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ABSTRACT

ROBERT MICHAEL DICKSON JR. Quantitative style investing, portfolio optimization,
and factor models. (Under the direction of DR. CHRISTOPHER KIRBY)

This dissertation consists of three related chapters in the field of empirical asset pricing.

Broadly speaking the chapters investigate issues related to active portfolio management,

stock-picking, portfolio optimization, and asset pricing model performance. Chapter 1

introduces a systematic portfolio choice solution that advances contemporary models of re-

turn predictability by implementing multivariable cross-sectional regressions of key stock

characteristics. These models generate tradeable portfolios which significantly outperform

common benchmarks. Chapter 2 is the first study to conduct a comprehensive portfolio

analysis using individual stock data. Results show that naive diversification consistently

outperforms active timing strategies and parametric portfolio choice solutions. These re-

sults add to the mounting evidence that practical implementation of portfolio theory often

performs poorly out-of-sample. Chapter 3 investigates whether signals from conditional

asset pricing models can be used to construct tradeable portfolios and also revisits the char-

acteristics vs. factors debate using a larger set of factors. I conclude that factors do provide

reasonable proxies for the observable characteristics. To extend my current body of work, I

intend on investigating the appropriate functional form of return predictability regressions

and using these results for portfolio construction. Extensions of these studies offer several

avenues for future contributions to the field of empirical asset pricing.
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CHAPTER 1: INTRODUCTION

The three chapters of my dissertation extend the literature on the cross-sectional deter-

minants of expected stock returns and their implications for optimal portfolios and asset

pricing models.

Chapter 1 introduces a systematic portfolio choice solution that significantly beats a

benchmark market portfolio by an average of 34.2% per year after transaction costs. The

corresponding annual Sharpe ratio is 1.97 per year compared to 0.42, over 4.7 times the

size of the benchmark for a dataset consisting of all major exchange traded stocks over

the last 50 years. This portfolio solution is constructed by applying multivariable cross-

sectional regressions of six key stock characteristics, to aggregate forecasting signals from

multiple sources. I apply simple filtering techniques to reduce estimation and sampling

error, use only information known at time t, and predict expected returns. These hypothet-

ical portfolios are implementable in real time and complete with conservative measures of

trading costs. By sorting stocks by expected returns into more extreme portfolios, i.e. 25

and 50 portfolios, I am able to further enhance performance gains over existing works. The

large return spreads generated by this proposed procedure provides implications of future

advances for candidate asset pricing models.

In Chapter 2 I conduct a horse race of 15 portfolio construction techniques over 8 datasets

comprised of individual stocks. To create the datasets I use the sequential cross-sectional

regression methodology described in Chapter 1 to predict top performing stocks. This is
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the first study to conduct a comprehensive portfolio analysis using individual stock data

and not portfolios of stocks. Using individual stock data has a practical benefit over portfo-

lios; that is, it more accurately replicates a fund manager’s portfolio construction dilemma

and therefore provides excellent guidelines for practical portfolio construction. I also con-

duct a robust Monte Carlo analysis that confirms that recent extensions of mean-variance

optimization due to Kirby and Ostdiek (2012) are successful in curbing estimation risk and

turnover. Despite these facts, my results indicate that no strategy consistently outperforms

naive diversification in terms of mean excess return, Sharpe ratio, and turnover. I intro-

duce a statistic, the time series average of the cross-sectional mean absolute deviation of

risk and return, to explain why I observe these results. Data limitations and dataset char-

acteristics contribute the most to the performance of a candidate strategy. I also propose

several extensions to active timing strategies and include new characteristics in a parametric

portfolio choice framework. Naive diversification continues to prevail, suggesting practi-

cal optimization techniques are inferior to naive diversification when forming portfolios of

individual stocks.

In Chapter 3 I conduct a comprehensive analysis that indicates characteristic-based fac-

tor loadings provide reasonable proxies for equity fundamentals. My methodology relies

on the equilibrium relationships between cross-sectional expected return regressions and

time-series empirical asset pricing models. I compare the performance of portfolios formed

by observed equity fundamentals and pre-formation factor loadings. To generate the fac-

tors I use new methods developed by Kirby and Cordis (2015) and for the characteristics

I use those described by Fama and French (2015). My analysis shows that the portfolios

formed by book-to-market factor loadings closely matches the empirical return distribu-
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tion of portfolios formed by the book-to-market characteristic. However, for market equity,

gross-profitability, and investment, only the top performing portfolios are well approxi-

mated by factor loadings. My results are enhanced when conducting the same analyses on

portfolios of equities, meant to reduce estimation risk. Finally, a portfolio formed from ag-

gregating the signals from multiple pre-formation factor loadings beat an equally-weighed

benchmark by nearly 400 basis points a year, and earned a Sharpe ratio that was 20% larger.

The implications of this work suggest that in some cases, conditional factor loadings may

be useful in forecasting the cross-section of expected stock returns.



CHAPTER 2: QUANTITATIVE STYLE INVESTING

Introduction

I introduce a systematic portfolio choice solution that focuses on two key elements: (1)

exploiting the cross-section of expected stock returns and (2) creating equally-weighted

portfolios from a subset of the entire universe of stocks. Drawing from the recent works of

Novy-Marx (2013) and Fama and French (2015), I use month by month multivariable cross-

sectional regressions of key stock characteristics to estimate conditional coefficient esti-

mates. This procedure allows me to aggregate forecasting signals from multiple sources.

I then apply simple filtering techniques to reduce estimation and sampling error, use only

information known at time t, and predict expected returns. I form implementable portfolios

by sorting stocks by these expected returns. My results indicate economically meaningful,

and statistically significant returns, above and beyond a variety of benchmarks. My main

contribution hinges on the result that combining an effective stock picking rule derived

from predictive regressions, with naive diversification, does a lot better than a simple naive

portfolio. This result is exactly what active fund managers seek to accomplish by using

their “stock picking” skill to purchase undervalued stocks. Even though prediction error

may be large for individual stocks, aggregating these estimates into portfolios yields large

average return spreads, a ubiquitous benchmark for successful asset pricing models.

After accounting for transaction costs, the best performing equally-weighted portfolio

beats a benchmark market portfolio of all stocks by 34.2% per year, with only a modest
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increase in volatility. The corresponding annual Sharpe ratio is 1.97 per year compared to

0.42, over 4.7 times the size of the benchmark. Looking at a more conservative sample that

excludes micro cap stocks still yields annual returns after transaction costs that are 11.46%

larger than the benchmark, and a Sharpe ratio 2.18 times the benchmark. I examine extreme

values and tail risks and find that my portfolios outperform the market even in the worst of

times. I also examine the incremental predictive power of the explanatory variables and find

that the past return variables have the largest incremental impact, while size actually makes

the expected return forecasts worse. At face value these results almost appear too good

to be true. To appease the skeptical reader I provide comparisons with similar studies and

show my procedure yields nearly identical results. I am able to increase performance gains

over prior studies by adding a short-term reversal variable, and looking at more extreme

portfolios, the top and bottom 2% and 4%; instead of the standard decile and quantile

sorts commonly found in the literature. While it is quite common in the literature to create

trading strategies from just one or two characteristics, e.g. size and value, there is a gap

in the literature that combines multiple styles and characteristics into a composite trading

strategy in the presence of transaction costs. I fill this gap and show that a composite

trading strategy, using only an information set available at time t, is feasible and performs

very well.

This study is most closely related to Haugen and Nardin (1996), Hanna and Ready

(2005), Lewellen (2014), and Han, Zhou, and Zhu (2015). These authors all combine

forecasting regressions with portfolio sorts as I do. Novy-Marx and Velikov (2014) studies

many anomalies and their associated turnover using the Fama and French sorting proce-

dure. While my methodology is much different than the Novy-Marx and Velikov (2014)
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study, I too consider trading costs as large limits to arbitrage. This paper differs from

these works in key ways and thus my contributions are clear. First, Haugen and Nardin

(1996) and Hanna and Ready (2005) consider portfolio turnover but only measure this in-

directly through simulated data: I measure turnover in the portfolios directly, assessing

performance ex-post. Lewellen (2014) comments that his strategies are of low turnover but

fails to provide any measurements or estimates. Han et al. (2015) also ignore transaction

costs associated with implementing their trend factor portfolios. Second, all five of these

works only consider zero-cost hedged decile or quintile portfolios, and fail to examine the

profitability of more extreme quantile sorts. My results suggest that expected return in-

creases even further, and volatility declines in the extremes: making these portfolios more

optimal investment choices. I also consider the performance of portfolios for short-sale

constrained investors, providing a more complete picture of the profitability and feasibility

of my strategies. Third, my model incorporates only theoretically motivated explanatory

variables that have proven success in asset pricing applications, mitigating data snooping

concerns. Fourth, I provide a more complete set of performance statistics by incorporat-

ing tail risk, drawdown measures, and statistical inference on the portfolio’s performance

relative to various benchmarks. Finally, I provide a complete analysis on the incremental

contribution of each of the explanatory variables consistent with Fama and French (2014).

This is a necessary piece of the analysis as my results indicate that size actually makes my

forecasts worse. Armed with this new information I question the reliability of these studies

that contain large numbers of explanatory variables.
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Literature Review

I rely on the large literature of firm characteristics that are used to predict the cross-

section of expected stock returns. Haugen and Nardin (1996) was one of the first studies to

aggregate the large anomaly literature into a feasible predictive model for the cross-section

of expected stock returns. As their model was largely successful, beating their benchmark

by 15% in the top deciles, their results provided a direct violation of semi-strong form mar-

ket efficiency and was of large interest to the investment community. Some authors such

as Fama and French (1992, 1993) argued that return spreads from stock characteristics are

expected and required by investors, while others argue that return spreads are a surprise

and thus unexpected, e.g. the short-term reversal of the Jegadessh (1990). The literature

on anomalies is large and the predictive model employed by Haugen and Nardin (1996)

consisted of over fifty variables, all well documented and studied. Thanks to the size and

value factors of Fama and French, there appeared to be some order introduced into the huge

anomaly literature around this same time. Cochrane (2011) stated in his AFA presidential

address that following this work of Fama and French, the anomaly literature was once again

“descending into chaos.” More recently, Subrahmanyam (2010) documented over 50 new

anomalies, Hou, Xue, and Zhang (2012) tested over 80 new anomalies, and Harvey, Liu,

and Zhu (2013) document over 314 different anomalous predictive variables. The method-

ologies from these early works were also quite different. Of course Fama and French (1993)

popularized the univariate sorting procedure while Haugen and Nardin (1996) constructed

multivariable cross-sectional forecasting regressions. Fama and French (2008) discuss ad-

vantages and disadvantages to both methodologies but it is quite obvious that they preferred
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the sorting procedures in much of their earlier work. However, even Fama and French have

begun to entertain the parsimony of cross-sectional forecasting more recently.

Fama and French (2006) renewed this procedure to test for profitability and investment

effects in expected returns. In Fama and French (2008) they again used this procedure

to jointly analyze multiple anomalies. Clarke (2014a), Cochrane (2011), and Fama and

French (2008) all discuss the awkwardness of sorts using multiple anomaly variables and

point towards the rather obvious simplicity of using cross-sectional regressions. Most im-

portantly the regression slopes provide direct estimates of marginal effects and as Cochrane

(2011) states, they are “really the same thing” as univariate cross-sectional regressions. He

goes on to suggest that in the “zoo of new variables” everyone will end up running mul-

tivariable regressions. Well, looking closely at the literature this is exactly what has hap-

pened. These regressions in the spirit of Fama and Macbeth (1973) have been used recently

by the following authors: Fama and French (2008, 2006) with various anomaly variables,

Clarke (2014a) with the same anomaly variables as Fama and French (2008), Fama and

French (2014) with size, value, and momentum, Lewellen (2014) with over fifteen firm

characteristics, and Han et al. (2015) synthesizing the information of short-, intermediate-,

and long-term price trends.

Fama and French (2014) make an astute observation picking on the work of Lewellen

(2014); a variable’s incremental contribution in the average return spread is really what

matters. They point to the results in Lewellen (2014) that a model of size, book-to-market,

and momentum creates a return spread about as large as their model with over fifteen fore-

casting variables. Their explanation goes back to the basics, that is, a new explanatory

variable often attenuates the slopes of variables already in the regression. Their obser-
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vation is obvious when we think about the two-step alternative to estimate a regression

slope from a multivariable regression. First extract the orthogonal components of your ex-

planatory variable relative to all other explanatory variables, and then run a single variable

regression using this orthogonal construct. This same principal is applied when estimating

partial autocorrelation coefficients, i.e. controlling for the other variables. In this context

we are just removing variation in the explanatory variables and running univariate regres-

sions. In the presence of many explanatory variables, especially if collinearity is an issue,

attenuation will follow. So when do have we have enough variables? Should a correctly

specified forecasting equation contain three variables, fifteen variables, or even fifty vari-

ables as in Haugen and Nardin (1996)? To answer these questions I use the cross-sectional

counterparts of the most recent innovations in the asset pricing literature and pull from

Novy-Marx (2013) and Fama and French (2015).

Novy-Marx (2013) found that profitability, measured by gross profits-to-assets, has roughly

the same explanatory power in predicting the cross-section of expected stock returns as the

conventional book-to-market ratio. Additionally, controlling for profitability drastically

improves the performance of value strategies especially among the largest size quantiles.

By combining this new measure with traditional value strategies means investors can screen

quality stocks at undervalued prices. Adding this variable to the Fama and French (1993)

benchmark explains many profitable trading strategies. He also tests his model in the pres-

ence of short-term reversal and momentum measures. Additionally Han et al. (2015) and

Schwet (2003) state that these anomalies are some of the most “robust and persistent,” and

for these reasons I also include these variables in the forecasting regressions. Fama and

French (2015) use a slight variant of the Novy-Marx (2013) profitability measure, in ad-
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dition to their newly introduced investment factor, to create a five-factor model. The main

difference between their new model and their three-factor model lies in the theoretical start-

ing point. The three-factor model is an empirical asset pricing model seen as an application

of the Ross (1976) APT model. However in Fama and French (2015) they begin instead

with the dividend discount model of Modigliani and Merton (1958), and relate their five

factors to state variables of expected stock returns.

While I borrow from the aforementioned work to support my data and methodologies,

my contributions are most similar to Haugen and Nardin (1996), Hanna and Ready (2005),

Lewellen (2014), and and Han et al. (2015). Specifically each of these authors combine

variables thought to explain the cross-section of expected stock returns into forecasting

regressions, and then form portfolios based on sorts of the expected returns. Novy-Marx

and Velikov (2014) study many anomalies and their associated turnover using the Fama

and French sorting procedure, and as expected, find transaction costs significantly reduce

the strategies’ profitability. He further provides evidence that the statistical significance

of the results are also reduced, increasing concerns related to data snooping. This result

is troublesome for the forecasting regressions of Haugen and Nardin (1996) and Lewellen

(2014) which consists of a large number explanatory variables. While Haugen and Nardin

(1996) and Hanna and Ready (2005) consider turnover they only do so with simulated data.

Lewellen (2014) comments that his strategies are of low turnover but fails to provide any

measurements or estimates. All five of these related works only consider decile or quintile

sorted portfolios and fail to consider the profitability of more extreme sorts such as the top

and bottom 2% and 4%.
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Empirical Application

Data

My sample spans July 1963 to Dec 2013 with monthly holding period returns obtained

from the Center for Research in Security Prices (CRSP) and accounting data from Compu-

stat. The sample includes common equity securities (share codes 10 and 11) for all firms

traded on the NYSE, NASDAQ or AMEX (exchange codes 1, 2, and 3). I consider the

following stock characteristics consistent with Novy-Marx (2013) and Fama and French

(2015): size (log(ME)), book-to-market (log(BE/ME))1, profitability (ratio of gross profits

to assets), past performance measured at horizons of one month (r1,0) to capture short-term

reversals, and 12 to two months (r12,2), to capture momentum, and investment (growth of

total assets from previous fiscal year). I provide exact definition for these variables and their

construction in the appendix. As in Novy-Marx (2013), to reduce the effect of outliers, I

trim all independent variables at the 1% and 99% levels. My analysis consists of two sets

of data denoted the “Full Sample” and the “No Micro Sample”. Fama and French (2008)

define microcaps as stocks with a market value of equity below the 20th percentile of the

NYSE market capitalization distribution. Microcaps make up about one half of the stocks

on NYSE, AMEX, and NASDAQ, but account for only about 3% of the total market cap.

As they note, these small stocks may be less liquid than the representative sample and thus

result in above average transaction fees. I estimate all models using the full sample without

the microcap stocks to examine the extent to which the performance gains are driven by

microcap stocks.

1Taking logs makes the cross-sectional distribution of market equity and book-to-market more symmet-
ric, reducing the impact of outliers
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Figure 1 describes these six firm characteristics. The first column plots the cross-sectional

means of these characteristics and the second column plots the cross-sectional standard de-

viations. The solid blue line shows the statistics for the full sample and the dotted green line

shows these statistics for the no microcap sample. For the level variables log market equity

(me), log book-to-market equity (btm), and gross profitability(Prof), the plots show dis-

tinct differences in the firm level variables between the two samples. However for the level

variable investment (Inv), and the flow variables short-term reversal (Str) and momentum

(Mom), there is little distinction. For a few of the characteristics I can draw some con-

clusive observations. Specifically the market equity of the average firm has been trending

upwards over time in both samples. I also notice that the average cross-sectional profitabil-

ity has been falling over time while the volatility of profitability has been increasing over

time.

Figure 2 plots the number of firms in the best performing reported portfolios, per month,

over the out-of-sample testing period July 1968 to December 2013. These portfolios con-

sists of a zero-cost hedge portfolio with a long position in the top portfolio as sorted by

expected return, and a short position in the bottom portfolio as sorted by expected return.

This figure plots the number of firms when expected returns are sorted into 50 and 25 port-

folios (top and bottom 2% and 4%). These firm counts are just scaled down versions of

the number of firms and I can see an obvious upward trend in both samples. The average

annual growth rates are 0.24% and 0.18% for the full sample and no micro cap sample re-

spectively. For the full sample the average number of firms is 3350, with the fewest firms in

November 1962 (805) and the most firms in July 1997 (5657). In the no micro cap sample

the average number of firms is 1483, with the fewest firms in September 1962 (564) and
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the most firms in November 2010 (2258). The average number of firms for the no micro

cap sample is a little less than half (44.2%) of the number of firms in the full sample. This

number shows the disproportionate number of micro cap firms. As noted by Fama and

French (2008), on average microcaps are 60% of all sample stocks while only accounting

for about 3% of the market cap.

Generating the Expected Returns

To generate the expected returns I begin with the following specification for the month

by month cross sectional regressions:

ri,t+1 = α + β1ln(BE/ME)i,t + β2ln(ME)i,t + β3GPdati,t + β4R1to0i,t

+β5R12to2i,t + β6INVi,t + εi,t

(1)

I estimate this model for each of the 606 months from July 1963 through December

2013. Since the conditional coefficient estimates from month to month are quite noisy, I

apply a simple rolling average to the coefficients to filter out the signal. As long as the re-

gression coefficients are relatively stable over time, this method should significantly reduce

estimation and sampling error. Rolling estimators are quite common in the literature on

portfolio selection and a number of studies use a fixed-width rolling data window to esti-

mate the mean vector and covariance matrix of asset returns in a mean-variance framework.

For example Demiguel, Garlappi, and Uppal (2009), Kirby and Ostdiek (2012, 2015), and

Tu and Zhou (2011) all apply this approach. While it does seem natural to use a fixed-width

window, this is typically less efficient than methods that exploit the full history of available

asset returns. R. Merton (1980) and Foster and Nelson (1996) provide evidence to this

effect and promote the use of the full history of available returns. I apply this same logic to
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the rolling average estimates of the cross-sectional regression coefficients and use the full

available history when computing these averages.2 I initialize the rolling averages with 60

months of data and use the estimated mean parameter estimates to generate the expected

returns. Specifically the smoothed coefficient estimates are generated as:

β̂t =
1

t− 1

t−1∑
i=1

βi

Since I begin with a sixty month burn-in period, the first β estimate occurs at t = 61.

Note that the mean parameter estimates for month t are based on estimates before month

t, which ensures that I have an implementable trading strategy. This means that I make

the investment decisions at time t based solely on information available and derived from

information before time t. Thus I use the parameter estimates for July 1963 - June 1968

to generate the first out-of-sample return in July 1968. Once I have these smoothed co-

efficient estimates, I generate the expected returns at time t for each stock, by applying

these coefficients to each firm’s observed characteristic at time t. These are the expected

returns I use in my sorts. To curb excessive turnover and transaction costs, I update the

smoothed coefficients annually, specifically every June.3 Denote these estimates as β̂s for

“smoothed,” and the estimated expected returns are computed as follows:

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t + β̂4,sR1to0i,t

+β̂5,sR12to2i,t + β̂6,sINVi,t

(Model 1)

I refer to this specification as All Variables which represents the forecasting regression

2I experimented with various rolling estimates such 12 month, 60 month, and 120 month and found all
to be inferior to using the entire sample.

3I found this method to be superior to updating on a monthly basis
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using all variables. The motivation for this model is derived from the recent asset pricing

works of Novy-Marx (2013) and Fama and French (2015) and consists of both slow moving

level variables (Me, BeMe, Prof, and Inv) and short-lived predictors such as short-term

reversal and momentum. These short-lived predictors vary considerably, and my analyses

shows that they contribute to a higher level of portfolio turnover. I present results net of

transaction costs, which allows direct comparisons between portfolios of varying levels

of turnover. However, I also construct a separate model, Model 2, that consists only of the

slow-moving level variables to appeal to turnover sensitive investors. To construct expected

returns I estimate the cross-sectional regression of Eq. 1. As in All Variables I apply the

smoothing filter in Eq. 2 for each of the βs, but only use R1to0i,t and R12to2i,t as controls

and thus β4 and β5 were not used to generate expected returns. Therefore the expected

returns are computed as:

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t

+β̂6,sINVi,t

(Model 2)

I also use this model to facilitate comparisons with Lewellen (2014) who uses similar vari-

ables. To facilitate comparisons with Clarke (2014a) I create Model 3. For this model

R1to0i,t was used only as a control and thus β4 was not used to generate expected returns:

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t

+β̂5,sR12to2i,t + β̂6,sINVi,t

(Model 3)
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Measuring a Variable’s Incremental Contribution

In-sample incremental contribution

To measure the in-sample incremental contribution of each explanatory variable I per-

form R2 decomposition in Fama and Macbeth (1973) regressions. Lewellen (2014) makes

some informative comments regarding the interpretation of the R2 from Fama-Macbeth

regressions. He says that it would be wrong to interpret the R2 as informative about the

predictive power of that variable. The R2 only provides information about the fraction of

contemporaneous volatility, and nothing about the predictive ability. Therefore, using an

R2 decomposition tells me the fraction of the model’s contemporaneous volatility, that is

explained by each of explanatory variables in the presence of all the explanatory variables.

A variable with a high (low) % ofR2 indicates that variable explains a large (small) fraction

of the model’s contemporaneous volatility. The Appendix provides the details and proof of

the R2 decomposition.

Out-of-sample incremental contribution

Referring back to the comments of Fama and French (2014), a variable’s incremental

contribution in the average return spread, in the presence of other variables, is really what

matters. All the variables used in my analysis have been shown to have predictive content

in Fama and Macbeth (1973) regressions from previous studies. I also present Fama and

Macbeth (1973) regression statistics in Table 5: but how much out-of-sample predictive

power do each of the variables contain? To study each variable’s incremental contribution

I use an approach similar to Clarke (2014a). I start with the full estimation model, Eq. 1,

and the full expected return model, All Variables, and systematically drop each explanatory
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variable from both. If an explanatory variable has a large incremental contribution to the

out-of-sample prediction accuracy, then the return spread and other performance statistics

should drop substantially. If an explanatory variable has little incremental contribution,

these statistics should remain relatively unchanged. I present the economic significance of

the explanatory variables in Tables 8 and 9.

Portfolio Turnover and Trading Costs

Portfolio turnover is an often overlooked but very real cost to investors. Transactional

brokerage fee costs are typically not included in the calculation of a fund’s operating ex-

pense ratio and thus the true operating expense of high turnover funds can be significant.

As long as transaction costs are greater than zero, anything that increases turnover directly

reduces the true performance of a fund. To examine the amount of trading required to

implement each strategy I follow Kirby and Ostdiek (2015). Turnover is simply the frac-

tion of invested wealth traded each period needed to re-balance the portfolio to the desired

weights. At any time t I calculate turnover as:

Turnovert =
N∑
i=1

1

2
|ŵi,t+1 − ŵi,t+ | (2)

This definition of turnover is consistent with what is used in the mutual fund industry,

i.e. the lesser of the value of purchases or sales in the period divided by the net asset value.

(Kirby & Ostdiek, 2015) Since there are no fund inflows or outflows these must be equal.

I define ŵi,t as the portfolio weight in asset i at time t; ŵi,t+ is the portfolio weight before

re-balancing at time t + 1; and ŵi,t+1 is the desired portfolio weight at time t + 1, after

re-balancing. To compute ŵi,t+ I must consider the mechanical changes that occur within
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the portfolio. Assets that have done well over the time period will make up more than their

starting share of weight at the end of the period, and assets that have done poorly will make

up less than there starting share. I compute ŵi,t+ as:

ŵi,t+ =
ŵi,t(1 + ri,t)

1 +
∑N

i=1 ŵi,tri,t
(3)

Starting from the beginning of my sample, the first weights occur in month 61, therefore

the first turnover calculation occurs in month 62. Studies such as Kirby and Ostdiek (2015,

2012) and Demiguel et al. (2009) do not ignore these mechanical weights while others such

as Brandt, Santa-Clara, and Valkanov (2009) do ignore these mechanical changes. I have

found that ignoring these mechanical changes is innocuous in this setting but do include

them to capture the most conservative view of the trading costs. Now the return of the

portfolio net of the proportional transactions costs becomes:

rp,t+1 =
N∑
i=1

ŵi,tri,t+1 − 2× ci,t|ŵi,t − ŵi,t−1+|, (4)

where ci,t reflects the proportional transaction cost for stock i and time t. Since turnover is

the value of assets both purchased and sold as a fraction of total wealth, and both purchases

and sales incur transaction costs, I multiply the turnover in Eq. 4 by 2. Novy-Marx and

Velikov (2014) find that a momentum based trading strategy had one of the largest time-

series average costs of trading in his rigorous analysis of the trading costs of over twenty

common anomalies. These costs were estimated at 48.39 basis points per month. While it

has been noted by Domowitz, Glen, and Madhavan (2001) and Hasbrouck (2009) that the

cost of trading U.S. equities has declined over time, I want to be as conservative as possible

in accounting for these limits to arbitrage. To do so I set c = 50 basis points consistent
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with the conservative measures used by Brandt et al. (2009), Demiguel et al. (2009), Kirby

and Ostdiek (2012, 2015), and the even more recent estimates by Novy-Marx and Velikov

(2014).

Finally, letting L reference the burn-in-period of 60 months, and T represent the total

number of months in my study, numerically the average turnover I report in the tables is:

Turnover =
1

T − L− 1

T−1∑
t=L+1

(
1

2

N∑
i=1

|ŵi,t+1 − ŵi,t+|

)
(5)

Statistical Inference

To conduct statistical inferences about the relative performance of the various strategies

using the Sharpe ratio, I follow Kirby and Ostdiek (2012) and use large sample t and chi−

squared statistics. I consistently compute these statistics using the generalized method

of moments (GMM). For details of the proof of the general results see Hansen (1982).

As Hansen (1982) shows, the Delta method, Slutky’s theorem and LLN are all used to

derive the asymptotic distribution of the GMM estimators. Recent asymptotic distribution

derivations for Sharpe ratios are also provided by Opdyke (2007) and Bailey and de Prado

(2011) who also use these theorems in their derivations. However I use GMM standard

errors to appeal to these more recent derivations while still applicable in a more general

context. In the analysis I begin with a set of moment conditions of the form E(g(Rt, θ)) =

0, where g(Rt, θ) is a J × 1 vector of moments, analogous to disturbances, Rt is a vector

or returns, and θ is J × 1 vector of parameters. I use the fundamental result from Hansen

(1982) that, subject to general conditions, the limiting distribution of θ̂ is given by:
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√
T (θ̂ − θ) d−→ N(0, V ) (6)

I have the following:

V = D−1SD−1′ , D = E(∂g(Rt, θ)/θ
′), S =

∞∑
−∞

E(g(Yt, θ)g(Yt−j, θ)
′)

The moment conditions are specified as follows:

g(Rt, θ) =



Rbench,t − σbench × SRbench

Rtest,t − σtest × SRtest

(Rbench,t − σbench × SRbench)
2 − (σbench)

2

(Rtest,t − σtest × SRtest)
2 − (σtest)

2


(7)

Using Eq. 6 I have the asymptotic standard errors of the Sharpe ratios and can also easily

conduct a Wald test of linear restrictions to determine if the differences between the Sharpe

ratios of the benchmark and test portfolios are statistically different from zero. To do so I

consider the following test statistic:

(ŜRtest − ŜRbench)(RSRV R
′
SR)−1(ŜRtest − ŜRbench) ∼ X (1) (8)

In Eq. 8 the discrepancy vector RSR = (−1, 1, 0, 0) and V is the asymptotic covariance

matrix described in Eq. 6. It can be shown that the square root of this statistic is equivalent

to the following limiting distribution:

√
T ((ŜRtest − ŜRbench)− (SRtest − SRbench)

d−→ N(0, RSRV R
′
SR) (9)

So in the case where the population Sharpe ratios are equal in the benchmark and test
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portfolios, I have the following large-sample test statistic:

√
T

(
ŜRtest − ŜRbench

(RSRV̂ R′SR)1/2

)
∼asy
N(0, 1) (10)

I also use this asymptotic covariance matrix to conduct a simple t− test on the individual

significance of the Sharpe ratio. Of course I no longer need a discrepancy vector and can

simply take the square root of the appropriate diagonal element of the matrix V to compute

the test statistic.

Results

Return Spreads

To generate a profitable stock-picking strategy, what I am really after is a spread in

expected returns. This is the same idea popularized by Fama and French: sort assets into

portfolios based on characteristics, look at high minus low mean returns, and then test if

this spread in means corresponds to a spread in betas. As Cochrane (2011) points out, in

the “zoo of new variables,” multivariate regressions provide an excellent alternative to the

awkwardness of portfolio sorts across multiple characteristics. One of my contributions to

the literature is the investigation of more extreme sorts in an implementable trading strategy.

Haugen and Nardin (1996), Hanna and Ready (2005), Lewellen (2014), Novy-Marx and

Velikov (2014), and Han et al. (2015) all consider only decile or quintile portfolios in their

analyses.

