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ABSTRACT 

KANYA KAMANGU MUKOKO. Modeling bicycle-vehicle crash frequency on urban 
roads. (Under the direction of DR. SRINIVAS S. PULUGURTHA) 
 
 

Bicyclists and motorists make mistakes that contribute to traffic crashes involving 

bicyclists on urban roads.  The likelihood of a bicyclist being severely injured or killed 

daily in traffic crashes is creating fear, anxiety, and becoming a potential danger to the 

increasing number of Americans using bicycle as a mode of transportation.  It is also 

making bicycling to work or for other purposes less lucrative.  Building bicycling friendly 

and safe environment is, therefore, vital to encourage and have more people use bicycle as 

a mode of transportation.  Therefore, the main goal of this research is to improve safety of 

bicyclists on urban roads.  The main objectives are to understand the role of explanatory 

variables on risk to bicyclists on urban roads and to develop macroscopic bicycle-vehicle 

crash frequency models (safety performance functions) for urban roads. 

Mecklenburg County in North Carolina was considered as the study area.  Reported 

bicycle-vehicle crash data from 2010 to 2015 along with demographic, land use and 

network characteristics data was obtained from the local agencies.  One-hundred and 

nineteen locations (intersections) were randomly selected in the study area.  These 

locations were selected such that they are geographically distributed in the study area.  

Features available in Geographic Information Systems (GIS) software were used to ensure 

that these locations fall in high, moderate, low and no bicycle-vehicle crash areas.  Data 

within one-mile buffer (vicinity) of 119 randomly selected locations was then captured.  

These 119 locations accounted for 91.8% of total bicycle-vehicle crashes observed during 

the study period. 



iv 
 

Data for 99 randomly selected locations was used for modeling, while data for the 

remaining 20 randomly selected locations was used for validating the models.  Poisson and 

Negative Binomial log-link distribution based models were then developed using the 

modeling dataset.  The bicycle-vehicle crash dataset used in this research was observed to 

be over-dispersed (variance greater than the mean).  Therefore, Negative Binomial log-link 

distribution based models were selected and discussed in this research. 

Several demographic, land use and network characteristics were observed to be 

linearly correlated to bicycle-vehicle crash frequency at a 95% or higher confidence level. 

Correlations, with p-values = ~0.000, were also observed between demographic, land use 

and network characteristics (explanatory variables).  Six alternate models were developed 

considering various combinations of explanatory variables, land use and network 

characteristics, that are not correlated to each other.  Two models using all the explanatory 

variables by ignoring multicollinearity, one each with and without eliminating insignificant 

explanatory variables, were also developed.  The validation dataset was used to compare 

the estimated bicycle-vehicle crash frequency from each model with the actual bicycle-

vehicle crash frequency. 

The results obtained from analysis and modeling indicate that bicyclists are at a 

significantly higher risk of getting involved in a crash while traveling 

(1) on segments with no bicycle lane, 

(2) on segments with traffic lights, 

(3) on segments with 45 mph as speed limit, 

(4) in commercial areas, 

(5) in areas with research activity and institutions, 
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(6) in areas with multi-family residential units (densely populated), and, 

(7) in heavy industrial areas. 

Overall, this dissertation explores interdisciplinary concepts related to 

transportation engineering, GIS, data analytics and statistical methods to develop and 

validate models to estimate bicycle-vehicle crash frequency.    
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CHAPTER 1: INTRODUCTION 

A transportation system influences the development of urban areas and serves as 

an effective way to transport people and goods from one place to another place.  It is one 

of the most basic needs of the human society.  Travel and mobility will be very difficult 

without the provision of an efficient and safe transportation system.  While travel is 

facilitated by the transportation system, mobility is directly influenced by the layout of the 

transportation network and the level of service it offers to the transportation system users 

(Beimborn, 1999). 

Mobility is a function of urban multilane highways (Wang et al., 2013).  On the 

other hand, accessibility is an important consideration in geometric design and traffic 

management.  An access point, a combination of a median opening and its served minor 

roads within an urban multilane road section, is bounded by two consecutive signalized 

intersections (critical spots that influence the safety and mobility of urban multilane 

highways) with turning movements (left-turn, through and right-turn) and/or U-turn 

movements.  As population and traffic volume increase on urban multilane roads, 

interactions between vehicles, pedestrians and bicyclists on roads become more frequent 

and serious.  Due to high vehicle speed, high traffic volume, and high access movements, 

pedestrians and bicyclists are the most vulnerable users of urban multilane highways 

(Wang et al., 2013). 

Urban settings world-wide are ideal for bicycling to become a significant mode of 

transportation, given the greater compactness of destinations (Delmelle and Thill, 2008; 
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Wei and Lovegrove, 2012).  Chaurand and Delhomme (2013) acknowledged that today’s 

increase in the number of bicyclists has triggered a change in the interactions to be handled 

by transportation system users.  Undoubtedly, increasing the number of bicyclists on urban 

streets is a sustainable solution to congestion and air quality problems encountered in most 

cities.  Indeed, ecological issues concerning the environmental consequences of the use of 

motorized transportation, concerns about the impact of car use on health, or problems in 

terms of cost and time loss due to traffic congestion are leading people to change their 

transportation mode.  The above dynamic is encouraged by public policies, through 

campaigns in favor of sustainable transportation (Chaurand and Delhomme, 2013).  

However, in the United States, bicycling is both scarcely used and very dangerous, as 

bicyclists are 12 times more likely to be killed in a road crash than motorists (Delmelle and 

Thill, 2008).  They have a higher risk of being injured in a road crash compared to other 

road users (Martinez-Ruiz et al., 2013). 

Bicyclist’s safety is a major concern to urban transportation planners, engineers and 

system managers (LaMondia and Duthie, 2012; Wei and Lovegrove, 2012; Martinez-Ruiz 

et al., 2013).  In a survey of bicyclists in Texas, 69% of the respondents stated that they 

feel bicycling is “somewhat dangerous” or “very dangerous” from the standpoint of traffic 

crashes (LaMondia and Duthie, 2012).  However, relatively fewer number of studies were 

conducted on crash risk perceived by bicyclists interacting with other transportation system 

users, bicyclists’ and motorists’ perceptions of crash risk in bicycle–vehicle interactions, 

or modeling to estimate bicycle-vehicle crash frequency on urban roads. 
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1.1 Problem Statement 

Pedalcyclists (example, Figure 1) are bicyclists and other cyclists including riders 

of two-wheel, non-motorized vehicles, tricycles, and unicycles powered solely by pedals 

(NHTSA, 2015).  A traffic crash (example, Figure 2 and Figure 3) is defined as an incident 

that involved one or more vehicles where at least one vehicle was in transport and the crash 

originated on a public traffic way, such as a road or highway (NHTSA, 2015).  Crashes 

that occurred on private property, including parking lots and driveways, are typically 

excluded.  Further, bicycle-vehicle crashes, as per the National Highway Traffic Safety 

Administration (NHTSA)’s fact sheet, do not include bicycle wrecks that do not involve 

vehicles. 

 

 

Figure 1: Bicyclist 
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Figure 2: Bicyclist crash 

 

 

Figure 3: Traffic crash 

 

The NHTSA’s (“Safety in Numbers Newsletter” titled “Bicycles”) acknowledged 

that from 2000 to 2012, the number of Americans traveling to work by bicycle increased 

from ~488,000 to ~786,000 (U.S. Census Bureau, May 2014). 

While a bicycle can offer many health, financial, and environmental benefits, it can 

also bring the dangers associated with any vehicle.  Bicyclists and motorists make mistakes 
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that contribute to crashes.  When a crash happens involving a bicyclist and a car, SUV, 

pickup truck, or bus, it is the bicyclist who is likely to be injured or killed.  Of those injuries, 

a significant number are incapacitating, meaning the bicyclist could not leave the crash 

scene without assistance (skull, chest, or abdominal injuries, broken limbs, severe 

lacerations, or unconsciousness) (NHTSA, 2014). 

In the United States, 743 bicyclists were killed and an estimated 48,000 injured in 

traffic crashes in 2013 (NHTSA, 2015).  Bicyclist deaths accounted for 2% of all traffic 

fatalities during the year.  The number of bicyclists killed in 2013 is 1% higher than the 

734 bicyclists killed in 2012.  The increase in 2013 is the third straight increase in bicyclist 

fatalities, a 19% increase since 2010 (NHTSA, 2015).  While 68% of bicyclists were killed 

in urban traffic crashes in 2013, 57% of bicycle-vehicle crashes were recorded at non-

intersections. 

The likelihood of a bicyclist being severely injured or killed daily in traffic crashes 

is creating fear, anxiety, and becoming a potential danger to the increasing number of 

Americans considering bicycle as a mode of transportation.  The number of incapacitating 

injuries to bicyclists is dramatic and terrifying for Americans in need for healthy, financial, 

and environmental friendly alternate modes of transportation (NHTSA, 2014).  There is a 

need to better understand the role associated factors and proactively plan to reduce bicycle-

vehicle crash frequency on urban roads. 

The lack of physical exercise has led to higher rates of obesity, hypertension and 

diabetes among Americans compared to most Europeans.  Europeans have longer healthy 

life expectancies, although they spend less than half as much as Americans on healthcare 

because of their overall physical exercise levels, primarily attributed to much higher rates 
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of walking and bicycling (Pucher and Dijkstra, 2003).  Pucher and Dijkstra (2003) 

encouraged promoting safe and convenient walking and bicycling for daily urban travel to 

improve public health. 

For a nation to remain strong and find its rightful place in the community of nations, 

significant investment in bicycling infrastructure to improve bicycling conditions is 

required through the three “pillars” (social, economic, and environmental) of sustainable 

transportation systems and modes (Figliozzi et al., 2013).  The sustainability of the 

transportation modes is very important as it accounts for the social (improved health due 

to physical activity and other related reasons), the economic (cost efficiency), and the 

environmental (less congestion, no fossil fuel consumption, no air or noise pollution) 

spheres (Farley and Smith, 2014). 

Sustainable transportation systems, including walking, bicycling, public transit, 

green vehicles, and car sharing, make more positive contributions to the society, the 

economy and the environment than automobile dominated transportation systems (Wei and 

Lovegrove, 2012).  The benefits of bicycling generally include relatively low costs, 

emissions, and energy use, together with improved health, and convenient parking.  

Bicycling remains one of the most effective modes for short trips with distances less than 

3.1 miles.  In fact, bicycling is typically the fastest mode for trips less than 3.1 miles.  This 

transportation mode is being encouraged for use widely.  However, as vulnerable road 

users, bicyclists are more likely to be injured when involved in crashes (Wei and 

Lovegrove, 2012). 

LaMondia and Duthie (2012) indicated that the transportation community has long 

been divided over the most appropriate and safest way to accommodate bicyclists and 
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motorists together on multilane roadways.  The alternatives range from separated pathways 

to designated bicycle lanes to requiring bicyclists to share the road.  Regardless of which 

alternative is correct, or if a correct position exists, facilities for bicyclists are not abundant 

and, thus, space is shared for at least some segments of most trips (LaMondia and Duthie, 

2012). 

Traffic engineers, professionals, practitioners, policy makers and authorities are, 

therefore, obligated to bring improvements and assure that bicyclists’ safety is provided 

and maintained on urban roads.  Further, NHTSA recommends effective actions that 

communities can take to improve bicycle safety for adults and children (NHTSA, 2014). 

1.2 Research Goal and Objectives 

Common modes of transportation include bicycles, cars, buses, other vehicles, 

trains, boats and planes.  Transportation projects are planned to decrease travel time and 

improve safety irrespective of the mode of transportation.  Despite benefits provided by 

the transportation system, negative developments arising from it cannot be ignored.  Fatal, 

injury and property damage only (PDO) crashes are typical spin-offs from the 

transportation system. 

Roess et al. (2004) state that traffic engineering is a phase of transportation 

engineering which deals with the planning, geometric design and traffic operations of 

roads, streets, highways, their networks, terminals, and abutting lands.  In traffic 

operations, safety is one of the primary objective.  Therefore, the provision of a safe 

transportation system is an important responsibility of a traffic engineer. 

From NHTSA’s 2012 national representative telephone survey, a typical day 

average duration of a bicycle ride is about 45 minutes.  The most common ride length is 
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30 minutes or less (42%).  The most commonly cited purpose of bicycle trips is recreation 

(33%) and exercise (28%), followed by personal errands (17%), visiting a friend (8%), 

commuting to work (7%) or going to school (4%).  More fatalities occurred during the 

summer months of July through September (NHTSA, 2014). 

