browsers, like Internet Explorer, Mozilla Firefox or Google 

Chrome. C –Sharp console embedded within Microsoft Visual Studio 2008 was then used 

to bridge the communication between the HTML pages and the Matlab codes.  

 In addition, the C-Sharp scripting also interfaced with a Database Management 

System (DBMS). The DBMS used for this application was done using Extensible 

Markup Language (XML) (.Net framework, Microsoft Corp., Redmond, WA). The XML 

interface enables the user to store the materials and biophysical properties used for the 

model and it can be retrieved whenever required. It reduces the hassle of inputting data 

multiple times for the same tissue. Thus, these features such as HTML and DBMS help 

create a user interface that is easy to use. 
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3.4 Material and Methods 

To demonstrate the capability and application of the computational package, the 

model’s predictions were compared to experimental results. For these experiments, 

primary rat hepatocytes cultured in a collagen gel matrix were cryopreserved.  Details of 

the experimental process appear below. 

3.4.1 Isolation and Culture of Hepatocytes 

Sprague-Dawley male rats weighing 150-280 g were fasted 24 hours prior to 

isolation‡ and hepatocytes were isolated by collagenase perfusion method [126]. The 

hepatocytes from the digested liver were isolated by mechanical disruption and 

centrifuged (Thermo IEC CEntra-CL3R, Thermo Scientific, MA) at 50 x g for 3 minutes. 

The viability of the centrifuged hepatocytes was evaluated immediately using trypan blue 

exclusion assay (Sigma-Aldrich, St. Louis, MO). Hepatocytes were then suspended in the 

culture media containing DMEM (Invitrogen, Gaithersburg, MD), sodium bicarbonate 

(3.7g/L), insulin (500 U/L), epidermal growth factor (20 µg/L), hydrocortisone (7.5 

mg/L), 1% (v/v) of antibiotic/antimycotic solution (JR Scientific, Woodland, CA) and 

10% (v/v) fetal bovine serum (HyClone, Thermo Scientific, Waltham, MA). 

For the extracellular matrix, collagen type I gel was first prepared by adding 8 

parts of 1.1 mg/mL PureCol collagen (Advanced BioMatrix, San Diego, CA) to 1 part of 

10X DMEM solution. The pH was adjusted to 7.4 with 0.1N HCl and/or 0.1N NaOH.  

Next 0.5 mL of the prepared collagen was then coated on the 35 mm diameter tissue 

culture plates and incubated for an hour at 37oC, 5% C02 for gelation. Then 2 X 106 cells 

were seeded in each tissue culture plate, and incubated at 37oC, 5% C02 for 4 hours. Then 

                                                        
iii. ‡ The isolation of liver from rats was performed by Dr. Charles Lee from UNC, Charlotte. 
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a second 0.5ml collagen layer was layered over the cells to create a sandwich culture and 

incubated for 24 hours with 1 mL DMEM media. 

3.4.2 Cryopreservation of the Sandwich Culture 

 The sandwich culture plates were placed on ice and then 2M DMSO in 

DMEM solution was added to them, incubated on ice for 10 minutes. Then the culture 

plates were transferred to the CryoMed Control Rate freezer (Thermo Forma, Waltham, 

MA) in cryobags and cryopreserved based on the cryoprotocols shown in Fig 3.2. The 

cryoprotocol CYP1 does not have any isothermal step until a temperature of -80oC is 

reached whereas the CYP2 adopted from [134] has a 15 minutes isothermal step at -20oC. 

The cryopreserved sandwich cultures in the cryobags were then transferred to a -80oC 

Revco freezer (Kendro Laboratory, Asheville, NC) and stored for a week. 

 
FIGURE 3.2: The two cyroprotocols used for cryopreservation of the sandwich 
hepatocyte cultures.  
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3.4.3 Cell Viability Assessment 

 The cryopreserved sandwich hepatocyte cultures were thawed via rapid 

immersion in a water bath maintained at 37oC. The cultures were then washed twice with 

DMEM media to remove the DMSO from the sandwich culture. Then 1mL of DMEM 

media was added to the sandwich cultures and placed in an incubator at 37oC, 5% CO2 

for 24 hours to allow cells to recuperate from the freeze-thaw process. The next day, 

culture plates were washed with 1X PBS solution and incubated with 1 µg/mL 

concentration of Hoechst and 2 µM Ethidium Homodimer (Molecular Probes, Eugene, 

OR) in PBS for 30 minutes. The cells were then fixed by adding 1mL of 10% formalin 

(VWR, West Chester, PA) and incubating for 20 minutes. Later, the cell viability was 

examined by confocal microscopy with DAPI (excitation 358nm; emission 461nm) and 

Texas red (excitation 596nm; emission 620nm) filters. The fluorescent images obtained 

were analyzed using MetaMorph Imaging System (Molecular Devices, Sunnyvale, CA). 

3.5 Results 

3.5.1 HTML Pages for User Inputs 

 Examples of the HTML pages created to improve the user friendliness of the 

MMT model are shown in Fig 3.3 and Fig 3.4. In the illustration, the pages were executed 

in Mozilla Firefox internet browser. The first HTML pages obtain the key MMT inputs 

such as the tissue’s dimensions, details of the cryoprotocol to be analyzed, and details of 

the CPA loading steps and time. On clicking the “NEXT PAGE” button, the second 

HTML page is opened which allows the user to enter the material properties of the tissue 

and the biophysical parameters for the system under investigation. When the page is 

submitted, the material properties and the biophysical parameters are stored in the 
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database and also feed the inputs to the Macro model. A drop down box feature in the 

second HTML, allows the user to retrieve the materials properties already stored in the 

database of the MMT. 

 

 

FIGURE 3.3: Screenshot of the first HTML page for the user to specify the tissue 
dimension and the cryoprotocol steps. 
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FIGURE 3.4: Screenshots of the second HTML page for the user to specify the material 
properties of the tissue and the biophysical parameter of the system.  
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3.5.2 Predictions of the Macro and Micro Model 

 In order to elucidate capability of the MMT, the predictions of the models for a     

2 cm x 2 cm x 2 cm liver tissue subjected to the cryoprotocol CYP1 (Fig 3.2) are 

demonstrated. The material properties and the biophysical parameters considered for 

predictions are provided in Table 3.1. The model’s output are obtained as a data sheet 

which can be analyzed using various data analysis software such as Techplot, Microsoft 

Excel etc. In the current illustration, Microsoft Excel was used for the data analysis. 

