
ADAPTIVE NETWORK PROTOCOLS TO SUPPORT QUERIES IN DYNAMIC
NETWORKS

by

Dingxiang Liu

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2011

Approved by:

Dr. Jamie Payton

Dr. Teresa Dahlberg

Dr. Yu Wang

Dr. Jun-tao Guo

ii

c©2011
Dingxiang Liu

ALL RIGHTS RESERVED

iii

ABSTRACT

DINGXIANG LIU. Adaptive network protocols to support queries in dynamic networks.
(Under the direction of DR. JAMIE PAYTON)

Recent technological advancements have led to the popularity of mobile devices, which

can dynamically form wireless networks. In order to discover and obtain distributed in-

formation, queries are widely used by applications in opportunistically formed mobile net-

works. Given the popularity of this approach, application developers can choose from a

number of implementations of query processing protocols to support the distributed execu-

tion of a query over the network. However, different inquiry strategies (i.e., the query pro-

cessing protocol and associated parameters used to execute a query) have different tradeoffs

between the quality of the query’s result and the cost required for execution under different

operating conditions. The application developer’s choice of inquiry strategy is important to

meet the application’s needs while considering the limited resources of the mobile devices

that form the network. We propose adaptive approaches to choose the most appropriate in-

quiry strategy in dynamic mobile environments. We introduce an architecture for adaptive

queries which employs knowledge about the current state of the dynamic mobile network

and the history of previous query results to learn the most appropriate inquiry strategy to

balance quality and cost tradeoffs in a given setting, and use this information to dynami-

cally adapt the continuous query’s execution.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my deepest appreciation to my Ph.D. advisor Dr.

Jamie Payton. As my advisor, she has provided me continuous encouragement and in-

sightful suggestions which are invaluable for me to go through the challenges of research.

Her excellent expertise and advice played an important role in this dissertation and her vi-

sion has led me throughout my graduate research. This dissertation would not be possible

without her guidance and encouragement.

I would also like to express my sincere thanks to Dr. Teresa Dahlberg, Dr. Yu Wang, and

Dr. Jun-tao Guo for serving on advisory committee.

Next, many thanks go to former and current members of Networking Research Labora-

tory. Thanks for the discussions and help.

Finally, I also deeply thank my parents for their endless love and encouragement in my

study. My special gratitude goes to my wife who provided tremendous support, under-

standing, and encouragement.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

CHAPTER 1:INTRODUCTION 1

CHAPTER 2:RELATED WORK 5

CHAPTER 3:ADAPTIVE QUERY PROTOCOLS 11

3.1 A Review of Approximated Continuous Queries 11

3.2 A Review of a Framework for Adaptive Continuous Queries 14

3.2.1 Integration Strategies 14

3.2.2 Introspection Strategies 16

3.2.3 Adaptation Strategies 17

3.3 A Learning-based Approach to Adaptive Continuous Query Processing 18

CHAPTER 4:FIDELITY-BASED ADAPTATION 22

4.1 Modeling the Execution Environment 22

4.2 Fidelity of Queries 24

4.3 Fidelity-based Adaptation with a Learning-based Approach 26

4.4 Evaluation 31

4.5 Summary 45

CHAPTER 5:CONTENT-BASED ADAPTATION 47

5.1 Model Overview 47

5.2 Learning Quality Function 49

5.3 Evaluation 51

5.4 Summary 62

CHAPTER 6:ADAPTIVE QUERY MIDDLEWARE 64

6.1 Overview 65

6.2 Automation Adaptation Component 67

vi

6.3 Summary 70

CHAPTER 7:CONCLUSIONS 72

REFERENCES 74

vii

LIST OF FIGURES

FIGURE 1.1: Multi-hop Communication in a MANET 2

FIGURE 3.1: Query protocols 12

FIGURE 3.2: Cumulative Integration Example 15

FIGURE 3.3: Additive Integration Example 16

FIGURE 3.4: Departure Integration Example 16

FIGURE 3.5: Using A Simulator to Collect Training Data for F̂ − αC 19

FIGURE 3.6: Using the Learned Function to Apply F̂ − αC to New Online Sample 20

FIGURE 4.1: Query bounds and active configurations [66] 23

FIGURE 4.2: Fidelity-based introspection vs. speed for a network of 30 nodes 27

FIGURE 4.3: Overhead vs. frequency for a network of 30 nodes 30

FIGURE 4.4: Performance of regression model about various speed 33

FIGURE 4.5: Performance of regression model about various frequency 34

FIGURE 4.6: Comparison of dfidelity 36

FIGURE 4.7: Comparison of Query Frequency 37

FIGURE 4.8: Comparison of quality and cost tradeoff 38

FIGURE 4.9: Comparison of frequency 39

FIGURE 4.10: Comparison of fidelity 40

FIGURE 4.11: Comparison of cost 40

FIGURE 4.12: Performance of an application-specific adaptive strategy 41

FIGURE 4.13: Performance of learning-based adaptive strategy 41

FIGURE 4.14: Comparison of fidelity for simple vehicle scenario 42

FIGURE 4.15: Comparison of overhead for simple vehicle scenario 42

FIGURE 4.16: Performance of Application-Specific Adaptation 43

FIGURE 4.17: Performance of Learning-based Adaptation 43

FIGURE 4.18: Comparison of Fidelity for Advanced Vehicle Scenario 44

viii

FIGURE 4.19: Comparison of Cost for Advanced Vehicle Scenario 44

FIGURE 5.1: RBF network architecture [32] 50

FIGURE 5.2: F -value vs. number of nodes for flooding query 53

FIGURE 5.3: F -value vs. number of nodes at a query interval of 0.5s 54

FIGURE 5.4: F -value vs. number of nodes at a query interval of 0s 55

FIGURE 5.5: F -value vs. number of nodes at a query interval of 0.75s 56

FIGURE 5.6: Overhead vs. number of nodes for flooding query 56

FIGURE 5.7: Overhead vs. number of nodes when query interval is 0.5s 57

FIGURE 5.8: Overhead vs. number of nodes when query interval is 0s 57

FIGURE 5.9: Overhead vs. number of nodes when query interval is 0.75s 58

FIGURE 5.10: Performance under query interval with 0s 59

FIGURE 5.11: Performance under query interval with 0.5s 60

FIGURE 5.12: Performance under query interval with 0.75s 61

FIGURE 5.13: An application example 62

FIGURE 6.1: PAQ Framework [77] 65

FIGURE 6.2: Inquiry Strategy Interface [77] 66

FIGURE 6.3: Sample Implementations of Inquiry Strategy Interface 66

FIGURE 6.4: The New Framework of PAQ Middleware 68

FIGURE 6.5: The Interface of Automation Adaptation 68

FIGURE 6.6: Automation Adaptation Interface and Sample Implementations 69

FIGURE 6.7: PAQ Middleware Architecture on Java Sun SPOT 70

ix

LIST OF TABLES

TABLE 5.1: F -value vs. F̂ -value when query interval is 0s 55

TABLE 5.2: F -value vs. F̂ -value when query interval is 0.5s 58

TABLE 5.3: F -value vs. F̂ -value when query interval is 0.75s 62

CHAPTER 1: INTRODUCTION

The widespread availability and adoption of mobile computing devices has resulted in

new approach to the way that we interact with digital information. The availability of

small, battery-operated sensors with environmental sensing and wireless communication

capabilities has provided us with a relatively low-cost mechanism to monitor intruders,

study wildlife, and provide emergency rescue services [78, 81]. The evolution of PDAs,

smart phones, and touch tablets and wireless communication technologies have prompted

researchers to imagine pervasive computing applications that take advantage of information

shared by people and devices within their surroundings.

A wide array of pervasive computing applications can be supported through the use of

mobile ad-hoc networks. A mobile ad-hoc network (MANET) [30, 37] is a collection of

autonomous mobile hosts equipped with wireless communication capabilities that form

opportunistic network connections as mobile devices come within communication range

of one another. Mobile nodes are free to move arbitrarily in any direction and organize

themselves in an arbitrary fashion, resulting a highly dynamic network topology. In a

MANET, there is no centralized administration of the network. Instead, every node serves

as a router, and the transitive nature of communication is leveraged to route a message

across multiple nodes to its final destination.

Specifically, when a node in a MANET transmits a message, the message is received by

all hosts within its transmission range due to the broadcast nature of wireless communi-

cation and omni-directional antennae. We call these “one-hop” neighbors of the sending

node. For our work, we assume a bi-directional communication model [97], in which the

one-hop relationship is symmetric, which means that if node A can send a message to node

2

B, then node B can send a message to node A. To enable communication across a net-

work, ad hoc routing protocols have been developed that rely on the transitive nature of

communication to route messages along a path of one-hop neighbors. Figure 1.1 illustrates

how communication of a message works in a MANET. The colored circles represent the

transmission range of each node and the connections between nodes denote wireless con-

nectivity between the nodes. For example, node B is in the transmission range of node A

and they can exchange messages directly. If node A wants to send a message to node C,

an ad hoc routing protocol treats all intermediate network nodes along a path as routers,

enabling node A to send a message through node B to reach node C.

A B

C

Figure 1.1: Multi-hop Communication in a MANET

Given these characteristics, mobile ad-hoc networks can be set up at any place and time

without any established infrastructure, which makes these networks highly flexible. A

number of pervasive computing application scenarios for mobile ad-hoc networks have

been envisioned and implemented:

Tactical networks. Historically, ad-hoc wireless networks have primarily been used for

military related applications [36, 49] due to the dynamic nature of military communica-

tions and operations. For example, small mobile devices can be deployed in inhospitable

terrain to collect important location and environmental data for surveillance of the enemy

and to share operational information. Furthermore, soldiers equipped with mobile devices

3

can communicate with each other without reliance on access to a fixed communication

infrastructure to help them navigate in battlefields.

Emergency rescue services. Efficient communication and collaboration between teams

from different organizations is important for the successful rescue and recovery in dis-

asters and emergency scenarios. However, the entire communication infrastructure may

be destroyed by natural disasters (e.g., earthquake). The ad-hoc networking technology

is a desirable approach for the replacement of fixed infrastructure and forms a network

quickly [45, 51].

Vehicular networks. In vehicular service applications [83, 84, 91], a Vehicular Ad-hoc

NETworks (VANET) is formed by considering moving vehicles as participating nodes in

a network. Similar to MANET, each participating vehicle can be treated as a wireless

router or node. Therefore, a transportable internet is established which achieves intelligent

inter-vehicle communications and results in improved road safety and traffic navigation.

Despite domain-specific and device differences, the above applications share an essen-

tial trait: the need to collect information from a set of networked nodes in a distributed

fashion. Query processing is a promising approach to acquire information from such net-

works [10,53,55,99], because it hides the complex network communication details associ-

ated with identifying data owners and using multi-hop network communication protocols to

acquire their information in a highly dynamic network. Different query processing proto-

cols provide different guarantees about the quality of results, and have different costs asso-

ciated with them in terms of message overhead and therefore energy consumption. Rather

than requiring application developers to choose a single query protocol that balances this

quality versus cost tradeoff, we propose an approach that learns the optimal protocol and

parameters to apply for the current operating conditions in terms of quality and cost, and

uses this knowledge to dynamically adapt the query.

The remainder of this dissertation is organized as follows. Chapter 2 is a literature review

of related work, introducing query processing approaches in classical database systems, as

4

well as distributed databases. In chapter 3, we introduce the motivation of study which

we work on and briefly present our adaptation strategies for query processing. Then, we

illustrate regression models to provide fidelity-based adaptation strategies for continuous

queries in chapter 4. Chapter 5 describes an adaptation approach which is used to take a per-

spective on learning dynamic changes and supporting adaptive query strategy in dynamic

environments. In chapter 6, we provide automatic adaptation component which implements

the proposed adaptation algorithms in order to simplify the application development tasks.

In the final chapter, we summary the proposed approaches and conclude the study work.

CHAPTER 2: RELATED WORK

Classical database systems are known for their ability to process queries efficiently. In a

traditional database management system (DBMS) [33], the data structures and actual data

are stored in permanently centralized storage. The users are shielded from the details of

physical data storage and a logical query language, such as SQL [34,57], which is used for

querying the database. In most cases, the whole query processing has several steps [39].

First, user queries are submitted to the database management systems. After receiving the

queries, a query processor converts those queries into system readable contexts, such as

algebra expressions, query trees, and query graphs, which can be understood by the query

processing engine. Then, the query optimization engine applies related rules to translate

the those contexts into more efficient representations in order to improve the query perfor-

mance. Finally, the execution engine handles those representations to answer the queries.

Since network technology has matured businesses with geographically dispersed facili-

ties, more and more work relies on distributed data processing approaches. Therefore, an-

other research trend in database systems is distributed database system (DDBS) [7,48,65],

which is the integration of a distributed database (DDB) and a distributed database man-

agement system (DDBMS) [74]. A DDB is a collection of multiple interrelated databases

distributed over a computer network while DDBMS is the software that manages the DDB.

Such systems are aimed at handling several geographically separated data stores, which

are connected by a communication network. Replication of data makes the entire system

more robust to failures and can improve database reliability. However, this architecture

has an impact on how the data can be maintained effectively. For example, the database

management will become more complex and extra approaches should be designed in order

6

to maintain consistency across replicated distributed data sources, especially in the face of

network failure.

Due to the convergence of portable devices and wireless communication networks, the

research community has investigated mobile databases [3, 85]. With mobile database sys-

tems, the users of the system are mobile while the database itself is on a wired network. The

mobile users can disconnect from the wired network, and still work in “disconnected” mode

on their mobile devices, and the database system will be synchronized upon reconnection.

Although the development and deployment of mobile databases brings more convenient

accessibility of data, mobile database systems have unique challenges. The first is to en-

sure the data availability for mobile clients. The second is guaranteeing the consistency

of replicas for collaborative work and while considering the limited memory available in

mobile devices. The third challenge is recovering from terminated transactions because

mobile devices do not stay connected to the network continuously and they may move and

disconnect from the previous ones. Previous research has made progress to address these

challenges. For example, four per-session guarantees were described in [90] to provide

data consistency for mobile clients. However, these approaches assume that a mobile de-

vice temporarily disconnects from a wired network only to reconnect later, and disconnec-

tion is the exception, which is not the case in a MANET. In addition, solutions for mobile

databases rely on the use of a centralized server and assume the use of resource-rich nodes,

making such solutions unsuitable for MANETs.