The pedestrians and bicyclists traveling to school have the highest rate of injury 

and fatality on a per-mile basis (McMillan, 2007).  Engineering, enforcement, and 

education, the “3 E’s”, are critical and needed to reduce crashes and save bicyclist lives.  

In summary, bicyclists are one of the most vulnerable class of transportation system users.  

Therefore, the main goal of this research is to contribute and improve the safety of 

bicyclists on urban roads. 

Despite numerous efforts on the safety of bicyclists, there are still some unanswered 

research questions.  They are:  

(1) What is the relationship between various demographic (population, household units, 

and household mean-income), land use (business, business park, business district, 

mixed use, mixed use residential, light industrial, heavy industrial, manufactured 

home, single-family, multi-family, institutional, research, commercial, office, 

transit oriented development, uptown mixed use, and urban residential) and 

network (number intersections by control type, number of bus-stops, number of 

elementary schools, number of middle schools, number of high schools, number of 

private schools, number of colleges and universities, center-line miles with bicycle 

/ no bicycle lane, center-line miles with sidewalk / no sidewalk, center-line miles 

of divided / undivided roads, center-line miles by number of lanes, and center-line 
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miles by speed limit) characteristics and bicycle-vehicle crashes in the vicinity of a 

location (intersection)? 

(2) Do they have a positive or negative influence on bicycle-vehicle crash frequency? 

(3) How can one model and estimate bicycle-vehicle crash frequency within the 

vicinity of a location? 

(4) Would eliminating correlated and statistically insignificant explanatory variables 

enhance model’s predictability? 

(5) Are such models valid to estimate bicycle-vehicle crash frequency and proactively 

identify and implement potential countermeasures. 

Thus, the following research objectives were identified and selected to accomplish 

the goal. 

1. Apply Geographic Information Systems (GIS) tools to identify a geographically 

distributed, unbiased sample of locations in high, medium, low and no risk bicycle-

vehicle crash locations. 

2. Capture, analyze and understand the role of explanatory variables on bicycle-

vehicle crashes on urban roads. 

3. Examine correlations and select explanatory variables to develop bicycle-vehicle 

crash frequency models. 

4. Develop and validate macroscopic bicycle-vehicle crash frequency models for 

urban roads. 

It is hypothesized that surrogate data such as demographic, land use and network 

characteristics within the vicinity of a location can be used to model and estimate bicycle-
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vehicle crashes.  While characteristics or explanatory variables in each category 

(demographic, land use and network) may influence bicycle-vehicle crashes, network 

characteristics may be better predictors of bicycle-vehicle crash frequency.  Further, the 

use of selected, significant but not correlated, explanatory variables may yield similar or 

better statistically meaningful outcomes. 

It is envisioned that the models and valid estimates can be proactively used to 

develop comprehensive transportation plans, metropolitan transportation plans, and 

transportation improvement programs as well as assist with land use decisions.  The 

findings from this research are targeted towards planners, professionals, practitioners and 

policy-makers who might be able to correct the hazards and improve safety of bicyclists 

on urban roads.  In conjunction with policy-makers, the “3 E’s” could be used to further 

minimize crashes involving bicyclist’s in the United States cities as well as around the 

world. 

1.3 Dissertation Outline 

This dissertation is organized as follows.  Chapter 2 presents a review of past 

studies and researches on identification of crash locations and data extraction, bicycle-

vehicle crash risk factors, overview of crash injury severity and crash frequency modeling, 

and limitations of past research.  Chapter 3 discusses the data required and outlines the 

methodology adopted in this research.  Chapter 4 presents the selection of locations for 

data extraction, correlation between explanatory variables and the selection of explanatory 

variables to develop bicycle-vehicle crash frequency models.  Chapter 5 describes the 
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bicycle-vehicle crash estimation models and results from model validation.  Chapter 6 

presents conclusions from this research and scope for future work.



 
 

 

 

CHAPTER 2: LITERATURE REVIEW 

The discussion of past literature is presented in this chapter.  The chapter is divided 

into four sections.  Identification of crash locations by risk level and data extraction are 

discussed in Section 2.1.  Factors contributing to bicycle-vehicle crashes are described in 

Section 2.2.  A review of various methods used in modeling crash injury severity and traffic 

crash frequency is presented in Section 2.3.  Limitations of past research are discussed in 

Section 2.3. 

2.1 Identification of Crash Locations and Geospatial Data Extraction 

Several researchers have studied, developed methods and extracted geospatial data 

to analyze transportation problems.  The section is divided into two subsections.  Literature 

pertaining to identification of crash locations is discussed in the first subsection, while 

literature pertaining to geospatial data extraction to analyze transportation problems is 

discussed in the second subsection. 

2.1.1 Identification of Crash Locations 

Identifying traffic crash locations is very important prior to allocation of resources 

and determining effective strategies for the reduction of crashes.  However, literature 

provides no universally accepted definition of a traffic crash “hotspot” (Anderson, 2009).  

Dealing with the presence of several crashes at one point location, Pulugurtha et al. (2005) 

warned that in a spatial distribution of pedestrian crashes, the presence of a dot does not 

necessarily equal one crash.  Several crashes may have occurred at the point.  Therefore, it 

is difficult to identify locations that have multiple crashes using a spatial distribution map.  
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The suggested solution for this problem is crash density or concentration maps (Pulugurtha 

et al., 2005).  The development of such maps works by grouping point features within a 

certain distance of one another into one symbol, while reducing the complexity within the 

dataset (Delmelle, 2016). 

The density analysis takes geocoded crash data and spreads them across the study 

area based on the quantity that is measured at each location (say, risk or number of crashes 

per unit area) and the spatial relationship of the locations of the measured quantities.  The 

resulting surfaces surrounding each point in Kernel density are based on a quadratic 

formula with the highest value at the location of a crash.  The results obtained from 

identification and ranking of crash locations are sensitive to buffer radius, cell size and the 

ranking methods (Pulugurtha and Vanapalli, 2008). 

Several researchers explored the concept to accomplish the task of identifying high 

crash locations.  Pulugurtha and Nambisan (2003), Pulugurtha et al. (2005) and Pulugurtha 

et al. (2007) identified high pedestrian crash locations and defined criteria to rank 

(prioritize) them by examining spatial clustering and dispersion of pedestrian crashes.  

Delmelle and Thill (2008) and Delmelle et al. (2008) used geospatial methods to determine 

the geographic distribution of crashes and crash hazard intensity factors for both youth and 

adult urban bicyclists in Buffalo, New York.  Pulugurtha and Vanapalli (2008) and 

Pulugurtha and Penkey (2010) identified pedestrian crashes on segments with transit 

service, pedestrian crashes on segments without transit service, unsafe segments for transit 

system users who walk to access the system, and hazardous bus-stops using pedestrian 

crash data. 
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Other related geospatial methods adopted in the past include (1) the use of Anselin 

Moran’s Local Spatial Autocorrelation tool to detect high crash clusters and identify factors 

that influence the concentration of pedestrian crashes (Flahaut et al., 2003; Emaasit et al., 

2013); (2) the use Kernel Density Estimation (KDE) to study the spatial patterns of injury 

related traffic crashes and to create a classification of traffic crash locations (Anderson, 

2009); (3) the use of network K-functions in traffic accident analysis when compared to 

planar K-functions (Yamada and Thill, 2004); and, (4) the use spatial KDE to examine the 

clustering patterns of pedestrian crashes and identify locations where clustering is more 

pronounced (Jang et al., 2013). 

The criteria to define high crash locations is also an important factor for allocation 

of resources for safety improvements.  Pulugurtha and Nambisan (2003) considered high 

risk locations (zones) as those with a target rate of 10 pedestrian crashes per zone during 

the study period, compared to a total annual size of 200 pedestrian crashes in the study 

area.  Armstrong and Petch (2013) classified any location with two or more pedestrian 

crashes in the previous three years to be a high pedestrian risk location.  Pulugurtha and 

Imran (2013) categorized signalized intersections based on risk to pedestrians and 

bicyclists using Jenks natural breaks inherent in the data.  However, categorizing locations 

based on bicycle-vehicle crash data is difficult due to relatively fewer number of bicycle-

vehicle crashes observed in urban areas annually. 

2.1.2 Geospatial Data Extraction and Transportation Problems 

Literature documents several efforts to extract geospatial data and analyze 

transportation problems.  As an example, features available in GIS software were used (1) 

to extract data and identify critical factors for modeling pedestrian activity at signalized 
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intersections (Pulugurtha and Repaka, 2008); (2) to extract data and develop models to 

estimate pedestrian demand by the level of pedestrian activity at signalized intersections 

(Pulugurtha and Repaka, 2011); (3) to extract data and examine the role of the number of 

bus-stops and factors such as demographic, socio-economic, land use, and network 

characteristics on transit ridership (Pulugurtha and Agurla, 2012); (4)  to extract census 

and land use data for developing models to estimate crashes at intersections- with and 

without using traffic volumes (Pulugurtha and Nujjetty, 2012); and, (5) to extract 

geospatial data pertaining to low-income communities and examine their influence on the 

number of crashes compared to other areas (Kravetz and Noland, 2012).   

The locations or segments for data extraction, analysis and modeling should be 

randomly selected to avoid any bias in assessing the relationship, ranking, and allocation 

of resources for transportation improvements (Pulugurtha and Penkey, 2010).  The width 

of the buffer also plays a vital role in extracting geospatial data for analysis and modeling. 

Bolstad (2012) defined buffer as a region that is less than or equal to a specified distance 

from one or more features. 

Hess et al. (1999) studied the relationship between site design and pedestrian travel 

in mixed-use and medium density environment.  Geospatial data was captured within a 0.5-

mile pedestrian travel catchment area.  Their study defined commercial-center size using 

the number of businesses and types of retail facilities provided within the 0.5-mile 

pedestrian catchment area (Hess et al., 1999). 

The pedestrians at risk of getting involved in a crash was estimated by generating 

both Euclidean and network buffers (circular and linear zones) of width equal to accessible 

walking distance (say, 0.5-mile) around each location, and estimating the population 
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residing in the vicinity of each location (Pulugurtha and Nambisan, 2003).  Falb et al. 

(2007) used GIS to estimate the percentage of potential walkers (school-age children) 

living within 1-mile from public schools in Georgia.  The 1-mile study area was called as 

“pedestrian catchment area” (Falb et al., 2007). 

McDonald (2008) indicated that, in general, two factors have an impact on active 

transportation: (1) individual/household factors (age, gender, race, household income and 

vehicle availability); and (2) neighborhood factors (population density and neighborhood 

disadvantage).  Their study revealed that living within a 0.5-mile of school greatly 

increased the likelihood of walking or bicycling to school across all groups.  Also, rates of 

active transportation varied significantly by racial/ethnic and income groups (McDonald, 

2008). 

Pulugurtha and Repaka (2008, 2011) used different buffer widths (proximal area) 

to extract network characteristics and off-network (demographic and land use) 

characteristics to estimate pedestrian counts.  Likewise, Zahabi et al. (2011) generated 

buffers of five different sizes (0.0310-, 0.0621-, 0.0932-, 0.1242-, and 0.2485-mile) to 

capture the urban form and environment variables that have an effect on the severity of the 

crash instead of using a single buffer.  Each crash record was georeferenced to its exact 

coordinates and the built environment measures were computed to capture the context of 

the area where it occurred (Zahabi et al., 2011). 

Pulugurtha and Agurla (2012a,b) used different buffers (0.25-, 0.5-, 0.75 and 1-

mile) to evaluate the best proximity distance that has a strong influence on pedestrian and 

transit activity at a bus-stop.  Network characteristics from aerial photographs and field 

visits were then added to the databases.  Demographic, socio-economic and land use 
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characteristics around each bus-stop were overlaid on generated buffers to extract data and 

develop models to estimate pedestrian activity (counts) and transit ridership at bus-stops. 

Distance decay effect was also adopted to integrate data from the different buffers and 

estimate pedestrian activity and transit ridership at bus-stops.  However, their research did 

not show that using integrated data from different buffers would yield significantly better 

results than from individual buffers. 

   Emaasit et al. (2013) overlaid generated clusters on selected socio-economic and 

population data to examine their association with high crash clusters.  The minimum 

distance to ensure every crash incident has at least one neighbor was determined to be 3.4 

miles (Emaasit et al., 2013). 

One-mile buffer around a location might be the best proximal distance to extract 

geospatial data and model bicycle-vehicle crashes for two reasons: (1) distance (decision 

to bicycle depends on how long is the travel distance); and (2) travel time (takes about 5 to 

6 minutes for a bicyclist at an average speed to cover 1-mile distance (Wei and Lovegrove, 

2012).  Further, the average distance for bicyclists aged 15 years and under is ~0.58 miles, 

while the average distance for those bicyclists older than 15 years is ~1.15 miles.  Younger 

bicyclists are, however, unlikely to travel far from their own neighborhoods (Delmelle et 

al., 2008). 