Table 1 shows the mean return spread and Sharpe ratio of my three models for groups

of 2, 5, 10, 25, 50, and 100 portfolios4. This table serves a guide to picking the optimal

4For hedge portfolios I focus on the top and bottom portfolios; 2 portfolios correspond to 50%, 5 to 20%,
10 to 10%, 25 to 4%, 50 to 2%, and 100 to 1%.
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size of the portfolios. When sorting into only two portfolios, each portfolio will have a

larger number of securities, it will be highly diversified, and should have low levels of

idiosyncratic volatility. When sorting into 100 portfolios, each portfolio will have a much

smaller number of securities, will be less diversified, and thus will have more idiosyncratic

volatility. By analyzing both the return spreads and the Sharpe ratios I can get an idea on the

appropriate size of a portfolio such that the marginal return to accepting more idiosyncratic

volatility is optimal. For all models in Table 1 the return spread is monotonically increasing

with the number of portfolios. This means my models are effective in generating a large

and consistent return spread. For my main model, Model 1, the spread in returns is as high

as 4.83% per month for 100 portfolios and 1.09% for 2 portfolios for the full sample. I

also observe that the return spreads for the no micro cap sample are smaller in all cases.

For 100 portfolios using Model 1 the return spread is 2.53%, nearly half of the full sample.

This shows that there is significant return spread in the micro cap stock universe. While

100 portfolios produces a large spread in return, all models do not show that 100 portfolios

produce the largest Sharpe ratio. In fact, the largest Sharpe ratio for the full sample is 0.64

with 50 portfolios using Model 1, and 0.35 for the no micro cap sample with 50 portfolios

using Model 1. I also observe, in nearly all cases, that 25 portfolios produce a larger Sharpe

ratio than 100 portfolios. Additionally both 25 and 50 portfolios always yield larger spreads

and Sharpe ratios than decile portfolios, providing evidence that these more extreme sorts

provide more desirable investing opportunities. Based on these results, I focus on 25 and

50 portfolios when presenting the detailed performance statistics in Tables 2, 3, and 4.

Figure 3 plots the mean and volatility of actual returns for each portfolio using Model

1 for the full sample and no micro cap sample, and Model 2 with the full sample. For



23

brevity I present results only for 25 portfolios. The figure shows an almost perfectly mono-

tonically decreasing mean actual return from the top portfolio as sorted by expected return

to the bottom portfolio. These results support the predictive quality of my model. While

each of these portfolios was created by a sort on expected returns, the actual returns match

very closely. The volatility plots show an interesting U-shaped pattern. While I do expect

actual returns and volatility to be positively related based on the fundamental risk requires

return relationship, I do not necessarily expect the lowest expected return portfolio to have

volatility nearly as high as the top portfolio. However, I can reconcile this with an argu-

ment based on asymmetric volatility. That is, as prices for these securities decreased, their

volatility increased, giving way to the U-shape in the figure.

To facilitate comparisons with prior literature and validate the results of my procedure,

I look at Model 3, which does not contain the short-term reversal variable.5 I compare

the results to Clarke (2014b), Table VI, whose model and procedure closely match my

Model 3.6 For 100 portfolios Clarke’s model generates a spread of 2.62% vs. my spread

of 2.77% and a Sharpe ratio of 0.33 vs my Sharpe ratio 0.34. For 10 portfolios Clarke’s

model generates a spread of 1.65% vs my spread of 1.84% and a Sharpe ratio of 0.38 vs.

my 0.28. Lewellen (2014) presents results for a model of 15 explanatory variables and

finds an equal-weighted spread of 2.36% for decile portfolios with a monthly Sharpe ratio

of 0.47. These results a more similar to my Model 1 generating a spread of 2.89% and a

Sharpe ratio of 0.54. Most importantly, my model generates commensurate results as these

existing studies, passing the litmus test for validity.

5The STR variable is shown to have significant incremental contribution to the return spread and has not
been included in prior works.

6He also includes net stock issues and accruals
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Traditional Performance Statistics for Implementable Portfolios

Table 2 presents traditional performance statistics and highlights my main results. That

is, even in the presence of transaction costs, my model yields returns and Sharpe ratios that

far exceed a benchmark market portfolio.7 An equal-weighted hedge portfolio constructed

from 50 portfolios using Model 1, yields a monthly return of 3.98% after transaction costs,

compared to 1.13% for the equal-weighted benchmark portfolio that includes all stocks.

This equates to 34.2 % per year in excess of the market. The volatility of this portfolio is

6.29% per month compared to the benchmark 5.84%. The Sharpe ratio after transaction

costs is 0.57 per month or 1.97 per year compared to 0.42 for the benchmark: over 4.7 the

size of the benchmark. While the turnover for this portfolio, 0.45 per month or 5.34 per

year, is quite high, the performance of the strategy more than makes up for the additional

costs needed to implement the strategy. For the equal-weighted hedge portfolio constructed

from 25 portfolios I see comparable performance in Sharpe ratios and about 0.5% drop

per month in mean return relative to 50 portfolios. Using Model 2 my results have the

desired effect of reducing turnover from 0.445 per month to 0.108 per month, which puts

the strategy at just over 100% turnover for the year. This would be considered a reasonable

amount of turnover in the industry. At the cost of a reduction in turnover the mean returns

and Sharpe ratios also fall. After transaction costs this model still returns 2.38% per month,

15.06% per year in excess of the benchmark, and has an annualized Sharpe ratio of 1.03.

I see a similar relationship as before with 25 portfolios; 0.4% per month less mean return

and comparable Sharpe ratios relative to 50 portfolios. All estimated Sharpe ratios are

7For sake of brevity I only present results for the best performing models but have an on-line appendix
with many additional robustness checks.
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statistically different than zero and are statistically larger than the benchmark. One concern

when viewing these results is the size of the average firm. For the hedge portfolio using 50

portfolios, the average firm size is only $371 million, and using 25 portfolios it is only $454

million. Model 2 picks larger firms with $691 million for 50 portfolios and $854 million

for 25 portfolios.

The results for the no micro cap stocks are uniformly lower, but still represent substantial

gains over the benchmark. In the presence of transaction costs, an equal-weighted hedge

portfolio constructed from 50 portfolios yields a monthly return of 2.08% and an annual

Sharpe ratio of 0.93. This corresponds to 11.46% per year in excess return over the bench-

mark and a Sharpe ratio 2.18 times the value of the benchmark. For 25 portfolios the mean

return drops about 0.3% per month but I again return comparable Sharpe ratios as the 50

portfolio case. The average firm size for no micro cap universe is much larger, $1.13 billion

and $1.28 billion for 50 and 25 portfolios respectively.

Even for a short-sale constrained investor who is sensitive to turnover, my stock selection

model yields impressive results. Using Model 2 and a long only portfolio constructed as the

top portfolio from 25 portfolios, the mean return is 2.08% per year with an annual Sharpe

ratio 0.76 after transaction costs. The turnover is estimated at 0.10 per month. For the

no micro cap sample the mean return is 1.52% per month with roughly the same turnover

as the benchmark portfolio. Even in this extremely conservative example with multiple

constraints, my model beats a benchmark by over 4% per year.

For the most risk-averse of investors I present results that I call a “Low Volatility” port-

folio. This is constructed as going long the top 50% of stocks and short the bottom 50% of

stocks estimated by Model 1. The annualized volatility of this portfolio is only 7.36% per
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year while it returns 13.1% per year. This portfolio essentially matches the market return

with less than half the volatility. The turnover is also the same as the market as a whole

which makes this an attractive alternative for risk-averse investors.

Figure 7 presents 60-month rolling Reward-to-Risk ratios and figure 6 presents 60-month

rolling mean excess returns, accounting for transaction costs. These figures allow me to

view the performance of the best performing strategy, over time, in both samples. The

Reward-to-Risk ratio is always larger in both samples than the benchmark portfolio, but

the gap does seem to be shrinking over the past 20 years. For the full sample the mean

excess return is always larger than the benchmark, although shrinking as well over the

last 10 years. For the no micro cap sample, I notice from about 2007 until the end of the

sample, the mean excess return was slightly less than the benchmark. While outside of the

scope of this paper these results do beg the question: Is anomaly arbitrage disappearing? I

do not attempt to rigorously answer this question but I do offer a plausible answer. Large

quantitative trading funds such as AQR and DFA actively create and trade on strategies

based on published factor models and well known anomalies. It is likely that their presence

in the market and the funds that they manage are responsible for the recent decrease in

performance of characteristic based strategies.

How does this performance compare with existing literature?

Since prior authors conducting similar procedures have not considered the transaction

fees encountered to form their portfolios, I must reference the raw performance statistics to

facilitate comparisons. As previously noted, the best model presented by Clarke (2014b)

had a spread of 2.62% and a Sharpe ratio of 0.33, both monthly. The best model presented
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by Lewellen (2014) had a spread of 2.36% for decile portfolios and a monthly Sharpe ratio

of 0.47. My best model (in terms of Sharpe ratio) generates a spread of 4.43% and a Sharpe

ratio of 0.64, both monthly. Lewellen (2014) also presents a table for all-but-tiny stocks

which corresponds to my no micro cap sample. His best model returns a spread of 2.24%

and a Sharpe ratio of 0.85 compared to a 2.52% mean return and a Sharpe ratio of 1.20 for

my best model. However without statistics for portfolio turnover I have no way of knowing

if these author’s strategies are profitable to implement.

Factor Model Performance Evaluation

To further examine the performance of my selected portfolios I present statistics for

risk-adjusted realized returns relative to the Fama-French 4-factor model in Table 3. I also

present the information ratio (IRα). This statistic is computed as the alpha from the factor

regression divided by the standard deviation of the residuals, also known as the tracking

error or idiosynchratic volatility (IVOL). This is an idiosynchratic reward to idiosynchratic

risk measure, the higher the better. Similar in spirit and interpretation as a Sharpe ratio

except that the expected return from the Sharpe ratio is replaced with the expected return

from a factor model, i.e. alpha, and the standard deviation of the stock price is replaced by

the IVOL, i.e. the standard deviation of the residuals from the factor model. I find that these

risk-adjusted measures match up quite well to the univariate statistics. My best performing

model, after transaction costs, returns 36.9% in excess α over the benchmark compared

to 34.2 % per year mean return in excess of the market. Similarly the IRα for my best

model is 0.60 per month compared to the Sharpe ratio of 0.64 per month. The univariate

performance statistics and risk-adjusted performance statistics follow a similar pattern for
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all other portfolios in the table.

I also present an information ratio relative to the S&P 500, (IRS&P ). This statistic is

computed as the difference between the portfolio return and the return of the S&P 500,

divided by the standard deviation of this difference. It can be thought of as the Sharpe

ratio of returns in excess of the S&P 500. The higher the better indicating a higher average

return that is consistently larger than the S&P 500. My best performing model yields 0.51

per month and even the short-sale constrained, low turnover model, yields 0.194 per month.

Analyzing the factor loadings provides insight into the style of the stocks represented

by my portfolios. The most striking observations from the table are the differences in the

loadings comparing Models 1 and 2. For both samples, the exposure to the market fac-

tor decreases by about 0.5 when switching from Model 1 to Model 2. Further Comparing

Model 1 to Model 2 I also see an increase on the SMB factor and HML factors. This indi-

cates that when I remove the past performance variables, even though my model actually

selects larger stocks on average, these stocks actually have more exposure to the size fac-

tor. Furthermore, Model 2 also selects more value stocks. Combining these results Model

2 tilts toward small cap value stocks and away from the market.

For the full sample hedge portfolios all momentum βs are near zero and statistically

insignificant and the R2 values are very low. This evidence points to the fact that the Fama-

French 4-factor model has a difficult time reliably pricing these portfolios.

Extreme Values and Tail Risk of Implementable Portfolios

I compare the maximum drawdown, Calmar ratio, conditional value-at-risk (also known

as the Expected Shortfall), and the frequency of large losses for both the benchmark and
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my best performing portfolios in Table 4. The maximum drawdown (MDD) is defined

as the largest percentage drop in price from a peak to bottom. It measures the absolute

worst case scenario of an investor and is a popular metric in the mutual funds industry.

An investor would earn this return if they invested in the candidate portfolios at the worst

possible time and subsequently sold the portfolios at the worst possible time. My most

aggressive and best performing portfolio has an MDD of 47.05% compared to the market’s

44.65%. Both my Model 2 and the no micro cap sample have MDD measures smaller

than the market. My low-volatility portfolio has the most favorable MDD of 17.39%. The

Calmar ratio is closely related and is defined as the annualized rate of return divided by

the MDD. This is also a popular mutual fund statistic and measure return versus downside

risk. The higher the better and in every model I find that all portfolios have larger Calmar

ratios than the benchmark. The largest Calmar ratio is 1.13 while the smallest is 0.37

compared to compared to 0.32 for the benchmark. The conditional value-at-risk (Cvar) is

often described as a more robust statistic than a simple value-at-risk measure. It defined

as the average of the worst q% of returns. I choose q = 5% and find again that all of my

hedge portfolios have more favorable measures of Cvar while the long-only portfolios are

only slightly worse. The Cvar for my most aggressive portfolio is -7.80% compared to the

market’s -12.48%. These results strongly indicate that my portfolios outperform the market

even during the worst of times.

Fama-Macbeth Regressions

My estimation procedure is a variant of Fama-Macbeth regressions in that I do not use

contemporaneous measures of β to generate expected returns. Using predicted values from
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a Fama-Macbeth regression is not an implementable trading strategy because the infor-

mation set includes variables that occur at time t + 1, specifically the expected return on

the left-hand side. Nonetheless, Fama-Macbeth regressions provide a viable benchmark

for the significance of each of the variables and a comparison with other studies. Table

5 reports the average slopes, t-statistics, and R2s for 606 monthly cross-sectional regres-

sions. I present results for the full model, and then systematically drop one of the explana-

tory variables to asses this dropped variables impact on the attenuation and significance

of the estimated risk premiums. Several interpretations of Fama-Macbeth regressions are

worth noting. First, Fama (1976) describes how Fama-Macbeth slopes can be interpreted

as returns on characteristic-based portfolios. Second, Fama (1976) also describes how the

Fama-Macbeth R2 reflects how much ex post volatility is explained, and is not indicator of

the predictive ability of the characteristics. Finally, if I can interpret the slopes as returns

on characteristic-based portfolios, then I can directly interpret the size of the t-stat as the

size of the Sharpe ratios of characteristic-based portfolios. Consider the definition of the

t-statistic and the Sharpe ratio:

t =
E(R)

σ(R)/
√
T

and SR =
E(R)

σ(R)

SR =
t√
T

(11)

As long as T is the same for all regressions, then a higher t-stat indicates a higher Sharpe

ratio for the return on a characteristic-based portfolio.

My results are consistent with prior research. In both samples the slopes on book-to-

market, momentum, and gross profitability are significant and positive, while the slopes

on investment, short-term reversal and size are significantly negative. In fact, in my full
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model, the risk premium for size is less than 2 standard errors from zero, -1.72, indicating

that this is not statistically different than zero at the 5% level. Examining the size of the

t-statistics I obtain similar interpretations as Novy-Marx (2013) regarding the relationship

between book-to-market and gross profitability. For my full model the t-stat is 6.04 for

gross-profitability and 6.52 for book-to-market. This t-statistic means that the Sharpe ratios

of characteristic-based portfolios sorted on these variables is roughly the same. Therefore

I confirm Novy-Marx’s conclusions that gross profitability has roughly the same power

as book-to-market. Examining column 4 I further corroborate his claims that value and

profitability complement each other. Note that when book-to-market is removed from the

regressions, the risk premium for gross profitability falls from 0.68% to 0.41% and the t-

stat falls from 6.04 to 3.60 in the full model. In the no micro cap sample the risk premium

falls from 0.65% to 0.32% while the t-stat falls from 4.75 to 2.26. This shows that both the

risk-premiums and Sharpe ratios of characteristic-based portfolios are negatively impacted

when value is not controlled for. A similar result holds for the risk premium and Sharpe

ratios for value portfolios, i.e book-to-market. My results also indicate a complementary

but reversed relationship between value and investment. When investment is included, the

risk premium for value falls in both the full and no micro sample. When value is included,

the risk premium for investment falls over 0.20% in both samples as well. For all other

variables, the risk-premiums and t-statistics remain relatively unchanged when variables

are added or removed.

Finally I compare the estimates for the short-term reversal variable with that of Novy-

Marx (2013). Both my estimates and that of Novy-Marx are consistent; risk-premiums

fall between -5% and -6% with t-statistics between -12 and -14. These estimates indicate
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a large overreaction to last month’s return that has much higher explanatory power in the

cross-section than the other variables analyzed. This is the only variable in my sample in

which the value is determined month by month, and thus I would expect that including this

variable in my model would increase turnover. While momentum also changes monthly, it

is computed as a combination of past returns and thus evolves more slowly than short-term

reversal.

A key observation from these results is that all of my predictive variables have explana-

tory power in the cross-section.8 This is not true for the predictive regressions of Clarke

(2014a, 2014b), Lewellen (2014), Hanna and Ready (2005), and Han et al. (2015). Re-

ferring back to my earlier question: when have we included enough anomaly variables?

By focusing on the recent developments in the asset pricing literature, I have selected a

subset of the anomaly variables such that each has significant explanatory power in the

cross-section, in the presence of all other variables. This is a claim that cannot be made by

the aforementioned studies.

R2 Decomposition: Does it mean anything?

The Fama-Macbeth R2s are 0.046 in the full sample and 0.067 in the no micro cap

sample at their largest. However, these measures are commensurate with prior studies e.g.

Lewellen (2014). Table 6 presents the results from R2 decomposition for Model 1 and

Model 2 using both the full and no micro cap sample. The results are thought provoking.

Can we relate the % of R2 to the t-statistic in Fama-Macbeth regressions? At first glance

it does not appear so. In column 1 both gross profitability and investment explain only

8Market equity is the only exception in that the t-stat is marginal in the full sample, closer to 10%
significance. However this variable has always been included in asset pricing models and so I too include it
here.
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a fraction, 5% each, of the model’s R2 while market equity explains over 25%. Looking

at Model 2 the results are even more puzzling with market equity explaining 51% of the

R2. These peculiar results regarding market equity largely disappear in the no micro cap

sample as the % of R2 falls to 7% and 21% in Models 1 and 2 respectively. In columns 1

and 3, short-term reversal does account for the largest % ofR2 which matches the t-statistic

results. However, no other meaningful comparisons exist. While it is difficult to reconcile

these results with Table 5, it does serve as an analysis from another angle. While market

equity has low t-statistics in Fama-Macbeth regressions, it explains a large portion of the

contemporaneous volatility. In spite of the low t-statistics, market equity remains a staple

in asset pricing models in the words of Cochrane, “A statistically insignificant elephant

is worth looking at.” Low t-statistics could be a result of many things, most notably, a

high correlation with the other variables in the model. I hypothesize that a complex cross-

sectional correlation structure causes the lack of transparency between these two tables.

Beta Summary Statistics

To provide evidence for the question, “Are βs stable over time?,” Figure 4 plots rolling

60-month averages of Fama-Macbeth βs. I see that with the exception of the short-term

reversal β, all estimates do seem relatively stable over time. The short-term reversal β

is trending upward which may be evidence of either an attenuation effect over time, or a

persistent change in the characteristic over time. Table 7 provides summary statistics of my

estimated βs. The mean column matches that of my full sample from the Fama-Macbeth

regressions. Due to the frequency of measurement of the past return characteristics, the

volatility of the short-term reversal and momentum βs are much larger than the variables
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updated annually. Since I smooth the βs by taking a full sample averages based on prior

estimates, I also present the worst case standard errors (i.e. 60 months) of the β estimates.

Once again I see considerable variability in the 95% confidence interval for my past return

characteristics. This indicates the likelihood that these variables have large impacts on

portfolio turnover.

The Accuracy of Predicted Expected Returns

Figure 5 presents plots of predicted vs. actual returns, to examine the accuracy of ex-

pected return models. For brevity I only show results for 25 portfolios. Data points plotting

on the 45 degree line indicate an exact match in predicted vs. actual returns. Model 1 tends

to overestimate poor returns and underestimate good returns, but generally does a good job

in predicting portfolio expected returns. Model 2 also generally does a good job in predict-

ing portfolio expected returns but tends to persistently underestimate all returns more often

than Model 1. The Mean Absolute Error (MAE) is 0.284 for Model 1 for the full sample,

0.4071 for Model 1 for the no micro cap sample, and 0.209 for Model 2 for the full sample.

This figure validates my claim that even though prediction error for individual stocks may

be large, by aggregating these estimates into portfolios, many individual errors cancel out,

resulting in a fairly accurate estimate at the portfolio level. This accuracy in the prediction

of the portfolio’s expected return is how my models fared so well in out-of-sample tests.

Incremental Explanatory Power

To examine the incremental contribution of each predictor, Tables 8 and 9 present se-

lected performance statistics after each predictor was removed from the model. If an ex-

planatory variable has a large incremental contribution to the out-of-sample prediction ac-
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curacy, then the return spread and other performance statistics should drop substantially.

If an explanatory variable has little incremental contribution, these statistics should remain

relatively unchanged. For the full sample the mean return drops by 1.50% per month when

the short-term reversal is removed from model. The Sharpe ratio also falls by 0.28 per

month and the CAPM α and β also fall. This is a huge drop in performance and therefore

I can attribute most of the model’s out-performance compared to existing studies to the in-

clusion of this variable. While this variable does contain considerable volatility and causes

excessive portfolio turnover, its predictive content more than makes up for the additional

transaction costs. In the no micro cap sample the short-term reversal results are not as large,

only a 0.36% decrease in monthly performance. In fact, in the no micro cap sample it is

momentum that has the largest incremental impact, a decrease in performance of 0.53%.

In both samples, the size variable actually improves performance in every category when

dropped from the model. All return measures increase and all risk measures decrease, so

size actually hurts my model’s performance in spite of the large contribution toR2 in Fama-

Macbeth regressions. This evidence confirms the claim by Lewellen (2014) that R2 says

nothing about the predictive power of that variable. Analyzing the other variables, in the

full sample, book-to-market has the largest incremental contribution and investment has

about twice the impact as profitability. In the no micro cap sample it is investment with the

largest impact while profitability and book-to-market share equal contributions.
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Robustness Checks

Available on the web-appendix found at the following link 9, I present complete perfor-

mance statistics for over 20 different specifications not presented in the main tables, Tables

2, 3, and 4. I also show complete performance statistics for value weighted portfolios,

including duplicate tables of Tables 2, 3, and 4. In all cases the value-weighted portfo-

lios perform worse than the equal-weighted portfolios. This result is common in empirical

studies since value-weighted portfolios tilt away from small firms and thus away from the

small-firm effect. After transaction costs, the best performing value-weighted portfolio

beats the benchmark value-weighted portfolio by 13.25% per year with a Sharpe ratio 1.8

times the size of the benchmark. While this is much lower than the equal-weighted case,

the performance gains are still substantial. The additional specifications I present show

complete performance statistics for hedged and short-sale constrained portfolios formed

by groups of 100, 50, 25, 10, 5, and 2 portfolios. I also present alternate measures of

turnover similar to Brandt et al. (2009), and the results show inconsequential differences.

Given that I construct equal-weight portfolios, the individual weight on each asset is nearly

identical in adjacent periods. Therefore, the turnover of a portfolio each time period is

dominated by the percentage of stocks that are simply added and removed each period;

with the mechanical changes playing a much smaller role.

Asset Pricing Model Implications

Clarke (2014a, 2014b) introduces the concept of a level, slope and curve factor model

for stock returns with the familiar level, slope, and curve pattern that can be extracted from

9https://belkcollegeofbusiness.uncc.edu/rdickso6/
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bond portfolios sorted by maturity. He finds that it performs better than leading factor

models. He does this by extracting only priced factors using principal component analysis

on portfolios formed by sorted expected returns. Figure 8 presents these same results, i.e.

a perfect level, slope, and curve, using portfolios formed from my Model 1. My figure

shows a much less ambiguous interpretation for a level, slope, and curve model for stock

returns than that of Clarke (2014a, 2014b). This indicates that Clarke’s model is not unique;

furthermore, it also indicates that his procedure may not be optimal. If his level, slope,

and curve model can beat leading factor models what about my model? I will investigate

this question in another paper but it is an interesting result that a level, slope, and curve

interpretation can be so unambiguously generated. This observations poses an interesting

research question: Can I sort stocks by any characteristic and get a level, slope, and curve

pattern? If so, which one is optimal and have I really simplified the factor structure of stock

returns if this relationship is not unique? I am currently pursuing research down this path

to determine how unique level, slope, and curve factors really are.

Conclusions

The cross-sectional anomaly literature has become large and unwieldy, with authors re-

cently reporting between 50 and 300 known anomalous variables. The univariate char-

acteristic sorting procedure popularized by Fama and French becomes awkward and in-

feasible in the presence of multiple characteristics, as the intersection of portfolios grows

exponentially. Cochrane (2011) asks the question, “Which characteristics really provide

independent information about average returns? Which are subsumed by others?” Draw-

ing from the recent works of Novy-Marx (2013) and Fama and French (2015), I use only
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theoretically-motivated firm characteristics from these most recent innovations in the asset

pricing literature. I use month by month multivariable cross-sectional regressions of these

key characteristics to estimate conditional coefficient estimates, avoid the awkward sort-

ing procedure, and aggregate the signals from multiple stock characteristics. By applying

simple filtering techniques, I reduce estimation and sampling error, use only information

known at time t, and predict expected returns. Finally, I sort stocks by their expected re-

turns to form implementable portfolios. Unlike similar studies such as Haugen and Nardin

(1996), Hanna and Ready (2005), and Lewellen (2014), who look at decile sorts only, I

look at more extreme sorts of expected returns into 25 and 50 portfolios (top and bottom

2% and 4%). To appease the skeptical reader, note that my model’s results are nearly iden-

tical to these prior studies when using decile sorts. Additionally I account for conservative

measures of portfolio turnover and trading costs to measure the true return of the strategies.

I also use a manageable set of explanatory variables which have statistically significant

nonzero prices of risk in Fama-Macbeth regressions containing all variables, a claim that

cannot be made by these studies. These related works use upwards of 50 variables in mut-

livariable regressions, increasing concerns of data snooping.

My best performing equal-weighted portfolio beats a benchmark market portfolio of all

stocks by 34.2% per year with only a modest increase in volatility, even after accounting

for transaction costs. The corresponding annual Sharpe ratio is 1.97 per year compared to

0.42 per year, over 4.7 times the size of the benchmark. Looking at a more conservative

sample that excludes micro cap stocks still yields annual returns after transaction costs

that are 11.46% larger than the benchmark, and a Sharpe ratio 2.18 times the benchmark.

I examine extreme values and tail risks and find that my portfolios outperform the market
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even in the worst of times. I examine the incremental predictive power of variables and find

that the past return variables have the largest incremental impact while size actually makes

expected return forecasts worse. My analysis provides detailed evidence that by exploiting

the cross-section of expected returns combined with Naive diversification, an investor can

earn large risk-adjusted returns in excess of a market portfolio, even after accounting for

trading costs.

For future research, my observations regarding the incremental contributions of the past

performance variables, measured monthly, offers an interesting avenue. If I can find vari-

ables that proxy for the level variables size, book-to-market, gross profitability, and invest-

ment, that are also measured monthly, perhaps this increased frequency of measurement

would increase their incremental contributions. I am currently working on estimators to

accomplish this goal.

Appendix

Data Description

For all accounting variables I employ the standard fiscal year matching popularized by

Fama and French (1992). The accounting variables for fiscal years that end in calendar year

t are matched with stock returns for July of year t+1 to June of year t+2. So there is at least

a six month lag for the accounting variables in each monthly cross-sectional regression.

1. log(ME): Market equity is defined as price per share times shares outstanding from

CRSP. To get ME for the firm, I aggregate values of all equity for a given permno and

date. This aggregate value is assigned to the permno with the largest ME. Slightly

deviating the Novy-Marx (2013) definition I update using the June market equity to
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compute this variable rather than the previous December value since his increases its

explanatory power in the cross section.

2. log(BE/ME): Book-to-market is book equity scaled by market equity. Book equity is

shareholder equity, plus deferred taxes, minus preferred stock, when available. The

shareholder equity components follow the tiered definitions consistent with those

used in Fama and French (1993) to construct the HML factor. Stockholder equity is

defined in Compustat as (SEQ) if available, or else common equity plus the carry-

ing value of preferred stock is available (CEQ + PSTX) if available, otherwise total

assets minus total liabilities (AT - LT) is used. Deferred taxes is deferred taxes and

investment tax credits (TXDITC) if available, or else deferred taxes and/or invest-

ment tax credit (TXDB and/or ITCB). Preferred stock is redemption value (PSTKR)

if available, or else liquidating value (PSTKRL) if available, or else carrying value

(PSTK).

3. GPdat: Gross profits and earnings before extraordinary items are Compustat data

items GP and IB, respectively. For free cash flow I employ net income plus depre-

ciation and amortization minus changes in working capital minus capital expendi-

tures (NI + DP - WCAPCH - CAPX). Gross profits are also defined as total revenue

(REVT) minus cost of goods sold (COGS).

4. Inv: Investment for firms in year t is the growth of total assets for the fiscal year

ending in year t− 1 divided by total assets at the end of year t− 2. This matches the

definition used by (Fama & French, 2015). In their valuation equation, the invest-

ment variable is actually defined as the expected growth of book equity, not assets.
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However, as they state, sorts on asset growth result in larger spreads of average return

and using growth in book equity produces similar results.

5. R1to0: The short-term reversal measure is simply the return at time t, lagged by one

period.

6. R12to2: The momentum measure is the previous year’s 11 month return, skipping the

previous month to prevent capturing short-term reversal in the momentum measure.

R2 Decomposition

I begin with the following regression equation:

y = Xγ + µ (12)

I begin with the basic definition of R2 for Eq. 12 found in Greene (1997).

R2 = (ρ(y, ŷ))2 (13)

R2 = (ρ(y, ŷ))2 = β̂

from the regression of

ŷ = α + βy

(Lemma 1)

Proof:

R2 = (ρ(y, ŷ))2 =
cov(ŷ, y)2

var(ŷ)var(y)
(14)

ŷ = α + βy

β̂ =
cov(ŷ, y)

var(y)

(15)

cov(Xβ,Xβ + u) = cov(Xβ,Xβ) = cov(ŷ, ŷ) = var(ŷ) (16)
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R2 = (ρ(y, ŷ))2 =
cov(ŷ, y)2

var(ŷ)var(y)
= β̂ =

cov(ŷ, y)

var(y)
(17)

Therefore to decompose R2 I simply have:

R2 =
∑
∀k

cov(y, γ̂kXk)

var(y)
(18)

I construct this decomposition each month in my sample. Since the cross-sectional size

differs from month to month (i.e. the number of firms), I multiply the covariance for k,

each month, by the appropriate degrees of freedom, N − 1, to yield the sum of squares. To

get the R2 decomposition presented in Table 6, I add up the marginal sum of squares for

all time periods, divided by the total sum of squares for all time periods. I then normalize

these and produce a statistic that sums to one.