The idea of mobile databases has since inspired research on distributed query processors

for data acquisition in opportunistically formed sensor networks, which share many of the

same characteristics as mobile ad-hoc networks. In many of the early approaches [10,

53, 55, 99], the entire sensor network is viewed as a single database table and users are

able to issue SQL-style queries using a connection to this resource-rich node to acquire

information. There are two types of queries: snapshot queries and continuous queries. A

snapshot query is expected to execute through the network and return values that satisfy

7

the query criteria at a particular instant in time. A continuous query delivers a streaming

result that reflects changes to data items meeting the query’s criteria over time. Continuous

queries are frequently used in mobile ad-hoc networks and sensor networks to monitor

changing conditions of the surrounding environment. We focus on continuous queries in

this dissertation.

In general, two approaches have been introduced to realizing the use of continuous

queries for data acquisition in sensor networks: push-based and pull-based continuous

queries. In a push-based continuous query model, nodes push the data every time when

the value of a store attribute is changed (e.g., in a sensor network, a reading of an environ-

mental phenomenon results in the generation of a new sample) to a collector node (i.e. a

base station) that puts it in a centralized database on the wired network. Queries are then ex-

ecuted over this database. In this approach, a centralized database is maintained and used to

resolve queries. When environments are highly dynamic, a large number of updated values

must be propagated across a network and stored in the database; this has a significant cost

in terms of network communication and energy consumption on the resource-constrained

devices. Conversely, in the pull-based model, nodes generate readings, but data is “pulled”

on-demand by a query that is disseminated using a distributed protocol to all available

nodes, which execute the query against local data and send the results back to the query

issuer across the multi-hop network.

Well-known (and widely used) query processing systems like Cougar [99], TinyDB [55],

and TAG [53] embody the pull-based model to query processing. In [10], Bonnet et al. in-

troduced the notion of viewing a wireless sensor network as a database, and the initial

version of the Cougar system was described. The Cougar system [99] attempts to borrow

approaches from central warehousing and apply them to a distributed sensor network. In

Cougar, a pull-based model of continuous query processing is used; a query is issued with

at a specified periodic rate. TAG and its extended version, TinyDB, also use a pull-based

model of continuous query processing. TinyDB is a widely used acquisitional query pro-

8

cessing framework that aims to reduce power consumption, and to give greater control over

where, when, and in what order the sensor nodes are interrogated as part of the execution of

a pull-based query. Users of TinyDB submit queries via a powered base station, which op-

timizes the query to reduce power consumption and then sends the query to the network of

sensor nodes. TinyDB then employs a simple in-network aggregation technique to collect

responses in sensor networks, storing them at a centralized database.

The above solutions have been successfully applied for use in certain applications for

sensor networks. However, these methods require a query issuer interact with a collec-

tor that is known in advance and reachable at any instant, which is often unreasonable in

a mobile ad-hoc network. Furthermore, the solutions for distributing queries and replies

are targeted for static sensor networks, and are not appropriate for use in mobile ad-hoc

networks in which the network topology is highly dynamic. Finally, those approaches do

not provide adaptive mechanisms to adapt the query strategies, which is important because

the conditions in mobile ad-hoc network are constantly evolving. For example, nodes may

initially be moving quickly, but may begin to move slowly (e.g., cars on a highway that

encounter rush hour traffic), which may mean that the periodic issue of the pull-based con-

tinuous query should be updated to acquire information as the data changes more slowly.

The work in this dissertation focuses on the use of pull-based adaptive continuous queries

for mobile ad-hoc networks. In this dissertation, we approximate a continuous query as a

sequence of snapshot queries. Any node in the network is able to issue a query. There is

no centralized collector or storage node. Snapshot queries are assumed to be issued at a

periodic rate over the data currently available in the network, and the results are returned

over multi-hop paths to the query issuer.

We adapt the model of approximated continuous queries introduced in [75], which de-

fines a continuous query as a sequence of snapshot shot queries issued issued using an

inquiry strategy, which defines the snapshot query protocol used to issue the query and

the rate at which the snapshot queries are issued. As noted by Rajamani et al. [75], an

9

important concern in choosing the inquiry strategy is the the tradeoff between the quality

of query processing achieved by a particular inquiry strategy and its associated execution

cost. There are some works on measuring quality of query processing in wireless networks.

In [79], quality is defined as the confidence of the accuracy of a query result. The confi-

dence is given as the probability of satisfying values located within the acquired precision

bound. In [98], authors introduce a quality metric that describes the response time for a

query’s processing. This dissertation presents two definitions of quality that can be used to

assess the appropriateness of an inquiry strategy to support a continuous query’s execution.

The first, defined in chapter 4, uses a definition of quality of snapshot queries to define the

quality of the continuous query. In chapter 5, we provide a second definition of the quality

of query result that attempts to measure how well the approximate persistent query reflects

the ideal query result.

A query’s environment changes over time, and query processing should adapt to these

changes [25]. Early works [2, 54] on adaptive continuous query processing typically fo-

cused on optimization of the ordering of query operators. In [2], StreaMon is an adaptive

engine to automatically adapt join orders for input streams in response to evolving condi-

tions. The adaptive join algorithm is called Multi-way streaming Join (MJoin) [93], which

produces a faster output rate by joining multiple inputs at the same time. This approach

is used to deal with more than two inputs in streaming environments. Continuously adap-

tive continuous queries (CACQ) [54] uses eddy query processing framework [1] to achieve

continuous adaptivity by changing the order of query operations. None of the above ap-

proaches provides general support for dynamically adapting a continuous query based on

application requirements in terms of quality and cost of the query’s execution.

Recent work [77] indicates the need for adaptive continuous queries and studies the prob-

lem of how to adapt continuous query execution. The method in [77] contains two main

parts: the use of an introspection strategy to determine the quality of execution and an

adaptation strategy that describes how to adapt execution. Both are based on application-

10

specified data quality metrics and thresholds to adapt the query protocols. According to

the results of applying the introspection strategy to a history of a continuous query’s result,

the adaptation is triggered if the value of introspection is not satisfactory. The activated

adaptation policies change the continuous query’s execution in an attempt to meet the ap-

plication’s needs in the current operational environments. For this approach, a significant

amount of knowledge about the relationships between inquiry strategies and the nature of

the environment is necessary for application developers in order to create adaptation rules

that satisfy the application’s requirements in terms of cost and query quality.

The goal of this dissertation is to provide adaptive continuous queries that achieve the

optimal tradeoff between quality and cost of execution. In this dissertation, we introduce

a general approach to application-transparent adaptation that employs machine learning al-

gorithms to determine when and how to adjust the suitable inquiry strategy for dynamic

conditions. In the next chapter, we firstly describe the motivation of adaptive query pro-

cessing in dynamic pervasive computing environments. Then the corresponding adaptation

strategies are introduced in chapter 4 and chapter 5, which learn the properties of opera-

tional environments and adapt inquiry strategies to match the evolving conditions.

CHAPTER 3: ADAPTIVE QUERY PROTOCOLS

Queries are a popular abstraction used to discover and collect information from a wire-

less network. There are two types of queries in wireless sensor and mobile ad-hoc net-

works: one-time snapshot queries and continuous queries. A one-time snapshot query

executes through the network and returns data values from some or all of the nodes that

satisfy the application query criteria at a particular time. For example, a driver can find

available parking space in a parking lot by collecting parking information from all sensors

which monitor the parking situation. The snapshot query is suitable in this application

because the driver needs the information at an exact time.

At the logical level, a continuous query is a long-lived operation which provides a con-

tinuously updated view of all changes that occur in a dynamic network over time. For some

applications, continuous queries are necessary. For example, in habitat monitoring appli-

cations, a continuous query may be used to track the path of an animal as it moves through

an area. Building such applications with continuous query is costly. Constant monitor-

ing requires the construction and maintenance of a distributed data structure, which can be

expensive in terms of communication cost when the environment is highly dynamic. To

address this issue, a framework has been proposed in [40] to express a continuous query as

a sequence of snapshot queries; the continuous query’s result can be viewed as the integra-

tion of the snapshot queries’ results. We adopt this view in our work on adaptive continuous

query processing, and review the model below.

3.1 A Review of Approximated Continuous Queries

In [40], a continuous query C is modeled as a sequence of non-overlapping snapshot

queries, whose results are denoted as 〈ρ0, ρ1, . . . , ρn〉. A continuous query’s inquiry strat-

12

 (a) (b) (c)

Figure 3.1: Query protocols. The query issuer is depicted with a darker boundary. (a) A
sample network. (b) A flooding query protocol. (c) A probabilistic protocol (50%).

egy defines the query processing protocol used to execute a single snapshot query and the

pattern of invocations of the snapshot query (e.g., frequency of issue and parameters of the

snapshot query protocol). Individual snapshot queries can be processed in many different

ways, and the different styles of communication employed by the different protocols can

result in radically different qualities of query results. The result of a continuous query

at stage i (i.e., including ρi, which is the result of the ith component snapshot query qi),

is obtained by applying an integration strategy over a windowed history of previously is-

sued snapshot query results. Integration strategy defines how to combine the results of

component snapshot query results into a continuous query result. Below, we review de-

tails originally presented in [40] about inquiry strategies and integration strategies that will

motivate and be relevant to our approach to adaptive continuous query processing.

A number of query processing protocols have been developed to support information

collection in dynamic pervasive computing environments. Each of these protocols offers

different guarantees about the quality of their execution.

Two examples are flooding queries and probabilistic queries as shown in Figure 3.1 in

which the dashed lines denote sent the messages and solid lines represent available con-

nections. The former broadcasts the query to all of its one-hop neighbors. Every recipient

of the new query will in turn propagate the message to their neighbors until the network

boundary is reached. By this way, the protocol likely reaches all nodes in the network and

13

gains the most information. Figure 3.1(b) shows an example of flooding query. All nodes

within a restricted radius (e.g., two hops) around the query issuer receive the query. How-

ever, the disadvantage of this kind of query is high cost in terms of message overhead and

energy consumption, because the large number of nodes expected in network deployments

may generate and deliver huge volumes of data.

In order to cope with this problem, probabilistic query protocols have been introduced [40],

which have different features and capabilities to suit different application domains. Prob-

abilistic query mode distributes the query propagation to a random subset of neighbors.

Figure 3.1(c) illustrates a probabilistic query example where each node within two hops of

the query issuer receiving a query retransmits it to the subset of neighbors (50%). When

a persistent inquiry strategy employs the probabilistic query protocol, a selected subset of

nodes are reached probabilistically, which reduces overhead because only some nodes are

executed. However, it comes with added complexity, and yields less deterministic results

than a flooding query protocol.

Clearly, different query protocols have different properties that impact their selection

for use in approximating a continuous query; different query protocols provide different

degrees of quality and have differing costs of query execution. If an application developer

knows the nature of the environment in advance and does not expect the character of the en-

vironment to change, then the developer can use this information to select a single snapshot

query protocol and frequency of issue to construct a continuous query to meet the applica-

tion’s quality and cost requirements. However, we do not make this assumption. Instead,

we expect that the character of the environment can and will change rapidly and unexpect-

edly: nodes may suddenly join the network, impacting its density; data values may start

rapidly changing in response to a physical phenomenon; autonomous mobile nodes may

start moving in response to a perceived change in the environment. Therefore, our goal is

to provide an adaptive approach to continuous query processing that changes the inquiry

strategy to meet quality and cost requirements given the current operational environment.

14

3.2 A Review of a Framework for Adaptive Continuous Queries

In [40], a general framework has been presented to support for dynamic adaptive con-

tinuous query processing in mobile and pervasive networks. The authors first introduce

the concept of integration strategies, which define how to combine the previous snapshot

query results into a continuous query result. For example, an additive integration strategy

integrates snapshot query results so that the continuous query result includes only informa-

tion for nodes that have joined the network or presented a new value since the execution

of the continuous query began. The framework also introduces the concept of introspec-

tion strategies, which are applied to the history of snapshot query results to assess the

quality of the continuous query’s execution. Finally, the framework introduces adaptation

strategies, which describe when and how to adapt the inquiry strategy to meet the appli-

cation requirements based on the results of introspection. These adaptation strategies are

application-specific, and are defined by the application developer using knowledge about

the relationships between the environment, the results of query execution, and the non-

functional requirements of the application.

The work in this dissertation applies this framework to create adaptive continuous queries

that use the history of snapshot query results to automatically learn the optimal inquiry

strategy that balances quality and cost tradeoffs given the current environment conditions.

Because the notions of introspection strategies and adaptation strategies are important to

the work presented here, we provide a more in-depth review in the remainder of this section.

3.2.1 Integration Strategies

The framework presented in [40] includes a set of integration strategies which are used

to combine a windowed history of snapshot query results. An integration strategy is simple

a function, f , applied to a history of snapshot query results; the result of applying an inquiry

strategy at stage i in the continuous query’s execution is denoted as πi = f(ρ0, ρi, . . . , ρi).

To illustrate the concept, we review several examples of integration strategies that have

15

been proposed: cumulative integration, additive and departure integration.

Cumulative Integration. This is one of the simplest integration strategies, which com-

bines all available results over time.

The statement of cumulative integration is presented as:

πi = πi−1 ∪
n∑
j=0

ρj (3.1)

One example of cumulative integration is illustrated in Figure 3.2. In the figure, the query

issuer is in white color. During the sequence of queries, one node departed (ρ0 7→ ρ1) and

one node was added (ρ1 7→ ρ2). The right side of the figure shows the integration results.

ρ π

Figure 3.2: Cumulative Integration Example

Additive and Departure Integration. The cumulative integration captures a “growing”

view of query results that existed over time. In contrast to cumulative integration, additive

and departure integration determines the changes between the first query result and current

query result. The additive integration shows the added nodes by comparing the current

result and staring results, which can be defined as:

πi = ρi − ρ0 (3.2)

The Figure 3.3 shows the example of additive integration. By comparing current query

result (ρ2) with the start of query (ρ0), two additional nodes have been added.

Similar to additive integration, the departure integration presents the departed nodes be-

tween the start query instance and current query result. The function of departure integra-

16

ρ π

Figure 3.3: Additive Integration Example

tion is described by:

πi = ρ0 − ρi (3.3)

For the example in Figure 3.4, two nodes have departed since the first query instance.

ρ π

Figure 3.4: Departure Integration Example

Clearly, the ability to capture a quality representation of the state of the world with an

approximated continuous query will impact the integration of results. This is a concern

that we attempt to address in measuring the quality of the continuous query and adapting

its execution. Next, we discuss introspection strategies, which are parts of the framework

that allow for examination of the quality of the continuous query by examining a history of

its component snapshot query results.