TABLE.3.1: Material properties and biophysical parameters used in simulation of MMT 
[120, 158]. 
Symbol Description Values Unit 
ρl Density of the liver tissue as liquid phase 1060 kg/m3 
ρs Density of the liver tissue as solid phase 916.7 kg/m3 
    
Cl Specific heat capacity in liquid phase 4.56 J/kg K 
Cs Specific heat capacity in solid phase 2.11 J/kg K 
    
kl Thermal conductivity in liquid phase 0.47 W/m K 
ks Thermal conductivity in solid phase 1.7 W/m K 
    

Tl 
Liquidus temperature (temperature when ice 
begins to form) 270 K 

Ts 
Solidus temperature (temperature when ice forms 
completely) 267 K 

Thom Homogeneous nucleation temperature 234.35 K 
    
L Latent heat of fusion 6020 J/mol 

    
Vis Control volume of the hepatocytes 7.7x10-7 m3 
    
A Initial surface area of the cells 1.89x10-9 m2 
    
Lpg Hydraulic permeability at 273K 3.1x10-13 m3/Ns 
    
Ea Activation energy for water transport 2.9x105 J/mol 
    
R Universal gas constant 8.314 J/kg K 
    
Ω Kinetic rate coefficient at 273 K 9.7x1052 m-2s-1 
    
ĸ Thermodynamic rate coefficient 1.16x10-3 - 
    
J Homogeneous nucleation rate 1.7x1018 m-2s-1 
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A schematic of the liver tissue dimensions analyzed in this representative 

demonstration of the MMT is shown in Fig 3.5. It shows the mid XY plane of the 3D 

tissue. For such a sample, the model makes use of the symmetry of the geometry and 

computes the results for a 1 cm x 1 cm x 1cm region, as highlighted in Fig 3.6. 

Furthermore, in order to illustrate the model’s predictions, the results along the line AO 

(shown in Fig 3.6) on the mid XY plane (z =0 cm) are shown in the following section. It 

is to be noted that the point O represents the center of the tissue sample whereas the 

“point A” falls on the edge (YZ plane at x = 1cm) of the tissue sample. 

 

FIGURE 3.5: Schematic representation of the liver tissue used for illustration of the 
MMT package’s predictive capabilities. 
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3.5.2.1 Distribution of the CPA concentration 

 The first step in the cryopreservation process is the loading of the CPA in the 

tissue sample. Ideally, a cryoprotective solution is added to the samples and incubated. 

The time of incubation is one of the control factors that determines the extent to which 

CPA can diffuse into the sample prior to the freezing process. In the current illustration, 

DMSO was considered as the CPA, and effective diffusion of the CPA in the region AO 

(shown in Fig 3.5) is plotted with respect to the time of incubation. Fig 3.6 depicts the 

concentration of the CPA into the cells along “line AO” as they were exposed to a 

fraction of the initial concentration of the CPA solution. It can be seen from this 

representative result that, with an increase in incubation time, more effective transport of 

the CPA to the center of the tissue is expected (point O). For shorter incubation periods 

(5 minutes in this illustration), the CPA concentration at the center of the tissue is very 

low. In practice, this could potentially lead to excessive dehydration of the cells in this 

region during the freezing process. 

3.5.2.2 Thermal Response during Cryopreservation. 

 Following the CPA loading process, the freezing process is initiated at 277K. In 

modeling of the freezing process, it was assumed that  metabolic activity of the cells are 

negligible below 277K, and so any further changes in the CPA distribution within the 

samples would have  no effect on the cells’ response.  

The thermal history experienced by the cells along line AO (Fig 3.5) for the liver 

tissue sample in consideration is shown in Fig 3.7. The thermal response is shown for the 

first 15 minutes (a temperature range of 277K – 262K) of the cryoprotocol CP1 (Refer 

Fig 3.2). The results indicate a fairly linear heat transport into the tissue up to the liquidus 
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temperature (270 K). Below 270K, the phase change process is initiated and the liquid 

fraction starts to solidify. As a result, a mushy region of partial liquid and partial solid 

region exists in the tissue sample until the solidus temperature of 267K is reached. The 

phase change process and the existence of the mushy region can be identified by the non-

linear temperature response in the tissue sample, as indicated in the graph (Fig 3.7). 

Below the solidus temperature, thermal variations within the sample become linear (not 

shown in the graph). These thermal responses were then utilized as the input for the 

micro model to predict the water transport behavior and probability of IIF. 

 
 
FIGURE 3.6: Concentration gradient of the CPA along the line AO of the tissue - with 
respect to varying time of incubation. 
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FIGURE 3.7: Temperature distributions along the line AO of the liver tissue for the first 
15 minutes of the cryoprotocol CYP1. 
 

3.5.2.3 Water transport  

The cellular water transport effects were predicted using Eq. 3.6 for the tissue 

samples based on the effects of the thermal history from the macro model and the 

biophysical properties of the hepatocytes. Fig 3.8 demonstrates cellular water transport 

occurring at 5 locations on the line OA: 0 cm (point O), 0.25cm (point D), 0.5 cm (point 

C), 0.75 cm (point B) and 1 cm (point A) from the center of the tissue. The results predict 

that cellular water transport behavior of the cells at the center of the tissue sample (point 

O) is the highest.  As shown in Fig. 3.8, cellular water transport is predicted to decrease 
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progressively with the increase in the distance from the center of the tissue (D, C, B and 

A respectively) and it is seen to be the lowest at point A, the region on the outer surface 

of the tissue directly exposed to the cooling convective flow. 

 
FIGURE 3.8: Normalized intracellular water content at five locations O, D, C, B and A at 
a normalized distance of 0, 0.25, 0.5, 0.75 and 1 respectively from the center of the 
sample liver tissue used to validate the MMT model.  
 

3.5.2.4 Probability of intracellular ice formation. 

   Fig 3.9 demonstrates probability of IIF occurring at five points described in 

section 3.5.2.3. The graph indicated that the probability of IIF at different temperatures is 

fairly close for the five points and IIF can be avoided in the sample if the ice nucleation 

occurs at the temperature of 247.9K or a higher temperature. The probability of IIF is 

50% at a nucleation temperature of around 244 K and for ice nucleation occurring below 

241.5K, the PIIF is 100%. Since the viability of the cells in the tissue sample is affected 
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by the IIF, it is desired that the ice nucleation occurs at a temperature higher than 248K 

for the success of the cryoprotocol.  

With such predictive capability of the MMT, it is possible to compare different 

cryoprotocols to optimize the cryopreservation process. In such cases, the cryoprotocol 

with the lowest ice nucleation temperature is desirable since the probability of 

heterogeneous as well as homogenous nucleation is higher at lower temperature. 

