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ABSTRACT

KATHRYN LEIGH SMITH. Fractal-inspired subwavelength geometric inclusions for
improvement of high-frequency electromagnetic devices. (Under the direction of

DR. RYAN S. ADAMS)

This dissertation presents research results demonstrating the efficacy of fractal-

inspired subwavelength geometric inclusions for improvement of high-frequency elec-

tromagnetic devices. It begins with a review of the open literature in the area of fractal

applications in antennas and metamaterials. This is followed by a detailed discus-

sion of three high-frequency electromagnetic devices that demonstrate performance

improvement through incorporation of subwavelength geometric design elements.

The first of these devices is a spherical spiral metamaterial unit cell that was devel-

oped as a three-dimensional fractal expansion of the traditional split ring resonator,

and is shown to be capable of producing broadband negative permeability, negative

permittivity, or both, depending solely on the orientation of the unit cells with respect

to the incident electric field.

The second device is a ringed rectangular patch antenna that has four resonant

frequencies. All four of these operative frequencies are shown to produce similar ra-

diation patterns, which also closely match the pattern of a traditional patch antenna.

Several minor geometric modifications of the basic shape of the device are also pre-

sented, and are shown to enable modification of the number of resonances, as well as

tuning of frequencies of resonance.

The third and final topic is a modified horn antenna that incorporates a spiral

metamaterial as a phase-shifting device in order to achieve circularly polarized radi-
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ation. The handedness of the radiated wave is shown to be tunable through simple

reorientation of the loading unit cells.

In each of these cases, electrically-small geometric modification of existing device

geometries is shown to greatly affect performance, either by increasing bandwidth,

by inducing multiband behavior, or by enabling exotic radiation characteristics.
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CHAPTER 1: INTRODUCTION

The intriguing possibilities presented by the use of fractals in electromagnetics were

first explored by Dwight Jaggard, who coined the term “fractal electrodynamics” in

1990 to label this field of study. In [1], Jaggard introduced the use of fractals in

electromagnetic applications to induce multi-band and/or wideband performance in

resonant structures. The proposed work will develop several specific applications in

which fractal-inspired sub-wavelength geometric inclusions are used to improve the

performance of electromagnetic structures, specifically, antennas and metamaterials.

Chapter 2 will begin in section 2.1 with an introduction to basic electromagnetic

theory, where Maxwells equations will be introduced and the mechanism for wave

generation and propagation discussed. This will be followed in section 2.2 by an

introduction to geometric fractals, along with some examples of historical fractals

and their generation techniques. The remainder of the chapter will give an overview

of relevant publications from the open literature. Several publications showcasing the

use of fractals in antenna engineering will be discussed in section 2.3. In section 2.4,

the historical development of metamaterials will be outlined, and existing publications

on fractal metamaterial unit cells will be summarized. This chapter will conclude in

section 2.5 with the presentation of published literature showcasing the integration

of metamaterials into horn antenna applications.

Chapter 3 will present a novel metamaterial unit cell that utilizes fractal notions
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to create a three-dimensional expansion of the basic negative permeability unit cell

- the split ring resonator. This new unit cell, a spherical spiral, is shown to be

capable of producing negative permeability, negative permittivity, or negative index

of refraction, depending on the orientation of the unit cells with respect to the incident

electric field. These findings are verified through fabrication and measurement of the

unit cells in a finite parallel plate waveguide test fixture designed for that purpose.

Chapter 4 presents a ringed rectangular patch antenna. This device incorporates

concentric rings into the geometry of a traditional rectangular patch antenna to allow

support of multiple similar but differently-sized current patterns within the same

structure. This led to multiple frequencies of resonance at which similar radiation

patterns were produced. Various geometric modifications of this antenna were used

to demonstrate adaptability of the number of resonances and their frequencies.

Chapter 5 presents a modified horn antenna that utilizes a rectangular-to-square

transition section and metamaterial loading to achieve circularly polarized radiation.

The handedness of the radiated field is shown to be tunable through repositioning of

the loading unit cells. Buildability considerations are also discussed, and simulation

results demonstrating the effects of the proposed dielectric supports for metamaterial

fabrication and positioning are presented.

Finally, Chapter 6 will give a concluding overview of the findings presented herein.



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Basic Electromagnetic Theory

Electric fields can be created by two things: the presence of an electric charge, or

a time-variant magnetic field. Magnetic fields are created by the presence of moving

electric charge, or by time-variant electric fields. Quantitatively, the relationship be-

tween magnetic fields, electric fields, and electric charge, is described by the following

four equations:

∇× ~E = −∂
~B
∂t

(1)

∇× ~H =
∂ ~D
∂t

+ ~J (2)

∇ · ~D = ρ (3)

∇ · ~B = 0 (4)

where ~E is the electric field in Volts per meter, ~H is the magnetic field in Amperes

per meter, ~D is the electric flux density in Coulombs per meter squared, ~B is the

magnetic flux density in Webers per meter squared, ~J is the electric current density

in Amperes per square meter, and ρ is the electric charge density in Coulombs per

cubic meter. In free space, the constitutive relations between ~E and ~D and between

~H and ~B are given by:

~B = µ0
~H (5)
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~D = ε0~E (6)

where µ0 is the magnetic permeability of free space, and ε0 is the electric susceptibility

of free space. The continuity equation gives the relationship between charge density

ρ and current density ~J , as follows:

∇ · ~J = −∂ρ
∂t

(7)

[2].

Looking at the equations above, let us consider two special cases.

Case I: If there exists an infinite line of constant current ~J , this constant current

will give rise to a constant component of the magnetic field ~H via Eq. 2, which

corresponds to a constant ~B (Eq. 5). This leads to ∂ ~B
∂t

= 0 on the right hand side of

Eq. 1. Therefore the total electric field is directly proportional to ρ (Eq. 3), which

is constant (Eq. 7). This electric field feeds back into Eq. 2 as ∂ ~D
∂t

= 0, so that the

total magnetic field also is constant and directly proportional to ~J .

Case II: If there exists an infinite line of current ~J that varies according to a

function f(t) that is a non-trivial solution to the differential equation d2f(t)
dt2

+k2f(t) =

0, where k is some constant, this current will give rise to an f(t)-dependent ~H via Eq.

2, which corresponds to a df(t)
dt

-dependent ~E , according to Eq. 1, which in turn will

give rise to a scaled f(t) in the first term of Eq. 2, which feeds back into Eq. 1 and

so on. This feedback loop between Eq. 1 and Eq. 2 gives rise to the electromagnetic

wave.

An electromagnetic wave is a self-propagating packet of oscillating electric and
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magnetic fields. They can be generated through oscillation of current on a conductor,

as discussed above, and they can also generate current via incidence onto a conductor,

through the same process performed in reverse. Antenna engineering is the field of

engineering concerned with such generation and reception of electromagnetic waves.

Antennas are conductive elements used to transition energy from guided electric cur-

rents to electromagnetic fields in free space and vice versa [3, 4].

The direction of propagation and the polarization of a created electromagnetic

wave can be controlled via antenna design. The energy transmitted by an antenna

is typically fed to that antenna by a tightly controlled physical structure, such as a

coaxial cable or microstrip transmission line. Similarly, the energy received by an

antenna is typically fed from that antenna into a tightly controlled physical transmis-

sion line structure. Antennas generally have frequency-variant input impedance, and

function at the highest efficiency when operated within the frequency range where

the geometry and dimensions of the antenna best work to match the impedance of

the feed to the impedance of free space. Often this matching is closely tied to some

resonance of the antenna structure, since the impedance of free space is a purely real

quantity.

When an electromagnetic wave is traveling in free space, far from any sources,

it always travels as a TEM (transverse electromagnetic) wave, meaning that the

electric and magnetic fields are perpendicular to one another, and to the direction of

propagation. Such a wave also travels at a fixed velocity c = 1/
√
µ0ε0, has a fixed

wavelength λ0 = c
f

where f is the frequency of oscillation, and has a fixed ratio of

the amplitude of the electric field to the amplitude of the magnetic field, given by the
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intrinsic impedance of free space η0 =
√

µ0
ε0

.

When an electromagnetic wave travels in a homogeneous material, it interacts with

that material in a way that is dictated by the material’s atomic makeup. The atoms in

the material can acquire both electric and magnetic polarization through the response

of their electrons to the fields of the incident wave. If the atoms are much smaller

than the wavelength of the traveling wave, the total effect of the polarizations of all

the individual atoms can be modeled with bulk “material parameters”. For instance,

the effect of the magnetic polarization response of the material can be modeled as:

~B(t) = µ0(1 + χm) ∗ ~H(t) (8)

(compare to Eq. 5) where χm is called the “magnetic susceptibility” of the material.

The term (1 + χm) is called the “relative magnetic permeability” of the material,

and is given the symbol µr. Also note the use of ‘∗’, denoting convolution, which

is necessary because of the general-case frequency-dependence of χm. Similarly, the

effect of the electric polarization response is modeled as:

~D(t) = ε0(1 + χe) ∗ ~E(t) (9)

(compare to Eq. 6) where χe is called the “electric susceptibility” of the material.

The term (1+χe) is called the “relative electric permittivity”, and is given the symbol

εr [2, 5].

The important effect these material parameters have on the foregoing equations

begins with the constitutive relations, formerly given in Eqns. 5 and 6, and impacts

every other equation by scaling µ0 and ε0 by µr and εr, respectively. Thus, the material
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parameters can be used to change the group and phase velocities, wavelength, intrinsic

impedance, and even direction of a propagating wave. They therefore comprise an

important design tool for electromagnetics engineering.

It is important to note that the term ‘homogeneous material’ necessarily has a

frequency dependence when discussing actual physical materials. At some frequency,

even atoms become large relative to a wavelength, and the bulk material parameter

approximations break down. Conversely, the lower the frequency of the incident wave,

the larger the unit cells are allowed to be without violating the homogeneity approx-

imation. The rule of thumb for judging conformity to the homogeneity model (and

therefore the usefulness of bulk material parameters) is that the unit cell size should

be smaller than one tenth of a wavelength. This means that non-atomic periodic

structures can be used to produce effective bulk material parameters, provided the

frequency of operation is sufficiently low relative to the lattice constant of the struc-

ture. As an example, for waves oscillating at 1 GHz, the unit cell size can be around

a cubic inch while remaining sufficiently electrically small for the electromagnetic re-

sponse of an array of such unit cells to be modeled by bulk material parameters. Such

“metamaterials” can theoretically be engineered to have any desired combination of

effective permeability and permittivity properties, even those not found in the normal

range of atomic material permutations, such as simultaneously negative permeability

and permittivity. This extra degree of control has been shown to have several inter-

esting implications [6, 7], which will be discussed in further detail in Section 2.4 of

this document.

From a bulk material perspective, then, an electromagnetic metamaterial is a pe-
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riodic array of unit cells that together are assumed to approximate a homogeneous

material over certain frequencies. Their interaction with electromagnetic waves can

then be modeled using bulk material parameters. From an ‘atomic’ perspective, an

individual metamaterial unit cell is a structure that, like a true atom, receives energy

from an electromagnetic wave and releases that energy again as an electromagnetic

wave. The effect of the interaction is dictated by the currents that set up on the

structure in response to the incident wave, in a manner analogous to the response of

electrons in a true atomic material.

In both antennas and metamaterials, the desired response is often a resonance-

induced phenomenon, occurring over a narrow band of frequencies [8–11]. This res-

onance is a product of the geometry of the structure in question, and the formation

of current patterns on its surface. Wider bandwidth responses have been achieved

(a)
(b)

Figure 1: (a) The general form of a dipole array antenna with nine dipole element
pairs. (b) The general form of a log-periodic antenna with seven different arm lengths.
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in antennas using log-periodic structures, where one feature of the antenna occurs in

the geometry repeatedly at various scales [12]. This allows similar current patterns

to repeat at multiple frequencies by utilizing different portions of the structure. For

instance, a dipole array antenna like that shown in Fig. 1(a) consists of several dipoles

of different lengths, connected along the feed gaps [13]. Similarly, the log-periodic

antenna shown in Fig. 1(b) is formed of a bowtie antenna with concentric circular arc

extensions of various lengths. In each case, the largest pair of elements will be active

at the lowest frequency of operation, then a slightly smaller pair will become active

as the frequency increases, and so forth until at the highest frequency of operation

the currents will be concentrated in the smallest dipole element pair. The effective-

ness of this technique at inducing broadband and/or multiband responses in resonant

electromagnetic structures such as antennas and metamaterials has led to interest in

the use of fractals in electromagnetics engineering.

