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ABSTRACT

HUI WU. Weakly supervised learning on image manifolds. (Under the direction of
DR. RICHARD M. SOUVENIR)

Recent work in image manifold learning has shown the prevalence of unsupervised

methods that provide compact representation and perceptually meaningful organiza-

tion of images in certain types of natural image sets. However, in situations where a

discriminant factor needs to be discovered from an image set in which multiple latent

variation factors exist, unsupervised methods are often limited. Whereas, supervised

manifold learning approaches can be robust against irrelevant factors by leveraging

image labels which impose additional constraints on the relationships between images.

Nonetheless, ground truth labels are usually too costly to obtain and sometimes not

entirely available. In this dissertation, we are interested in learning on image mani-

folds with weak supervision. The weakly supervised learning methods that we present

are capable of mitigating the manual labeling effort required by supervised methods.

In particular, we consider three variants of weakly supervised learning on image man-

ifolds: (1) image labels not explaining all latent factors of image variation, (2) image

labels which are heavily corrupted, and (3) image labels being partly available. We

propose an algorithmic solution for each problem and evaluate the performance of the

proposed algorithms quantitatively and qualitatively on a wide range of data sets.
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CHAPTER 1: BACKGROUND

Computer vision methods aim to infer properties of the real world from image data.

Figure 1.1 shows two typical computer vision problems: recognizing the actions of

soccer players in a sport video, and making age estimates from faces seen in images.

To represent images, a myriad of image features have been proposed; some examples

are: raw pixel intensities, histograms of oriented gradients, and bag of visual words.

Usually most image features in computer vision are very high-dimensional with thou-

sands of dimensions or even more. In the general case, it is impossible to learn a

reliable predictive model in such high-dimensional spaces. When data dimensionality

increases, the volume of the feature space increases exponentially, which makes the

size of typical data sets insignificant. This phenomenon is known as the “curse of

dimensionality”.

(a) Action recognition in sport videos (b) Age estimation from face images

Figure 1.1: Examples of computer vision applications.
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However, most image sets have intrinsic structures that can be expressed by a

few latent factors. For example, a set of depth images depicting the movement of

a hand can be represented in terms of the displacement and rotation of each joint

(Figure 1.2). An image set of nearly frontal human faces containing changes in gender,

age, pose, expression, etc (Figure 1.3). An image capturing a human action changes

its appearance mainly due to the type of action being performed, the person specific

style, and camera viewpoint (Figure 1.4). Although the specific image feature being

used for each application can be very high-dimensional, the underlying structure of a

given image set is usually governed by only a few variables.

Figure 1.2: A set of depth images of a moving hand [76]. The corresponding articu-
lated hand poses are denoted by connected colored points.

Age 

Face pose 

Figure 1.3: Example images from GeoFaces [48] data set. The image set contains
factors such as pose, age, gender (indicated by colored boxes), etc.

Either implicitly or explicitly, most learning algorithms in computer vision exploit
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this underlying structure to make learning and inference possible. In this dissertation,

we focus on methods that explicitly utilize the low-dimensional structure of image sets.

Discovering the low-dimensional representation automatically from images has many

benefits, such as providing an insightful visualization of the image set, alleviating the

“curse of dimensionality”, and facilitating other tasks such as clustering and retrieval.

When the latent factors are continuously changing (such as the face pose and age in

Figure 1.3), manifold learning provides powerful computational approaches to discover

the latent structure of image sets.

Punch 

Kick 

Sit 

Camera view 

Figure 1.4: Example images from IXMAS [106], a commonly used data set for
testing action recognition algorithms. Image variation is mainly due to changes in
action class, actor identity, and camera view.

In many situations, not all of the low-dimensional factors are directly applicable

for the intended task. For example, for age estimation, only image changes due to age

are considered informative while other factors of change should be ignored. For the

problem of human action recognition, the goal is to discriminate between different

actions while discarding changes in human identity and camera viewpoint. Many
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computer vision problems can be framed as supervised learning problems, where

image labels relevant to the desired output are provided for each image. With the

supervision provided by image labels, the factors of interest can be separated from

irrelevant factors on the manifold.

Ideally, reliable image labels are available for each image in the data set. However,

with the increasing number of large-scale image sets and the growing complexity

of image labels, collecting full annotations for every image is very challenging. In

this dissertation, we investigate problems in image manifold learning with weak su-

pervision. Unlike supervised or unsupervised learning problems, weakly supervised

learning can not be uniquely defined since both the type and the level of supervision

may vary. In Chapter 1.2, we will introduce multiple variants of weakly supervised

learning on image manifolds.

1.1 Image Manifold Learning

Figure 1.5 shows two example image sets, both of which can be organized according

to perceptually meaningful factors. Recovering the low-dimensional representation

automatically from high-dimensional data is referred to as dimensionality reduction.

Classical techniques for dimensionality reduction assume that the variation caused by

the underlying factors is mostly linear. So the low-dimensional parametrization can

be approximated by the projection of high-dimensional points onto the learned linear

subspace. Principal component analysis (PCA) [52] learns the linear subspace that

maximally correlates with data variation and represents points as their coordinates

in the learned lower-dimensional subspace.
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(a) A teddy bear observed from varying view angles (b) Images showing changing head poses

Figure 1.5: Many image sets in computer vision can be organized in a perceptually
meaningful way in a low-dimensional space.

Although PCA is frequently used in many fields, the linearity assumption often fails

to generalize to image variation, as demonstrated with a toy example in Figure 1.6.

The coordinates of each image in the learned 1-D linear subspace are used to reor-

ganize the images. As shown in Figure 1.6(b), PCA coordinates do not correspond

with the latent factor, which, in this example, is the vertical position of the object.

As can be seen in Figure 1.6(c), these images can not be approximated by a single

parameter on a linear subspace, even though there is only a single underlying degree

of freedom. This issue is even more evident in real-world data sets.

A large number of nonlinear dimensionality reduction techniques have been de-

veloped, which aim to address the limitations of classical linear methods. A large

body of this work builds upon the notion that points in the high-dimensional space

(or ambient space) lie on or near a nonlinear manifold with only a few degrees of

freedom (intrinsic dimension). The low-dimensional representation of the data points
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is computed by estimating the coordinate of each point on the underlying manifold.

The problem is highly under-constrained, with unknown manifold structure and un-

known intrinsic dimension. Various assumptions on the geometrical properties of the

manifold have been proposed to constrain the problem [80, 90, 93, 101].

(a) Input image set

(b) Images organized by 1D PCA coordinates

(c) PCA approximations of each image in (b)

(d) Images organized by 1D Isomap [90] coordinates

Figure 1.6: Linear and nonlinear dimensionality reduction on a toy data set.

Compared with linear dimensionality reduction techniques, image manifolds often

provide a more meaningful way to organize images. In Figure 1.6(d), the coordi-

nates recovered by a manifold learning method accurately correspond with the latent

factor of image change. Unlike linear dimensionality reduction, most manifold learn-

ing techniques do not parametrically model the structure of the data, but estimate

the underlying manifold in a data-driven fashion. Consequently, manifold learning
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methods often preserve relationships between images better than linear methods.

However, when there are multiple underlying factors of change, each dimension of

the learned low-dimensional representation from manifold learning usually does not

correspond with a semantically meaningful factor. For example, the image set shown

in Figure 1.7 contains changes in rotation and translation. But in the recovered low-

dimensional space, the directions of rotation change and translation change do not

align with the axes (Figure 1.7(b)). In this case, when provided with image labels

associated with one of the factors, changes caused by different factors can be well

separated.

15 

1 2 3 4 5 
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(a) Examples of the input
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(b) 2D embedding computed from Isomap

Figure 1.7: The input images change due to both rotation and translation. The
recovered 2D representation from manifold learning, however, does not directly cor-
respond with the two factors respectively. When image labels correlated with rotation
are provided (denoted by the color of the points), it can supervise the learning process
and help to separate the two factors.

In general, relevant information for the specific task, if available, can be incorpo-

rated to provide supervision and improve the performance of unsupervised methods.

However, obtaining accurate labels for each image requires a lot of manual labeling

effort. In some cases, with much less effort, partial or corrupted labels are available,
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Table 1.1: Research problems investigated in this dissertation sorted by decreasing
level of supervision.

Problem
Label

Amount
Label

Corruption
Prior Knowledge

on Variation Model
Chapter

Weakly Sup. Manifold
Factorization

Complete Low Known 3

Robust Manifold
Regression

Complete High Unknown 4

Semi-sup. Multi-output
Manifold Regression

Partial Low Unknown 5

which provide weak supervision. In this dissertation, we investigate how the manifold

structure of image sets can be learned using weak supervision to solve a variety of

image analysis problems.

1.2 Overview of Research

Given the feature representation of an image set, X = [x1,x2, · · · ,xN]ᵀ, where

xi ∈ RD corresponds to the image feature representation of image i, we assume that

the images are random samples from a manifoldM, embedded in the ambient space,

RD. Let Y = [y1,y2, · · · ,yN]ᵀ be the image labels, where yi ∈ {RDy ,∅}. When

yi = ∅, it means the image, xi, is unlabeled.

Based on the amount and the quality of provided labels and whether prior knowl-

edge on the type of image variation is available, we investigate three different variants

of weakly supervised learning on image manifolds. Table 1.1 organizes these problems

based on the level of supervision available.

1.2.1 Weakly Supervised Manifold Factorization

Factorization of image variation, i.e., separating different sources of change un-

derlying an image set, is routinely performed by human perceptual systems. For
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example, characters can be recognized when written in an unfamiliar style, and the

color of an object is perceived as the same under different illumination conditions. In

our research, we focus on the situation where two types of latent factors exist in the

data: (1) variation of interest which correlates with the provided image labels, and

(2) auxiliary variation with a known transformation model (affine, deformable, etc.).

The goal is to remove the unwanted auxiliary variation. This problem is weakly su-

pervised in the sense that image labels only explain a part of the intrinsic parameters

of a manifold. Figure 1.8 shows a graphical illustration of the problem. The goal is

to remove unwanted auxiliary variation from the image set, X, given a proxy of the

variation of interest, Y.

Input 

ℳ 

𝑢 

𝑣 Output 

ℳ 

𝑢 

𝑣 

Figure 1.8: Each point represents an input data point and color indicates label values.
In this example, the direction represented by v is the variation of interest and changes
in u are unwanted. The goal is to learn a lower-dimensional manifold parametrized
by v only.

1.2.2 Robust Manifold Regression

In the same way that clustering is a natural tool for classification problems, man-

ifolds provide a natural model for regression problems. We consider the case when

the provided image labels are highly corrupted. The goal is to learn a function using

the corrupted labels, such that noise-free labels are estimated by mapping each image
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using the learned function. Formally, given the image set, X, and the noisy labels, Y,

robust manifold regression aims to learn a function, f :M→ RDy , which is defined

on the manifold and maps to the Dy-dimensional output space. Figure 1.9 shows that

the image manifold structure provides regularization for the labels, as the ideal image

labels should be smoothly varying on the manifold.

Input 

ℳ 

Output 

ℳ 

Figure 1.9: Illustration of robust manifold regression. Triangles indicate data points
originally associated with corrupted label values.

Input 

ℳ 

Image Label Space 

Output 

ℳ 

Image Label Space 

Figure 1.10: Illustration of semi-supervised multi-output manifold regression using
a partially labeled toy data set with 2D labels. Square points indicate originally
unlabeled data.

1.2.3 Semi-supervised Multi-output Manifold Regression

Compared with classification and regression, there is much less work on multi-

output prediction. We consider the semi-supervised setting, where only some of the

images are labeled. Given the image set, X, and the associated labels, Y, we assume
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there is an underlying low-dimensional structure in RDy . The goal is to learn the

manifold function, f : M → RDy . Figure 1.10 shows that both the image manifold

structure (constructed from labeled and unlabeled data) and the underlying structure

of image labels will be utilized to learn the function.

1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we review related literature

and highlight the difference of our problems from previous work. The three variants

of weakly supervised learning on image manifolds are addressed individually from

Chapter 3 to Chapter 5. To solve each problem, a general framework is provided

first, and then an algorithm is proposed according to the specific application domain.