 
FIGURE 3.9: Probability of intracellular ice formation predicted at five locations O, D, C, 
B and A at a normalized distance of 0, 0.25, 0.5, 0.75 and 1 respectively from the center 
of the liver tissue. 
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3.5.3 Comparison of MMT’s Prediction with Experimental Results 

 In order to validate the effectiveness of the computational package, the model’s 

predictions were compared to experimental results. For these experiments, primary rat 

hepatocytes cultured in a collagen gel matrix was cryopreserved as described in Section 

3.4. The viability of the cells at fields close to the center of the cultured samples was 

estimated using confocal microscopy and MetaMorph Imaging System. In the case of the 

computational predictions, the model was simulated for a cylindrical coordinate system 

with r=17.5mm and z = 10mm and the predictions for 50% PIIF at r = 0mm, z=5mm for 

two cryoprotocols (shown in Fig 3.3) were obtained. 

 The results of the MMT’s prediction and the experimental cell viability are 

indicated in the Table 3.2.  As per the model’s prediction, the ice nucleation temperature 

for 50% PIIF was 245.94 K for CYP1 and 251.63 K for CYP2. In this case, the 

cryoprotocol with lower ice nucleation temperature is preferred, that is, CYP1 is more 

effective cryoprotocol than CYP2 as per the model’s prediction.  Likewise, the estimated 

cell viability at the center fields of the samples was 56% for CYP1 and 51% CYP2. Thus, 

both results indicate that the cryoprotocol CYP1 is more effective than CYP2 for the 

cryopreservation of the sandwich hepatocyte culture. 

TABLE.3.2. Comparison of the MMT prediction and experimental cell viability 

Cryoprotocol 

(Refer Fig 3.2) 

Ice nucleation temperature for 50% PIIF 
predicted by the MMT 

(K) 

Experimental cell 
viability for n=4 

(Mean ± SE) 
   
CYP1 245.94 56 ± 1.835 
   
CYP2 251.63 51 ± 2.438 
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3.6 Discussion 

  The current study presents a user friendly computational tool for optimizing 

cryoprotocols for the safe storage of tissues and tissue equivalents. The numerical model 

of the MMT package was configured to analyze the cryopreservation effects on 3D 

tissues of simple geometry – rectangular and cylindrical. In the case of rectangular tissues, 

the governing equation were discretized and solved for a three dimensions (x, y and z) 

whereas for cylindrical tissues, only two dimensions (r and z) were required, assuming 

radial symmetry [127, 128]. 

The user friendly features of the MMT enables the user to provide key inputs such 

as the tissue or tissue equivalent’s size and geometry, its material and biophysical 

properties, the cryoprotocol adopted etc. The drop down box in the HTML page 2 (Fig 

3.4) allows the user to retrieve the material and biophysical property data from the XML 

database and displays the values in the appropriate text boxes. The user interface allows 

these values in the text boxes to be modified as per the users’ requirements. But if the 

values retrieved from the database are modified, the interface would not allow the user to 

save the modified data in the database unless saved with a new name. To add new data to 

the database, the user needs to select “Add New” in the drop down box, provide the 

appropriate values in the text boxes and then click “Submit” button which will save the 

data to the XML database as well as provide the data as input to the macro and micro 

models for the MMT.  

The concentration gradient of the CPA in the tissue is determined based on the 

user’s input of the initial concentration in the cryoprotective solution and the time of 

incubation of the tissue in the CPA solution. The macro model of the MMT assumes a 
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one-step CPA loading process for the mass transport predictions. It is important to 

mention that this might not hold true for larger tissues. For large tissues, a multi-step 

loading process with increasing CPA concentration is recommended for effective loading 

and minimizing cell death by toxicity [129]. However, such a multi-step process can be 

easy added to the MMT if needed, by additional C – sharp scripting.  

In addition, the model assumes that the cells in the tissue have negligible 

metabolic activity below 277K, such that further inflow of oxygen and other nutrients is 

not needed [130]. For this reason, concentration variations are analyzed only for the 

incubation period and not after the initiation of the freezing process. If the cell metabolic 

levels need to be considered for temperatures below 277 K, then it would be important to 

modify the macro model to incorporate a nutrient source for the cells (term S in Eq. 3.5).  

The thermal history predicted by the model is based on the heat transport equation 

and incorporate the effects of phase change that occur during the freezing process. The 

phase change process initiates when the temperature of the tissue reaches the liquidus 

temperature. However, since the cooling rate is different for various regions within the 

tissue, some regions start to solidify while others are still in the liquid state [131]. Thus a 

mushy zone is established as the solid front propagates through the tissue, which results 

in a non-linearity in the heat transport as shown in Fig 3.7. The reason for such a non-

linear variation is the difference in the thermal properties of the solid and liquid phase. 

Numerically modeling of this complex phase change phenomenon requires careful 

consideration. The current model assumes a first order relation between material 

properties of the liquid and solid phase, based on the liquidus-solidus fraction which is a 

standard norm used for phase change problems heat transfer [118, 129]. Increasing the 
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order of relation between the liquid and solid phase properties increase the numerical 

complexity and computational expense for limited improvement in the approximations 

[130].  

The data from the macroscopic analysis are utilized by the micro model to 

evaluate cellular water transport in the tissue. The biophysical properties of the water 

transport are also critical for predicting cellular water transport [66]. The biophysical 

properties of water transport such as hydraulic permeability Lpg and activation energy of 

water transport across membrane Ea are system specific parameters and requires precise 

estimation for improved accuracy of the model’s predictions [60]. 

The predicted cellular water transport in Fig 3.8 indicates that the cellular water 

transport was the highest at the center of the tissue. This is due so the relatively slower 

cooling rate experienced by the cells in the center of the tissue compared to the outer ones. 

With the slower cooling rate, the cells at the center of the tissue dehydrate more than the 

cells at the other cells [54, 111]. Another contributing factor is that the CPA 

concentration at the center of the tissue is relatively lower, which is expected to lead to 

faster dehydration of the cell [133, 134].   

Similar to the cellular water transport predictions, the PIIF predictions are also 

dependent on the system configuration [115, 135]. Fig 3.9 predicted the PIIF for a liver 

tissue subjected to the cryoprotocol CYP1 (refer Fig 3.2). The prediction used the IIF 

parameters established by Karlsson et al. [120]. For the case considered, the results show 

that the temperature above which ice nucleation temperature needs to occur to avoid IIF 

is 247.9 K and fairly uniform throughout the tissue. Such a prediction might be due to the 

contribution of two contradicting factors: the thermal gradient and the water content of 
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the cells (Refer Fig 3.8). It is known that higher temperature gradients cause an increase 

in super cooling, leading to increased probability of heterogeneous ice nucleation on the 

plasma membrane (initiates at 258-268 K) [123, 136]. On the contrary, lower intracellular 

water content causes high intracellular solute concentration, resulting in increased 

probability of internal particle catalyzed heterogenous nucleation [134, 136]. Thus higher 

temperature gradients and lower water content increase the ice nucleation temperature. 

However, cells at the outer surface (point A) experience a higher thermal gradient, but 

have higher water content and vice versa for cells at the center of the sample (point O).  