SSk,t = (N − 1)t × cov(yt, γ̂kXk,t)

SSy,t = (N − 1)t × var(yt)

%R2
k =

∑
∀t

SSk,t

SSy,t∑
∀k
∑
∀t

SSk,t

SSy,t

(19)
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Table 1: Return spreads

Spreads generated from the top portfolio as sorted by expected return to the bottom port-
folio as sorted by expected return. To generate the expected returns a model of the form
ri,t+1 = α+β1ln(BE/ME)i,t +β2ln(ME)i,t +β3GPdati,t +β4R1to0i,t +β5R12to2i,t +
β6INVi,t was estimated and the estimates were averaged over an estimation window ini-
tialized with 60 months of data. Each subsequent time period the model was re-estimated
by enlarging the sample and the average estimates were updated every June. These average
estimates were used generate the expected returns. All averaged estimates at time period t
were generated using estimates prior to time period t. For Model 1 all estimates were used,
for Model 2 R1to0i,t and R12to2i,t were used only as controls and thus β4 and β5 were not
used to generate expected returns, and for Model 3 R1to0i,t was used only as a control and
thus β4 was not used to generate expected returns.

Portfolios Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Return Spreads Sharpe Ratios

Panel A: Full Sample
2 Portfolios 1.0889 0.5571 0.7551 0.3130 0.0567 0.1394
5 Portfolios 2.1256 1.1143 1.3959 0.4598 0.1715 0.2386
10 Portfolios 2.8880 1.5767 1.8431 0.5348 0.2347 0.2836
25 Portfolios 3.9086 2.0832 2.3618 0.6247 0.2872 0.3498
50 Portfolios 4.4275 2.4841 2.6305 0.6364 0.3148 0.3619
100 Portfolios 4.8262 2.5981 2.7744 0.5821 0.2912 0.3387

Return Spreads Sharpe Ratios

Panel B: No MicroCaps
2 Portfolios 0.7634 0.3834 0.5390 0.1784 -0.0182 0.0411
5 Portfolios 1.3813 0.7216 1.0534 0.2850 0.0754 0.1276
10 Portfolios 1.7737 0.9143 1.4514 0.3230 0.1002 0.1727
25 Portfolios 2.2046 1.2145 1.8015 0.3367 0.1323 0.2065
50 Portfolios 2.5200 1.3158 2.1031 0.3449 0.1324 0.2217
100 Portfolios 2.5265 1.5176 2.0704 0.2829 0.1349 0.1918

All models are equally-weighted, i.e. Naive diversification. Value weighted statistics are available on the web
appendix.
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Table 4: Extreme values and tail statistics

Statistics for monthly out of sample returns for portfolios formed by stocks sorted by
expected return. To generate the expected returns a model of the form ri,t+1 = α +
β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t was
estimated and the estimates were averaged over an estimation window initialized with 60
months of data. Each subsequent time period the model was re-estimated by enlarging the
sample and the average estimates were updated every June. These average estimates were
used generate the expected returns. All averaged estimates at time period t were generated
using estimates prior to time period t. For M1 all estimates were used, for M2 R1to0i,t and
R12to2i,t were used only as controls and thus β4 and β5 were not used to generate expected
returns. ‘Hedge’ denotes a zero cost hedged portfolio formed by shorting the bottom port-
folio and buying the top portfolio. The number of portfolios were either 50, 25, or 2 as
denoted in the Model column. ‘R<X%’ counts the number of months where the portfolio
return exceeded the stated threshold. There were 546 out-of-sample monthly returns.

Models MaxDD Calmar CVaR (5%) R<0% R<-5% R<-10%

Panel A: Full Sample, Hedge Portfolios
Hedge50M1 47.054 1.129 -7.799 98.000 4.000 1.000
Hedge25M1 41.390 1.133 -6.886 109.000 4.000 1.000
Hedge50M2 36.962 0.806 -10.401 192.000 13.000 0.000
Hedge25M2 33.425 0.748 -9.817 186.000 10.000 0.000

Panel B: No MicroCaps, Hedge Portfolios
Hedge50M1 40.940 0.739 -9.348 173.000 9.000 0.000
Hedge25M1 37.553 0.704 -8.542 165.000 8.000 0.000

Panel C: Shortsale Constrained Portfolios
FullSamp25M2 45.914 0.570 -14.153 195.000 26.000 3.000
NoMicroCaps25M2 49.170 0.372 -15.424 214.000 24.000 5.000

Panel D: Low Volatility, No MicroCaps, Hedge Portfolios
Hedge2M1 17.387 0.752 -3.386 136.000 0.000 0.000

Panel E: Benchmark Portfolio, All Stocks
Benchmark 44.647 0.317 -12.476 211.000 16.000 2.000

All models are equally-weighted, i.e. Naive diversification. Value weighted statistics are available on the web
appendix.



47

Table 5: Statistical significance of the average estimated marginal effects

Panel A: All firms

(1) (2) (3) (4) (5) (6) (7)

Constant 1.39 1.66 1.31 1.53 1.10 1.51 1.54
(4.65) (5.55) (4.31) (5.05) (5.81) (4.89) (4.81)

GPdAT 0.68 . 0.76 0.41 0.80 0.66 0.68
(6.04) (.) (6.90) (3.60) (6.96) (5.87) (5.83)

INV −0.56 −0.57 . −0.77 −0.52 −0.52 −0.63
(−7.59) (−7.84) (.) (−8.55) (−6.87) (−6.79) (−7.92)

log(BE/ME) 0.36 0.30 0.44 . 0.46 0.35 0.28
(6.52) (5.39) (7.47) (.) (8.32) (6.10) (4.47)

log(ME) −0.07 −0.08 −0.07 −0.11 . −0.10 −0.06
(−1.72) (−2.09) (−1.72) (−2.90) (.) (−2.36) (−1.50)

R1:0 −5.72 −5.60 −5.57 −5.47 −5.30 . −5.51
(−14.17) (−13.82) (−13.65) (−13.05) (−12.45) (.) (−12.57)

R12:2 0.75 0.75 0.83 0.68 0.83 0.73 .
(3.98) (3.96) (4.34) (3.57) (4.19) (3.72) (.)

R2 0.046 0.043 0.044 0.040 0.034 0.038 0.036
(23.46) (22.21) (22.74) (22.17) (21.02) (22.35) (22.29)

Panel B: Excluding MicroCap Firms

(1) (2) (3) (4) (5) (6) (7)

Constant 1.36 1.57 1.22 1.49 0.94 1.24 1.63
(4.01) (4.55) (3.48) (4.30) (5.12) (3.59) (4.56)

GPdAT 0.65 . 0.78 0.32 0.69 0.66 0.57
(4.75) (.) (5.77) (2.26) (4.91) (4.83) (4.07)

INV −0.26 −0.29 . −0.55 −0.22 −0.25 −0.34
(−2.83) (−3.19) (.) (−4.78) (−2.22) (−2.64) (−3.43)

log(BE/ME) 0.29 0.20 0.36 . 0.32 0.29 0.17
(4.64) (3.17) (5.16) (.) (5.16) (4.51) (2.42)

log(ME) −0.07 −0.08 −0.06 −0.09 . −0.06 −0.08
(−1.89) (−2.10) (−1.51) (−2.54) (.) (−1.66) (−2.08)

R1:0 −4.20 −4.04 −4.04 −3.97 −4.08 . −3.87
(−9.55) (−9.13) (−9.06) (−8.75) (−9.13) (.) (−8.05)

R12:2 0.83 0.83 0.88 0.75 0.86 0.88 .
(3.78) (3.79) (3.98) (3.40) (3.90) (3.93) (.)

R2 0.067 0.062 0.063 0.059 0.059 0.057 0.050
(28.40) (26.16) (27.49) (27.39) (26.24) (27.17) (26.61)

The table summarizes the results of the cross-sectional regressions for NYSE, AMEX, and NASDAQ stocks.
I fit the regressions for every month from July 1963 to December 2013, and report the average value of the
time series of estimated slope coefficients for each explanatory variable. Fama-Macbeth t-statistics are shown
below the average slopes in parentheses.
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Table 6: Percentage of r-squared decomposition for cross-sectional regressions from July
1963 to Dec 2013.

Predictor M1 M2 M3 M4

logBEME 12.1221 26.7761 19.4277 45.2777
logME 25.4207 51.4146 7.2388 20.9481
GPdaT 4.5065 8.3561 5.5373 11.5742
INV 5.1980 13.4532 7.8589 22.2001
R1to0 24.4558 – 23.8045 –
R12to2 28.2970 – 36.1327 –

M1: Full Model all Variables
M2: Full Model no R1to0 and no R12to2
M3: No Micro Sample all Variables
M4: No Micro Sample no R1to0 and no R12to2

Table 7: Beta summary statistics of the full sample

July 1963 to Dec 2013. The columns ‘StdErr - Min T’ is the standard error of the mean of
the beta estimate for the minimum T case, i.e. 60 months. Each estimation period I use 12
more months of data to smooth the beta estimates so these 95% confidence limits represent
the instability of the beta estimates in the worst case. Each subsequent time period this
interval gets smaller at the rate of

√
(T ).

Statistic Mean StDev StdErr - Min T Lower 95% - Min T Upper 95% - Min T

Intercept 1.3874 7.3515 0.9491 -0.5107 3.2856
logBEME 0.3603 1.3608 0.1757 0.0089 0.7116
logME -0.0666 0.9517 0.1229 -0.3123 0.1792
GrossProf 0.6757 2.7536 0.3555 -0.0353 1.3867
Inv -0.5594 1.8141 0.2342 -1.0277 -0.0910
STR -5.7194 9.9372 1.2829 -8.2852 -3.1536
Mom 0.7500 4.6356 0.5985 -0.4469 1.9469
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Table 8: Performance of hedged top 4% - bot 4%(25 portfolios), full sample

Monthly statistics for out-of-sample returns for a test portfolio of the top X % of stocks as
sorted by expected return, vs. a portfolio of the top X % of stocks as sorted by expected
return as estimated by the full model. To generate the expected returns for the full model a
of the form ri,t+1 = α + β1ln(BE/ME)i,t + β2ln(ME)i,t + β3GPdati,t + β4R1to0i,t +
β5R12to2i,t + β6INVi,t was estimated and the estimates were averaged over an estimation
window initialized with 60 months of data. Each subsequent time period the model was
re-estimated by enlarging the sample and the average estimates were updated every June.
These average estimates were used generate the expected returns. All averaged estimates at
time period t were generated using estimates prior to time period t. For the test portfolios,
e.g. M33Prof, the profitability variable was removed from the expected return regression
and portfolios were reformed. Rows 1 - 6 represent the differences between the test model
and the full, Rows 7 - 12 show the test model, and Rows 13 - 18 show the full model.

Stats M101Prof M102Inv M103BEME M104ME M105Str M106Mom

MeanDiff -0.0787 -0.1847 -0.2857 0.0868 -1.4983 -0.0663
StdDiff 0.1222 0.4579 0.0620 -0.4382 0.1265 1.1478
SharpeRDiff -0.0272 -0.0780 -0.0575 0.0701 -0.2765 -0.1165
CAPM AlphaDiff -0.0769 -0.2290 -0.2908 0.0982 -1.3023 -0.0667
CAPM BetaDiff -0.0039 0.0928 0.0108 -0.0240 -0.4107 0.0009
IRalphaDiff -0.0271 -0.0801 -0.0575 0.0716 -0.2354 -0.1167

Mean 3.8299 3.7239 3.6230 3.9954 2.4104 3.8424
Std 5.7006 6.0362 5.6404 5.1402 5.7048 6.7262
SharpeR 0.5975 0.5467 0.5672 0.6948 0.3482 0.5082
CAPM Alpha 3.3480 3.1958 3.1340 3.5231 2.1226 3.3581
CAPM Beta 0.1215 0.2183 0.1363 0.1015 -0.2852 0.1264
IRalpha 0.5907 0.5377 0.5604 0.6894 0.3824 0.5011

Mean 3.9086 3.9086 3.9086 3.9086 3.9086 3.9086
Std 5.5784 5.5784 5.5784 5.5784 5.5784 5.5784
SharpeR 0.6247 0.6247 0.6247 0.6247 0.6247 0.6247
CAPM Alpha 3.4248 3.4248 3.4248 3.4248 3.4248 3.4248
CAPM Beta 0.1255 0.1255 0.1255 0.1255 0.1255 0.1255
IRalpha 0.6178 0.6178 0.6178 0.6178 0.6178 0.6178

All models are Equally Weighted
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Table 9: Performance of hedged top 4% - bot 4%(25 portfolios), no micro sample

Monthly statistics for out-of-sample returns for a test portfolio of the top X % of stocks as
sorted by expected return, vs. a portfolio of the top X % of stocks as sorted by expected
return as estimated by the full model. To generate the expected returns for the full model a
of the form ri,t+1 = α + β1ln(BE/ME)i,t + β2ln(ME)i,t + β3GPdati,t + β4R1to0i,t +
β5R12to2i,t + β6INVi,t was estimated and the estimates were averaged over an estimation
window initialized with 60 months of data. Each subsequent time period the model was
re-estimated by enlarging the sample and the average estimates were updated every June.
These average estimates were used generate the expected returns. All averaged estimates at
time period t were generated using estimates prior to time period t. For the test portfolios,
e.g. M33Prof, the profitability variable was removed from the expected return regression
and portfolios were reformed. Rows 1 - 6 represent the differences between the test model
and the full, Rows 7 - 12 show the test model, and Rows 13 - 18 show the full model.

Stats M107Prof M108Inv M109BEME M110ME M111Str M112Mom

MeanDiff -0.0724 -0.1442 -0.0776 0.1915 -0.3573 -0.5331
StdDiff 0.0514 0.1120 -0.0468 -0.0871 1.0671 0.6985
SharpeRDiff -0.0168 -0.0337 -0.0118 0.0425 -0.1128 -0.1283
CAPM AlphaDiff -0.0711 -0.2177 -0.0904 0.2291 -0.1541 -0.5338
CAPM BetaDiff -0.0028 0.1540 0.0269 -0.0788 -0.4259 0.0014
IRalphaDiff -0.0168 -0.0402 -0.0136 0.0481 -0.0757 -0.1286

Mean 2.1321 2.0603 2.1269 2.3961 1.8472 1.6714
Std 5.3392 5.3998 5.2411 5.2008 6.3549 5.9864
SharpeR 0.3199 0.3031 0.3249 0.3792 0.2240 0.2084
CAPM Alpha 1.6433 1.4967 1.6240 1.9435 1.5603 1.1806
CAPM Beta 0.1360 0.2928 0.1656 0.0600 -0.2871 0.1402
IRalpha 0.3103 0.2869 0.3135 0.3752 0.2514 0.1985

Mean 2.2046 2.2046 2.2046 2.2046 2.2046 2.2046
Std 5.2878 5.2878 5.2878 5.2878 5.2878 5.2878
SharpeR 0.3367 0.3367 0.3367 0.3367 0.3367 0.3367
CAPM Alpha 1.7144 1.7144 1.7144 1.7144 1.7144 1.7144
CAPM Beta 0.1388 0.1388 0.1388 0.1388 0.1388 0.1388
IRalpha 0.3271 0.3271 0.3271 0.3271 0.3271 0.3271

All models are Equally Weighted
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CHAPTER 3: NAIVE DIVERSIFICATION ISN’T SO NAIVE AFTER ALL

Introduction

Modern Portfolio Theory of course began with the seminal work of Markowitz (1952)

who developed the workhorse theory of mean-variance efficiency. The two central condi-

tions of Markowitz’s fundamental model are that: (1) investors must desire to act according

to the mean-variance efficient outcome and (2) investors must be able to arrive at a reason-

able estimate for the mean return and covariance structure of asset choices. Estimation risk

is a common term which emphasizes the failure of Markowitz’s second condition. Estima-

tion risk is the foundation of my work and the related literature. Samuelson (1967) notably

added to Markowitz’s work by proving that a 1/N (naive), equally weighted portfolio was

the optimal strategy when return distributions are independently and identically distributed

(IID). An implication of naive investing is an assumption that all moments of returns are

equal; specifically the mean and variance for mean-variance investors . These assumptions,

while likely not realistic, give rise to some appealing features regarding naive diversifi-

cation. As discussed by Demiguel et al. (2009) and Kirby and Ostdiek (2012), some of

these features include: no estimation error, no optimization, no matrix inversion, no shorts,

extremely low turnover, and easy application to a large number of assets.

This paper directly compliments the work of Demiguel et al. (2009) and Kirby and Ost-

diek (2012). These authors both present compelling arguments but offer very different

conclusions. This study presents a middle ground between these authors’ positions and
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provides evidence consistent with both. I find simply that naive diversification is hard to

beat and perhaps naive investing isn’t so naive after all. I conduct a horse-race of the most

recent innovations in portfolio optimization techniques using actual stock data, most simi-

lar to the study presented by Demiguel et al. (2009). To create my empirical datasets I use

the sequential cross-sectional regression methodology described in Dickson (2015) to pre-

dict top performing stocks. Following from comments by both Demiguel et al. (2009) and

Kirby and Ostdiek (2012), I introduce a statistic to measure the cross-sectional dispersion

of the conditional means and volatilities of my data. Consistent with Kirby and Ostdiek

(2012), I conclude that the cross-sectional dispersion of the Sharpe ratios in my top per-

forming stock portfolios are simply too small for mean-variance extensions to outperform

naive diversification. These results add to the mounting evidence of the poor performance

of portfolio optimization techniques. Using robust simulations, I do confirm that the exten-

sions proposed by Kirby and Ostdiek (2012) are successful at improving the performance

of mean-variance optimization. However, due to the very issues that these authors discuss,

these techniques are incapable of outperforming naive diversification using actual stock

data.

Demiguel et al. (2009) compared the out-of-sample performance of 14 competing port-

folio strategies and ultimately determined that estimation risk eroded nearly all the gains

from sophisticated optimization techniques. Simply put, no strategy consistently outper-

formed naive diversification. Kirby and Ostdiek (2012) presented evidence to refute this

claim and argued that the research design of Demiguel et al. (2009) placed mean-variance

optimization at a severe disadvantage in terms of estimation risk and turnover. They devel-

oped simple extensions of mean-variance optimization designed to reduce estimation risk
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and portfolio turnover, and showed that their extensions outperform naive diversification

even in the presence of high trading costs. Furthermore, they present evidence that the

performance of their extensions is driven by characteristics of the datasets tested. Specif-

ically, datasets that do not have large cross-sectional dispersions in means and variances

will likely not perform well using strategies designed to exploit this dispersion, i.e. mean-

variance strategies.

I contribute to this line of work in several key ways. First I conduct a comprehensive

portfolio analysis using individual stock data and not portfolios of stocks. While some au-

thors such as Green and Hollifield (1992), Jagannathan and Ma (2003), and Brandt et al.

(2009) used individual stock data in a portfolio analysis, my study is the first to present a

horse-race of the most recent innovations in portfolio optimization using individual stocks.

Both Demiguel et al. (2009) and Kirby and Ostdiek (2012), as well as many other au-

thors such as Kan and Z. (2007), Garlappi, Uppal, and Wang (2007), Kirby and Ostdiek

(2015), and DeMiguel, Martin-Utrera, and Nogales (2013) et al., only consider portfolios

of stocks when testing competing models. Demiguel et al. (2009) comment that this gives

naive diversification an advantage because diversified portfolios have lower idiosyncratic

volatility than stocks, so the loss from using naive diversification as opposed to optimal

strategies is smaller (p.1920). Their comment hints at what is claimed by Kirby and Ost-

diek (2012), i.e. that the cross-sectional dispersions in means and variances of the datasets

drives performance. In addition to attenuating the apparent advantage towards naive diver-

sification, using individual stock data has another practical benefit; that is, it more accu-

rately replicates a fund manager’s portfolio construction dilemma. Common datasets used

in the aforementioned studies include the readily available characteristic based portfolios
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from Ken French’s data library, industry portfolios, or country indices. Fund managers

are generally more interested in investing in a particular group of stocks or sectors that

are more likely to outperform as provided by their team of analysts. They are likely less

interested in investing in portfolios of stocks that are not traded, like the data found in Ken

French’s data library, or simply all sectors and countries taken as a whole. The procedure

described by Dickson (2015) aggregates forecasting signals from multiple sources known

at time t, and predicts stock returns. These portfolios then serve as an excellent proxy for

a group of actual stocks that are likely to outperform. The added advantage of an analysis

with these data is that these results are tradeable and complete with aggressive adjustments

for portfolio turnover.

Second, Demiguel et al. (2009) conclude that the approach proposed by Brandt et al.

(2009) shows the most promise in for the performance of optimized portfolios. Therefore

I include this model in my tests and use multiple sets of stock characteristics not examined

by Brandt et al. (2009).

Third, I provide a robust Monte Carlo analysis of the models introduced by Kirby and

Ostdiek (2012) to further test if these recent innovations are successful at reducing estima-

tion risk and turnover. Additionally I present a fund of funds approach to further reduce

estimation error and test several extensions of the reward-to-risk timing methodology pro-

posed by Kirby and Ostdiek (2012).

In Section 2 I describe all of the portfolio strategies tested in the study. In Section 3

I describe the sources of data, the construction of the top performing stocks used in the

analysis, the methodology for evaluating performance, and the details of the simulation

experiment. Section 4 presents and discusses all results and Section 5 concludes.
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Portfolio Strategies

All of the asset-allocation models considered are some variant of the solution to an ex-

pected utility maximization problem. Details for the much of the motivating theory for

these models can be found in Brandt et al. (2009) and Kirby and Ostdiek (2012). The

model of Brandt et al. (2009) is generalized for any utility function while the variants of

mean-variance optimization are most commonly stated in terms of quadratic utility. How-

ever, mean-variance solutions can also be solved explicitly for CARA utility functions with

normal IID returns. Mean-variance preferences can also be generalized for other utility

functions with the assumption of normal IID returns, but the solutions may not be solved

explicitly. If returns are normally distributed, then a 2nd-order Taylor expansion of any

utility function will yield a problem in which only estimates for the first two moments of

returns are required. Given this generality I will describe the tested strategies for two cate-

gories: mean-variance strategies and parametric portfolio choice. Table 11 summarizes the

models presented below.

Mean-Variance Strategies

To introduce some notation rt = Rt − Rf,t1, µt = Et[rt+1], and Σt = E[(rt+1 −

µt+1)(rt+1 − µt+1)′] Rf,t equals the risk-free rate at time t and Rt equals the vector of

gross risky excess returns at time t. I also denote wt as the vector risky-asset weights and

wrf,t as weight in the risk-free asset. With this notation the conditional portfolio mean

vector is computed as µp,t = w′tµt and the conditional portfolio variance is computed as

σ2
p = w′tΣtwt. The standard conditional mean-variance optimization problem solves the
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following optimization problem:

min
wt

1

2
w′tΣtwt , s.t. w′tµ = µp,t (20)

Equivalently one could maximize the portfolio expected return subject to a given level of

portfolio risk. The well known solution is:

wt =
µp,tΣ

−1µt

µ′tΣ
−1
t µt

(21)

For the tangency portfolio the risky asset weights sum to one so imposing this restriction

and solving yields the following well known tangency portfolios weights:

wtp =
Σ−1µt

1′Σ−1
t µt

where µp,t =
µ′tΣ

−1
t µt

1′Σ−1
t µt

(22)

In terms of utility functions, either quadratic utility or CARA utility with normal returns,

an investor solves the following problem where g is equal to an investor’s coefficient of

relative risk aversion.

max
wt

µp,t −
g

2
σ2
p With a solution of: wt =

Σ−1µt
g

(23)

Comparing equation 21 with equation 23 we note the inverse relationship between g and

µp,t. As an investor becomes more (less) risk averse they choose a lower (higher) tar-

get expected portfolio return. Furthermore, all investors hold weights in the same relative

proportions given by the tangency portfolio weights wtp and wrf . Under the usual assump-

tion that all investors agree on the distribution of returns, their portfolios differ only in the

amount of wealth they allocate to the risky assets. Using the result from the mutual fund

separation theorem we can decompose any efficient portfolio return in terms of weights
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invested in the tangency portfolio (x) and the risk-free asset (1− x):

µp,t = (1− x)Rf,t + (x)(
Σ−1µt

1′Σ−1
t µt

)′Rt (24)

Using the solution to equation 23 this implies that x = 1′Σ−1
t µt/g. Again we can see the

inverse relationship between an investors’ risk-aversion, g, and the target expected portfolio

return. With these basic equations I will express each of the mean-variance strategies in

terms of the weights given by the fundamental result in equation 21. For all of these results

we must arrive at some “plug-in” estimate for the unobserved population values of µt and

Σt. Additionally, all of the strategies discussed can be described as a shrinkage estimator

of equation 21 and some prior, as well constraints on the weights.

As noted by Demiguel et al. (2009), a prominent role in the vast literature on estimation

risk is played by the Bayesian approach and in particular, shrinkage estimators.10 Put sim-

ply shrinkage involves a convex linear combination of two estimators, δF + (1 - δ)S, where

δ is a number between 0 and 1. This technique is named shrinkage, since the estimator S

is shrunk toward a more structured estimator, i.e. a prior, F .

Naive Diversification

There is certainly no shortage of proponents backing the use of an equally weighted

portfolio. Some of the more recent an compelling evidence can be found in Demiguel

et al. (2009), Pflug, Pichler, and Rendek (2012), and Murtazashvili and Vozlyublennaia

(2013). Even authors such as Tu and Zhou (2011) and Kirby and Ostdiek (2012) who

ultimately argue in favor of Markowitz theory note the strong empirical performance of

10For a relevant review of the development and application of shrinkage estimators to finance I refer the
reader to Demiguel et al. (2009), Ledoit and Wolf (2003, 2003).
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naive diversification. Computing these portfolio weights is simple, the naive strategy holds

weights equal to 1/N for each of the N risky assets. While the implications of investing in

a naive portfolio is an assumption that all moments of returns are equal, it can be expressed

as a shrinkage estimator. To do this I consider the tangency portfolio weights given in

equation 22 and a shrinkage constant of δ = 1. The prior for the variance-covariance

matrix of returns is an identity matrix and the prior for the vector of gross excess returns is

a conformable vector of ones. In my tables of results this estimator is labeled as Naive and

the weights can be computed as:

wnaive =
I−1
N 1

1′I−1
N 1

(25)

Minimum Volatility

The global minimum volatility portfolio plays a special role in portfolio theory as shown

by Kirby and Ostdiek (2012). When optimizing over the risky assets only, they show that a

two-fund separation theorem still applies where the return on the minimum-variance port-

folio takes the place of the risk-free asset. Recent works such as Jagannathan and Ma

(2003) and Frahm and Memmel (2010) present strong performance of the global minimum

variance portfolio in out-of-sample tests by imposing short-sale constraints and using opti-

mal shrinkage targets. The minimum-variance portfolio can further be seen in the context

of the tangency portfolio weights with a shrinkage estimator applied to the vector of excess

returns. Simply define a shrinkage constant of δ = 1 and a prior given as a conformable

vector of ones. Applying this to the tangency weights in equation 22, the minimum volatil-
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ity weights, labeled as Minv, can be computed as:

wMinv =
Σ−1
t 1

1′Σ−1
t 1

(26)

To further reduce estimation risk I also consider a minimum variance model incorporat-

ing an extreme version of shrinkage estimation, (Fleming, Kirby, & Ostdiek, 2001, 2003;

Kirby & Ostdiek, 2012). These strategies are referred to as “volatility-timing” strategies

and they significantly outperform mean-variance efficient portfolios in Kirby and Ostdiek

(2012). Specifically Kirby and Ostdiek (2012) restrict the covariance matrix of excess re-

turns to be diagonal thereby requiring no estimation of conditional covariances. In terms

of a shrinkage estimator I again use δ = 1 as the shrinkage constant and prior is simply a

diagonal matrix with the conditional sample volatility estimates along the main diagonal.

In my tables this strategy is labeled, Voltiming, and can be computed as:

ŵi,t =
(1/σ̂2

i,t)
η∑N

1=1(1/σ̂2
i,t)

η
(27)

This estimator can also be thought of as a special case of the unlevered risk-parity port-

folios introduced by Asness, Frazzini, and Pederson (2012) where portfolio weights are

defined as, wi,t = ktσ
−1
i,t . Since this portfolio is unlevered they define kt = 1/

∑
i σ
−1
i,t and

these weights are then same as the Voltiming weights in equation 27. Kirby and Ostdiek

(2012) define η as a “tuning” parameter to control timing aggressiveness. When η = 1 we

get the risk-parity weights, as η → 0 we get naive diversification, and as η → ∞ the least

volatile asset gets all the weight.11

11I use η = 1 in my analysis although I did experiment with multiple values but found nothing of conse-
quence.
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Tangency Portfolio and the Risky Assets Only

The solution for the tangency portfolio weights can be found in equation 22, and this

strategy is abbreviated in my tables as TP. Kirby and Ostdiek (2012) show in detail that the

study by Demiguel et al. (2009) placed the mean-variance model at a large disadvantage

relative to the naive portfolio by focusing on the tangency portfolio. Referencing equation

22 we can see that the tangency portfolio weights imply an expected target portfolio return

and Kirby and Ostdiek (2012) show that this target is quite aggressive. To address this

issue Kirby and Ostdiek (2012) consider optimization over the risky assets only yielding

the following weights:

wOC1N = XTP,t
Σ−1µt

1′Σ−1
t µt

+ (1−XTP,t)
Σ−1
t 1

1′Σ−1
t 1

Where XTP =
µp,t − µMV,t

µTP,t − µMV,t

(28)

In equation 28 µp,t is the target expected portfolio return, µMV,t is the expected return on

the minimum volatility portfolio, and µTP,t is the expected return on the tangency portfolio.

To reduce the aggressiveness of the tangency portfolio strategy they set µp,t = µ̂t
′1/N , i.e.

the expected return of naive diversification. I also consider a version of this estimator that

restricts all weights to be positive while still summing to one. I label the former as OC1N

and the latter as OC1Npos. OC1Npos can be computed simply as:

wOC1Npos,i,t =
max(wOC1N,i,t, 0)∑N
i=1max(wOC1N,i,t, 0)

(29)
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Reward-to-Risk Timing

Kirby and Ostdiek (2012) introduce another timing strategy that does not ignore esti-

mates of the conditional expected returns called reward-to-risk timing strategies. I refer to

this strategy as RRT and the weights can be computed as:

ˆwRRT,i,t =
(µ̂i,t/σ̂

2
i,t)

η∑N
i=1(µ̂i,t/σ̂2

i,t)
η

(30)

I also consider a constrained version of this strategy where all weights are restricted to

be positive, but still sum to one. I refer to this strategy as RRTpos and this restriction

means that I set the weight to zero for any asset with a negative estimate for the conditional

expected return:

ˆwRRTpos,i,t =
max( ˆwRRTpos,i,t)∑N

i=1 ˆwRRTpos,i,t
(31)

Kirby and Ostdiek (2012) also implement an alternative estimator of the conditional

expected returns implied by the conditional CAPM. In the conditional CAPM the market

risk premium is just a scaling factor so all of the cross-sectional variation in conditional

expected excess returns come from variation in conditional beta. Therefore they compute

weights for this alternative estimator as:

ˆwβ,i,t =
(β̂+

i,t/σ̂
2
i,t)

η∑N
i=1(β̂+

i,t/σ̂
2
i,t)

η
and also ŵβ̄,i,t =

(β̄+
i,t/σ̂

2
i,t)

η∑N
i=1(β̄+

i,t/σ̂
2
i,t)

η
(32)

The asymptotic variance of this alternative estimator is lower than then conditional mean

for all values of β 6= 0.12 Kirby and Ostdiek (2012) extend this idea to multi-factor models

and implement this estimator using the Carhart (1997) 4-factor model. In their analysis they

12Details can be found in Kirby and Ostdiek (2012).
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assume all factors have identical risk premiums and thus their estimator for β in equation 32

becomes β̄+
i,t = max(βi,t, 0) where β̄i,t = (1/K)

∑K
j=1 βi,j,t. Therefore the conditional ex-

pected return proxy for each asset in equation 32 is just the average conditional beta for each

of the K factors. I test six different variations of this model. I label the first three FF3m,

FF4m, and FF5m to denote conditional β estimates with respect to the Fama and French

(1993) 3-factor model, the Carhart (1997) 4-factor model, and the Fama and French (2015)

5-factor model. I label the next three FF3mw, FF4mw, and FF5mw and use the same three

factor models but estimate β̄i,t differently. Instead of assuming identical risk premiums, I

estimate β̄i,t as a weighted average where the weights are computed from the absolute val-

ues of the estimated time series factor risk premium: β̄i,t =
∑K

j=1 βi,j,t|r̄k|/
(∑K

j=1 |r̄k|
)

.