All of the algorithms are thoroughly evaluated with multiple experiments on both

synthetic and real-world data sets. In Chapter 6, we provide a conclusion for this

dissertation and point out future directions for improvement.



CHAPTER 2: RELATED WORK

To make the inference of high-dimensional images tractable, a data model is usually

employed to capture the latent structure of images. Many generic data modeling

methods have been applied to computer vision problems. In this dissertation, we are

specifically interested in data models that can encode the underlying relationships of

images according to their underlying factors of change. We then take advantage of

the semantically meaningful relationships between images to regularize the function

learning of conceptually related image labels for our research problems.

2.1 Generic Data Modeling Methods

A widely used data modeling method is parametric curve fitting, which assumes

that the distribution of points in a data set can be approximated by a polynomial

curve [10]. Usually, the form of the polynomial is provided and the learning algorithm

will estimate the optimal coefficient for each term in the polynomial. However, image

sets have complicated latent structures embedded in high-dimensional spaces, which

makes it difficult to choose the most suitable polynomial model. In addition, the

parameters of the polynomial curve are derived from a high-dimensional feature space,

which poses serious challenges to learning the model without overfitting.

Kernel density estimators (KDE) [65, 46] provide a non-parametric approach to

statistically estimate the underlying data distribution. In some applications (such
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as background intensity modeling [31]), having the probabilistic distribution of the

data is sufficient for the task. However, many computer vision problems do not focus

on the global distribution of a data set, but investigate the relationships between

images. These relationships can show how certain properties of the real world change

as an image changes. The output of KDE does not encode any local changes between

images and can not provide a principled way to model the interrelationships between

images.

With the development of compressed sensing theory [30], sparse data models have

been increasingly applied in computer vision [62, 109]. In sparse models, a signal

or a data point is represented as the linear combination of a few basis drawn from

an over-complete dictionary. Although sparse models provide a compact and ro-

bust representation for each image, they do not parametrize changes between images.

Therefore, similar to KDE, sparse models are not suitable for situations where there

is a need to model image change with respect to a few underlying factors.

A large body of work has been proposed on manifold based models [93], which aim

to represent high-dimensional points and their interrelationships using a few percep-

tually meaningful factors. The manifold assumption is generic and can be applied to

many problems in computer vision, as most image sets can be viewed as data points

sampled from an underlying manifold embedded in a high-dimensional feature space.

In addition, manifold based methods are usually non-parametric, meaning they tend

to be less sensitive to data dimensionality than a parametric model such as parametric

curve fitting.
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2.2 Image Manifold Representation

The early work that investigated computational models for manifold representation

often focused on devising nonlinear dimensionality reduction techniques. For exam-

ple, low-dimensional coordinates are computed that maintain the local distributions

of points on the manifold [80, 11], or optimize a global objective function (e.g., re-

construction error of geodesic distances [90], data variance in embedded space [105]).

Recently, there has been increased interest in formulating computer vision problems

on image manifolds. For example, for the problem of non-rigid object segmentation,

a shape manifold is used to facilitate efficient searching of the optimal segmentation

in the shape space [68]; face pose is estimated by aligning the manifold of local image

patches and the manifold of 3D shape patches [103]; in a top-down (rigid initializa-

tion and nonrigid refinement) segmentation framework, sparse manifolds are used to

reduce the search space of rigid transformations [67]. In addition, manifold models

have been the basis for image denoising [61, 94, 37], deformable registration [115],

and action recognition [1, 36] among others.

However, many of the previous manifold modeling methods estimate the underlying

manifold in an unsupervised way, meaning images are the only input for estimating

the manifold. Unsupervised methods tend to work well if the images densely sample

the underlying manifold. However, for real-world applications, where imaging noise

and sparse sampling in high-dimensional spaces complicate the problem, estimating

the manifold structure is non-trivial. In this situation, image labels that provide

information about the intrinsic parameters of a manifold can help to constrain the
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problem.

2.2.1 Supervised Learning on Image Manifolds

When relevant information (often in the form of data labels) is available, it can be

used to regularize the underlying manifold structure for specific tasks (e.g., finding

the most discriminant features [14, 25], discarding unwanted factors of variation [9,

59, 114], and image denoising [110, 112]). We use the following two examples to

demonstrate how image labels can be incorporated for supervised learning on image

manifolds.

First, a supervised method for nonlinear dimensionality reduction assumes that

images lie on a manifold parametrized by multiple latent factors [14]. Similar to

many other manifold learning methods, the underlying manifold structure is estimated

using the neighborhood graph on images. However, different from manifold learning

(where the goal is to preserve the relationships of images), the method finds the

most discriminative low-dimensional representation for classification tasks. Using

the provided image class labels, the neighborhood graph is divided into a within-

class subgraph and an inter-class subgraph. The optimal embedding minimizes the

distances of nearby points with the same class labels while separating nearby points

from different classes. For example, in Figure 2.1, face images of different identities

are far apart after dimensionality reduction.

Also, we have applied supervised manifold learning to the problem of image de-

noising [110, 112]. Existing manifold denoising methods treat noisy images as outliers

from an ideal manifold and denoise images by projection onto the manifold. Unsu-
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ℳ 

(a) A local neighborhood of images on the manifold. (b) The same images after dimen-
sionality reduction.

Figure 2.1: Illustration of a supervised method for dimensionality reduction [14].
Image class labels (denoted by color and shapes) are used to find the optimal pro-
jection. Within-class distances (solid lines) are minimized while inter-class distances
(dashed lines) are maximized. After dimensionality reduction, the output is more
discriminative (b).

pervised methods [102, 44, 37] usually adopt an iterative approach that alternates

between estimating the manifold structure and denoising points. This tends to be

sensitive to noise and the high dimensionality of the ambient space. Provided with

image labels that correlate with the underlying image variation of interest, supervised

manifold denoising directly uses image labels to explicitly parametrize the manifold

(Figure 2.2) and estimate denoised images using the optimal reconstruction of images

on the learned manifold.

Although supervised image manifold learning often outperforms unsupervised meth-

ods in certain tasks, the full image annotations required by supervised learning are

usually hard to obtain. With the emergence of large-scale image sets [26], collecting

full annotations becomes even more impractical, which hinders the wide use of super-

vised methods. However, in many situations, a trade-off can be achieved using weak
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Figure 2.2: Illustration of supervised manifold denoising [110, 112]. Each point rep-
resents a noisy image; the label values are indicated by the numbers and the color
of each point. Images are denoised by finding their projections onto the underlying
manifold parametrized by image labels.

labels which greatly reduce the labeling effort and maintain a certain level of super-

vision. However, with the prevalence of manifold modeling in computer vision, most

of the previous work in image manifold learning has mainly focused on either fully

supervised or unsupervised learning. In this dissertation, we study various scenarios

in the underserved area of weakly supervised learning on image manifolds.

2.3 Weakly Supervised Learning

Unlike supervised learning, where accurate image labels are provided for each im-

age, weak supervision can be in many forms. Some methods use image labels that are

less detailed than the ideal ground truth labels. For example, in object segmentation,

instead of providing the exact foreground delineation, a bounding box surrounding

the foreground object or even only image-level tagging of the object class is pro-

vided [40, 121]. Inaccurate labels have also been used in weakly supervised learning:

human actions are recognized from movies using noisy action labels extracted from

the associated movie scripts [29]. Many other methods consider cases with partial

labels [18, 123]. For example, for dimensionality reduction [15] and hashing [99],
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class labels on a small subset of the images are incorporated to preserve semantic

similarity of images from the same class. Different from previous work in weakly su-

pervised learning, our research utilizes the manifold structure of images to regularize

the problem.

Existing work in weakly supervised learning on image manifolds has primarily con-

sidered the semi-supervised setting. Methods in this category usually incorporate

partially provided image labels and propagate the labels over the manifold approx-

imated by the neighborhood graph on the images [116, 60, 8, 53]. However, in a

broad sense, different situations of weak supervision have not been well studied in

this category. Motivated by this observation, our research aims to explore different

scenarios of weakly supervised learning on image manifolds.



CHAPTER 3: WEAKLY SUPERVISED MANIFOLD FACTORIZATION

Weakly supervised manifold factorization considers the case where two types of

latent factors are present in images: the auxiliary variation and the variation of in-

terest. The goal is to incorporate image labels that are correlated with the variation

of interest and learn a factorization model that removes the image changes caused by

the auxiliary variation. As shown in Figure 3.1, after removing unwanted image vari-

ation, image changes are entirely parametrized by the variation of interest. Weakly

supervised manifold factorization corresponds to many problems in computer vision.

For example, removing the global image motion due to camera movement produces

more visually pleasing output for a video clip captured by a free-hand camera (Fig-

ure 3.2(a)), and removing illumination changes in a set of face images makes the

image set more suitable for downstream applications, such as face synthesis at new

pose angles (Figure 3.2(b)).

Input 

ℳ 

𝑢 

𝑣 Output 

ℳ 

𝑢 

𝑣 

Figure 3.1: Each point represents an input data point and color indicates label values.
In this example, the direction represented by v is the variation of interest and changes
in u are unwanted. The goal is to learn a lower-dimensional manifold parametrized
by v only.
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In the supervised setting, the factorization model is learned using image labels on

both the auxiliary variation and the variation of interest. However, image appearance

changes due to the auxiliary variation are often less structured and more difficult to

annotate than change due to the variation of interest. For example, labeling phases

of a bird’s flapping cycle is easier than providing labels of the sensor induced motion

(Figure 3.2(a)), and labeling face pose is more convenient than providing annotations

for the illumination variation (Figure 3.2(b)). Weakly supervised manifold factoriza-

tion incorporates image labels associated with the variation of interest and bypasses

the problem of annotating the auxiliary variation in these applications.

(a) A video captured by a free-hand camera containing undesired sensor induced motion

(b) A set of face images with various pose angles containing undesired illumination change

Figure 3.2: Most image sets contain multiple latent factors of change. By removing
undesired latent factors, images are more suitable for direct application or downstream
analysis.

In this chapter, we present a basic framework for weakly supervised manifold fac-

torization. We use the provided labels to find image pairs that should be similar after

removing the unwanted image variation and propose an efficient, keyframe based op-

timization approach. We demonstrate how this framework can be applied for echocar-

diogram video stabilization and provide experimental evaluation of the algorithm on
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both synthetic and real-world data sets.

3.1 Background

Previous research on image variation factorization has mainly been concerned with

separating “style” and “content” factors from images [91, 19, 32, 98]. These ap-

proaches use an explicit training stage to learn the factorization model, where the

training images can be organized by the provided “style” and “content” labels. Usu-

ally, they deal with fully labeled image sets, and at least one of the two factors is

discrete. Whereas weakly supervised manifold factorization deals with the case where

the latent factors are continuous, and the image labels only explaining part of the

latent factors.

In terms of removing irrelevant variation and preserving informative variation,

manifold alignment [97, 95, 96] shares a similar goal to weakly supervised manifold

factorization. However, manifold alignment methods usually aim to find a common

coordinate space for multiple data sets, so that knowledge can be transferred between

different data sets. However, in our addressed problem, we focus on removing the

irrelevant variation within a single data set.

3.2 Framework

Given input images X = [x1,x2, · · · ,xN]ᵀ, we assume that the underlying manifold,

M is entirely parametrized by the variation of interest, v, and the auxiliary variation,

u. The nonlinear relationship between the manifold parameters and the images in

ambient space can be represented as a function: g : RDu ×RDv →M. Factoring the

variation of X into component factors is nontrivial and under-constrained. However
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we consider the version of this problem with weak labels, where image labels, Y,

that approximate the variation of interest are provided and serve as an additional

constraint.