The PIIF results, and thereby the desired ice nucleation temperature thus 

estimated for a given cryoprotocol, can be used to compare the effectiveness of different 

cryoprotocols. During such comparisons, the cryoprotocol that enables ice nucleation to 

occur at the lowest temperature without any IIF is preferred.  Thus the user friendly 

Multisacle Modeling tool (MMT) can be utilized to compare and optimize cryoprotocols 

for specific tissues, resulting in the potential for use in aiding the clinical, commercial, 

and research industries in improving the off-the-shelf availability of tissues and tissue 

equivalents. It also offers a cost effective solution for designing protocols for the 

successful cryopreservation of 3D biologically active tissues, tissue equivalents, and 

organs. 



CHAPTER 4: EFFECTS OF OVER EXPRESSING AQUAPORINS ON THE 
CRYOPRESERVATION OF HEPATOCYTES. 

4.1 Summary 

Aquaporins (AQPs) are recently discovered family of proteins embedded in 

cellular membrane and acts as water transport channels. During cryopreservation, these 

water channel proteins are critical in regulating water transport across cellular 

membranes and preventing osmotic damages. Since cryopreservation of liver cells 

(hepatocytes), tissues and slices has been a major challenge over several decades and it is 

known that hepatocytes contain AQP8 and AQP9, we hypothesize that increasing the 

localization of these AQPs on the cellular membrane would help prevent osmotic 

damages to hepatocytes during cryopreservation.  Freshly isolated rat hepatocytes were 

cultured on a collagen gel extracellular matrix (ECM) and treated with DiButyryl cAMP 

(Bt2cAMP)/ Glucagon to increase AQP8 quantity at the cell membrane.  Treatment of 

hepatocytes with Bt2cAMP /Glucagon causes AQP8 localized at the pericanalicur 

vesicles to translocate to the cellular membrane, thus enhancing the number of water 

channels. This phenomenon is verified through two experiments – confocal 

immunofluorescence microscopy and cell shrinkage analysis. The immunofluorescence 

results showed significant increase in the AQP8s on the cell membrane of the treated 

cells and the cell shrinkage analysis showed significant enhancement in the water 

permeability of the treated cells compared to the controls. Furthermore, freshly isolated 

rat hepatocytes were treated with Bt2cAMP, Glucagon and cryopreserved using standard 



 
 

    73 

protocols in a controlled rate freezer. This resulted in a significant increase in the cell 

viability on warming.  Conversely, the hepatocytes treated with mercuric chloride 

(HgCl2) – a water channel inhibitor, had very low post-thaw viability. These results 

indicate that hepatocytes treated with Bt2cAMP and glucagon causes increase of AQPs in 

the cellular membranes, prevents osmotic cell damages during cryopreservation and thus 

increases post-thaw viability. The results also suggest that such an increase in localization 

of AQPs on cellular membrane can also aid in improving the efficiency of 

cryopreservation of liver tissues and liver slices.  

4.2 Introduction 

In the cryopreservation of liver cells, tissue or slice, intracellular ice formation 

(IIF) is regarded as one of the major reasons for cell death [137, 138]. During the freezing 

process, an osmotic gradient develops between the intracellular and extracellular regions, 

resulting in permeation of water through the cellular membrane. With gradual increase in 

osmotic gradient over time, if water permeability of the cell membrane is limited, the 

resulting osmotic pressure causes the formation of intracellular ice. Hence, to avoid IIF, 

regulation of water transport across the cellular membrane is critical [120, 139]. 

  Water movement across the cellular membrane has been known to be facilitated 

by aqueous pores and by direct permeation across the lipid bilayer [73]. However, recent 

discoveries have indicated the presence of water channels, known as aquaporins, a family 

of integral membrane proteins that facilitates osmotic movement of water across the cell 

membrane [74]. Of the 13 isoforms discovered so far, five of them were identified to be 

expressed in hepatocytes: AQP0, AQP8, AQP9, AQP11 and AQP12 [140-145].  



 
 

    74 

Among these, AQP8s are localized in the plasma membrane [146], intracellular 

vesicles and the mitochondria. Prior experimental evidence shows that AQP8 has a 

tendency to translocate to the cellular membrane on the influence of choleretic stimulus 

[77, 80]. Therefore, increasing presence of AQPs on the cellular membrane by 

translocation of AQP8 from the intracellular vesicles can help increase the water 

permeation rate – thereby improve the cryopreservation success of liver tissues and slices. 

Thus, in this chapter, the increase of AQPs by treatment with DiButyly cAMP 

(Bt2cAMP) and glucagon and its effect on the post-thaw viability of the rat primary 

hepatocytes, i.e. the cryopreservation success are evaluated and discussed.    

4.3 Materials and Methods 

4.3.1 Isolation, Culture and Treatment of Hepatocytes 

4.3.1.1Hepatocyte isolation 

Sprague-Dawley male rats weighing 150-280 g were fasted 24 hours prior to 

isolation§ and hepatocytes were isolated by collagenase perfusion method [126]. In brief, 

the rat liver was perfused with collagenase solution for approximately 10 minutes. The 

hepatocytes from the digested liver were isolated by mechanical disruption and filtering 

through a nylon mesh (105µm). The hepatocytes were then separated from the 

nonparenchymal cell fractions by centrifugation (Thermo IEC CEntra-CL3R, Thermo 

Scientific, MA) at 50 x g for 3 minutes. The viability of the centrifuged hepatocytes was 

evaluated immediately using trypan blue exclusion assay (Sigma-Aldrich, St. Louis, MO). 

If the resulting viability was smaller than 90%, percoll (GE healthcare, Waukesha, WI) 

centrifugation was performed to achieve a minimum of 90% viability for cell culture. 

Then the hepatocytes were re-suspended in the culture media containing DMEM 
                                                        

iv. §The isolation of liver from rats was performed by Dr. Charles Lee from UNC, Charlotte. 
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(Invitrogen, Gaithersburg, MD), sodium bicarbonate (3.7g/L), insulin (500 U/L), 

epidermal growth factor (20 µg/L), hydrocortisone (7.5 mg/L), 1% (v/v) of 

antibiotic/antimycotic solution (JR Scientific, Woodland, CA) and 10% (v/v) fetal bovine 

serum (HyClone, Thermo Scientific, Waltham, MA). 

4.3.1.2 Culture of hepatocytes 

Collagen type I gel based single gel culture of hepatocytes in tissue culture plates 

of 35 mm diameters were used for most of the experiments. The collagen gel was first 

prepared by adding 8 parts of 1.1 mg/mL PureCol collagen (Advanced BioMatrix, San 

Diego, CA) to 1 part of 10X DMEM solution. The pH was adjusted to 7.4 with 0.1N HCl 

and/or 0.1N NaOH. 0.5 mL of the prepared collagen was then coated on the 35 mm 

diameter tissue culture plates and incubated for an hour at 37oC, 5% C02 for gelation. 