3.2.2 Introspection Strategies

An introspection strategy is applied to assess an application-specific definition of the

quality of the continuous query’s execution, which can later be used to dictate when to

adjust the inquiry strategy. In the framework presented in [40], an introspection strategy

is a function that is applied to the integrated result of a continuous query which describes

the quality of the continuous query’s execution. Using this information, one can determine

17

suitability of current inquiry strategy by comparing historical query results to the desired

results. Generally, the comparison can be defined as a distance function:

d = g(γ, `(i, j)) (3.4)

where γ is the desired property and ` is the union function over a bounded window of

query results from i and j. One sample expression of ` is:

` =

j⋃
k=i

ρk (3.5)

According to various applications’ requirements and networking environment, the gen-

eral introspection expression can be in different functions. For example, in order to evaluate

the variability of environments, we can use set difference operator [40]. The metric of ad-

ditive changes is:

d =
|`p|

|`p − `0|
(3.6)

This metric can be used to measure how much query results have been added during the

query execution.

3.2.3 Adaptation Strategies

The introspection strategies can be used to assess whether the current inquiry strategy

is suitable for the current environmental conditions in terms of satisfying the application’s

requirements. If not, the current inquiry strategy needs to be adjusted and the new inquiry

strategy should be adopted. An adaptation strategy is specified by the application develop

to dictate when and how to adapt the inquiry strategy, typically using an introspection

strategy to help guide this decision. The general formalization of an adaptation strategy is

provided in [40] as follows:

〈〈τ, frequency〉, d, δ+/−, 〈τ ∗, frequency∗〉〉

where 〈τ, frequency〉 is the current inquiry strategy, d is the value of applying an in-

trospection strategy, δ+/− is the threshold which is used to be compared with d. The new

18

inquiry strategy 〈τ ∗, frequency∗〉 will be activated if the threshold is reached. δ+ means

the new inquiry strategy will be triggered when the d is higher than δ. Similarly, the δ−

indicates that new inquiry strategy will be executed if the d is lower than δ.

In the approach presented in [40], the application developer is responsible for creating

application-specific introspection and adaptation strategies. While this is a flexible ap-

proach that will serve a wide variety of applications, it requires the application developer

to have a deep understanding of the relationship between the conditions of the operating

environment, the parameters of the inquiry strategy, and the achieved quality of query ex-

ecution. The goal of this dissertation is to reduce this burden on the programmer. Instead,

we seek to develop an approach which learns the most appropriate way to adapt the query

to optimize for the quality and cost tradeoff, and uses that information to automatically

adapt the execution of the query.

3.3 A Learning-based Approach to Adaptive Continuous Query Processing

In this dissertation, we seek to develop an approach which learns the most appropriate

way to adapt the continuous query to optimize for the quality and cost tradeoff, and to use

that information to automatically adapt the execution of the query.

In our new framework, we treat the adaptation of query as the process of finding the

inquiry strategy that optimizes the tradeoff between quality and cost. In other words, we

treat this as a numerical optimization problem in which we are trying to maximize the value

of F−αC, where F is a function that defines the quality of a continuous query’s execution,

α is an associated weight that indicates the importance of cost, and C is a function that

defines its cost. One way to define the quality of the query’s execution is to compare the

results of a query to the state of the world at the instant that the query is issued. Network and

environmental dynamics that occur during query processing will likely render it impossible

for a distributed query protocol to return a perfect reflection of the state of the world, and

the selection of the inquiry strategy will also impact how well the query result reflects the

ground truth. Ultimately, an oracle view could be used to define the value of a function F

19

that describes the quality of a continuous query’s execution, but this oracle view could not

be computed online and therefore cannot be used in practice to help the continuous query

adapt its execution. Therefore, we must learn an approximation of the quality function; we

call this approximation F̂ .

Variable1 Variable2 … … VariableN Quality−Cost

A1 B1 … … N1 Y1

A2 B2 … … N2 Y2

A3 B3 … … N3 Y3

… … … … … … … … … …

Training data
collected off-line

in simulator

Learned function
of quality - cost

Figure 3.5: Using A Simulator to Collect Training Data for F̂ − αC

We apply an instance-based learning approach to learn the function F̂ − αC. Together,

Figure 3.5 and Figure 3.6 illustrate this approach. As shown in Figure 3.5, we use the oracle

view of the network simulator to collect training data. Each instance in the training data set

represents the result of a snapshot query’s execution as part of a continuous query in a given

environmental scenario. Each instance includes information about the environment that can

be detected by each node (such as node speed, battery life remaining, number of neighbors,

etc.), the inquiry strategy used to issue the query, and the actual query results. We can

use the simulator’s oracle view to compute the quality of the query. We apply machine

20

Variable1 Variable2 … … VariableN Quality−Cost

Ai Bi … … Ni ?

New
samples
collected
on-line

in
real world

Previously
learned function
of quality - cost

Figure 3.6: Using the Learned Function to Apply F̂ − αC to New Online Sample

learning algorithms to learn an approximated function of quality from this training data.

This learning step takes place off-line, on a resource-rich computing device that runs the

network simulator. Figure 3.6 illustrates the use of this function by a node operating within

a MANET to the results of a live continuous query that is issued over the network. This

results in values of the F̂ − αC function for some set of inquiry strategies; the continuous

query is adapted by choosing the inquiry strategy with the highest F̂ − αC value.

In recent years, machine learning techniques have been used for a wide variety of prob-

lems in the domains of wireless sensor networks (WSNs) and mobile ad-hoc networks

(MANETs), such as network routing [86], failure detection [17, 23], localization [63], ve-

hicular ad-hoc networks (VANETs) [89], and so on. Some examples of widely used ma-

chine learning algorithms are reinforcement learning [8,42,87,94], swarm intelligence [15,

16,26,43,44,82], Bayesian networks [61], radial basis functions [60,69], heuristics [46,47],

and so on. In [28], the survey of machine learning algorithms for data routing problem in

21

WSNs and MANETs is provided and the guide of applying those algorithms to applications

in ad-hoc networks is presented. One commonly used algorithm is Q-learning [4, 95, 96]

in which the agents learn how to act optimally in Markov Decision Process (MDP) [6, 73]

problems without a model of the environment. For example, the authors in [11] describe

Q-Routing algorithm for the packet routing. The algorithm is based on the reinforcement

learning technique of Q-learning to discover efficient routing paths without the knowledge

of network topology in advance. The approach in [29] employs Q-Learning approach on

clustering and data aggregation to address the problem of energy expenditure and max-

imize network lifetime in WSN. Another popular machine learning algorithm is Radial

Basis Function (RBF) [35, 60, 69] network which is an artificial neural network. Radial

basis function has met with success in a large diversity of applications including speaker

normalization and identification [31, 80], data mining [8, 13, 70], recognition of radar tar-

gets [32] and so on.

In the following two chapters, this dissertation presents two different approaches to de-

fine quality, and evaluates the use of those definitions of quality in our learning-based

framework to adapt a continuous query. We then present a middleware solution that allows

application developers to use these approaches to learning-based adaptive continuous query

processing and provides the ability to create new definitions of quality and cost, or to apply

different machine learning techniques for use in their applications.

CHAPTER 4: FIDELITY-BASED ADAPTATION

As we begin this exploration, we make a simple but important observation: the quality

of the continuous query is impacted by the quality of its component snapshot queries. In

this chapter, we explore an approach that uses the fidelity of snapshot queries to define the

quality of a continuous query’s execution. Snapshot query fidelity, introduced in [66,68], is

a measure of how well the results of a snapshot query matches the state of the world at the

moment that the snapshot query is issued. Since the snapshot query executed in distributed

fashion over dynamic network, then changes occur during execution that may prevent query

results from the matching ground truth. Therefore, query fidelity is an important measure

for applications that use queries to collect information that will be used to make decisions;

information about the fidelity of the query’s execution can be used to enhance decision

process and can aid in the development of more reliable applications. In this chapter, we

propose a learning-based adaptation strategy that uses an assessment of snapshot query

fidelity for component snapshot queries to learn the optimal way to adapt a continuous

query’s processing to balance quality and cost tradeoffs in the current conditions of the

dynamic operational environment.

4.1 Modeling the Execution Environment

In previous work, Payton et al. [66, 68] proposed a model to express the dynamic exe-

cution environment in order to make it possible to precisely capture the semantics of query

execution. We adapt their model in this work, and review it below.

A node in the network is represented by a tuple (ι, λ, ν), where ι is a unique node iden-

tifier, λ is the the node’s location, and ν is the node’s data value. The global state of a

network is considered as a set of node tuples, which is represented as C. Connectivity can

23

be described by applying a symmetric, reflexive, and transitive relation on the configura-

tion. It is possible to apply a projection to a configuration to find the set of hosts that are

reachable from a particular reference host; this projection is called an effective configura-

tion. The network is not static, so it is not sufficient to talk about representing a network as

a single configuration; instead, the evolution of the network is represented as a sequence of

configurations. A configuration change occurs when a node’s data value is changed (e.g., a

variable assignment occurs) or when the topology of the network changes (e.g., when any

node in the network gains or loses a one-hop neighbor).

Figure 4.1: Query bounds and active configurations [66]

Figure 4.1 illustrates the use of this model of the environment to describe the execution

of a snapshot query using a distributed query processing protocol. The execution of a

single snapshot query takes place over a sequence of configurations. C0 is the starting

configuration when the query is issued, and Cn is the ending configuration when the query

result is delivered. All the configurations between C0 and Cn are the active configurations

which exist at some point during query execution. A snapshot query’s result, ρ, is the set

of host tuples that were collected during execution. Every element of a snapshot query’s

result must have existed in one of the configurations C0 to Cn, and every element must

have been reachable from the query issuer. Since the snapshot query’s result is a set of host

tuples, this is essentially the same as a “virtual” configuration. Therefore, it is relatively

straightforward to talk about how well the query reflects the state of the world; one simply

needs to compare the query result (a configuration) to the sequence of configurations that

existed during query execution.

Extending this model, a continuous query is modeled as a sequence of snapshot queries

which are expressed as ρ0...ρi where ρ0 is the result of snapshot query with the sequence

24

number of zero. We will use this extended representation in the remainder of this disser-

tation. In the next section, we review previous work that uses the model above to define

the fidelity of snapshot queries. We will then show how we can use these definitions of

snapshot fidelity to define the fidelity of a continuous query.

4.2 Fidelity of Queries

In order to describe the relationship between the state of the network and a snapshot

query’s result, definitions of snapshot fidelity have been introduced in [66, 68]. This set of

fidelity definitions ranges from a very accurate reflection of the state of the network to a

definition that provides a weaker guarantee about the accuracy of query results. Below, we

review the definitions of snapshot query fidelity.

With ATOMIC fidelity, all of the results returned should come from the same configura-

tion:

ATOMIC ≡ ∃i : 0 ≤ i ≤ m ∧ ρ = Ci (4.1)

Here, this fidelity definition captures the fact that the relationships among the items re-

turned by the query are important; all of the responses should have existed at the same

point in time (i.e., within a single configuration) to give an accurate picture of the network

state a a single point in time. A query protocol that provides this kind of guarantee is valu-

able to applications that require a precise view of entities within the environment to make

decisions. ATOMIC fidelity says that the results returned by a query are comparable; their

values co-existed in time (within a single configuration), and so can be integrated to get

a correct view of the world. For example, a military commander may need to know the

relative locations of all of his troops and assets before making a strategic decision.

Query protocols that are guaranteed to achieve ATOMIC fidelity sometimes fail or are

extremely costly to execute in highly dynamic environments. For applications that do not

require such strong guarantees about their results, a more relaxed definition of fidelity may

be suitable. The definition of ATOMIC subset fidelity provides a slightly more relaxed

25

definition. This definition of fidelity states that all of a query’s results are part of one single

configuration (i.e., they are comparable), but not necessarily all results that are present

within that configuration are captured by the query. The formalization of the ATOMIC

subset is:

ATOMIC SUBSET ≡ ∃i : 0 ≤ i ≤ m ∧ ρ ⊂ Ci (4.2)

The authors also provide an extended definition of ATOMIC SUBSET called QUAL-

IFIED SUBSET, which provides information about the quantity of results that existed in

a configuration that were not captured by the snapshot query. Because all of the results

existed in the same configuration with this definition, they are still comparable and can be

integrated (e.g., as a sum) correctly.

The weakest definition of fidelity states simply that the results returned by a snapshot

query existed during some configuration. This definition of WEAK fidelity is captured as:

WEAK ≡ ρ ∪mi=0 Ci

Variants of this definition can provide a qualification of how many results that ever existed

during the snapshot query’s execution were captured with the snapshot query’s results.

Snapshot query results that were collected by a query that achieved WEAK fidelity are

non-comparable; their results did not exist at the same point in time, and their integration

would result in an incorrect answer. Consider the example of a military commander that

is attempting to count the amount of ammunition available on trucks at a site, and during

the execution of his query, there was a transfer of ammunition between trucks. If the query

gets the value of Truck A before the transfer and the value of Truck B after the transfer,

there is strong potential for an incorrect count of the amount of ammunition.

In order to determine the fidelity degree of a continuous query, it seems reasonable to as-

sume that the fidelities of its component snapshot queries can be used in some way. In fact,

this is an intuitive practice to explore given our model of a continuous query. As pointed out

in the work of Julien et al. [41], since the component snapshot queries are combined into a

26

continuous result by applying an integration strategy, it follows that the application of an

integration strategy would be impacted by a single snapshot query with non-comparable

fidelity (i.e., any fidelity that is not ATOMIC or ATOMIC subset, in which snapshot query

results are guaranteed to have co-existed at a point in time). During integration, the contin-

uous query will be considered to have a reduction in quality if there is any WEAK snapshot

in the window. This is a conservative definition, because one WEAK snapshot within the

window will result in the continuous query being incomparable after aggregation. In [41],

dfidelity(q) is defined for the fidelity of the continuous query (q) based on the fidelity of the

past w snapshots:

dfidelity(q) =
1

w

k∑
i=k−η

Si (4.3)

where k is the current snapshot and Si is the fidelity of q’s ith snapshot. Si is equal to

one if the snapshot is comparable; otherwise, Si is zero.

4.3 Fidelity-based Adaptation with a Learning-based Approach

In a mobile ad-hoc network, nodes may move at any time and the data that is sampled is

often rapidly changing. The fidelity of the query results can be significantly impacted when

these kinds of changes occur in the middle of a query’s execution. The mobility of nodes

and evolving network topologies can a query to miss information or to return inconsistent

(i.e., non-comparable) results. In addition, different inquiry strategies result in different

fidelity. For example, inquiry strategies with higher frequency have higher fidelity value

of query results than those inquiry strategies using lower query frequency. However, the

inquiry strategy with higher frequency has associated larger overhead costs.