2.2 Bicycle-Vehicle Crash Risk Factors and Modeling 

Literature documents research on factors contributing to bicycle-vehicle crashes, 

risk to bicyclists and analyzing bicycle-vehicle crashes at traffic analysis zone (TAZ) level.   

Wachtel and Lewiston (1994) compared age, gender, direction of travel (with or 

against traffic flow), and position on the road (in roadway, bicycle lanes, private driveways, 
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sidewalk, paths or crosswalks) of bicyclists involved in crashes with similar data for the 

general population of bicyclists observed along the same streets.  The comparison enabled 

to identify factors that are correlated with increased risk of bicycle-vehicle crashes.  Other 

variables that increase the risk of bicycle-vehicle crashes are urban areas, intersections, 

land use (residential, business district, etc.), road cross-section (two-, four- or six-lane), 

annual average daily traffic (AADT) and posted speed limit.  They warned that 

intersections (interpreted broadly) are the major point of conflict between bicycles and 

vehicles.  Sidewalk for bicycling, adjacent to busy streets with many intersections, presents 

special dangers and should not be encouraged through the construction or designation of 

bicycle paths parallel to the street (Wachtel and Lewiston, 1994). 

Klop and Khattak (1999) examined the effect of physical and environmental factors 

on injury severity in bicycle-vehicle crashes.  Over the four years (1990-1993) examined 

in bicycle-vehicle crashes on state-controlled two-lane undivided roads in North Carolina, 

60 bicyclists were killed and 947 bicyclists were injured in police reported bicycle-vehicle 

crashes.  Their study indicated that road cross-section elements (two-lane) and 

environmental factors as well as individual, vehicle, and bicycle factors drive the crash 

process.  Reaction times of both the motorist and the bicyclist, perceptual and judgement 

errors, and attention also affect bicycle-vehicle crash frequency.  In addition, motorist and 

bicyclist information processing, motorist and bicyclist behaviors, the care that some 

motorists use when near bicyclists, and right-turn-on-red situations may also increase or 

decrease injury severity.  Variables expected to significantly influence injury severity 

among bicyclists are curves, upgrades, downgrades, intersections, driveways, alleys, 
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parking lots, narrower lanes (width), shoulder width, increasing AADT, speed limit, street 

lighting, age-group, rain and fog (Klop and Khattak, 1999). 

Kim et al. (2006) explored the factors contributing to the injury severity of 

bicyclists in bicycle-vehicle crashes using a multinomial logit model.  The analysis is based 

on police reported crash data from 1997 to 2002 for North Carolina.  They predicted the 

probability of four injury severity outcomes: fatal, incapacitating, non-incapacitating, and 

possible or no injury.  Their study included demographic and economic characteristics 

(age, gender, ethnicity, and income), road characteristics (speed limit, intersections, type 

of roads, and pavement), road geometry (curved, straight, and grade), environmental 

factors (month, day, time, weather, and road surface), locations or land  characteristics 

(urban or rural areas, driveway, shoulder, bicycle lane, and trail), land use characteristics 

(residential, institutional, industrial, and commercial), direction of travel, the influence of 

alcohol, head injuries, bicycle helmet usage, crash types, and party at fault.  Socio-

economic factors, particularly the percentage of poor households within a neighborhood, 

played an important role in the prediction of bicycle crash rates.  Family and neighborhood 

characteristics were stronger risk factors for bicycle injuries than children’s personality and 

behavior.  Higher risk of injury in children was related to fewer years of parent education, 

a history of crashes in the family, an environment judged as unsafe, and poor parental 

supervision (Kim et al., 2006). 

Density of development, physical road characteristics (roadway and intersection), 

socio-economic and demographic variables, and potential trip attractors were examined 

using Buffalo, New York bicycle crash data (Delmelle and Thill, 2008).  In another study, 

bicycle crashes were analyzed to determine and compare risk factors of both child and adult 
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bicyclists (Delmelle et al., 2008).  In a recent study, it was found that child bicyclists (<10 

years) are more likely to be involved in non-intersection bicycle-vehicle crashes (Hamann 

et al., 2015).  

Reynolds et al. (2009) reviewed studies of the impact of transportation 

infrastructure on bicyclist safety.  The results were tabulated within two categories of 

infrastructure at intersections (e.g., roundabouts, traffic lights, bicycle crossings or 

intersection design) and between intersections on “straightaways” (e.g., bicycle lanes or 

paths, road design characteristics, road surface, sidewalk and street lighting).  Their study 

found that multilane roundabouts can significantly increase risk to bicyclists, unless a 

separated bicycle track is included in the design.  Sidewalks and multi-use trails pose the 

highest risk to bicyclists.  The major roads are more hazardous than minor roads for 

bicyclists.  The presence of bicycle facilities (e.g., on-road bicycle routes, on-road marked 

bicycle lanes, and off-road bicycle paths) was associated with the lowest risk to bicyclists 

(Reynolds et al., 2009). 

Zahabi et al. (2011) investigated the link between built environment characteristics 

and pedestrian-vehicle and bicyclist-vehicle crash severity.  They believed that road 

facilities in urban areas are a major source of injury for non-motorized road users despite 

the benefits of non-motorized transportation.  The location, road design, and urban form 

characteristics influence pedestrian-vehicle and bicycle-vehicle crashes and the severity of 

the injury sustained in the crashes (Zahabi et al., 2011).  Kravetz and Noland (2012) used 

spatial autocorrelation and Negative Binomial distribution to analyze to what extent crash 

disparities occur due to inequitable road infrastructure, and whether this disparity can be 

linked to the socio-political disparities in the region (Kravetz and Noland, 2012). 
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Moore et al. (2011) developed multinomial logit and mixed logit models to estimate 

the degree of influence that bicyclist, driver, motor vehicle, geometric, environmental, and 

crash type characteristics have on bicyclist injury severity.  They observed that factors 

affecting bicyclist injury severity at intersection and non-intersection locations are 

substantively different.  Stipancic et al. (2015) developed a segmented ordered logit model 

for bicycle-vehicle conflict occurrence to evaluate the impact of gender on bicyclist risk at 

urban intersections with bicycle lanes.  They found that male bicyclists, with all else being 

equal, are less likely to be involved in conflicts than female bicyclists. 

Delmelle et al. (2012) studied the relative risk factors of bicycle and pedestrian 

crashes at the neighborhood level using data for the city of Buffalo, NY.  Their analysis 

underscored significant differences tied to neighborhood ethnicity, educational attainment 

and land use, while physical characteristics of the road infrastructure were registered as 

marginally discriminating factors.  Income related socio-economic status was not found to 

play a prominent role in bicycle-vehicle crashes (Delmelle et al., 2012).  Contrarily, 

Hamann et al. (2015) observed that bicycle-vehicle crashes occur more frequently in low 

income and education areas. 

LaMondia and Duthie (2012) studied the impact of roadway environment, motorist 

behavior, and bicyclist behavior on bicyclist-motorist interactions.  Their study considered 

three distinct components: bicyclist lateral location, bicyclist-motorist interaction 

movement, and bicyclist-motorist lateral interaction distance.  Each of these components 

provide insight into a specific, but related aspect of how bicyclists and motorists relate to 

each other on a road.  Three unique ordered probit regression models that describe bicyclist 
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lateral location, bicyclist-motorist interaction movement, and bicyclist-motorist lateral 

interaction distance were developed (LaMondia and Duthie, 2012). 

Wei and Lovegrove (2012) revealed that an increase in bicycle–vehicle crashes is 

associated with an increase in total lane miles, bicycle lane miles, bus-stops, traffic signals, 

intersection density, and arterial–local intersection percentage.  Models were categorized 

in four groups: (1) urban exposure (total lane miles, total bicycle lane miles, and zonal 

area); (2) urban socio-economic and demographics (population density, home density, 

employed density, and average income); (3) urban transportation demand management or 

network (commuter density, core area, transit commuter, bicycling commuter, pedestrian, 

and bus-stop density); and (4) urban road network (signal density, intersection density, and 

number of arterial-local intersections) (Wei and Lovegrove, 2012). 

Martinez-Ruiz et al. (2013) used the choice of exposure metrics approach to 

identify motorist-related and vehicle-related factors associated with the risk of causing a 

road crash involving a bicyclist in Spain.  The method constitutes a potentially useful tool 

that compares the characteristics of responsible and non-responsible motorists involved in 

road crashes.  They retained the following risk factors for causing road crashes: age group, 

gender, psychophysical circumstances (DWI), helmet use, hours driving without a rest, 

type of bicyclist (professional or not), bicyclist maneuver before crash (passing, turning, 

crossing intersection, etc.), number of occupants (one or more than one), and bicycle 

defects (lights, brakes) (Martinez-Ruiz et al., 2013). 

Chaurand and Delhomme (2013) studied bicyclists’ and motorists’ perceived risk 

in bicycle-vehicle interactions.  Bicyclists’ presence on the road is considered annoying by 

motorists and even regarded as a source of danger.  As such, majority of motorists refuse 
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to use a bicycle as their transportation mode because of the risk they feel they would run 

when riding among cars and other motorized vehicles, and also because they perceive cars 

as a protective, safe “cocoon” (Chaurand and Delhomme, 2013). 

Zhang et al. (2013) analyzed the associations between road network structure and 

pedestrian-bicyclist crashes and identified relationships between dependent and 

explanatory variables across locations.  The dependent variable is the average number of 

crashes involving pedestrian and bicyclist per year.  The explanatory variables were 

classified into five categories: structural measures, land use, travel behavior, transportation 

facilities, and demographic features (Zhang et al., 2013). 

Wang et al. (2013) categorized access designs (variables) into six types based on 

the design of median openings and the number of legs.  Access Type I (three-leg access 

point with closed median opening), Access Type II (three-leg access point with directional 

median opening), Access Type III (three-leg access point with full median opening), 

Access Type IV (four-leg access point with closed median opening), Access Type V (four-

leg access point with directional median opening), and Access Type VI (four-leg access 

point with closed median opening) have an effect on the occurrence of pedestrian-bicycle 

crashes (Wang et al., 2013). 

While bicyclist numbers continue to rise and the benefits continue to be enjoyed, 

bicycling in urban environments still comes with serious safety concerns, in particular, at 

intersections (Strauss et al., 2013; Figliozzi et al., 2013).  They observed that majority of 

bicyclist injuries occur at intersections.  Bicycling activity through intersections was found 

to increase as employment, number of metro stations, land use mix, area of commercial 

land use type, length of bicycle facilities, and the presence of schools within 0.031–0.497 
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mile of the intersection increase.  Intersections with three approaches are expected to have 

fewer bicyclists than those with four approaches.  The expected injury frequency and injury 

rates were estimated for each intersection and used to rank corridors (Strauss et al., 2013). 

Pulugurtha and Imran (2013) overlaid pedestrian-vehicle and bicycle-vehicle crash 

data, separately, on Kernel density maps to examine the spatial relation between pedestrian 

and bicycle level of service (LOS) and crash locations.  They examined the effect of the 

distance from downtown/uptown on pedestrian and bicycle LOS (Pulugurtha and Imran, 

2013). Chimba et al. (2014) identified patterns of pedestrian-vehicle and bicycle-vehicle 

high crash locations and flagged combination of demographic, socioeconomic and 

geometry variables that are good indicators of areas likely to experience pedestrian-vehicle 

and bicycle-vehicle crashes. 

Nordback et al. (2014) developed safety performance functions for bicyclists to 

serve as a basis for future investigations and for prioritizing intersections to better allocate 

scarce funds for bicycle safety improvements.  They found that intersections with higher 

bicyclist counts and higher motorist counts have higher bicycle-vehicle collisions. 

Pulugurtha and Thakur (2015) evaluated the effectiveness of on-street bicycle lane 

(in reducing crashes involving bicyclists) and assessed the role of network characteristics 

(number of lanes, speed limit, etc.) on risk to bicyclists on urban roads.  The results 

obtained from their analysis indicated that bicyclists are three to four times at higher risk 

(based on traffic conditions) on segments without on-street bicycle lane than when 

compared to segments with on-street bicycle lane.  Bicyclists are also more susceptible to 

crashes on high speed / high traffic volume multilane roads (Pulugurtha and Thakur, 2015). 
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Kaplan and Giocomo Prato (2015) researched to unravel land use and network 

factors contributing to the probability of being involved in a crash, conditional on the crash 

occurrence, experiencing a severe injury outcome.  Wang et al. (2015) investigated factors 

correlated with the severity of injuries sustained by bicyclists in bicycle-vehicle crashes at 

unsignalized intersections to develop site-specific countermeasures and interventions to 

improve bicyclist safety.  They found that stop-controlled intersections, one-lane 

approaches, helmet usage, and lower speed limits were associated with decreased injury 

severity, while uncontrolled intersections, inadequate lighting condition, and wet road 

surfaces increased injury severity. 