Then 2 X 106 cells were seeded in each tissue culture plate, 1 ml of media was added and 

incubated at 37oC, 5% C02. The media was changed after 3 hours to remove the 

unattached cells and again incubated for another 24 hours. 

4.3.1.3 Treatment of the hepatocytes 

After 24 hours of incubation, hepatocytes were treated with a) 100 µM DiButyly 

cAMP (Bt2cAMP) (Sigma-Aldrich, St. Louis, MO) or b) 1 µM glucagon (Sigma-Aldrich, 

St. Louis, MO) and incubated for 12 hours. For the controls, 1 mL of normal DMEM 

media was added to the culture plates and incubated for the same period as the treated 

ones. After 12 hours of incubation, a fraction of the treated and control culture plates 

were treated with 0.1 mM HgCl2 – a water channel inhibitor for 5 min.   
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4.3.2 Evaluation of the Relocation of Aquaporins 

 4.3.2.1 Confocal immunofluorescence 

 For the confocal immunofluorescence experiments, collagen coated chamber 

slides were used instead of the tissue culture plates. Five hundred thousand isolated 

hepatocytes were plated on the collagen-coated chamber slides, and incubated at 37°C for 

4 hours. The cells were then treated with a) 100 µM Bt2cAMP in media, b) 1 µM 

glucagon in media and c) normal DMEM media (controls) and incubated for 12 hours. 

After the 12 hours of treatment, the hepatocytes were fixed with 2% formaldehyde for 10 

minutes at room temperature and permeabilized with 0.2% Triton X-100 for 2 minutes. 

The cells were then treated with a blocking solution containing 3% BSA at room 

temperature and incubated overnight at 4°C with goat affinity-purified AQP8 antibodies 

(1:50, Santa Cruz Biotechnology Inc., Santa Cruz, CA). Then, the chamber slides were 

rinsed with PBS solution and treated with Alexa Flour 488 – conjugated donkey anti-goat 

HRP secondary antibody (Invitrogen, CA) for 1 hour. The dilution of the secondary 

antibody used was 1:400 in PBS. Then the cells were treated with 1 µg/mL concentration 

of Hoechst 33342 (Molecular Probes, Eugene, OR) and mounted with Pro- Long 

(Molecular Probes, Eugene, OR), an anti-fade reagents that suppress photobleaching and 

preserve the signals of the fluorescently labeled cells. Fluorescence localization of the 

AQP8 was then detected by immersion oil confocal microscopy with 100X magnification 

lens. 

 4.3.2.2 Cell shrinkage analysis 

 The cell shrinkage analysis was performed on treated and control samples 

prepared on the tissue culture plates as described in Section 4.3.1.2. Culture plates were 
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singly transferred to an Olympus IX70 microscope (Olympus America Inc, PA) mounted 

with a computer interfaced camera (Hamamatsu Corporation, Bridgewater, NJ). The 

media from culture plate was aspirated and 1 mL of 5M NaCl solution was added. The 

response of the cells to the hypertonic NaCl solution was captured at 40X magnification 

for every one minute interval – up to 20 minutes. The process was repeated one by one 

for the various treated and control samples. On completion of the process, the images 

were processed using software MetaMorph Imaging System (Molecular Devices, 

Sunnyvale, CA). Using MetaMorph, the variations of the cross-sectional area of the cells 

at various sites were measured over time to analyze the shrinkage behavior of the cells in 

the hypertonic solution.   

 4.3.2.3 Realtime polymerase chain reaction experiment**. 

Realtime PCR experiments were performed to verify whether the increase of 

AQPs in the cellular membranes was due to translocation of AQP8 or if new AQPs 

transcription occurred in the cells in response to the choleretic stimuli. Total RNA was 

isolated from the treated and control samples by TRIzol (Invitrogen, CA), DNase 

treatment and reverse transcription with Superscript III (Invitrogen, CA) were achieved 

according to the manufacturer’s directions. The primers used for detection of AQP8 were 

“tcattgctaccttggggaac” and “gctcctgctcctggactatg” and for AQP9 were 

“tcgtctttgccatgtttgac” and “ccaatcataggacccacgac”. Reverse transcriptase PCR (RT-PCR) 

was performed using these at 92oC - 30s; 58oC - 30s; 72oC - 30s for a maximum of 35 

cycles. PCR products were visualized on ethidium bromide gels and sequences verified. 

All experiments were performed in triplicate. RealTime PCR was run at 94oC for 15 s; 

                                                        
v. ** The RT-PCR experiments were conducted by Dr. Ashley Lakner from Carolinas Medical 

Centre, Charlotte, NC. 
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58oC for 25 s; 72oC for 20 s, read 5s. For RealTime PCR, the reaction mixture consisted 

of cDNA, forward and reverse primers (each 1 µL) at 5 nmol/L, 2 µl DEPC water, and 5 

µL of SYBR Green Master Mix (Qiagen, Valencia, CA). The delta delta Ct method was 

used for quantification [147] and expression normalized to GAPDH, the housekeeping 

gene [148]. 

4.3.3 Cryopreservation of Treated and Control Samples 

 After the 12 hour treatment of the cell cultures was completed (Section 4.3.1.3), 

the treated and control samples were removed from the incubator and placed on ice. This 

was to reduce the temperature of the samples to 4oC so that the samples were minimally 

affected by the addition of the CPA solution. In this investigation, two different CPA 

solutions – 20% Dimethyl sulfoxide in DMEM media and 20% glycerol in DMEM media 

were used. One milliliter of the cryoprotectant solution was added to the samples and 

incubated at 4oC for 10 minutes so as to reach equilibrium. Then the samples placed in 

cryobags and they were transferred to the CryoMed Control Rate freezer (Thermo Forma, 

Waltham, MA), shown in Fig 4.1.  
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FIGURE 4.1: Equipment used for the controlled freezing of the samples. Shows the 
CryoMed Control Rate Freezer connected to the liquid nitrogen tank and the computer 
used to program and operate the freezer. 
 

The control rate freezer was programmed to freeze the samples according to the 

freezing protocol indicated by Fig 4.2. The controlled cooling process was initiated at 

4oC and a cooling rate of 1oC/min was maintained for 20 minutes, i.e., until -16oC is 

reached. Then a cooling rate of 2oC/min was maintained until -36oC/min, and thereafter a 

cooling rate of 10oC/min until a temperature of -80oC was achieved. The samples were 

further maintained at -80oC for 5 minutes to ensure equilibrium. At the end of the 

freezing process, the samples were transferred immediately to a -80oC Revco freezer 

(Kendro Laboratory, Ashville, NC) and stored for a week. 
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FIGURE 4.2: Cryoprotocol used in the control rate freezer for the freezing of the cell 
culture samples. 
 