Compounding this issue is the fact that during query execution, the environmental con-

ditions may change over time. These changes can impact the query fidelity achieved. Fig-

ure 4.2 demonstrates the effect of changing speed on the achievable query fidelity in a

dynamic ad-hoc network as the speed of nodes varied from 5 m/s to 25 m/s when the query

27

frequency is equal to 0.5s. It is notable that the fidelity of continuous query is decreased

with the increase of network mobility. This is the result of incomplete messages and dy-

namic topologies because of high mobility.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25

P
er

ce
n

ta
g

e
W

in
d

o
w

s
A

to
m

ic

F-Value

Speed (m/s)

Fidelity Value vs. Speed (ttl3, 30nodes)

Figure 4.2: Fidelity-based introspection vs. speed for a network of 30 nodes

Since the operational environment is dynamic, one important and challenging issue in

continuous queries is to provide adaptive algorithms in response to the evolving conditions.

In [41, 76], researchers defined fidelity-based adaptation rules based on the application’s

requirements. Fidelity-based introspection is employed to evaluate the continuous query’s

quality. When the query results do not meet the application requirements, the related adap-

tation rules will be triggered. Therefore, the query strategy will be changed. A generic

representation of a fidelity-based adaptation rule is:

<< τ, frequency >, dfidelity, δ
+/−, < τ, frequency∗ >>

where < τ, frequency > is the continuous query strategy, dfidelity is the value of the

continuous query’s quality, and δ+/− is the threshold which is used to evaluate dfidelity

and trigger the new query strategy < τ, frequency∗ >. δ+ means the adaptation will be

triggered when the dfidelity is higher than δ. In the same way, the δ− indicates that new

query strategy will be executed if the dfidelity is lower than δ.

28

Similar adaptation approaches and policies can be defined according to different ap-

plication requirements. The main limitation of this approach is the fact that it requires the

application developer to have significant knowledge about the interplay between the inquiry

strategy and conditions of the operational environment and how both of those concepts map

to definitions of quality and costs. Our goal is to provide applications with the benefit of

adaptive continuous queries that are sensitive to cost and quality tradeoffs without requir-

ing an application developer to have knowledge of the inner workings of continuous query

execution.

In this section, we show how we employ a learning-based approach to capture the rela-

tionship between dynamic environments and the properties of inquiry strategy (e.g., fidelity

and cost). We can then use this information to adapt the inquiry strategy to achieve the op-

timal tradeoff between quality and cost given the current environmental conditions.

A. Learning Model and Parameters

In the remainder of this chapter, we apply multiple linear regression to adapt continuous

queries to match changing conditions in dynamic environments. We use the multiple linear

regression model to capture the relationships between the fidelity of continuous query and

dynamic conditions. The goal of multiple regression analysis is to learn the association be-

tween a dependent variable and several independent variables. Then, the model can be used

to estimate the value of the dependent variable given value of independent variables. More

specifically, a multiple linear regression model [20] describes the relationship between re-

sponse variable Y and a set of n explanatory variables, X1, X2, ..., Xn. Regression analysis

can be used to learn changes of the response variable when one or more explanatory vari-

ables changes. In the real world, linear regression analysis is widely used in economics [50]

and finance areas in order to find trends.

In this chapter, we use regression model to capture the relationship between properties

of continuous query and environmental conditions. In our application of multiple linear

regression, the regression model can be employed for automatic adaptations when environ-

29

mental conditions are changed. For example, when the speed of nodes has been increased,

the query interval can be shortened in order to maintain the previous achievable query fi-

delity. Using this information, the continuous query’s inquiry strategy will be selected to

optimize the quality and cost tradeoffs in light of the changing conditions.

A general multiple linear model of the form relating Y and a set of n explanatory vari-

ables (Xi) is given by:

Y = β1X1 + β2X2 + · · ·+ βnXn + ε (4.4)

where β1, β2, · · · , βn are constants referred to as the model partial regression coefficients,

and ε is a random disturbance. In this application, there are six explanatory variables

(“regressors”): the number of nodes, query frequency, maximum speed of nodes, average

speed of nodes, speed variances of nodes, and query window size (η). Y is represented as

the fidelity of the continuous query (d̂fidelity):

d̂fidelity = β1 ∗ loge(NumberofNodes) + β2 ∗ loge(queryFrequency)

+β3 ∗ loge(MaxSpeedofNodes) + β4 ∗ loge(AvgSpeedofNodes)

+β5 ∗ loge(SpeedV arianceofNodes) + β6 ∗ loge(windowSize) + ε

(4.5)

All the above variables can impact the fidelity of the continuous query. For example,

with the increasing of number of nodes, the network becomes more dense and collisions of

messages becomes more likely; this may lower the fidelity because the messages are not

received. For query frequency, a higher query frequency can achieve higher fidelity. This

is because it is more likely that if one snapshot query achieves comparable fidelity, it is

likely that a query that is successively issued close in time to the first is likely to achieve

comparable fidelity as well; in other words, a high query frequency increases the likelihood

that a query issuer that encounters environmental conditions that are favorable to achieving

comparable fidelity for one query is more likely to do so for quickly issued successive

queries. Fidelity measures how well the query results match the state of dynamic networks.

30

0

100000

200000

300000

400000

500000

600000

700000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Query Frequency (seconds)

Overhead vs. Frequency (ttl3, 30nodes)

Figure 4.3: Overhead vs. frequency for a network of 30 nodes

Speed information (e.g., max speed, average speed, and speed variances) of node is an one

aspect of the dynamic environment. As expected, it is more difficult for continuous queries

to provide atomic measurement of the environment while the environment becomes more

dynamic. Therefore, the increasing of speed will result in lower fidelity of continuous

queries.

B. Defining Overhead of Execution

The cost of execution is measure by the message overhead (in bytes) for messages ex-

changed as a result of a query’s execution. This cost is relevant to networks of mobile

devices because communication of message incurs significant drain on the battery. Fig-

ure 4.3 explores how query frequency is related to execution overhead. As expected, a

higher query frequency has higher overhead.

Using the model and input parameters described in the previous section, regression anal-

ysis is employed to learn the relationship between query frequency and overhead. In this

application, the criterion variable is query overhead. In addition, the set of explanatory

variables (Xi) contains two elements: the “number of nodes” and “query frequency”. The

31

formula can be expressed as:

foverhead = β1 ∗ (NumberofNodes)a + β2 ∗ (queryFrequency)b + ε (4.6)

where the definition of β1, β2, and ε are similar to the Equation 4.5. a and b are the

power for explanatory variables.

C. An Overview of the Adaptive Strategy

Continuous queries using high frequency are more likely to have a high percentage of

successive snapshots that achieve comparable fidelity. However, a high frequency of issue

requires exchanging more messages. Our adaptive approach selects the inquiry strategy

that finds the optimal tradeoff between quality and cost.

With respect to the fidelity and overhead in the continuous query, we introduce an adap-

tive algorithm which assesses the quality of snapshot query executions in the current envi-

ronment and determines when and how the snapshot queries should be issued to achieve the

optimal tradeoff between quality and cost of the continuous query’s execution. In general,

the optimization function can be expressed as:

g(d, c) = dfidelity − α ∗ C (4.7)

where d is the fidelity value, C is the overhead of execution, and α is the parameter that

indicates the weight of cost. This means that the suitability of a continuous query is an

expression of required fidelity semantic against the weighed associated execution cost. In

this application, C can be calculated by Equation 4.6. Hence, the particular formalization

of tradeoff is: dfidelity − α ∗ foverhead.

4.4 Evaluation

With the aim of collecting data for assessing the regression model and evaluating the

adaptation ability, the continuous queries on varying numbers of nodes at varying speeds

are executed in a simulated mobile ad-hoc networking environments. We use an implemen-

32

tation of a two-phase self-assessing snapshot query protocol [68] to issue snapshot queries

and acquire fidelity labels for them. We use the OMNeT++ network simulator [92] and

its mobility framework extension [52] to issue a continuous query that is constructed as a

sequence of snapshot queries and to collect training data for our learning-based adaptive

approach to continuous query execution. Using the simulator, we execute a continuous

query in a MANET environment where a set of nodes moves in a rectangular area with

the size of 1200×1000 m2. At the beginning, a number of nodes are randomly deployed

in the space to form an ad-hoc network. In our simulations, the nodes move according to

the “random waypoint” model [12], in which each node chooses a destination in the space

randomly and moves to the selected destination at a given speed between 0 m/s and 30 m/s.

When a node reaches the destination, it pauses for a pause time, chooses another random

destination, and repeats the process. We run our simulations with a pause time of 0s to

represent a more dynamic network.

We evaluate query protocols and the adaptive strategy under varying environmental con-

ditions. Specifically, we varied three simulation parameter settings: number of nodes,

degree of mobility, and query frequency. First, the number of nodes is varied from 25 to 85

at increments of 5. As more nodes are placed in the space, the network density increases,

since the area size is constant. The density of the network is expected to impact fidelity,

since network congestion will result and cause messages to be lost. Second, the average

speed of nodes varies from 0 m/s (completely static) to 30 m/s (high degree of mobility) in

multiples of 5. The final variable is query frequency. We control the query frequency by

adjusting the interval time between two successive query processes. When the interval is

short, the query frequency becomes high. In the simulations, there are ten different query

intervals from 0.1s to 1.0s at increments of 0.1.

In this section, over 3000 records collected from simulated continuous queries are used

to train the regression model. Then, the trained model is applied to several testing sets for

different goals of evaluations. We demonstrate that regression models can estimate fidelity

33

value and overhead cost in different situations. Furthermore, the performance of adaptive

strategies is explored by comparing with non-adaptive strategies. Finally, our proposed

automatic adaptive strategy is compared with application-specific strategy.

A. Learned Estimate of the Achieved Fidelity

Figure 4.2 illustrates different fidelity value for the continuous query in dynamic envi-

ronment (e.g., varied speed). According to six explanatory variables in the Equation 4.5,

the environmental settings include six explanatory variable parameters: number of nodes,

query frequency, specified maximum speed of nodes, average speed of nodes, speed vari-

ances of nodes, and query window size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25

Actual Data

Estimated Data

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Speed (m/s)

Figure 4.4: Performance of regression model about various speed (number of nodes = 30,
query frequency = 0.5s, query ttl = 3 hops)

In order to demonstrate the ability of the linear regression model, Figure 4.4 shows the

comparison between actual dfidelity and estimated value calculated by the regression model

with respect to one of the dynamic aspects in the networking; in this case, the speed of the

nodes. It demonstrates that the estimated value is very close to the actual value, especially

when the speed is not lower. Furthermore, it is obvious that higher mobility results in lower

percentage of windows atomic. This means that it is more difficult for continuous queries

34

to achieve the atomic measure when the environment becomes more dynamical because of

missing data and incomplete information.

B. Learned Estimate of the Cost of Execution

In general, the query strategies have two important aspects: quality of query results and

cost of execution. In this application, Percentage Windows Atomic presents the quality of

the query strategy, which is analyzed in previous section. In this part, we evaluate the

performance of regression model which provides the overhead estimation.

0

100000

200000

300000

400000

500000

600000

700000

800000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Actual Data

Estimated Data

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Query Frequency (seconds)

Figure 4.5: Performance of regression model about various frequency (number of nodes =
30, max speed of nodes is 20 m/s, query ttl = 3 hops)

From Figure 4.5, it is notable that the estimated overhead is very close to the actual over-

head cost from simulation results. It demonstrates that the proposed regression mode can

capture the relationship between variables of networking environments and approximate

the overhead cost of query strategies.

C. Evaluation of Fidelity-Based Adaptation with a Learning-based Approach

Because the goal of our adaptation algorithm is to adjust the previous query strategy

and determine the suitable query strategy under changing environmental conditions, the

most important aspect of our evaluation is to assess the ability of our proposed algorithm to

35

adapt to consider the tradeoff between quality and cost. We first compare our approach to

a non-adaptive strategy. We then compare our approach to an adaptive approach that uses

an application-specified adaptation strategy to control adaptation.

First, we compare our adaptive approach to a non-adaptive continuous query. This non-

adaptive continuous query is issued as a sequence of snapshot queries at an given (and

unchanging) query frequency with a given (and unchanging) query protocol. Consider a

situation in which a user wants to maintain the fidelity value at a stable level in order to

provide comparable query results. If the networking conditions are static, the goal can

be achieved by this simple approach (e.g., keeping the same query frequency and query

protocol). However, in dynamic operational environment, evolving conditions make it not

possible to achieve the same atomicity requirement.

Figure 4.6 shows how a linear regression model can be used to adapt a continuous query

when the environmental condition (e.g., speed) is changed. Results are shown for a network

of 30 nodes. The speed of the nodes is changed over time from 5m/s to 30 m/s. The window

size of the continue query in this application is 2. In order to provide high quality results,

an application requires the fidelity value (dfidelity) be maintained at the level of 80%. The

non-adaptive approach selects a particular query protocol (here, a simple flooding protocol)

and query frequency (here, a query is issued every 500 ms). For the non-adaptive approach,

the value of fidelity goes down with the increase in speed because it is more difficult for

successively issued snapshot queries to achieve comparable fidelity in highly dynamic en-

vironments. When the regression model is employed, the model will be triggered when

the speed is changed and it will adapt the query frequency to maintain good query results.

Figure 4.7 shows the corresponding frequency when the mobility of nodes is updated.

Continuous query strategies that obtain strong fidelity semantic usually have associated

high cost. In some cases, applications may be able to tolerate a weak fidelity semantic

in order to reduce the execution cost of continuous queries. This requirement motivates

another kind of scenarios. In this situation, with the consideration of quality and cost, the

36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

Without Adaptation

With Adaptation

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Speed (m/s)

Figure 4.6: Comparison of dfidelity for Adaptive and Non-adaptive Continuous Queries

goal of those applications is to reach the optimal tradeoff between percentage windows

atomic and execution overhead.

Figure 4.8 illustrates the performance of using our learning-based adaptive strategy for

continuous queries. We varied the scaling to increase the influence of the cost of execution

from 0.5 to 2 in steps of 0.5 during the time between 50s to 200s of the simulation. The plot

compares the tradeoff of adaptive strategy and non-adaptive strategy. The solid line shows

the results of employing our adaptive strategy to determine the continuous queries. It is

notable from Figure 4.8 that the adaptive strategy results in substantially improved ability

to consider the tradeoff between quality and cost (here, measured as dfidelity − α ∗ C),

especially when the weight is increased.