Amoh-Gyimah et al. (2016) researched on various factors that influence the 

occurrence of pedestrian and bicycle crashes at the planning level.  They found that vehicle 

miles traveled, percent of old population, percentage of households without vehicles have 

a significant and positive correlation with the number of pedestrian and bicycle crashes. 

A few researchers focused on analysis and modeling of bicycle-vehicle crashes at 

TAZ level.  Wei and Lovegrove (2012) extracted demographic and network data at TAZ 

level to evaluate the safety of bicyclists.  Nashad et al. (2016) conducted statewide TAZ 

level analysis to allow planners identify high-risk zones for pedestrians and bicyclists, for 

screening and subsequent treatment identification.  The role of factors such as accessibility 

measures, exposure measures, demographic characteristics and network characteristics on 

bicycle-vehicle crashes at TAZ level was also researched (Yasmin and Eluru, 2016). 
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2.3 Crash Injury Severity and Crash Frequency Modeling 

This section is divided into two subsections.  The first subsection focuses on 

discrete choice modeling, while the second subsection focuses on count regression 

modeling. 

2.3.1 Discrete Choice Modeling 

Discrete choice modeling is a statistical procedure to model choices made by people 

among a finite set of alternatives (Fils, 2012).  The procedure has been used to examine the 

choice of which car to buy, where to go to college, which mode of transportation to take to 

work, and the number of vehicles a household chooses to own.  While regression analysis 

examines “how much”, discrete choice analysis examines “which”.  It is important that the 

potential outcomes must be discrete i.e., if a response variable Y is binary, it can have only 

two possible outcomes, 1 or 0 (Fils, 2012).  The binary and multinomial models are the 

most common discrete choice models.  The only distinction between them is that a binary 

model considers two discrete outcomes, while a multinomial model considers three or more 

discrete outcomes.  These alternative models are widely used and applied in many 

transportation data analysis as alternatives to linear regression modeling (Fils, 2012). 

Several researchers used discrete choice modeling to assess crash injury risk in the 

past. O’Donnell and Connor (1996) compared ordered logit and assessed the probabilities 

of four levels of injury severity as a function of motorists’ attributes.  Abdel-aty et al. 

(1998) used multinomial logit model to examine relationships between motorist age and 

crash characteristics.  Zahabi et al. (2011) developed injury severity models to investigate 

the effect of road design, built environment, speed limit, and other factors (e.g., vehicle 

characteristics and movement type) on injury severity levels of pedestrians and bicyclists 
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involved in crashes with vehicles.  An ordered logit model was used to estimate the effects 

of each of the variables on the severity of the injury sustained in a crash; because the injury 

severity is ordinal in nature (Zahabi et al., 2011). 

LaMondia and Duthie (2012) used a unique methodology for studying bicycle–

vehicle interactions through the use of three distinct, unique ordered probit regression 

models that describe the three interaction components.  These models predict interaction 

choices (e.g., where within the road a bicyclist will choose to travel), as well as identify 

those factors that influence these choices.  This structure of discrete choice model was used 

to assess bicyclists’ and motorists’ mutual acceptance and comfort level sharing a road 

(LaMondia and Duthie, 2012). 

Chiou and Fu (2013) developed a multinomial generalized Poisson (MGP) model 

to simultaneously model crash frequency (count data) and severity (ratio data).  MGP 

model is an extension of the multinomial-Poisson regression model and assumes that 

crashes can be classified into a finite number of clusters according to severity levels.  Also, 

the frequency of each severity level follows a conditional multinomial distribution. 

Bin Islam and Hernandez (2013) developed a random parameter logit model to 

predict the likelihood of five standard injury severity (KABCO) scales commonly used in 

the Crash Records Information System (where, K = fatal, A = incapacitating injury, B = 

non-incapacitating injury, C = possible injury, and O = PDO).  Contributing factors 

considered include motorist demographic characteristics, traffic flow, road geometric 

features, land use characteristics, time characteristics, weather, and lighting conditions. 

Fan et al. (2015a, 2015b) developed a multinomial logit model using SAS PROC 

LOGISTICS procedure.  The three pedestrian crash severity levels (fatality, injury and no 
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injury) were considered as dependent variables.  Pedestrian characteristics, environmental 

factors, type of development area, highway-rail crossing characteristics, highway traffic 

characteristics and train speed were considered as the explanatory variables when 

predicting crash severity levels. 

2.3.2 Count Regression Modeling 

A common mistake is to model count data as continuous data by applying standard 

least squares regression, which is not correct because regression models yield predicted 

values that are non-integers.  Also, regression can predict values that are negative, which 

together with non-integers are inconsistent with count data (Anastasopoulos et al., 2008). 

These limitations make standard regression analysis inappropriate for modeling count data 

without modifying dependent variables (Washington et al., 2003; Fils, 2012). 

Wang et al. (2015) stated that count models are commonly applied for road 

segments, intersections and TAZs to identify factors related to the occurrence of crashes.  

The most frequently applied distributions to develop count models include Negative 

Binomial and Poisson models, zero-inflated Poisson and zero-inflated Negative Binomial 

distribution based models, and random parameter Negative Binomial distribution based 

models.  

Considering the discrete, sporadic, and random characteristics of crash data, the 

Poisson distribution based models appear to be suitable and have been used by many 

researchers (Ma et al., 2015).  As an example, Ivan et al. (2000) developed Poisson 

regression models to estimate single and multi-vehicle crash rates as a function of traffic 

density, land use, ambient light conditions and time of day. 
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The limitation of the Poisson model is that the mean must be equal to the variance.  

In fact, many researchers found that the variance is much greater than the mean, which 

indicates that crash data may be over-dispersed (Miaou, 1994; Shankar et al., 1995; Vogt 

and Bared, 1998).  To overcome the problem of over-dispersion, researchers have applied 

the Negative Binomial distribution based model instead of the Poisson distribution based 

model (Miaou, 1994; Shankar et al., 1995; Poch and Mannering, 1996; Abdel-Aty and 

Radwan, 2000).  

A few example studies related to Negative Binomial distribution based crash count 

models are outlined next.  Poch and Mannering (1996) developed a Negative Binomial 

distribution based crash frequency model for intersection approaches.  Pulugurtha and 

Nujjetty (2012) developed Negative Binomial distribution based count models (to account 

for observed over-dispersion) to estimate the number of crashes at intersections for two 

different scenarios.  While models were developed considering all variables (including 

traffic volume) that are not correlated to each other as explanatory variables in the first 

scenario, models were developed considering all variables (excluding traffic volume) that 

are not correlated to each other as explanatory variables in the second scenario.  The 

numbers of crashes at each intersection was used as a dependent variable.  Demographic, 

socio-economic, and land use characteristics within the vicinity of each intersection as well 

as network characteristics were considered as explanatory variables (Pulugurtha and 

Nujjetty, 2012). 

Wei and Lovegrove (2012) developed Negative Binomial distribution based count 

models using urban data from the Central Okanagan Regional District (CORD) in Canada. 

Chiou and Fu (2013) developed a series of Negative Binomial distribution based crash 
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frequency models to predict for each crash severity level.  It should be noted that such an 

approach can generate interdependence due to latent factors that exist across crash rates at 

different severity levels (Ma et al., 2008).  For example, an increase in one type of severity 

is also associated with changes in other type of severity. 

Wang et al. (2013) studied the effect of access design and spatial pattern on crash 

risk to pedestrians and bicyclists at access points on urban multilane highways by 

developing Negative Binomial distribution and logistic regression models to predict crash 

frequency and injury severity, respectively (Wang et al., 2013). 

However, the limitation of the Negative Binomial distribution based model is that 

time variations are not well considered.  Therefore, the standard error of the regression 

coefficients may be underestimated and the t-ratios may be inflated.  Shankar et al. (1997) 

have attempted to solve this problem by introducing a trend variable using random effects 

Negative Binomial (RENB) model, which takes into account temporal variability in crash 

data.  In another effort, Ma et al. (2015) analyzed the crash frequency on a freeway using 

RENB model and explored the effect of various crash contributing factors.  The goodness-

of-fit statistics showed that RENB model is better than a Negative Binomial distribution 

based model for the considered dataset. 

The presence of many zero crashes in a sample could create problems, which could 

be tested using the “Vuong non-nested test”,  in order to develop zero-inflated models 

(based on Poisson or Negative Binomial distribution) (Pulugurtha and Thakur, 2015).  

Overall, Poisson, Negative Binomial and zero-inflated Negative Binomial 

distribution based models have been applied for analyzing crash frequency data, while 
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multinomial logit and other discrete choice models have been used to analyze crash injury 

severities. 

2.4 Limitations of Past Research  

Several researchers in the past have focused on identifying high bicycle-vehicle 

crash locations or examining spatial association between bicycle-vehicle crashes and 

selected factors.  Many researchers have investigated the role of various risk factors on 

bicycle-vehicle crashes and injury risk to bicyclists on roads.  

A few researchers have developed safety performance functions or models to 

estimate crash frequency.  However, they focused on developing models for intersections 

using bicycle counts as an explanatory variable or at TAZ level (Wei and Lovegrove, 2012; 

Nordback et al., 2014; Nashad et al., 2016). Neither land use data nor detailed network 

characteristics such as lane miles by speed limit or number of lanes were considered widely 

in the past studies.  Further, the size of the TAZs could vary based on area type (very large 

in suburban areas) while the characteristics within a TAZ may not be as homogenous as 

planned. 

Undoubtedly, bicycle counts and traffic volume are good predictors of bicycle-

vehicle crashes or crashes, in general.  However, bicycle counts are yet not typically 

collected by local agencies.  AADT is only available for selected locations (with permanent 

count stations) in urban areas.  Some local agencies collect traffic volume at selected 

intersections as a part of their data collection programs.  However, traffic volume data is 

not available for most minor arterial streets, collector roads, and local roads.  This forces 

transportation planners and engineers to rely on surrogate data such as demographic, land 

use and network characteristics to model exposure and/or crash frequency. 
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The factors that were investigated in the past include demographic, land use and 

network characteristics; mostly, either individually or in selected combinations.  Strong 

correlations may exist between such characteristics.  As an example, the number of lanes 

(indicator of traffic volume served by a link) may be correlated to the speed limit.  

However, such correlations were not examined to reduce multicollinearity effect and 

estimate bicycle-vehicle crash frequency models.  This would also limit the data collection 

efforts while not compromising on the accuracy of estimates.  Further, some explanatory 

variables (example, network characteristics) may be better predictors of bicycle-vehicle 

crashes than others. 

Overall, not many researchers have focused on safety performance functions, i.e., 

models to estimate bicycle-vehicle crash frequency that would help proactively plan and 

improve bicyclist safety on urban roads.  This dissertation aims to contribute to the body 

of knowledge by focusing on these aspects. 



 
 

 

 

CHAPTER 3: METHODOLOGY 

The proposed research methodology is divided into the following steps. 

1. Collect data 

2. Identify study locations 

3. Generate geospatial buffers around selected locations 

4. Extract demographic characteristics within each selected location 

5. Extract land use characteristics within each selected location 

6. Extract network characteristics within each selected location 

7. Develop bicycle-vehicle crash frequency models 

8. Validate bicycle-vehicle crash frequency models 

The aforementioned steps are discussed next in detail. 

3.1 Collect Data 

Mecklenburg County, North Carolina was considered as the study area for this 

research. The study area includes the city of Charlotte as well as towns of Cornelius, 

Davidson, Huntersville, Matthews, Mint Hill and Pineville. 

The data used in this study are obtained from three different sources (all pertaining 

to local agencies).  They include: Charlotte Department of Transportation (CDOT), City of 

Charlotte Website and Charlotte-Mecklenburg Planning Department. 

Crash data for multiple years was used as it would minimize abnormal fluctuation 

of crashes for a certain year as well as regression to the mean effect often described in 

safety literature (Emaasit et al., 2013).  In this research, bicycle-vehicle crash data from 



34 
 

January 2010 to December 2015 (6 years) was obtained from CDOT.  One of the limitations 

of the crash data obtained from CDOT is the lack of information to identify the age-group 

of those involved in the crashes. 

The demographic, land use and urban road network characteristics were obtained 

from the Charlotte-Mecklenburg Planning Department and the City of Charlotte website. 

Transit system characteristics, Charlotte Mecklenburg Schools (CMS) data, and some 

census data were downloaded from the City of Charlotte Website. 