2.2 Fractal Geometries

Fractal geometry was first formally developed by Benoit Mandelbrot, who had

noted the inadequacy of traditional Euclidean geometry for addressing the order of

complexity found in nature [14]. One of the earliest examples he used to illustrate this

inadequacy was the question of the length of Britain’s coastline, originally posed by

Lewis Richardson in [15]. Mandelbrot showed that the measured length of the coast-

line would depend on the resolution of the polygon used to approximate it [16]. He

pointed out that this characteristic was shared by many naturally occurring shapes,

such as those of clouds or mountains. He proceeded to develop an entire class of struc-
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tures that shared this characteristic, to which he assigned the appellation “fractal”,

derived from the Latin for “to break”. He also retroactively applied this term to sev-

eral existing geometries, including the Koch and Hausdorff curves, and the Sierpinski

gasket [14].

Fractals are geometric designs that are characterized by some feature that is in-

finitely repeated at ever-reduced scales. Some of these designs are generated through

spatial mapping of sets of complex numbers that fit a given criteria, such as the

Mandelbrot set shown in Fig. 2.

Other fractal geometries are formed through an iterative process in which a given

simple geometric feature is transformed into some number of scaled repetitions of

itself. For instance, the Koch fractal is formed from a straight horizontal line segment

(the original simple feature, or “initiator”) through infinite repetition of a process

whereby the single straight line is transformed into a specific arrangement of four

Figure 2: The Mandelbrot Fractal.
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(a) (b)

Figure 3: Examples of naturally occurring fractals. (a) A head of Romanesco broccoli
[17]. (b) A fern frond [18].

line segments, each of which has a length equal to one-third that of the original

line segment. Fig. 4 shows the Koch fractal at the zeroth, first, second, and third

iterations of the formation process.

Another example of an iteratively-constructed fractal is the fractal tree. This fractal

is formed from a ‘V’ by replacing a portion of each branch of the ‘V’ with a scaled

version of itself, as shown in Fig. 5. It is also possible to introduce a component

of chance to the formation of such a tree, for instance by randomizing the branch

lengths, or by having some probability of splitting into three or four branches rather

than two, or even of not splitting at all. Further iterations of both the Koch curve

and the fractal tree, as well as a three-dimensional fractal tree and other iteratively

constructed fractals can be found in [3, 20].

In order for the product to be a true fractal, the formation process must continue

for an infinite number of iterations. This will result in a geometry that is infinitely

jagged, or, in mathematical terms, non-differentiable at every point. A true mathe-

matical fractal curve will also have an infinite length and/or perimeter, though it is
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Figure 4: The first four iterations of the Koch fractal, first presented by Helge von
Koch in 1904, and translated into English in [19].

contained in a finite space. Practically, however, only a certain amount of complexity

is physically realizable. In actual practice, therefore, the generation process is trun-

cated after some finite number of iterations, resulting in a fractal approximation, or

“prefractal” [20]. Since this is the only realizable form of a fractal geometry, we will

henceforth use the term “fractal” more loosely, to include geometries composed of

finite iterations.

2.3 Fractal Antennas

Fractal geometries lend themselves quite naturally to design of multiband or wide-

band antennas, because of the scaled repetition of similar shapes, as in the log periodic

antennas discussed earlier. They are also uniquely suitable for electrically-small an-
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Figure 5: The first four and the tenth iterations of a fractal tree.

tenna design, because of the efficiency of spacial utilization resulting from the high

complexity [3]. The left side of Fig. 6 shows a fractal monopole that was shown

in [21] to exhibit multiband performance. This fractal consists of a circular ground,

Figure 6: The Sierpinski gasket monopole antenna presented in [21,22] (left), and its
four subgaskets (right).
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like that of a disk-cone antenna, and a two-dimensional radiating element fashioned

after a Sierpinski gasket fractal. This fractal has four iterations beyond the initiator,

which in this case is the outermost triangle. It was shown in [22] that each band of

operation for this antenna corresponded to activity in a particular subgasket of the

fractal. The resonant frequencies approximately matched those of bowtie antennas

sized to correspond to the Sierpinski gasket antenna and its four subgaskets, with

some shifting to lower frequencies because of added capacitance. It was also shown

in [23] that the frequencies of operation could be tuned by deforming the inner tri-

angles to increase the size of the smaller subgaskets, as shown in Fig. 7. Further

manipulation of this antenna design is explored in [24–27].

Figure 8 (a) shows another two-dimensional monopole antenna, originally presented

in [28]. This antenna is based on a variation of the tree fractal, and has a two-

dimensional ground, with a curve used to help match the antenna to a 50 Ω feed.

This antenna was shown to be extremely wideband, with each increase in number

Figure 7: A “perturbed” Sierpinski gasket monopole antenna like those presented
in [23].
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(a) (b) (c)

Figure 8: A family of two-dimensional fractal tree monopole antennas like those
presented in [28]. (a) One iteration (b) Two iterations (c) Three iterations

of iterations creating an additional resonance in the response. The three-iteration

model, which was 22 mm high, was shown to operate from 2.1 GHz to 11.52 GHz, a

bandwidth of 138%.

Figure 9 shows a third two-dimensional fractal tree antenna, this one based on

the Pythagorean tree fractal. This antenna was 25 mm high, and the five-iteration

model was shown to operate from 2.64 GHz to 11.14 GHz, which is a bandwidth of

123%. Other two-dimensional fractal monopole and dipole antennas are presented

in [30–41], among others.

(a) (b) (c)

Figure 9: A family of two-dimensional Pythagorean tree monopole antennas like those
presented in [29]. (a) Three iterations (b) Four iterations (c) Five iterations
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Figure 10: Several iterations of the three-dimensional fractal tree dipole antenna
from [42].

The innate drawback to two-dimensional fractal tree antennas is that, unlike tra-

ditional monopole or dipole antennas, they are asymmetric in the H-plane, which can

result in aberrant radiation patterns and polarization. Taking this into consideration,

the natural progression from a two-dimensional fractal tree is to a three-dimensional

fractal tree. These were theoretically explored in [42], where the fractal trees were

used in a dipole configuration, as shown in Fig. 10. Several variations were simulated,

with various numbers of branches, various numbers of iterations, and various angles

of branch elevation. Lumpled-element reactive loading of the fractal branches was

also explored. This paper showed that these fractal tree antennas were capable of op-

eration at much lower frequencies than a traditional dipole, and also showed how each
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(a) (b)

Figure 11: An electrochemically deposited fractal tree antenna, taken from [46].

of the aforementioned variables affected the response. It is important to note that

this paper only presented simulation results, however, because of the complexity of

fabrication. Three-dimensional fractal antennas are also investigated via simulation

in [43–45].

In [46], a fabricated 3D fractal tree antenna is presented. The antenna was fabri-

cated through electrochemical deposition in a copper electrolyte bath, which resulted

in a copper fractal tree which was then used as the radiating element of a monopole.

The resulting antenna, shown in Fig. 11, was 49 mm long, and was shown to have

four bands of operation between 1 and 20 GHz. However, the nature of the generation

process was innately random, and therefore unrepeatable, as well as being impossible

to design or simulate prior to fabrication.

Chapter 5 of [47] was dedicated to developing a deterministic three-dimensional

fractal tree monopole antenna that could be fabricated using 3D printing. The original

approach used a three-dimensional expansion of the Pythagorean tree fractal antenna
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(a) (b)

Figure 12: (a) A three-dimensional version of the Pythagorean tree fractal monopole
antenna. (b) Surface current density on the antenna at 15 GHz

shown in Fig. 9. This resulted in the antenna shown in Fig. 12 (a). This antenna was

shown to have extremely wideband performance - from 1.24 GHz beyond 25 GHz.

However, the cross-polarization was very high, which was theorized to be largely due

to the high current density on the sharp edges of the fractal tree, which can be seen

in Fig. 12 (b).

In an attempt to improve the polarization characteristics, a cone-based fractal

tree antenna was developed. This antenna, originally published in [48], is shown

in Fig. 13. Several variations of this antenna were investigated, including versions

with three, four, five, and six branches per iteration, and versions with one, two,

and three iterations. The best case was found to be the version shown in Fig. 13,

which was shown in both measurement and simulation to have an extremely wide

band of operation, from 1.22 GHz to 24.1 GHz. This antenna also had much better

polarization characteristics than the cubic fractal tree antenna.
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(a) (b)

Figure 13: A three-dimensional fractal tree monopole antenna with a conical basis
(a) as a model in HFSS. (b) 3D printed and spray-painted with conductive paint.

Fractals can similarly be used to miniaturize loop antennas. In [49], a fractal

loop antenna based on a Minkowski island like that shown in Fig. 14 is simulated

at its zeroth, first, second, and third iterations. The return loss for each of these

cases is presented, and it is demonstrated that each increase in number of iterations

corresponds to an increase in the number of resonant frequencies, and a decrease in

the lowest frequency of resonance.

A similar loop antenna using a Koch fractal is presented in [50], and is shown to

have increasing bandwidth and decreasing frequency of operation with each increase

in number of iterations. Additional fractal loop antennas are presented in [51–54],

among others.
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Figure 14: The zeroth, first, and second iterations of the Minkowski fractal.

Fractals have also been utilized in design of patch antennas. In [55] and [56], a

bowtie patch is modified through addition of several “perturbation slots” following

the pattern of a Sierpinski gasket, as shown in Fig. 15, from [55]). The effect of

this modification is shown to be a frequency shift in the resonance of the patch, from

approximately 1.95 GHz unperturbed to 1.13 GHz after addition of the Sierpinski

slots. A high directivity of around 10 dB is maintained, though the bandwidth is

reduced by about half.

Figure 15: A bowtie patch antenna, modified according to a Sierpinski gasket, from
[55].
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Figure 16: A “crown square fractal” patch antenna from [57].

In [57], the patch antenna shown in Fig. 16 is presented. In this case, the addition

of the fractal geometric features is shown to introduce a second band of operation

over which similar polarization characteristics are maintained. This antenna is further

developed in [58], where its resonant frequency is further reduced through increasing

fractal complexity.

In [59], a triangular patch antenna incorporating a Sierpinski gasket fractal pattern

is presented. The three-iteration model is shown in Fig. 17. This paper presents

simulated and measured return loss for the zeroth, first, second, and third iterations.

It shows that, though the zeroth iteration has no frequency of efficient radiation,

the first iteration has one radiating frequency, the second iteration has two radiating

frequencies, and the third iteration has three radiation frequencies. No information

concerning the antenna radiation pattern is presented.

A fractal patch antenna based on a Minkowski fractal is presented in [60]. The

three-iteration version of this antenna is shown in Fig. 18. Again, the increasing

number of fractal iterations was shown to correspondingly increase the number of

resonant frequencies. However, the radiation patterns presented for the four radiation

frequencies of the three-iteration case bear no similarity to one another, or to that of
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Figure 17: A multiband fractal patch antenna based on a Sierpinski gasket from [59].

a traditional rectangular patch antenna.

Other fractal patch antennas are presented in [61, 62], among others. Fractal ge-

ometries also have application in the design of antenna arrays, as discussed in [63–65].

Up to this point, the discussion of electrically small antennas has focused on a

single miniaturization methodology - that of exotic radiation element geometries.

Another method is to load the antenna with electromagnetic metamaterial unit cells

[66–70]. Therefore, the following section will discuss the history and development

of electromagnetic metamaterials, and discuss how fractal geometries can be used to

improve their performance.
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Figure 18: A multiband fractal patch antenna based on a Minkowski curve, from [60].

2.4 Electromagnetic Metamaterials

As discussed in Section 2.1, electromagnetic field interaction with materials is mod-

eled using bulk material parameters µr and εr. If we look at the relatively simple case

where both permeability and permittivity are required to be purely real, the possible

values of permeability and permittivity fall into four regions, as depicted in Fig. 19.