Figure 4.9 highlights the comparison of frequency between the adaptive strategy and

non-adaptive strategy. With the increasing weight of cost, the adaptive strategy will lower

the query frequency in order to reduce query processing overhead. However, the strategy

without adaptation will maintain the same query frequency in regardless of cost.

Figure 4.10 and Figure 4.11 show the impact of query frequency on the quality and cost

37

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30

Without Adaptation

With Adaptation

Q
u

e
ry

 F
re

q
u

e
n

c
y

Speed (m/s)

Figure 4.7: Comparison of Query Frequency for Adaptive and Non-adaptive Continuous
Queries

of continuous queries. From Figure 4.10, there are two notable issues. Firstly, it is possible

that adaptive strategy can figure out the suitable continuous query strategy which has higher

fidelity quality than non-adaptive strategy when the weight of cost is low. Secondly, it is

obvious that the fidelity semantic of adaptive strategy decreases with the increasing of

scaling factor. This is a result of adapting query frequency to the dynamically operational

environments in order to enable the continuous query to maintain the optimal value of

tradeoff.

Similarly, Figure 4.11 shows the associated execution cost of two different query strate-

gies. It demonstrates that the adaptive strategy works well for reducing the query cost when

the weight of query processing overhead becomes higher.

To this point, we have shown the performance of our proposed adaptation strategy with

comparison of non-adaptive strategy. We now compare our learning-based adaptation ap-

proach strategy to an application-specified adaptation strategy, which requires the applica-

tion developer to dictate when and how the inquiry strategy should be adapted. We use the

application example in [41], which describes an adaptive strategy for an automobile safety

38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200

Non-adaptive Strategy

Adaptive Strategy

T
ra

d
e
o

ff
 b

e
tw

e
e
n

 F
id

e
li

ty
 a

n
d
 C

o
st

F-Value

Time (second)

Figure 4.8: Comparison of quality and cost tradeoff for adaptive and non-adaptive approach

monitoring application. In this scenario, a car can issue a continuous query to monitor

the environmental situation (e.g., positions of other cars, presence of obstacles) in order to

maintain safe driving conditions. Let us assume the speed vehicle is zero when it just starts

in the parking lot firstly. After forty seconds, the speed increases to 5m/s. For each interval

of forty seconds, the speed will increased by 5m/s. Finally, the speed is 20m/s at the time

of one hundred and sixty seconds. The formalization of application-specified adaptation

strategy is provided in [41] as:

〈〈τ, freq > 100ms〉, dfidelity, 0.8−, 〈τ, freq − 100ms〉〉

The rule defines that the sampling rate of continuous queries will be increased in order to

maintain the required fidelity level (δ = 0.8) when current fidelity value is lower than 0.8.

The results of this rule is shown in Figure 4.12. We can see that the frequency of con-

tinuous queries will be changed based on the designed policy to satisfy the application

requirement. However, application knowledge is necessary for developers to generate this

specific adaptation rule. In Figure 4.13, we illustrate the performance of proposed au-

tomatic adaptation strategy, which adjusts the sampling rate of continuous queries with-

out the human-defined adaptation strategy when the environment condition (e.g., speed) is

39

0

0.5

1

1.5

2

2.5

50 100 150 200

Non-adaptive Strategy

Adaptive Strategy

F-Value

Time (second)

Q
u

er
y

 F
re

q
u

en
cy

 (
se

c
o

n
d

s)

Figure 4.9: Comparison of frequency for learning-based adaptation and non-adaptive strat-
egy

changed.

Figure 4.14 and Figure 4.15 present the performance (i.e., fidelity value and execution

cost) comparison between automatic adaptive strategy and application-specific strategy. It

is observed that simulation results of those two strategies are very close to each other which

demonstrates that the automatic adaptive strategy is able to perform satisfied adaptation

tasks without the preliminary knowledge. There are two notable things from Figure 4.15.

First, from 40sec to 80 sec, the overhead of using automatic adaptive strategy is the steady

while the overhead is increasing for application-specific strategy. This is because that auto-

matic adaptive strategy can determine the frequency of continuous query quickly when the

environmental conditions change. However, the application-specific adaptation strategy

needs to periodically test the suitability of continuous query by adjusting the frequency.

Second, in some cases (e.g., duration between 120sec and 160sec), the overhead of auto-

matic adaptive strategy is slightly more than application-specific strategy. This is because

the automatic adaptive strategy provides higher fidelity value.

In order to evaluate adaptation strategies in more dynamic environments, we use a more

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200

Non-adaptive Strategy

Adaptive Strategy

Time (second)

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

Figure 4.10: Comparison of fidelity for learning-based adaptation and non-adaptive ap-
proach

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

50 100 150 200

Non-adaptive Strategy

Adaptive Strategy

Time (second)

O
v

e
rh

e
a
d

 (
b

y
te

s)

Figure 4.11: Comparison of cost for our learning-based adaptive approach to non-adaptive
approach

sophisticated scenario which is from [41]. This scenario is similar as the previous one.

However, there are two differences. First, the speed of vehicle will decrease by 5m/s for

each forty seconds after the maximum speed, which is 20m/s at the time of one hundred

41

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160

Query Frequency (seconds)

Percentage Windows Atomic

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Time (seconds)

Application-specific Strategy

Q
u

e
ry

 F
re

q
u

e
n

c
y

 (
se

c
o

n
d

s)

Figure 4.12: Performance of an application-specific adaptive strategy for simple vehicle
scenario

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160

Query Frequency (seconds)

Percentage Windows Atomic

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Time (seconds)

Automatic Adaptive Strategy

Q
u

e
ry

 F
re

q
u

e
n

c
y

 (
se

c
o

n
d

s)

Time (seconds)

Automatic Adaptive Strategy

Figure 4.13: Performance of learning-based adaptive strategy for simple vehicle scenario

and sixty seconds. Therefore, the speed will decrease back to 0m/s at the time of three

hundred and twenty seconds. The second difference is that the adaptation strategies try to

lower the overhead while the fidelity level is maintained after the maximum speed.

Figure 4.16 describes the results of application-specific strategy, which needs to adjust

42

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160

Automatic Adaptive Strategy

Application-specific Strategy

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Time (seconds)

Figure 4.14: Comparison of fidelity for fidelity-based adaptive approach and application-
specific adaptation approach for simple vehicle scenario

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 40 80 120 160

Automatic Adaptive Strategy

Application-specific Strategy

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Time (seconds)

Figure 4.15: Comparison of overhead for fidelity-based adaptive approach and application-
specific adaptation approach for simple vehicle scenario

the continuous query frequently in order to maintain the fidelity value and try to lower the

execution overhead. The results of automatic adaptive strategy is shown in Figure 4.17.

The value of fidelity satisfies the application requirement, which demonstrates that the

43

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160 200 240 280 320

Query Frequency (seconds)

Percentage Windows Atomic

Q
u

e
ry

 F
re

q
u

e
n

c
y

 (
se

c
o

n
d

s)

F-Value

Time (seconds)

Application-specific Strategy

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

Time (seconds)

Application-specific Strategy

Figure 4.16: Performance of Application-Specific Adaptation for Advanced Vehicle Sce-
nario

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160 200 240 280 320

Query Frequency (seconds)

Percentage Windows Atomic

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Time (seconds)

Automatic Adaptive Strategy

Q
u

e
ry

 F
re

q
u

e
n

c
y

 (
se

c
o

n
d

s)

Time (seconds)

Automatic Adaptive Strategy

Figure 4.17: Performance of Learning-based Adaptation for Advanced Vehicle Scenario

automatic adaptive strategy does a good job to monitor the evolving conditions and provide

suitable query strategies in dynamic environment. In addition, it is observed that the lines

of automatic adaptive strategy are steady and have fewer oscillations. The reason is that the

automatic adaptive strategy can determine the suitable query strategy directly based on the

44

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160 200 240 280 320

Automatic Adaptive Strategy

Application-specific Strategy

P
e
rc

e
n

ta
g

e
 W

in
d

o
w

s
A

to
m

ic

F-Value

Time (seconds)

Figure 4.18: Comparison of Fidelity for Learning-based Adaptation and Application-
Specified Adaptation for Advanced Vehicle Scenario

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 40 80 120 160 200 240 280 320

Automatic Adaptive Strategy

Application-specific Strategy

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Time (seconds)

Figure 4.19: Comparison of Cost for Learning-based Adaptation and Application-Specified
Adaptation for Advanced Vehicle Scenario

dynamics, while the application-specific strategy needs to periodically test the suitability

by changing the query frequency.

Figure 4.18 and Figure 4.19 illustrate the comparison of query quality and execution

45

cost. From those figures, it is notable that automatic adaptive strategy has similar good

performance as application-specific strategy, even though the automatic adaptive strategy

does not require the insightful knowledge about applications.

4.5 Summary

In summary, the fidelity of continuous query will be affected by the characteristics of

executing environments. In MANETs, the network environment is dynamic due to various

factors (e.g., evolving topology). Those varying network dynamics give rise to the need of

adaptation strategies which should be able to monitor the time-varying network dynamics

and adapt queries to satisfy the applications’ requirements. In this chapter, we introduce

a learning-based adaptation algorithm for governing when and how to adjust continuous

queries in order to match the changing conditions in dynamic networks and meet a wide

range of requirements’ requirements.

The proposed algorithm applies a regression model to capture the relationship between

the fidelity sematic and networking environments. Then, the model can be employed for

estimating the fidelity value of current continuous queries with the consideration of queries’

property and underlying conditions in dynamic environments. Therefore, based on the es-

timation, the automatic adaptation strategy can adjust the query strategy to meet the appli-

cations’ requirements. Similarly, with respect to the query execution consumption, similar

multiple regression function is proposed to learn the overhead cost of inquiry strategies

according to various conditions in operational environments.

The simulation results indicate that our adaptation strategy can be used to learn the query

fidelity and execution cost. Our comparison to non-adaptive strategies shows that fidelity-

based adaptation using a learned approach provides significant improvement in meeting fi-

delity and cost tradeoffs. The comparison of our proposed learning-based adaptive strategy

to two application-specified adaptation strategies demonstrates that the proposed adaptive

algorithm is helpful to determine suitable the continuous strategy for dynamic environ-

ments. The performance measurements of the learning-based and application-specified

46

strategies have very similar results, which indicates that the learned adaptive strategy can

adequately determine the inquiry strategy that satisfies applications’ requirements and re-

flects the changing conditions in operational environment without requiring the application

developer to apply insightful knowledge of relationships between query processing proto-

cols, the conditions of the operational environment, and the resulting quality of the query’s

execution.

CHAPTER 5: CONTENT-BASED ADAPTATION

The research problem that we explore is how to choose a suitable inquiry strategy in

order to adapt a continuous query to the changing environment in such a way that achieves

an optimal tradeoff between the quality of the returned results and the cost of the query’s

execution. In chapter 4, we introduced a learning-based adaptation strategy which uses

fidelity of continuous queries to define the quality of the continuous query’s execution

and uses this definition of quality and a measure of the cost of a query’s execution to

adjust the inquiry strategy to achieve the optimal quality and cost tradeoff in the current

dynamic environment. In this chapter, we extend this approach and explore the use of a

new definition of the quality of the query’s execution. Here, we employ more information

about the contents of the component snapshot queries’ results to define the quality of its

execution. We then use this definition of quality to learn, or predict, how to choose an

inquiry strategy that delivers the optimal tradeoff between quality of query results and

execution cost.

5.1 Model Overview

In this section, we provide an extended description of our previously published approach

that allows for supporting adaptive continuous queries by learning a general introspection

metric that maximizes the quality of query results while minimizing the overhead associ-

ated with the query execution [67].

In our approach, we apply an instance-based learning technique to learn how to adapt a

continuous query’s execution to maximize its quality while minimizing its cost. In order to

learn when and how to adapt to a more suitable query protocol, we first define the quality

of a query result. In defining the quality of a continuous query’s execution, we should

48

consider that it is desirable for our continuous query (comprised of a sequence of snapshot

queries) to closely approximate the ideal continuous query. In other words, we want our

continuous query to capture as much information as possible about the changes that occur

in the environment. We could simply use an inquiry strategy with a high frequency of issue

and an inquiry mode that collected information from all nodes (e.g., a flooding query), but

message overhead and resource consumption is a concern in networks of mobile devices.

Therefore, we want to learn when and how to adapt the inquiry strategy to balance the

tradeoff between the “quality” of result (i.e., how well the approximate persistent query

reflects the ideal query) and the cost of the query.

We frame this as a numerical optimization problem where the goal is to maximize the

difference, F − αC, where F is a function that defines this “quality” value, C is the cost

of execution using a particular inquiry mode, and α is a scaling constant that reflects the

importance of cost. F (R,R∗, s), where R is the set of results (i.e., representations of

responding hosts) returned by a one-time query with inquiry strategy s and R∗ is the ideal

set of reachable results reachable using strategy s, is defined as |R|/|R∗| if s is a flooding

strategy and |R|/(|R∗| ∗ p) if s is a probabilistic strategy with probability p. That is, F

represents the percent of hosts that, ideally, should have responded.

In reality, however, we cannot compute R∗, and therefore we cannot compute F . So, our

approach is to learn a function F̂ that is an approximation of F using the history of snap-

shot query results. To do so, we use an instance-based learning approach to learn F̂ and

modify our optimization function to F̂ −αC. We learn this general function offline without

requiring the mobile devices to incur the overhead associated with an online learning ap-

proach, and then distributed this learned function to mobile devices to use live, within the

network, as new queries. Below, we describe the details of this learning-based approach to

continuous query adaptation using this new definition of continuous query quality.

49

5.2 Learning Quality Function

To learn our quality function, F̂ , which is based on the history of query results, we need

to define how to compute the difference between sets of results for successive one-time

queries. Each query collects a node’s data as well as local properties of the node at the

time that the query executed. The result of the ith one-time query, Ri, is a set of hosts that

responded to the query. We define a host, h, as a tuple, (ι, ν, λ, ω, ε) where ι is a unique

node identifier, ν is a data value, λ is the node’s location, ω is the node’s velocity, and ε is

a measure of the remaining energy. Our approximation of quality of the query’s execution,

then, is defined as a function of the difference between the query results for Ri and Ri−1.