Parametric Portfolio Choice

In Demiguel et al. (2009) the authors conclude that using information about the cross-

sectional characteristics of assets adds substantial value in their portfolio optimization ex-

periment. They derive these results through the implementation of the Brandt et al. (2009)

procedure to two of their test datasets. In the conclusion of their paper they recommend

expanding on this procedure as a means to improve performance of optimized portfolios.

The approach of Brandt et al. (2009) is similar to mean-variance strategies only in that an

investor continues to optimize expected utility, but differs sharply in that the joint distri-

bution of asset returns is not estimated directly. Instead, they parameterize the portfolio

weights directly as a function of the asset characteristics and maximize expected utility

over historical data relative to the parameters, not the weights. This procedure reduces to

a relatively simple statistical estimation problem that is implemented using the generalized
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method of moments estimator (GMM) of Hansen (1982). I will explain the general idea

briefly for my application but refer the reader to Brandt et al. (2009) for additional details

and discussion. As with mean-variance strategies the investor maximizes expected utility:

max
(wi,t)

Nt
i=1

Et[u(rp,t+1)] = Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]

wi,t = f(xi,t;θ)

f(xi,t;θ) = w̄i,t +
1

Nt

θ′x̂i,t

(33)

The attractiveness of the procedure lies in the parsimonious parameterization of the wi,t; it

is particularly well-suited to solve an optimization problem with a large number of stocks,

Nt. In the above specification, w̄i,t is the weight of stock i at time t defined by the in-

vestor, θ is a vector of coefficients, and x̂i,t are the observed characteristics for each stock

standardized cross-sectionally to have zero mean and unit standard deviation at each time

period t. Since I am particularly interested in how this technique performs relative to naive

diversification, I set w̄i,t = 1/Nt. This means that my estimates of θ will determine the

deviations from naive diversification and because x̂i,t are standardized, the weights always

sum to one. As in their original paper, I also use a power utility function with standard

CRRA preferences over wealth of the following form:

u(rp,t+1) =
(1 + rp,t+1)1−γ

1− γ
(34)
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To put this optimization problem into a GMM framework I set the sample analog of the

first-order conditions of the k θs as the moments to be set to zero:

1

T

T−1∑
t=0

g(rt+1, x̂i,t; θ) =
1

T

T−1∑
t=0



(1 + rp,t+1)−γ
(∑Nt

i=1(1/Nt)x̂1,i,tri,t+1

)
(1 + rp,t+1)−γ

(∑Nt

i=1(1/Nt)x̂2,i,tri,t+1

)
...

(1 + rp,t+1)−γ
(∑Nt

i=1(1/Nt)x̂k,i,tri,t+1

)


(35)

I provide additional details on the GMM procedure including statistical inference in section

3. For the explanatory variables I use two different groups of observed characteristics.

The first group consists of the level variables log market equity (me), log book-to-market

equity (btm), gross profitability (Prof), and investment (Inv). The second group adds the

flow variables short-term reversal (Str) and momentum (Mom). These variables are the

same characteristics used to generate the stock portfolios most likely to outperform and are

described in detail Section 3. I follow the estimation procedure described by Brandt et al.

(2009) and initialize my out-of-sample returns with 120 months of historical data. I use

the first 120 months of data to estimate the coefficient estimates, and use these estimates

to form out-of-sample returns for the next year (12 months). Every subsequent year I

reestimate the coefficients by enlarging the sample, and use the estimated coefficients to

form the next 12 months of out-of-sample returns.

Empirical Application

Data

Recent studies commonly compare the performance of various portfolio strategies using

portfolios of stocks rather than individual stocks. Some examples of this include Kan and
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Z. (2007), Demiguel et al. (2009), Kirby and Ostdiek (2012), Kirby and Ostdiek (2015),

and DeMiguel et al. (2013). However some other studies on mean-variance efficiency such

as Green and Hollifield (1992), Jagannathan and Ma (2003), and Brandt et al. (2009) used

individual stock data in their analysis. To more accurately replicate the problem faced by a

fund manager I focus on individuals stocks. My sample consists of 8 datasets of individual

stocks spanning July 1963 to Dec 2013 with monthly holding period returns obtained from

the Center for Research in Security Prices (CRSP) and accounting data from Compustat.

The sample includes common equity securities (share codes 10 and 11) for all firms traded

on the NYSE, NASDAQ or AMEX (exchange codes 1, 2, and 3) who have a continuous

time series of monthly returns for the previous 120 months at any time t.13 To further en-

hance the consistency of this experiment with a fund manager’s actual portfolio construc-

tion dilemma, I consider stocks which are deemed most likely to outperform. To define

stocks that are more likely to outperform I use the approach discussed by Dickson (2015)

that relies on sequential cross-sectional regressions of key stock characteristics to forecast

next period’s returns. I consider the following stock characteristics consistent with Dickson

(2015): size (log(ME)), book-to-market (log(BE/ME))14, profitability (ratio of gross profits

to assets), past performance measured at horizons of one month (r1,0) to capture short-term

reversals, and 12 to two months (r12,2), to capture momentum, and investment (growth of

total assets from previous fiscal year). I provide exact definitions for these variables and

their construction in the appendix. As in Novy-Marx (2013), to reduce the effect of out-

liers, I trim all independent variables at the 1% and 99% levels. I further break-up the

13This restriction facilitates the computation of the second moments of stock returns
14Taking logs makes the cross-sectional distribution of market equity and book-to-market more symmet-

ric, reducing the impact of outliers
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stocks into two groups denoted the “Full Sample” and the “No Micro Sample”. Fama and

French (2008) define microcaps as stocks with a market value of equity below the 20th

percentile of the NYSE market capitalization distribution. Microcaps make up about one

half of the stocks on NYSE, AMEX, and NASDAQ, but account for only about 3% of the

total market cap. As they note, these small stocks may be less liquid than the representative

sample and thus result in above average transaction fees. I estimate all models using the

full sample without the microcap stocks to examine the extent to which the performance

gains are driven by microcap stocks.

Generating the Expected Returns

To generate the expected returns I follow the approach used by Dickson (2015) and begin

with the following specification for the month by month cross sectional regressions:

ri,t+1 = α + β1ln(BE/ME)i,t + β2ln(ME)i,t + β3GPdati,t + β4R1to0i,t

+β5R12to2i,t + β6INVi,t + εi, t

(36)

I estimate this model for each of the 606 months from July 1963 through December

2013. Since the conditional coefficient estimates from month to month are quite noisy, I

apply a simple rolling average to the coefficients to filter out the signal. This smoothed

estimator takes the following form:

β̂t =
1

t− 1

t−1∑
i=1

βi

Dickson (2015) shows that these regression coefficients are relatively stable over time

and that this method significantly reduces estimation and sampling error. To curb excessive

turnover and transaction costs, I update the smoothed coefficients annually, specifically ev-
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ery June. As discussed in Section 3 I use two different groups of observed characteristics.

The first group consists of the level variables log market equity (me), log book-to-market

equity (btm), gross profitability (Prof), and investment (Inv) denoted “No Momentum.” The

second group adds the flow variables short-term reversal (Str) and momentum (Mom) de-

noted “All Variables.” The estimated expected returns from these two models are computed

as follows:

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t + β̂4,sR1to0i,t

+β̂5,sR12to2i,t + β̂6,sINVi,t

(All Variables)

r̂i,t+1 = α̂s + β̂1,sln(BE/ME)i,t + β̂2,sln(ME)i,t + β̂3,sGPdati,t

+β̂6,sINVi,t

(No Momentum)

Note that the mean parameter estimates for month t are based on estimates before month

t and the stock characteristics are known in month t. This ensures that I have an imple-

mentable trading strategy. This procedure should yield a reliable proxy for a universe of

stocks that are likely to outperform. Hedge funds and fund managers are generally in-

terested in optimizing over a subset of stocks that they think will do well, not just many

different portfolios as used in the aforementioned studies. For my analysis I focus on the

top 20% and top 10% of stocks from a sort of these expected returns. Table 10 lists the 8

datasets, the average number of stocks, and the average size of the stocks in each dataset

over the time period of July 1973 through December 2013. In the full sample the number of

stocks ranges from 88.77 to 177.06 and in the no micro sample the number of stocks ranges
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from 54.88 to 109.231. In both the full sample and the no micro sample the model ex-

cluding the momentum variables picks smaller stocks. For the full sample smallest average

size is $87.25 M for the top 10% of stocks excluding momentum variables and the largest

average size is $697.20 M for the top 20% using all variables. In the no micro sample the

smallest average size $741.24 M for the top 10% of stocks excluding momentum variables

and the largest average size is 1904.21 M for the top 20% using all variables.

Methodology for Performance Comparison

To compare the performance of the competing strategies I employ the common rolling-

sample approach of Demiguel et al. (2009) and Kirby and Ostdiek (2012). To implement

this procedure a historical window of j months is used to estimate the conditional moments

of returns and then these estimates are used to generate 1 out-of-sample return that is a

function of the actual returns in month j + 1. The historical window of j months remains

fixed as I iterate forward one month at a time through the end of my sample. Given my

time series of 606 monthly returns this procedure yields 606 - j out-of-sample returns. I

set j = 120 months consistent with both Demiguel et al. (2009) and Kirby and Ostdiek

(2012). This choice generates 486 out-of-sample returns where my first out-of-sample

return occurs in month 121, i.e. July 1973. Mathematically the rolling estimators take the

following form:

µ̂t =
1

j

j−1∑
i=0

rt−i

Σ̂t =
1

j

j−1∑
i=0

(rt−i − µ̂t)(rt−i − µ̂t)′
(37)

For the performance comparison the reported statistics are computed from the 486 out-of-

sample returns. Adjustments for portfolio turnover and trading costs are explained in the
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next section.

Portfolio Turnover and Trading Costs

Portfolio turnover is an often overlooked but a very real cost to investors. Transactional

brokerage fee costs are typically not included in the calculation of a fund’s operating ex-

pense ratio and thus the true operating expense of high turnover funds can be significant.

As long as transaction costs are greater than zero, anything that increases turnover directly

reduces the true performance of a fund. The bid/ask spread represents perhaps the largest

component of trading costs. In a practical application, the costs of the bid/ask spread would

already be directly included in the return of a fund since assets are bought at the ask price

and sold at the bid price. However, using CRSP data, the returns are computed from an

average of the closing bid/ask spread, therefore not capturing the true costs of the bid/ask

spread. To examine the amount of trading required to implement each strategy and ap-

proximate these real frictions, I follow Kirby and Ostdiek (2015). Turnover is simply the

fraction of invested wealth traded each period needed to re-balance the portfolio to the

desired weights. At any time t I calculate turnover as:

Turnovert =
N∑
i=1

1

2
|ŵi,t+1 − ŵi,t+ | (38)

This definition of turnover is consistent with what is used in the mutual fund industry,

i.e. the lesser of the value of purchases or sales in the period divided by the net asset value

(Kirby & Ostdiek, 2015). Since there are no fund inflows or outflows these must be equal.

I define ŵi,t as the portfolio weight in asset i at time t; ŵi,t+ is the portfolio weight before

re-balancing at time t + 1; and ŵi,t+1 is the desired portfolio weight at time t + 1, after
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re-balancing. To compute ŵi,t+ I must consider the mechanical changes that occur within

the portfolio. Assets that have done well over the time period will make up more than their

starting share of weight at the end of the period, and assets that have done poorly will make

up less than there starting share. I compute ŵi,t+ as:

ŵi,t+ =
ŵi,t(1 + ri,t)

1 +
∑N

i=1 ŵi,tri,t
(39)

Starting from the beginning of the sample, the first weights occur in month 121, therefore

the first turnover calculation occurs in month 122. Studies such as Kirby and Ostdiek (2015,

2012) and Demiguel et al. (2009) do not ignore these mechanical weights while others such

as Brandt et al. (2009) do ignore these mechanical changes. I have found that ignoring

these mechanical changes is innocuous in this setting but do include them to capture the

most conservative view of the trading costs.15 Now the return of the portfolio net of the

proportional transactions costs becomes:

rp,t+1 =
N∑
i=1

ŵi,tri,t+1 − 2× ci,t|ŵi,t − ŵi,t−1+|, (40)

where ci,t reflects the proportional transaction cost for stock i and time t. Since turnover is

the value of assets both purchased and sold as a fraction of total wealth, and both purchases

and sales incur transaction costs, I multiply the turnover in Eq. 40 by 2. Novy-Marx

and Velikov (2014) find that a momentum based trading strategy had one of the largest

time-series average costs of trading in his rigorous analysis of the trading costs of over

twenty common anomalies. These costs were estimated at 48.39 basis points per month.

While it has been noted by Domowitz et al. (2001) and Hasbrouck (2009) that the cost

15For the implementation of the Brandt et al. (2009) approach I do ignore the mechanical changes just as
they did in their study.
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of trading U.S. equities has declined over time, I want to be as conservative as possible

in accounting for these limits to arbitrage. To do so I set c = 50 basis points consistent

with the conservative measures used by Brandt et al. (2009), Demiguel et al. (2009), Kirby

and Ostdiek (2012, 2015), and the even more recent estimates by Novy-Marx and Velikov

(2014).

Finally, letting j reference the length of the rolling window (120 months), and T repre-

sent the total number of months in the study (606 months), numerically the average turnover

I report in the tables is:

Turnover =
1

T − j − 1

T−1∑
t=j+1

(
1

2

N∑
i=1

|ŵi,t+1 − ŵi,t+|

)
(41)

Statistical Inference

To conduct statistical inferences about the relative performance of my various strategies

using the Sharpe ratio, I follow Kirby and Ostdiek (2012) and use large sample t and chi−

squared statistics. I consistently compute these statistics using the generalized method

of moments (GMM). For details of the proof of the general results see Hansen (1982).

As Hansen (1982) shows, the Delta method, Slutky’s theorem and LLN are all used to

derive the asymptotic distribution of the GMM estimators. Recent asymptotic distribution

derivations for Sharpe ratios are also provided by Opdyke (2007) and Bailey and de Prado

(2011) who also use these theorems in their derivations. However I use GMM standard

errors to appeal to these more recent derivations while still applicable in a more general

context. As with any GMM analysis I begin with a set of moment conditions of the form

E(g(Rt, θ)) = 0, where g(Rt, θ) is a J × 1 vector of moments, analogous to disturbances,
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Rt is a vector or returns, and θ is J × 1 vector of parameters. The fundamental result from

Hansen (1982) shows that subject to general conditions, the limiting distribution of θ̂ is

given by:

√
T (θ̂ − θ) d−→ N(0, V ) (42)

With the following definitions:

V = D−1SD−1′ , D = E(∂g(Rt, θ)/θ
′), S =

∞∑
−∞

E(g(Yt, θ)g(Yt−j, θ)
′)

This definition of the limiting distribution for the parameter estimates also holds for the

Brandt et al. (2009) estimation procedure described in Section 3. For this GMM application

for Sharpe ratio comparisons the moment conditions are specified as follows:

g(Rt, θ) =



Rbench,t − σbench × SRbench

Rtest,t − σtest × SRtest

(Rbench,t − σbench × SRbench)
2 − (σbench)

2

(Rtest,t − σtest × SRtest)
2 − (σtest)

2


(43)

Using Eq. 42 I have the asymptotic standard errors of the Sharpe ratios and can now eas-

ily conduct a Wald test of linear restrictions to determine if the Sharpe ratios are statistically

different. To do so I consider the following test statistic:

(ŜRtest − ŜRbench)(RSRV R
′
SR)−1(ŜRtest − ŜRbench) ∼ X (1) (44)

In Eq. 44 the discrepancy vector RSR = (−1, 1, 0, 0), V is the asymptotic covariance

matrix described in Eq. 42, and the parameter vector θ = (SRbench, SRtest, σbench, σtest).
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Details for the Simulation Experiment

To provide further insight into the severity of estimation risk and turnover I conduct

a Monte Carlo analysis using simulated returns. Simulating the returns provides a direct

comparison of estimation risk as a function of the number of assets and the length of the

estimation window. A similar experiment was conducted by Demiguel et al. (2009) to

examine the severity of estimation risk of competing strategies. Demiguel et al. (2009)

simulate returns using a single-factor model with a normally distributed risk-free rate. I

do not follow this approach but instead simulate returns using a multivariate geometric

Brownian motion model to more accurately proxy actual returns. To determine the expected

return vector and the variance-covariance matrix I use 492 actual monthly stock returns

from Jan 1973 to December 2013. I gathered this data from CRSP using all firms traded on

the NYSE, AMEX, or Nasdaq and any firm without a complete time series of returns was

removed from the sampling pool. To create excess returns I simulate the risk-free rate as

a log-normal random variable where the moments matched the historic mean and standard

deviation of the 1-month T-bill over the same time period.16 I use a log-normal distribution

to ensure that the risk-free rate is never negative since it never drops below zero over this 40

year period. For each iteration of the simulation a random time series ofN stocks is chosen

from the actual stock data file. The expected return vector and variance-covariance matrix

of these returns are then computed and a time series of 240 returns are generated according

to a multivariate geometric Brownian motion model. I fix the rolling window for moment

estimation at 120 months, which also yields 120 months of out-of-sample returns. During

16This data was retrieved from the Ken French’s data library.
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each iteration I compute a Sharpe ratio for the out-of-sample returns as generated by 8 of

the asset allocation models. I do not simulate the factor models and so I am restricted to

the asset allocation models that only use the moments of the stock returns. For each Monte

Carlo experiment I run 1000 iterations of the aforementioned procedure. What makes this

experiment so effective is that each of the 1000 iterations is composed of a random group of

N stocks estimated from actual stock returns. This means that each simulation is entirely

independent and the expected return vector and variance-covariance matrix are allowed to

vary from iteration to iteration. The Sharpe ratios for each strategy are then averaged over

the 1000 iterations and these are the results presented in Figures 9, 11, and 10. Models were

estimated using 5 to 200 assets in increments of 5 such that each strategy consists of 40 data

points. By fixing the estimation window at 120 months and varying the number of assets, I

can directly asses the relationship between the amount of data used to estimate the moments

and the number of assets. I also measure the turnover of each strategy during each iteration

and measure Sharpe ratios assuming a constant transaction cost of c = 50 basis points.

Figures 9, 11, and 10 show the results from this experiment both including transaction costs

and not including transaction costs. This distinction allows for the severity of estimation

risk and turnover to be viewed separately over a set of independent simulations.

An Optimal Fund of Funds

As shown in Table 3, the average number of stocks in my dataset is much larger than

the more common universe of 10 to 25 assets as used in Demiguel et al. (2009), Kirby

and Ostdiek (2012), and Kirby and Ostdiek (2015). Without adjustments, traditional mean-

variance optimization is not even possible when the number of stocks exceeds the historical
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estimation window of 120 months, since the variance-covariance matrix is not invertible.

This was described in Ledoit and Wolf (2003) by writing the variance-covariance matrix in

the following form:

S =
1

T
X
(

I− 1

T
11′
)

(45)

Where X is an NxT matrix of N net stock returns and I is a conformable identity matrix

and 1 is a conformable vector of ones. The rank of this variance-covariance matrix is at

most equal to the rank of I − 11′/T which is T − 1. This means that if the number of

returns N is larger than T −1, the variance-covariance matrix is rank deficient and thus not

invertible. To address this issue I impose additional structure on the variance-covariance

matrix to ensure that mean-variance estimation is possible. This additional structure is

imposed by grouping a small number of stocks together to create a pseudo fund that is

equal-weighted, and then optimizing over these pseudo funds. By grouping stocks together

I am implicitly assuming that all moments of the stocks within each pseudo fund are equal.

This fund of funds procedure serves two purposes: 1) as long as the number of funds is

less than 120, it ensures that the variance-covariance matrix is invertible, and 2) serves as a

shrinkage estimator by equating all moments of the stocks within each pseudo fund. I use

the results of the simulation experiment to help guide me on the selection of the number

of pseudo funds. The results suggest that 20 pseudo funds should be close to optimal for

a rolling estimation window of 120 months.17 To create the pseudo funds I estimate each

stocks’ historical sample standard deviation over the same rolling window of 120 months,

and then sort these from high to low. I take the total number of stocks in each dataset at

each time t, and divide this number by 20, to determine how stocks to hold in each pseudo

17More details on these results are available in the next section.
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fund. Since this division is likely never exact I create the pseudo funds by making them

as equally balanced as possible. Given the evidence of the low-volatility anomaly recently

described in Baker, Bradley, and Wurgler (2011) and Andrea and Pederson (2014), I assign

fewer stocks to the funds with the lowest volatility, effectively giving those stocks slightly

larger weights in the pseudo funds.18 I then optimize over these pseudo funds, avoiding the

problem of a non-invertible variance-covariance matrix. Once I obtain the weights for the

pseudo funds, I then apply these to the equally-weighted stocks within each pseudo fund to

determine the final weights of each stock and generate the out-of-sample returns.

Results

Simulated Data Results

Figure 9 plots the Sharpe ratios of naive diversification, the actual tangency portfolio

(TP) using the known mean vector and known variance-covariance matrix, the estimated

TP, the estimated TP targeting naive diversification (TP1N), and the estimated TP targeting

naive diversification with short-sale constraints (TP1Np). The top panel does not include

trading cost adjustments and therefore provides a clean view of the effects of estimation

error as the number of assets increases. As expected, the actual TP has the largest Sharpe

ratio in every case since this involves no estimation error and is computed from the ex-

act moments used to simulate the data. The worst performing strategy is the estimated TP

which always has the lowest Sharpe ratio. This also means that even with only 5 assets, 120

months is not enough data for the estimated TP to outperform naive diversification. The

performance of the two TP strategies targeting naive diversification show that this restric-

18For example, if the total number of stocks was 123, division by 20 would leave a remainder of 3. I
assign 6 stocks (120/20) to pseudo funds 1 through 17 and 7 stocks to pseudo funds 18 - 20.
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tion enhances the empirical performance of TP strategies. Furthermore, the TP strategy

targeting naive diversification with short-sale constraints does just as good as the naive

strategy, corroborating evidence from Jagannathan and Ma (2003), Demiguel et al. (2009)

et al. that short-sale constraints improve empirical performance.

The plots in the bottom panel show the large reduction in performance due to trading

costs. The Sharpe ratio of the estimated tangency portfolio drops below zero after only

35 stocks and along with the TP portfolio targeting naive diversification, it drops as low

as -0.6 for 200 stocks. The turnover is not nearly as severe for the TP strategy targeting

naive diversification with short-sale constraints suggesting that constraints not only reduce

estimation error but also reduce turnover.

To determine the number of pseudo funds used in my optimal funds of funds analysis

I examine this figure by visual inspection. The performance of the estimated tangency

portfolio and its extensions begins to deteriorate after about 20 stocks. However, given

these plots I tested a variety of pseudo funds and found the choice to be rather innocuous.

Therefore I used 20 funds for the remainder of the analysis.

Figure 10 plots the Sharpe ratios of naive diversification, the actual TP, the estimated TP,

RRT, and RRTpos. The results show that the restrictions imposed by Kirby and Ostdiek

(2012) do achieve the desired results. Examining the plots both before and after trading

costs reveals commensurate performance with naive diversification. While 120 months is

still not long enough for these strategies to outperform naive diversification, at least it isn’t

so short that they vastly under perform.

Finally Figure 11 plots naive diversification, the actual global minimum variance port-

folio using the known variance-covariance matrix, the estimated global minimum variance
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portfolio (MinV), and the volatility-timing portfolio (Volt). As expected the actual MinV

portfolio has the largest Sharpe ratios. Further inspection of the figure shows that the VT

portfolio is highly effective at curbing both estimation risk and turnover. The VT portfolio

results are commensurate with the naive portfolio even after incorporating trading costs.

The MinV Sharpe indicates a severe loss in performance due to both estimation risk and

turnover. After incorporating trading costs the Sharpe ratio for the MinV portfolio turns

negative after 90 stocks.

The general conclusions from this experiment show that the models recently proposed

by Kirby and Ostdiek (2012) were successful in improving out-of-sample performance.

However, the results also suggest that the performance of naive diversification is relatively

strong and will be hard to beat with actual stock data.

Empirical Dataset Results

Full Sample Results

From Table 10 I find that both the number of stocks is larger and their average size

smaller, for the full sample stocks compared to the no micro sample. I first examine the

results for the full sample that were generated from my model excluding the momentum

variables, Datasets 1 and 2. Judging by the small average firm size from Table 10, it is

clear that the model used to create the datasets loads heavily on the small-cap anomaly.

Referencing Table 12, no competing strategy has a statistically larger Sharpe ratio than

naive diversification. The only statistically significant result is the under performance of

the RRT strategy. The p-value of this difference is 0.0086 with an estimated Sharpe ratio

after transaction costs of 0.2511. By comparison the Sharpe ratio of naive diversification
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is 0.7402. The largest Sharpe ratio after transaction costs is 0.7743 for Voltiming strategy

but this is only significant at the 15% level. All of the factor model RRT strategies have

marginally larger Sharpe ratios than naive diversification before transaction costs, but these

gains disappear after incorporating trading costs. The turnover for these RRT strategies is

on the order of 20% to 60% larger than the naive strategy, which is enough to reduce after

transaction fee performance below that of the naive strategy. Consistent with prior litera-

ture, the TP portfolio performs poorly and has extreme weights and turnover. The expected

return is 631%, the volatility is 3,454.6%, and the portfolio turnover is over 4600% per

year. After transaction costs the Sharpe ratio is barely above zero with a value of 0.0232.

The OC1N strategy does handedly beat the TP strategy, but it also has the second largest

turnover, over 81% per year. The OC1Npos is much more successful at producing com-

mensurate performance with naive diversification before transaction fees, but trading costs

are much larger and erode all gains.

Referencing Table 13 the competing strategies do not fare as well as they did in the

larger universe of stocks from Dataset 1. No Sharpe ratios are statistically different than

the naive strategy and both the naive and Voltiming strategies have the largest raw Sharpe

ratios after trading costs of 0.7313 and 0.7315 respectively. The Voltiming strategy has a

Sharpe ratio before transaction fees of 0.8001 compared to 0.7844 for naive diversification.

However, Voltiming also has a slightly higher turnover, 0.0772 compared 0.0647, such that

after transaction fees the results are indistinguishable. In both Tables 12 and 13 the short-

sale constraints greatly enhance performance through a reduction in estimation risk and

turnover. As an example the turnover of the RRT strategy falls from 426% per year to only

26.75% per year after imposing short-sale constraints. The BSV strategy produces results
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in both of these samples similar to the RRT factor models, in neither case beating naive

diversification.

I turn my attention now to the results in Tables 14 and 15 which are the datasets con-

taining all variables. From Table 10 these models pick much larger stocks, although the

average size is still relatively small, $697.2 M in the largest case. Not only does this mod-

els pick larger stocks, it also contributes substantially to an increase in turnover. Even

for naive diversification turnover increases from 5.83% to 34.86% per year. Referencing

Table 14 no Sharpe ratios are statistically different than the naive strategy. Additionally,

the naive strategy has the largest raw Sharpe ratio after trading costs of 0.7616. Includ-

ing these momentum variables greatly increases the Sharpe ratio before transaction costs,

0.9924 compared to 0.7897 for naive diversification. However, the increase in turnover

erodes nearly all gains such that the after transaction cost performance is about the same

as the datasets excluding the momentum variables. With the exception of the TP strategy,

which still produces extreme results, the naive strategy also produces the largest excess

mean return after transaction fees of 14.49% per year. The BSV strategy exhibits much

higher turnover in this sample as compared to Datasets 1 and 2, over 130% larger than the

RRT factor models. While this model does yield the largest Sharpe ratio before transaction

fees with a value of 1.079, after trading costs the Sharpe ratio falls to 0.610, well below the

value of naive diversification.

Table 15 tells much the same story as Table 14. The turnover is slightly larger, for the

naive strategy as it increased to 39.62% per year from 34.86% per year. However this is a

function of the model used for stock selection and the fact that the this is a smaller sample

of stocks, i.e. the top 10% compared to top 20%, and not a result of the strategy perfor-
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mance. Again the only statistically significant result is the under performance of RRT. The

p-value of this difference is 0.0300 with an estimated Sharpe ratio after transaction costs

of 0.1263 compared to the value of naive diversification of 0.8240. The Voltiming strategy

has a marginally higher Sharpe ratio after transaction fees of 0.8334 but the p-value for

this difference is 0.1572. The largest excess mean return is 26.15% per year for the BSV

model but the turnover for this model is large, 88.21% year, such that after transaction fees

this strong result disappears. As before the short-sale constraints improve performance by

reducing estimation risk and reducing turnover.

Overall the results from these datasets show that naive diversification is hard to beat.

Naive diversification routinely has one of the largest mean returns, largest Sharpe ratios,

and smallest measures of turnover. By comparison the Voltiming strategy is the most com-

petitive with the naive strategy routinely having one of the smallest volatility measures,

largest Sharpe ratios, and smallest measures of turnover. The mean-variance extensions

generally perform poorly with the exception of the short-sale constrained portfolio. In

all cases the RRT with factor models outperform the RRT strategies both before and af-

ter transaction fees, and have lower turnovers in all cases. However, the choice of factor

model and whether or not I assume equal or unequal risk premiums is innocuous. Finally,

the BSV model performs unexpectedly quite poor considering the evidence in Demiguel et

al. (2009) that suggest strategies of this type represent “a promising direction to pursue”

(p.1923). I suspect the disappointing performance of this strategy is due to the character-

istics of the datasets. Recall that these data were created by exploiting the cross-section of

expected returns using the sequential cross-sectional regression methodology of Dickson

(2015). Therefore, the same stock characteristics used in the parametric portfolio choice
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optimization algorithm were also used to pick these top performing stocks in the first place.