4.3.4 Evaluation of Post-thaw Cell Viability 

 The cryopreserved samples from the -80oC freeze were transferred to a sterile 

glass box and plated in a water bath maintained at 37oC, until the media in the frozen 

samples completely melted. At this juncture, the samples were approximately 5-10oC and 

not at 37oC. Immediately, the CPA containing media in the samples was aspirated to limit 

toxicity to the cells. Then, 1 mL of cell culture DMEM media was added to the samples 

and incubated at 37oC for 10 minutes. After 10 minutes of incubation, the media in the 

samples was again refreshed in order to remove any remaining traces of CPA. These 

samples were then placed in the incubator at 37oC, 5% CO2 for 24 hours and allowed to 

recuperate from the freeze-thaw process. 
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   After 24 hours of recuperation time, cell viability of the samples was determined 

using nucleic fluorescence dyes. The samples were washed with 1X PBS solution and 

incubated with 1 µg/mL concentration of Hoechst and 2 µM Ethidium Homodimer 

(Molecular Probes, Eugene, OR) in PBS for 30 minutes. Then the viability solution was 

aspirated and the samples were fixed by adding 1mL of 10% formalin (VWR, West 

Chester, PA) and incubating for 20 minutes. Later, the cell viability was examined 

through a confocal microscope with DAPI (excitation 358nm; emission 461nm) and 

Texas red (excitation 596nm; emission 620nm) filters. The fluorescent images obtained 

were then analyzed using MetaMorph Imaging System. 

4.3.5 Statistical Analysis 

One-way Analysis of Variance (ANOVA) was performed to determine the 

significant differences for all the data analyses. All the analyses were considered a two 

tailed test with the type I error, α as 5%.  Most of the experiments were performed for 

doublet samples (in some case triplicates) and each experiment was repeated for a 

minimum of three rats. 

4.4 Results 

4.4.1 Confocal immunofluorescence  

 The confocal immunofluorescence microscopy images were captured at 100X 

magnification. Fig 4.3 shows the Alex Fluor 488 labeling of AQP8 for cultured 

hepatocytes treated for 12 hours with a) no choleretic stimuli (control), b) 100 µM 

Bt2cAMP and c) 1 µM glucagon, for cells from three different rats. The blue color in the 

images represents the nuclei of the cells stained by the Hoechst dye. For the controls, the 

distribution of AQP8 is fairly even throughout the cytosol and the plasma membrane, 
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indicating AQP8 localization in the vesicles as well as the cellular membrane. In contrast, 

the images for the cells treated with Bt2cAMP or glucagon show a higher density of 

AQP8 labeling along the cellular membrane. This verifies the translocation of AQP8 

from the vesicle to the cellular membrane due to the effect of the treatments. 

 
 
FIGURE 4.3: Localization of AQP8 in hepatocytes by confocal immunofluorescence 
microscopy. It shows the fluorescent labeling (green) of AQP8 in the control cells and 
cells treated with 100 µM Bt2cAMP and 1 µM glucagon for 12 hours. The blue region 
represents the nucleus of the cells stained by the Hoechst dye. Objective 100X, Zoom 1.5. 
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 Also confocal immunofluorescence microscopy was performed for control 

samples incubated in the absence of the a) primary antibody, b) secondary antibody and 

c) both to check for any non-specific labeling. No such non-specific fluorescent labeling 

was detected, confirming the integrity of the results obtained.  

4.4.2 Cell shrinkage analysis 

 In the cell shrinkage analysis, the treated and control cells were subjected to a 

hypertonic environment. It initiated an osmotic water transport across the cellular 

membrane, resulting in the shrinking of the cells over time. The cells were monitored 

using the microscope – camera arrangement, and the images were captured at regular   

intervals. Fig 4.4 shows an image captured at the initialization of the shrinkage process.   

 
 

FIGURE 4.4: Sample of the morphology of the cells monitored during the cell shrinkage 
analysis. The image was captured with the cells in a hypertonic. Objective - 40X. 
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Analysis of images acquired over time for the various samples is collectively 

summarized in the graph shown in Fig 4.5. The cells treated with Bt2cAMP or glucagon 

shows a significant decrease in their cross-sectional area over time as compared to the 

control cells.  This indicates an increase in the osmotic water transport, thereby 

confirming the effects of the increase in the quantity of AQPs on the cellular membrane. 

Furthermore, the cells in the samples treated with HgCl2, the water channel inhibitor, 

show no significant shrinkage behavior. It holds true even for the samples first treated 

with Bt2cAMP and/or glucagon and then treated with HgCl2. This is not shown in Fig 4.5 

since their curves typically overlapped with the curve for the HgCl2 treated cells. Thus 

the cell shrinkage analysis conclusively indicates that the water permeability of the cells 

treated with Bt2cAMP/glucagon increase mainly due to increase in the water channels 

(AQPs) on the cellular membranes; and that those effects can be nullified by HgCl2 

treatment. 
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FIGURE 4.5: Cell shrinkage analysis results. The plot shows the percentage reduction in 
the cross sectional area of the treated and control cells over time under the influence of 
the hyperonic environment. n=5, Mean ± SE. 
 
4.4.3 Real Time PCR Experiments 

 Realtime PCR experiments were next performed to analyze any variation in 

AQP8 and AQP9 mRNA expressions due to the treatments. The results from the 

experiments were inconclusive, as shown in Fig 4.6 and Fig 4.7.  As shown in both 

figures, the standard errors for the experiments were too high, indicating a lack of 

repeatability of the reading. Hence, no significant conclusion could be made from the 

Realtime PCR experiments. 
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FIGURE 4.6: Realtime PCR results for AQP8 mRNA expression, n=5, Mean ± SE. 
 
 
 

 
 

FIGURE 4.7: Realtime PCR results for AQP9 mRNA expression, n=3, Mean ± SE. 
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4.4.4 Effects of the Treatments on Cryopreservation Success 

Controlled rate freezing of the treated and control samples, as indicated in Section 

4.3.3, were carried out to cryopreserve the samples. The frozen samples were thawed 

after one week in the -80oC freezer, allowed to recuperate for 24 hours in the incubator at 

37oC, 5% CO2 and then their cell viability was evaluated. Images of the fluorescently 

stained samples were captured using confocal microscope with DAPI (reads Heochst 

stains – all cells) and Texas Red (reads Ethidium Homodimer stains – dead cells) filters. 

Examples of representative confocal images are shown in Fig 4.8.  