As a first step, we propose simple metrics for computing the difference between suc-

cessive query results; we expect that more complex metrics will be developed and can be

applied using our method. In our metrics, we compare values of nodes that provided results

in successively issued one-time queries. We define M as the set of nodes that contribute

results both in Ri and Ri−1: M = {hx ∈ Ri

⋂
hy ∈ Ri−1 : hx.ι = hy.ι}. For each com-

ponent of the host tuple (excluding the node identifier), we use the variance of the values

in M as input to F̂ . This gives us σ(νM), σ(λM), σ(ωM), and σ(εM) as parameters. In

addition, we calculate a matching score m = |M |
|Ri−1| which penalizes for differences be-

tween the sets of responding nodes. Other measurements, such as higher-order statistics or

domain-specific metrics, may prove to be useful.

To learn F̂ by example, we run a series of one-time queries in simulation. For each

query, we compute m, σ(νM), σ(λM), σ(ωM), and σ(εM). We also compute the value

of F using the “oracle” view of the network provided by the simulator. To compute the

approximation F̂ , we use radial basis function (RBF) network [60, 71] which is a type of

feed-forward network contains three layers: input layer, hidden layer, and output layer.

Figure 5.1 shows the architecture of RBF network. The input layer provides instances

and performs no computations. The hidden layer has k nodes with the center ck. The

processing at the middle layer is to perform a nonlinear mapping from the input vector to

50

a higher dimensional space by computing the distance from the input space to the corre-

sponding center and applying related real-valued basis function. The most commonly used

real-valued basis function is a Gaussian function. The output layer of RBF network is a

linear function g = (f1, f2, ..., fi), which performs a simple weighted sum with combining

the resulting scalar value of the hidden layer.

W3

W1
W2

X1 X2 Xn

……

……

SUM

Bias

node

Y

W0

(Output layer)

(Hidden layer)

(Input layer)

Figure 5.1: RBF network architecture [32]

To compute the approximation F̂ , we apply RBF network [60, 71] defined as:

F̂ (~x, s) =
N∑
j=1

wjφ(||~x− ~zj||) + b (5.1)

where ~x is a vector whose components are m, σ(νM), σ(λM), σ(ωM), and σ(εM), s is

an inquiry strategy, b is a bias vector, wj is the real-valued weight of kernel center ~zj , for

j ∈ 1, 2, ..., N , and φ is a real-valued basis function. In our algorithm, we choose the

Gaussian function for φ: φ(r) = e−r
2/2σ2

w , where σw is the average intra-center distance.

As the last step, the learned function F̂ is embedded into the node of the query issuer.

The query issuer makes decisions regarding when and how to adapt the inquiry strategy to

best fit evolving conditions of the environment by selecting a specified query protocol and

particular frequency to maximize F̂ − αC.

51

5.3 Evaluation

To analyze the performance of our automated adaptation approach, we have developed

a prototype implementation of protocols using the OMNeT++ network simulator [92], its

mobility framework extension [52], and a battery module component [27]. Query protocols

are executed in simulation and information is collected from their executions. We use

the view of the network provided by the simulator to compute F -value. For these query

instances, we split them into a training set and testing set. In the training set, we employ

properties of nodes to define the values of parameters for F -value and to define the cost

of the query’s execution. Then we apply RBF network to the training instances to learn

F̂ -value and evaluate the performance in the testing set. In this section, we illustrate two

of the most important characters of protocols: F -value and cost. Then we use statistical

methods to evaluate how well F̂ estimates F . Finally, the performance of our adaptation

strategy is presented.

A. Simulation Environment

We execute these queries in a MANET environment where a set of nodes moves in a

rectangular area with the size of 1200×1000 m2. At the beginning, a varying number of

nodes are randomly deployed in the space to form an ad-hoc network. Then the nodes

move according to the “random waypoint” model [12] at a given speed, in which each node

chooses a destination in the space randomly and moves to the selected destination at a given

speed between 0 m/s and 30 m/s. When a node reaches the destination, it pauses for a pause

time, chooses another random destination, and repeats the process. We run our simulations

with a pause time of 0s to represent continuous motion.

1) Variables: We evaluate query protocols and the adaptive strategy thoroughly under

varying environmental conditions. Specifically, we varied three simulation parameter set-

tings: number of nodes, degree of mobility, and query frequency. First, the number of

nodes is varied from 25 to 85 at increments of 10. As more nodes are placed in the space,

the network density increases, since the area size is constant. Second, the average speed of

52

nodes varies from 0 m/s (completely static) to 30 m/s (high degree of mobility) in multiples

of 10. The final variable is query frequency. We control the query frequency by adjusting

the interval time between two successive query processes. When the interval is short, the

query frequency becomes high. In the simulations, there are three different query intervals:

0s, 0.5s, and 0.75s.

2) Metrics: Our results are evaluated using the following metrics: (1) Overhead is the

number of bytes transmitted when using a particular query protocol. We use overhead to

define the energy consumption of a query. (2) P -value indicates a statistical measure for

the probability of how much evidence we obtain against the null hypothesis, which is used

to measure how well F̂ -value estimates the ideal F -value. In statistical hypothesis testing,

P -value is used to measure the difference between groups, which is ranging from zero to

one.

B. Performance Evaluation

1) F-value comparison: Figure 5.2 shows the results of F -value for flooding query. It

is obvious that using a higher query rate achieves much higher quality of query results. In

addition, as the network density increases, the F -value of flooding protocol decreases. This

is most likely due to the increased number of messages dropped due to collisions as many

more nodes are competing to access the shared medium to return their query results.

Figure 5.3 presents experimental results where the number of nodes varies from 25 to 85

with a query interval of 0.5s. Several things are notable about these results. First, a flooding

protocol is very likely to reach every node in the network and yields the most information

about the environment. In all cases, the F -value of the flooding protocol is significantly

higher than the probabilistic protocols. Second, the F -value of all probabilistic protocols

increases as the network density increases. The reason is that probabilistic protocols cannot

reach most of the nodes due to limited connections when the network is sparse. The similar

graphs for query intervals of 0s and 0.75s are illustrated in Figure 5.4 and Figure 5.5.

2) Energy consumption comparison: Another aspect of our evaluation is to assess the

53

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

25 35 45 55 65 75 85

Query interval: 0s

Query interval: 0.5s

Query interval: 0.75s

F
-v

a
lu

e

F-Value

Number of nodes

Flooding Query

Figure 5.2: F -value vs. number of nodes for flooding query

cost of the query processing. We measure protocol cost as the number of bytes transmitted

over the simulation time. We employ overhead to represent the cost of a particular query

protocol execution because the energy consumption by the network is dependent on the

number and size of transmissions. We show cost comparison by increasing the number

of network nodes from 25 to 85, thus increasing network density. Figure 5.6 shows the

overhead results of flooding query. It is notable that using a higher query rate results in

much higher execution cost.

Figure 5.7 shows one case of how overhead is affected by the network density. As ex-

pected, the flooding approach is expensive in terms of the message overhead. Additionally,

overhead of all protocols increases as the network density increases, because more mes-

sages are sent across the network. The similar trends for query intervals of 0s and 0.75s are

shown in Figure 5.8 and Figure 5.9.

3) F̂ -value estimation: F̂ -value estimation is also important to the evaluation. It demon-

strates that the approach is able to learn a reasonable approximate F̂ -value of the quality

function under different conditions. For each case in Tables 5.1, 5.2, and 5.3, the experi-

ment is based on a training set of over 5000 records, and a testing set of over 500 records.

54

Figure 5.3: F -value vs. number of nodes at a query interval of 0.5s

RBF networks were trained by employing instance based learning algorithm and using

these instances in the training set. Then, the RBF network is used to approximate the F̂ -

value in the testing set. We compare the average of actual F -values in the testing set with

the approximated F̂ -value by RBF network. Tables 5.1 shows that their average values are

very close, which determines that RBF network performs well. The fourth column of both

tables represents P -value (two-tailed t-Test) for comparing F -value and F̂ -value based on

the testing set. A P -value of 0.05 or below is conventionally accepted as the standard to de-

termine a significant difference between two variables. For every row, the P -value is much

higher than 0.05, corresponding to a 5% chance. Hence, F̂ -value is significantly similar to

F -value statistically.

To evaluate the adaptation ability of our proposed approach, we need to compare the

tradeoff between energy consumption and the contained quality of inquiry results with

other non-adaptive query strategies. We conduct such comparisons in the following part.

4) Performance of adaptive strategy: We compare the features of our adaptive strategy

with several non-adaptive query approaches. Figure 5.10(a) shows the F -value of the adap-

tive strategy is not very high. The reason is that the adaptation approach needs to consider

55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 35 45 55 65 75 85

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

F
-v

a
lu

e

F-Value

Number of nodes

Query interval: 0second

Figure 5.4: F -value vs. number of nodes at a query interval of 0s

Table 5.1: F -value vs. F̂ -value when query interval is 0s
Number Average Average P -value (t-Test)
of Nodes of F -value of F̂ -value

25 0.425311 0.432090 0.599974
35 0.440666 0.434425 0.576317
45 0.504385 0.496195 0.548671
55 0.511883 0.507329 0.751748
65 0.478845 0.475198 0.796113
75 0.491240 0.488585 0.846708
85 0.465165 0.502068 0.624546

the tradeoff between quality of query results and resource consumption of query process-

ing. At first glance, the flooding query obtains high quality value. However, the flooding

approach is associated with the high cost of energy resource. Figure 5.10(b) highlights one

advantage of employing adaptation: lowering overhead, especially as the scaling factor of

cost increases. In order to evaluate the adaptive ability to maximize F̂ −αC, we normalize

the overhead to a range of [0, 1]. Figure 5.10(c) illustrates comparisons of F̂ − αC for

different scaling factors. From the results, the adaptive strategy achieves a better tradeoff

than other non-adaptive approaches. A similar effect can be observed in Figure 5.11 and

56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 35 45 55 65 75 85

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

F
-v

a
lu

e

F-Value

Number of nodes

Query interval: 0.75second

Figure 5.5: F -value vs. number of nodes at a query interval of 0.75s

0

1000000

2000000

3000000

4000000

5000000

6000000

25 35 45 55 65 75 85

Query interval: 0s

Query interval: 0.5s

Query interval: 0.75s

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Number of nodes

Flooding Query

Figure 5.6: Overhead vs. number of nodes for flooding query

Figure 5.12 as the query intervals are increased to 0.5s and 0.75s.

By comparing with non-adaptive strategies, it is clear that employing a mechanism for

adaptive strategy is beneficial to query processing, which allows applications to achieve

high optimization values by considering performance tradeoffs in query quality and energy

57

Figure 5.7: Overhead vs. number of nodes when query interval is 0.5s

0

1000000

2000000

3000000

4000000

5000000

6000000

25 35 45 55 65 75 85

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Number of nodes

Query interval: 0second

Figure 5.8: Overhead vs. number of nodes when query interval is 0s

58

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

25 35 45 55 65 75 85

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

O
v

e
rh

e
a
d

 (
b

y
te

s)

F-Value

Number of nodes

Query interval: 0.75second

Figure 5.9: Overhead vs. number of nodes when query interval is 0.75s

Table 5.2: F -value vs. F̂ -value when query interval is 0.5s
Number Average Average P -value (t-Test)
of Nodes of F -value of F̂ -value

25 0.528400 0.532898 0.783495
35 0.565611 0.554972 0.611345
45 0.550201 0.538628 0.566882
55 0.602899 0.609711 0.614535
65 0.607966 0.612313 0.880611
75 0.620935 0.628241 0.626335
85 0.606296 0.621057 0.618314

consumption.

In the previous simulation, we evaluate the performance of automatic adaptation strategy

by comparing with non-adaptive strategies. We now show the adaptive ability of automatic

adaptation strategy by comparing with application-specific adaptation strategy. Consider an

application on executing a continuous query. Initially, the nodes have enough energy. So

the application-specific strategy chooses flooding query to achieve higher quality of query

results. Then, some energy is used for the query processing. Therefore, the application-

specific strategy selects probabilistic query (80%). Finally, with the increase of time, much

59

0

1

2

3

4

5

6

7

8

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
-v

a
lu

e

F-Value

Scaling Factor

(a) Comparison of F-value

0

5000000

10000000

15000000

20000000

25000000

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F-Value

Scaling Factor

O
v
e
r
h

e
a
d

 (
b

y
te

s
)

(b) Comparison of overhead

0

2

4

6

8

10

12

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
 –

 α
×
C

Scaling Factor

(c) Comparison of F − α× C

Figure 5.10: Performance under query interval with 0s

60

0

1

2

3

4

5

6

7

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
-v

a
lu

e

F-Value

Scaling Factor

(a) Comparison of F-value

0

1000000

2000000

3000000

4000000

5000000

6000000

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F-Value

Scaling Factor

O
v
e
r
h

e
a
d

 (
b

y
te

s)

(b) Comparison of overhead

0

2

4

6

8

10

12

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
 –

 α
×
C

Scaling Factor

(c) Comparison of F − α× C

Figure 5.11: Performance under query interval with 0.5s

61

0

1

2

3

4

5

6

7

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
-v

a
lu

e

F-Value

Scaling Factor

(a) Comparison of F-value

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F-Value

Scaling Factor

O
v
e
r
h

e
a
d

 (
b

y
te

s)

(b) Comparison of overhead

0

2

4

6

8

10

12

α=1 α=2 α=3

Flooding query

Probabilistic query (20%)

Probabilistic query (50%)

Probabilistic query (80%)

Adaptive strategy

F
 –

 α
×
C

Scaling Factor

(c) Comparison of F − α× C

Figure 5.12: Performance under query interval with 0.75s

62

Table 5.3: F -value vs. F̂ -value when query interval is 0.75s
Number Average Average P -value (t-Test)
of Nodes of F -value of F̂ -value

25 0.547942 0.536030 0.334459
35 0.538138 0.541385 0.708624
45 0.582139 0.581059 0.926514
55 0.580499 0.584898 0.679015
65 0.603104 0.606496 0.739265
75 0.614598 0.620894 0.514887
85 0.626109 0.632088 0.530319

0

1

2

3

4

5

6

7

8

α=1 α=2 α=3

Application-specific

Adaptation Strategy

Automatic Adaptation

Strategy

F
 –

 α
×
C

Scaling Factor

Figure 5.13: An application example (performance of automatic adaptation strategy)

more resource is used. Therefore, the probabilistic query (50%) should be chosen in or-

der to save energy. The Figure 5.13 illustrates the performance of automatic adaptation

strategy, which is similar to the application-specific strategy. In some cases, the automatic

adaptation strategy performs better because it learns the dynamics and tries to achieve the

optimal tradeoff between quality and cost, while the application-specific strategies are static

and pre-defined.