Quadrants I and III of Fig. 19 represent materials in which an electromagnetic wave

may propagate, and quadrants II and IV represent materials in which an electromag-

netic wave may not propagate. To demonstrate this point, consider the case of a plane

wave traveling in a lossless dielectric, with electric field given by ~E = E◦e
−jβr ~aE ,

where E◦ is the amplitude of the electric field, r is the spatial dimension in which the
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wave is propagating, ~aE is a unit vector perpendicular to the direction of propagation,

pointing in the direction of electric field oscillation, and β is the propagation constant,

given by β = ω
√
µrεr/c, where ω is the radial frequency of the wave oscillation and

c is the speed of light in a vacuum, approximately equal to 3 × 108 m/s. Clearly, if

both µr and εr have the same sign, as in quadrants I and III of Fig. 19, β is a real

number, and ~E represents a propagating wave. However, if either µr or εr is negative,

Figure 19: The four possible sign combinations of µr and εr.
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while the other is positive, as in quadrants II and IV of Fig. 19, β is purely imaginary,

and the wave represented by ~E becomes evanescent. No known naturally occurring

materials fall in quadrant III [71].

In 1964, Veselago posited that if a material could be created that had simultane-

ously negative permeability and permittivity, such “double-negative” materials would

have several unique properties, such as a left-handed ~E, ~H, ~k triplet, negative index

of refraction, and phase velocity in the opposite direction of the Poynting vector [6].

The index of refraction of a given material is defined by:

n = ±√µrεr (10)

where µr and εr are the relative permeability and permittivity of the material. Vese-

lago showed that for a left handed medium, in which both µr and εr are negative

(quadrant III of Fig. 19), the negative root of n must be chosen. The time-averaged

pointing Poynting vector, which indicates the direction of power flow, is given by:

~Sav =
1

2
Re{ ~E × ~H∗} (11)

where ~E is the electric field vector, and ~H∗ is the complex conjugate of the magnetic

field vector. The phase velocity ~vph of a plane wave traveling in a medium is given

by:

~vph =
c

n

~Sav

|~Sav|
(12)

where c is the speed of light in a vacuum. The propagation vector ~k is given by:

~k =
ω

|~vph|2
~vph (13)
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where ω is the angular frequency, equal to 2π times the frequency in Hz.

It can be seen from these equations that, for a plane wave traveling in a medium,

changing the sign of n will change the direction of phase velocity, but not the direction

of power flow. This principle is demonstrated in Fig. 20. This figure shows the

magnitude of the electric field in a parallel plate waveguide. The waveguide is divided

into three sections. The left-hand and right-hand sections are filled with a vacuum,

where εr = 1, µr = 1, and n = 1. The middle section is filled with a material where

εr = −1, µr = −1, and n = −1. The phase of the excitation is varied from 0◦ (top)

to 180◦ (bottom), in steps of 30◦. The wave is excited at the left side of the plot, and

it can be observed in the progression from the top plot to the bottom plot that the

phase moves from left to right (positive phase velocity) in the left-hand and right-

hand sections, but from right to left (negative phase velocity) in the center section.

Power flow, indicated by the direction of ~Sav, is consistently directed to the right.

Snell’s law for refraction of light at an interface between two materials is given by:

sin θi
sin θt

=
n2

n1

(14)

or

θt = sin−1
(
n1

n2

sin θi

)
(15)

where n1 is the index of refraction in the first medium, n2 is the index of refraction

in the second medium, θi is the incident angle, measured between the direction of

propagation in the first medium and the normal to the plane of incidence, and θt is

the transmitted angle, measured between the direction of propagation in the second
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Figure 20: Effect of a chunk of n = −1 material on vph.

medium and the normal to the plane of incidence. The direction of propagation is

given by the Poynting vector. By definition, positive θt is located on the opposite

side of the normal from the incident wave. There is also a reflected wave, at angle

θr = θi on the opposite side of the normal from the incident wave. This is visually

depicted in Fig. 21, where ~Si, ~Sr, and ~St are the time-averaged Poynting vectors of

the incident wave, the reflected wave, and the transmitted wave, respectively. The
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Figure 21: Snell’s law diagram for transmission and reflection of a ray of light at a
dielectric interface.

range of θi is [0◦, 90◦), because of the way that θi is defined. The range of sin(θi),

then, is [0, 1), and the range of θt for n1, n2 > 0 or n1, n2 < 0, is [0◦, 90◦]. In order to

bend light past the normal, into the range θt = [−90◦, 0◦), transmission must be from

a left-handed material (n < 0) into a right-handed material (n > 0), or vice versa.

Figure 22 demonstrates this phenomenon. Figure 22 (a) shows a plane wave prop-

agating in a vacuum, where θi = 45◦, incident upon a n = 1 : n = 2 boundary. The

magnitude of ~E is plotted as a color gradient, and the direction of ~Sav is plotted

as a grid of black arrows. Based on Eq. (15), the transmitted wave should have

θt = 20.7◦. Though the exact numerical analysis is lacking in the figure, it is clear

that the direction of propagation in the second medium has bent toward the nor-

mal, when compared to the direction of propagation in the first medium. Figure 22
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(a)

(b)

Figure 22: (a) A plane wave incident upon a n = 1 : 2 boundary. (b) A plane wave
incident upon a n = 1 : −2 boundary. The time-averaged Poynting vector is given by
the grid of small black arrows

(b) shows a plane wave propagating in a vacuum, where θi = 45◦, incident upon a

n = 1 : n = −2 boundary. Again, the magnitude of ~E is plotted as a color gradient

and the direction of ~Sav is plotted as a grid of black arrows. From (15), we expect the

transmitted wave to propagate at an angle of θt = −20.7◦, at the same magnitude
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as the previous figure, but on the opposite side of the normal. It is clearly shown

in Fig. 22 (b) that transmission from a n > 0 material to a n < 0 material caused

the direction of propagation to bend past the normal, into the θt < 0 region. It is

also noted that the ~k vector in the second medium points opposite to propagation,

(a)

(b)

Figure 23: (a) A plane wave incident upon a n = 1 : j2 boundary, where µr = −2
and εr = 2 (Quadrant II). (b) A plane wave incident upon a n = 1 : j2 boundary,
where µr = 2 and εr = −2 (Quadrant IV).



31

as predicted.

Figure 23 shows the behavior of a wave traveling in a vacuum incident upon a single-

negative medium. Figure 23 (a) shows a wave with θi = 45◦ incident upon a medium

with µr = −2, εr = 2, so that n = j2. Figure 23 (b) shows a wave with θi = 45◦

incident upon a medium with µr = 2, εr = −2, so that n = −j2. These are quadrant

II and quadrant IV materials, which do not support wave propagation. As can be

seen, in both cases the wave quickly decays upon incidence with the imaginary-index

material, and ultimately reflects back into the first medium, creating the interference

pattern shown.

Double-negative materials are shown to enable heretofore impossible manipulation

of electromagnetic fields. Many practical applications for such materials have been

proposed, such as the electrically small antennas mentioned earlier [67, 72], perfect

flat lenses [73], electromagnetic cloaking [74, 75], and wideband artificial magnetic

conductors [76], as well as more speculative applications, such as time reversal [77]

and history editing [78].

Since no known double-negative materials exist in nature to allow realization of

these propositions, the development of metamaterials to achieve negative permittivity

and negative permeability has become a topic of extensive research. Several resonant

structures have been proposed that exhibit negative parameters. One such structure

is the split ring resonator (SRR), which exhibits negative permeability at frequencies

slightly above resonance [8]. This structure is composed of a pair of circular metallic

strips with gaps, as shown in Fig. 24 (a). In [8], an array of these structures with

a lattice constant of 10 mm is shown to produce negative permeability at around



32

(a) (b)

Figure 24: (a) A split ring resonator. (b) A capacitively loaded strip.

13.5 GHz. It happens that at this frequency, the unit cell is not electrically small; in

fact, it is approximately half a wavelength. Another is the capacitively loaded strip

(CLS), which exhibits negative permittivity at frequencies slightly above resonance

[9]. This structure is composed of a straight metallic strip terminated on either end

with one of two capacitive parallel strips, as shown in Fig. 24 (b). A simulation of

these CLS unit cells with a lattice constant of 5.33 mm was shown to begin resonating

at round 8.5 GHz, where the unit cell size was approximately λ0/6. A double-negative

metamaterial was first measured in 2000, using SRRs and copper wire strips [10]. A

second double-negative metamaterial composed of SRRs and resonant electric LC

structures was presented in [79].

Since, as with antennas, metamaterials have behavior that is closely tied to their

resonance, fractal geometries can be used to create multiband performance in meta-

materials, and also help to shift the resonant frequency down without increasing the

unit cell size.

Figure 25 shows a two-dimensional fractal expansion of the original CLS unit cell.
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(a) (b) (c)

Figure 25: (a) A fractal negative-epsilon metamaterial with a CLS basis, with (b) its
four secondary subfeatures and (c) its sixteen tertiary subfeatures, like that presented
in [80,81]

(a) (b) (c)

Figure 26: (a) A second fractal expansion of a CLS, from [82] and Chapter 4 of [47].
(b) The currents on the structure at its negative permittivity resonance. (c) the
currents on the structure at its negative permeability resonance.

This metamaterial unit cell, which was first presented in [80] and later expanded

upon in [81], consists of three scaled versions of the CLS units. The structure was

simulated in an infinite parallel plate waveguide, which carried a TEM wave oriented

as indicated in the figure, and its reflection and transmission parameters were mea-

sured. In [80, 83], the structure was shown to have high reflectance, corresponding

to a single-negative behavior (see Fig. 19), at three very clear resonant frequencies,

occurring at approximately 0.5 GHz, 4.2 GHz, and 13.1 GHz. The unit cell size is
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approximately 32 mm, and the electrical size of the unit cell at the three resonant

frequencies is approximately λ0/19, λ0/2.3, and λ0/0.7, respectively. The currents

on the structure are shown at 4.2 GHz, and are clearly concentrated in the four

secondary subfeatures. Similarly, the currents at 13.1 GHz are concentrated in the

sixteen tertiary subfeatures. This response takes advantage of the self-similarity of

fractals, as was seen earlier in the Sierpinski gasket antenna from Fig. 6.

Figure 26 (a) shows a second CLS-inspired fractal metamaterial unit cell, originally

published in [82], and later expounded upon in greater detail in Chapter 4 of [47].

An interesting trait of this design is that it incorporates both the ‘I’ shape of the

CLS structure and two loops as in the SSR. Accordingly, this structure was shown to

have a negative permittivity response over a bandwidth of 29.5% in a region where

the electrical size of the unit cell is approximately λ0/10, and a negative permeability

response over a bandwidth of 17.5 in a region where the electrical size of the unit cell

Figure 27: An interlocking grid fractal structure, originally presented in Chapter 4
of [47], with the unit cell of the structure outlined in dashed black.
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Figure 28: Sierpinski fractal for SRR, like that presented in [84].

Figure 29: Hilbert fractal-based spiral resonator for negative permeability, like that
presented in [85].

is approximately λ0/7. In [84], a two dimensional fractal expansion of the SRR unit

cell is presented, using a Sierpinski curve. This unit cell is shown in Fig. 28. Instead

of utilizing the self-similarity characteristic, this design capitalizes on the space-filling

attribute of the fractal. The resonance of this structure is shown to shift down in

frequency by 35% from a traditional SRR that uses the same space. The electrical

size of this unit cell at resonance was reported to be approximately λ0/16.

Palandoken et al. have also presented two two-dimensional unit cell designs based

on the Hilbert fractal curve. One design, shown in Fig. 29, was shown in [85] to
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Figure 30: Hilbert fractal-based resonator for negative permittivity, like that pre-
sented in [86].

produce negative permeability at around 1.52 GHz. The unit cell size is 5 mm, which

translates to an electrical size of λ0/39. The second design, shown in Fig. 30, was

shown in [86] to produce negative permittivity at around 2.75 GHz, which, for the

5 mm unit cell, corresponds to an electrical size of λ0/22.

Two-dimensional spiral negative-permeability unit cells are also presented in [87].