So any gains from exploiting the cross-sectional stock characteristics were already realized

when forming the datasets.

No Micro Sample Results

Table 10 shows that the average stock size is much larger for the no micro sample com-

pared to the full sample. The largest average size for the no micro sample is $1904.18

M compared to $697.20 M for the full sample. The average number of firms however is

smaller with the largest measured at 109.21 firms compared to 177.06 firms for the full

sample. In Table 16 the largest Sharpe ratio after trading costs is 0.7019 for Voltiming

compared to 0.6719 for the naive strategy, although the p-value for the difference between

them is 0.2064. The largest excess mean return is 14.39% for the BSV model but the cor-

responding volatility is also the highest on the whole table with the exception of the TP

strategy. The BSV strategy also results in the lowest turnover, only 5.18% per year, but

the high volatility measure yields in an unimpressive Sharpe ratio of 0.6215. The lowest

volatility measure is achieved by the MinV strategy but this strategy also has a low annual

return of 8.55% and a large turnover of 78.52% per year. All mean-variance strategies and

RRT strategies perform poorly. However, the results for the factor model RRT strategies

are comparable to naive diversification.

Table 17 displays results that are much the same. Voltiming has a marginally larger

Sharpe ratio, although statistically insignificant, with a value of 0.6373 compared to 0.6121

for the naive strategy. Again BSV has the largest mean but a relatively high volatility. All

mean-variance strategies and RRT strategies perform poorly and again the results for the
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factor model RRT strategies are comparable to naive diversification.

I now turn my attention to the results in Tables 18 and 19 which are the datasets contain-

ing all variables. As in the full sample these models pick much larger stocks with a reason-

able average size of $1904.12 M and $1736.57 M. Also as in the full sample, this model

contributes substantially to an increase in turnover. Even for naive diversification turnover

increases from 6.27% to 36.79% per year. Referencing Table 18 the largest Sharpe ratio

after trading costs is 0.5880 for the FF5m strategy and this result is statistically different

than naive diversification at the 1% significance level, i.e. a p-value of 0.0044. For naive

diversification the Sharpe ratio is 0.5655 so this marginally larger measure for FF55m is

not economically meaningful. Two other models, FF3m and FF5mw, also have statistically

significant Sharpe ratios that are marginally larger than the naive strategy. While not sig-

nificant, the naive strategy yields a larger Sharpe ratio than the Voltiming strategy whose

value is 0.5570. The BSV strategy again has the largest mean return of 19.11%, with the

exception of the extreme TP strategy with a value of 68.63%. Even though this table yields

some significant results, the economic content is weak as the annualized Sharpe ratios are

all within 2% of the value of naive diversification.

Table 19 reinforces the conclusions from Table 18. The FF5m strategy produces a sta-

tistically significant Sharpe ratio compared to naive diversification. The value is 0.6096

compared to 0.5820 with a p-value of 0.0399. The Sharpe ratio for Voltiming is smaller

than naive diversification with a value of 0.5700. I also observe that again the naive strategy

has the smallest turnover and the BSV strategy has the largest excess mean return, 21.95%

per year. However, all results are economically weak as the best performing strategies have

annualized Sharpe ratios all within 2% of the value of naive diversification.
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The results from the no micro sample reinforce what was found in the full sample, i.e.

naive diversification is hard to beat. Overall these results are economically weak as all of

the top performing Sharpe ratios are close in value to naive diversification. The BSV model

continues to show disappointing results despite its praise by Demiguel et al. (2009). In the

next section I present some evidence for why these new models proposed by Kirby and

Ostdiek (2012) have failed to outperform naive diversification even though they did so in

the author’s original analysis.

Cross-sectional Dispersion Statistics of the Datasets

In Kirby and Ostdiek (2012) the authors attest that the performance of volatility timing

strategies is driven by the cross-sectional (CS) dispersion in conditional volatility and the

performance in RRT strategies is related to the CS dispersion in conditional expected excess

returns (p. 464). The authors simply report the range of volatilities and means to make this

claim. I investigate this claim within my datasets as well but I measure the CS dispersion

differently. Instead of the CS range, I present the CS mean absolute deviation. That is, at

each t I measure the following mean absolute deviation of the sample statistic λ.

MADλ = E[|λj − λ̄|] (46)

I report the time series average of this statistic for my datasets and also for the three of the

datasets used in Kirby and Ostdiek (2012) to facilitate comparisons with their study. These

results are presented in Table 20. Kirby and Ostdiek (2012) find that the RRT strategies

do poorly in the 10 Industry dataset but much better in the Momentum and Size/BTM

portfolios. For the Voltiming strategies performance is weak in both the 10 Industry and
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Size/BTM portfolios but stronger in the Momentum dataset. My measure of CS dispersion

does in fact match the claims made in Kirby and Ostdiek (2012). Namely that the poor

performance of the RRT strategies in the 10 Industry dataset is due to the small cross-

sectional dispersion in the conditional expected excess return. My CS MAD does show that

both the CS dispersion in conditional expected excess return and Sharpe ratios are about

20% lower than that of the Momentum and Size/BTM portfolios from Kirby and Ostdiek

(2012). Using these CS MAD measures as a benchmark, I can compare the 8 additional

datasets constructed in this paper to help explain the results. In all 8 of the datasets I see the

same pattern. The CS MAD of the conditional expected excess return is smaller than both

the Momentum and Size/BTM portfolios, the CS MAD of the conditional volatilities are as

high as 50 % larger than both the Momentum and Size/BTM portfolios, and the CS MAD

of the conditional Sharpe ratios are smaller than all three datasets from Kirby and Ostdiek

(2012). So to answer the question, why do the VT strategies perform relatively well in

these dataset, I point to the large CS MAD of the conditional volatilities of my 8 datasets.

To answer the question, why did the RRT strategies fail to outperform naive diversification,

I point to the small CS MAD of the conditional Sharpe ratios, not the conditional expected

returns. My claim still supports the comments by Kirby and Ostdiek (2012), as they only

stated that the performance was related to the conditional expected return, not that this was

the only reason.

This discussion presents interesting conclusions for portfolio analysis using individual

stock data. That is, optimal portfolios formed from individual stocks may fail to provide a

large enough CS dispersion in the conditional Sharpe ratios for mean-variance extensions

to outperform naive diversification. Of course this may not always be true but it does
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appear to be true here. This small dispersion may be due to the fact that portfolios of

stocks are less diversified and thus have a larger dispersion in non-priced idiosyncratic

risk, manifesting itself into smaller Sharpe ratios. Another explanation could be that the

small dispersion in conditional Sharpe ratios is driven by the fact that the stocks in my

datasets where all predicted to outperform, and therefore share similar conditional moment

estimates. Regardless of the interpretation adopted by the reader, this analysis does provide

a pattern between a measure, CS MAD, and portfolio strategy performance. Additionally,

these results should serve as a warning to investors when attempting to optimize over a

portfolio of stocks as compared to optimizing over a set of portfolios. Simply put, naive

diversification is hard to beat.

Commentary on the BSV Model Loadings and Portfolio Weights

Table 21 presents statistics related to the loadings on the stock characteristics as well

as the portfolio weights for the Brandt et al. (2009) model. In their original paper, these

authors focused on the key stock characteristics of market equity, book-to-market equity,

and momentum to maximize an investor’s expected utility. By examining the parameter

estimates of the stock characteristics the authors find that the investor overweights small

firms, value firms, and past winners (p.3429). Overall, all of my results are consistent

with this but I also use additional characteristics not included in their study. For the full

sample, Datasets 1 and 2, my results indicate that investors overweight small firms, value

firms, highly profitable firms, and firms with low investment. These results are consistent

with the expected return relationships presented by Fama and French (2015) for their 5-

factor asset pricing model. Analysis of the standard errors reveals that book-to-market
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is approximately 3 standard errors from zero, size is 2.5 standard errors from zero, but

both gross-profitability and investment are less than 2 standard errors from zero. For the

no micro sample, in Datasets 5 and 6, my results again indicate that investors overweight

small firms, value firms, highly profitable firms, and firms with low investment. Compared

to the full sample dataset, the loadings on size are much larger and more significant. For

example, in Dataset 1 the loading on size is -2.68 with a standard error of 1.04 while in

Dataset 5 the loading on size is -5.98 with a standard error of 1.37. This result indicates

a larger sensitivity towards the small firm effect in the no micro sample. The average firm

size in Dataset 5 is six times larger than that of Dataset 1, which is likely the cause of the

larger loadings on the small firm effect.

Turning my attention to the datasets formed using all variables the interpretations are

similar. For the full sample, Datasets 3 and 4, investors overweight small firms, value firms,

highly profitable firms, firms with low investment, recent losers, and longer term winners.

However, likely due to the inclusion of the flow variables R1to0 and R12to2, the standard

errors for size, profitability, and investment are now much smaller and no longer significant

at standard confidence levels. The magnitude and significance of book-to-market is still

preserved and both R1to0 and R12to2 appear highly significant. For the no micro sample

in Datasets 7 and 8, I see similar interpretations. As was the case without the flow variables,

the no micro sample indicates a large sensitivity towards the small firm effect, the estimate

is -3.73 with a standard error of 1.44 for Dataset 7 and -2.58 with a standard error of 1.04

in Dataset 8.

The largest maximum weight in any individual stock is 0.248 for Dataset 8 and the

smallest minimum weight in any individual stock is -0.169 in Dataset 6. The average weight
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is always larger for the no micro samples for the top 10% of stocks sorted be expected

return, simply because these datasets have the smallest number of stocks. Most importantly

these weight statistics show that extreme positions, and thus extreme deviations from equal

weights, is not an issue.

Conclusions

I conducted a horse-race of 15 different portfolio construction techniques using indi-

vidual stock data. The data was constructed from an implementable trading strategy that

yields stocks that are most likely to outperform. My results indicate that naive diversifi-

cation consistently produces one of the largest out-of-sample mean returns, largest Sharpe

ratios, and smallest turnover measures. Through a robust simulation experiment, I validate

that the mean-variance extensions developed by Kirby and Ostdiek (2012) do indeed re-

duce estimation risk and turnover. Using these extensions with actual stock data however,

these improvements in performance are not large enough to consistently top naive diversi-

fication using a traditional estimation window of 120 months. Confirming the claims made

by Kirby and Ostdiek (2012), I conclude that this lack of performance is driven by the char-

acteristics of the data. I introduce a statistic, the time series average of the cross-sectional

mean absolute deviation of risk and return, to reinforce this claim. Specifically I find that

my datasets have larger dispersions in cross-sectional volatility and smaller dispersions in

cross-sectional Sharpe ratios than the data analyzed by Kirby and Ostdiek (2012). These

facts explain why the volatility timing strategies fare well in my samples but the RRT strate-

gies fail to perform as well as they did the data used by Kirby and Ostdiek (2012). Since

Demiguel et al. (2009) conclude that the approach proposed by Brandt et al. (2009) shows
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the most promise, I also test various extensions of this strategy. However, after considering

transaction costs, this strategy does not perform nearly as well as naive diversification. I at-

test that this finding is also a function of the data analyzed. My results add to the mounting

evidence that naive diversification is hard to beat, particularly in a universe of stocks that

are likely to outperform. These findings have important implications for fund managers and

practitioners as these test datasets closely mimic a fund manager’s portfolio construction

dilemma. An obvious extension of this study would involve providing concrete recommen-

dations for when, and when not, to apply optimization techniques. For example, even the

seemingly successful RRT strategies fail to consistently beat naive diversification when the

CS MAD of the data’s Sharpe ratio falls below 0.04, using a 120 month estimation win-

dow for 20 funds. A complete analysis of many different combinations like this would be

quite useful. Consistent with Demiguel et al. (2009), my evidence suggest that practical

optimization techniques have a long way to go before they can be expected to do well in

applications with limited data.

Appendix

Data Description

For all accounting variables we employ the standard fiscal year matching popularized

by Fama and French (1992). The accounting variables for fiscal years that end in calendar

year t are matched with stock returns for July of year t + 1 to June of year t + 2. So there

is at least a six month lag for the accounting variables in each monthly cross-sectional

regression.

1. log(ME): Market equity is defined as price per share times shares outstanding from
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CRSP. To get ME for the firm, we aggregate values of all equity for a given permno

and date. This aggregate value is assigned to the permno with the largest ME. Slightly

deviating the Novy-Marx (2013) definition we update using the June market equity

to compute this variable rather than the previous December value since his increases

its explanatory power in the cross section.

2. log(BE/ME): Book-to-market is book equity scaled by market equity. Book equity is

shareholder equity, plus deferred taxes, minus preferred stock, when available. The

shareholder equity components follow the tiered definitions consistent with those

used in Fama and French (1993) to construct the HML factor. Stockholder equity is

defined in Compustat as (SEQ) if available, or else common equity plus the carry-

ing value of preferred stock is available (CEQ + PSTX) if available, otherwise total

assets minus total liabilities (AT - LT) is used. Deferred taxes is deferred taxes and

investment tax credits (TXDITC) if available, or else deferred taxes and/or invest-

ment tax credit (TXDB and/or ITCB). Preferred stock is redemption value (PSTKR)

if available, or else liquidating value (PSTKRL) if available, or else carrying value

(PSTK).

3. GPdat: Gross profits and earnings before extraordinary items are Compustat data

items GP and IB, respectively. For free cash flow we employ net income plus depre-

ciation and amortization minus changes in working capital minus capital expendi-

tures (NI + DP - WCAPCH - CAPX). Gross profits are also defined as total revenue

(REVT) minus cost of goods sold (COGS).

4. Inv: Investment for firms in year t is the growth of total assets for the fiscal year
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ending in year t− 1 divided by total assets at the end of year t− 2. This matches the

definition used by (Fama & French, 2015). In their valuation equation, the invest-

ment variable is actually defined as the expected growth of book equity, not assets.

However, as they state, sorts on asset growth result in larger spreads of average return

and using growth in book equity produces similar results.

5. R1to0: The short-term reversal measure is simply the return at time t, lagged by one

period.

6. R12to2: The momentum measure is the previous year’s 11 month return, skipping the

previous month to prevent capturing short-term reversal in the momentum measure.
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Table 10: List of datasets

All data spans the same time period from July 1963 to Dec 2013, a total of 606 months. I
also use the same rolling estimation window of 120 months so each dataset has 486 out-
of-sample months. Each data source is denoted either Full Sample or No-Micro sample.
For the Full Sample all stock data with complete information was included while the No-
Micro sample excluded all stocks below the 20% Percentile of Market Equity for stocks
on the NYSE. The All Variables data source designation means all variables were used in
the model to pick the top performing stocks. The No Momentum data source designation
means all variables, excluding R1to0 and R12to2, were used in the model to pick the top
performing stocks.

Data Source Top % Avg. # Stocks Avg. Size Abbreviation

Panel A: Full Sample
No Momentum 20% 177.06 155.45 M Dataset 1
No Momentum 10% 88.77 87.25 M Dataset 2
All Variables 20% 177.06 697.20 M Dataset 3
All Variables 10% 88.77 541.54 M Dataset 4

Panel B: No Micro Sample
No Momentum 20% 109.21 921.18 M Dataset 5
No Momentum 10% 54.88 741.24 M Dataset 6
All Variables 20% 109.21 1904.12 M Dataset 7
All Variables 10% 54.88 1736.57 M Dataset 8
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Table 11: List of all asset allocation models and a brief description

Model Description Abbreviation

Panel A: Naive Diversification
Equally weighted portfolio Naive

Panel B: Minimum Volatility
Volatility Timing Voltiming
Traditional global minimum variance portfolio MinV

Panel C: Mean Variance Extensions
Tangency Portfolio, i.e. Maximum Sharpe Ratio TP
Optimization over risky assets only targeting Naive diversification OC1N
OC1N with no shorts allowed OC1Npos

Panel D: Reward-to-Risk Timing
Reward-to-Risk Timing with no constraints RRT
Reward-to-Risk Timing with no shorts allowed RRTpos

Panel E: Reward-to-Risk Timing with Factor Models
RRT using Fama and French 3-factor model with equal risk-premiums FF3m
RRT using Fama and French 4-factor model with equal risk-premiums FF4m
RRT using Fama and French 5-factor model with equal risk-premiums FF5m
RRT using Fama and French 3-factor model with un-equal risk-premiums FF3mw
RRT using Fama and French 4-factor model with un-equal risk-premiums FF4mw
RRT using Fama and French 5-factor model with un-equal risk-premiums FF5mw

Panel F: Parametric Portfolio Choice
The Brandt et al. (2009) model using various characteristics BSV



102

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 

N
ai

ve
T

P
A

ct
ua

l
T

P
T

P
1N

T
P

1N
p

N
ai

ve
T

P
A

ct
ua

l
T

P
T

P
1N

T
P

1N
p

Fi
gu

re
9:

M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
rt

an
ge

nc
y

po
rt

fo
lio

T
he

to
p

fig
ur

e
pl

ot
s

M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
r

ou
t-

of
-s

am
pl

e
Sh

ar
pe

ra
tio

s
fo

r
th

e
fo

llo
w

in
g

po
rt

fo
lio

st
ra

te
gi

es
:

N
ai

ve
di

ve
rs

ifi
ca

-
tio

n,
th

e
tr

ue
Ta

ng
en

cy
Po

rt
fo

lio
(T

PA
ct

ua
l)

,t
he

Ta
ng

en
cy

Po
rt

fo
lio

(T
P)

,T
P

ta
rg

et
in

g
N

ai
ve

di
ve

rs
ifi

ca
tio

n,
an

d
T

P
ta

rg
et

in
g

N
ai

ve
di

ve
rs

ifi
ca

tio
n

w
ith

sh
or

t-
sa

le
co

ns
tr

ai
nt

s.
T

he
ro

lli
ng

es
tim

at
ed

w
in

do
w

le
ng

th
w

as
12

0
m

on
th

s
an

d
th

e
ou

t-
of

-s
am

pl
e

w
in

do
w

w
as

24
0

m
on

th
s.

M
od

el
s

w
er

e
es

tim
at

ed
us

in
g

5
to

20
0

as
se

ts
in

in
cr

em
en

ts
of

5
su

ch
th

at
ea

ch
st

ra
te

gy
co

ns
is

ts
of

40
da

ta
po

in
ts

.
T

he
bo

tto
m

fig
ur

e
pl

ot
s

ad
ju

st
m

en
ts

fo
re

st
im

at
ed

tr
an

sa
ct

io
ns

co
st

s
of

c
=

50
ba

si
s

po
in

ts
.T

he
re

w
er

e
1,

00
0

si
m

ul
at

io
ns

ra
n

fo
re

ac
h

da
ta

po
in

t.



103

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 
N

ai
ve

T
P

A
ct

ua
l

T
P

R
R

T
R

R
T

p

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 
N

ai
ve

T
P

A
ct

ua
l

T
P

R
R

T
R

R
T

p

Fi
gu

re
10

:M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
rt

an
ge

nc
y

po
rt

fo
lio

an
d

rr
t

T
he

to
p

fig
ur

e
pl

ot
s

M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
ro

ut
-o

f-
sa

m
pl

e
Sh

ar
pe

ra
tio

s
fo

rt
he

fo
llo

w
in

g
po

rt
fo

lio
st

ra
te

gi
es

:N
ai

ve
di

ve
rs

ifi
ca

tio
n,

th
e

tr
ue

Ta
ng

en
cy

Po
rt

fo
lio

(T
PA

ct
ua

l)
,t

he
Ta

ng
en

cy
Po

rt
fo

lio
(T

P)
,R

ew
ar

d-
to

-R
is

k
tim

in
g

(R
R

T
),

an
d

R
ew

ar
d-

to
-R

is
k

tim
in

g
(R

R
T

p)
w

ith
sh

or
t-

sa
le

co
ns

tr
ai

nt
s.

T
he

ro
lli

ng
es

tim
at

ed
w

in
do

w
le

ng
th

w
as

12
0

m
on

th
s

an
d

th
e

ou
t-

of
-s

am
pl

e
w

in
do

w
w

as
24

0
m

on
th

s.
M

od
el

s
w

er
e

es
tim

at
ed

us
in

g
5

to
20

0
as

se
ts

in
in

cr
em

en
ts

of
5

su
ch

th
at

ea
ch

st
ra

te
gy

co
ns

is
ts

of
40

da
ta

po
in

ts
.

T
he

bo
tto

m
fig

ur
e

pl
ot

s
ad

ju
st

m
en

ts
fo

re
st

im
at

ed
tr

an
sa

ct
io

ns
co

st
s

of
c

=
50

ba
si

s
po

in
ts

.T
he

re
w

er
e

1,
00

0
si

m
ul

at
io

ns
ra

n
fo

re
ac

h
da

ta
po

in
t.



104

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

Sharpe Ratio

N
um

be
r 

of
 A

ss
et

s

 

 

N
ai

ve
M

in
V

A
ct

ua
l

M
in

V
V

ol
t

N
ai

ve
M

in
V

A
ct

ua
l

M
in

V
V

ol
t

Fi
gu

re
11

:M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
rm

in
im

um
va

ri
an

ce
an

d
vo

la
tli

ty
tim

in
g

T
he

to
p

fig
ur

e
pl

ot
s

M
on

te
C

ar
lo

si
m

ul
at

io
ns

fo
ro

ut
-o

f-
sa

m
pl

e
Sh

ar
pe

ra
tio

s
fo

rt
he

fo
llo

w
in

g
po

rt
fo

lio
st

ra
te

gi
es

:N
ai

ve
di

ve
rs

ifi
ca

tio
n,

th
e

tr
ue

M
in

im
um

V
ar

ia
nc

e
po

rt
fo

lio
(M

in
VA

ct
ua

l)
,t

he
M

in
im

um
V

ar
ia

nc
e

po
rt

fo
lio

(M
in

V
),

an
d

th
e

Vo
la

til
ity

Ti
m

in
g

po
rt

fo
lio

(V
T

).
T

he
ro

lli
ng

es
tim

at
ed

w
in

do
w

le
ng

th
w

as
12

0
m

on
th

s
an

d
th

e
ou

t-
of

-s
am

pl
e

w
in

do
w

w
as

24
0

m
on

th
s.

M
od

el
s

w
er

e
es

tim
at

ed
us

in
g

5
to

20
0

as
se

ts
in

in
cr

em
en

ts
of

5
su

ch
th

at
ea

ch
st

ra
te

gy
co

ns
is

ts
of

40
da

ta
po

in
ts

.
T

he
bo

tto
m

fig
ur

e
pl

ot
s

ad
ju

st
m

en
ts

fo
r

es
tim

at
ed

tr
an

sa
ct

io
ns

co
st

s
of

c
=

50
ba

si
s

po
in

ts
.T

he
re

w
er

e
1,

00
0

si
m

ul
at

io
ns

ra
n

fo
re

ac
h

da
ta

po
in

t.



105

Table 12: Annualized traditional performance statistics for dataset 1

Dataset 1: Full Sample, Top 20 %, 20 Funds, η = 1. Annualized traditional perfor-
mance statistics for monthly out-of-sample returns for portfolios formed by stocks sorted
by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. R1to0i,t and R12to2i,t were used only as
controls and thus β4 and β5 were not used to generate expected returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 14.0242 17.7590 0.7897 13.1445 0.7402 1.0000 0.0583

Panel B: Minimum Volatility
Voltiming 12.7162 15.1311 0.8404 11.7154 0.7743 0.1504 0.0695
Minv 7.7567 12.1334 0.6393 -0.0403 -0.0033 0.6965 0.6396

Panel C: Mean Variance Extensions
TP 631.0075 3454.5941 0.1827 80.0568 0.0232 1.0000 46.4002
OC1N 7.5447 12.4627 0.6054 -2.3540 -0.1889 0.5472 0.8174
OC1Npos 11.0118 13.4950 0.8160 7.7856 0.5769 0.8830 0.2569

Panel D: Reward-to-Risk Timing
RRT 17.9146 43.4881 0.4119 10.9183 0.2511 0.0086 0.5723
RRTpos 12.3493 15.8516 0.7791 9.8787 0.6232 0.9579 0.1932

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 13.3840 16.5048 0.8109 12.3956 0.7510 0.2467 0.0681
FF4m 13.3311 16.4736 0.8092 12.2807 0.7455 0.3739 0.0734
FF5m 13.1661 16.4124 0.8022 11.8778 0.7237 0.7251 0.0941
FF3mw 13.3253 16.3676 0.8141 12.3001 0.7515 0.2132 0.0712
FF4mw 13.2770 16.3275 0.8132 12.0687 0.7392 0.3718 0.0869
FF5mw 13.1467 16.2555 0.8088 11.9225 0.7334 0.4824 0.0882

Panel F: Parametric Portfolio Choice
BSV Model 15.6206 20.0793 0.7779 14.5671 0.7255 0.7689 0.0620
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Table 13: Annualized traditional performance statistics for dataset 2

Dataset 2: Full Sample, Top 10 %, 20 Funds, η = 1. Annualized traditional perfor-
mance statistics for monthly out-of-sample returns for portfolios formed by stocks sorted
by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. R1to0i,t and R12to2i,t were used only as
controls and thus β4 and β5 were not used to generate expected returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 14.4194 18.3819 0.7844 13.4436 0.7313 1.0000 0.0647

Panel B: Minimum Volatility
Voltiming 12.9125 16.1377 0.8001 11.8054 0.7315 0.8175 0.0772
Minv 7.3010 14.4615 0.5049 0.9886 0.0684 0.1924 0.5046

Panel C: Mean Variance Extensions
TP 602.6906 4148.4942 0.1453 -92.5350 -0.0223 1.0000 57.8546
OC1N 6.6876 14.5919 0.4583 -0.6924 -0.0474 0.1050 0.6001
OC1Npos 10.5267 14.4282 0.7296 7.5648 0.5243 0.7047 0.2301

Panel D: Reward-to-Risk Timing
RRT 43.5196 135.8104 0.3204 -7.5024 -0.0552 0.9951 4.2783
RRTpos 13.5133 17.3453 0.7791 10.2089 0.5886 0.9944 0.2675

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 13.9001 17.5821 0.7906 12.7252 0.7238 0.8867 0.0821
FF4m 13.7946 17.5143 0.7876 12.5458 0.7163 0.9759 0.0886
FF5m 13.6634 17.5601 0.7781 12.0323 0.6852 0.9537 0.1206
FF3mw 13.7851 17.4831 0.7885 12.5576 0.7183 0.9565 0.0864
FF4mw 13.5838 17.3326 0.7837 12.1466 0.7008 0.9992 0.1051
FF5mw 13.5879 17.4065 0.7806 12.0531 0.6925 0.9819 0.1126

Panel F: Parametric Portfolio Choice
BSV Model 15.7707 20.9188 0.7539 14.6125 0.6985 0.5780 0.0711
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Table 14: Annualized traditional performance statistics for dataset 3

Dataset 3: Full Sample, Top 20 %, 20 Funds, η = 1. Annualized traditional perfor-
mance statistics for monthly out-of-sample returns for portfolios formed by stocks sorted
by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. All variables were used to generate expected
returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 18.8862 19.0302 0.9924 14.4925 0.7616 1.0000 0.3486

Panel B: Minimum Volatility
Voltiming 17.5354 17.0894 1.0261 12.8091 0.7495 0.3265 0.3792
Minv 13.1349 14.4346 0.9100 -2.7854 -0.1930 0.8573 1.3227

Panel C: Mean Variance Extensions
TP 286.6487 1064.6237 0.2692 -27.0767 -0.0254 0.9996 26.1063
OC1N 12.0002 14.7844 0.8117 -6.0655 -0.4103 0.4029 1.4998
OC1Npos 16.1923 15.7265 1.0296 10.1826 0.6475 0.7038 0.4886

Panel D: Reward-to-Risk Timing
RRT 18.3833 19.5181 0.9419 11.9076 0.6101 0.6155 0.5174
RRTpos 16.9636 17.7450 0.9560 11.7641 0.6630 0.4389 0.4113

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 18.3002 18.0238 1.0153 13.7224 0.7613 0.1920 0.3651
FF4m 18.2292 17.9899 1.0133 13.6069 0.7564 0.3043 0.3681
FF5m 18.5185 18.0369 1.0267 13.7324 0.7613 0.1429 0.3811
FF3mw 18.0990 17.9219 1.0099 13.4947 0.7530 0.4712 0.3681
FF4mw 18.0782 17.9362 1.0079 13.3522 0.7444 0.6520 0.3764
FF5mw 18.2133 17.9028 1.0173 13.4699 0.7524 0.2946 0.3780

Panel F: Parametric Portfolio Choice
BSV Model 24.5786 22.7854 1.0787 13.9037 0.6102 0.6053 0.8568
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Table 15: Annualized traditional performance statistics for dataset 4

Dataset 4: Full Sample, Top 10 %, 20 Funds, η = 1. Annualized traditional perfor-
mance statistics for monthly out-of-sample returns for portfolios formed by stocks sorted
by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. All variables were used to generate expected
returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 21.9969 20.6264 1.0664 16.9960 0.8240 1.0000 0.3962

Panel B: Minimum Volatility
Voltiming 20.7859 18.6397 1.1151 15.5350 0.8334 0.1572 0.4175
Minv 17.3693 16.8396 1.0315 4.1278 0.2451 0.9771 1.0938

Panel C: Mean Variance Extensions
TP -159.9085 744.3043 -0.2148 -375.2759 -0.5042 1.0000 17.9497
OC1N 19.5019 17.5698 1.1100 5.3301 0.3034 0.9426 1.1725
OC1Npos 20.3220 17.3229 1.1731 14.2783 0.8242 0.2046 0.4868

Panel D: Reward-to-Risk Timing
RRT 15.4710 54.2181 0.2853 6.8472 0.1263 0.0300 0.6974
RRTpos 21.0679 19.3471 1.0889 15.3923 0.7956 0.8368 0.4508

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 21.5068 19.7428 1.0893 16.3384 0.8276 0.3189 0.4093
FF4m 21.4853 19.7020 1.0905 16.2765 0.8261 0.3838 0.4122
FF5m 21.6498 19.6861 1.0998 16.2708 0.8265 0.3539 0.4254
FF3mw 21.2588 19.6860 1.0799 16.0788 0.8168 0.7240 0.4115
FF4mw 21.2123 19.6464 1.0797 15.9386 0.8113 0.8408 0.4189
FF5mw 21.3044 19.6159 1.0861 15.9850 0.8149 0.6556 0.4221

Panel F: Parametric Portfolio Choice
BSV Model 26.1527 23.7954 1.0991 15.1250 0.6356 0.9788 0.8821
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Table 16: Annualized traditional performance statistics for dataset 5

Dataset 5 No Micro Sample, Top 20 %, 20 Funds, η = 1. Annualized traditional per-
formance statistics for monthly out-of-sample returns for portfolios formed by stocks
sorted by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. R1to0i,t and R12to2i,t were used only as
controls and thus β4 and β5 were not used to generate expected returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 13.4765 18.7203 0.7199 12.5779 0.6719 1.0000 0.0549