5.4 Summary

In this chapter, a second learning-based approach to adaptive continuous processing is

presented; this approach introduces and uses a new definition of snapshot query quality,

63

defined by the match function, in order to determine how to adapt for quality and cost

tradeoffs in dynamic environments. Our simulation results show the ability of this approach

to select a suitable inquiry strategy for changing operational conditions in order to optimize

the quality and cost tradeoffs for continuous query execution. Our comparison to a non-

adaptive approach shows that the adaptive approach provides more favorable results, in

terms of quality and cost, in dynamic environments.

CHAPTER 6: ADAPTIVE QUERY MIDDLEWARE

Inquiry strategies can be employed by applications for retrieving related information or

monitoring the surrounding environments. Different inquiry strategies are associated with

different degrees of quality and costs, and their applicability for particular environmental

conditions may differ. Therefore, one challenging issue is how to choose the most appropri-

ate inquiry strategy for use in a particular environment. Compounding the issue is the fact

that the environment changes over time. So, the real challenge is to determine how to de-

termine a suitable query strategy which satisfies the applications’ requirements or achieves

the optimal tradeoff between the query quality and cost given the current conditions of the

execution environment.

Asking application developers to make the connections between inquiry strategies, envi-

ronmental conditions, the achieved quality of the query, and the cost of its execution intro-

duces a significant burden. The previous chapters of this dissertation proposed a learning-

based approach that will automatically adapt the continuous query based on the optimal

tradeoff between quality and cost given the environmental conditions. In this section, we

propose to provide programming support to application developers to simplify and pro-

mote the use of our new learning-based adaptive continuous query approach. We introduce

a new component to PAQ [77], which is a middleware to support applications that issue

adaptive continuous queries for pervasive computing applications. This new component

provides the two previously described approaches to learning-based adaptation, and pro-

vides a simple application programming interface (API) that allows developers to extend

the middleware to include new learning-based adaptive approaches. These new approaches

may use new definitions of query quality, different definitions of cost, may incorporate dif-

65

ferent environmental factors that impact quality and cost, and may apply different machine

learning techniques to learn the optimization of quality minus cost.

6.1 Overview

To develop a diverse set of adaptive querying approaches for use in dynamic networks,

software development support is needed. In order to address these issues and support the

rapid development of different adaptive inquiry strategies, Rajamani et al. introduced the

Persistent Adaptive Query (PAQ) middleware [77]. The PAQ middleware provides pro-

gramming abstractions that allow application developers to issue continuous queries and to

construct application-specific strategies for adapting their execution.

The original version of the PAQ middleware is shown in Figure 6.1.

Figure 6.1: PAQ Framework [77]

The inquiry strategy is defined as the composition of query protocol and the frequency

of issuing queries, which is expressed as (τ , freq). τ is the query protocol which is the

implementation of one-time query and freq is the invocation frequency of one-time query.

The results of the snapshot queries can be integrated into a continuous query result, or

can be evaluated by applying an introspection strategy. PAQ’s adaptation strategy compo-

nent allows an application programmer to specify application-specific adaptation strategies,

66

which describe when and how the query protocol should adapt, based on the results of ap-

plying an introspection strategy to a history of snapshot query results. We extend the PAQ

middleware to include a learning-based adaptation component.

InquiryStrategy Interface

Figure 6.2: Inquiry Strategy Interface [77]

In the PAQ middleware, the API provides an abstract definition of these various ele-

ments of query processing, allowing the developer to easily create new implementations

of adaptive continuous queries. This makes the middleware more general, flexible, and

reusable. The Figure 6.2 presents the API of inquiry strategies in the PAQ middleware.

Several implementation examples of the inquiry strategy interface are shown in Figure 6.3.

New inquiry strategies can easily be defined by providing implementations of these abstract

classes.

 <<interface>>

 InquiryMode

setQueryProtocol (query: Object)

 FloodingStrategy

setQueryProtocol (Flooding)

 ProbabilisticStrategy

setQueryProtocol (Prob)

 LocationStrategy

setQueryProtocol (Location)

…

…
Figure 6.3: Sample Implementations of Inquiry Strategy Interface

In addition, the middleware defines introspection strategies which assess the aggregation

67

results of a sequence of one-time queries; those mechanics can be used to provide eval-

uation for previous queries. Application-specific thresholds are provided in middleware,

which will be triggered for adaptation strategies to adjust the query’s processing. As such,

the PAQ middleware can serve as a platform to support development and implementation

of pervasive computing applications which need to issue queries and collect updated views

of the operational environment.

Hence, PAQ middleware is significantly helpful for expressing adaptive querying appli-

cations and reducing the burden of programming work. However, it requires the program-

mers to have significant knowledge about query quality and cost and the relationship to the

operational environment in order to generate correct introspection thresholds and create

suitable adaptation strategies.

Instead of relying only on application-defined adaptation strategies, we design a new

component which encapsulates implementations of the two adaptive algorithms and enables

new methods of adaptation. The component will be able to connect to libraries for utilizing

existing machine learning methods to evaluate queries’ results and determine suitable query

strategies across the dynamic networks. Below, we describe our new component to support

learning-based adaptive continuous query processing in PAQ.

6.2 Automation Adaptation Component

As discussed in previous section, the PAQ middleware provides several software pro-

gramming abstractions in order to simplify the development tasks of query processing ap-

plications. In addition, the adaptation strategies component includes a set of adaptation

policies, which identifies how the inquiry strategy should be altered.

The abstractions provided by the original PAQ middleware are very helpful for query-

based applications. However, the query adaptation model requires the application devel-

oper to have insights and knowledge about the relationships between inquiry strategies,

execution cost, query quality, and the dynamics of the environment. To address this chal-

lenge, we design and develop automation adaptation component, which provides services

68Middleware Architecture [Rajamani2009]

Inquiry

Strategy

Initialize and

execute protocol
One-Time

Query

Response

Query

Introspection

and Adaptation

Automatic

Adaptation

Component

One-time query

result

Historical

Results

1

Application-specific

Adaptation

Component

Figure 6.4: The New Framework of PAQ Middleware

for query adaptation model. The new framework of PAQ middleware is shown in Fig-

ure 6.4. Based on historical query results, the automation adaptation component applies

machine learning algorithms to analyze current environmental conditions and determine

the optimal suitable inquiry strategy to address the quality versus cost tradeoff for the next

snapshot query as part of the continuous query’s execution.

AutomationAdaptation Interface

Figure 6.5: The Interface of Automation Adaptation

To allow application developers to extend the middleware, we follow the open-closed

principle of software engineering and utilize the interface and inheritance to incorporate

new learning-based adaptation approaches to continuous query processing. The interface

69

 <<interface>>

 AutomationAdaptation

autoAdaptation (InquiryStrategy,

results, fidelity,

 label, inputOptions)

 ContentAdaptation

autoAdaptation (…)

 FidelityAdaptation

autoAdaptation (…)

…

… Figure 6.6: Automation Adaptation Interface and Sample Implementations

that new learning-based adaptation components must implement is presented in Figure 6.5.

In addition, the Figure 6.6 presents two implementation examples of automatic adapta-

tion strategies: linear regression approach and radial basis function network. Those adap-

tive algorithms are introduced in chapter 4 and chapter 5.

The PAQ implementation and the extension presented here has been designed and de-

ployed on the Java SUN SPOT [88] platform, which is a small sensing device provided by

Oracle that supports the use of the Java programming language. The SUN SPOT API pro-

vides mechanisms for interacting with on-board sensors and for supporting various network

architectures and wireless communication protocols. The PAQ middleware architecture de-

ployment on the Java Sun SPOT platform is shown in Figure 6.7. The SUN SPOT base

station is connected to a fixed, resource-rich computing device through a USB connection,

and the SUN SPOT devices can communicate with SUN SPOT base station via wireless

communication. The task of the AutoAdaptLearner in the base station is to learn func-

tions that optimize the tradeoff between query quality and execution cost to implement an

adaptive continuous query. The trained adaptation strategies will be deployed into mobile

devices which receive the queries and return the related results back to the query issuer.

70

1

Sun SPOT devices

Sun SPOT base station

USB

PC

Figure 6.7: PAQ Middleware Architecture on Java Sun SPOT

6.3 Summary

The purpose of this extended PAQ middleware is to simplify the software development

tasks and help developers to build pervasive computing applications which entail persis-

tent queries for monitoring in dynamic environments. In order to achieve this goal, PAQ

introduces several programming abstractions for persistent query processing and persistent

query adaptation. Although persistent query adaptation is very helpful to adjust inquiry

strategies to match evolving changes in networks, the insightful knowledge about the rela-

tionships between the the resulting quality of query processing, the overhead cost of query

execution, and the nature of the operational environment is required for developers to gen-

erate suitable adaptation strategies.

In order to address this limitation, we introduce automation adaptation component for

PAQ middleware. The component contains a common programming abstract (e.g., inter-

face) which can be used for the implementations of machine learning algorithms. There-

fore, the automation adaptation component can provide the services for monitoring the dy-

namic changes in operational environment and automatically determining when and how

to adjust the inquiry strategy during query executions without requiring application devel-

71

opers to have knowledge of the relationship between inner workings of continuous query

execution and dynamic environments. Through these features, the middleware can provide

an easy-to-use API for application developers and simplify the complex implementations

by reducing about 70% of lines of code.

CHAPTER 7: CONCLUSIONS

With the widespread availability and adoption of small wireless devices, a wild range of

computing applications have been emerged. In many scenarios, applications are designed

to take advantage of information and services within an opportunistically formed wireless

network of mobile devices. Those applications can gather related information by issuing

queries, which specify how to propagate the inquiry to mobile nodes in the network and

how to forward the intermediate results back to the query issuer.

Most of query strategies fall into two categories: one-time snapshot queries and con-

tinuous queries. The snapshot queries send out query through the network and retrieve

information from corresponding nodes that satisfy the application query criteria at a given

time. Through one-time query, the query issuer will have the snapshot information of net-

work at a particular time. This kind of queries is suitable for a wide range of applications.

For example, when a driver wants to know which gas station provides the best prices, a

snapshot query can be issued over the network and relevant data will be returned back to

the driver. However, in some cases, one-time query is not good enough. For example, the

drivers may want to continuously monitor the nearby vehicles and surrounding environ-

mental conditions for safety. In this case, a continuous query is needed, which provides a

continuously updated view of relevant aspects in a dynamic network.

According to various forwarding and responding functions, different inquiry strategies

have different quality of query results and cost of query processing. Therefore, we need to

determine suitable inquiry strategy in order to satisfy the applications’ requirements. One

simple approach is determining the inquiry strategy based on applications’ requirements

firstly. Then the selected inquiry strategy is used for the whole query processing execution.

73

This approach should perform well when the requirements and environmental conditions

are static. However, in MANET, the networking is dynamic due to evolving network topol-

ogy and changing operational environment. Hence, the pre-selected inquiry strategy may

not be suitable for current networking conditions.

In order to address these challenges, we present automatic adaptation strategies for query

processing. In chapter 4, we introduce regression model which learns the relationship be-

tween changing conditions, quality of query results, and cost of query executions. Then,

the regression model can be used to estimate the query quality or overhead cost when the

environmental conditions change. Therefore, the continuous queries can be adjusted to

match the evolving changes. We propose another adaptation strategy in chapter 5 to sup-

port reasoning networking changes and make adaptive query decision for optimal tradeoff

between query quality and execution cost in dynamic environments. The simulation results

demonstrate that the proposed adaptation strategies can monitor the dynamics and meet

the applications’ requirements or achieve optimal tradeoff between quality and cost. Fur-

thermore, a middleware component is provided for simplifying the development tasks of

pervasive computing applications.

74

REFERENCES

[1] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query processing,”
in ACM International Conference on Management of Data (SIGMOD), pp. 261–272,
Dallas, TX, May 2000.

[2] S. Babu and J. Widom, “StreaMon: An Adaptive Engine for Stream Query Process-
ing,” in ACM International Conference on Management of Data (SIGMOD), pp.
931–932, June 2004.

[3] D. Barbar, “Mobile Computing and Databases: a Survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 11, pp. 108–117, 1999.

[4] A. Barto, S. Bradtke, and S. Singh, “Learning to Act using Real-Time Dynamic
Programming,” in Artificial Intelligence, vol. 72, pp. 81–138, 1995.

[5] M. Bauer, O. Buchtala, T. Horeis, R. Kern, B. Sick, R. Wagner, “Mobile Computing
and Databases: a Survey,” IEEE Transactions on Knowledge and Data Engineering,
vol. 11, pp. 108–117, 1999.

[6] R. Bellman, “A Markovian Decision Process,” Journal of Mathematics and Me-
chanics, vol. 6, 1957.

[7] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J. Rothnie, “Query Pro-
cessing in a System for Distributed Databases,” ACM Transactions on Database
Systems, vol. 6, no. 4, pp. 602–625, December 1981.

[8] A. A. Bhorkar, M. Naghshvar, T. Javidi, and B. D. Rao, “Technical data mining with
evolutionary radial basis function classifiers,” Applied Soft Computing, vol. 9, no. 2,
2009.

[9] C. Bizer and R. Cyganiak, “Quality-driven information filtering using the WIQA
policy framework,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 7, no. 1, pp. 1–10, January 2009.

[10] P. Bonnet, J. Gehrke, and P. Seshadr, “Towards Sensor Database Systems,” in
Proceedings of 2nd International Conference on Mobile Data Management, pp. 3–
14, 2001.

[11] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks:
A reinforcement learning approach,” in Advances in Neural Information Processing
Systems, vol. 6, pp. 671-678, 1994.

[12] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance
comparison of multi-hop wireless ad hoc network routing protocols,” in Mobile
Computing and Networking, pp. 85–97, 1998.

75

[13] O. Buchtala, M. Klimek, and B. Sick, “Evolutionary Optimization of Radial Basis
Function Classifiers for Data Mining Applications,” IEEE Transactions on Systems,
MAN, and Cybernetics, vol. 35, no. 5, 2005.

[14] L. Capra, G. S. Blair, C. Mascolo, W. Emmerich, and P. Grace, “Exploiting reflec-
tion in mobile computing middleware,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, no. 4, pp. 34–44, October 2002.

[15] G. Di Caro and M. Dorigo, “Antnet: Distributed stigmergetic control for communi-
cations networks,” in Journal of AI Research, vol. 9, pp. 317365, 1998.

[16] G. Di Caro, F. Ducatelle, and L. Gambardella, “AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks,” in Eur. Trans. on Telecom-
munications, vol. 16, pp. 443455, 2005.