Taking any pair of images in X, identifying the contribution of each source of

variation is under-constrained. However, with fixed v, the difference between two

images, g(ua,v) and g(ub,v), is entirely from the auxiliary variation. Applying the

brightness constancy constraint gives us:

T (g(ua,v); ua) = T (g(ub,v); ub) (3.1)

where T (·; u) is a image transformation parametrized by u; for an image g(u,v),

T (g(u,v); u) transforms the image to a standard parameter setting of auxiliary vari-

ation, g(u0,v). Given discrete samples of the image manifold, the relationship in

Equation 3.1 can be made between each pair of images with similar v. Since the

image labels approximate the variation of interest, we can use the similarity of image

labels, κ(‖yi − yj‖2) to estimate the similarity of vi and vj, , where ‖ · ‖2 is the

L2-norm, and κ(·) is the radial basis kernel. Extending from image pairs to the entire

image set, we have:

min
U

N∑
i=1

N∑
j=1

κ(‖yi − yj‖2)φ (T (xi; ui), T (xj; uj)) + λaP (U) (3.2)

where U = [u1, · · · ,uN]ᵀ, φ(·) is an image dissimilarity measure, and P (·) is a regu-

larization term for any additional constraint on U (e.g., temporal constraint, in the

case of videos).

An issue with the above formulation is that evaluation of all-pair image matching
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(even for simple transformation models) is computationally expensive, and at the

same time, only a small subset of the all-pair computation (image pairs with very

similar image labels) contributes to the minimization. We use an efficient strategy to

avoid this all-pair computation: a small subset of the image set is selected and serves

as the set of reference images to align the entire image set. Formally, given the set of

images, I = {xi}N
i=1, and the associated labels, Y, we select a subset L from I as the

reference images, namely the keyframes, and solve a modified version of Equation 3.2:

min
U

∑
i

φ
(
T (xi; ui), T (xγ(i); uγ(i))

)
+ λaP (U) (3.3)

where γ(i) ∈ L denotes the index (in the original image set I) of the selected keyframe

for image xi.

3.3 Phase-aware Echocardiogram Stabilization using Key Frames

2D echocardiography is a ubiquitous approach for the real-time, noninvasive analy-

sis of heart function. With the increased use of portable ultrasound devices in critical

care settings, methods for automated echocardiogram analysis are increasingly rele-

vant for situations when cardiologists are not available for diagnosis. There has been

much work in automated cardiac motion analysis from echocardiograms, including

left ventricle segmentation and tracking [71, 81, 120, 58], statistical modeling of at-

lases [38, 42], and quantitative assessment of cardiac motion [28, 87]. An assumption

implicit in most of these algorithms is that observed motion is primarily due to cardiac

motion (potentially corrupted by noise). However, real-world echocardiograms show

variations due to a variety of auxiliary causes, including (1) patient breathing and (2)
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Figure 3.3: Each row shows a pair of echocardiogram frames, and the image motion is
represented as vector fields. Most alignment methods deal with either cardiac motion
(top, deformable) or sensor motion (middle, approximately rigid). However, most
pairs of echocardiogram frames (bottom) vary due to both.

movement of the handheld transducer relative to patient. Both of these causes can

appear as rotational, translational, and out-of-plane motion, which, similar to [6], we

model as approximately rigid motion.

Figure 3.3 shows selected frames from a transthoracic echocardiogram obtained by a

trained ultrasound technician using a handheld transducer from a session consisting of

six heartbeats, lasting roughly five seconds. Each row shows a pair of echocardiogram

frames and the image motion represented as vector fields. The top row shows an end-

systolic frame and an end-diastolic frame from the same cycle. The middle row shows

two end-diastolic frames from different cycles. While the pattern of motion differs,

the overall magnitude in each case is similar. That is, auxiliary motion can be just as
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significant as the informative cardiac motion. The third row shows two frames from

different phases and cycles where a composite of both sources can be observed.

In this chapter, we propose a solution to the problem of video stabilization for free-

hand 2D echocardiography based on the framework of weakly supervised image fac-

torization. We assume the images are random samples from a manifold parametrized

by cardiac motion (variation of interest, v) and relative sensor motion (auxiliary mo-

tion, u) and seek to compensate for the auxiliary motion without affecting motion

due to cardiac cycles.

3.3.1 Related Work on Video Stabilization

Most of the work in video stabilization has focused on natural scenes captured

from consumer handheld cameras, where the goal is to produce visually pleasing

output from video corrupted by undesired jitter motion [13, 66]. However, many

of the underlying assumptions of these methods do not hold for echocardiograms.

Many of these approaches assume that most of the image area contains non-moving

objects, so the images can be stabilized by tracking image features [57] or estimating

the global motion between consecutive frames [63]. However, for typical freehand

echocardiography, cardiac structures occupy most of the image area, and the image

changes due to cardiac motion are significant, so the estimated global motion is

unlikely to correspond only to sensor motion.

Video stabilization is related to the problem of group-wise image registration. Com-

pensating for the motion caused by the sensor can be viewed as registering the con-

stituent frames onto a common coordinate frame where only deformable cardiac mo-
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tion is preserved. Most of the work in group-wise image registration with deformable

objects seeks to find the optimal parameters of a prescribed deformable motion model

with respect to some image similarity measure [85, 21, 86]. This differs from our prob-

lem in that we do not aim to parametrically estimate the total deformable motion, but

rather factor nuisance sensor-caused motion. Perhaps more closely related is group-

wise rigid alignment. Most of these approaches rely on the assumption that when

images are optimally aligned, they are the most similar to a mean image. A variety

of alignment techniques have been employed for this problem, including low rank

decomposition [74], least squared difference [23, 22], and entropy minimization [56].

For echocardiograms, there are significant non-rigid deformations over the course of

a cardiac cycle, and, as we demonstrate in Chapter 3.3.4, a single reference or mean

image does not work well for alignment. Our approach is to efficiently learn a set of

keyframes for stabilizing the video.

There are two recent approaches for group-wise non-rigid image alignment that

share a similar model to our work. When considered as points in a high-dimensional

space, a set of images related by a few underlying degrees of freedom, sensor motion

and cardiac motion in our case, lie on or near a low-dimensional manifold embedded

in this image space. Rather than considering the sequential relationship of frames in-

herent to video, the manifold model instead considers image-image similarities across

the entire video. The manifold structure is approximated as a graph where each node

is an image connected to its most similar neighbors [115]. All the images are then

registered to the population center (the image with the closest geodesic distances to

all other points) by graph shrinkage. This differs from our approach in the same way
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Figure 3.4: Overview of the proposed video alignment algorithm. The algorithm
begins by selecting keyframe images and assigning each image to the most suitable
keyframe for local alignment. Global alignment incorporates both image-keyframe
alignment and temporal smoothness.

as other non-rigid alignment approaches that deform images, but shares a similar

manifold representation of video. A previous work of ours solves a similar problem

and also employs keyframe based alignment to avoid pairwise registration [111]. But

the approach proposed in [111] uses a greedy method to select keyframes in an empir-

ical way; whereas our method presented in this chapter formulates the problem as a

novel graph optimization problem and provides a theoretical bound for the proposed

efficient keyframe selection strategy.

3.3.2 Method

Even for simple transformation models and similarity metrics, Equation 3.3 leads to

a nonlinear, non-convex optimization. We propose an approach to efficiently approx-

imate the solution to Equation 3.3. Figure 3.4 depicts each component of our video

stabilization algorithm: keyframe selection, image-keyframe alignment, and global

refinement.

3.3.2.1 Keyframe Selection

Each image will be assigned to one of nk keyframes for pairwise alignment. When

nk = 1, all images are aligned to a single reference. As nk increases, more keyframes
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are selected, and images are aligned to the keyframe with the most similar label,

but at increasing computational cost. The number of keyframes nk can act as a free

parameter that controls the trade-off between alignment accuracy and computational

cost. In our experiments, we show how nk can be specified implicitly by computing

the marginal gain of adding an additional keyframe and terminating if the gain falls

below a threshold. However, here we leave nk as a free parameter for clarity.

First, we compute the compatibility of two images, xi and xj, for alignment. Ideally,

an image should be aligned to another image that differs primarily due to auxiliary

motion, i.e., the deformable shape represented by the two images are very similar.

Given the compatibility between image xi and image xj, wij = κ(‖yi−yj‖2), we have

the kernel matrix between the image labels of all pairs of images in I. We construct

a fully-connected, undirected graph with each image as an vertex, and wij as the

edge weight between the i-th and j-th vertexes. The optimal set of keyframes would

be the subset that maximizes the sum of pairwise compatibility, where each image

is matched to a keyframe. Formally, given a set of keyframes, L ⊆ I, the objective

function in this graph optimization problem is:

F (L) =
N∑
i=1

max
xj∈L

wi,j (3.4)

where the max term ensures that each image will be aligned to a single keyframe.

Keyframe selection becomes a discrete optimization of the form:

max
|L|≤nk

F (L) (3.5)

This combinatorial optimization problem is a variant of the generalized maximum cov-
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Figure 3.5: (left) Each point represents an input image plotted by the associated
label values. (second) Vertexes are linked by edges weighted by image compatibility.
(third and last) Two keyframes (red) are selected sequentially by applying the greedy
algorithm twice, and the edges represent the assignment of each image to the current
keyframe(s).

erage problem (GMC), which is NP-hard. Fortunately, this function is monotonically

non-decreasing with submodular structure [20], which allows us to take advantage of

the following theorem to employ a constant-factor approximation algorithm.

Theorem 3.3.1. [70] Given a non-decreasing submodular function F , F (∅) = 0, the

greedy maximization algorithm returns Agreedy, and F (Agreedy) ≥ (1− 1
e) max
|A|≤nk

F (A).

For a toy example with 2D metadata, Figure 3.5 presents an overview of keyframe

selection that iteratively selects the keyframe with the maximum weight gain, until

nk keyframes are selected. We denote the set of keyframes obtained as Lg.

Once the keyframe images are selected, the next step is to align each image, xi,

to the corresponding keyframe, xγ(i). This subproblem (matching a keyframe to the

subset of paired frames) is an instance of image-image alignment. Let θi represent the

transformation parameters that align image xi to the corresponding keyframe, xγ(i).

Even for this single-reference subproblem, solving for θi leads to a nonlinear, non-

convex optimization. We use Bayesian optimization to solve for the image-keyframe

alignment parameters, which has shown to be more efficient and accurate than grid

and other random searches [84]. The obtained image-keyframe alignment parameters,
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Θ = [θ1,θ2, · · · ,θN]ᵀ provide an initial alignment from each image to a keyframe. In

the next chapter, we show how these values are used to solve for the global alignment

parameters.

3.3.2.2 Global Alignment

Given image-keyframe alignment parameters, Θ, we want to solve for the global

parameters U = [u1, . . . ,uN]ᵀ that align all of the frames with respect to a common

coordinate frame. The desired global alignment parameters of the i-th image and

its assigned keyframe, ui and uγ(i), should agree with the image-keyframe alignment

parameters, θi. This leads to the constraint on U: T (xγ(i),uγ(i)) = T (T (xγ(i),θi),ui).

That is, keyframe xγ(i) and image xi (substituted by T (xγ(i),θi) using the image-

keyframe alignment constraint), should be optimally aligned using uγ(i) and ui. In

the case of the approximately rigid auxiliary motion, this leads to: uγ(i) − ui = θi.

Enforcing this constraint on U approximates a minimization of the first term in

Equation 3.3. For the case of video stabilization, the second term P (·) can enforce

temporal smoothness, ∑i

∣∣∣∂ui

∂i

∣∣∣2. Using central differences to approximate the first

derivative in the temporal smoothness term, we have the following objective function

for global alignment:

argmin
U

‖DU−Θ‖2
F + λa‖LU‖2

F

subject to u1 = 0 (3.6)

where D is a N× N matrix consisting of −1s along the diagonal and 1s on the γ(i)-

th element of the i-th row, and 0s everywhere else; and L is a N × N Laplacian
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matrix obtained from the graph of connecting temporally adjacent images. The first

term ensures that the global parameters agree with the image-keyframe alignment

parameters, and the second term ensures temporal smoothness. The constraint, u1 =

0, removes translational ambiguity of the global coordinate. Let U = ĨΓ, where Ĩ is

a N× N matrix containing 1s along the diagonal except for the first element, and 0s

everywhere else, and Γ ∈ RN×Du . Substitute Γ into Equation 3.6, and we are left

with the following unconstrained convex quadratic minimization problem:

Γ* = argmin
Γ
‖DĨΓ−Θ‖2

F + λa‖LĨΓ‖2
F (3.7)

The above equation can be solved efficiently by solving the linear system AΓ = B

using the conjugate gradient method, where A = (DĨ)ᵀ(DĨ) + λa(LĨ)ᵀ(LĨ), and

B = (DĨ)ᵀΘ.