Panel B: Minimum Volatility
Voltiming 12.5950 16.5117 0.7628 11.5888 0.7019 0.2064 0.0659
Minv 8.5502 14.4617 0.5912 -0.9352 -0.0647 0.6241 0.7852

Panel C: Mean Variance Extensions
TP -328.0044 1460.7560 -0.2245 -471.2107 -0.3226 1.0000 30.3710
OC1N 8.4968 14.6460 0.5801 -2.0281 -0.1385 0.5765 0.8734
OC1Npos 11.4487 15.4110 0.7429 7.8612 0.5101 0.8871 0.2857

Panel D: Reward-to-Risk Timing
RRT 19.6106 34.3230 0.5714 12.8037 0.3730 0.5171 0.5626
RRTpos 12.1773 16.8102 0.7244 9.9244 0.5904 0.9927 0.1708

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 13.0687 17.6047 0.7423 11.9771 0.6803 0.1458 0.0715
FF4m 12.9304 17.4152 0.7425 11.7597 0.6753 0.3273 0.0778
FF5m 12.9751 18.0251 0.7198 11.4692 0.6363 1.0000 0.1066
FF3mw 12.9604 17.4463 0.7429 11.8496 0.6792 0.2837 0.0732
FF4mw 12.7085 17.2062 0.7386 11.3157 0.6577 0.6565 0.0952
FF5mw 12.9080 17.6860 0.7298 11.5599 0.6536 0.7722 0.0929

Panel F: Parametric Portfolio Choice
BSV Model 14.3909 21.6964 0.6633 13.4845 0.6215 0.0832 0.0518
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Table 17: Annualized traditional performance statistics for dataset 6

Dataset 6 No Micro Sample, Top 10 %, 20 Funds, η = 1. Annualized traditional per-
formance statistics for monthly out-of-sample returns for portfolios formed by stocks
sorted by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. R1to0i,t and R12to2i,t were used only as
controls and thus β4 and β5 were not used to generate expected returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 13.5641 20.5566 0.6598 12.5822 0.6121 1.0000 0.0627

Panel B: Minimum Volatility
Voltiming 12.9849 18.6540 0.6961 11.8888 0.6373 0.2872 0.0730
Minv 10.8687 17.3561 0.6262 4.2204 0.2432 0.9711 0.5437

Panel C: Mean Variance Extensions
TP -113.8624 679.7078 -0.1675 -348.0275 -0.5120 1.0000 19.9724
OC1N 10.8660 17.4142 0.6240 3.5294 0.2027 0.9694 0.6011
OC1Npos 12.9111 17.4018 0.7419 9.8233 0.5645 0.3521 0.2414

Panel D: Reward-to-Risk Timing
RRT -8.8590 146.5847 -0.0604 -13.4206 -0.0916 0.9503 2.0932
RRTpos 13.3075 18.3821 0.7239 10.7695 0.5859 0.4489 0.1969

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 13.3226 19.7941 0.6731 12.0476 0.6086 0.6035 0.0868
FF4m 13.4418 19.5993 0.6858 12.0681 0.6157 0.2798 0.0945
FF5m 13.1686 19.9292 0.6608 11.4508 0.5746 0.9985 0.1249
FF3mw 13.4312 19.7320 0.6807 12.1414 0.6153 0.3524 0.0880
FF4mw 13.5868 19.3913 0.7007 11.9799 0.6178 0.1585 0.1126
FF5mw 13.2438 19.7494 0.6706 11.6675 0.5908 0.8351 0.1123

Panel F: Parametric Portfolio Choice
BSV Model 14.1503 23.2425 0.6088 12.9944 0.5591 0.2697 0.0637
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Table 18: Annualized traditional performance statistics for dataset 7

Dataset 7 No Micro Sample, Top 20 %, 20 Funds, η = 1 Annualized traditional perfor-
mance statistics for monthly out-of-sample returns for portfolios formed by stocks sorted
by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. All variables were used to generate expected
returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 15.7034 19.5278 0.8042 11.0425 0.5655 1.0000 0.3679

Panel B: Minimum Volatility
Voltiming 14.9151 17.9232 0.8322 9.9835 0.5570 0.3824 0.3935
Minv 12.2548 16.0982 0.7613 -4.7126 -0.2927 0.9546 1.4112

Panel C: Mean Variance Extensions
TP 68.6387 626.1987 0.1096 -88.2678 -0.1410 0.9981 13.0091
OC1N 11.6455 16.0521 0.7255 -6.3579 -0.3961 0.8349 1.4968
OC1Npos 13.8660 16.7771 0.8265 7.7294 0.4607 0.8796 0.4975

Panel D: Reward-to-Risk Timing
RRT 5.6832 67.3230 0.0844 -4.6000 -0.0683 0.0051 0.8332
RRTpos 14.1615 18.3372 0.7723 8.8188 0.4809 0.5984 0.4205

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 15.6092 18.7333 0.8332 10.7364 0.5731 0.0402 0.3857
FF4m 15.3581 18.6022 0.8256 10.4314 0.5608 0.2860 0.3894
FF5m 16.2285 18.8495 0.8610 11.0829 0.5880 0.0044 0.4054
FF3mw 15.4022 18.6426 0.8262 10.5065 0.5636 0.2401 0.3885
FF4mw 15.0339 18.5845 0.8089 9.9870 0.5374 0.9625 0.3989
FF5mw 15.7247 18.6953 0.8411 10.6612 0.5703 0.0370 0.3992

Panel F: Parametric Portfolio Choice
BSV Model 19.1192 23.4713 0.8146 9.0496 0.3856 0.8212 0.8030



112

Table 19: Annualized traditional performance statistics for dataset 8

Dataset 8 No Micro Sample, Top 10 %, 20 Funds, η = 1. Annualized traditional per-
formance statistics for monthly out-of-sample returns for portfolios formed by stocks
sorted by expected return. To generate the expected returns a model of the form ri,t+1 =
α+β1ln(BE/ME)i,t+β2ln(ME)i,t+β3GPdati,t+β4R1to0i,t+β5R12to2i,t+β6INVi,t
was estimated and the estimates were averaged over an estimation window initialized with
60 months of data. Each subsequent time period the model was re-estimated by enlarging
the sample and the average estimates were updated every June. These average estimates
were used generate the expected returns. All averaged estimates at time period t were gen-
erated using estimates prior to time period t. All variables were used to generate expected
returns.

Model µ̂ex σ̂ SR µ̂TC SRTC SRp Turnover

Panel A: Naive Diversification
Naive 17.5648 21.2427 0.8269 12.3638 0.5820 1.0000 0.4141

Panel B: Minimum Volatility
Voltiming 16.5526 19.5311 0.8475 11.1330 0.5700 0.6154 0.4327
Minv 13.5650 18.3560 0.7390 0.0281 0.0015 0.8013 1.1209

Panel C: Mean Variance Extensions
TP -112.6459 501.8284 -0.2245 -267.6213 -0.5333 0.9941 12.8302
OC1N 13.3198 17.6518 0.7546 -0.6327 -0.0358 0.8577 1.1546
OC1Npos 15.3939 18.3192 0.8403 9.2890 0.5071 0.9535 0.4931

Panel D: Reward-to-Risk Timing
RRT 18.9744 26.9599 0.7038 10.2776 0.3812 0.6157 0.7007
RRTpos 16.0934 19.8762 0.8097 10.3342 0.5199 0.9305 0.4558

Panel E: Reward-to-Risk Timing with Factor Models
FF3m 17.4095 20.4954 0.8494 12.0190 0.5864 0.2925 0.4276
FF4m 17.3909 20.3703 0.8537 11.9508 0.5867 0.3069 0.4311
FF5m 18.0749 20.4502 0.8839 12.4670 0.6096 0.0399 0.4412
FF3mw 17.3531 20.4426 0.8489 11.9658 0.5853 0.4108 0.4292
FF4mw 17.2370 20.3618 0.8465 11.7558 0.5773 0.6908 0.4367
FF5mw 17.6701 20.3390 0.8688 12.1342 0.5966 0.1050 0.4371

Panel F: Parametric Portfolio Choice
BSV Model 21.9537 25.7327 0.8531 11.4811 0.4462 0.9994 0.8401
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Table 20: Cross-sectional dispersion statistics for all models

Dataset Top X % Mom Vars Included? Mu Std SR

Panel A: Fama and French Datasets from Kirby (2012)
Momentum – – 0.2672 0.9166 0.0541
Size/BTM – – 0.2348 0.7889 0.0506
Industry – – 0.1803 0.7458 0.0454

Panel B: Full Sample Datasets
Dataset 1 20% No 0.1829 1.3512 0.0311
Dataset 2 10% No 0.2312 1.4238 0.0346
Dataset 3 20% Yes 0.2146 1.2830 0.0346
Dataset 4 10% Yes 0.2788 1.3587 0.0387

Panel C: No-Micro Sample Datasets
Dataset 5 20% No 0.1810 1.2651 0.0305
Dataset 6 10% No 0.2463 1.3152 0.0343
Dataset 7 20% Yes 0.2135 1.1810 0.0344
Dataset 8 20% Yes 0.2862 1.2730 0.0390
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CHAPTER 4: FACTOR LOADINGS AS PROXIES FOR EQUITY
CHARACTERISTICS, ROUND THREE

Introduction

I provide an updated analysis on the factors vs. characteristics argument originally dis-

cussed by Daniel and Titman (1997) and Davis, Fama, and French (2000). Daniel and

Titman (1997) concluded that characteristics, not factors, better explain the cross-section

of expected returns due to behavioral biases. Davis et al. (2000) provide compelling ev-

idence that the short sample analyzed by Daniel and Titman (1997) was insufficient to

settle the debate, and after analyzing a larger sample period, concluded that their pro-

posed factor structure explained the cross-section of expected returns at least as good as

the characteristic-based model of Daniel and Titman (1997). I provide an alternative and

more direct approach to compare factors and characteristics which focuses on exactly what

we care about the most: portfolio performance. For my null hypothesis, I assume that port-

folios formed from individual equities based on characteristics, and portfolios formed from

individual equities based on factor loadings, are equivalent. My analysis shows that some

characteristics are not well approximated by factor loadings for individual equities but that

this disagreement is mitigated for portfolios of equities. Specifically, I find that portfo-

lios formed by pre-formation book-to-market factor loadings closely matches the empirical

return distribution of portfolios formed by the book-to-market characteristic. I also find

that the top performing portfolios formed by the characteristics of market equity, gross-
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profitability, and investment, are well approximated by their factor loadings. Furthermore,

I use the cross-sectional regression methodology described in Dickson (2015), to combine

the signals from multiple sources, and predict expected returns. These results show that

significant excess returns can be earned when using factor loadings as proxies for equity

characteristics. The implications of this work are directly applicable to the selection of mis-

priced constituents of mutual funds or ETFs where data on the characteristics of individual

holdings may be difficult to obtain. While I study only the most relevant stock characteris-

tics, extensions of this study open up the whole universe of asset pricing anomalies, nearly

314 according to Harvey et al. (2013).

Daniel and Titman (1997) focus on the fundamental question of whether the return pat-

terns of characteristic-sorted portfolios are consistent with an underlying factor structure.

Their tests rely on finding firms with characteristics that do not match their risk loadings.

For example, a firm that is actually a growth firm according to its book-to-market-equity

but is currently “acting” like a value firm. This would be the case for a growth firm which

had a conditional factor loading on a distress factor more similar to value firms than growth

firms. Daniel and Titman (1997) propose three competing models: 1) A model consistent

with Fama and French (1993, 1996), 2) A model with a stable factor structure and time-

varying risk return premia, and 3) A model where firm characteristics not factor loadings

determine expected returns. Their results support a characteristic based model while Davis

et al. (2000) argue that these findings are sample specific. Expanding on this work I study

the characteristic vs. factors argument using all of the stock characteristics recently in-

cluded in the Fama and French (2015) five-factor model. I argue that the awkward sorting

procedures used by both Daniel and Titman (1997) and Davis et al. (2000) result in the au-
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thors searching for “outliers.” This statement is difficult to refute as the portfolios in these

aforementioned studies are highly unbalanced, resulting in some portfolios containing only

one stock. This is a lesser-known but real concern when forming intersection portfolios

across multiple dimensions. I instead study portfolios with an equal number of securities

and aggregate forecasting signals across multiple dimensions in a straightforward manner.

Decomposing Expected Returns

Cross-sectional regressions

My analysis focuses on the model implied by the sequential cross-sectional regressions

pioneered Fama and Macbeth (1973) (FM hereafter). These tests are simple, effective,

and have likely been used more than any other asset pricing test to date. Their original

paper tested the equilibrium relationships implied by the CAPM, but more generally, FM

regressions can be used to test if any factor or characteristic is “priced.” Priced means

simply that the candidate variable exhibits a statistically significant risk-premium using

FM standard errors. The procedure first fits cross-sectional regressions using OLS on the

following functional form:

ri,t = α + x
′

i,tβ + εi,t, i = 1, 2, ..., N, ∀t (47)

Following these t cross-sectional regressions there exists a sequence of t estimated inter-

cepts, α̂, and t estimated slope coefficients, β̂. The second step of the procedure involves

taking the time-series average of these estimates, using the usual standard errors for the

average; these standard errors are known as FM standard errors. If any element is sta-

tistically significant, then that candidate explanatory is said to be “priced,” which means
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that the there is evidence that the explanatory variable is related to expected stock returns.

While the implications of this relationship may not be immediately clear, Kirby and Cordis

(2015) describe in detail that the elements of β̂t are linear combinations of the cross-section

of returns at time t. This is a result of the usual formulas for OLS estimators given by

β̂t = Σ̂−1
xx,tΣ̂

−1
xr,t. This result is well-known and expresses the OLS β̂ vector as simply a

weighted average. If we have J explanatory variables then Σ̂−1
xx,t is the JxJ sample covari-

ance matrix of xi,t and Σ̂−1
xr,t is the Jx1 vector of sample covariances of xi,t and ri, t. By

factoring out each ri,t Kirby and Cordis (2015) express the β̂ vector in terms of zi,t:

β̂t =
1

N

N∑
i=1

zi,tri,t

zi,t = Σ̂−1
xx,t

(
xi,t −

1

N

N∑
i=1

xi,t

) (48)

Taking expectations of the term in parentheses results in an average of zero, meaning that

the weights of each element of the β̂t vector sum to zero. This means that each element

is a weighted sum of returns where some returns are associated with a firm that has an

explanatory variable higher than the cross-sectional average of that candidate variable, and

some returns are associated with a firm that has an explanatory variable lower than the

cross-sectional average of that candidate variable.19 More importantly the β̂t vector can

be thought of as a vector of returns on hedge portfolios, or more commonly known as

self-financing portfolios. Proceeds from shorting firms where xi,t < x̄t are used to finance

investments in firms where xi,t > x̄t. This results in a zero net investment, hence the phrase

self-financing. Most importantly, this discussion illustrates that the β̂t coefficients from the

common FM regressions are just hedge portfolios, much like the factors found in the asset

19See Kirby and Cordis (2015) for more details.
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pricing models of (Fama & French, 1993, 2015), Carhart (1997), and Hou, Xue, and Zhang

(2014).

Time-series regressions

Time-series regression tests of asset pricing models have been around since the earliest

tests of the CAPM, perhaps most notably Black, Jensen, and Scholes (1972). More recently,

Fama and French (1993) used the time series tests of Black et al. (1972) to evaluate the

effectiveness of their two additional factors, market equity and book-to-market equity, to

the market portfolio return of the CAPM. The aforementioned models of Carhart (1997),

Hou et al. (2014), and (Fama & French, 2015) all offer extensions of this basic concept

pioneered by Fama and French (1993). These models attempt to describe the cross-section

of expected returns and are tested with time-series regressions. In these models, the factors,

in addition to the market return, can be thought of as priced factors that are approximately

orthogonal to the overall market return, and therefore would be consistent with the multi-

factor models of R. C. Merton (1973) and Ross (1976). All of these models imply the

following equilibrium relationship:

E[Rt] = Rf +
N∑
k=1

βkE[Rk] (49)

This equilibrium relationship is formulated in terms of an expectation and therefore the

variables are expressed in terms of future, ex-ante values. In that sense it also true that the

βk that we care about is also the future the βk. However these models are always tested

with ex-post, i.e. observed historical data. Validating these tests is discussed by Elton,

Gruber, Brown, and Goetzmann (2010). Using the basic CAPM we can begin with the
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market model:

R̃i,t = αi + βiR̃M,tε̃i,t (50)

Taking the expected value of this equation yields the following:

E[Ri] = αi + βiE[RM ]

Therefore the following condition holds

E[Ri]− αi + βiE[RM ] = 0

(51)

Now adding this value of zero to Equation 50 and rearranging yields:

R̃i,t = E[Ri] + βi

[
R̃M,t − E[Rm]

]
+ ε̃i,t (52)

Finally, the equilibrium relationship implied by the CAPM is given by:

E[Ri] = Rf + βi [E[R]M,t −Rf ] + ε̃i,t (53)

Plugging this into Equation 52 and we arrive at the testable form of the CAPM:

R̃i,t = Rf + βi

[
R̃M,t −Rf

]
+ ε̃i,t (54)

Which can be extended to the larger class of multi-factor models:

R̃i,t = Rf +
K∑
j=1

βi,j

[
R̃j,t −Rf

]
+ ε̃i,t (55)

There are several implicit assumptions in testing multi-factor equilibrium models with

time-series tests: 1) the multi-factor versions of the market model must hold every period,

2) the equilibrium relationship must hold every period, and 3) the β̂ is stable over time.

Therefore, using a time-series regression as an asset pricing test, or using a time-series

regression to estimate factor loadings, implies these assumptions.
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Relating cross-sectional and time-series regressions

Relating these two approaches is key to understanding why forming portfolios on factor

loadings would be expected to produce similar performance as portfolios formed from

characteristics. Consider taking the time series average of the t estimates of Equation 47:

E[ri] = E[α] +
K∑
j=1

E[βj]E[xj] (56)

Now comparing this to the equilibrium relationship in Equation 49 and the similarities be-

come obvious. Recall that one of the time-series assumptions is that the β̂ estimates are

stable over time, much like the expectations in Equation 56. Following the discussion from

Section 2.1, recall the β̂ estimates in Equation 56 are zero-cost hedge portfolios and the

xj variables are observed stock characteristics. Now referencing Equation 55, the afore-

mentioned popular asset pricing models all define R̃j,t as a zero cost hedge portfolio. In

equilibrium, this means that the β̂j in time-series regression are analogous to the observed

stock characteristics in cross-sectional regressions, and the β̂j in cross-sectional regressions

are analogous to the R̃j,t in time-series regressions. Therefore, forming portfolios on the

basis of observed stock characteristics implies the same equilibrium relationship as form-

ing portfolio portfolios on the basis of factor loadings, when the factors are constructed

as zero-cost hedge portfolios of the same characteristics. Cochrane (2011) also notes that

portfolios formed by sorts are the same thing as nonparametric cross-sectional regressions.

Additionally univariate sorts and univariate cross-sectional regression will yield the same

portfolios.

A final point to make regarding cross-sectional and time-series regressions are the time
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periods used to construct each of the inputs. For the cross-section regressions I match

up the data consistent with the conventional Fama and French (1992) timing convention,

which means at any point in time my returns are matched with accounting data that is a

minimum of 6 months old and a maximum of 18 months old. Of course this ensures I

make investment decisions only using information known at time t. Using a time-series

regression to estimate a factor loading however computes each β̂j as a weighted average

of all the time periods in the sample. Daniel and Titman (1997) and Davis et al. (2000)

use rolling estimates to compute pre-formation loadings as do I. For example, if I estimate

the loadings using five years of historical data, then the factor loading is a weighted aver-

age over the last five years, but the characteristic is one observation at a specific point in

time. The aforementioned studies did not consider this but to ensure I am fair with what

information is used to construct my portfolio signals, I also compute rolling averages of the

characteristics before sorting stocks in portfolios. That way both the factor loadings and

the characteristics are represented as weighted averages over the same time periods.

Empirical Application

Data

My sample spans July 1963 to Dec 2013 with monthly holding period returns obtained

from the Center for Research in Security Prices (CRSP) and accounting data from Compu-

stat. The sample includes common equity securities (share codes 10 and 11) for all firms

traded on the NYSE, NASDAQ or AMEX (exchange codes 1, 2, and 3). I consider the

following stock characteristics consistent with Novy-Marx (2013) and Fama and French
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(2015): size (log(ME)), book-to-market (log(BE/ME))20, profitability (ratio of gross prof-

its to assets), and investment (growth of total assets from previous fiscal year). These four

explanatory variables have all been shown to have substantial risk premiums in the afore-

mentioned literature. As in Novy-Marx (2013), to reduce the effect of outliers, I trim all

independent variables at the 1% and 99% levels. Consistent with the prior literature, I use

the standard Fama and French (1992) timing convention where I match monthly stock re-

turns for July of year t to June or year t + 1 with the Compustat variables for fiscal years

ending in calendar t− 1. This standard timing convention ensures that all accounting vari-

ables are known at the time of the investment decision. Additionally, these characteristics

are updated annually and thus remain static from July of a given to June of the following

year.

The log of market equity (ME) is defined as price per share times shares outstanding

from CRSP. To get ME for the firm, I aggregate values of all equity for a given permno and

date. This aggregate value is assigned to the permno with the largest ME. Slightly deviating

the Novy-Marx (2013) definition I update using the June market equity to compute this

variable rather than the previous December value, since this increases its explanatory power

in the cross section. The log of book-to-market (BEME) is book equity scaled by market

equity. Book equity is shareholder equity, plus deferred taxes, minus preferred stock, when

available. The shareholder equity components follow the tiered definitions consistent with

those used in Fama and French (1993) to construct the HML factor. Stockholder equity is

defined in Compustat as (SEQ) if available, or else common equity plus the carrying value

20Taking logs makes the cross-sectional distribution of market equity and book-to-market more symmet-
ric, reducing the impact of outliers
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of preferred stock is available (CEQ + PSTX) if available, otherwise total assets minus total

liabilities (AT - LT) is used. Deferred taxes is deferred taxes and investment tax credits

(TXDITC) if available, or else deferred taxes and/or investment tax credit (TXDB and/or

ITCB). Preferred stock is redemption value (PSTKR) if available, or else liquidating value

(PSTKRL) if available, or else carrying value (PSTK). Profitability (PROF) is defined as

gross profits and earnings before extraordinary items are Compustat data items GP and IB,

respectively, scaled by total assets. Gross profits are also defined as total revenue (REVT)

minus cost of goods sold (COGS). Investment (INV) for firms in year t is the growth of

total assets for the fiscal year ending in year t − 1 divided by total assets at the end of

year t− 2. This matches the definition used by (Fama & French, 2015). In their valuation

equation, the investment variable is actually defined as the expected growth of book equity,

not assets. However, as they state, sorts on asset growth result in larger spreads of average

return and using growth in book equity produces similar results.

Generating the Factors and Factor Loadings

Generating the Factors

As my analysis relies on the performance of portfolios constructed from signals based

on equity characteristics versus equity factor loadings, I must estimate pre-portfolio for-

mation factor loadings. To construct the factors I follow the procedure described in Kirby

and Cordis (2015). This procedure is an alternative to the sorting procedure popularized by

Fama and French (1993), and fully accounts for the estimated cross-sectional correlations

between the candidate characteristics. This ensures that the portfolios formed to capture

patterns of a specific equity characteristic truly measures just the marginal return of that
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characteristic. Therefore sorts on decile portfolios show dispersion in the characteristic of

interest, while all other characteristics remain approximately constant across the deciles.

Another advantage to this procedure is that it is simple to implement with a large num-

ber of candidate explanatory variables. The Fama and French (1993) procedure of finding

intersections of stocks, quickly becomes awkward as the number of explanatory variables

increases and the portfolios are highly unbalanced. Daniel and Titman (1997) report that

some of their test portfolios contain only one stock, producing results that are far too ex-

posed to idiosyncratic shocks.

The Kirby and Cordis (2015) regression-based approach relies on sorts of stocks based

on the residuals from cross-sectional regressions for each of the equity characteristic. Given

k equity characteristics, the cross-sectional regression for equity characteristic xj is as

follows:

xi,j,t = α +
k∑

i=1,i 6=j

βixi,j,t + ei,j,t (57)

This regression is repeated ∀t and the regression residuals for each of the j ∈ (1, ..., k)

equity characteristics, êi,j,t are saved for each firm. I then form decile portfolios of stocks

based on sorts of the residuals. The factors used to estimate the factor loadings are then

constructed as self-financing hedge portfolios of the top and bottom deciles. Therefore the

factors themselves represent the difference in returns due to the marginal impact of each of

the k candidate stock characteristics. These results of this procedure are found in Table 22

and discussed in more detail in Section 5.1.
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Generating the Factor Loadings

To generate the pre-formation factor loadings, bk,i,21 I use rolling time-series regressions

for each stock, ri,t, using the factors,fk,t, as constructed in the previous section. I also in-

clude an equally-weighted market factor in the regression to control for variation in overall

systemic risk. The time-series regression takes the following form:

ri,t = αi + bMkt,ifMkt,t + bME,i,tfME,t + bBEME,i,tfBEME,t+

bPROF,i,tfPROF,t + bINV,i,tfINV,t + εi,t

(58)

To estimate these loadings my rolling window consists of the previous 60 months of returns.

Daniel and Titman (1997) use only 36 months of data and Davis et al. (2000) require at least

36 months of the last 60 months. I use at least 60 months to reduce estimation error in the

factor loadings. While not reported, I also experimented with 120 months and 36 months

and achieved similar results.

Portfolio Construction

To conduct the empirical analysis, I focus on the performance statistics of returns to

portfolios formed using signals derived from both the individual equity characteristics and

the individual equity factor loadings. I use two main approaches that have similarities to

those used by Daniel and Titman (1997) and Davis et al. (2000), but are also quite different.

Daniel and Titman (1997) and Davis et al. (2000) both focus on finding risk loadings that do

not match up with their associated equity characteristics. It seems very plausible that there

are some cases where this is true, e.g. when a value stock acts more like a growth stock or

a stock with high profitability acts more like a stock with low profitability. After all, the

21I use b here so as not to confuse the time-series factor loading from the cross-sectional estimates, β
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factor loadings are conditional and just measured as a weighted average of “noisy” equity

returns, where the weights are determined by the variance of “noisy” hedge portfolios. At

the individual equity level, a firm may have attractive accounting measures but be part of a

distressed industry which may cause patterns in returns that are not representative of other

firms with similar characteristics. In that sense, the approaches used by Daniel and Titman

(1997) and Davis et al. (2000) really are just finding firms in the tails of the distribution

of returns sorted by a candidate equity characteristic, i.e. the outliers. This is also exactly

why their triple-sorting procedure that results in 45 portfolios is very unbalanced, and in

some cases producing portfolios containing only one stock – they are searching for outliers.

My procedure is more robust to outliers as all of my portfolios analyzed contain the same

number of stocks. The triple-sorting procedure of Daniel and Titman (1997) and Davis et al.

(2000) is also completely intractable using four equity characteristics as I am analyzing. In

fact, their triple-sorting procedure would result in 50,625 portfolios analyzing four equity

characteristics, approximately 10 times more than the maximum number of stocks in any

given year.

One-dimensional Sorts for Portfolio Construction

First I simply form portfolios based on observed stock characteristics and estimated pre-

formation factor loadings. If time-series factor loadings really do proxy for equity charac-

teristics, then portfolios formed by these estimated factor loadings should, on average, be

the same as portfolios formed by the equity characteristics. I sort stocks into decile portfo-

lios using both equity characteristics and pre-formation factor loadings to discern patterns

across the empirical distribution of returns.
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Multivariable Sorts for Portfolio Construction

My second approach relies on the sequential multivariable cross-sectional regressions

described in Dickson (2015). This procedure aggregates forecasting signals from multiple

sources and is far more tractable than the awkward univariate sorting procedure introduced

by Fama and French (1993) for multiple characteristics. Cochrane (2011) stated in his AFA

presidential address that following this work of Fama and French, the anomaly literature

was once again “descending into chaos.” Recently Harvey et al. (2013) documented over

314 different anomalous predictive variables. When discussing asset pricing as a function

of characteristics, Cochrane (2011) also stated that “we will all end up running multivariate

regressions” as we cannot “chop portfolios 27 ways (p. 1061).” This procedure was also

used by Haugen and Nardin (1996), Hanna and Ready (2005), Fama and French (2006,

2008), and Lewellen (2014) to forecast expected stock returns and combine the signals from

multiple stock characteristics. The approach not only exploits the univariate impacts of the

candidate explanatory variables on the cross-section of expected returns, but also the cross-

sectional covariance matrix of the explanatory variables. Just as as with my first approach, I

sort stocks into decile portfolios using signals based on both equity characteristics and pre-

formation factor loadings. In my first approach, the signals I used were the characteristics

and loadings themselves, while in my second approach the signals I use are the expected

returns from my sequential cross-sectional regressions. To generate the expected returns I

begin with the following specification for the month by month cross-sectional regressions:

ri,t+1 = α + βk1xk1,i,t + βk2xk2,i,t + βk3xk3,i,t + βk4xk4,i,t + εi,t (59)
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For the portfolios formed by the equity characteristics, each xk,i,t is equal to each stock’s

observed characteristic. For the portfolios formed by the factor loadings, each xk,i,t is equal

to a pre-formation estimated factor loading. Since my data spans from July 1963 through

December 2013, and I smooth each stock characteristic over the previous 60 months to

ensure the loadings and characteristics are estimated from the same time periods, my first

estimated factor loading occurs in July 1973. Therefore I estimate this model for 486

months from July 1973 through December 2013. Since the conditional coefficient estimates

from month to month are quite noisy, I apply a simple rolling average to the coefficients to

filter out the signal. The smoothed coefficient estimates are generated as:

β̂t =
1

t− 1

t−1∑
i=1

βi

Note that the mean parameter estimates for month t are based on estimates before month t,

which ensures that I have an implementable trading strategy and incorporate no look-ahead

bias. To curb excessive turnover and transaction costs, I update the smoothed coefficients

annually, specifically ever June, and also begin with a sixty month burn-in period. For both

the characteristic and factor based models I use this sixty month burn-in period, this brings

my total out-of-sample count of month returns to 426 months. Denoting these smoothed

estimates as β̂k1, the estimated expected returns are computed as:

r̂i,t+1 = α̂ + β̂k1xk1,i,t + β̂k2xk2,i,t + β̂k3xk3,i,t + β̂k4xk4,i,t
(60)

Controlling for Estimation Error in the Loadings

To examine the extent to which estimation error may play a role in the estimation of

the factor loadings, I also form equally weighted test portfolios containing on average,
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approximately thirty equities. I then compare the same performance statistics using char-

acteristics and factor loadings. For each of these portfolios, I compute an equally weighted

average of the characteristics of the equities including in the portfolio, and use these aver-

age characteristics as the observed signal when forming portfolios. Basically these average

characteristics serve as the observed portfolio characteristic. The portfolios of equities have

a substantially smaller amount idiosyncratic volatility due to diversification, which results

in more accurate estimates for the β̂ vector. This can easily be seen by examining the ana-

lytic formula for the variance of the OLS β̂ vector: σβ̂j = σ2
jΣ
−1
x,x. The sample covariance

matrix is the same for both equities and portfolios of equities but the idiosyncratic volatil-

ity, σ2
j , is much smaller for the portfolios than for the individual equities. This will result

in more accurate estimates of the factor loadings. Another advantage of this approach is

that it provides a good proxy for how well factor loadings can be used to form portfolios of

ETFs, where aggregating individual equity data may be difficult or not even possible. These

test portfolios serve as proxies for ETFs. According to my main hypothesis, as estimation

error is reduced, the factor loadings should provide better proxies for the characteristics.