All data was obtained in geospatial format.  The data was projected to State Plane 

Coordinate System; NAD 1983. 

3.2 Identify Study Locations 

As stated previously, the locations for data extraction, analysis and modeling should 

be randomly selected to avoid any bias in assessing the relationship, ranking, and allocation 

of resources for transportation improvements.  The number of locations (intersections) 

must be large enough to yield meaningful outcomes.  The following criteria were adopted 

to ensure that the sample is representative of the study area and its characteristics. 

1) The selected locations must be geographically distributed covering all area types 

(central business district, urban and suburban) in the study area. 

2) The selected locations should capture at least 90% of the bicycle-vehicle crashes in 

the study area. 

3) The selected locations must include high risk, medium risk, low risk and no risk 

locations in the study area.  While advanced methods such as network KDE are 

available, Euclidean KDE method may be adopted to generate crash density map 

and ensure that the locations are distributed in various risk areas.  The method 



35 
 

measures the density of bicycle-vehicle crashes in the vicinity of each reference 

point over the space.  The shading in the map corresponds to the magnitude of 

Kernel density.  Various grid cell sizes and radii must be considered to select values 

that best capture bicycle-vehicle crash locations. 

4) The buffers generated around the selected locations should extract data for most 

part of the study area. 

3.3 Generate Geospatial Buffers around Selected Locations 

Geospatial buffers (e.g., 1-mile) are then generated around each identified and 

selected location in the study area.  Multiple buffer widths could be considered to select 

the best buffer width that can capture geospatial data and help estimate bicycle-vehicle 

crash frequency.  However, 1-mile was identified based on past research as suitable buffer 

width and considered in this research. 

Spatial overlay was then performed to capture geospatial data.  Overlay 

superimposes one map feature over another to create a map feature that has the attributes 

of both input layers.  Clip, intersect, and union are special cases of overlay. 

3.4 Extract Demographic Characteristics within the Vicinity of Each Selected Location 

Bicycling activity in an area depends on demographic characteristics.  The 

demographic characteristics considered in this study include population, number of 

household units and household mean-income.  To extract demographic characteristics, 

associated GIS layer with population, household units and household mean-income was 

overlaid on buffers generated around each selected location. Data extracted was processed 

as outlined by Pulugurtha and Repaka (2008, 2011). 
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3.5 Extract Land Use Characteristics within the Vicinity of Each Selected Location 

Bicycling activity depends on the land use characteristics as well.  The land use 

characteristics considered include 17 zone classes.  They are related to business, business 

park, business distribution, mixed use, mixed use residential, light industrial, heavy 

industrial, manufactured home, single-family, multi-family, institutional, research, 

commercial, office, transit oriented development, uptown mixed use, and urban residential.  

The land use data was overlaid on the generated buffers to extract the type of land use and 

type of development in each buffer and examine the role of each selected land use type on 

bicycle-vehicle crash frequency. 

3.6 Extract Network Characteristics within the Vicinity of Each Selected Location 

Traffic crashes are most likely to occur at locations with more conflicts.  These 

locations include signalized and unsignalized intersections.  To extract these 

characteristics, layers of the geocoded intersections are overlaid on generated buffers 

around each selected location so that the spatial joint of above two layers returns a summary 

of the numeric attributes of the point that fall inside each buffer. 

Risk to bicyclists could be higher on high speed and wide roads.  Since traffic 

volume is not available for all the links in the network and past studies showed that traffic 

volume is related to road design characteristics, they were used as surrogate data.  The total 

length in terms of center-line miles with bicycle lane, without bicycle lane, with sidewalk, 

without sidewalk, with divided road, with undivided road, with one lane, with two lanes, 

with three lanes, with 4 lanes, with 5 lanes, with 6 lanes, with 7 lanes, with 25 mph, with 

30 mph, with 35 mph, with 40 mph, with 45 mph, with 50 mph, with 55 mph, with 60 mph 
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and with 65 mph was extracted by overlaying the street centerline network with road design 

characteristics on the generated buffers. 

To access transit system (bus or light-rail), people generally walk, use bicycle or 

get dropped off.  Bus-stops related spatial file was, therefore, overlaid on the generated 

buffers.  Like in the case of intersections, the overlay was used to extract the number of 

bus-stops in each buffer. 

Children and teenagers may walk to schools and colleges.  They may have the risk 

of getting involved in bicycle-vehicle crashes.  To extract the number of schools, layers of 

geocoded schools (elementary, middle, private, high, and college/university) are overlaid 

on the generated buffers.  The number of schools, each type, was extracted and recorded 

for analysis and modeling. 

3.7 Develop Bicycle-Vehicle Crash Frequency Models 

Data for the selected locations was divided into modeling dataset and validation 

dataset to perform analysis, develop statistical models and validate the performance of the 

models.  A Pearson correlation matrix was first developed to examine correlations and 

select combinations of explanatory variables for modeling.  Stepwise eliminations are 

needed to positively assess Deviance and Pearson Chi-Square ratios in the bicycle-vehicle 

crash frequency model.  Stepwise elimination involves removing statistically insignificant 

explanatory variables one at a time.  This process is repeated until only statistically 

significant explanatory variables remain in the final model.  Models were also developed 

by considering all explanatory variables irrespective of correlations and significance. 
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Two types of models (depending on the probability distribution) are considered to 

establish the relationship between crash frequency and bicyclist’s safety risk factors.  They 

are: Poisson and Negative Binomial log-link distribution based models. 

3.7.1 Poisson Log-link Distribution Based Model 

Considering the discrete, sporadic, non-negative integer character, and random 

characteristics of crash counts, count-data models such as the Poisson log-link distribution 

based model appears to be suitable and have been used by many researchers (Chiou et al., 

2013; Ma et al., 2015).  The Poisson log-link distribution is a discrete probability 

distribution for the counts of events that occur randomly in a given interval of time or 

space.  In estimating the relative crash frequencies across road sections, it is recommended 

that the Poisson log-link distribution based model be used as an initial model for 

developing the relationship (Miaou, 1994). 

One requirement of the Poisson log-link distribution is that the mean of the count 

process equals its variance (Shankar et al., 1995), which is also the limitation of the Poisson 

log-link distribution based model.  Often, many researchers found that the variance is much 

greater than the mean, indicating that crash data may be over-dispersed.  To overcome the 

over-dispersion problem, researchers have applied the Negative Binomial log-link 

distribution instead of the Poisson log-link distribution (Miaou, 1994; Shankar et al., 1997; 

Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Ma et al., 2015).  

3.7.2 Negative Binomial Log-link Distribution Based Model 

The Negative Binomial log-link distribution based model can be used if data are 

over-dispersed.  This model is more efficient than Poisson log-link distribution based 

model, but in practice the benefits over Poisson are small (Fils, 2012).  However, the 
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Negative Binomial log-link distribution based model should be used if one wishes to 

predict probabilities and not just model the mean.  This model allows the variance to exceed 

the mean and the Poisson log-link distribution based model can be regarded as a limiting 

model of the Negative Binomial log-link distribution based model.  Although the Negative 

Binomial log-link distribution based model is more general than the Poisson log-link 

distribution based model, it requires more extensive computations to estimate model 

parameters and to generate inferential statistics than the Poisson log-link distribution based 

model (Miaou, 1994). 

3.8 Validate Bicycle-Vehicle Crash Frequency Models 

In general, a model is usually developed to analyze a particular problem and used 

for predictive purposes.  A model may represent different parts (assumptions, input 

parameter values, output values and conclusions) of the system at different levels of 

abstraction.  Performing validation increases the confidence in prediction ability and 

establishes the credibility of the model.  However, in practice, it may be difficult to achieve 

such a full validation of the model, especially if the system being modelled does not yet 

exist.  Overall, the validation step determines whether the research truly measures what it 

was intended to measure, or how truthful the research results are. 

In this research, mean forecast error (MFE), mean absolute deviation (MAD), mean 

square error (MSE), root mean square error (RMSE), mean absolute percent error (MAPE) 

and symmetric mean absolute percent error (SMAPE) are computed to validate the 

developed models using the validation dataset.  They are represented using equations 1 to 

5. 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
      … Equation (1) 
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𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
     … Equation (2) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ (𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
     … Equation (3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖𝐴𝐴𝑖𝑖

|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
× 100    … Equation (4) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝐹𝐹𝑖𝑖−𝐴𝐴𝑖𝑖|𝑛𝑛
𝑖𝑖=1

∑ (𝐴𝐴𝑖𝑖+𝐹𝐹𝑖𝑖)𝑛𝑛
𝑖𝑖=1

     … Equation (5) 

 

where, Ai is the actual number of bicycle-vehicle crashes in a buffer “i”, Fi is the estimated 

number of crashes in the buffer “i”, and n is the number of buffers or study locations for 

validation. 

MAD is the sum of absolute differences between the actual value and the estimated 

value, divided by the number of observations.  MAD indicates by how many units the 

estimated values differ from the actual values.  In general, the smaller the MAD, the better 

is the model. 

MSE, the most used error metric, penalizes larger errors because squaring larger 

numbers has a greater effect than squaring smaller numbers.  It is the sum of the squared 

errors divided by the number of observations.  MSE is typically compared to a standard 

value, or, between models or methods.  The lower the MSE, the better is the model. RMSE 

is the square root of the MSE. 

MAPE is a measure of prediction accuracy of a forecasting method or model. It 

cannot be used if the actual values includes zeros, because there would be a division by 

zero.  Moreover, MAPE puts a heavier penalty on negative errors (actual value < estimated 

value). 
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SMAPE, on the other hand, is an accuracy measure based on percentage (or 

relative) error.  The limitation to SMAPE is that if the actual value or estimated value is 

zero, the value of error will boom up to the upper-limit of error. 

 

 

 



 
 

 

 

CHAPTER 4: SELECTION OF LOCATIONS AND EXPLANATORY VARIABLES 

FOR MODELING 

As stated previously, all data was obtained in geospatial format and projected to 

State Plane Coordinate System; NAD 1983.  The crash data obtained for Mecklenburg 

County, North Carolina indicates that there were 628 bicycle-vehicle crashes during the 

study period.  This includes 7 fatal, 15 injury type A, 288 injury type B, 274 injury type  C 

and 44 PDO bicycle-vehicle crashes.  Figure 4 shows the spatial distribution of bicycle-

vehicle crashes during the study period.  This data was used for analysis and modeling.  

The results obtained from the selection of locations, generation of buffers, data extraction 

and statistical analysis are presented and discussed in this chapter. 

4.1 Selection of Locations 

One hundred and nineteen locations (intersections) were selected such that they are 

geographically distributed throughout the study area (Figure 5).  These locations cover 

91.8% of the bicycle-vehicle crashes in the study area. 

A Kernel density map was generated to overlay and ensure that the selected 

locations represent high risk, medium risk, low risk and no risk locations.  Various cell 

sizes and radii were tested to generate the Kernel density map.  The map based on default 

cell size (~520.9 feet) and radius (~4,341.0 feet) was considered for illustration and spatial 

overlay (Figure 6). 
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FIGURE 4: Bicycle-vehicle crashes 
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FIGURE 5: Selected study locations 
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FIGURE 6: Bicycle-vehicle crashes Kernel density 
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The following symbology was used to define risk in the generated Kernel density 

map. 

 

No risk  0 to 6 bicycle-vehicle crashes per square mile during the study period 

Low risk 6 to 12 bicycle-vehicle crashes per square mile during the study period 

Medium risk 12 to 18 bicycle-vehicle crashes per square mile during the study period 

High risk > 18 bicycle vehicle crashes per square mile during the study period 

 

Of the selected 119 locations, 103 locations have seen at least one bicycle-vehicle 

crash during the study period.  Figure 7 depicts spatial overlay of selected locations on 

bicycle-vehicle crashes and Kernel density. 