3.3.2.3 Algorithm

Algorithm 1 provides pseudocode for the proposed Video Stabilization using Phase-

Aware Keyframes (VSPAK), broken down into: keyframe selection (lines 1 – 5), image-

keyframe alignment (lines 6 – 7), and global alignment (lines 8 – 9).

3.3.3 Experimental Evaluation

In this chapter, we quantitatively evaluate our approach for video stabilization

on synthetic videos (with known ground truth) and compare the results to related

methods. For all the repeated experiments in Chapter 3.3.3 and Chapter 3.3.4, we

performed pairwise comparisons with a two-sample t-test with a significance value of

α = .05.



32

Algorithm 1 VSPAK

Input: images, I = {xi}N
i=1; metadata, Y = [y1,y2, · · · ,yN]ᵀ; number of keyframes,

nk; trade-off coefficient, λa.
Output: alignment parameters, U.

1: Compute pairwise suitability, wij = κ(‖yi − yj‖2)
2: Initialize the keyframe set, Lg ← ∅
3: while |Lg| ≤ nk do
4: xj ← argmax

x∈I−Lg

F (Lg + x)− F (Lg)

5: Lg ← Lg ∪ xj
6: for all xi do
7: Compute image-keyframe alignment, θi = argmin

θ
φ
(
T (xi;θ),xγ(i)

)
8: Solve for Γ* (Eq. 3.7)
9: Compute alignment parameters, U = ĨΓ*

The synthetic video set was constructed by applying a parametric non-rigid warp

(deformable motion) to an initial star-like shape and translating the shape along

an arbitrary path (rigid motion) with dynamic range of [−20, 20] in pixel units in

both vertical and horizontal directions. The magnitude of the deformable motion is

controlled by a metadata parameter between 0 and 1. To add realistic speckle noise

to the synthetic video, we use the Field II ultrasound simulation toolbox [50, 51].

For the synthetic video, the foreground (star shape) and background intensities are

modeled parametrically to generate speckle noise. The energy strengths of scatters

in the background are drawn from a zero-mean Gaussian distribution with standard

deviation of 1, and the energy strengths of foreground scatters are drawn from a zero-

mean Gaussian distribution with standard deviation of 0.1. In each frame, 10, 000

scatters are randomly placed. Figure 3.6 shows three sample frames from this data

set.

The algorithm was implemented in Matlab on a standard desktop computer. For

the radial basis function used for metadata similarity, κ(·), the kernel width is selected
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Figure 3.6: The synthetic video data contains simultaneous deformable and rigid
motion with imaging noise added.

as the mean pairwise Euclidean distances between the metadata of all images in a

video. The number of keyframe images was determined based on the marginal gain

of adding an additional keyframe; iterative keyframe selection was terminated when

the ratio of the k-th iteration and the first iteration falls below 10−2. The trade-off

parameter, λa = 1. For image-keyframe alignment, we used an implementation of

Bayesian optimization [35] with 20 iterations.

3.3.3.1 Alignment Accuracy

In this chapter, we evaluate the alignment accuracy using synthetic videos of 300

frames with randomized translation trajectories and noise patterns. The proposed

algorithm is compared against the following rigid alignment algorithms. For each

method, the free parameters were selected that produced the best results.

• BASE: baseline approach where each frame is aligned to a reference image (ran-

domly selected from the input video). To compute the alignment parameters

for each image, the reference image is transformed over a grid sampling of the

parameter space, and the optimal alignment parameter corresponds with the

nearest transformed reference image.
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• Healy2007 [41]: similar to BASE, but alignment is based on random projections

of the manifold formed by the transformed versions of the reference image and

1-NN search in the projected space. The dimension of the projected space is set

to 400.

• Wu2014 [111]: a phase-aware alignment algorithm based on keyframe image se-

lection and random projections. This method selects keyframe images sequen-

tially and does not include a separate global refinement step. The threshold

to determine phase-similar images is ∼10% of the dynamic range of the phase

metadata. The dimension of the projected space is set to 400.

• VSPAK: the proposed method.

For BASE, Healy2007, and Wu2014, the sampling space for alignment parameters is

[−20, 20] with a spacing of 1 pixel unit in both directions. The reference image for

BASE and Healy2007, and the seed keyframe image of Wu2014 are randomized. For

all methods, alignment accuracy is computed as the root-mean-square error (RMSE)

in pixel distances between the returned alignment parameters and the ground truth

location. Figure 3.7 shows the mean RMSE across repeated experiments. Overall, the

single reference based methods produce the worst performance, and our algorithm,

VSPAK, outperforms the other methods by a wide margin. The difference in alignment

accuracy between BASE and Healy2007 was not significant (p = 0.397), and the

improvement in alignment for VSPAK is statistically significant compared to Wu2014

(p = 0.0002), Healy2007 (p = 0.0014), and BASE (p = 0.0074).
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Figure 3.7: Mean RMSE results on synthetic videos in pixel units. Error bars repre-
sent standard error.

3.3.4 Echocardiogram Applications

In this chapter, we demonstrate how our video stabilization method can serve as a

preprocessing step to improve common automated echocardiogram algorithms. The

data for these experiments consists of apical four-chamber (A4C) and parasternal

short axis (PSSX) echocardiograms collected from patients in a clinical setting using

a Philips CX50 Ultrasound System, operating at 33Hz. Each of the obtained videos

contains roughly 6 to 10 heartbeats. To extract image labels that are related with

the cardiac movement, we incorporate ECG signals that are collected alongside the

echocardiogram. An example ECG is shown in the top row of Figure 3.8. Key points

are located in the signal to separate systole and diastole phases [119]. The heart

phase parameter is interpolated linearly within each phase for each frame and then

projected to a 2D unit circle composed of a systole semi-circle and a diastole semi-
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Figure 3.8: Heart phase is inferred for systole and diastole by interpolating between
key points in the ECG data.

circle to generate the image labels used for alignment. The resulting image label is

a 2D signal and changes along the unit circle alternating between phases of cardiac

cycles.

For BASE, Healy2007, and Wu2014, the sampling space for alignment is [−10, 10],

and the spacing is 1 pixel unit in both directions. The implementation details for

each algorithm are the same as in Chapter 3.3.3.

3.3.4.1 Left Ventricle Segmentation

Left ventricle segmentation is the most common application in cardiac image anal-

ysis, with many different algorithms designed for this problem. We applied a recent

method [113], which uses an adaptive diffusion flow active-contour model. Except

for the first frame (initialized manually), the contour for each frame is initialized

using the final contour from the previous frame. For video, when phase information

is available, one approach is to re-order the video by phase rather than temporally,

prior to sequential segmentation. In these experiments, we show the performance of

the segmentation algorithm with and without video stabilization as a preprocessing

step.

Figure 3.9 shows the segmentation results on four sample echocardiogram frames
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Preprocessing Method
Input None Healy2007 Wu2014 VSPAK

Figure 3.9: Results using a segmentation algorithm [113] on echocardiograms with
various video preprocessing methods.

using various preprocessing schemes. Results on the original data (second column)

show inaccurate segmentation or boundary leakage on multiple frames. This sug-

gests that the motion between frames may not be smooth enough for the detected

boundary from one frame to serve as initialization for the next. Alignment using the

single-reference method Healy2007 (third column) brings insignificant improvement

in segmentation. The multi-reference method, Wu2014 (fourth column) improves the

segmentation results compared to the unaligned case, but segmentation errors are

still present on the first and the fourth frames. When our method, VSPAK, is used as

a preprocessing step (last column), the resulting segmentation from the same segmen-

tation algorithm on the same data are noticeably better than the other approaches.

This suggests that, without any additional modifications, accurate video stabilization

can positively impact downstream automated algorithms.
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3.3.4.2 Echocardiogram Denoising

Echocardiogram denoising suppresses the speckle patterns commonly exhibited in

echocardiogram images, which, in some cases, can be useful features for motion track-

ing [117], but, in applications for image enhancement, are considered undesired visual

artifacts [118]. The phase-aware video denoising method, SMD (introduced in Chap-

ter 1.1) uses supervised manifold learning to denoise biomedical video. The method

assumes that images with similar phase should be similar. However, this assumption

does not hold in the presence of uncorrelated motion, such as global motion caused by

sensor motion. This experiment evaluates the effect of using our proposed algorithm

as a preprocessing step to phase-aware video denoising.

For quantitative evaluation, we applied the SMD algorithm to the same synthetic

data set introduced in Chapter 3.3.3 and used two metrics, Mean Structural Similarity

(MSSIM) and Ultrasound Despeckling Assessment Index (USDSAI), to evaluate the

denoising performance before and after applying video alignment.

SSIM [104] is a window-based measure, which has been used to evaluate the denois-

ing quality by incorporating three factors for image comparison: luminance, contrast,

and structure. Given image xi and the denoised image x̂i, the overall similarity be-

tween xi and x̂i can be computed as the mean of SSIM values (MSSIM) at each pixel

location. MSSIM ranges from 0 to 1, and larger values indicate better denoising per-

formance. For these tests, the window size is 20 × 20, and the predefined constants

used to prevent numerical instability, c1 and c2, are 0.01 and 0.03, respectively. For the

images generated using the Field II simulator, we use the binary ground truth masks



39

Table 3.1: Quantitative results for denoising synthetic data using SMD. For both
metrics, higher is better.

MSSIM USDSAI
SMD 0.784 ± 0.040 2.706 ± 1.275

Healy2007 + SMD 0.780 ± 0.056 2.951 ± 1.750
Wu2014 + SMD 0.807 ± 0.047 3.853 ± 1.884
VSPAK + SMD 0.826 ± 0.030 4.169 ± 1.399

to indicate the foreground-background segmentation and take the average intensity

of the noisy images in each region to serve as the ground truth intensity values.

USDSAI [89] is a denoising metric designed for images with distinct foreground, Sf,

and background, Sb, intensity classes. After denoising, pixel intensities should show

high within-class agreement and low inter-class agreement. Given denoised images,

Qalg measures the degree of discrimination between the two classes:

Qalg = (µf − µb)2

σ2
f + σ2

b
, (3.8)

where µf and µb are the mean of the two classes, and σ2
f and σ2

b are the standard devi-

ations. Q0 is the value of this measure for the (noisy) input image. USDSAI is defined

as the ratio, Qalg
Q0

, and larger values indicate better noise reduction performance.

Table 3.1 shows quantitative results for denoising the synthetic data. Preprocessing

the data using the single reference method, Healy2007, shows no improvement over

using the SMD algorithm with unprocessed images. Both of the methods based on

multiple keyframe images show significant improvement compared to applying SMD

to unaligned data (p < 0.001). Additionally, VSPAK shows a significant improvement

compared to the recent multi-reference method Wu2014 on both metrics (p < 0.001).

Figure 3.10 shows three example frames of the synthetic video denoised using all
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the methods. 1 The visual results correspond with the quantitative measures. Ap-

plying the SMD method without any alignment results in blurred boundaries on all

three frames. These boundaries are more distinct using both Wu2014 and VSPAK as

preprocessing steps, with those from VSPAK + SMD being sharper.

Preprocessing Method
Input None Healy2007 Wu2014 VSPAK

Figure 3.10: Denoising results using the SMD algorithm on synthetic data. Each row
shows a (noisy) input frame and the denoised versions with each algorithm used as
preprocessing alignment.