Therefore I should observe portfolio returns that match up quite closely using either factor

loadings or characteristics. I report results for these tests alongside the individual equities

in Tables 27 through 35.

To form these portfolios I group stocks into 100 portfolios based on one-dimensional

sorts of the following observable equity characteristics: size (log(ME)), book-to-market

(log(BE/ME)), profitability (ratio of gross profits to assets), investment (growth of total

assets from previous fiscal year), past performance measured at horizons of one month

(r1,0) to capture short-term reversals, and 12 to two months (r12,2), to capture momentum.
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This process results in 600 test portfolios, containing on average 30 equities. As previously

mentioned, I also computed the average of the equity characteristics contained in each of

these 600 portfolios to facilitate the same comparison as I did for individual equities.

Portfolio Turnover and Trading Costs

Portfolio turnover is an often overlooked but very real cost to investors. Transactional

brokerage fee costs are typically not included in the calculation of a fund’s operating ex-

pense ratio and thus the true operating expense of high turnover funds can be significant.

As long as transaction costs are greater than zero, anything that increases turnover directly

reduces the true performance of a fund. To examine the amount of trading required to

implement each strategy I follow Kirby and Ostdiek (2015). Turnover is simply the frac-

tion of invested wealth traded each period needed to re-balance the portfolio to the desired

weights. At any time t I calculate turnover as:

Turnovert =
N∑
i=1

1

2
|ŵi,t+1 − ŵi,t+ | (61)

This definition of turnover is consistent with what is used in the mutual fund industry, i.e.

the lesser of the value of purchases or sales in the period divided by the net asset value.

(Kirby & Ostdiek, 2015) Since there are no fund inflows or outflows these must be equal.

I define ŵi,t as the portfolio weight in asset i at time t; ŵi,t+ is the portfolio weight before

re-balancing at time t + 1; and ŵi,t+1 is the desired portfolio weight at time t + 1, after

re-balancing. To compute ŵi,t+ I must consider the mechanical changes that occur within

the portfolio. Assets that have done well over the time period will make up more than their

starting share of weight at the end of the period, and assets that have done poorly will make
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up less than there starting share. I compute ŵi,t+ as:

ŵi,t+ =
ŵi,t(1 + ri,t)

1 +
∑N

i=1 ŵi,tri,t
(62)

Starting from the beginning of my sample, the first weights occur in month 61, therefore

the first turnover calculation occurs in month 62. Studies such as Kirby and Ostdiek (2015,

2012) and Demiguel et al. (2009) do not ignore these mechanical weights while others such

as Brandt et al. (2009) do ignore these mechanical changes. I have found that ignoring

these mechanical changes is innocuous in this setting but do include them to capture the

most conservative view of the trading costs. Now the return of the portfolio net of the

proportional transactions costs becomes:

rp,t+1 =
N∑
i=1

ŵi,tri,t+1 − 2× ci,t|ŵi,t − ŵi,t−1+|, (63)

where ci,t reflects the proportional transaction cost for stock i and time t. Since turnover

is the value of assets both purchased and sold as a fraction of total wealth, and both pur-

chases and sales incur transaction costs, I multiply the turnover in Eq. 63 by 2. To be as

conservative as possible I set I set c = 50 basis points consistent with the measures used

by Brandt et al. (2009), Demiguel et al. (2009), Kirby and Ostdiek (2012, 2015), and the

even more recent estimates by Novy-Marx and Velikov (2014). Finally, letting L reference

the burn-in-period of 60 months, and T represent the total number of months in my study,

numerically the average turnover I report in the tables is:

Turnover =
1

T − L− 1

T−1∑
t=L+1

(
1

2

N∑
i=1

|ŵi,t+1 − ŵi,t+|

)
(64)
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Statistical Inference

To conduct statistical inferences about the relative performance of the various strategies

using the Sharpe ratio, I follow Kirby and Ostdiek (2012) and use large sample t and chi−

squared statistics. I consistently compute these statistics using the generalized method

of moments (GMM). For details of the proof of the general results see Hansen (1982).

As Hansen (1982) shows, the Delta method, Slutky’s theorem and LLN are all used to

derive the asymptotic distribution of the GMM estimators. Recent asymptotic distribution

derivations for Sharpe ratios are also provided by Opdyke (2007) and Bailey and de Prado

(2011) who also use these theorems in their derivations. However I use GMM standard

errors to appeal to these more recent derivations while still applicable in a more general

context. In the analysis I begin with a set of moment conditions of the form E(g(Rt, θ)) =

0, where g(Rt, θ) is a J × 1 vector of moments, analogous to disturbances, Rt is a vector

or returns, and θ is J × 1 vector of parameters. I use the fundamental result from Hansen

(1982) that, subject to general conditions, the limiting distribution of θ̂ is given by:

√
T (θ̂ − θ) d−→ N(0, V ) (65)

I have the following:

V = D−1SD−1′ , D = E(∂g(Rt, θ)/θ
′), S =

∞∑
−∞

E(g(Yt, θ)g(Yt−j, θ)
′)
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The moment conditions are specified as follows:

g(Rt, θ) =



Rbench,t − σbench × SRbench

Rtest,t − σtest × SRtest

(Rbench,t − σbench × SRbench)
2 − (σbench)

2

(Rtest,t − σtest × SRtest)
2 − (σtest)

2


(66)

Using Eq. 65 I have the asymptotic standard errors of the Sharpe ratios and can also

easily conduct a Wald test of linear restrictions to determine if the differences between the

Sharpe ratios of the benchmark and test portfolios are statistically different from zero. To

do so I consider the following test statistic:

(ŜRtest − ŜRbench)(RSRV R
′
SR)−1(ŜRtest − ŜRbench) ∼ X (1) (67)

In Eq. 67 the discrepancy vectorRSR = (−1, 1, 0, 0) and V is the asymptotic covariance

matrix described in Eq. 65. It can be shown that the square root of this statistic is equivalent

to the following limiting distribution:

√
T ((ŜRtest − ŜRbench)− (SRtest − SRbench)

d−→ N(0, RSRV R
′
SR) (68)

So in the case where the population Sharpe ratios are equal in the benchmark and test

portfolios, I have the following large-sample test statistic:

√
T

(
ŜRtest − ŜRbench

(RSRV̂ R′SR)1/2

)
∼asy
N(0, 1) (69)

I also use this asymptotic covariance matrix to conduct a simple t−test on the individual

significance of the Sharpe ratio. Of course I no longer need a discrepancy vector and can
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simply take the square root of the appropriate diagonal element of the matrix V to compute

the test statistic.

Results

Overall, the results show that not all factors are well approximated by their factor load-

ings, but in some cases the results are commensurate, specifically for BEME. Additionally,

estimated factor loadings for portfolios of equities appear to provide better proxies than

for the individual equities. Specifically, for portfolios of equities, an investor would earn

nearly 400 basis points a year over a benchmark portfolio using estimated factor loadings

as proxies for characteristics, when sorting by expected return. For individual equities, an

investor would only earn around 100 basis points a year over a benchmark portfolio, and

this includes nearly a 65% increase in volatility. After considering transaction costs, this

higher average return completely disappears.

Regression-Based Hedge Portfolios

Table 22 reports summary statistics of the four different sets of characteristic-based

decile portfolios. Columns one through four report the first four centralized moments of

returns for each decile, and columns five through nine report the averages of each of the

characteristics. Panel A shows results for portfolio sorted by the BEME residual. The pat-

tern in mean returns is monotonically decreasing in nearly every decile. For decile 1 the

mean return is 1.3377% per month and for decile 10 the mean return is 1.0718% per month.

This is consistent with value firms outperforming growth firms, i.e. that distressed firms

earn higher expected returns. The top decile also displays the highest volatility, smallest

negative skewness, and largest kurtosis. Most importantly, columns five through nine show
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that the procedure of Kirby and Cordis (2015) achieved the desired result. The column

labeled BEME decreases from its largest value in decile 1 of 0.2081, to its smallest value in

decile 10 of -1.3249, while all other characteristics remains approximately constant. This

procedure created a spread in returns due to the variation of the characteristic of interest,

BEME in this case, while holding all other characteristics approximately constant.

Panel B shows results for portfolios sorted by the ME residual. Mean returns range from

1.1186% per month to 1.3154% per month, consistent with small-cap stocks outperforming

large-cap stocks over the sample. The volatility and kurtosis are also the smallest for decile

1 and display a monotonically decreasing pattern. As in Panel A, the average ME for each

decile shows a strict monotonically decreasing pattern, while all other characteristics are

approximately constant. The BEME values range from -0.3121 to -0.5194, but the other

characteristics show a much tighter pattern.

Panel C shows results for portfolios grouped by the PROF residual. The mean returns

range from 1.4688% in decile 1 to 1.0432% in decile 10. These patterns show that firms

with large measures of gross-profitability outperform those with smaller measures. The

other centralized moments follow similar patterns as in the previous panels. These portfo-

lios formed by the PROF residual display the largest spread in mean returns of all four of

the characteristic based hedge portfolios. The PROF values range from 0.7615 for decile

1 to 0.0935 for decile 10. BEME again varies by a small amount, ranging from -0.3164 to

-0.6652, while all other characteristics are relatively constant.

Panel D shows results for portfolios grouped by the INV residual. The mean returns

range from 1.1440% per month to 1.2796% per month and display the smallest spread in

mean returns of the four residual sorted portfolios. These patterns are also consistent with
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the literature that investment is inversely related to expected stock returns (see Fama and

French (2015)). The other three centralized moments follow similar patterns as before.

Examining patterns in columns five through nine and INV varies from 0.3978 for decile

1 to 0.0126 for decile. As before, all other characteristics remain approximately constant,

with the exception of BEME which again varies slightly, -0.2914 to -0.6991.

Table 24 shows the correlation matrix of the factors. Both BEME and ME have low

correlations with the Mkt factor, 0.0606 and -0.0354 respectively; while both PROF and

INV have high correlations with the Mkt factor, 0.3298 and 0.5076 respectively. For the

cross-correlations of the factors, the largest correlation occurs between BEME and PROF,

with an estimate of 0.2354, while the smallest correlation occurs between ME and PROF,

an estimate of 0.0101. Overall the correlations are all quite small, further corroborating the

effectiveness of the procedure described by Kirby and Cordis (2015).

Cross-Sectional Regression Estimates

Tables 25 and 26 show the results from sequential cross-sectional regressions with Fama

and Macbeth (1973) standard errors. I also report average values of the regression R-

squared. Several interpretations of cross-sectional regressions are worth noting. As de-

scribed in Section 2, cross-sectional slopes can be interpreted as returns on characteristic-

based portfolios. Second, Fama (1976) describes how the cross-sectional R2 reflects how

much ex post volatility is explained, and is not indicator of the predictive ability of the

characteristics. Finally, if I can interpret the slopes as returns on characteristic-based port-

folios, then I can directly interpret the size of the t-stat as the size of the Sharpe ratios

of characteristic-based portfolios. Consider the definition of the t-statistic and the Sharpe
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ratio:

t =
E(R)

σ(R)/
√
T

and SR =
E(R)

σ(R)

SR =
t√
T

(70)

As long as T is the same for all regressions, then a higher t-stat indicates a higher Sharpe

ratio for the return on a characteristic-based portfolio. First I discuss the results for in-

dividual equities in table 25. While not wholly convincing, I do find support that char-

acteristics explain the cross-section of expected returns. Panel A shows results using the

average characteristics as explanatory variables and Panel B shows results using the pre-

formation factor loadings. In Panel A, the risk-premiums are quite similar to those obtained

by Kirby and Cordis (2015). In column 1 I show the results using all characteristics. The

largest risk-premium is 0.7908 for PROF while the smallest risk-premium is -0.0431 for

ME. Only BEME and PROF show significant t-statistics with values of 4.1036 and 4.0356

respectively. This means that portfolios formed by BEME and PROF have approximately

the same Sharpe ratio, which confirms the results documented by Novy-Marx (2013), that

the cross-sectional explanatory power of gross-profitability rivals that of BEME. In column

2 I drop BEME from the regression, which causes the risk premiums of both PROF and

INV to fall, while the risk-premium for ME remains relatively unchanged. Additionally,

both ME and INV now appear significant. In column 3 I drop ME and observe little change

in the risk premiums of the other characteristics. In column 4 I drop PROF and observe the

risk premium for BEME to fall from 0.2833 to 0.0944, while also becoming insignificant.

Finally in column 4 I drop INV, and again observe litle change in the risk premiums of the

other characteristics.

In Panel B, the factor loadings yield smaller risk premiums in all cases. In column 1 I
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show the results using all of the pre-formation factors, and only the BEME factor yields

significant risk premium, with an estimate of 0.1763. Examining columns 2, 3, and 4, there

is nothing significant to note. Dropping each of the explanatory variables has little impact

on the risk premium estimates of the other factors. Comparing Panel B and Panel A, the

R-squared estimates are larger in all cases for Panel B. This suggests that more ex post

volatility is explained using the factor loadings than using the characteristics themselves.

Examining the results for portfolios of equities in Table 26, shows even more interesting

results. Here I find much stronger evidence for the hypothesis that characteristics explain

the cross-section of expected returns. Perhaps most obvious are the much higherR-squared

values. Panel A of Table 26 shows an R-squared of 0.1429 compared to 0.0329 in Table

25. All other columns also yield higher R-squared values. This is likely due to the smaller

amount of idiosyncratic volatility present in the portfolios or equities, compare to the indi-

vidual equities themselves. In regards to the risk-premiums, all estimates are similar except

for those of INV in Panel A. The risk premium estimate for INV in Panel A is -0.7441 in

Table 26, compared to -0.5501 in Table 25. Additionally this estimate is statistically sig-

nificant with a t-statistic of -6.7299. Column 2 follows a similar pattern as in Table 25, that

is, removing BEME causes large changes in the estimates of the other characteristics. In

column 3, removing ME causes more significant changes to BEME and PROF than it did

in Table 25. Similar conclusions hold in columns 4 and 5 when dropping PROF and INV.

In Panel B, the factor loading display much stronger risk premium estimates than in

Panel B of Table 25, supporting the result factor loadings are reasonable proxies for latent

characteristics. In column 1, BEME, PROF, and INV all display statistically significant risk

premiums. Perhaps most importantly, the sign of the effect matches that of prior literature.
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BEME and PROF are both positive showing that value firms (distressed) and firms with

high measures of profitability, both have positive risk-premiums. ME and INV are negative

showing that large firms and firms with high levels of investment have negative expected

returns. In columns 2 through 5, dropping each of the explanatory variables seems to have

a smaller impact on the other estimates than was the case using individual equities of Table

25. In conclusion, the factor loadings from portfolio of equities seem to provide promise

for achieving a reduction in estimation error. Since using factor loadings show patterns

in risk premiums for portfolios of equities, I suspect to find similar patterns in both one-

dimensional and multivariable sorts.

Average Characteristic vs. Factor-Based Portfolios

Tables 27 through 33 show results for decile portfolios formed by sorts of the average

characteristics over the previous sixty months, and sorts of the pre-formation time-series

factor loadings estimated over the previous sixty months. Panels A and B show character-

istic sorted and factor sorted portfolios respectively, for individual equities. Panels C and D

show characteristic sorted and factor sorted portfolios respectively, for portfolios of equi-

ties. The results in panels C and D should be less sensitive to estimation error, and thus my

null hypothesis of equal predictability should be more strongly supported by these results.

To measure performance I report the first four centralized moments of monthly returns, the

average firm size, the information ratio relative to the S&P 500, and the portfolio turnover.

Individual Equities

Table 27 displays performance statistics for BEME. In Panel A the mean return ranges

from 1.5633% in decile 1 to 1.0631% in decile 10. In Panel B the mean returns are very
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similar ranging from 1.5415% for decile 1 to 1.0334% for decile 10. This pattern in mean

returns strongly supports the hypothesis that factor loadings are good proxies for equity

characteristics. In Panel A the standard deviation follows an unusual pattern ranging from

4.7442 in decile 1 to 5.0218 in decile 10. This results in decile 1 achieve the largest Sharpe

ratio of 0.2404 per months and decile 10 achieve the smallest Sharpe ratio of 0.1276. In

Panel B the pattern is not quite as strong but the Sharpe ratio ratios range from 0.1987

in decile 1 to 0.1029 in decile 10. A similar pattern emerges for the information ratio,

which shows declining relative performance relative to the S&P 500. The largest standard

deviation in Panel B occurs in decile 10, which also has the smallest return. In both Panels

A and B decile 10 exhibits a sharp decline in performance relative to decile 9, nearly 20

basis points per month lower in each case with over a 25% reduction in Sharpe ratio. Only

decile 1 of Panel B exhibits a slightly positive skewness while all other estimates are similar

and slightly negative. The kurtosis in both panels exhibit slight excess kurtosis with an

unusually large value of 12.3386 in decile 1 of Panel B, nearly 50% larger than any other

estimate. In both panels, the smallest stocks occur in decile 1 and the average size increases

as the deciles increase. However, Panel A shows a larger spread in average size ranging

from 711.8802 to 3268.8946 while panel B only ranges from 916.4951 to 1637.2201. The

turnover is quite small in Panel A, with the largest values occurring in the middle deciles

and a maximum value of 0.0634. Panel B exhibits much larger turnover with a maximum

value of 0.3733. Panel B also has the largest turnover measures in the middle deciles. In

conclusion, investing in the top deciles by either characteristics or factors, would result in

very similar portfolios. In the other deciles there are only slight differences in average size

and turnover and in general these results strongly support my main hypothesis for BEME.
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Table 29 displays performance statistics for ME. In Panel A the mean return ranges from

1.0953% for the largest stocks to 1.4431% for the smallest stocks. This pattern is not as

strong in Panel B but is still present, ranging from 1.2078% for large stocks to 1.4071% for

small stocks. Examining the average size of firms in these portfolios shows that sorts on the

factor loadings do not result in the same spread in ME. In Panel A the average size ranges

from 7639.4687 to 26.5111, while in panel B the average size ranges from 2722.9248 to

326.5065. Nonetheless, the performance in mean return and Sharpe ratios are similar for

the top performing deciles. The turnover in Panel A is again much smaller than for Panel

B in the middle deciles, but the top performing deciles are similar, 0.0271 for Panel A and

0.0917 for Panel B.

At first glance, Tables 31 and 33 would appear to display the weakest evidence in indi-

vidual equities that factors proxy well for characteristics, due to the smaller return spreads

in Panel B. However, the returns spreads are also smaller in Panel A for these characteris-

tics as well. In Panel A of Table 31 the mean return ranges from 1.4651% in decile 1 to

1.2216% in decile 10. In Panel B this range is smaller, 1.2458% to 1.4067%. However the

Sharpe ratios in all deciles are actually quite similar. Furthermore, the average firm sizes

match up quite closely and are relatively constant. This pattern also emerges in Table 33

with Panel A exhibiting a mean return spread of 1.1968 to 1.5478 and 1.2417 to 1.4089 in

Panel B. Both tables show patterns in Sharpe ratios that are commensurate with Tables 27

and 29. Turnover is larger for both characteristic and factor sorted portfolios, but otherwise

follow similar patters as the previous tables, and the information ratios follow similar per-

formance patterns as the Sharpe ratios. Even though the return spreads are smaller in Panel

A and Panel B, the mean returns are still larger than an equally-weighted (EW) benchmark
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portfolio. For both PROF and INV and investor would sill earn approximately 180 basis

points in excess of an EW benchmark using characteristic sorts, and 120 points in excess

of EW benchmark using factor sorts by investing in the top deciles.

Referencing panel A of Table 35, the null hypothesis is that the Sharpe ratios for hedge

portfolios of the top and bottom deciles formed by sorts of characteristics and factor load-

ings, are the same. I use GMM and Newey-West standard errors with five lags for the

residual covariance matrix to facilitate the statistical tests. For BEME and PROF the null

hypothesis cannot be rejected at any standard significance levels. However for ME, the null

can be rejected at the 5% significance level and for INV, the null can be rejected at the 10%

significance level.

Portfolios of Equities

The general conclusion examining the portfolios of equities in panels C and D of Tables

27 through 33, supports my main hypothesis, that factors proxy well for characteristics.

The reduction in estimation error yields more accurate factor estimates and creates a more

consistent pattern of performance, particularly for PROF and INV, which yielded weak

support of my hypothesis using individual equities. In Table 27 the patterns are just as

robust as they were for individual equities. Return spreads are slightly larger ranging from

1.6667% to 1.0793% in panel C and 1.5596% to 1.0962% Panel D. The Sharpe ratios match

closely as does the information ratio relative to the S&P 500. Even the average firm size

matches quite well ranging from 75.2817 to 782.0039 in panel C to 87.7710 to 440.8969

in panel D.

In Table 29 the return spreads range from 1.2007% to 1.6193% in panel C to 1.2627%
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to 1.5893% in panel D. These mean return patterns are much closer than for the individual

equities. Recall that for individual equities, sorts for ME resulted in portfolios of much

different average firm size. This is not the case for the portfolios of equities. Average firm

size ranges from 1381.2942 to 31.8611 in Panel C and 1282.4224 to 51.3290 in Panel D.

These results in panels C and D provide much stronger support for my hypothesis for ME

than did individual equities.

Tables 31 and 33 show that panels C and D much more closely than they did for panels

A and B. In Table 31 this is particularly true for the top decile. The top decile in panel

C yields a mean return of 1.3907%, a Sharpe ratio of 0.1522 and an information ratio

of 0.1805. In panel C the mean return is 1.4076%, the Sharpe ratio is 0.1437, and the

information ratio is 0.1599. The average firms sizes are also comparable, 189.3396 and

166.9053 respectively and the turnover of the factor sorted portfolio is quite small, 0.0910.

In Table 33 the top decile also matches quite closely. In panel C the top decile yields a

mean return of 1.6847%, a Sharpe ratio of 0.2199, and an information ratio of 0.2608. In

panel D the top decile yields a mean return of 1.4780%, a Sharpe ratio of 0.1868, and an

information ratio 0.2259.

Referencing panel B of Table 35, the null hypothesis is that the Sharpe ratios for hedge

portfolios of the top and bottom deciles formed by sorts of characteristics and factor load-

ings, are the same. I use GMM and Newey-West standard errors with five lags for the

residual covariance matrix to facilitate the statistical tests. For BEME, ME, and PROF the

null hypothesis cannot be rejected at any standard significance levels. However for INV,

the null can be rejected at the 1% significance level.
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Aggregate Signal-Based Portfolios

Aggregating the signals from the candidate explanatory variables produces unambiguous

improved performance over an equal-weight benchmark of all stocks. For the individual

equities, the results suggest that factor loadings are unable to serve as proxies for the char-

acteristics. However, when controlling for estimation error, my hypothesis is more strongly

supported. That is, the results for the portfolios of equities support that signals derived from

the factor loadings generate returns nearly 400 basis points per year in excess of the bench-

mark.

Individuals Equities

Panel A of Table 36 shows the results for the top portfolios formed from individual

equity characteristics as sorted by expected return. I report performance statistics of the top

10%, 4%, 2% and 1% of stocks. The mean return ranges from 1.5844% for the top 10%

to 2.0898% for the top 1%. The mean return is monotonically increasing as the number

of socks gets smaller, suggesting that the model is produces consistent ordinal ranks of

expected returns. The equally-weighted benchmark yields a mean return of 1.3114%, over

550 basis points smaller than the top 1% of stocks. As expected the standard deviation also

increases with the mean return, ranging from 4.8435 for the top 10% to 5.9659 for the top

1%. This yields Sharpe ratios that are about the same for each of the four portfolios with

a maximum of 0.2642 for top 4% of stocks. The equally-weighted benchmark has slightly

smaller volatility and produces a Sharpe-ratio of 0.2009. The turnover is the smallest for

the top 10% of stocks, a value of 0.0279, and largest for the top 1% of stocks, a value of

0.0456. This is an intuitive result since the portfolios are smaller, a larger percentage of
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the portfolio would turnover as stocks move in and out. All Sharpe ratios are statistically

different that zero at standard levels, with P-values of 0.0000. The maximum Sharpe ratio

of the test portfolio, the top 4% of stocks with a value of 0.2642, is statistically different

the benchmark at the 10% significance level with a P-value of 0.0893. All others are not

statistically significantly different at standard levels. All portfolios yield stocks that are

relatively small, the largest group of stocks, the top 10%, have an average size of 152.2470

M.

Panel B of Table 36 show much less impressive results, suggesting that factor loadings

act as poor proxies for the equity characteristics. If the factor loadings were good proxies

for the equity characteristics, we would observe similar performance statistics in both pan-

els. The largest mean return occurs for the top 4% of stocks, with a value of 1.3884%. This

is marginally higher than the benchmark with a value of 1.3114. The standard deviation

for these portfolios formed from factor loadings are around 20% higher than in panel A,

with the largest value occurring in the top 1% of stocks, 7.4257. This is likely due to the

larger turnover estimates, which range from 0.0992 for top 10% to 0.1542 for the top 1%.

All Sharpe ratios are statistically significantly different than zero at standard significance

levels, but are also smaller than the benchmark in every case. The largest estimate is 0.1746

for the top 10% compared to 0.2009 for the benchmark. All portfolios yield much larger

stocks than in panel A. The average size ranges from 203.7652 M to 520.3163 M.

Portfolios of Equities

Panel A of Table 37 shows the results for the portfolios of stocks formed from the eq-

uity characteristics, while panel B shows the results for portfolios of stocks formed from
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the factor loadings. Comparing the performance statistics from panels A and B provides

evidence to how well factor loadings proxy for the characteristics. In contrast to Table 36,

these results strongly support my hypothesis that factor loadings proxy well for equity char-

acteristics. This is likely due to the decreased estimation risk present in these portfolios of

equities. The mean return in panel A ranges from 1.5844% for the top 10% to 2.0898% for

the top 1%. In panel B the mean return ranges from 1.4676% for the top 10% to 1.6147%

for the top 1%. While the mean return for the top portfolio in panel A is 550 basis points

higher per year than in panel B, the top portfolio from panel B still beats the benchmark

portfolio by 387 basis points per year. While the factor loadings do not yield as large of a

mean return, this shows that the factor loadings still provide substantial predictive power.

Looking at the risk of the portfolios, the top portfolio in panel B is less risky, an estimate

of 6.3994 compared to 7.1381 for panel A. The Sharpe ratios are therefore quite similar,

0.2352 for the top portfolio in panel A compared to 0.1882 for the top portfolio in panel B.

For panel A, all Sharpe ratios are statistically different than the benchmark value of 0.1588

at the 10% significance level. In fact the top 10%, 2%, and 1% are significant at better than

the 5% level. Both models select relatively smaller stocks, but just as in Table 36 the factor

loading select larger stocks on average.

While the results in these tables provide evidence that characteristics yield stronger pat-

terns in expected returns than factor loadings, the factor loadings are still able to provide

reasonable proxies that yield significant performance improvements over a standard bench-

mark. Furthermore, this analysis documents the danger of estimation error for individual

equities. Since portfolios of equities contain much less idiosyncratic volatility, factor esti-

mates in these cases retain strong patterns in expected returns that allows for the generation
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of excess return without actually observing the stock characteristics.

Conclusions

Expanding on the earlier studies by Daniel and Titman (1997) and Davis et al. (2000),

I provide a comprehensive comparison of factors vs. characteristics using the four equity

characteristics found in the new Fama and French (2015) five-factor asset pricing model.

I provide an alternative methodology that does not rely on the awkward double and triple

sorts employed in these after mentioned studies, and extend this debate to include a larger

set of characteristics and factors. My main hypothesis is that factors provide reasonable

proxies for equity characteristics. I use the recent procedures described by Kirby and

Cordis (2015) to create empirical asset pricing factors, which fully marginalizes the impact

of the other stock characteristics in the cross-section. For individual equities, my hypothe-

sis is most strongly supported for BEME. The portfolios formed by BEME factor loadings

matches the empirical distribution of portfolios formed by the BEME characteristic very

closely. However, for ME, PROF, and INV, only the top portfolios are well approximated.

In all cases, the spread in average firm size was much smaller for the factor sorted portfo-

lios. To control for estimation risk, I also compare these estimates for portfolios of equi-

ties, which contain much smaller amounts of idiosyncratic volatility. In general, portfolios

formed from factor loadings of these portfolios matched the characteristic based portfolios

much more closely. Finally, I used the sequential cross-sectional regression methodology

described in Dickson (2015) to aggregate the signals from multiple explanatory variables

and forecast expected returns. This analysis revealed that factor loadings are poor proxies

for characteristics with individual equities, but strong proxies for characteristics with port-
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folios of equities. Using just pre-formation factor loadings yielded a portfolio that beats

an EW benchmark by nearly 400 basis points per year. Additionally, this portfolio yielded

Sharpe ratios over 20% larger than the benchmark. The application of these results is quite

useful as mutual funds and ETFs often contain large numbers of stocks making the ag-

gregation of fundamental equity data cumbersome, unwieldy, and often times impossible.

Therefore factor loadings should allow for a reasonable proxy for equity characteristics

when constructing portfolios of mutual funds and ETFs.
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Table 22: Summary statistics
(a) The following table shows summary statistics for the portfolios formed by the following firm
characteristics: logarithm of the ratio of book to market equity (BEME), logarithm of market equity,
ratio of gross profits to assets (PROF), and growth in total assets (INV). To form the portfolios
at each month t, I conduct a cross-sectional regression of each characteristic on all others and a
constant. The residuals are saved and the portfolios are formed on sorts of those residuals.