Buffers of width equal to 1-mile were generated around each selected location 

(Figure 8).  The generated buffers are then spatially overlaid on demographic, land use and 

network characteristics data to extract data and conduct statistical analysis (figures 9 to 

16).  The GIS based method presented in Pulugurtha and Repaka (2008) and Pulugurtha 

and Nujjetty (2012) was adopted in this research to process geospatial data (such as 

demographic, land use, and network characteristics) and develop databases for analysis and 

modeling. 
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FIGURE 7: Selected locations overlay on bicycle-vehicle crashes and Kernel density 
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FIGURE 8: Buffers around selected locations 
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FIGURE 9: Buffers intersected with demographics data 
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FIGURE 10: Buffers intersected with land use data 



51 
 

 

 

FIGURE 11: Buffers and intersections overlay 
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FIGURE 12: Buffers and bus-stops overlay 
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FIGURE 13: Buffers and schools overlay 
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FIGURE 14: Buffers and streets overlay 
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FIGURE 15: Buffers and bicycle / no bicycle lanes overlay 
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FIGURE 16: Buffers and sidewalks / no sidewalks overlay 
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4.2 Correlation between Dependent and Explanatory Variables 

Several Statistical Software Packages (SAS, STATA, R, and SPSS) may be used to 

examine correlations between explanatory variables and develop bicycle-vehicle crash 

frequency models.  In this research, IBM SPSS ver. 23 was selected to examine correlations 

between explanatory variables and develop models.  The dependent variable is bicycle-

vehicle crash frequency (the number of bicycle-vehicle crashes) during the six-year study 

period within a 1-mile buffer of the location.  A summary of 55 explanatory variables 

considered in this research along with a brief description is provided in Table 1.  As stated 

previously, the explanatory variables considered include demographic, land use and 

network characteristics. 

Correlations are measures of linear association between two explanatory variables.  

A correlation test is performed successively among two explanatory variables until all 

possible combinations has been exhausted.  The correlation between two variables may be 

plotted or graphed into two dimensional spaces under a linear form.  However, correlation 

coefficient is not an appropriate statistic for measuring the association if the relationship is 

not linear. 

Two variables are considered to be strongly correlated to each other if the computed 

Pearson correlation coefficient is typically less than -0.30 or greater than +0.30. 

Alternatively, one could consider that there is a significant correlation between two 

variables if the p-value is less than 0.05 (95% confidence level) or 0.01 (99% confidence 

level). In this research, an even more conservative approach was adopted.  Two explanatory 

variables were considered to be strongly correlated to each other if the computed p-value 

is ~0.000 (~100% confidence level). 
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TABLE 1: Dependent variable and list of explanatory variables 

 

NC

Variable Description Variable Description

IT1 Number of cul-de-sacs BUS Area with businesses
IT3 Number of one-way stops on the minor street BUSPK Area with business parks
IT4 Number of dead-ends BUSDIS Area with business distributions
IT5 Number of traffic lights MU Area with mixed use
IT6 Number of road-blocks / private property gates MUR Area with mixed use residential
IT7 Number of roundabout loops LI Area with light industrial
BS Number of bus stops HI Area with heavy industrial
ES Number of elementary schools MH Area with manufactured home
MS Number of middle schools SF Area with single-family
HS Number of high schools MF Area with multi-family
PS Number of private schools INS Area with institutional
CU Number of colleges/universities RES Area with research
BL Center-line miles with bicycle lane COM Area with commercial

NBL Center-line miles with no bicycle lane OFF Area with office
SW Center-line miles with sidewalk TOD Area with transit oriented

NSW Center-line miles with no sidewalk UMU Area with uptown mixed use
DR Center-line miles with divided road UR Area with urban residential

UDR Center-line miles with undivided road
L1 Center-line miles with 1 lane POP Total number of population
L2 Center-line miles with 2 lanes HU Number of household units
L3 Center-line miles with 3 lanes MHI Mean household income
L4 Center-line miles with 4 lanes
L5 Center-line miles with 5 lanes
L6 Center-line miles with 6 lanes
L7 Center-line miles with 7 lanes
L8 Center-line miles with 8 lanes

25mph Center-line miles with 25 mph as speed limit
30mph Center-line miles with 30 mph as speed limit
35mph Center-line miles with 35 mph as speed limit
40mph Center-line miles with 40 mph as speed limit
45mph Center-line miles with 45 mph as speed limit
50mph Center-line miles with 50 mph as speed limit
55mph Center-line miles with 55 mph as speed limit
60mph Center-line miles with 60 mph as speed limit
65mph Center-line miles with 65 mph as speed limit

Dependent variable

(c) Demographic characteristics

 (b) Land use characteristics(a) Network characteristics

Explanatory variables
Bicycle-vehicle crash frequency (number of bicycle-vehicle crashes)
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Table 2 summarizes Pearson correlation coefficients computed between 

explanatory variables as well as between the dependent variable and explanatory variables 

considered in this research.  Shaded cells in the table indicate that p-value is ~0.000 (strong 

correlation). 

The bicycle-vehicle crash frequency is linearly correlated to all considered network 

characteristics except the number of dead-ends (IT4) and center-line miles with speed limit 

45 mph, 60 mph or 65 mph at a 95% or higher confidence level.  It is linearly correlated to 

business (BUS), mixed use residential (MUR), heavy industrial (HI), single-family (SF), 

multi-family (MF), office (OFF), transit oriented development (TOD), uptown mixed use 

(UMU) and urban residential (UR) areas at a 95% or higher confidence level.  All 

considered demographic characteristics are linearly correlated to bicycle-vehicle crash 

frequency at a 95% or higher confidence level.  With exceptions of the number of cul-de-

sacs (IT1), mixed use residential (MUR) area and single-family (SF) residential area, an 

increase in all other explanatory variables could lead to an increase in bicycle-vehicle crash 

frequency. 
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TABLE 2: Pearson correlation coefficients – Summary 

a) Network characteristics 
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TABLE 2: Pearson correlation coefficients – Summary (continued) 

b) Land use characteristics 

 

c) Demographic characteristics 

 

Variable NC BUS BUSPK BUSDIS MU MUR LI HI MH SF MF INS RES COM OFF TOD UMU UR
NC 1 .430** -0.104 -0.085 0.051 -.271** -0.066 .239** -0.127 -.226* .308** 0.006 -0.075 -0.099 .321** .229* .476** .588**

BUS  1 -0.002 0.032 -0.089 -.315** 0.035 0.107 0.098 -.197* .349** 0.046 0.017 -0.101 .283** .257** 0.035 0.139
BUSPK   1 .473** 0.016 -0.112 0.123 -0.071 -0.063 -0.032 0.010 0.074 -0.038 0.075 0.171 -0.020 -0.049 -0.089
BUSDIS    1 0.017 -0.116 0.137 0.103 -0.047 -0.168 0.039 0.101 -0.012 -0.044 0.174 0.138 -0.049 -0.072

MU     1 0.105 0.009 -0.049 -0.068 -.349** -0.150 -0.047 0.006 0.005 0.042 0.026 0.156 0.035
MUR 1 -0.083 -.237** -0.004 -0.174 -.331** -0.111 -0.055 .273** -.233* -0.111 -0.002 -0.125

LI  1 .296** 0.076 -.458** -0.030 -0.040 -0.075 0.171 -0.091 -0.001 -0.064 -0.035
HI   1 -0.011 -.482** -0.011 -0.073 -0.082 -.205* -0.172 0.154 0.135 .290**

MH    1 0.054 -.194* -0.033 -0.033 -0.052 -0.110 -0.018 -0.043 -0.080
SF     1 -.216* -0.164 -0.172 -.345** -0.091 -0.178 -.236** -.246**

MF      1 0.162 -0.049 0.105 .380** 0.085 -0.098 0.030
INS 1 0.023 .281** 0.074 0.001 -0.042 -0.017
RES  1 .246** 0.055 -0.011 -0.026 -0.051
COM   1 0.172 -0.068 -0.105 -0.135
OFF    1 0.101 0.002 -0.039
TOD 1 .255** -0.006
UMU  1 .610**

UR   1
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Variable NC POP HU MHI
NC 1 .453** .690** -.469**

POP  1 .392** -.740**

HU   1 -.456**

MHI    1
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4.3 Selection of Explanatory Variables for Modeling 

Many strong correlations were observed between the selected network 

characteristics.  Business area (BUS) was observed to be strongly correlated to mixed use 

residential (MUR) and multi-family (MF) areas. Single-family (SF) area was observed to 

be strongly correlated to mixed use (MU), light industrial (LI), heavy industrial (HI), and 

commercial (COM) areas.  Multi-family area (MF) was observed to be strongly correlated 

to business (BUS), mixed use residential (MUR) and office (OFF) areas.  Business park 

area (BUSPK) was observed to be strongly correlated to business district area (BUSDIS), 

while uptown mixed use area (UMU) was observed to be strongly correlated to urban 

residential area (UR).  Household units (HU) and mean household income (MHI) were 

observed to be strongly correlated to the total population (POP). 

To minimize multicollinearity, only one explanatory variable of two explanatory 

variables that are strongly correlated was considered for modeling.  Several combinations 

could be built when selecting / eliminating explanatory variables for modeling.  This will 

help generate alternate models and test their predictability as well as validity. 

The number of traffic lights (IT5) and the number of one-way stops on the minor 

street (IT3) are critical variables but strongly correlated to each other.  Therefore, the 

number of traffic lights (IT5) was considered in models 3, 4, and 5, while the number of 

one-way stops on the minor street (IT3) was considered in model 6, 7 and 8.  Network 

characteristics that are not strongly correlated to the selected critical variable were 

considered in the respective models. 

Land use variables that are not strongly correlated to mixed use (MU) and multi-

family (MF) areas were considered in models 3 and 6, while land use variables that are not 



63 
 

strongly correlated to single-family (SF) and multi-family (MF) areas were considered in 

models 4 and 7.  Land use variables that are not strongly correlated to mixed use (MU) and 

office (OFF) areas were considered in models 5 and 8. 

The number of miles without bicycle lane (NBL) and the number of miles with no 

sidewalk (NSW) were considered in all the models. 

In addition to the combinations of explanatory variables, two other models were 

also developed ignoring the strong correlations between explanatory variables.  Except in 

case of Model 1, statistically insignificant variables were eliminated one after another in 

all others until the model has only significant explanatory variables. 

Table 3 summarizes the combinations of explanatory variables that were considered 

for modeling in this research. 
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TABLE 3: Summary of selected explanatory variable combinations for modeling 

 

Explanatory 
Variable

Models 1 
& 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

IT1 X X X X X X X
IT3 X    X X X
IT4 X X X X X X X
IT5 X X X X    
IT6 X X X X
IT7 X
BS X
ES X
MS X
HS X
PS X
CU X X X X
BL X X X X X X X

NBL X X X X X X X
SW X

NSW X X X X X X X
DR X

UDR X
L1 X
L2 X
L3 X
L4 X
L5 X
L6 X X X X
L7 X X X X
L8 X

25mph X
30mph X
35mph X
40mph X X X X    
45mph X X X X X X X
50mph X    X X X
55mph X       
60mph X X X X X X X
65mph X X X X X X X
BUS X   X   X

BUSPK X       
BUSDIS X X X X X X X

MU X X  X  
MUR X     

LI X X  X  
HI X X  X  
MH X X X X X X X
SF X X X X X
MF X X X X X
INS X X X X X X X
RES X X X X X X X
COM X X  X  
OFF X   X   X
TOD X X X X X X X
UMU X X   X   
UR X  X X  X X

POP X X X X X X X
HU X   

MHI X



 
 

 

 

CHAPTER 5: BICYCLE-VEHICLE CRASH FREQUENCY MODELS 

The results obtained from the development of bicycle-vehicle crash frequency 

models are discussed in this chapter. 

In this research, 119 locations were randomly selected to cover 91.8% of bicycle-

vehicle crashes in the study area.  Of these, 99 randomly selected locations were used to 

develop bicycle-vehicle crash frequency models.  The remaining 20 randomly selected 

locations were used to validate the predictability of the developed bicycle-vehicle crash 

frequency models. 

5.1 Test the Applicability of Poisson Log-link Distribution for Model 1 

Based on literature review, many researchers revealed that Poisson distribution is 

suitable and most frequently applied to model crash frequency (Ma et al., 2015; Wang et 

al., 2015; Anastasopoulos et al., 2008; and Ivan et al., 2000).  To paraphrase Miaou’s 

(1994) comment, “In estimating the relative crash frequencies across road sections, it is 

recommended that the Poisson regression model be used as an initial model for developing 

the relationship.”  The limitation of the Poisson model is that the mean must be equal to 

the variance (Miaou, 1994; Shankar et al., 1995; Vogt and Bared, 1998). 

Firstly, tests were conducted to investigate if Poisson distribution would best fit the 

data.  SPSS software recommends two tests: (1) “One-Sample Kolomogorov-Smirnov 

Test” (K-S Test), which is a non-parametric test; and, (2) a “Descriptive Statistics: Mean 

and Variance” test.  These two tests reveal if the observed count (crash) data follows the 

Poisson distribution. 
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Table 4 summarizes results obtained from “One Sample Kolmogorov-Smirnov 

Test” and “Descriptive Statistics” test.  The computed p-value from the “One Sample 

Kolmogorov-Smirnov Test” is ~0.000, indicating that the bicycle-vehicle crash data does 

not follow a Poisson distribution.  From the “Descriptive Statistics” test, the mean (6.56) 

is much smaller than the variance (56.52).  The computed dispersion parameter is 1.139, 

indicating that the bicycle-vehicle crash data is over-dispersed.  Such a relation was 

observed by several researchers in the past (Miaou, 1994; Shankar et al., 1995; Vogt and 

Bared, 1998).  As stated previously, to overcome the over-dispersion problem, researchers 

have applied the Negative Binomial log-link distribution instead of the Poisson log-link 

distribution (Miaou, 1994; Shankar et al., 1997; Poch and Mannering, 1996; Abdel-Aty 

and Radwan, 2000; Ma et al., 2015). 