Figure 3.11 shows the denoising results, with dotted rectangles highlighting areas

with imaging artifacts (e.g., blurred areas, corrupted boundaries). Wu2014 and VSPAK

show pronounced improvement over SMD without preprocessing and Healy2007, both
1Due to video stabilization, some output images appear shifted relative to the input. For each

method the ground truth masks were transformed using the estimated alignment parameters for
each frame.
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Preprocessing Method
Input None Healy2007 Wu2014 VSPAK

Figure 3.11: Example denoised frames from echocardiogram videos. Each row shows
a (noisy) input frame and the denoised versions with each algorithm used as prepro-
cessing alignment. The dotted rectangles highlight areas with imaging artifacts (e.g.,
blurred areas, corrupted boundaries).

of which produce artifacts such as ghosting (e.g., fourth image of “None”, third image

of Healy2007) and blurring (e.g., second image and fifth images of “None”). While

Wu2014 and VSPAK have comparable performance on all images in terms of reduc-

ing noise level and preserving structures, Wu2014 underperforms on the first image

as seen from the ghosting effect around the ventricle wall. Overall, the qualitative

observations from echocardiogram denoising follow the quantitative and qualitative

trends from the synthetic data experiments: VSPAK can significantly improve existing

medical image analysis algorithms when used as a preprocessing step.
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3.4 Summary

We present a keyframe based approach that formulates the image relationships

as a weighted graph using the similarities of the variation of interest and factorizes

image change by removing auxiliary variation between images with a strong graph

connection. The approach is applied to echocardiogram video stabilization with im-

age labels automatically obtained from ECG signals with no manual labeling effort

required. We evaluated our approach both quantitatively and qualitatively on mul-

tiple data sets and demonstrated its benefit as a preprocessing step for two common

echocardiogram applications. The weakly supervised manifold factorization problem

we studied in this chapter corresponds with the scenario of weakly supervised image

manifold learning where the provided image labels only explain a part of the latent

factors of image variation.



CHAPTER 4: ROBUST MANIFOLD REGRESSION

Robust manifold regression considers a variant of weakly supervised image mani-

fold learning, where full image labels are provided, but they are heavily corrupted.

Assuming that the labels are noisy samples from a smooth function defined on the

manifold, the goal is to incorporate the relationships of images to learn the function.

As shown in Figure 4.1, a corrupted label usually does not conform with other labels

in a local neighborhood of the manifold and is smoothed after performing robust

manifold regression.

Input 

ℳ 

Output 

ℳ 

Figure 4.1: Illustration of robust manifold regression. Color indicates label values,
and triangles indicate data points originally associated with corrupted label values.

Robust manifold regression is most applicable for cases where image labels are of

low accuracy, such as the image labels obtained from certain automated algorithms. A

recent trend to acquire image labels is via crowdsourcing or co-located sensors, which

effectively automates the label collection process, allowing for the rapid creation of la-

beled data sets at scales previously impossible. However, label accuracy often suffers.
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For example, Figure 4.2 shows representative images from two publicly-available im-

age sets (AMOS [49] and Geofaces [48]) and the associated labels, including instances

of mislabeled images. These image labels are heavily corrupted and can not be di-

rectly used for supervised learning. However, the labels usually describe some visual

concept present in the images and can provide weak supervision.

Original -90 0 45 45 Clear Clear Cloudy Cloudy

Output -90 -52 43 90 Partly Clear Cloudy Partly

Figure 4.2: Our method can be applied to image sets with ordered labels (left: head
pose estimates, right: cloudiness estimates). For each image, we show the original
label (top row) and predicted values from our method (bottom row). The examples
in red highlight errors in the original labels.

In this chapter, we present a method to address the problem of robust regression

on image manifolds. We take advantage of the fact that these data sets contain

semantically-related images whose relationship can be exploited to learn a smooth

function of the labels with respect to the images. Unlike traditional robust regression

methods, our method utilizes the relationship between the underlying image manifold

structure and the visual concepts described by the image labels. We further combine

this manifold assumption with sparse regularization, which allows our method to

learn the underlying dependency between images and labels even at a very high rate

of label corruption.
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4.1 Background

There has been much work that involves learning with noisy categorical labels

(e.g., [33, 88]), and the general problem of robust classification with mislabeled ex-

amples (e.g., [69]). Our work, to our knowledge, is the first to consider this problem

in the context of regression, with ordinal or real-valued labels. While most regression

techniques are somewhat tolerant to noise, they are generally not designed to handle

large amounts of corruption found in the labels from real-world image sets.

The literature on robust regression is vast, spanning approaches fromM -estimation

to more recent methods designed to overcome the limitations of the commonly-used

least squares error measure (e.g., sensitivity to noise and outliers). Robust substi-

tutes have been investigated, including least median of squares [79] and least trimmed

squares [3]. Least absolute deviation [100] has seen increased interest with the growing

prominence of sparse representations and compressed sensing theory, with applica-

tions to computer vision and imaging problems, such as face recognition [109]. Our

method also incorporates sparsity as a means of discriminating between noisy and

noise-free labels, but additionally correlates the labels to the underlying manifold

structure commonly exhibited by natural image sets.

An important family of robust regression methods are Random Sample Consen-

sus (RANSAC) and its variants [34, 77]. They have been successfully applied to a

variety of geometric vision problems, such as 3D reconstruction from noisy feature

matches [2, 83]. Most RANSAC methods are superlinear (and often exponential) in

the number of iterations as a function of the number of model parameters. For geo-
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metric vision problems, the number of model parameters is usually small (e.g., 7 for

the fundamental matrix). However, for our problem, the model parameters are de-

rived from a high-dimensional image space, and the relationship between the domain

and range is unknown and, in most cases, nonlinear. In comparison, our algorithm is

non-parametric, data-driven, and the time complexity is not a function of the ambient

space dimension.

4.2 Framework

The input for this problem is the image set, X, and associated (noisy) labels, Y.

For clarity, in this chapter, the labels are treated as one-dimensional real values;

so Y = [y1, y2, · · · , yN]ᵀ, where yi ∈ R. in Chapter 4.4, we present extensions for

ordinal and multi-dimensional labels. We assume there exists a smooth function,

f : RD → R, which maps the input image features to the labels, and that the ideal

labels, y?i = f(xi), are samples from this output manifold. Our goal is to recover the

ideal function values, Ŷ = [ŷ1, ŷ2, · · · , ŷN]ᵀ, such that ŷi = y?i .

The desired property for the manifold function, f , is that, it should change smoothly

on the image manifold. However, learning an unknown function on a manifold only

defined by images is an ill-posed problem. We propose to use the regularized empirical

risk minimization framework:

argmin
f

R(f ; X) + λrL(f ; Y) (4.1)

where R regularizes the function on the manifold defined by the images, X, L is a loss

function based on the provided image labels, Y, and λr is the trade-off parameter.
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4.3 Method

Many choices are possible for the two terms in Equation 4.1. In this chapter, we

introduce in detail our choice for the manifold regularization term, R(·), and the loss

function, L(·), motivated by the problem of noisy ordered labels for natural image

collections.

4.3.1 Manifold Regularization

Many approaches to manifold regularization have been proposed, which extend

some notion of local linearity to a global model of the manifold. One such approach

is based on the Hessian regularizer, which has been applied to, for example, nonlinear

dimensionality reduction [27] and semi-supervised regression [27].

For a point on the manifold, the local Hessian functional is defined on its associ-

ated tangent space as the Frobenius norm of the Hessian matrix. This provides a

coordinate system that is isometric to the manifold intrinsic coordinate. The local

measure is then averaged over the entire manifold to provide a global measurement,

which is an extension of the average Frobenius norm of the Hessian of a function in

Euclidean space to manifolds. Minimizing this term leads to locally linear functions.

Several properties of the Hessian functional make it useful in our case: (1) it provides

a data-driven way for manifold function regularization that enables non-parametric

regression; (2) it can handle extrapolation better than other proposed manifold regu-

larizers (e.g., Laplacian) [43]. However, unlike [27], our goal is not to explicitly learn

a low-dimensional parametrization of the manifold, but to estimate a function of the

labels over the images sampled from the manifold.
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For an input point, xi, let N i represent the neighborhood of K nearest neighbors,

and z(i)
j represent the coordinates of xj ∈ N i in the d-dimensional tangent space

of xi, where z(i)
i is defined as the origin. The local Hessian functional estimates a

second-order polynomial, f , near xi of the form:

f = ŷi + Jiz(i) + 1
2z(i)ᵀWiz(i) (4.2)

where Ji and Wi are the local Jacobian and Hessian matrices, respectively, ŷi is the

predicted label, and z(i) is the d-dimensional tangent space coordinate. Equation 4.2

is linear with respect to Ji and Wi. Let Ψi denote the design matrix on neighborhood,

N i, and each row of Ψi corresponds to a neighboring point, xj:

[zj1, · · · , zjd, zj1zj1, zj1zj2, · · · , zjdzjd] (4.3)

where zjd (superscript omitted for clarity) represents the d-th dimension of z(i)
j . Sub-

stituting the predicted values of the labels at the local neighborhood, denoted by

Ŷ(i), for the unknown function, f , the least-squares solution for the parameters of

the local Jacobian and Hessian matrices is given by:

Ψi



|

Ji

|

W̆i

|



= Ŷ(i) − ŷi · 1 (4.4)

where W̆i represents the upper triangular portion of Wi, 1 is a K-length column
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vector of 1, and Ji and W̆i are converted to column vectors. Multiplying both sides

of Equation 4.4 by the pseudo-inverse of the design matrix and taking only the bottom

d+ d(d+ 1)/2 rows of both sides, we get:

W̆i = Ψ†
(
Ŷ(i) − ŷi · 1

)
(4.5)

where Ψ† represents the bottom d + d(d + 1)/2 rows of the pseudo-inverse of the

design matrix. Including contributions from the ŷi term in Equation 4.4, the right

side can be written as Ψ̃†Ŷ(i). Scaling the rows in Ψ̃† corresponding to the diagonal

elements of Wi by 2 and those corresponding to off-diagonal elements by
√

2. we get

the following expression for the approximation of local Hessian functional:

‖Wi‖2
F =

∑
r

(
ψ̃
†
rŶ(i)

)2

=
(
Ŷ(i)

)ᵀ
HiŶ(i)

(4.6)

where

Hi =
∑
r

(
ψ̃
†
r

)ᵀ (
ψ̃
†
r

)
(4.7)

and ψ̃†r denotes the r-th row of Ψ̃†. The global Hessian estimator is the sum of the

local estimators over all the input points. Let H̃i denote the sparse N×N version of

Hi where H̃i and Hi are identical at the locations corresponding to points in N i and

0 otherwise. So,

H =
N∑
i=1

H̃i (4.8)

and the global regularizer of the manifold function can be obtained in the quadratic

form, ŶᵀHŶ.
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Clear 

Cloudy 

Partly 
Cloudy 

0        1        2        3        4        5        6        7        8 
Clear Cloudy Partly Cloudy 

57.24 13.82 10.53 3.95 7.89 2.63 1.97 1.97 0.00

10.61 7.40 9.65 7.72 13.18 13.83 11.58 16.72 9.32

5.87 4.66 5.47 6.68 6.48 7.89 9.92 12.35 40.69

Figure 4.3: Distribution of the mislabeled examples. For a data set of outdoor images
with cloudiness metadata (measured in okta from 0-8), the confusion matrix shows
the distribution of the input label (columns) with manual annotations (rows).

4.3.2 Loss Function

Modeling the noise of labels associated with large image collections can be dif-

ficult. Labels can be obtained from automated algorithms, co-located sensors, or

crowdsourcing; each of which introduces different types of error. In our work, we

observed that much of this data was corrupted nearly uniformly and not necessarily

biased toward the ground truth. For example, consider the AMOS data set [49], which

provides weather metadata associated with images captured from globally-distributed

webcams. One label is cloud okta, a cloudiness measure that ranges from clear (0)

to cloudy (8). Figure 4.3 shows a confusion matrix of the cloudiness values between

the AMOS labels and manual annotations for a representative subset of 1000 images.