Again, the obvious progression from a two-dimensional structure is to a three-

dimensional structure. Two-dimensional metamaterial unit cells are highly anisotropic

and do not take advantage of the third dimension for space-filling. The development

of three-dimensional metamaterial unit cells is expected to enable increased electrical

miniaturization of the unit cells, as well as reduced anisotropy.

2.5 Metamaterial-Loaded Horn Antennas

One of the many applications of electromagnetic metamaterials is antenna loading,

where incorporation of a metamaterial structure into an antenna geometry is used to

reduce the resonant frequency [66–70], to broaden or increase the number of resonant

frequencies [88–93], or to improve the radiation characteristics of an antenna [94–97].
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Figure 31: A metamaterial-loaded horn antenna with improved gain characteristics,
from [98].

One example of metamaterial loading being used to improve the radiation charac-

teristics of a horn antenna is presented in [98]. An epsilon-near-zero metamaterial was

designed, consisting of a square lattice of circular holes through a conductive plane.

Two sheets of this metamaterial were placed in the tapering mouth of a rectangular

horn antenna, at an orientation normal to the direction of propagation, as shown in

Fig. 31. The effect of this loading was shown to be a 3 dB increase in the gain of the

antenna. The image is taken from [98].

Another radiation characteristic - polarization - was manipulated by Simmons in

[99]. Here, circular polarization was obtained from a rectangular waveguide in two

steps. First, the rectangular waveguide was transitioned geometrically into a square

waveguide set at at 45◦ angle to the first waveguide. This resulted in a transmitted

wave that was polarized linearly along the diagonal of the square waveguide. This

linearly polarized wave along the diagonal can be thought of as two in-phase, equal-

amplitude linearly polarized waves along the two square edges of the waveguide. A
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Figure 32: A horn antenna followed by a metamaterial-loaded waveguide section to
induce circular polarization in the transmitted wave, from [99]

metamaterial-loaded section of square waveguide was next in the sequence. These

metamaterials consisted of periodic rectangular “irises”, which had a capacitive effect

along one orientation of the square, and an inductive effect along the other orientation.

This system is shown in Fig. 32. The discrepancy in the reactance experienced by

the two wave orientations was used to induce phase differentiation, which was utilized

to produce a circularly polarized wave at the radiating end of the waveguide section.

Simmons reports ellipticity of polarization less than 3 dB and VSWR better than 1.5

over the frequency range 7.35 GHz to 10.3 GHz. The image is taken from [99].

Polarization was also the primary focus of the work presented in [100], where a

dual-layered two-dimensionally periodic chiral metamaterial slab was placed over the

end of an otherwise unaltered E-plane flared rectangular-waveguide horn antenna, as

shown in 33 (a). Images are taken from [100].

The metamaterial unit cell used in this case consisted of two circular arcs placed
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(a) (b)

Figure 33: (a) A horn antenna with chiral metamaterial slab over radiating slot, and
(b) the unit cell of the chiral metamaterial, taken from [100]

on opposite sides of a dielectric slab, as shown in Fig. 33 (b). Its use was reported

to produce a left-hand circularly polarized wave at 12.45 GHz, with an axial ratio of

1.05 dB and better than -10 dB return loss, and also a right-hand circularly polarized

wave at 14.35 GHz, with an axial ratio of 0.95 dB and better than -10 dB return loss.

It was also reported that the gain of the antenna was decreased from its unloaded

value by approximately 0.6 dB at each pertinent frequency.



CHAPTER 3: SPHERICAL SPIRAL METAMATERIAL UNIT CELL FOR
NEGATIVE PERMEABILITY AND NEGATIVE PERMITTIVITY

This chapter introduces a three-dimensional spherical spiral expansion of the split

ring resonator commonly used to achieve negative permeability. The spherical spiral

unit cell is shown to produce negative permeability over a much wider bandwidth than

the traditional split ring resonators, and also to be capable of producing wideband

negative permittivity or double-negative response, depending on the orientation of

the unit cell with respect to the incident electric field. A theoretical discussion of the

mechanism by which these varying material parameters are produced is included.

As was mentioned in Chapter 2, one of the earliest negative-permeability unit cells

was the split ring resonator (SRR), which was presented by John Pendry in 1999.

These structures were simple to fabricate, and were capable of producing negative

permeability. However, their performance was constrained to very narrow frequency

bands, and relatively high frequencies, where the unit cells were only marginally

electrically small [8]. In 2004, Baena et al showed that spiral resonators were capable

of producing the same response as split ring resonators, but at much lower frequencies,

reducing the electrical size of the unit cell [87]. Each of these two structures - the

split ring resonator and the spiral resonator - can be used to achieve a negative

permeability response. However, in order to achieve negative index of refraction,

they must be combined with a negative permittivity structure that has been carefully
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Figure 34: The spherical spiral unit cell in the “reference orientation”.

tuned to resonate at the same frequency, as demonstrated by Smith et al in [101].

In [102], Pendry showed that three-dimensional rod-shaped metamaterials were

capable of producing both negative permeability and negative permittivity with a

single structure, through coupling of the electric and magnetic responses. The spher-

ical spiral unit cell presented herein attempts to combine the simplicity of the spiral

resonator with the three-dimensionality of Pendry’s rods in a rotationally symmet-

ric unit cell that is capable of producing wideband negative permeability, negative

permittivity, or double-negative behavior, while maintaining a unit cell size that is

extremely electrically small. Preliminary results from this line of investigation were

previously published in [103].

3.1 Theoretical Discussion

The spherical spiral unit cell under investigation here is formed as a left-handed

helix with respect to the z-axis, as shown in Fig. 34. It has a vertical pitch of 1.3
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(a) (b)

(c) (d)

Figure 35: A single conductive loop at (a) 0◦ of rotation, minimizing magnetic re-
sponse. (b) +45◦ of rotation, causing increased permeability. (c) -45◦ of rotation,
causing decreased permeability. (d) ±90◦ of rotation, causing decreased permeabil-
ity.

mm per turn, a wire diameter of 0.3 mm, and the radius of the helix is contoured to a

sphere with radius 10.15 mm. To explore the mechanism by which the orientation of

this unit cell affects its effective material parameters, we will begin by conceptually

considering the simplified case of a single helical loop in four special cases:

Case 1: Excitation by TEM wave traveling in the −x̂ direction and ~E pointing

in +ẑ, with loop in the reference orientation, as for the spheres shown in Fig. 34.
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This configuration is shown in Fig. 35 (a). In this case, the electric field aligns with

the vertical component of the loop, which at every point around its circumference

results in an upward directed current. The sphere in this orientation, then, appears

as an LC resonator with the inductance of the wire and capacitance between the

loops, and results in an electric response like that presented in [9] for the capacitively

loaded strip (CLS). The advantage of the sphere in this orientation is that it fits a

long length of wire into an electrically small volume, and thus resonates at a much

lower frequency than a similarly-sized traditional CLS. The loops are orthogonal to

the magnetic field, so the magnetic response in this case is minimal.

Case 2: Excitation by TEM wave traveling in the −x̂ direction and ~E pointing in

+ẑ, with loop turned by some positive angle θ around the x-axis where 0◦ < θ < 90◦.

This configuration is shown in Fig. 35 (b). In this case, the portions of the loop on

the −x̂ side of the unit cell are more vertical than the portions on the +x̂ side. This

means that the electric field will interact more strongly with the −x̂ side of the loop.

For electric field pointing upward, this will result in a net upward current, which will

push a magnetic field down and toward +ŷ, in alignment with the incident magnetic

field. This will result in an effective increase in permeability.

Case 3: Excitation by TEM wave traveling in the −x̂ direction and ~E point-

ing in +ẑ, with loop turned by some negative angle −θ around the x-axis, where

−90◦ < −θ < 0. This configuration is shown in Fig. 35 (c). In this case, the por-

tions of the loop on the +x̂ side of the unit cell are more vertical than the portions



44

on the −x̂ side. This means that the electric field will interact more strongly with

the +x̂ side of the loop. For electric field pointing upward, this will result in a net

upward current, which will push a magnetic field down and toward −ŷ, in opposition

to the incident magnetic field. This will result in an effective decrease in permeability.

Case 4: Excitation by TEM wave traveling in the −x̂ direction and ~E pointing

in +ẑ, with loop turned by an angle θ around the x-axis, where θ = ±90◦. This

configuration is shown in Fig. 35 (d). As the angle of θ approaches ±90◦, the electric

field interaction with the loop decreases dramatically, because the currents induced on

the +x̂ and −x̂ sides of the loop cancel one another. The magnetic field interaction,

however, increases, because the loop becomes aligned with the incident magnetic field.

For an upward-pointing ~E, the incident magnetic field is left-to-right, which induces

a right-to-left magnetic response, resulting in an effective decrease in permeability.

3.2 Simulation of Spherical Spiral Metamaterial

Ansys HFSS was used to simulate three of the spherical spiral unit cells in an ideal

parallel plate waveguide with dimensions 266 × 22 × 22 mm, where the two sides

of the box normal to ẑ were defined as perfect electric conductor (PEC), the two

sides of the box normal to ŷ were defined as perfect magnetic conductor (PMC), and

the two sides of the box normal to x̂ were waveports, as shown in Fig. 36. This

orientation of the unit cells in the waveguide, with the axis of the helices aligned with

the electric field, will be termed the “reference orientation” of the unit cells. Each

waveport was deembedded by 100 mm, leaving an effective length of 66 mm, and an
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Figure 36: Three spherical spiral unit cells in the reference orientation in an infinite
parallel plate waveguide.

effective lattice constant of 22 mm. The S-parameters resulting from this simulation

were used to calculate the effective material parameters of the unit cells, using the

methods described in [104] and [105], both of which returned comparable results.

The material parameters resulting from this simulation are shown in Fig. 37 (a),

where the real part of permittivity is shown in solid red, and the real part of perme-

ability is shown in dashed magenta. As can be seen, this simulation showed a region

of negative permittivity from 154 to 232 MHz, which is a bandwidth of 40.4%.
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(a) Rotation = 0◦ (b) Rotation = -22.5◦

(c) Rotation = -45◦ (d) Rotation = -67.5◦

(e) Rotation = ±90◦ (f) Rotation = +22.5◦

(g) Rotation = +45◦ (h) Rotation = +67.5◦

Figure 37: Simulated material parameters for three unit cells turned around the x-
axis from the reference orientation by (a) 0◦ (b) -22.5◦ (c) -45◦ (d) -67.5◦ (e) ±90◦ (f)
+22.5◦ (g) +45◦ (h) +67.5◦ The real and part of permittivity is shown in solid red,
and the real part of permeability is shown in dotted magenta.
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Table 1: Tabulated extracted material parameters resulting from simulation of spher-
ical spiral unit cells at various rotation angles around the x-axis

Rotation Angle
Range of εr < 0

(MHz)
Range of µr < 0

(MHz)
Range of µr < 0,
εr < 0 (MHz)

0◦ 154-232 (40.4%) NA NA

-22.5◦ 154-227 (38.3%) 143-168 (16.0%) 154-168 (8.7%)

-45◦ 155-199 (24.9%) 139-181 (26.3%) 155-181 (15.5%)

-67.5◦ NA 149-196 (27.2%) NA

± 90◦ NA 164-226 (31.7%) NA

+22.5◦ 146-220 (40.4%) NA NA

+45◦ 143-196 (31.2%) NA NA

+67.5◦ 150-173 (14.2%) 163-233 (35.4%) 163-173 (5.9%)

Seven additional simulations were performed, to show the effect of rotating the

unit cells around the x-axis. The results from these simulations are shown in Fig.

37. As can be seen, the trend for increasingly negative rotation angles is that the

strength of the negative permittivity response seen in Fig. 37 (a) diminishes, and a

negative permeability response emerges in its place. At a 45◦ angle of rotation, the

simulation results in Fig. 37 (c) show a region of negative permittivity from 155 to

199 MHz, and a region of negative permeability from 139 to 181 MHz. These two

regions overlap from 155 to 181 MHz, which is a double-negative bandwidth of 15.5%.