 

FIGURE 4.8: A Sample of the fluorescent stains of the hepatocytes obtained during the 
evaluation of the post-thaw cell viability. LEFT: Hoechst stains labeling the nucleus of all 
the cells in the field. RIGHT: Ethidium homodimer stains labeling the dead cells in the 
field. Objective – 10X. 
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For each sample, the confocal fluorescent images were captured for four 

randomly selected view fields. The images were then analyzed using MetaMorph 

Imaging System, which enabled a quantitative measurement of the viability in each field. 

The cell viability of each sample was then estimated from the cumulative cell viabilities 

of the four fields per sample. The comprehensive viability assessment for the treated and 

control culture samples are depicted in Fig 4.9 and Fig 4.10.  

 

 

FIGURE 4.9: Post-thaw cell viabilities for treated and control samples with DMSO as the 
cryoprotective agent. n=4, * # %: p<0.05. Mean ± SE  
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FIGURE 4.10: Post-thaw cell viabilities for treated and control samples with glycerol as 
the cryoprotective agent. n=4, * # %: p<0.05. Mean ± SE  
 
 Fig 4.9 represents the post-thaw viability measurement for the samples 

cryopreserved with 20% DMSO in DMEM as the cryoprotective agent, whereas Fig 4.10 

represents the samples cryopreserved with 20% glycerol in DMEM. Both the results 

show a similar trend, in the sense that the cell viability of the cultures treated with 

Bt2cAMP and glucagon was significantly higher than the control.  They also suggest that 

the translocation of the AQPs by treatment with Bt2cAMP or glucagon improves water 

transport properties of the cells during cryopreservation, resulting in increased cell 

survival.  

 Likewise, in both cases (i.e., when either DMSO or glycerol are used as the CPA), 

the samples treated with the water channel inhibitor HgCl2, showed significantly lower 

cell viability.  This can be attributed to two reasons. Firstly, HgCl2 blocks the water 
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channels and reduces the water permeation rate during the freezing process, thereby 

increasing the probability of IIF. Secondly, during the post-thaw process it was seen that 

some of the HgCl2 particles settled down in the culture plates, which could prove to be 

toxic for the recuperating cells.  

 Furthermore, by comparing the results of Fig 4.9 and 4.10, the relative effects of 

CPA choice on post-thaw cell viability for these AQP translocation studies, can be 

ascertained. Fig 4.11 represents the comparison of the post-thaw cell viabilities between 

the use of DMSO and glycerol as CPA, with respect to different treatments. In the case of 

the cells treated with Bt2cAMP or glucagon, a significant increase in the cell survival is 

observed with the use of glycerol as the CPA, whereas no such significance is seen for 

the other cases. This suggests that glycerol is a more preferred CPA than DMSO when 

there is an increased AQPs expression in the hepatocyte cellular membrane.  

 

FIGURE 4.11: Post-thaw cell viability comparisons between use of DMSO and glycerol 
as CPA with respect to the different treatments. n=4, *: p<0.05. Mean ± SE  
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4.5 Discussions 

 In the current work, the hypothesis of increasing AQPs on hepatocyte cellular 

membrane by choleretic stimuli to improve the success of cryopreservation of liver tissue 

equivalent was investigated. Though similar studies have been performed for the 

successful cryopreservation of embryos, larvae, oocytes and kidney cells [69-72, 76], the 

role of AQPs in cryopreservation of hepatocytes has not been investigated yet. In the 

cases of embryos, larvae, oocyte and kidney, AQPs were artificially expressed on the 

cellular membrane prior to cryopreservation. Contrastingly, in the current investigation, 

the fact that AQPs can be increased in the cellular membrane by the translocation of 

AQP8 from the intracellular vesicles under the influence of choleretic stimuli such as 

DiButyly cAMP (Bt2cAMP) [80] and glucagon [77, 146, 149], was utilized. As such, it 

was verified by the confocal immunofluorescence which showed increased AQP8 

localization at the cellular boundaries on treatment with Bt2cAMP or glucagon (Fig 4.3). 

 With increase in the quantity of AQPs on the cellular membrane, it was expected 

that the water transport properties of the cells also should improve. This was verified by 

the cell shrinkage analysis, wherein the hepatocytes cultured in a collagen gel matrix 

were subjected to a hypertonic environment and their shrinking behavior was monitored 

over time. Such an analysis differs from the traditional swell-shrink analysis in which the 

swell – shrink behavior of individual cells are monitored in suspension [150] or flow 

[151] rather than in a collagen matrix. In the case of hepatocytes embedded in an ECM, 

the shrinkage of the cells is considerably restricted by its attachment to the ECM and the 

cell-cell interactions. Despite such restrictions, a significant increase in the cell shrink 

was observed by treatment of the cells with Bt2cAMP and/or glucagon. This suggests that 
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such treatments can potentially improve water transport in liver tissues, slices and even in 

whole liver. 

 Furthermore, attempts were made to determine if the increase in the water 

transport properties of the cells were purely due to the translocation of AQP8 to the 

cellular membrane or if new AQPs were transcribed by the treatments. However, the 

results from the Realtime PCR turned out to be unsatisfactory to draw any clear 

conclusion. A major concern was the presence of the ECM which would retain some of 

the urea secreted by the cells. The urea mixes up with TRIzol during the lysing process 

and affects the RT-PCR results [152]. So the spin method for protein and RNA isolation 

as suggested by Heidebrecht et al [152] was tried but it did not prove to be helpful.  

However, prior research works [80, 140, 146] have successful checked for transcription 

(by RT-PCR technique) and translation (by immunoblotting technique) of AQPs due to 

Bt2cAMP or glucagon treatments of isolated hepatocytes plated on collagen coated cover 

slips.  The results indicated that neither transcription nor translation of AQPs occurs in 

hepatocyte treatment with Bt2cAMP or glucagon. Hence, it was safe to consider that the 

increase in the water permeability of the cellular membrane was primarily due to 

relocation of the AQP8s. 

 On establishing the method of treatments and verifying the relocation of the AQPs, 

cryopreservation of treated and control culture samples were performed.  The samples 

were thawed after one week, allowed to recuperate for 24 hours and then their post-thaw 

viability was estimated. It is to be noted that the post-thaw cell viability reported in this 

chapter is the ratio of the estimated number of live cells to the estimated total number of 

cells in the culture plates after fixing the cells with 10% formalin. This does not represent 
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the actual cell viability with respect to the 2 X 106 cells seeded at the initiation of the 

culture process because some of the dead cells would have detached and been washed off 

during the process of changing media, removing cryoprotective media, and the washing 

steps. In fact, it was estimated that roughly 1.4 – 1.7 X 106 cells remained attached to the 

culture plate at the end of the fixing step.  So the reported cell viability might be slightly 

higher than the actual cell viability. However, this factor is not critical in the current 

investigation since this is a comparative investigation between the treated versus control 

samples and also treated and controls samples were all subjected to the same 

experimental processes.  