This pattern of roughly uniformly distributed noise is consistent with research into

labels obtained via crowdsourcing (e.g. Amazon Mechanical Turk) where “bad” users

tend to provide information uncorrelated with the correct answer [78].
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This suggests that the commonly-used L2 error measure is not well-suited to

the problem, as it often results in poor performance for non-normal noise distribu-

tions [100]. The L1 norm, however, is robust to high variance in noise and implicitly

promotes sparsity in the residual error. This is the desired behavior, since sparsity in

the residual error allows for soft subset selection of “good” labels and de-emphasizes

the contribution of labels with extreme noise. In Chapter 4.4, we compare the per-

formance of our method using both L1 and L2 loss.

4.3.3 Optimization

Combining the Hessian regularization term with the L1 loss, we are left with the

following optimization:

argmin
Ŷ

ŶᵀHŶ + λr‖Ŷ −Y‖1 (4.9)

In order to efficiently solve Equation (4.9) for the denoised labels, Ŷ, we show that

the global Hessian estimator, H, is positive semidefinite (PSD).

Proof. First, the local Hessian estimator, Hi, is PSD. In Equation 4.7, each term

in the summation can be represented as the product of a matrix and its transpose,

which is PSD. Next, we show that the sparse variant of the local estimator, H̃i, is

PSD. Let ν be a column vector of length N, so

νᵀH̃iν =
N∑
j=1

N∑
l=1

h̃jlνjνl

where h̃jl is the entry of H̃i at the j-th row and l-th column. Since H̃i is a sparse

matrix that contains the same elements of Hi at the intersections of rows and columns
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corresponding to N i, the above equation is reduced to a sum of K2 terms:

νᵀH̃iν =
∑
j∈N i

∑
l∈N i

h̃jlνjνl

= ν̂ᵀHiν̂ ≥ 0

where ν̂ is a K-length column vector of elements from ν at positions N i. Therefore,

H̃i is PSD. Finally, we get the global Hessian estimator, H, is PSD since it is the sum

of the N sparse local PSD matrices, {H̃i}N
i=1.

Therefore, Equation (4.9) is a convex quadratic program with L1 regularization.

Performing Cholesky decomposition on H, we get H = ∆ᵀ∆ and are left with:

argmin
Ŷ

‖∆Ŷ‖2
2 + λr‖Ŷ −Y‖1 (4.10)

where ∆ is a sparse N × N upper triangular matrix. This convex optimization can

be solved using standard algorithms, or using more efficient solvers specialized for

large-scale, sparse L1-regularized least squares problems [54].

4.3.4 Algorithm

Given a set of images and (noisy) labels, our method, Hessian-Regularized Robust

Regression (H3R), outlined in Algorithm 2, returns the denoised labels.

For our method, the intrinsic dimension of the method, d, and the neighborhood

size, K, can be provided using prior knowledge or estimated directly from the data.

In Chapter 4.4, we describe the implementation details for H3R.
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Algorithm 2 H3R
Input: images, X; labels, Y;
Output: estimated labels, Ŷ

1: Estimate subspace dimension, d, and neighborhood size, K
2: for all xi ∈ X do
3: Find N i, the K-nearest neighbors of xi
4: Perform PCA on neighborhood, N i, to obtain d-dimensional tangent space

coordinates
5: Construct design matrix, Ψi (Eq. 4.3)
6: Compute local Hessian estimator (Eq. 4.7)
7: Construct global Hessian estimator, H (Eq. 4.8)
8: Solve for Ŷ (Eq. 4.10)

4.4 Experimental Evaluation

We evaluate the performance of H3R on a diverse set of labeled image collections

and compare the results against the following regression methods.

• K-NN: The label of each point is estimated as the average labels of its K nearest

neighbors in the data set, where K is set to the same value used by our method.

• Radial basis function network (RBFN) [72]: The neural network contains
√
N

hidden layer nodes with kernel width equal to the average distance to the 2-

nearest cluster centers.

• RANSAC [77]:1 The threshold for inliers is set to the 10% of the label dynamic

range, and maximum number of iterations is set to 107.

• ε support vector regression (SVR) [17] with the radial basis kernel. The kernel

width is set to the average Euclidean distances of the input, and the inlier
1The linear model of RANSAC learns D+1 parameters, where D is the dimensionality of the input.

To make the problem tractable, for image data, we applied PCA to preserve 80% of the variation,
which resulted in an input dimensionality of ∼20 across the data sets. Higher-order models were
computationally prohibitive.
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threshold, ε, is set to the 10% of the label dynamic range.

• Kernel Supervised PCA (KSPCA) [7]: for both the input data and labels, the

radial basis kernel is used with the kernel width set to the average Euclidean

distance.

We used labeled data sets with known ground truth. For each data set, the labels

are normalized to [0, 1].

• Swiss Roll, commonly used to evaluate machine learning algorithms, consists of

5000 points randomly sampled from a 2D manifold embedded in 3D. For each

3D example, the real-valued label is defined as sine of the geodesic distance to

the center point on the manifold.

• Paper Boy Statue [75] consists of 840 images of a rigid object on a turntable

platform captured from a camera on an elevating arm. The images are captured

every 6 degrees of rotation from 0–354 and every 6 degrees of elevation from

6–84. Each image is cropped and subsampled to 32 × 20, represented as a

pixel intensity vector, and noise was added to the elevation and rotation angles.

To account for the cyclic rotation parameter, we take the values as cylindrical

coordinates (with unit radius) and convert to a 3D Euclidean parametrization.

Results are reported as rotation and elevation angles.

• Digit [53] consists of 10,000 images of the digit “1”, with four degrees of varia-

tions: horizontal translation, vertical translation, rotation and thickness. Each

image is represented as a vector of raw pixel values.
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Table 4.1: RMSE of H3R on the Swiss Roll data using L1 or L2 loss. Noise was
generated using the Laplacian (b = 0.05), Gaussian (σ = 0.5), uniform additive
([−1, 1], 50% corruption), and salt & pepper (50%) noise models.

Lap. Gauss. Unif. S&P
L1 0.067 0.090 0.013 0.014
L2 0.068 0.136 0.112 0.197

For H3R, the intrinsic manifold dimensionality, d, neighborhood size, K, and trade-

off parameter, λ can be provided if prior knowledge is available. However, these

values can be directly estimated from the data, leaving no free parameters to the

system. To estimate the intrinsic manifold dimensionality, d, we apply local PCA on

a neighborhood of 20 points from a small set of randomly selected examples and set

d as the value corresponding to the ’elbow point’ of the residual variance curve. The

number of nearest neighbors, K, is loosely related to the manifold intrinsic dimension.

We found that the method was robust to the value of K, and empirically determined

that K = 5d. For the regularization parameter, λr, we use the L-curve method [39]

to select a value in the range [10−10, 105]. The algorithm is implemented in Matlab,

and we use the l1-ls package [54] for L1-regularized least squares optimization. The

computation of the algorithm is dominated by the optimization step. On a standard

PC, with an input of 1,000 samples, our method takes less than 5 seconds, on average.

To evaluate the choice of loss function in our method, we performed manifold

regression using the Swiss Roll data set (Figure 4.4) corrupted by commonly-used

artificial noise models. Table 4.1 shows the root-mean-square error (RMSE) values

of the predicted output from H3R. The order of noise models (left to right) represents

moderate to high noise levels, and across all of the settings, the L1 norm outperforms
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Figure 4.4: For the Swiss Roll (50% label corruption), the color in each plot indicates
the manifold function value. For clarity, (b) to (i) are plotted using 2D manifold
coordinates.
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the choice of L2, often by a wide margin. For the remaining experiments, we use the

L1 loss with H3R.

4.4.1 Robust Regression

For randomly-selected subsets of examples of varying size, the labels are corrupted

by adding uniform noise in the range [−1, 1]. Each method is provided the (cor-

rupted) labeled data as input. For multi-dimensional labels, each label is predicted

independently for consistency across the methods. Figure 4.5 shows the results of

these experiments, reported as the average RMSE in the predicted values from 10

repeated trials. Across all of the experiments, H3R returns the closest predicted val-

ues, even at corruption rates as high as 80%. In all but two cases, RANSAC performed

poorly. This is expected as RANSAC requires a pre-specified model, and the linear

model is not a reasonable choice for these experiments, as the relationship between

the input and labels is nonlinear in most cases. While the remaining methods should

be better-suited to nonlinear regression, for the problem of estimating the elevation

of the camera for the Paper Boy Statue, RANSAC returned the next best predictions.

In aggregate, SVR, KSPCA, K-NN, and RBFN showed similar performance with little

consistency in relative performance across the experiments.

The Swiss Roll data allows for both the manifold and function defined on the

manifold to be easily visualized. Figure 4.4 shows the ground truth, corrupted input,

and regression results from each method for an trial with a 50% corruption rate.

This is a 3D problem (Figure 4.4(a)); however, for clarity, the graphs in Figure 4.4

are plotted using 2D manifold coordinates. K-NN locally smooths the label noise,
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but the global model remains discontinuous and noisy. RBFN, SVR, and KSPCA all

learn smooth functions on the manifold, however, the recovered function deviates

substantially from ground truth. The result from H3R closely matches the ground

truth (RMSE ≈ 0), and remains nearly perfect up to a corruption rate of 60%.

Figure 4.6 shows the output from each method at 50% label corruption for the Pa-

per Boy Statue data set. Compared to H3R, the other methods include substantially

more misplaced images, which indicate incorrect predictions for rotation, elevation,

or both. While H3R returned the best predictions for both rotation and elevation,

there were differences in the patterns of results. The change in elevation appears to

be approximately linear, as RANSAC outperformed the nonlinear approaches (except

for H3R) and was able to achieve low error rates (RMSE ≈ 5◦) on up to 50% cor-

rupted labels. This was not the case for the nonlinear transformation represented

by turntable rotation, where RANSAC was the worst performer. However, for these

different transformations, our method learned different accurate, smooth functions

on the same image manifold.

Similar results are observed with the Digit data. Figure 4.7 shows results for an

experiment with 50% label corruption. Each group shows the images sorted by the

listed parameter, with the remainder fixed. So, in the ideal case, there should only be a

single smoothly varying transformation (e.g., rotation) across each row. Non-smooth

changes from left to right or auxiliary changes from other transformations indicate an

inaccurate prediction. The visual results align with the quantitative results. This is a

challenging 4-dimensional prediction; H3R is the top-performer for each of the modes

of image variability and returns low errors (RMSE < 0.05) at a corruption rate up
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Figure 4.5: RMSE values for the predicted labels on the Swiss Roll (a), Paper Boy
Statue (b,c), and Digit (d-f) data sets with varying label corruption rate. (The
results for vertical translation for the Digit data set closely followed that for horizontal
translation.)
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Figure 4.6: For Statue data set with 50% corruption, this figure shows images sampled
from an 2D grid of angles in elevation [6◦, 84◦] and rotation [0◦, 359◦]. Red bounding
boxes highlight images with elevation or rotation error > 10◦.
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Figure 4.7: Each row shows images sorted by the predicted label. For each group,
the specified (normalized) transformation should smoothly vary from 0 to 1, with the
other labels fixed to 0.5. Non-smooth changes from left to right or auxiliary changes
from other transformations indicate an incorrect prediction.

to 80%. This demonstrates the ability of our method to learn a variety of different

functions on image manifolds.

4.5 Applications to Ordered Label Denoising

In this chapter, we apply H3R to the problem of denoising ordered labels from real-

world, large-scale, publicly available data sets used as computer vision benchmarks.

For clarity of presentation, we only include the top three related methods (RBFN,

SVR, and KSPCA) for comparison. As opposed to quantitative measures of error, we

interpret these results by visual inspection as ground truth is unavailable.
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4.5.1 Weather from Images

The Archive of Many Outdoor Scenes (AMOS) [49, 47] is a repository of millions

of images captured from globally-distributed webcams. In addition to images, AMOS

provides associated weather metadata. While some of these parameters (e.g., air

pressure, wind velocity) do not affect the appearance of the images, others, such as

measures of cloud cover, can be important for methods in outdoor scene analysis.

Some algorithms use clouds as a visual cue, while others assume cloudless imagery.

Cloud okta, collected with AMOS images, is a measure of cloudiness from clear (0)

to cloudy (8). These weather values are estimated from the closest weather stations,

which may be far enough to be under different weather conditions from where the im-

age is captured. This results in inaccurate labels, rendering cloudiness-based filtering

unreliable.