When the unit cell is turned by a complete ±90◦ from the reference orientation, the

extracted parameters show a region of negative permeability from 164 to 226 MHz,

a bandwidth of 31.7%. Figs. 37 (f), 37 (g), and 37 (h) show the effect of rotating

the unit cells in the positive direction around the x-axis. As shown, small angles
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(a)

(b)

(c)

(d)

Figure 38: Fields in the guide for 175 MHz excitation from the left (a) Electric field at
0◦ rotation, viewed from +ŷ. (b) Electric field at −45◦ rotation, viewed from +ŷ. (c)
Magnetic field at −45◦ rotation, viewed from +ẑ. (d) Magnetic field at 90◦ rotation,
viewed from +ẑ.

of positive rotation tended to result in positive magnetic susceptibility, rather than

the negative magnetic susceptibility shown in the previous simulation. The results of

these eight simulations are summarized in Table 1.

To ensure accuracy of the extracted values, we investigate the fields in the guide at

the frequencies of negative parameter values. Fig. 38 (a) shows the electric field in
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the waveguide at 175 MHz for the case where the rotation angle was 0◦, viewed from

the positive ŷ direction. This snapshot shows the incoming electric field from the left

pointing upward, and the electric field in the region of the unit cells pointing down-

ward. This confirms the extracted negative permittivity at this frequency. Similarly,

Fig. 38 (b) shows the electric field in the waveguide at 175 MHz for the case where

the rotation angle was −45◦, and confirms the negative permittivity extraction. Figs.

38 (c) and 38 (d) show the magnetic field in the waveguide at 175 MHz for the cases

where the rotation angle was −45◦ and 90◦, respectively. These magnetic fields are

viewed from the positive ẑ direction. In both these cases, the field reversal in the

region of the unit cells confirms the negative permeability extraction.

3.3 Measurement of Spherical Spiral Metamaterial

Fabrication of these unit cells was made simple through the use of a Makerbot

Replicator 2X 3D printer. Spherical forms were printed of ABS plastic, with ridges

to guide wire wrapping. Fig. 39 (a) shows three such plastic forms in the process of

being 3D printed, and Fig. 39 (b) shows the finished forms. These forms were printed

with a 10% fill, so that they would be mostly hollow and not significantly affect the

measurements. Each spherical form was then wrapped with 20 gauge copper magnet

wire, secured with glue, as shown in Fig. 39 (c).

A test fixture was built using 1/16” copper clad FR-4 circuit board. Either end of

the fixture was fed with a 20 mm length of 50 Ω microstrip. As shown in Fig. 41, each

microstrip section was followed by a 100 mm long transition section which increased

linearly in both width and height to match to the waveguide section, which was 200
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mm long, 100 mm wide, and 22 mm high. Thru-Reflect-Line (TRL) calibration was

used to calibrate out all of this test fixture except a 66 mm section in the center. Since

this structure has a finite width, some fringing will occur along the edges, reducing

the effect of any material placed inside the waveguide. To illustrate this, a simulation

was conducted of the test fixture with a chunk of dielectric under the waveguide where

(a) (b)

(c)

Figure 39: (a) Three ABS forms in the process of being printed. (b) Three completed
ABS forms. (c) ABS forms wrapped with 20 gauge magnet wire.
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Figure 40: Extracted material parameters for simulation of chunk of dielectric εr = 4.4
in the test fixture.

εr = 4.4. The extracted parameters resulting from this simulation are shown in Fig.

40. As shown, the extracted dielectric constant is approximately 3.2, which is 73% of

the actual value. This weakening of the response, here demonstrated in simulation,

will also be apparent in the following measurements.

The fabricated test fixture is shown in Fig. 42 (a). This fixture was used to measure

the row of three unit cells in the reference orientation, centered in the waveguide

section of the fixture. The results from this measurement are shown in Fig. 43 (a).

The measured response is shown to be much weaker than the simulated response,

resulting in a much narrower bandwidth of performance. The graph shows measured

negative permeability from 146 to 159 MHz, which is a bandwidth of 8.5%. Two

factors are responsible for this weakening of the response. Firstly, as discussed earlier,

some of the electric fields fringe around the sides of the fixture without being affected
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Figure 41: HFSS model of a parallel plate waveguide section fed by microstrip.

by the unit cells. This does not occur in the simulation, because of the perfect

magnetic conductor boundaries. Secondly, the measurement is of one row of unit

cells in 100 mm of waveguide width, whereas the simulation was of one row of unit

cells in 22 mm of waveguide width. This second point may be alleviated by increasing

the number of unit cells under the waveguide. Therefore a second measurement was

conducted with three evenly spaced rows of unit cells under the waveguide, as shown

in Fig. 42 (b). This resulted in the material parameter graph shown in Fig. 43 (b).

As shown, increasing the fill factor in this way increased the strength of the response,

and therefore the bandwidth. This second measurement shows negative permittivity

from 153 to 187 MHz, a bandwidth of 20%. Though this measurement still has a

narrower bandwidth than the simulated case, because of fringing, a comparison of

Figs. 37 (a) and 43 (b) shows very good correlation between simulated and measured
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(a)

(b)

Figure 42: (a) Fabricated parallel plate waveguide section fed by microstrip. (b) Nine
unit cells under the waveguide.

results.

A measurement was also made of the three unit cells rotated by -90◦ from the

reference position. The results from this simulation are shown in Fig. 43 (c). This

measurement shows negative permeability from 161 to 169 MHz, which is a bandwidth

of 4.8%. As in the previous case, the measured results are much narrower bandwidth

than the simulated results. Also as before, a second measurement including three



54

(a) (b)

(c) (d)

Figure 43: Measured material parameters for (a) three unit cells in the reference
orientation. (b) nine unit cells in the reference orientation. (c) three unit cells turned
by -90◦ from the reference orientation. (d) nine unit cells turned by -90◦ from the
reference orientation.

rows of unit cells was conducted. The results from this measurement of nine unit

cells is shown in Fig. 43 (d). As before, increasing the number of unit cells is shown

to increase the strength of the response, and therefore the bandwidth. This time,

negative permeability is measured from 154 to 182 MHz, a bandwidth of 16.7%.

Again, though fringing causes this response to still be weaker than in simulation, a
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comparison of Figs. 37 (b) and 43 (d) shows very good correlation between simulated

and measured results.

Fig. 44 shows the results from two additional simulated and measured configura-

tions. Fig. 44 (a) shows the extracted parameters for a simulation of four rows of

three unit cells, where the first and third rows are in the reference orientation and the

second and fourth rows are rotated by 90◦ from the reference orientation. Fig. 44 (c)

shows the corresponding measured parameters. This measurement shows a region

of negative permittivity from 147 to 160 MHz, a bandwidth of 8.4%, and a region

of negative permeability from 155 to 173 MHz, a bandwidth of 11%. Each of these

responses is narrower than in the respective individual cases (i.e the 0◦ and 90◦ rota-

tion cases), which is due to the relatively low fill factor (approximately 50% for each

orientation). Fig. 44 (c) shows the extracted parameters for a simulation of four rows

of three unit cells, where half the unit cells are in the reference orientation and half

the unit cells are rotated by 90◦, and the reference and rotated cells are arranged in

a checkerboard pattern. Fig. 44 (d) shows the corresponding measured parameters.

This measurement shows a region of negative permittivity from to 137 to 145 MHz

and a region of negative permeability from 137 to 142 MHz, as well as from 143 to 146

MHz. It had previously been shown that double-negative behavior could be achieved

through adjusting the orientation of the unit cells (Fig. 37). These two measurements

show that double-negative behavior can also be achieved through combining negative-

permittivity-oriented cells at 0◦ of rotation and negative-permeability-oriented cells

at 90◦ of rotation.
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(a) (d)

(b) (e)

(c) (f)

Figure 44: (a) HFSS simulation of four rows of three unit cells, where the first and
third rows are in the reference orientation, and the second and fourth rows are turned
by 90◦ from the reference orientation. (b) Material parameters resulting from simula-
tion of configuration shown in (a). (c) Material parameters resulting from measure-
ment of unit cells arranged as in (a), in the finite parallel plate waveguide test fixture.
(d) HFSS simulation of four rows of three unit cells, where half the unit cells are in
the reference orientation and half the unit cells are rotated by 90◦, and the reference
and rotated cells are arranged in a checkerboard pattern. (e) Material parameters
resulting from simulation of configuration shown in (d). (f) Material parameters ex-
tracted from measurement of unit cells arranged as in (d), in the finite parallel plate
waveguide test fixture.
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3.4 Chapter Summary

A spherical spiral metamaterial unit cell was introduced, combining the simplic-

ity of the traditional planar spiral resonators with three-dimensionality to achieve

a double-negative response. The unit cell was shown in both simulation and mea-

surement to be capable of producing negative permeability, negative permittivity, or

both, solely by changing the orientation of the unit cells with respect to the incident

electric field. It was also shown in two different measurements that a combination

of variously oriented unit cells could be used to produce an aggregate result. Specif-

ically, it was shown that negative permittivity cells and negative permeability cells

could be used in combination to produce a measured double-negative response. All

these simulated and measured responses occur at frequencies where the unit cell is

smaller than λ◦/60.



CHAPTER 4: A MULTIBAND RINGED RECTANGULAR PATCH ANTENNA

Multiband antennas help to maximize space efficiency by enabling multiple appli-

cations to utilize a single device. This is especially useful in environments where space

or resources are limited, such as on crowded radio towers or in military communi-

cation applications. Electrical miniaturization can be used to further enhance this

spatial consolidation.

Microstrip patch antennas, like that shown in Fig. 45 (a), are attractive because

they are low-profile and easy to fabricate. However, they typically operate over a

single narrow band of frequencies where the length of the patch is approximately half

a wavelength, as shown in Fig. 45 (b). In the dominant resonant mode, broadside

radiation is formed, originating from concentrated electric fields along the two shorter

ends of the patch [106]; this radiation pattern is shown in Fig. 45 (c). This paper

introduces a ringed rectangular patch antenna with four distinct resonant frequencies,

each of which occurs at a lower frequency than the electrical size of the patch would

ordinarily support. This ringed rectangular patch antenna maintains the low profile

and ease of fabrication common to traditional patch antennas, while incorporating

fractal-inspired geometric modifications to achieve a self-similarity-induced multiplic-

ity of resonances, as noted in [21,28,55–57,59,60], among others. The fractal-inspired

modification consists of five gaps of width 0.6 mm, which are introduced around the

edges of the patch as shown in Fig. 46. These have been carefully designed so that
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the current distribution and radiation pattern of the resulting fractal patch antenna

approximately match those of a traditional patch at each of the four resonant fre-

quencies.

Simulation of several small variations of this geometry is used to demonstrate design

adaptability. The first four of these variations show the effect of removing a portion

of the patch geometry, such as the center rectangle or a single ring from the perimeter

of the antenna. The following two variations show the result of lengthening all or one

of the rings. The final two variations show the effect of deviating from the rectangular

overall shape, to better utilize the space in the center of the antenna.
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(a) (b)

(c)

Figure 45: (a) A traditional rectangular patch antenna with length 147.9 mm and
width 90.4 mm. (b) The return loss of the traditional rectangular patch antenna, as
simulated in HFSS. (c) The directivity of the traditional rectangular patch antenna,
plotted on the φ = 0◦ (solid red) and φ = 90◦ (dotted blue) planes.

4.1 Ringed Rectangular Patch Antenna

The rectangular ringed patch was simulated in HFSS, with a radiating element

having a total length of 147.9 mm, and a total width of 90.4 mm. An FR-4 substrate

of 1.5 mm thickness and εr = 4.4 was used to separate the radiating element from

an infinite ground plane. As shown in Fig. 46, this patch was modified from the
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Figure 46: The ringed rectangular patch antenna.

traditional rectangular patch antenna geometry by introduction of five gaps, each

having width 0.6 mm, at 1.75 mm intervals around the perimeter of the rectangular

radiating element.

The feed structure for this antenna is also shown in Fig. 46. As can be seen, a

section of the patch is raised from the plane of the substrate surface by 1.75 mm to

allow the microstrip feed to pass under the first three metal rings, making the feed

connection at the fourth ring. This microstrip line has a width of 1.06 mm, and a

characteristic impedance of approximately 85 Ω.