The results from the post-thaw viability shown in Fig 4.9 and 4.10 confirmed the 

hypothesis that the increased AQP expression on the cellular membrane significantly 

improves the cryopreservation success. In addition, most of the culture samples treated 

with Bt2cAMP exhibited higher cell viability compared to the ones treated with glucagon. 

One possible argument for it is that the 12 hours of treatment of cells with glucagon 

might not be sufficient for maximum relocation of the AQP8s. Literature suggests that 

the longer the cells are treated with glucagon, the more number of AQP8 translocate to 

the cellular membrane.  Results from Soria et al [146] suggested that treatment of 

hepatocytes with glucagon for 36 hours showed 120% increase in the quantity of AQP8 

on cellular membrane as opposed to 80% increase for a 16 hours treatment. On contrary, 

for Bt2cAMP, some researchers indicate 10 min incubation is enough for effective 

translocation of AQP8 [140] whereas others recommend 12 hours [80]. Therefore, there 

is a need for better understanding of the mechanism of AQP8 translocation and 
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optimization of the time scale of the treatments with Bt2cAMP and glucagon – a future 

prospect in this field.    

 Also it was observed from the result (Fig 4.11), that the choice of the 

cryoprotective agent (CPA) for the cryopreservation may affect the cryopreservation 

outcome. In the current investigation, use of glycerol as CPA showed significantly higher 

post-thaw cell viability compared to DMSO. A few probable explanations can be 

provided for preference of glycerol over DMSO. Firstly, DMSO has been identified as a 

water channel blocker [80, 153]. So, use of DMSO as CPA might in fact retard the water 

transport through the AQP water channels to some extent, thus exhibiting lower post-

thaw viability. Secondly, AQP9 are known as aquaglyceropins, which facilitates the 

transport of glycerol across the cellular membrane [77, 78]. As a result, it might aid in 

better protection of hepatocytes from freeze injuries. However, the exact mechanism of 

how cryoprotectants protect the cells from freeze injury during freezing is yet unknown.  

 Overall, the current investigation was able to successfully confirm the hypothesis 

that translocation of AQPs in hepatocytes can indeed help improve its cryopreservation 

success. Furthermore, glycerol was identified as a preferred CPA for safe storage of 

hepatocytes with enhanced AQP localization of the cellular membrane. Also the results 

from the current work provide scope for a number of future research works. Some of 

those are 1) to analyze the effect of the translocation of AQPs on the post-thaw functional 

behavior of the cryopreserved hepatocytes, 2) to optimize the time scale of the Bt2cAMP 

and glucagon treatment 3) to explore and identify other ways of over expressing AQPs on 

the hepatocyte cellular membrane (e.g., Viral vector expression via DNA cloning) and 
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4) to verify the effectiveness of this strategy in successful cryopreservation of large liver 

tissues, slices and even the whole livers. 



CHAPTER 5: CONCLUSION  

 The focus of this dissertation was to enhance bioreactors’ performance and 

application. Computational and experimental analyses were performed to address two 

main mass transport issues influencing the effective use of bioreactors for clinical use. 

From these analyses, the mechanism of oxygen transport during the operation of 

bioreactors and the mechanism of water transport during cryopreservation of cells/tissues 

used in bioreactors were better understood. As a result, effective computational and 

experimental strategies have been proposed as a step towards solving the mass transport 

issues with respect to bioreactors. 

In Chapter 2, the problem of cells/tissues in bioreactors not receiving adequate 

levels of oxygen was investigated. A CFD based computational model was developed to 

analyze the oxygen transport behavior within the bioreactor. The model was used to 

predict and visualize the oxygen distribution within a cell space for various experimental 

conditions. It enabled identification of some of the critical factors that affect the oxygen 

distribution in the relevant cell space. With such capabilities, the CFD model can be 

effective in design optimization and development of new and improved bioreactors. 

Chapter 3 addressed the issue of inadequate off-the-shelf availability of 

cells/tissues for use in bioreactors. More specifically, it provides a user friendly 

computational model (MMT) to help improve cryopreservation techniques for safe 

storage of tissues. The MMT was developed to predict the probability of ice formation 

during freezing of tissues by analyzing the thermal history it experienced and its 
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corresponding cellular water transport behaviors, for prescribed cryoprotocols. Thus, the 

model would enable comparison and optimization of cryoprotocols for effective storage 

of tissues at low temperature.  

Chapter 4 focused specifically on improving the cryopreservation success of liver 

tissue equivalents.  A strategy of improving the cellular water transport of hepatocytes 

during freezing by increasing the quantity of AQPs (water channel proteins) on the 

cellular membrane was hypothesized and experimentally tested. Experimental results 

showed a qualitative increase in the AQP localization on the hepatocyte cellular 

membrane and increased cellular water transport by treatments with choleretic stimuli. 

Such treatments also resulted in improved post thaw viability of hepatocytes - confirming 

the hypothesis. Thus, the strategy of increasing AQP expressions on the cellular 

membrane for cryopreservation successful might potentially pave way for more effective 

techniques to safely freeze the whole liver. 

5.1 Future Research 

This dissertation introduced a few effective methods for improving mass transport 

and cryopreservation of biological tissues. Among these, two computational models have 

been proposed. Computational models are usually developed based a number of 

assumptions, simplifications and approximations, so they always have scope for 

improvements. The CFD model discussed in Chapter 2 can be improved by modeling for 

uneven distribution of cells in the cell space, implementing Michaelis -Menten reaction, 

and turbulent media flow. 

With regard to the MMT discussed it Chapter 3, the model was developed for 

simple geometries. The model needs to be extended to simulate various complex 
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geometries for more practical implementation. Also the model’s predictions are highly 

dependent of the system specific biophysical parameters. These biophysical parameters 

have not been well characterized yet and hence there is a need for better methodologies 

for analyzing these parameters.  

Chapter 4 describes the effectiveness of increasing AQPs in hepatocyte cellular 

membrane on its cryopreservation. However, future work is necessary to establish its 

effectiveness on post-thaw functionality of cells and its application to liver slices or even 

whole liver. In addition, since liver slices and whole liver are made up of different cell 

types, it would be necessary to analyze the effect of the treatments on cryopreservation of 

co-cultures of different liver cell types such as hepatocytes, Kupffer cells, hepatic stellate 

cells, etc. New methods and techniques for over expressing AQPs on the cellular 

membrane on hepatocytes can also be explored. 

Overall, the current dissertation provides few heat and mass transport based 

strategies to enhance the effectiveness of bioreactors in industrial and clinical use. The 

computational and experimental strategies proposed would potentially aid in 

development of effective bioreactors and efficient cryoprotocols to support off-the shelf 

availability of cells for bioreactors.  
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