Each AMOS image is represented using the 16-dimensional bag-of-colors feature [107],

and the images are grouped by the originating webcam. Figure 4.8 shows representa-

tive results from various scenes. Those boxed in red are examples where the original

label does not appear to match the cloud level depicted in the scene. The 2nd example

shows a case where RBFN, SVR, and KSPCA incorrectly changed a seemingly accurate

label. The 4th example shows a challenging scene that was both originally mislabeled

and not corrected by any of the approaches. Overall, each of the methods improved

upon the original labels, with H3R providing predictions that most closely matched

the visual appearance of the scene.
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RBFN 0.3 5.9 2.0 0.7 2.5 4.6 3.2 7.0 8.0 4.7
SVR 0.8 3.9 2.7 0.6 3.0 3.9 2.2 7.0 7.8 7.0

KSPCA 0.4 5.3 2.3 0.6 2.0 4.3 2.4 6.3 8.0 6.6
H3R 0.8 1.3 2.0 0.8 2.5 3.6 4.7 6.4 8.0 7.3

Figure 4.8: Each image shows the original cloudiness label, which ranges, from 0
(clear) to 8 (cloudy). For each method, the predicted value is shown. Clearly misla-
beled (input or predicted) values are indicated by the red text and boxes.

4.5.2 Face Pose Estimation

Many widely used data sets for face analysis, including PubFig [55] and Geo-

Faces [48], rely on the same algorithm to annotate faces extracted from images col-

lected from the Web or social networking sites. One of the provided parameters is an

estimate of the pose of the face as one of five quantized directions: -90, -45, 0, 45, 90.

This parameter would be used to, for example, retain only front-facing subjects.

Figure 4.9 shows the results of an experiment with 1,000 randomly selected images

from GeoFaces. Each facial image patch is represented using HOG [24] features with

a cell size of 50 × 50 and 9 orientation bins. The first row shows sample faces with

the associated pose estimate. Each of the subsequent rows show the same subset of

images sorted by the denoised head pose estimate. The red boxes indicate examples

where the pose estimate does not visually match the direction the subject is facing.

RBFN, SVR, and KSPCA all improved upon the original labels and performed similarly

in terms of the number of mislabeled predictions, even though the errors occurred

in different regions of the label space. H3R outperformed each of the competing

approaches, resulting in no grossly mislabeled examples.
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Original

RBFN

SVR

KSPCA

H3R

Figure 4.9: For each row, the images are shown with the (input or predicted) head
pose estimate. Clearly mislabeled examples are highlighted by red boxes.

4.6 Summary

We presented an algorithm for robust regression on image manifolds and applied it

to the problem of ordered label denoising for natural image sets with labels collected

from automated algorithms. We demonstrate that by incorporating weak supervision

provided by noisy labels with the latent structure of image sets, our non-parametric

and computationally efficient approach outperforms related regression methods on

a variety of denoising tasks over with 70% label corruption. Although there has

been some research that utilizes noisy labels obtained from automated algorithms,

the bulk of the algorithms in computer vision still rely on traditional methods for

image annotation, which is infeasible and costly on large-scale image sets. Robust

manifold regression is a special scenario of weakly supervised image manifold learning

where the provided image labels are highly corrupted, which is most applicable for

large-scale image sets with labels obtained from automated algorithms.



CHAPTER 5: SEMI-SUPERVISED MULTI-OUTPUT MANIFOLD REGRESSION

In semi-supervised multi-output manifold regression, we consider the case of weakly

supervised image manifold learning where image labels are multi-dimensional and are

only provided for a subset of the images. The goal is to learn a smooth function

that maps from the image space to the multi-dimensional label space regularized by

the low-dimensional structure of both the image manifold and the label manifold. As

shown in Figure 5.1, the learned labels of originally unlabeled points change smoothly

on the image manifold and lie on a low-dimensional structure in the label space.

Input 

ℳ 

Image Label Space 

Output 

ℳ 

Image Label Space 

Figure 5.1: Illustration of semi-supervised multi-output manifold regression using
a partially labeled toy data set with 2D labels. Square points indicate originally
unlabeled data.

Multi-output learning corresponds to many important applications in computer

vision, such as contour-based segmentation and articulated pose estimation (Fig-

ure 5.2). Compared to categorical or real-valued labels, the issue of acquiring image

annotation is exacerbated with multi-dimensional output. Usually, domain expertise
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Figure 5.2: Semi-supervised multi-output manifold regression provides a domain-
agnostic method for a variety of tasks, including segmentation and pose estimation.

is needed to ensure an accurate annotation, which makes recent approaches for large-

scale image metadata acquisition (i.e., crowdsourcing) not always applicable. In this

chapter, we aim to balance the ever-increasing availability of visual data with the

expense incurred for multi-output labels by investigating the semi-supervised setting

of multi-output learning.

We present a semi-supervised multi-output algorithm designed for image mani-

fold regression. Most previous methods for regression focus on regularization in the

domain. Our approach considers the manifold structure of both the images and multi-

dimensional labels and applies regularization in both spaces. This approach allows

our method to learn a semantically meaningful mapping from images to the complex

labels, even in the presence of noisy examples.

5.1 Background

Multi-output prediction can be considered a subclass of structured output learning.

Beyond real-valued vectors, structured output includes complex label types, such as

strings and trees. Many approaches extend traditional supervised learning methods

(e.g., SVM [92], boosting [82]) to handle structured data. These approaches have
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been applied to, among others, early event detection [45] and human interaction

localization in videos [73]. Additionally, there have been extensions to the semi-

supervised setting [12, 4, 64]. The main drawback is that most of these approaches

require task-specific models for the joint feature space of the input and labels. In

some cases, modeling these joint kernels and defining efficient searches in these joint

spaces is tantamount to designing a specialized application for the task.

Our method, which leverages the underlying manifold structure of both the image

and label spaces to learn smoothly-varying, multi-dimensional labels, uses a data-

driven approach and is not sensitive to the change of learning tasks. In fact, we

demonstrate the competitive performance of our algorithm compared to task-specific

algorithms.

5.2 Framework

For this problem, we are given the images, X, and corresponding multi-dimensional

partial labels, Y = [y1,y2, · · · ,yN]ᵀ, where yi ∈ {RDy ,∅}. We assume that, there

exists a smooth function, f : RD → RDy , which maps the input image features to the

labels, and that the ideal labels, y?i = f(xi), are samples from the output manifold,

My. Our goal is to predict the label set, Ŷ, such that ŷi = y?i .

We follow a regularized empirical risk minimization framework to learn the un-

known multi-dimensional output function, f : RD → RDy :

argmin
f

R(f ; X) + λsS(f ; Y) + λlL(f ; Y) (5.1)

where R regularizes the function over the input image manifold, S regularizes the
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function over the label manifold, L is a loss function (e.g., L2 norm) on the subset

of labeled examples, and λs and λl are the trade-off parameters. In the next chapter,

we describe our choices for each of the regularization terms.

5.3 Method

Similar to robust manifold regression, we assume that as the input images vary

along on the manifold, the associated labels also change smoothly. We adopt the same

manifold regularization term for the semi-supervised multi-output problem. Extend-

ing the Hessian regularized term to the case of multi-dimensional output, gives the

global regularizer in the quadratic form:

Tr(ŶᵀHŶ) (5.2)

Next, we introduce our method for incorporating the output manifold structure.

5.3.1 Label Space Regularization

Similar to the case for the input images, we assume that the multi-dimensional

labels only sparsely sample the Dy-dimensional label space and lie on or near a dy-

dimensional manifold, My ∈ RDy . This property provides an additional avenue for

regularization: the predicted labels should be points drawn from (or near) a locally

linear output manifold in the space of labels. Using the tangent space estimated by

a small set of neighboring labels, we estimate the projection of a point on the output

manifold by its tangent space representation, as shown in Figure 5.3.

Let N i
y be the set of Ky nearest neighbors of label, ŷi ∈ Ŷ. The tangent space of

ŷi is modeled using PCA to obtain the mean, mi, and the basis, Ti, where Ti is a



69

Figure 5.3: Illustration of label space regularization. For a given label (denoted by
the red point), the regularizer encourages the predicted label to be close to the local
tangent space (denoted by the green point).

matrix of size dy ×Dy. The projection of ŷi to the tangent space defined by mi, and

Ti is (Ti)ᵀTi(ŷi −mi) + mi. The output label manifold regularizer minimizes the

difference between the predicted label and its reconstruction on the associated local

tangent space:
N∑
i=1
||ŷi − (Ti)ᵀTi(ŷi −mi) + mi||22 (5.3)

5.3.2 Optimization

Combining the image manifold regularization, label manifold regularization, and

loss term, we have:

argmin
Ŷ

Tr(ŶᵀHŶ)

+ λs

N∑
i=1
||ŷi − (Ti)ᵀTi(ŷi −mi)−mi||22

+ λl Tr((Ŷ −Y)ᵀĬ(Ŷ −Y))

(5.4)

where Ĭ is a N× N diagonal matrix with a 1 at locations corresponding to originally

labeled input, and 0 otherwise. This problem, with N × Dy unknown variables, is a
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non-convex optimization due to the second term. Note that, T and m, which depend

on Ŷ, cannot be expressed in a closed form. However, for fixed values of m and T, the

second term reduces to a quadratic function in terms of Ŷ. Additionally, the Hessian

operator, H, is a positive semi-definite matrix, so this variant of Equation 5.4 becomes

a quadratic function of Ŷ and can be solved efficiently. We solve Equation 5.4 using an

alternating minimization approach, iterating between updating m and T and solving

for Ŷ. To initialize the method, we use only labeled examples for tangent space

estimation. For each unlabeled example (e.g., yi = ∅), we assign mi and Ti to be

equal to the tangent space parameters of its nearest labeled neighbor in image space.

5.3.3 Algorithm

Given a set of images and associated labels for a subset of the input, our method,

Semi-Supervised Dual-Regularized Manifold Regression (SS-DRMR), outlined in Algo-

rithm 3, predicts multi-dimensional labels for the unlabeled examples.

Algorithm 3 SS-DRMR
Input: image features, X; labels, Y
Output: predicted labels, Ŷ

1: Compute the global Hessian operator, H
2: Estimate m and T using labeled examples
3: Solve for Ŷ(0) (Equation 5.4)
4: k ← 0
5: repeat
6: k ← k + 1
7: With Ŷ(k−1), estimate m and T
8: Solve for Ŷ(k) (Equation 5.4)
9: until ||Ŷ(k) − Ŷ(k−1)||F < τ or k = kmax

10: Ŷ← Ŷ(k)

For our method, the intrinsic dimensionality of the images and labels, d and dy,

respectively, and the neighborhood sizes, K and Ky, can be provided using prior
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knowledge or estimated directly from the data. The algorithm terminates using one

more user-specified criteria: the prediction changing by less than τ or kmax iterations.

In Chapter 5.4, we describe the implementation details for SS-DRMR.

5.4 Experimental Evaluation

To evaluate SS-DRMR for semi-supervised multi-output regression, we compare the

performance with the following methods for nonlinear regression:

• K-NN is a baseline approach where each unlabeled point is assigned the label

corresponding to the average of its K nearest (labeled) neighbors in the input.

• Semi-supervised support vector regression (SemiSVR) [16], with the radial basis

kernel, is a semi-supervised variant of SVR.

• Hessian semi-supervised regression (HSSR) [53] is a (scalar) regression method

for nonlinear manifolds, also based on the Hessian regularizer.

• KSPCA [7] incorporates supervision with a nonlinear variant of PCA.

For all the experiments, the free parameters of each method (e.g., K for K-NN,

kernel width for SemiSVR and KSPCA) are optimized using grid search and 5-fold

cross-validation on the labeled input points. The fully supervised approaches were

trained using only the labeled examples. For the scalar (single-output) methods, each

dimension of the output was predicted independently.