Fig. 48 shows the magnitude of the return loss in dB for the simulation of the
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(a) (b)

(c) (d)

Figure 47: Magnitude of the electric field on the upper surface of the substrate from
the simulation of the ringed rectangular patch antenna at (a) 353 MHz, (b) 389.5
MHz, (c) 412.5 MHz, and (d) 446 MHz.
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Figure 48: Return loss in dB for the ringed rectangular patch antenna.

(a) (b)

(c) (d)

Figure 49: Directivity on the φ = 0◦ and φ = 90◦ planes of the ringed rectangular
patch antenna, simulated at (a) 353 MHz, (b) 389.5 MHz, (c) 412.5 MHz, and (d)
446 MHz, shown in dB.
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rectangular ringed patch antenna from 200 MHz to 500 MHz. This simulation shows

four resonant frequencies, at 353 MHz, 389.5 MHz, 412.5 MHz, and 446 MHz. To

observe the mechanism for these four resonances, Fig. 47 shows the magnitude of

the electric field on the upper surface of the FR-4 substrate at each of the resonant

frequencies of the patch.

At the lowest frequency of resonance, in Fig. 47 (a), we can observe that the highest

field concentration is located under the outermost conductive ring, at the two radiat-

ing slots of the antenna. This is what we would ordinarily expect from a microstrip

patch antenna operating in its dominant mode. Fig. 47 (b) shows the field concen-

tration on the surface of the substrate at the second frequency of resonance. Here

we see that the electric field is most highly concentrated under the second-outermost

conductive ring, and in the first and second gaps. This indicates that a smaller sub-

section of the radiating element has become active at this higher frequency. This is

a common characteristic of fractal antennas, as has been demonstrated previously

in [21, 28]. Similarly, at the third resonance, in Fig. 47 (c), the fields are concen-

trated under the third and fourth gaps, and at the fourth resonance, shown in Fig.

47 (d), high field concentration is observed under the fifth and final ring, and under

the fourth and fifth gaps.

The far field radiation pattern of the antenna at each resonant frequency is shown

in Fig. 49, where the directivity on the φ = 0◦ plane is plotted in solid red, and

the directivity on the φ = 90◦ plane is plotted in dotted blue. The directivity of the

antenna directly above the patch is shown to be 5.80 dB at 353 MHz, 4.43 dB at

389.5 MHz, 4.45 dB at 412.5 MHz, and 5.78 dB at 446 MHz. In every case, the shape
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of the radiation pattern closely matches that of a traditional patch antenna.

4.2 Variations on the Rectangular Ringed Patch Antenna

In order to demonstrate design adaptability, several variations on the basic ringed

patch antenna geometry were investigated. Four of these variations involve removing

portions of the antenna geometry, two involve changing dimensions, and two involve

adaptations to the originally rectangular overall shape of the patch.

4.2.1 Removing Various Patch Elements

The first of the variant patch geometries is shown in Fig. 50 (a). In this variation,

the solid metal rectangle was removed from the center of the ringed patch. All other

parameters were held constant. Fig. 50 (b) shows the magnitude of the return loss

resulting from this simulation in solid red, along with the magnitude of the return

loss from the complete ringed patch in dashed blue, for comparison. As shown, the

effect on the return loss of removing the inner patch is minimal. The frequency of the

highest resonance is the only feature that is significantly affected, likely because it is

at this resonance that the fields shown in Fig. 47 were concentrated nearest the inner

patch. The four resonant frequencies observed from this simulation are 353 MHz,

389.5 MHz, 413.5 MHz, and 437 MHz. Fig. 50 (c) shows the radiation pattern at

353 MHz, with the solid red trace indicating the directivity on the φ = 0◦ plane and

the dotted blue trace indicating the directivity on the φ = 90◦ plane. The directivity

at θ = 0◦ in this case is shown to be 5.92 dB. Similarly, Fig. 50 (d), (e), and (f)

show the radiation patterns simulated at the other three resonant frequencies. These

simulations show the directivity of the antenna at θ = 0◦ to be 4.04 dB at 389.5 MHz,
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(a) (b)

(c) (d) (e) (f)

Figure 50: (a) The ringed patch with the inner patch removed, and (b) its return loss,
shown in solid red. The return loss of the original ringed patch is shown in dashed
blue, for comparison. The simulated directivity of the radiated field is shown at (c)
353 MHz, (d) 389.5 MHz, (e) 413.5 MHz, and (f) 437 MHz, with the directivity on
the φ = 0◦ plane shown in solid red and the directivity on the φ = 90◦ plane shown
in dotted blue.

4.10 dB at 413.5 MHz, and 6.19 dB at 437 MHz.

The second geometry variation to be explored was to remove both the inner patch

and the innermost ring. Again, all other parameters were held constant. The new

antenna resulting from this adjustment is shown in Fig. 51 (a). The return loss
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(a) (b)

(c) (d) (e)

Figure 51: (a) The ringed patch with the innermost ring and patch removed, and (b)
its return loss, shown in solid red. The return loss of the ringed patch without the
center patch (as shown in Fig. 50) is shown in dashed blue, for comparison. The
simulated directivity of the radiated field is shown at (c) 353 MHz, (d) 390 MHz, and
(e) 413 MHz, with the directivity on the φ = 0◦ plane shown in solid red and the
directivity on the φ = 90◦ plane shown in dotted blue.

resulting from this simulation is shown in Fig. 51 (b), in solid red. The return loss of

the simulation of the five rings without the center patch (from Fig. 50) is also shown,

in dashed blue. The only difference between these two simulations is the removal of the

outermost ring. As can be seen from this graph, the result of removing the both the

inner patch and the innermost ring is to completely eliminate the highest-frequency
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(a) (b)

(c) (d) (e)

Figure 52: (a) The ringed patch with the outermost ring and patch removed, and
(b) its return loss, shown in solid red. The return loss of the ringed patch without
the center patch (as shown in Fig. 50) is shown in dashed blue, for comparison. The
simulated directivity of the radiated field is shown at (c) 372 MHz, (d) 413 MHz, and
(e) 435.5 MHz, with the directivity on the φ = 0◦ plane shown in solid red and the
directivity on the φ = 90◦ plane shown in dotted blue.

resonance. The other three resonant frequencies remain approximately as they were,

at 353 MHz, 390 MHz, and 413 MHz. This is consistent with the high interaction of

the fifth ring with the field under the ring observed at the fourth resonance in Fig.

47. The directivities resulting from this simulation at each of the resonant frequencies
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(a) (b)

(c) (d) (e)

Figure 53: The ringed patch with the center patch and third ring removed, and its
return loss, shown in solid red. The return loss of the five rings without the center
patch, as shown in Fig. 50, is shown in dashed blue for comparison. The directivity
of the antenna at (c) 354 MHz, (d) 391.5 MHz, and (e) 438 MHz is also shown, in
dB, for the φ = 0◦ plane (shown in solid red) and the φ = 90◦ plane (shown in dotted
blue).

are shown in Fig. 51 (c), (d), and (e). The directivity observed at θ = 0◦ is 5.87 dB

at 353 MHz, 3.57 dB at 390 MHz, and 2.98 dB at 413 MHz.

A third geometry variation removed the center patch and outermost ring, as shown

in Fig. 52 (a). Fig. 52 (b) shows the return loss resulting from this simulation in



70

solid red, along with the return loss from the simulation of the five rings without

the center patch in dashed blue, for comparison. Again, the only difference between

these two simulations is the removal of the outermost ring. As shown, the effect of this

difference in geometry is firstly to eliminate the lowest frequency resonance, which is

consistent with the high field concentration under the outermost ring at the lowest

frequency of resonance, as shown in Fig. 47 (a). The removal of the outermost ring

also caused the second-lowest resonance to shift down in frequency, likely because of

the reduction in capacitance associated with coupling between the fourth and fifth

rings.

In a fourth geometry variation, the center patch and third ring were removed from

the complete ringed patch. This geometry is shown in Fig. 53 (a). The return loss

observed in this simulation is shown in Fig. 53 (b) in solid red, with the return loss

for the five rings without the center patch shown in dashed blue, for comparison.

In this graph we see that removal of the third ring completely eliminates the third

resonance. This result is consistent with the high field concentration under the third

ring shown in Fig. 47 (c). The first and second resonances are also shown to shift

slightly in frequency, and become decidedly weaker than in the case of the complete

ringed rectangle. This can be attributed to the fact that the removal of the third

ring decreased coupling between the directly-driven portion of the patch (the second

ring) and the fourth and fifth rings, where the currents are concentrated for the first

and second resonances. The three new resonant frequencies are 354 MHz, 391.5 MHz,

and 438 MHz. The radiation pattern at each of these frequencies is shown in Fig.

53 (c), (d), and (e). The directivities at θ = 0◦ are shown to be 5.64 dB, 3.60 dB,
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(a) (b)

Figure 54: The ringed rectangular patch antenna with the center patch removed,
and total length increased by 12 mm (shown in solid red), 6 mm (shown in dotted
magenta), and 0 mm (shown in dashed blue).

and 6.39 dB at the three resonances, listed from lowest frequency to highest.

These four simulations demonstrate two things. Firstly, they show that the center

patch of the antenna has very little effect on the return loss and radiation pattern.

Secondly, they show that the number of resonances is closely tied to the number of

rings, though each ring cannot be separately correlated to a specific resonance (since

there are five rings and only four resonances).

4.2.2 Length Variations

Next, the effect of removing the inner patch and increasing the overall length of the

patch, as shown in Fig. 54 (a), was investigated. The return loss for this simulation
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(a) (b)

Figure 55: The ringed patch with the outermost gap at the far end of the antenna
from the feed increased. The return loss from this simulation is shown for four gap
values: 3 mm (shown in solid red), 7 mm (shown in dotted magenta), and 11 mm
(shown in solid black). The return loss for the original gap length of 0.6 mm is also
shown, in dashed blue.

is shown in Fig. 54 (b). The solid red trace corresponds to the patch with its length

increased by 12 mm; the dotted magenta trace corresponds to a 6 mm length increase,

and the dashed blue trace is for the original patch length of 147.9 mm. As would

be expected from a traditional patch, the effect of increased length is to shift all

resonances to lower frequencies.

The effect of varying the length of the outermost ring by increasing the space

between the fourth and fifth rings on the far end of the patch from the feed, as

indicated in Fig. 55 (a), was also explored. The graph shown in Fig. 55 (b) shows
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the return loss resulting from this set of simulations. The solid black trace shows

|S11| for the case where the variable gap width gv was increased to 11 mm. The

dotted magenta trace corresponds gv = 7 mm, the solid red trace to gv = 3 mm,

and the dashed blue trace to the original gap of 0.6 mm. As one would predict, the

effect of increasing the length of the outermost ring is primarily to shift the lowest

resonant frequency to lower frequencies. A less pronounced effect also observed, where

increasing gv increases the frequency of the second-lowest resonance. This is likely

due to reduced capacitance between the fourth and fifth rings at the end furthest

from the feed.

These two simulations demonstrate that increasing the length of the rectangle can

be used to shift the resonant frequencies of the antenna. However, this involves

increasing the physical size of the antenna. Since it appears that the length of the

rings is the primary factor in determining resonant frequency, the following section

will present a means of reducing the frequencies of operation without increasing the

physical size of the antenna.

4.2.3 Variations on Antenna Shape

All the antenna variations presented thus far have maintained the overall rectan-

gular antenna configuration. However, since it has been shown that removing the

center rectangular patch had very little effect on the antenna response, the space can

perhaps be better utilized using a different configuration.

Fig 56 (a) shows an example of another possible shape. In this case, the two long

sides of the antenna have been altered so that the innermost ring overlaps itself in the
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center. Fig. 56 (b) shows the return loss resulting from this simulation in solid red.