A model using Poisson log-link distribution was developed even though the 

bicycle-vehicle crash data was observed to be over-dispersed.  Table 5 summarizes the 

Poisson regression coefficients along with their standard errors (Std. Error), Wald Chi-

Square values, p-values (significance values) and goodness-of-fit statistics (Deviance, 

Pearson Chi-Square, Akaike’s Information Criterion (AIC) and Finite Sample Corrected 

AIC (AICC)) for the Poisson log-link distribution based bicycle-vehicle crash frequency 

Model 1.  All explanatory variables were considered irrespective of possible correlations 

between themselves.  Further, the explanatory variables were not eliminated even if they 

have a statistically insignificant effect on bicycle-vehicle crash frequency. 
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TABLE 4: Testing applicability of Poisson log-link distribution for modeling 
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TABLE 5: Poisson log-link distribution based Model 1 - results summary 

Parameter Coeff. Std. Error Wald Chi-Square p-value D (value/df) PCS (value/df) AIC AICC 

(Intercept) -0.603 2.29 0.07 0.79 

1.9 1.7 496.4 648.4 

IT1 -0.003 0.00 0.58 0.45 

IT3 0.01 0.00 6.27 0.01 

IT4 -0.012 0.01 2.51 0.11 

IT5 0.005 0.02 0.07 0.79 

IT6 0.037 0.05 0.48 0.49 

IT7 -0.031 0.03 1.44 0.23 

BS -0.008 0.01 1.70 0.19 

ES 0.192 0.12 2.62 0.11 

MS -0.157 0.15 1.13 0.29 

HS 0.169 0.19 0.83 0.36 

PS 0.201 0.14 1.94 0.16 

CU 0.075 0.10 0.60 0.44 

BL -17.83 14.50 1.51 0.22 

NBL -17.593 14.46 1.48 0.22 

SW 19.144 14.21 1.82 0.18 

NSW 19.114 14.20 1.81 0.18 

DR 0.016 0.09 0.03 0.86 

UDR          

L1 -0.268 0.72 0.14 0.71 

L2 -0.602 0.71 0.73 0.39 

L3 -0.571 0.70 0.67 0.42 

L4 -0.629 0.73 0.74 0.39 

L5 -0.03 0.73 0.00 0.97 

L6 -0.29 0.72 0.16 0.69 

L7 -1.974 0.83 5.68 0.02 

L8 -1.141 0.72 2.52 0.11 

25mph -0.93 0.45 4.20 0.04 

30mph -0.613 0.48 1.65 0.20 

35mph -0.968 0.45 4.54 0.03 

40mph -1.165 0.48 5.95 0.02 

45mph -0.924 0.46 4.00 0.05 

50mph -1.204 0.67 3.24 0.07 

55mph -1.112 0.44 6.36 0.01 
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TABLE 5: Poisson log-link distribution based Model 1 - summary (continued) 

60mph -0.981 0.44 4.98 0.03 

    

65mph -0.834 0.43 3.80 0.05 

BUS 9.86E-08 0.00 5.05 0.03 

BUSPK 5.06E-08 0.00 0.19 0.67 

BUSDIS -1.15E-07 0.00 2.47 0.12 

MU 1.10E-09 0.00 0.00 0.98 

MUR -1.33E-08 0.00 0.22 0.64 

LI 7.90E-09 0.00 0.10 0.76 

HI 2.19E-08 0.00 0.75 0.39 

MH 1.95E-08 0.00 0.06 0.81 

SF -3.59E-09 0.00 0.02 0.89 

MF 1.61E-08 0.00 0.22 0.64 

INS 6.13E-08 0.00 4.33 0.04 

RES 1.00E-07 0.00 9.20 <0.01 

COM 5.37E-08 0.00 0.80 0.37 

OFF -9.96E-09 0.00 0.08 0.77 

TOD -9.89E-08 0.00 0.81 0.37 

UMU 3.02E-08 0.00 0.12 0.73 

UR -4.09E-08 0.00 0.11 0.74 

POP 5.44E-06 0.00 0.03 0.87 

HU -6.20E-05 0.00 4.27 0.04 

MHI 8.67E-06 0.00 0.34 0.56 

Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion, 
          AICC = Finite Sample Corrected AIC 
 

The Omnibus Test indicated that the developed Poisson distribution based Model 

1 is statistically significant.  The coefficients for one-way stop on the minor street (IT3), 

area with businesses (BUS), area with institutional (INS) and area with research (RES) are 

positive and significant at a 95% confidence level.  This means that for each one-unit 

increase of above explanatory variables, the expected log count of bicycle-vehicle crash 

frequency (NC) increases by its respective coefficient (e.g., 0.010 for IT3).  The 

coefficients for miles with 7 lanes (L7), miles with 25 mph as speed limit (25mph), miles 
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with 35 mph as speed limit (35mph), miles with 40 mph as speed limit (40mph), miles with 

45 mph as speed limit (45mph), miles with 55 mph as speed limit (55mph), miles with 60 

mph as speed limit (60mph), miles with 65 mph as speed limit (65mph) and household 

units (HU) are negative and significant at a 95% confidence level.  For each one-unit 

increase of above explanatory variables, the expected log count of bicycle-vehicle crash 

frequency (NC) decreases by its respective coefficient.  The aforementioned statistically 

significant explanatory variables are highlighted in Table 5. 

The standard errors indicate how much the variable prediction is “off”.  The smaller 

the standard errors, the better will be the prediction model.  For example, the highest 

standard error in this Poisson distribution based model is for miles with 7 lanes (L7), for 

which the prediction is off by “0.83”.  This is followed by miles with 40 mph as speed limit 

(40 mph), for which the prediction is off by “0.48”.  The standard error for one-way stop 

on the minor street (IT3), area with businesses (BUS), area with institutional (INS), area 

with research (RES) and household units (HU) is zero (least). 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.9 and 1.7, respectively (outside the expected range of 0.9 to 1.1).  The computed AIC = 

496.4 and AICC = 648.4.  The difference between AIC and AICC is very high, indicating 

that the model does not fit the data well. 

 5.2 Negative Binomial Log-link Distribution Based Model 1 

As test results from both “One-Sample Kolmogorov-Smirnov Test” and 

“Descriptive Statistics” test indicate that the considered bicycle-vehicle crash data is over-

dispersed, a model using Negative Binomial log-link distribution was developed using 

bicycle-vehicle crash frequency as the dependent variable. 
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The results obtained for the Negative Binomial log-link distribution based Model 1 

are summarized and shown in Table 6.  The table shows coefficients for each selected 

explanatory variable, standard errors (Std. Error), Wald Chi-Square values, p-values 

(significance values) and goodness-of-fit statistics (Deviance, Pearson Chi-Square, AIC 

and AICC)) for the Negative Binomial log-link distribution based bicycle-vehicle crash 

frequency Model 1.  All explanatory variables were considered irrespective of possible 

correlations between themselves.  Further, the explanatory variables were not eliminated 

even if they have a statistically insignificant effect on bicycle-vehicle crash frequency. 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 1 is statistically significant.  The coefficients for one-way stop on 

the minor street (IT3), area with businesses (BUS), area with institutional (INS) and area 

with research (RES) are positive and significant at a 95% confidence level.  This means 

that for each one-unit increase of above explanatory variables, the expected log count of 

bicycle-vehicle crash frequency (NC) increases by its respective coefficient (e.g., 0.010 for 

IT3).  The coefficients for miles with 7 lanes (L7), miles with 25 mph as speed limit 

(25mph), miles with 35 mph as speed limit (35mph), miles with 40 mph as speed limit 

(40mph), miles with 45 mph as speed limit (45mph), miles with 55 mph as speed limit 

(55mph), miles with 60 mph as speed limit (60mph), miles with 65 mph as speed limit 

(65mph) and household units (HU) are negative and significant at a 95% confidence level.  

For each one-unit increase of above explanatory variables, the expected log count of 

bicycle-vehicle crash frequency (NC) decreases by its respective coefficient.  The 

aforementioned statistically significant explanatory variables are highlighted in Table 6. 
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TABLE 6: Negative Binomial log-link distribution based Model 1 - results summary 

Parameter Coeff. Std. Error Wald Chi-Square p-value D (value/df) PCS (value/df) AIC AICC 

(Intercept) -0.603 2.29 0.07 0.79 

1.9 1.8 498.4 659.7 

IT1 -0.003 0.00 0.58 0.45 

IT3 0.01 0.00 6.27 0.01 

IT4 -0.012 0.01 2.51 0.11 

IT5 0.005 0.02 0.07 0.79 

IT6 0.037 0.05 0.48 0.49 

IT7 -0.031 0.03 1.44 0.23 

BS -0.008 0.01 1.70 0.19 

ES 0.192 0.12 2.62 0.11 

MS -0.157 0.15 1.13 0.29 

HS 0.169 0.19 0.83 0.36 

PS 0.201 0.14 1.94 0.16 

CU 0.075 0.10 0.60 0.44 

BL -17.83 14.50 1.51 0.22 

NBL -17.593 14.46 1.48 0.22 

SW 19.144 14.21 1.82 0.18 

NSW 19.114 14.20 1.81 0.18 

DR 0.016 0.09 0.03 0.86 

UDR         

L1 -0.268 0.72 0.14 0.71 

L2 -0.602 0.71 0.73 0.39 

L3 -0.571 0.70 0.67 0.42 

L4 -0.629 0.73 0.74 0.39 

L5 -0.03 0.73 0.00 0.97 

L6 -0.29 0.72 0.16 0.69 

L7 -1.974 0.83 5.68 0.02 

L8 -1.141 0.72 2.52 0.11 

25mph -0.93 0.45 4.20 0.04 

30mph -0.613 0.48 1.65 0.20 

35mph -0.968 0.45 4.54 0.03 

40mph -1.165 0.48 5.95 0.02 

45mph -0.924 0.46 4.00 0.05 

50mph -1.204 0.67 3.24 0.07 

55mph -1.112 0.44 6.36 0.01 
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TABLE 6: Negative Binomial log-link distribution based Model 1 - summary (continued) 

60mph -0.981 0.44 4.98 0.03 

    

65mph -0.834 0.43 3.80 0.05 

BUS 9.86E-08 0.00 5.05 0.03 

BUSPK 5.06E-08 0.00 0.19 0.67 

BUSDIS -1.15E-07 0.00 2.47 0.12 

MU 1.10E-09 0.00 0.00 0.98 

MUR -1.33E-08 0.00 0.22 0.64 

LI 7.90E-09 0.00 0.10 0.76 

HI 2.19E-08 0.00 0.75 0.39 

MH 1.95E-08 0.00 0.06 0.81 

SF -3.59E-09 0.00 0.02 0.89 

MF 1.61E-08 0.00 0.22 0.64 

INS 6.13E-08 0.00 4.33 0.04 

RES 1.00E-07 0.00 9.20 <0.01 

COM 5.37E-08 0.00 0.80 0.37 

OFF -9.96E-09 0.00 0.08 0.77 

TOD -9.89E-08 0.00 0.81 0.37 

UMU 3.02E-08 0.00 0.12 0.73 

UR -4.09E-08 0.00 0.11 0.74 

POP 5.44E-06 0.00 0.03 0.87 

HU -6.20E-05 0.00 4.27 0.04 

MHI 8.67E-06 0.00 0.34 0.56 

Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

The highest standard error in this Negative Binomial distribution based model is 

for miles with 7 lanes (L7), for which the prediction is off by “0.83”.  This is followed by 

miles with 40 mph as speed limit (40 mph), for which the prediction is off by “0.48”.  The 

standard error for one-way stop on the minor street (IT3), area with businesses (BUS), area 

with institutional (INS), area with research (RES) and household units (HU) is zero (least). 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.9 and 1.8, respectively (outside the expected range of 0.9 to 1.1 as in the case of Poisson 
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log-link distribution based Model 1).  The computed AIC = 498.4 and AICC = 659.7.  The 

difference between AIC and AICC is very high, indicating that the model does not fit the 

data well.  This could be due to the presence of several insignificant explanatory variables 

or possible correlations between the variables. 