We used labeled data sets with known ground truth. For each data set, the labels

are normalized to [0, 1].
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• Swiss Roll II The Swiss Roll II data set (Figure 5.4) consists of 1,000 points

randomly sampled from a 2D manifold embedded in 3D. For each 3D data

point, xi, with 2D manifold coordinate, zi = [zi1 zi2], the label is defined as the

cosine and sine of the sum of the input manifold coordinates, yi = [cos(zi1 +

zi2) sin(zi1 + zi2)].

• Leaf Images The Leaf Images data set (Figure 5.7) consists of 200 images simu-

lating leaf growth. The images vary due to two types of variation: non-rigid leaf

shape change and rotation; the set of images represent samples from an image

manifold with an intrinsic dimensionality of 2. The labels for each image are

three shape descriptors of the leaf: height (distance from stem to tip), width

(distance from leftmost to rightmost tips), and area (number of foreground

pixels).

For SS-DRMR, the intrinsic dimensionality of the image manifold, d, intrinsic dimen-

sionality of the label manifold, dy, and neighborhood sizes, K and Ky can be specified

using prior knowledge of the data. However, we take a data-driven approach and di-

rectly estimate these parameters from the input. To estimate the intrinsic manifold

dimensionality, we apply PCA on a neighborhood of 20 points from a small set of

randomly selected examples and use the value corresponding to the “elbow point” of

the residual variance curve. We found that the algorithm was robust to a large range

of neighborhood sizes and set K = 0.05N for both the input and output manifolds.

For the regularization parameters, λs and λl, we use 5-fold cross validation to select

values in the range [10−4, 104]. For the termination criteria, we observed that for
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Figure 5.4: Swiss Roll II data with 2D labels. For the 2D label, y = [ya yb], the
value of each dimension is indicated by the color of the points. For clarity, (b)-(d)
are plotted using 2D manifold coordinates.

a range of values of ε, most experiments converged within 20 iterations, so we set

τ = 10−2 and kmax = 20. The algorithm is implemented in Matlab; on a standard

PC, with an input of 1,000 samples, label set prediction takes less than 6 seconds on

average.

5.4.1 Quantitative Evaluation

In this chapter, we evaluate the performance of each method by varying the percent

of labeled examples and amount of label noise introduced. For these data sets, the

values of each dimension of the labels are scaled to the range [0, 1]. Results are

reported as the root mean squared error (RMSE) of the predicted labels on the

unlabeled examples compared to ground truth.

Figure 5.6 shows results on the Swiss Roll II data set. Though the input is provided

as the 3D ambient values, for ease of visualization, the graphs in Figure 5.6 are plotted

using the 2D manifold coordinates. The value of each dimension of the label (Fig-

ure 5.6(c)) and (d)) is indicated by the color of the points. To test the performance of

the methods, we varied the percentage of labeled input examples from 5% to 30%. In



74

Label percentage
0.05 0.1 0.15 0.2 0.25 0.3

R
M

SE

0

0.05

0.1

0.15

0.2
K-NN
semiSVR
HSSR
SS-DRMR

(a) Clean
Label percentage

0.05 0.1 0.15 0.2 0.25 0.3

R
M

SE

0

0.05

0.1

0.15

0.2
K-NN
semiSVR
HSSR
SS-DRMR

(b) Noisy

Figure 5.5: For the Swiss Roll II data, each plot shows the RMSE of 10 repeated
experiments.
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Figure 5.6: Results on Swiss Roll II data set with 5% labeled points. (a) shows the
input with (randomly-selected) labeled examples denoted by blue circles. (b) shows
the ground truth values (denoted by color) for one of the dimensions of the output
labels. (c)-(f) show the output of each method for this dimension of the output. For
clarity, results are plotted using 2D manifold coordinates.
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a second variant, we added random Gaussian noise (σ = 0.05) to the provided labels.

Figure 5.5 shows the results of these experiments reported as RMSE of the predicted

label compared to the ground truth. For each setting, the results are averaged from

10 trials, where the subset of labeled points is selected randomly. Overall, with or

without label noise, SS-DRMR has the lowest RMSE among all methods. Except for

K-NN, the performance the methods converges as the number of labeled examples

increases, and no noise is added. Additionally, the two methods based on Hessian

regularization of this input space, HSSR and SS-DRMR performed similarly well at this

prediction task on toy data. Figure 5.6 shows the estimated labels for an experiment

with 20% of the input examples labeled. For K-NN, local patches of mislabeled ex-

amples can be observed. SemiSVR shows more global smoothness than K-NN, but

overall pattern of the predicted labels is distorted when compared with the ground

truth. Visually, the output of HSSR and SS-DRMR corresponds with low quantitative

errors achieved across these experiments.

The Leaf images are used to evaluate the performance of multi-output regression

on image manifolds. Similar to the Swiss Roll II experiment, we varied the per-

centage of labeled examples from 5% to 30% and added Gaussian noise (σ = 0.05)

to each dimension of the labels. Figure 5.7 shows the prediction error for the Leaf

Image data. All of the methods have decreasing prediction error as the percentage

of labeled examples increases, with SS-DRMR being the top performer. This task is

more challenging (e.g., high-dimensional image input, more complex labels) than the

Swiss Roll II, and the results are consistent, except for the increased margin between

HSSR and SS-DRMR. For more complex label spaces, dual regularization provides more
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Figure 5.7: Example input images and results from the Leaf Images experiment. Each
plot shows the RMSE averaged over 10 trials for each dimension of the output label
prediction task.

accurate predictions.

5.5 Applications

The experiments in Chapter 5.4 serve to compare SS-DRMR to related algorithms

for multi-output prediction on synthetic data sets. However, many real-world image

analysis problems, such as left ventricle segmentation and facial landmark detection,

are instances of multi-output regression. In this chapter, we compare SS-DRMR to

methods specifically designed for these tasks.

5.5.1 Facial Landmark Detection

Facial landmark detection facilitates, among other applications, head pose esti-

mation and expression analysis. Most specialized approaches work best with high-
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Table 5.1: RMSE (pixel units) of each method on the face data set.

Asthana2013 SemiSVR HSSR SS-DRMR
2.28 3.30 2.36 1.96

resolution images where facial features (eyes, nose, mouth) are distinct. For the task

of facial landmark detection on small, low-resolution images, we compare methods

for semi-supervised, multi-output regression to a specialized algorithm.

The input consists of 141 low-resolution images (100 × 72) from the YouTube

Face Database [108]. Seven images (roughly 5% of the data) were randomly selected

as the labeled examples. We compare SS-DRMR and other regression methods to a

recent facial landmark detection algorithm (Asthana2013 [122, 5]). (This pre-trained

method does not make use of the labeled input.) Performance was evaluated as the

RMSE (in pixel units) of the predicted landmark location compared to the manually-

annotated ground truth.

Table 5.1 gives the results for this task. For Asthana2013, for roughly 40% of

the images, landmarks could not be detected, and no results were reported. The

RMSE value only includes examples for which landmarks were reported. For the

semi-supervised methods, including SS-DRMR, the results were computed from 10 re-

peated trials with different labeled input, and a prediction was provided for each

input. SS-DRMR outperforms all other methods, including the task-specific algorithm.

Figure 5.8 shows example frames with face detection results.

5.5.2 Left Ventricle Segmentation

One of the most common steps in pipelines for automated echocardiogram analysis

is segmentation of the left ventricle. Compared to other imaging modalities, seg-
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(a) Asthana2013 (b) K-NN

(c) SemiSVR (d) SS-DRMR

Figure 5.8: Example results of facial landmark detection.

Figure 5.9: Three frames of the video used in the experiment. The ground truth
labels consists of 11 points along the chamber wall.

mentation is complicated in ultrasound images due to speckle noise, which weakens

the gradients near the boundaries of chamber walls and obscures the appearance of

smaller cardiac structures. In terms of image manifold structured regression, both

the frames of an echocardiogram video and the left ventricle contour lie on or near a

cyclic manifold due to primary degree of freedom: cardiac motion.

The input is an apical four chamber (A4C) ultrasound video consisting of 180

frames (roughly 5 heart beats). The left ventricle contour is represented by the

2D image locations of 11 control points. For ground truth, each of the images was



79

Wu2013

SS-DRMR

Figure 5.10: Representative segmentation results from SS-DRMR and a specialized
active contour approach.

manually segmented, as shown in Figure 5.9. We compare our method to a recent

image segmentation method (Wu2013 [113]), which is based on an adaptive diffusion

flow active-contour model, and, for consecutive frames, initializes segmentation using

the result from the previous frame. The free parameters were optimized to provide the

best results. For both methods, five frames were provided as labeled input. (Four were

selected randomly. Frame 1 was always included to bootstrap the Wu2013 method.)

Segmentation performance was evaluated using the Dice coefficient, which mea-

sures the overlap between the predicted segmentation and ground truth. For 10 trials

(with different randomly-selected labeled example), the average Dice coefficient of

SS-DRMR was 0.956, compared to 0.722 for Wu2013. Figure 5.10 shows representative

results from both methods. This is a challenging segmentation task, with many im-

ages containing low-gradient edges around the left ventricle wall. The active contour

approach tended to drift to other image regions with larger edge response.



80

5.6 Summary

We presented an algorithm for semi-supervised multi-output regression on image

manifolds. We demonstrated that our dual-regularization approach outperforms com-

peting methods on multi-output regression tasks, and without domain-specific tuning,

our approach is competitive with recent, specialized algorithms for the tasks of fa-

cial landmark detection and left ventricle segmentation. The proposed approach only

requires partial labels associated with a small subset of the images, which is most

suitable in applications where multi-dimensional image labels require extensive man-

ual effort or expertise to obtain. Although supervised multi-output problems (and in

general, supervised structured output problems) have been intensively studied before,

research on weakly supervised multi-output problems is still lacking. Our research

presented in this chapter studies the semi-supervised setting of weakly supervised

multi-output problems and is a variant of weakly supervised image manifold learning

investigated in this dissertation.



CHAPTER 6: CONCLUSIONS

Given the availability of publicly-available images on the Web, as well as increas-

ingly cheap sensors and storage, massive image sets are relatively easy to obtain.

However, acquiring the associated image labels is a time-consuming manual job which

tends to be less feasible with the drastic increase in the volume of image collections.

Our research presented in this dissertation leverages weak supervision, which requires

much less manual labeling effort than supervised methods, and incorporates the man-

ifold structure of image sets to solve a range of computer vision problems. For weakly

supervised manifold factorization, only image labels associated with the variation

of interest are provided to remove unwanted image variation. For robust manifold

regression, the semantically meaningful image labels are learned using noisy inputs

obtained from automated algorithms. For semi-supervised multi-output manifold re-

gression, multi-dimensional labels are estimated given only a small labeled set of

images.

In summary, the research conducted in this dissertation is one of the first endeavors

on weakly supervised learning on image manifolds, which aims to balance the surg-

ing amount of large-scale image sets and the difficulties in obtaining full, accurate

annotations. By proposing a range of research problems with different application

domains and different conditions of weak supervision, we hope to stimulate thoughts

on future development of this underserved research area.
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6.1 Future Work

There are several possible extensions of this work. First, our proposed algorithms

can potentially be exploited as an efficient approach for image annotation. Given

weak labels, the outputs of our algorithms are actually full image annotations that

can be further used in subsequent fully supervised learning. For example, it would

be interesting to investigate the ability of our methods to provide training data for

deep neural networks.

Another direction is to investigate large-scale adaptations of the proposed algo-

rithms. When applied to Internet-scale image collections, the image manifold struc-

ture can be extremely difficult to model by a small set of latent factors due to the

innumerable amount of image sources and various kinds of image content. The prob-

lem is further complicated by the limit in computational power and memory. In

this case, advanced computational models such as hierarchical decompositions of the

manifold can be a possible solution.

Also, an interesting direction would be exploring the application of weakly super-

vised image manifold learning to more domains in the area of biomedical image and

video analysis. Many images in clinical settings are collected along with quantitative

measurements (e.g., ECG signals, respiratory volume, pulse rate, etc.). These meta-

data can potentially provide weak supervision to a variety of learning tasks with little

or no manual labeling cost.
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