The return loss from the case of the ringed rectangular patch without the center patch

is also shown in dashed blue, for comparison. As shown, the increase in ring length

introduced by this slight change in geometry resulted in a reduction in frequency of all

(a) (b)

(c) (d) (e) (f)

Figure 56: (a) A ringed bowtie patch antenna (b) the return loss obtained from its
simulation, plotted in solid red, and the return loss for the ringed rectangular patch
antenna with the center patch removed, plotted in dashed blue. The directivity of
the antenna is also shown on the φ = 0 (solid red) and φ = 90 (dotted blue) planes,
at (c) 318.5 MHz, (d) 359 MHz, (e) 382.5 MHz, and (f) 396 MHz.
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four resonances. The lowest frequency of operation, which in the original rectangular

patch antenna simulation was 353 MHz, is here shown to be 318.5 MHz. Similarly, the

second resonance shifted from 389.5 MHz to 359 MHz. The third resonance shifted

from 412.5 MHz to 382.5 MHz, and the fourth and highest-frequency resonance shifted

from 446 MHz to 396 MHz. The directivity is shown for each resonant frequency, with

a broadside directivity of 5.28 dB at 318.5 MHz shown in Fig. 56 (c), 1.71 dB at

359 MHz shown in Fig. 56 (d), 1.90 dB at 382.5 MHz shown in Fig. 56 (e), and

4.80 dB at 396 MHz shown in Fig. 56 (f).

Another possible geometry variation is shown in Fig. 57 (a). A 50 mm section in

the center of each side of this rectangle was shifted inward by 30 mm, in a manner

reminiscent of a Koch fractal. The return loss associated with this simulation is

shown in Fig. 57 (b). As shown, the effect of this variation is to significantly reduce

all four of the resonant frequencies of the antenna. The four new frequencies are

237.5 MHz, 257 MHz, 267.5 MHz, and 275 MHz. The directivity in dB for each

of these frequencies is shown in Fig. 57 (c-f), where the directivity at θ = 0◦ is

shown to be 5.00 dB at 237.5 MHz, 0.06 dB at 257 MHz, 0.76 dB at 267.5 MHz, and

2.82 dB at 275 MHz. The dramatic reduction in directivity compared to previous

simulations is probably due to the fact that the antenna is quite electrically small at

these frequencies - the length of the antenna at 237.5 MHz is λ0/8.54.
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(a) (b)

(c) (d) (e) (f)

Figure 57: A fractal ringed patch antenna and its return loss. The return loss of the
original ringed patch is shown in dashed blue, for comparison. The directivity of the
antenna is also shown on the φ = 0 (solid red) and φ = 90 (dotted blue) planes, at
(c) 237.5 MHz, (d) 257 MHz, (e) 267.5 MHz, and (f) 275 MHz.

4.3 Fabrication and Measurement of Ringed Patch Antenna

The ringed rectangular patch antenna was milled out on a 1/16” FR-4 printed cir-

cuit board. Thru, reflect, and line standards were also fabricated, to allow calibration

to approximately 10 mm from the patch. The calibration also included an edge-mount

SMA connector transition to a 50 Ω cable. The raised portions of the three outer
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rings were accomplished using jumpers of insulated wire, soldered on either side of

the feed line. The fabricated antenna is shown in Fig. 58 (a). The measured return

loss from this antenna, after calibration, is shown in Fig. 58 (b) in solid red. The

simulated return loss is also plotted, in dashed blue. As shown, the fabricated reso-

nances were higher in frequency than the simulated resonances. The four resonances

shown in Fig. 58 (b) occur at 363.6 MHz, 416.3 MHz, 454.9 MHz, and 481.1 MHz.

The frequency shift is likely due to variation in the FR-4 dielectric constant from the

εr = 4.4 that was assumed in simulation.

(a) (b)

Figure 58: The fabricated ringed rectangular patch antenna and its measured return
loss, shown in solid red. The return loss from the simulation of this antenna is also
shown, in dashed blue.
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4.4 Chapter Summary

A ringed rectangular patch antenna was presented, and was shown to possess four

frequencies of operation. Each of these four frequencies was below the natural reso-

nance of the patch antenna. The fields in the vicinity of the patch and the far field

radiation pattern of the ringed rectangular patch antenna were presented at each of

the four resonant frequencies, and shown to qualitatively match those of a traditional

microstrip patch antenna. The measured return loss of the fabricated antenna was

presented, and was consistent with simulated results, except for a shift in frequencies.

Four variants of the antenna were presented involving removing various elements of

the geometry. The first of these removed the center patch of the antenna, which

was shown to have very little effect on the return loss and radiation pattern. The

second removed the center patch and the first ring, which resulted in elimination of

the highest-frequency resonance. The third removed the center patch and the fifth

ring, which resulted in elimination of the lowest-frequency resonance and a shift of

the second-lowest-frequency resonance to lower frequencies. The fourth simulation re-

moved the center patch and the third ring, which was shown to result in elimination of

the second-highest resonance. Next, two variants of the antenna involving lengthen-

ing various rings was presented. It was demonstrated that increasing the length of all

rings together shifted all the resonant frequencies down together, while increasing the

length of only the outermost ring shifted only the lowest-frequency resonance, and, to

a lesser extent, the second-lowest-frequency resonance. Finally, two variations on the

overall rectangular shape of the antenna were explored. The first of these involved
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pulling in the two long sides of the antenna so that they met in the center of the patch.

The effect of this adjustment was to shift the resonant frequencies down slightly from

the unperturbed antenna. The second variation involved pulling in a 50 mm long

center section of each of the four sides of the antenna by 30 mm. This significantly

reduced all four resonant frequencies, but also dramatically reduced the directivity

seen at those four resonances. In conclusion, this ringed rectangular antenna has been

shown to have multiband behavior with controllable frequencies of operation. The

antenna is electrically small, and has a radiation pattern approximately matching

that of a traditional patch antenna.



CHAPTER 5: A CIRCULARLY-POLARIZED HORN ANTENNA WITH
TUNABLE HANDEDNESS USING CHIRAL METAMATERIAL LOADING

Horn antennas have high directivity and are easy to feed using rectangular waveg-

uides. However, they are limited in their application by the fact that they typically

are capable of handling only linearly polarized waves. Metamaterial loading has

shown promise in helping to overcome this limitation, as discussed in Chapter 2.

However, previously published results often involve greatly increasing the size of the

antenna [99] and also present fixed handedness for each frequency of operation [100].

This chapter will present a modified horn antenna that utilizes a unique chiral meta-

material, located inside the mouth of the horn, to achieve circular polarization with

minimal added bulk. Unlike previous designs, this work offers a range of frequencies

over which the polarization of the radiated wave may be adapted to the application

at hand through simple reorientation of the loading metamaterial unit cells.

5.1 Geometry and Simulation of Metamaterial-Loaded Antenna

This circularly polarized horn antenna utilizes a two-step process to achieve circu-

larly polarized radiation. The first step is to transition the electric field fed into the

antenna from the rectangular waveguide into a square-cross-section horn, in which

the electric field is directed along the diagonal of the square waveguide. This step is

achieved through modification of the traditional horn antenna geometry. The second

step is to introduce a 90◦ phase difference between two orthogonal components of
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Figure 59: The modified horn antenna, with Part 1: the rectangular waveguide seg-
ment, Part 2: the rectangular-to-square waveguide transition segment, and Part 3:
the square flared horn segment.

the electric field. This step is achieved through metamaterial loading located in the

mouth of the horn.

A typical horn antenna consists of two elements - a rectangular waveguide section,

and a flared horn section. In order to achieve the desired electric field orientation

in the flare section, the modified horn antenna adds a third section in the center,

as shown in Fig. 59. This “transition section” between the waveguide and the horn

flare linearly transitions the waveguide cross-section from the WR-187 rectangle of

the first segment to a square cross-section offset from the rectangle by 45◦ around

the direction of propagation, as shown in Fig. 59. This technique for electric field

re-orientation was originally presented in [99]. The length of this transition section is

50 mm. This is followed by a square-cross-section flared horn having initial width and

height equal to 49.3 mm, and final width and height equal to 120 mm. The flare has
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(a) (b) (b)

Figure 60: The electric field in the antenna, given 3.26 GHz excitation, taken on a
plane normal to the x-axis (a) at the beginning of the rectangular waveguide section
(segment 1), (b) just after the transition section, at the beginning of the square horn
flare (between segments 2 and 3), and (c) at the radiating aperture of the horn flare
(at the end of segment 3).

an x-dimension of 100 mm. Conceptually speaking, the goal of this added transition

section is to split the electric field into two equal-magnitude, in-phase linear modes,

directed along the sides of the square.

The electric field in the guide on three significant planes along the length of the

unloaded antenna, viewed from the +x direction and given a 3.26 GHz excitation,

are shown in Fig. 60. Figure 60 (a) shows the vector E-field at the beginning of the

waveguide. This figure shows the expected field configuration for the TE10 mode,

where the electric field is oriented parallel to the shorter sides of the rectangular

waveguide. Figure 60 (b) shows the vector E-field just after the transition section (at

the junction of sections 2 and 3). This figure demonstrates that the orientation of

the field is largely preserved through the transition segment, though the shape of the

guiding structure transitioned from rectangular to square. Figure 60 (c) shows the

vector E-field at the radiating aperture of the flared horn. This figure shows that the

electric field maintains the diagonal orientation to the end of the horn.
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(a) (b)

(c) (d) φ = 0◦ (e) θ = 90◦

Figure 61: (a) Broadside |S11| in dB, (b) Broadside axial ratio in dB, and (c) 3D
polar gain plot for the modified horn antenna in the absence of metamaterial loading,
(d) Gain on the φ = 0◦ plane, and (e) Gain on the θ = 90◦ plane at 3.26 GHz.

Figure 61 (a) shows the magnitude of return loss and Fig. 61 (b) the axial ratio

for the modified horn antenna in the absence of metamaterial loading. As shown,

the return loss is not optimized for this unloaded antenna; the match is only good

from cutoff at 3.15 GHz to 3.29 GHz, and above 3.64 GHz. At 3.26 GHz, |S11|

is observed to be -10.68 dB. The axial ratio shown in Fig. 61 (b) is upwards of

70 dB across the presented spectrum, and at 3.26 GHz is reported as 76.17 dB. This

indicates a very clean linear polarization for the radiated wave across the relevant

frequency band. Thus, in the absence of metamaterial loading, these simulation

results demonstrate that the horn antenna radiates a linearly polarized wave, with
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the electric field oriented along the diagonal of the square horn. The 3D gain plot

of this antenna at 3.26 GHz is shown in Fig. 61 (c), and shows a maximum gain of

12.8 dB at φ = 0◦, θ = 90◦.

The next step in achieving circular polarization is to introduce a phase differential

between the z-directed and y-directed components of this linearly polarized electric

field. The metamaterial unit cells used to achieve this phase differential are based on

the spherical spirals presented in Chapter 3, but are cylindrical, rather than spherical.

They are each formed as a three-turn left-handed spiral with respect to +~z, as shown

in Fig. 62. They have a radius of 23 mm, a height of 14.4 mm, and are formed of wire

having a radius of 0.5 mm. Four of these unit cells were arranged in the mouth of the

horn, as shown in Fig. 63. They were centered at (-20 mm, ±25.3 mm, ±23.5 mm),

with respect to the center of the antenna aperture. The unit cells shown in Figs.

63 (a) and 63 (b) are in what we will call “orientation A”. Polarization adaptability

is achieved by rotating each metamaterial on its own x-axis by 90◦, as shown in Fig.

63 (c). This orientation we will call “orientation B”.

(a) (b)

Figure 62: A single unit of the metamaterial used to load the circularly polarized
horn antenna (a) in Orientation A, and (b) in Orientation B.



85

Figure 64 shows the return loss and broadside axial ratio resulting from the simu-

lation of the metamaterial-loaded horn antenna in HFSS. In each of these cases, the

value for the unit cells in orientation A is plotted in solid red, and the value for the

unit cells in orientation B is plotted in dashed black. Fig. 64 (a) shows |S11| in dB for

each of these simulations. Again, the waveguide cutoff can be observed in this plot

at 3.15 GHz. This plot also shows that the antenna is matched for both orientations

of the unit cells from 3.25 GHz to 3.35 GHz, and also from 3.68 GHz to 3.93 GHz.