Panel A: Firms grouped by BEME residual

Sample Moments of Returns Sample Means of Characteristics

Decile Mean Std Skewness Kurtosis BEME ME PROF INV

1 1.3377 5.2648 -0.2417 7.1553 0.2081 5.4716 0.3693 0.1521
2 1.2893 5.0827 -0.3076 7.1452 0.0125 5.4397 0.3255 0.1251
3 1.3448 4.9641 -0.3909 6.8768 -0.1156 5.4437 0.3164 0.1197
4 1.3350 4.8412 -0.3693 6.7458 -0.2209 5.4196 0.3137 0.1192
5 1.2914 4.8346 -0.3472 6.0046 -0.3147 5.3876 0.3108 0.1208
6 1.2475 4.8495 -0.5468 6.6435 -0.4105 5.3687 0.3053 0.1237
7 1.2546 4.8005 -0.3959 6.8752 -0.5172 5.3271 0.3114 0.1275
8 1.1589 4.8668 -0.4246 6.5925 -0.6680 5.3820 0.3256 0.1307
9 1.1229 4.8926 -0.4865 6.6299 -0.8757 5.4691 0.3451 0.1373
10 1.0718 5.1686 -0.3911 6.1215 -1.3249 5.5393 0.3686 0.1482

Panel B: Firms grouped by ME residual

Sample Moments of Returns Sample Means of Characteristics

Decile Mean Std Skewness Kurtosis BEME ME PROF INV

1 1.1186 4.6663 -0.3519 5.4561 -0.3238 7.9370 0.3072 0.1136
2 1.1327 5.0275 -0.3111 6.0806 -0.4544 7.1564 0.3198 0.1266
3 1.1730 4.9489 -0.4568 5.9908 -0.5194 6.6135 0.3410 0.1329
4 1.2380 5.1680 -0.3492 5.9045 -0.4996 6.0964 0.3467 0.1386
5 1.2502 5.2369 -0.3383 6.3649 -0.4618 5.6404 0.3412 0.1404
6 1.3850 5.2414 -0.3059 6.6909 -0.4262 5.1967 0.3378 0.1372
7 1.3146 5.2581 -0.4514 6.3191 -0.4030 4.7563 0.3384 0.1381
8 1.2616 5.1773 -0.0997 8.4714 -0.3789 4.2636 0.3314 0.1364
9 1.2655 5.0115 -0.1729 6.9711 -0.3121 3.6636 0.3128 0.1266
10 1.3154 5.0734 -0.1010 7.4270 -0.4432 2.9085 0.3154 0.1136

Panel C: Firms grouped by PROF residual

Sample Moments of Returns Sample Means of Characteristics

Decile Mean Std Skewness Kurtosis BEME ME PROF INV

1 1.4688 5.2568 -0.3041 7.2647 -0.5378 5.2385 0.7615 0.1269
2 1.3794 5.3741 -0.4175 6.2090 -0.4685 5.3082 0.5362 0.1360
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3 1.3563 5.2248 -0.4364 6.3851 -0.4535 5.4828 0.4436 0.1327
4 1.3190 5.4095 -0.3586 6.5454 -0.3861 5.5216 0.3721 0.1350
5 1.2415 5.3112 -0.3365 6.8405 -0.3652 5.6398 0.3178 0.1303
6 1.2040 5.2510 -0.2529 6.1855 -0.3425 5.5967 0.2717 0.1306
7 1.1395 4.8021 -0.2311 6.4007 -0.3306 5.5671 0.2210 0.1285
8 1.1122 4.5812 -0.3536 6.8281 -0.3164 5.4581 0.1603 0.1272
9 1.1882 4.5092 -0.5358 6.6165 -0.3563 5.3488 0.1116 0.1263
10 1.0432 4.4973 -0.5385 6.9451 -0.6652 5.0864 0.0935 0.1307

Panel D: Firms grouped by INV residual

Sample Moments of Returns Sample Means of Characteristics

Decile Mean Std Skewness Kurtosis BEME ME PROF INV

1 1.1440 6.0454 -0.2644 5.8190 -0.5952 5.3237 0.3326 0.3978
2 1.1921 5.4491 -0.3192 6.6530 -0.4037 5.3782 0.3412 0.2116
3 1.2668 5.0487 -0.3254 6.3720 -0.3275 5.3888 0.3411 0.1580
4 1.2692 4.8176 -0.4550 6.7707 -0.3082 5.4658 0.3302 0.1286
5 1.2625 4.6659 -0.4694 6.5900 -0.2914 5.5083 0.3211 0.1072
6 1.2518 4.5673 -0.4376 6.3077 -0.3137 5.5175 0.3111 0.0923
7 1.2617 4.5058 -0.4401 6.4096 -0.3601 5.4990 0.3137 0.0790
8 1.2661 4.5765 -0.4286 6.4746 -0.4244 5.4784 0.3216 0.0664
9 1.2619 4.7082 -0.4732 7.2960 -0.4989 5.4421 0.3348 0.0492
10 1.2796 5.0336 -0.4638 7.3292 -0.6991 5.2464 0.3443 0.0126

Table 24: Correlation matrix of factors

EW Market BEME ME PROF INV
EW Market 1.0000 – – – – –
BEME 0.0606 1.0000 – – – –
ME -0.0354 0.1830 1.0000 – – –
PROF 0.3298 0.2354 0.0101 1.0000 – –
INV 0.5076 0.1481 0.0597 0.2255 1.0000 –
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Table 25: Fama-Macbeth regressions for individual equities

Time-series averages of cross-sectional regression estimates with Fama-Macbeth standard
errors for Individual Equities.

(1) (2) (3) (4) (5)

Panel A: Characteristic Sorted - Individual Equities

Constant 1.3921 1.6906 1.1235 1.7706 1.3732
5.6230 6.5528 6.0716 6.3354 5.2974

BEME 0.2833 – 0.3540 0.0944 0.3095
– 4.1036 – 4.4094 1.2635 4.4976
ME -0.0431 -0.0760 – -0.0696 -0.0430
– -1.3287 -2.2997 – -2.0269 -1.3203
PROF 0.7908 0.4988 0.8915 – 0.8229
– 4.0356 2.5711 4.1366 – 4.2200
INV -0.1787 -0.9125 -0.1947 -0.4695 –
– -0.5501 -2.8059 -0.5925 -1.3974 –
R2 0.0329 0.0287 0.0227 0.0252 0.0295

Panel B: Factor Sorted - Individual Equities

(1) (2) (3) (4) (5)
Constant 1.3323 1.3367 1.3144 1.3311 1.3305

6.2388 6.2713 6.2212 6.2446 6.2325
BEME 0.1763 – 0.1923 0.1665 0.1611
– 2.8073 – 3.2324 2.5999 2.5569
ME -0.1090 -0.1579 – -0.0981 -0.1152
– -0.9977 -1.5325 – -0.8956 -1.0642
PROF 0.0806 0.0471 0.0740 – 0.0729
– 1.0586 0.6191 0.9662 – 0.9632
INV -0.0268 -0.0622 -0.0244 -0.0236 –
– -0.5815 -1.3183 -0.5265 -0.5150 –
R2 0.0401 0.0324 0.0287 0.0281 0.0338
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Table 26: Fama-Macbeth regressions for portfolios of equities

Time-series averages of cross-sectional regression estimates with Fama-Macbeth standard
errors for Portfolios of Equities.

(1) (2) (3) (4) (5)
Panel A: Characteristic Sorted - Portfolios of Equities

Constant 1.5165 1.6462 1.1727 1.7419 1.2980
3.6971 4.2608 5.4016 4.2799 3.0333

BEME 0.1925 – 0.3451 0.1039 0.3748
– 2.0757 – 3.7122 1.1630 3.7220
ME -0.0663 -0.0914 – -0.0797 -0.0445
– -1.2039 -1.8140 – -1.4515 -0.7836
PROF 0.5913 0.3540 0.8248 – 0.8033
– 4.2983 2.2881 4.6750 – 6.1548
INV -0.7441 -0.9129 -0.6480 -0.8167 –
– -6.7299 -6.0905 -4.6217 -7.5581 –
R2 0.1429 0.1161 0.0812 0.1320 0.1306

Panel B: Factor Sorted - Portfolios of Equities

(1) (2) (3) (4) (5)
Constant 1.3121 1.2770 1.3822 1.3206 1.3192

5.7050 5.4769 5.6333 5.7113 5.7421
BEME 0.2986 – 0.4205 0.2529 0.3746
– 3.1353 – 3.6808 2.6261 3.9884
ME -0.2846 -0.3111 – -0.3312 -0.2280
– -1.7145 -1.8932 – -1.9191 -1.3649
PROF 0.2403 0.1150 0.3776 – 0.1981
– 2.6122 1.1173 3.3210 – 1.8243
INV -0.2485 -0.2684 -0.1882 -0.2155 –
– -3.2845 -3.5092 -2.1370 -2.5986 –
R2 0.1342 0.1102 0.0823 0.1236 0.1237

Table 27: Performance statistics for BEME portfolios
(a) Decile portfolios sorted in descending order by the logarithm of the ratio of book equity to
market equity (BEME) and the factor loading from the following multivariable regression model. A
rolling window of 120 months was used to estimate each factor loading in a multivariable regression
model of the form: ri,t = α + ftβ + εi,t. The data sample includes all stocks in CRSP spanning
from July 1963 - December 2013, consisting of 606 months. To be included each month, a stock
must have at least 60 months of historical data. The first out of sample return occurred in July 1973
yielding a total of 486 monthly out-of-sample returns.
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Decile Mean Std SR Skewness Kurtosis AvgSize IRSP Turnover

Panel A: Characteristic Sorted - Individual Equities

1 1.5633 4.7472 0.2404 -0.3702 8.3196 711.8802 0.2734 0.0262
2 1.4882 4.4408 0.2400 -0.0707 8.4135 993.6654 0.2685 0.0478
3 1.3113 4.4024 0.2020 -0.4813 6.7614 1114.9336 0.2229 0.0572
4 1.2569 4.6338 0.1801 -0.7028 6.8077 1190.2610 0.2129 0.0628
5 1.2998 4.7031 0.1866 -0.4827 6.8493 1212.0947 0.2267 0.0634
6 1.3329 4.9907 0.1825 -0.4983 6.9116 1342.5765 0.2477 0.0615
7 1.2946 5.0120 0.1741 -0.4039 6.6249 1534.2828 0.2293 0.0567
8 1.2529 5.1694 0.1607 -0.5155 6.2270 1866.7373 0.2295 0.0494
9 1.2488 5.1214 0.1614 -0.3933 6.5013 2258.3903 0.2457 0.0379
10 1.0631 5.0218 0.1276 -0.4025 6.0153 3268.8946 0.1845 0.0198

Panel B: Factor Sorted - Individual Equities

1 1.5415 5.6331 0.1987 0.3298 12.3386 916.4951 0.2361 0.1094
2 1.4395 4.6572 0.2184 -0.2915 7.4309 1349.5449 0.2601 0.2486
3 1.3741 4.4029 0.2162 -0.2308 7.1360 1469.1259 0.2584 0.3196
4 1.2633 4.2551 0.1977 -0.3624 6.6393 1568.7085 0.2298 0.3579
5 1.3285 4.4080 0.2056 -0.4852 7.1784 1604.2256 0.2502 0.3733
6 1.3408 4.6243 0.1986 -0.4725 7.1588 1704.1149 0.2679 0.3666
7 1.2432 4.5770 0.1794 -0.5966 6.3549 1730.6181 0.2275 0.3440
8 1.3092 4.7476 0.1868 -0.7361 6.6918 1705.7212 0.2615 0.3009
9 1.2386 5.0221 0.1625 -0.6132 6.3666 1799.5398 0.2350 0.2253
10 1.0334 5.9384 0.1029 -0.4426 5.3175 1637.2201 0.1175 0.0956

Panel C: Characteristic Sorted - Portfolios of Equities

1 1.6667 5.6975 0.2184 0.1357 8.0025 75.2817 0.2428 0.0086
2 1.4497 5.4311 0.1892 -0.2079 7.2325 131.0011 0.2226 0.0223
3 1.3980 5.7908 0.1685 -0.0998 6.6490 149.9504 0.1976 0.0440
4 1.3001 5.8045 0.1512 0.0630 7.8197 156.9308 0.1703 0.0671
5 1.3068 5.5542 0.1593 -0.4015 6.8430 178.2079 0.1887 0.0776
6 1.3328 5.6590 0.1609 -0.4246 6.7800 186.8867 0.1917 0.0724
7 1.3507 5.9537 0.1560 -0.3651 6.5094 194.8831 0.1864 0.0572
8 1.4441 6.1121 0.1672 -0.3369 6.3211 281.4516 0.2064 0.0395
9 1.3534 5.9252 0.1572 -0.5171 6.0269 537.7850 0.2037 0.0216
10 1.0793 6.6085 0.0994 -0.3789 5.3013 782.0039 0.0975 0.0077

Panel D: Factor Sorted - Portfolios of Equities

1 1.5596 5.7602 0.1975 0.0900 8.4152 87.7710 0.2215 0.0823
2 1.4458 5.6765 0.1803 -0.1266 7.5150 131.2032 0.2117 0.2120
3 1.4278 5.5947 0.1797 -0.2609 7.2887 165.8821 0.2158 0.2854
4 1.3905 5.5935 0.1731 -0.3240 7.2421 230.3414 0.2106 0.3202
5 1.4061 5.6730 0.1734 -0.2858 6.9491 342.3541 0.2131 0.3329
6 1.3943 5.7564 0.1689 -0.3028 6.7924 325.8211 0.2100 0.3322
7 1.3390 5.8628 0.1564 -0.2441 6.5603 373.5633 0.1868 0.3102
8 1.3264 5.8307 0.1551 -0.4593 6.2075 337.5814 0.1899 0.2687
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9 1.2959 6.0164 0.1452 -0.3698 6.0454 440.8969 0.1721 0.1988
10 1.0962 6.6549 0.1013 -0.2891 5.1517 238.9677 0.0978 0.0765

Table 29: Performance statistics for ME portfolios
(a) Decile portfolios sorted in descending order by the logarithm of the market equity (ME) and
the factor loading from the following multivariable regression model. A rolling window of 120
months was used to estimate each factor loading in a multivariable regression model of the form:
ri,t = α + ftβ + εi,t. The data sample includes all stocks in CRSP spanning from July 1963 -
December 2013, consisting of 606 months. To be included each month, a stock must have at least
60 months of historical data. The first out of sample return occurred in July 1973 yielding a total of
486 monthly out-of-sample returns.

Decile Mean Std SR Skewness Kurtosis AvgSize IRSP Turnover

Panel A: Characteristic Sorted - Individual Equities

1 1.0953 4.6006 0.1463 -0.3177 5.0418 7639.4687 0.2234 0.0122
2 1.1482 4.8452 0.1498 -0.3452 6.1001 3231.8557 0.2248 0.0251
3 1.2290 4.8382 0.1668 -0.4488 6.5520 1762.0267 0.2541 0.0315
4 1.2143 4.9445 0.1602 -0.3245 6.7867 1112.0688 0.2189 0.0358
5 1.2689 5.0572 0.1674 -0.2790 6.1162 713.1073 0.2218 0.0396
6 1.3631 5.0555 0.1861 -0.5351 6.5586 449.4277 0.2323 0.0406
7 1.3919 5.0829 0.1908 -0.5281 6.7764 278.8805 0.2237 0.0410
8 1.5086 5.2477 0.2070 -0.3960 6.9515 158.8705 0.2454 0.0409
9 1.4576 4.9885 0.2075 -0.2959 6.9817 74.2806 0.2206 0.0380
10 1.4431 4.5621 0.2238 -0.0701 9.8236 26.5111 0.2040 0.0271

Panel B: Factor Sorted - Individual Equities

1 1.2880 5.0091 0.1728 -0.2599 5.6613 2722.9248 0.2488 0.1010
2 1.2176 4.7011 0.1692 -0.3581 5.6906 2537.4707 0.2363 0.2301
3 1.2078 4.4786 0.1754 -0.3839 5.6778 2360.6091 0.2215 0.2834
4 1.2955 4.6196 0.1890 -0.3923 6.0440 1983.8092 0.2586 0.3097
5 1.3470 4.6025 0.2009 -0.4250 6.9697 1670.2631 0.2741 0.3218
6 1.3304 4.7100 0.1928 -0.5698 7.2221 1403.8431 0.2544 0.3184
7 1.2940 4.8232 0.1807 -0.4968 7.2647 1068.3442 0.2253 0.2992
8 1.3356 4.8547 0.1881 -0.4767 7.8082 793.8067 0.2291 0.2638
9 1.4074 5.0233 0.1961 -0.4164 7.5966 603.3075 0.2269 0.2008
10 1.3962 5.6613 0.1720 -0.2078 7.8654 326.5065 0.1894 0.0917

Panel C: Characteristic Sorted - Portfolios of Equities

1 1.2007 5.5268 0.1409 -0.5180 5.8295 1381.2942 0.2003 0.0120
2 1.3509 5.3259 0.1744 -0.6047 6.4306 238.8767 0.2312 0.0430
3 1.3177 5.2371 0.1710 -0.5278 6.8905 205.5706 0.2155 0.0748
4 1.3039 5.3467 0.1649 -0.5042 6.7058 187.2592 0.2040 0.0843
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5 1.3318 5.5134 0.1650 -0.4552 6.6749 170.3511 0.2028 0.0726
6 1.3203 5.7772 0.1555 -0.3694 6.7542 150.9825 0.1850 0.0586
7 1.4062 6.0811 0.1618 -0.2781 6.3726 130.7147 0.1926 0.0481
8 1.3944 6.2437 0.1557 -0.1274 6.7551 105.0560 0.1798 0.0330
9 1.4363 6.7959 0.1492 0.2529 7.4662 72.4160 0.1598 0.0169
10 1.6193 6.9071 0.1733 0.4195 7.0910 31.8611 0.1761 0.0056

Panel D: Factor Sorted - Portfolios of Equities

1 1.2627 5.1770 0.1624 -0.6058 6.4515 1282.4224 0.2433 0.0581
2 1.3283 5.2712 0.1719 -0.6706 6.8126 245.2157 0.2211 0.1671
3 1.3866 5.3683 0.1796 -0.5302 6.8231 194.8802 0.2304 0.2330
4 1.3558 5.4700 0.1707 -0.4866 6.7290 182.5971 0.2118 0.2624
5 1.3385 5.6377 0.1625 -0.3869 6.6726 172.0896 0.1978 0.2731
6 1.3296 5.7471 0.1579 -0.3322 6.3432 161.9408 0.1874 0.2625
7 1.3424 5.9360 0.1550 -0.3007 6.4694 153.0223 0.1829 0.2366
8 1.3736 6.1653 0.1543 -0.1136 6.8134 133.0497 0.1771 0.1846
9 1.3747 6.5025 0.1465 0.0457 6.9675 97.8354 0.1571 0.1198
10 1.5893 7.3634 0.1585 0.4588 6.8935 51.3290 0.1639 0.0448

Table 31: Performance statistics for PROF portfolios
(a) Decile portfolios sorted in descending order by the ratio of gross profits to assets (PROF) and
the factor loading from the following multivariable regression model. A rolling window of 120
months was used to estimate each factor loading in a multivariable regression model of the form:
ri,t = α + ftβ + εi,t. The data sample includes all stocks in CRSP spanning from July 1963 -
December 2013, consisting of 606 months. To be included each month, a stock must have at least
60 months of historical data. The first out of sample return occurred in July 1973 yielding a total of
486 monthly out-of-sample returns.

Decile Mean Std SR Skewness Kurtosis AvgSize IRSP Turnover

Panel A: Characteristic Sorted - Individual Equities

1 1.4651 4.9352 0.2113 -0.3868 7.2320 1451.2884 0.2880 0.0161
2 1.4779 5.0864 0.2075 -0.5376 6.2714 1476.1367 0.3092 0.0269
3 1.4014 5.2487 0.1866 -0.4599 6.2479 1375.1675 0.2667 0.0326
4 1.4354 5.3747 0.1885 -0.4059 7.3376 1376.1085 0.2524 0.0369
5 1.3155 5.3949 0.1656 -0.5005 7.3771 1524.8974 0.2170 0.0379
6 1.2957 5.5057 0.1586 -0.4989 6.9019 1646.4268 0.1957 0.0373
7 1.2650 4.9569 0.1700 -0.2850 7.3099 2021.6607 0.2131 0.0344
8 1.1795 3.9766 0.1904 -0.3320 5.2573 1818.8463 0.1694 0.0318
9 1.0577 4.3207 0.1471 -0.5474 6.2056 1365.5243 0.1124 0.0293
10 1.2216 4.7891 0.1669 -0.2413 6.5429 1425.2248 0.1571 0.0191

Panel B: Factor Sorted - Individual Equities

1 1.3218 6.0991 0.1475 -0.5213 6.1592 1458.9437 0.1939 0.0999
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2 1.2800 5.4308 0.1579 -0.4980 6.6487 1662.5159 0.2185 0.2332
3 1.3402 5.1304 0.1789 -0.3843 6.4041 1692.8206 0.2512 0.3009
4 1.3596 4.8751 0.1923 -0.4904 6.4245 1679.2967 0.2757 0.3362
5 1.3060 4.7026 0.1879 -0.4524 7.2981 1705.5378 0.2422 0.3479
6 1.4067 4.5311 0.2173 -0.4213 7.4265 1734.9664 0.2951 0.3402
7 1.3251 4.2034 0.2148 -0.6056 7.2813 1600.1667 0.2540 0.3178
8 1.2645 4.1359 0.2036 -0.3852 6.8854 1496.1358 0.2162 0.2809
9 1.2682 4.2834 0.1975 -0.2364 6.8791 1389.1088 0.2000 0.2232
10 1.2458 5.1176 0.1609 -0.5700 7.7181 1060.0129 0.1669 0.1001

Panel C: Characteristic Sorted - Portfolios of Equities

1 1.3907 6.3648 0.1522 -0.3294 5.8186 189.3396 0.1805 0.0086
2 1.3897 6.2085 0.1558 -0.1941 6.6292 259.5743 0.1810 0.0359
3 1.3288 6.3011 0.1439 -0.1772 6.7124 272.0949 0.1605 0.0691
4 1.3964 6.0755 0.1603 -0.1592 6.7637 268.5595 0.1899 0.0933
5 1.3772 5.7436 0.1663 -0.3262 6.5728 292.4726 0.2034 0.1138
6 1.3531 5.5190 0.1687 -0.3688 6.5254 312.3081 0.2072 0.1215
7 1.3707 5.3767 0.1764 -0.4212 6.8227 289.8493 0.2169 0.1025
8 1.3827 5.4334 0.1768 -0.4590 7.2475 341.6549 0.2178 0.0624
9 1.4860 5.7242 0.1858 -0.2191 6.9665 264.3746 0.2251 0.0269
10 1.2064 5.5313 0.1418 -0.1683 6.5138 184.1543 0.1544 0.0078

Panel D: Factor Sorted - Portfolios of Equities

1 1.4076 6.8592 0.1437 0.2326 7.8057 166.9053 0.1599 0.0910
2 1.3942 6.1886 0.1571 -0.1277 6.6955 235.8216 0.1835 0.2288
3 1.3864 6.0176 0.1602 -0.2582 6.5252 286.2536 0.1898 0.3033
4 1.3581 5.9166 0.1582 -0.2423 6.9696 370.2462 0.1902 0.3463
5 1.3584 5.7287 0.1634 -0.3312 6.6302 334.6335 0.1986 0.3698
6 1.3737 5.6790 0.1675 -0.3865 6.7272 294.8868 0.2063 0.3717
7 1.3482 5.5926 0.1656 -0.4024 6.8632 311.5909 0.2017 0.3534
8 1.3526 5.5162 0.1687 -0.4537 6.6643 291.1796 0.2034 0.3166
9 1.3522 5.4469 0.1707 -0.4219 6.4768 230.1525 0.2038 0.2376
10 1.3503 5.4087 0.1716 -0.3356 6.6237 152.7123 0.1941 0.0921
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Table 33: Performance statistics for INV portfolios
(a) Decile portfolios sorted in descending order by the growth in total assets (INV) and the factor
loading from the following multivariable regression model. A rolling window of 120 months was
used to estimate each factor loading in a multivariable regression model of the form: ri,t = α +
ftβ+ εi,t. The data sample includes all stocks in CRSP spanning from July 1963 - December 2013,
consisting of 606 months. To be included each month, a stock must have at least 60 months of
historical data. The first out of sample return occurred in July 1973 yielding a total of 486 monthly
out-of-sample returns.

Decile Mean Std SR Skewness Kurtosis AvgSize IRSP Turnover

Panel A: Characteristic Sorted - Individual Equities

1 1.1968 5.7132 0.1356 -0.3292 6.1187 1894.1748 0.1820 0.0370
2 1.1981 5.1805 0.1498 -0.4097 6.4542 1831.0808 0.2070 0.0760
3 1.2067 4.8514 0.1617 -0.4141 7.1375 1874.3697 0.2080 0.0994
4 1.2249 4.6771 0.1716 -0.6472 6.3774 1691.4812 0.2334 0.1159
5 1.3487 4.4736 0.2071 -0.5313 6.3955 1572.5631 0.2755 0.1261
6 1.3245 4.3987 0.2051 -0.2997 7.0100 1531.8470 0.2633 0.1263
7 1.2735 4.3405 0.1961 -0.5722 6.6042 1404.5103 0.2345 0.1206
8 1.3496 4.3544 0.2130 -0.4207 6.3165 1387.4106 0.2649 0.1081
9 1.4500 4.4521 0.2309 -0.6701 7.3976 1306.4763 0.2922 0.0820
10 1.5478 5.2199 0.2156 -0.3298 8.3856 983.2836 0.2719 0.0392

Panel B: Factor Sorted - Individual Equities

1 1.2417 5.9046 0.1388 -0.4685 5.3733 1356.1277 0.1772 0.1109
2 1.2534 5.0398 0.1649 -0.6045 5.8711 1392.4742 0.2200 0.2608
3 1.3157 4.8435 0.1845 -0.4052 6.2160 1556.7439 0.2485 0.3380
4 1.2721 4.4618 0.1905 -0.4642 6.6395 1574.0473 0.2461 0.3788
5 1.3128 4.4233 0.2013 -0.1898 6.9725 1700.9240 0.2577 0.4050
6 1.3063 4.3813 0.2018 -0.4335 6.3827 1808.2396 0.2543 0.4034
7 1.3080 4.4636 0.1984 -0.3856 7.5235 1814.7782 0.2533 0.3920
8 1.3118 4.4975 0.1978 -0.7416 8.0595 1679.0401 0.2478 0.3534
9 1.3884 4.7837 0.2020 -0.4293 7.2102 1481.4823 0.2624 0.2754
10 1.4089 5.1753 0.1906 -0.2180 8.3139 1116.0338 0.2305 0.1209

Panel C: Characteristic Sorted - Portfolios of Equities

1 1.0407 7.4335 0.0832 0.2028 7.3216 177.9602 0.0699 0.0129
2 1.3072 6.3713 0.1389 -0.1472 6.5024 245.6110 0.1566 0.0453
3 1.2580 6.0802 0.1375 -0.2453 6.6265 296.8456 0.1549 0.0758
4 1.3024 5.8445 0.1506 -0.3686 6.2362 278.5063 0.1787 0.0982
5 1.3591 5.6214 0.1667 -0.4500 6.6392 307.8645 0.2067 0.1159
6 1.3920 5.4128 0.1792 -0.4575 6.8690 275.9149 0.2242 0.1257
7 1.3647 5.2951 0.1780 -0.5528 6.7804 280.1670 0.2239 0.1136
8 1.4391 5.2700 0.1930 -0.5608 7.1011 343.1735 0.2469 0.0700
9 1.5337 5.3547 0.2076 -0.1919 7.3452 355.6432 0.2558 0.0266
10 1.6847 5.7419 0.2199 -0.0846 7.0263 112.6960 0.2608 0.0057

Panel D: Factor Sorted - Portfolios of Equities
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1 1.2501 7.0286 0.1178 0.3275 8.1306 124.2957 0.1196 0.0932
2 1.2764 6.0174 0.1419 -0.2677 6.3931 205.0109 0.1602 0.2376
3 1.3371 5.8308 0.1569 -0.3230 6.2839 247.8423 0.1864 0.3211
4 1.3651 5.7926 0.1628 -0.3617 6.5707 317.7527 0.1968 0.3719
5 1.3597 5.6977 0.1645 -0.3424 6.5704 326.4561 0.2008 0.3963
6 1.3754 5.6722 0.1680 -0.2762 6.9942 337.8435 0.2060 0.3971
7 1.4207 5.5923 0.1785 -0.4022 6.9402 343.3918 0.2213 0.3776
8 1.4121 5.4666 0.1811 -0.4075 7.0972 323.3564 0.2240 0.3393
9 1.4071 5.5371 0.1779 -0.3437 7.3097 258.7403 0.2170 0.2665
10 1.4780 5.6527 0.1868 -0.2480 7.2920 189.6925 0.2259 0.1127

Table 35: Performance statistics for hedged decile portfolios

Performance statistics for hedged decile portfolios sorted in descending order by their char-
acteristics or factor. The factors were computed using a rolling window of 60 months in a
multivariable regression model of the form: ri,t = α+ ftβ+ εi,t. The data sample includes
all stocks in CRSP spanning from July 1963 - December 2013, consisting of 606 months.
To be included each month, a stock must have at least 60 months of historical data. The
first out of sample return occurred in July 1973 yielding a total of 486 monthly out-of-
sample returns. The ‘P-’ is the pvalue for the Sharpe ratios from a GMM estimation using
Hansen-Hodrick standard errors testing whether the portfolios sorted by characteristics and
factors are statistically different. I use the Newey-West estimator with five-lags for residual
covariance matrix.

Variable MeanDiff Mean-P SRDiff SR-P

Panel A: Individual Equities

BEME -0.0130 0.9945 0.0198 0.8713
ME -0.3672 0.0099 -0.0828 0.0277
Inv -0.2834 0.1954 -0.1398 0.0681
Prof 0.2125 0.3507 0.0755 0.2164

Panel B: Portfolios of Equities

BEME 0.1239 0.2984 0.0427 0.4376
ME -0.0920 0.5595 -0.0305 0.4006
Inv -0.4161 0.0009 -0.1412 0.0019
Prof 0.1269 0.5014 0.0798 0.2197
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CHAPTER 5: CONCLUSIONS

The chapters of my current body of work complement each other and present many po-

tential extensions. To extend my first chapter, I am experimenting with more appropriate

functional forms for the predictive regressions. By including interaction terms and non-

linearities into the model, I hope to increase the forecasting power of the these regressions.

These econometric issues are largely unexplored in the literature although Fama and French

(2008) do tangle with the idea. Advances in the accuracy of return predictability regres-

sions fits well into my studies on portfolio optimization and asset pricing models. As noted

by Demiguel et al. (2009), using information about the cross-sectional characteristics of

assets adds substantial value to their portfolio optimization experiments. Therefore as I

improve on return predictability patterns I can extend my chapter 2 optimization analysis

to include these new advances. Furthermore, as I observe and discover more accurate vari-

ables for identifying patterns in return predictability, I can augment my studies in chapter 3

and test these predictions in an asset pricing framework. To provide further insight on the

use of signals from conditional asset pricing models, I have also compared sorts of stocks

on the basis of ex-ante α and sorts of stocks on the basis of ex-ante expected return. I

used estimation windows of 60 months, 36 months, and 24 months and found that decile

portfolios formed from these two measures were statistically indistinguishable on the av-

erage and under several market regimes. Relating this to the momentum literature, “these

two flavors of momentum taste the same,” and signals from factor models provide no value

in forming tradeable and profitable portfolios. However, as my work stands, I think these

separate sets of results provide the basis for another paper altogether. Therefore my current

body of work provides ample avenues for future contributions to the field of empirical asset

pricing.
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