[17] A. B. Cavalcante and Monika Grajzer, “Fault Propagation Model for Ad Hoc Net-
works,” IEEE International Conference on Communications (ICC), pp. 1–5, June
2011.

[18] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah, “Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World,” in Proceedings
of the ACM SIGMOD international conference on Management of data, 2003.

[19] A. Chan and S.-N. Chuang, “MobiPADS: A reflective middleware for context-aware
mobile computing,” IEEE Transactions on Software Engineering, vol. 29, no. 12,
pp. 1072–1085, December 2003.

[20] S. Chatterjee and A. S. Hadi, “Regression Analysis by Example,” John Wiley and
Sons, Fourth Edifion, 2006.

[21] I. Chlamtac, M. Conti, and J. J.-N. Liu, “Mobile ad hoc networking: imperatives
and challenges,” Ad Hoc Networks, vol. 1, no. 1, pp. 13–64, July 2003.

[22] Y. Chen, Q. Zhu, and N. Wang, “Query processing with quality control in the World
Wide Web,” World Wide Web, vol. 1, no. 4, pp. 241–255, 1998.

[23] G. Chin Jr., S. Choudhury, L. Kangas, S. McFarlane, and A. Marquez, “Fault Detec-
tion in Distributed Climate Sensor Networks Using Dynamic Bayesian Networks,”
in Proceedings of the IEEE Sixth International Conference on e-Science, Washing-
ton, DC, 2010.

[24] A. Deshpande, C. Guestrin, S. Madden, J. Hellersetin, and W. Hong, “Model-driven
data acquisition in sensor networks,” in Proceedings of the Thirtieth international
conference on Very large data bases, vol. 30, 2004.

[25] A. Deshpande, Z. Ives, and Vijayshankar Raman, “Adaptive query processing,”
Foundations and Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.

76

[26] M. Dorigo and T. Stuetzle, “Ant Colony Optimization,” MIT Press, 2004.

[27] A. Förster, “Battery Module 2.0 for OMNeT++ and Mobility Framework,” Web
Page. http://www.inf.unisi.ch/postdoc/foerster/downloads.html.

[28] A. Förster, “Machine Learning Techniques Applied to Wireless Ad-Hoc Networks:
Guide and Survey,” In Proceedings of the third international conference on Intelli-
gent Sensors, Sensor Networks and Information Processing (ISSNIP), 2007.

[29] A. Förster and A. L. Murphy, “CLIQUE: Role-Free Clustering with Q-Learning for
Wireless Sensor Networks,” in Proceedings of the 2009 29th IEEE International
Conference on Distributed Computing Systems (ICDCS), pp. 441-449, 2009.

[30] M. Frodigh, P. Johansson, and P. Larsson, “Wireless ad hoc networking: the art of
networking without a network,” Ericsson Review, no. 4, pp. 248–263, 2000.

[31] C. Furlanello, D. Giuliani, E. Trentin, and D. Falavigna, “Applications of generalized
radial basis functions in speakernormalization and identification,” IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 1995.

[32] D. Huang, “Application of generalized radial basis function networks to recogni-
tion of radar targets,” International Journal of Pattern Recognition and Artificial
Intelligence (IJPRAI) Volume: 13, Issue: 6, pp. 945-962, 1999.

[33] H. Garcia-Molina, J. Ullman, and J. Widom, “Database Systems: The Complete
Book,” Upper Saddle River, NJ, Prentice-Hall, 2002.

[34] J. R. Groff, P. N. Weinberg, and L. Wald, “SQL: The Complete Reference,” 2nd
edition Berkeley, CA, McGraw-Hill/Osborne, 2002.

[35] S. Haykin, “Neural NetworksA Comprehensive Foundation,” New York: Macmillan,
1994.

[36] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vi-
caire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, “VigilNet: An Inte-
grated Sensor Network System for Energy Efficient Surveillance,” ACM Transac-
tions on Sensor Networks, vol. 2, pp. 1–38, 2006.

[37] “IETF Working Group: Mobile Adhoc Networks (manet),” Web Page.
http://www.ietf.org/html.charters/manet-charter.html.

[38] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking
(TON), vol. 11, no. 1, pp. 2–16, 2003.

[39] M. Jarke, J. Koch, and J. W. Schmidt, “Introduction to Query Processing,” in
Proceedings of Query Processing in Database Systems, pp. 3–28, 1985.

77

[40] C. Julien, J. Payton, and G.-C. Roman, “Adaptive strategies for persistent queries in
dynamic environments,” Technical Report TR-UTEDGE-2007-013, The Center for
Excellence in Distributed Global Environments, The University of Texas at Austin,
2007.

[41] C. Julien, V. Rajamani, J. Payton, and G.-C. Roman, “Fidelity-Based Continuous
Query Introspection and Adaptation,” in Proceedings of the Third International
Workshop on Information Quality and Quality of Service for Pervasive Computing
(IQ2S), March 2011.

[42] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement learning: A sur-
vey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237285, 1996.

[43] I. Kassabalidis, E. M. A. Sharkawi, R. J. Marks, P. Arabshahi, and A. A. Gray,
“Swarm intelligence for routing in communication networks,” in Proceedings of the
IEEE Global Tel. Conf. (GLOBECOM), IEEE Press, 2001.

[44] J. Kennedy and R. Eberhart, “Swarm Intelligence,” Morgan Kaufmann, 2001.

[45] A. Ko, H. Y. K. Lau, “Robot Assisted Emergency Search and Rescue System With
a Wireless Sensor Network,” International Journal of Advanced Science and Tech-
nology, vol. 3, February 2009.

[46] S. Koenig, “Agent-centered search,” AI Magazine, vol. 22, no. 4, pp. 109131, 2001.

[47] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 2-3, pp.
189211, 1990.

[48] D. Kossmann, “The state of the art in distributed query processing,” International
Conference on Military Communications (MILCOM), pp. 1–7, Nov. 2008.

[49] Y. Lacharit, D. Q. Nguyen, M. Wang, and L. Lamont, “A Trust-based Security
Architecture for Tactical MANETs,” ACM Computing Surveys, vol. 32, no. 4, pp.
418–469, Dec. 2000.

[50] D. E.W. Laidler, “The Demand for Money: Theories, Evidence, and Problems,” 4
edition Addison Wesley, 1997.

[51] S. Li, A. Zhan, X. Wu, and G. Chen, “ERN: Emergence Rescue Navigation with
Wireless Sensor Networks,” in 15th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 361–368, 2009.

[52] M. Loebbers, D. Willkomm, and A. Koepke, The Mobility Framework for OM-
NeT++, Web Page. http://mobility-fw.sourceforge.net.

[53] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks,” in 5th Annual Symposium on Operating
System Design and Implementation (OSDI), pp. 491–502, 2002.

78

[54] S. Madden, M. Shah, J. Hellerstein, and V. Raman, “Continuously adaptive contin-
uous queries over streams,” in Proceedings of ACM SIGMOD, pp. 491–502, 2002.

[55] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The design of an acquisitional
query processor for sensor networks,” in Proceedings of the 2003 ACM International
conference on Management of Data (SIGMOD), pp. 491–502, 2003.

[56] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless
sensor networks for habitat monitoring,” in Proc. 1st ACM International Workshop
on Wireless Sensor Networks and Applications, pp. 88–97, Atlanta, 2002.

[57] J. Melton and A. R. Simon, “Understanding The New SQL: A Complete Guide,”
Morgan Kaufmann, 1 edition, 1993.

[58] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny AGgregation
service for ad-hoc sensor networks,” in ACM SIGOPS 36(SI), pp. 131–146, 2002.

[59] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The Design of an Acqui-
sitional Query Processor For Sensor Networks,” in Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 491-502, 2003.

[60] T. M. Mitchell, “Machine learning,” McGraw Hil, New York, 1997.

[61] R. E. Neapolitan, “Bayesian Networks,” Prentice Hall, 2003.

[62] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou, “PeerDB: A P2P-based System for
Distributed Data Sharing,” in Proceedings of 19th International Conference on Data
Engineering, pp. 633–644, March 2003.

[63] X. Nguyen, M. I. Jordan, and B. Sinopoli, “A kernel-based learning approach to ad
hoc sensor network localization,” IACM Transactions on Sensor Networks, vol. 1,
no. 1, pp. 134–152, Aug 2005.

[64] C. Olston, J. Jiang, and J. Widom, “Adaptive Filters for Continuous Queries over
Distributed Data Streams,” in Proceedings of the 2003 ACM SIGMOD, 2003.

[65] M. T. zsu and P. Valduriez, “Principles of Distributed Database Systems,” Prentice-
Hall, 2nd edition, 1999.

[66] J. Payton, C. Julien, and G.-C. Roman, “Automatic consistency assessment for query
results in dynamic environments,” in Proceedings of SIGSOFT symposium on The
foundations of software engineering, pp. 245–254, September 2007.

[67] J. Payton, R. Souvenir, and D. Liu, “An Architecture to Support Learning-based
Adaptation of Persistent Queries in Mobile Environments,” Proceedings of the 2nd
Workshop on Context-Aware Adaptation Mechanisms for Pervasive and Ubiquitous
Services (CAMPUS’09), June 2009.

79

[68] J. Payton, C. Julien, G.-C. Roman, and V. Rajamani, “Semantic self-assessment of
query results in dynamic environments,” in ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 19, no.4, April 2010.

[69] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings
of the IEEE 78:113-125, 1990.

[70] S. Papadimitriou, S. Mavroudi, L. Vladutu, and A. Bezerianos, “Generalized Radial
Basis Function Networks Trained with Instance Based Learning for Data Mining of
Symbolic Data,” Applied Intelligence, Volume 16, Issue 3, pp. 223-234, 2002.

[71] M. J. D. Powell, “Radial basis functions for multivariable interpolation: a review,”
In J. C. Mason and M. G. Cox, editors, Algorithms for Approximation. Clarendon
Press, Oxford, 1987.

[72] N. Preguia, C. Baquero, J. L. Martins, F. Moura, H. Domingos, R. Oliveira,
J. O. Pereira, and S. Duarte, “Mobile Transaction Management in Mobisnap,” in the
Proceedings of ADBIS-DASFAA, pp. 379–386, 2000.

[73] M. L. Puterman, “Markov Decision Processes,” Wiley, 1994.

[74] Saeed K. Rahimi and Frank S. Haug “Distributed Database Management Systems:
A Practical Approach,” Wiley-IEEE Computer Society Pr, 1 edition, August 2010.

[75] V. Rajamani and C. Julien, “Adaptive data quality for persistent queries in sensor
networks,” Technical Report TRUTEDGE-2008-001, 2008.

[76] V. Rajamani, C. Julien, J. Payton, and G.-C. Roman, “Inquiry and introspection
for non-deterministic queries in mobile networks,” in the Proceedings of the FASE,
March 2009.

[77] V. Rajamani, C. Julien, J. Payton, and G.-C. Roman, “PAQ: persistent adaptive query
middleware for dynamic environments,” in the Proceedings of the 10th ACM/I-
FIP/USENIX International Conference on Middleware, December 2009.

[78] T. S. Rappaport, Wireless Communications Principles and Practice, Prentice Hall
PTR, 2001.

[79] Q. Ren and Q. Liang, “Energy and quality aware query processing in wireless sensor
database systems,” Information Sciences: an International Journal, Volume 177,
Issue 10, pp. 2188-2205, May 2007.

[80] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification
using Gaussian mixture speaker models,” IEEE Transactions on Speech and Audio
Processing, Volume 3, Issue 1, pp. 72-83, Jan 1995.

[81] J. H. Schiller, Mobile Communications, Addison-Wesley Professional, 2003.

80

[82] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Antbased load bal-
ancing in telecommunications networks,” Adaptive Behavior, no. 2, pp. 169207,
1996.

[83] C. Schroth, R. Eigner, S. Eichler, and M.Strassberger, “A framework for network
utility maximization in VANETs,” in Proceedings of the 3rd international workshop
on Vehicular ad hoc networks, 2006.

[84] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and D. Culler, “De-
sign and Implementation of a Sensor Network System for Vehicle Tracking and Au-
tonomous Interception,” in the Proceedings of the Second European Workshop on
Wireless Sensor Networks, pp. 93–107, July 2005.

[85] A. P. Sistla, O. Wolfson, and Y. Huang, “Minimization of communication cost
through caching in mobile environments,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 9, no.4, pp. 378–390, 1998.

[86] P. Stone, “Tpot-RL applied to network routing,” in Proceedings of the 17th Interna-
tional Conference on Machine Learning, San Francisco, CA, 2000.

[87] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, The MIT
Press, March 1998.

[88] “SUN SPOT World,” Web Page. http://http://www.sunspotworld.com/.

[89] P. Szczurek, B. Xu, J. Lin, and O. Wolfson, “Spatio-temporal Information Ranking
in VANET Applications,” Prentice Hall software series, 2010.

[90] D. Terry, A. J. Demers, K. Petersen, M.J. Spreitzer, M.M. Theimer, and B.B. Welch,
“Session Guarantees for Weakly Consistent Replicated Data,” in Proceedings of
Conference Parallel and Distributed Computing, Austin, Texas, Oct. 1994.

[91] C.-K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall
PTR, 1 edition, Dec 2001.

[92] A. Vargas, OMNeT++, Web Page. http://www.omentpp.org.

[93] S. Viglas, J. Naughton, and J. Burger, “Maximizing the output rate of multi-join
queries over streaming information sources,” in Proceedings of 2003 International
Conference on Very Large Databases, September 2009.

[94] P. Wang and T. Wang, “Adaptive routing for sensor networks using reinforcement
learning,” in Proceedings of the 6th IEEE International Conference on Computer
and Information Technology (CIT), IEEE Computer Society, 2006.

[95] C. J. Watkins, “Learning from Delayed Rewards,” Ph.D. thesis, Cambridge Univer-
sity, 1989.

[96] C. Watkins and P. Dayan, “Technical Note: Q-Learning,” Machine Learning, vol. 8,
no. 3, pp. 279-292, May 1992.

81

[97] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wireless networks with
network coding and physical-layer broadcast,” in the Proceedings of 39th Annual
Conference on Information Sciences and Systems (CISS), 2005.

[98] H. Wu, Q. Luo, J. Li, and A. Labrinidis, “Quality aware query scheduling in wireless
sensor networks,” in the Proceedings of the Sixth International Workshop on Data
Management for Sensor Networks, Lyon, France, 2009.

[99] Y. Yao and J. Gehrke, “The Cougar approach to in-network query processing in
sensor networks,” ACM SIGMOD Record, vol. 31, no. 2, pp. 9–18, 2002.