Figure 64 (b) shows the axial ratio for the two orientations in dB, measured exactly

(a) Orientation A, viewed from +y

(b) Orientation A, viewed from +x (c) Orientation B, viewed from +x

Figure 63: The modified horn antenna with metamaterial loading (a) viewed from
the +y direction, with unit cells in orientation A, (b) viewed from the +x direction,
with unit cells in orientation B, and (c) viewed from the +x direction, with unit cells
in orientation B.
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(a) (b)

Figure 64: (a) |S11| in dB, (b) Axial ratio in dB, taken at φ = 0◦, θ = 90◦. In each
plot, the case where the unit cells are in orientation A is plotted in solid red, and the
case where the unit cells are turned to orientation B is shown in dashed black.

broadside from the horn, at θ = 90◦, φ = 0◦. Axial ratio is under 3 dB, indicating

that the radiated wave is circularly polarized, from 3.25 GHz to 3.29 GHz for both

simulations. A minimum axial ratio is observed for both orientations at 3.26 GHz,

where loading with the unit cells in orientation A results in an axial ratio of 0.56 dB

and loading with the unit cells in orientation B results in an axial ratio of 1.50 dB.

The far field radiation pattern at 3.26 GHz is shown in Fig. 65. Figure 65 (a)

shows the gain of the left-hand circularly polarized (LHCP) wave in solid red and the

gain of the right-hand circularly polarized (RHCP) wave in dotted blue, for a sweep

of θ where φ is held constant at 0◦, and where the metamaterial unit cells are in

orientation A. The radiation in this case is clearly RHCP, and has a gain of 11.4 dB

at broadside, while the cross-polarization has a gain of −18.4 dB. Figure 65 (b) shows

exactly the same plot for the case where the unit cells are in orientation B. In this

case, the radiation is clearly LHCP, with broadside gain of the LHCP wave at 11.5 dB,

while the gain of the right-hand circularly polarized component is −9.8 dB. Figures
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(a) (b)

(c) (d)

Figure 65: Gain at 3.26 GHz of the RHCP wave component, shown in dotted blue,
and of the LHCP wave component, shown in solid red, for the case where (a) the unit
cells are in orientation A, with φ = 0◦. (b) the unit cells are in orientation B, with
φ = 0◦. (c) the unit cells are in orientation A, with θ = 90◦. (d) the unit cells are in
orientation B, with θ = 90◦.

65 (c) and 65 (d) show the corresponding sweeps of θ for φ held constant at 90◦.

Finally, the 3D polar plots of the total gain for this spiral-loaded antenna for each

of the two orientations is shown in Fig. 66. For orientation A, the total broadside

gain is 11.7 dB, and for orientation B, the total broadside gain is 11.8 dB.
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(a) (b)

Figure 66: 3D polar gain plot for the modified metamaterial-loaded horn antenna
with the loading unit cells (a) in orientation A and (b) in orientation B.

5.2 Fabrication Considerations

To build this antenna, three unique components must be addressed - fabrication

of the modified horn with the transition section, fabrication of the metamaterial unit

cells, and appropriate positioning of said unit cells in the mouth of the horn. One

possible technique for fabricating the waveguide length, transition section, and flared

horn is to cut out and fold appropriately dimensioned pieces of sheet copper, then

solder them together. The specifications for such two-dimensional cut-and-fold pieces

are shown in Fig. 67. Two of each of these pieces would be required to fabricate a

complete modified horn. In this design, every interior line indicates a fold, and the

exterior lines indicate the shape to be cut out. When assembled, the yellow polygons

would be sides of the flared horn, the blue polygons sides of the transition section, and

the purple polygons sides of the rectangular waveguide section. The greyed-out tabs

on the exterior sides of each piece are to be used for establishing secure structural and

electrical connections at the edges of the horn and at the feed point of the antenna.

For fabrication of the metamaterial unit cells and positioning of the unit cells
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(a)

(b)

Figure 67: Two-dimensional sheets that could be used to fabricate the modified horn
antenna. The flared horn sides are shown in yellow, the transition section sides in
blue, and the rectangular waveguide sides in purple. A complete kit would require
two of each of these pieces.

in the mouth of the modified horn antenna, a 3D printed support structure may be

considered. A proposed 3D printable structure composed of hollow dielectric cylinders
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(a) (b)

Figure 68: The metamaterial-loaded horn antenna with 3D-printable supports (a) in
orientation A and (b) in orientation B.

for metamaterial support and dielectric posts for positioning is shown in Fig. 68. The

effect of adding these dielectric supports was investigated through simulation in HFSS,

where the thickness of the hollow cylinders was set to 0.5 mm, the posts were designed

to be 10 mm wide and 4 mm thick, and the dielectric constant of the support material

was set to εr = 3.

Preliminary simulations showed that this dielectric loading shifted the operative

bandwidth to significantly lower frequencies than the unloaded case. In order to

(a) (b)

Figure 69: The (a) return loss and (b) axial ratio for the metamaterial-loaded horn
antenna with 3D-printable supports (a) in orientation A and (b) in orientation B.
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maintain operation above the cutoff frequency of the waveguide, the number of spiral

turns in each metamaterial unit cell was adjusted from 3 to 2.9. The return loss and

axial ratio resulting from this simulation are shown in Fig. 69. For the simulation of

the unit cells in orientation A, a return loss of -11.77 dB and axial ratio of 2.78 dB is

reported at 3.23 GHz. The corresponding simulation of the unit cells in orientation B

reports a return loss of -18.4 dB and an axial ratio of 2.55 dB at the same frequency.

The far field radiation pattern at 3.23 GHz for the case of the metamaterial-loaded

(a) (b)

(c) (d)

Figure 70: Gain at 3.23 GHz of the RHCP wave component, shown in dotted blue,
and of the LHCP wave component, shown in solid red, for the case where (a) the unit
cells are in orientation A, with φ = 0◦. (b) the unit cells are in orientation B, with
φ = 0◦. (c) the unit cells are in orientation A, with θ = 90◦. (d) the unit cells are in
orientation B, with θ = 90◦.
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modified horn antenna with dielectric supports is shown in Fig. 70. Figure 70 (a)

shows the gain of the LHCP wave in solid red and the gain of the RHCP wave in dotted

blue, for a sweep of θ where φ is held constant at 0◦, and where the metamaterial

unit cells are in orientation A. As previously, the radiation in this case is shown to be

RHCP, and has a gain of 11.7 dB at broadside, while the cross-polarization has a gain

of −4.2 dB. Figure 70 (b) shows exactly the same plot for the case where the unit cells

are in orientation B. In this case, the radiation is clearly LHCP, with broadside gain

of the LHCP wave at 11.8 dB, while the gain of the right-hand circularly polarized

component is −4.9 dB. Figures 70 (c) and 70 (d) show the corresponding sweeps of θ

for φ held constant at 90◦.

5.3 Chapter Summary

This chapter presented a rectangular waveguide horn antenna that utilizes chiral

metamaterial loading to enable circularly polarized radiation. The handedness of the

polarization over the range 3.25 GHz to 3.29 GHz is shown to be tunable from left-

handed circular to right-handed circular by adjusting the orientation of the loading

unit cells. In this frequency range, the gain of the co-polarized radiation is better

than 11 dB for both the left-handed and right-handed configurations. The gain of

the cross-polarized component of the radiated wave is more than 20 dB below the

co-polarized gain in both cases.

The challenge of building this antenna was discussed in detail. Two-dimensional

sheets that could be folded to form the modified horn antenna and 3D-printable

dielectric supports for wire-wrapping and metamaterial positioning were presented.
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The effect of the added dielectric was explored through simulation, and mitigated

through minor adjustment of the unit cells. The return loss, axial ratio, and radiation

pattern of the antenna including this dielectric loading were reported, and showed only

minor performance degradation from the unloaded case.



CHAPTER 6: CONCLUSION

This dissertation began with a brief introduction to electromagnetic theory, cover-

ing wave generation and propagation, as well as wave material interaction. That was

followed with a discussion of fractal geometries and their generation techniques. The

use of fractals in antenna design was presented next, with relevant publications for

fractal monopole antennas, fractal dipole antennas, and fractal patch antennas. Elec-

tromagnetic metamaterials were introduced, with a discussion of the history of and

motivation for negative-material-parameter metamaterial engineering. Several unique

properties of double-negative materials were demonstrated, including negative index

of refraction, negative phase velocity, and the reversal of Snell’s law. The use of frac-

tals in electromagnetic metamaterial design was reviewed using relevant publications

from the open literature. Finally, several publications utilizing metamaterial loading

to enhance the radiation characteristics of horn antennas were presented.

The novel work presented in this dissertation began in Chapter 3, with the spher-

ical spiral metamaterial unit cell. This unit cell, developed as a three-dimensional

fractal expansion of the traditional split ring resonator, was shown in simulation to

be capable of producing broadband negative permittivity over a bandwidth of 40.4%

when oriented with the axis of the spiral aligned with the incident electric field. Neg-

ative permeability over a bandwidth of 35.4% was achievable by rotating the unit

cells by 90◦ with respect to the incident electric field, and double-negative behavior
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was observed over a bandwidth of 15.5% for the unit cells rotated by 45◦ with respect

to the incident electric field. The mechanism by which these different responses were

induced was discussed. Several of these unit cells were fabricated by wrapping wire

around a rigid 3D-printed structure formed of ABS plastic, and measured in a finite

parallel plate waveguide test structure designed and fabricated for that purpose. The

measurements confirmed the broadband response for both the negative permeability

and the negative permittivity cases. Sets of twelve unit cells in various combinations

of orientations enabled measurement of a double-negative response. The contribution

to the general body of knowledge that is presented in this chapter may be summarized

as follows:

• This chapter demonstrated through both simulation and measure-

ment that the novel unit cells presented herein were capable of pro-

ducing broadband negative permeability, negative permittivity, or

negative index of refraction, through simple reorientation of the unit

cells with respect to the incident electric field.

Chapter 4 presented a patch antenna that was developed as a fractal expansion of

the traditional rectangular microstrip patch. The traditional antenna geometry was

modified through introduction of five gaps around the perimeter of the rectangle, cre-

ating five capacitively-coupled concentric rings. The feed of the antenna was designed

using a microstrip transmission line that passed under the outer three rings to con-

nect to the fourth ring. The effect of this modification was to induce four frequencies

of resonance, rather than the ordinary single resonant frequency. All four of these



96

resonances were shown to occur at lower frequencies than that of the traditional patch

antenna. Further, all four resonances were shown to have radiation patterns that were

consistent both with one another and with that of a traditional patch antenna. Sev-

eral additional simulations were performed to explore the effects of minor geometric

modification on the number of resonances and their frequencies. This chapter demon-

strated a simple technique for producing multiband behavior from a rectangular patch

antenna, where each resonance supported a similar current pattern and produced a

similar radiation pattern to a traditional rectangular patch antenna. Tunability of

resonant frequencies and number of resonances through minor geometric modification

was also demonstrated. The contribution to the general body of knowledge that is

presented in this chapter may be summarized as follows:

• This chapter demonstrated that multiple resonances could be induced

in a rectangular patch antenna through introduction of concentric

gaps around its perimeter. It also showed that the number of reso-

nances, as well as their frequencies, could be tuned through simple

geometric modification of the patch topology, all while maintaining

the single-lobe broadside directivity pattern of a traditional rectan-

gular patch antenna.

Chapter 5 presented a modified WR-187 rectangular-waveguide-fed horn antenna

that utilized spiral metamaterial loading in the mouth of the horn to achieve circular

polarization. The handedness of the radiated wave was shown to be adaptable through

reorientation of the metamaterial unit cells. For both orientations, this antenna
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exhibited better than 2 dB axial ratio at the operative frequency of 3.26 GHz. In

the first orientation, the gain of the left-hand circularly polarized wave was shown

to be 11.4 dB at broadside, while the broadside cross-polarized gain was -18.4 dB.

Similarly, for the second orientation, the broadside gain of the right-hand circularly

polarized wave was shown to be 11.5 dB, while the broadside cross-polarized gain was

-9.8 dB. The contribution to the general body of knowledge that is presented in this

chapter may be summarized as follows:

• This chapter demonstrated a rectangular-waveguide-fed antenna that

produced circularly polarized radiation, and also showed that the

handedness of the radiated wave was tunable through reorientation

of the loading unit cells.
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