The computed dispersion parameter for the Negative Binomial log-link distribution 

based Model 1 is equal to 1.312E-8.  It is very low (almost equal to 0), indicating that using 

Negative Binomial log-link distribution corrected the over-dispersion problem. 

The developed Negative Binomial log-link distribution based Model 1 is expressed 

in its exponential form as Equation (6). 

 

NC/year = [EXP((-0.603) + (-0.003*IT1)+(0.01*IT3) + (-0.012*IT4) + (0.005*IT5) + 
(0.037*IT6) + (-0.031*IT7) + (-0.008*BS) + (0.192*ES) + (-0.157*MS) + (0.169*HS) 
+ (0.201*PS) + (0.075*CU) + (-17.83*BL) + (-17.593*NBL) + (19.144*SW) + 
(19.114*NSW) + (0.016*DR) + (-0.268*L1) + (-0.602*L2) + (-0.571*L3) + (-
0.629*L4) + (-0.03*L5) + (-0.29*L6) + (-1.974*L7) + (-1.141*L8) + (-0.93*25mph) 
+ (-0.613*30mph) + (-0.968*35mph) + (-1.165*40mph) + (-0.924*45mph) + (-
1.204*50mph) + (-1.112*55mph) + (-0.981*60mph) + (-0.834*65mph) + 
(0.0000000986*BUS) + (0.0000000506*BUSPK) + (-0.000000115*BUSDIS) + 
(0.0000000011*MU) + (-0.0000000133*MUR) + (0.0000000079*LI) + 
(0.0000000219*HI) + (0.0000000195*MH) + (-0.00000000359*SF) + 
(0.0000000161*MF) + (0.0000000613*INS) + (0.0000001*RES) + 
(0.0000000537*COM) + (-0.00000000996*OFF) + (-0.0000000989*TOD) + 
(0.0000000302*UMU) + (-0.0000000409*UR) + (0.00000544*POP) + (-
0.000062*HU) + (0.00000867*MHI))]/6     … Equation (6) 

 

Based on interpretation of model parameters and considering conscientious 

violations for Poisson log-link distribution applicability, this research considers Negative 

Binomial log-link distribution based models as best models to estimate bicycle-vehicle 

crash frequency.  Only Negative Binomial log-link distribution based models are therefore 

discussed hereafter. 
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5.3 Negative Binomial Log-link Distribution Based Model 2 

All explanatory variables are considered initially when developing Model 2. 

However, statistically insignificant explanatory variables are eliminated one after another 

until the model comprises of only significant explanatory variables (p<=0.05, at a 95% 

confidence level).  The results obtained for the developed final Negative Binomial log-link 

distribution based Model 2 are summarized and shown in Table 7.  The table shows 

coefficients for each selected explanatory variable (unstandardized coefficient), standard 

errors (Std. Error), Wald Chi-Square values, p-values (significance values) and goodness-

of-fit statistics (Deviance, Pearson Chi-Square, AIC and AICC). 

 

TABLE 7: Negative Binomial log-link distribution based Model 2 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

(Intercept) -0.851 0.32 7.10 0.01
IT5 0.034 0.01 35.89 <0.01
IT7 -0.045 0.01 26.63 <0.01

NBL 0.089 0.01 76.06 <0.01
NSW -0.024 0.01 7.61 0.01

L7 -1.114 0.39 8.20 <0.01
L8 -0.478 0.17 8.06 0.01

35mph -0.042 0.02 7.46 0.01
BUS 5.96E-08 0.00 8.34 <0.01
HI 1.58E-08 0.00 9.23 <0.01

MF 3.60E-08 0.00 10.73 <0.01
RES 5.33E-08 0.00 5.16 0.02
COM 8.97E-08 0.00 10.74 <0.01

475.9 480.9

D 
(value/df)

PCS 
(value/df)

AIC AICC

1.3 1.2

p-valueParameter Coeff. Std. 
Error

Wald Chi-
Square
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The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 2 is statistically significant and the model degrees of freedom is 

twelve (12) explanatory variables.  The coefficients for traffic lights (IT5), miles with no 

bicycle lane (NBL), area with businesses (BUS), area with heavy industrial (HI), area with 

multi-family (MF), area with research (RES) and area with commercial (COM) are 

positive.  The other explanatory variables such as roundabout loop (IT7), miles with no 

sidewalk (NSW), miles with 7 lanes (L7), miles with 8 lanes (L8) and miles with 35 mph 

as speed limit (35mph) have negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 2 is for miles with 7 lanes (L7), for which the prediction is off by “0.3890”.  This is 

followed by the intercept, for which the prediction is off by “0.3196”.  The least standard 

error is for heavy industrial (HI) area, for which the prediction is off by “5.1999E-9”. 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.3 and 1.2, respectively (outside the expected range of 0.9 to 1.1 but lower than for 

Negative Binomial log-link distribution based Model 1).  The computed AIC = 475.9 and 

AICC = 480.9.  They are lower than AIC and AICC for Negative Binomial log-link 

distribution based Model 1.  The estimated dispersion parameter for this model is equal to 

0.069. 

The developed Negative Binomial log-link distribution based Model 2 is expressed 

in its exponential form as Equation (7). 

 

NC/year = [EXP ((-0.851) + (0.034*IT5) + (-0.045*IT7) + (0.089*NBL) + (-0.024*NSW) 
+ (-1.114*L7) + (-0.478*L8) + (-.042*35mph) + (0.00000005960*BUS) + 
(0.00000001580*HI) + (0.00000003600*MF) + (0.00000005333*RES) + 
(0.00000008967*COM))]/6     … Equation (7)  
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5.4 Negative Binomial Log-Link Distribution Based Model 3 

Network characteristics that are not correlated to traffic lights (IT5), land use 

characteristics that are not correlated to mixed use (MU) and multi-family (MF) areas, and 

population are considered initially.  Statistically insignificant explanatory variables are 

eliminated one after another until the model comprises of only significant explanatory 

variables (p<=0.05, at a 95% confidence level).  The results obtained for the developed 

final Negative Binomial log-link distribution based Model 3 are summarized and shown in 

Table 8.  The table shows coefficients for each selected explanatory variable 

(unstandardized coefficient), standard errors (Std. Error), Wald Chi-Square values, p-

values (significance values) and goodness-of-fit statistics (Deviance, Pearson Chi-Square, 

AIC and AICC). 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 3 is statistically significant and the model degrees of freedom is 

ten (10) explanatory variables.  The coefficients for traffic lights (IT5), miles with no 

bicycle lane (NBL), area with heavy industrial (HI), area with multi-family (MF), area with 

research (RES) and area with commercial (COM) are positive.  The other explanatory 

variables such as cul-de-sacs (IT1), dead-ends (IT4), miles with no sidewalk (NSW) and 

area with uptown mixed used (UMU) have negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

model is for the intercept, for which the prediction is off by “0.3764”.  This is followed by 
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traffic lights (IT5), for which the prediction is off by “0.0147”.  The least standard error is 

for heavy industrial (HI) area, for which the prediction is off by “6.1276E-9”.  

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.2 and 1.1, respectively (close to the expected range).  The computed AIC = 491.8 and 

AICC = 495.4 for this model.  The estimated dispersion parameter for this model is equal 

to 0.146. 

The developed Negative Binomial log-link distribution based Model 3 is expressed 

in its exponential form as Equation (8). 

 

NC/year = [(EXP ((-0.441) + (-0.005*IT1) + (-0.013*IT4) + (0.035*IT5) + (0.062*NBL) 
+ (-0.025*NSW) + (0.00000001325*HI) + (0.00000004101*MF) + 
(0.00000006220*RES) + (0.00000007675*COM) + (-0.0000001181*UMU))]/6  
         … Equation (8) 

 

TABLE 8: Negative Binomial log-link distribution based Model 3 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC  
 

 

(Intercept) -0.441 0.38 1.37 0.24
IT1 -0.005 0.00 3.88 0.05
IT4 -0.013 0.01 6.32 0.01
IT5 0.035 0.01 5.60 0.02
NBL 0.062 0.01 37.10 <0.01
NSW -0.025 0.01 6.27 0.01

HI 1.33E-08 0.00 4.68 0.03
MF 4.10E-08 0.00 11.56 <0.01
RES 6.22E-08 0.00 5.33 0.02
COM 7.68E-08 0.00 5.89 0.02
UMU -1.18E-07 0.00 4.51 0.03

1.2 1.1 491.8 495.4

p-value D 
(value/df)

PCS 
(value/df)

AIC AICCParameter Coeff. Std. 
Error

Wald Chi-
Square
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5.5 Negative Binomial Log-link Distribution Based Model 4 

Network characteristics that are not correlated to traffic lights (IT5), land use 

characteristics that are not correlated to single-family (SF) and multi-family (MF) areas, 

and population are considered initially.  Statistically insignificant explanatory variables are 

eliminated one after another until the model comprises of only significant explanatory 

variables (p<=0.05, at a 95% confidence level).  The results obtained for the developed 

final Negative Binomial log-link distribution based Model 4 are summarized and shown in 

Table 9.  The table shows contains coefficients for each selected explanatory variable 

(unstandardized coefficient), standard errors (Std. Error), Wald Chi-Square values, p-

values (significance values) and goodness-of-fit statistics (Deviance, Pearson Chi-Square, 

AIC and AICC). 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 4 is statistically significant and the model degrees of freedom is 

six (6) explanatory variables.  

 

TABLE 9: Negative Binomial log-link distribution based Model 4 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 

 

(Intercept) 0.132 0.40 0.11 0.74
IT4 -0.018 0.01 9.02 <0.01

NBL 0.081 0.01 131.98 <0.01
NSW -0.041 0.01 22.65 <0.01

SF -1.19E-08 0.00 10.09 <0.01
MF 3.68E-08 0.00 8.63 <0.01
INS 3.17E-08 0.00 4.48 0.03

1.2 1.0 501.4 503.0

Wald Chi-
Square

D 
(value/df)

PCS 
(value/df)

AIC AICCParameter Coeff. Std. Error p-value
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The coefficients for miles with no bicycle lane (NBL), area with multi-family (MF) 

and area with institutional (INS) are positive.  The other explanatory variables such as 

dead-ends (IT4), area with no sidewalk (NSW) and area with single-family (SF) have 

negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 4 is for the intercept, for which the prediction is off by “0.4022”.  This is followed 

by the area with no sidewalk (NSW), for which the prediction is off by “0.0085”.  The least 

standard error is for single-family (SF) area, for which the prediction is off by “3.7566E-

9”.  

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.2 and 1.0, respectively (close to the expected range).  The computed AIC = 501.4 and 

AICC = 503.0 for this model.  The estimated dispersion parameter for this model is equal 

to 0.210. 

The developed Negative Binomial log-link distribution based Model 4 is expressed 

in its exponential form as Equation (9). 

 

NC/year = [EXP ((0.132) + (-0.018*IT4) + (0.081*NBL) + (-0.041*NSW) + (-
0.00000001193*SF) + (0.00000003678*MF) + (0.00000003173*INS))]/6  
         … Equation (9) 

 

5.6 Negative Binomial Log-link Distribution Based Model 5 

Network characteristics that are not correlated to traffic lights (IT5), land use 

characteristics that are not correlated to mixed use (MU) and office (OFF) areas, and 

population are considered initially.  Statistically insignificant explanatory variables are 

eliminated one after another until the model comprises of only significant explanatory 



81 
 

variables (p<=0.05, at a 95% confidence level).  The results obtained for the developed 

final Negative Binomial log-link distribution based Model 5 are summarized and shown in 

Table 10.  The table shows coefficients for each selected explanatory variable 

(unstandardized coefficient), standard errors (Std. Error), Wald Chi-Square values, p-

values (significance values) and goodness-of-fit statistics (Deviance, Pearson Chi-Square, 

AIC and AICC). 

 

TABLE 10: Negative Binomial log-link distribution based Model 5 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 5 is statistically significant and the model degrees of freedom is 

seven (7) explanatory variables.  The coefficients for miles with no bicycle lane (NBL), 

miles with speed limit = 45 mph (45mph) and population (POP) are positive.  The other 

explanatory variables such as cul-de-sacs (IT1), dead-ends (IT4), miles with no sidewalk 

(NSW) and area with single-family (SF) have negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 5 is for the intercept, for which the prediction is off by “0.4347”.  This is followed 

(Intercept) 0.159 0.43 0.13 0.72
IT1 -0.006 0.00 6.40 0.01
IT4 -0.015 0.01 6.70 0.01

NBL 0.07 0.01 58.32 <0.01
NSW -0.033 0.01 13.72 <0.01
45mph 0.125 0.05 7.10 0.01
POP 5.70E-05 0.00 6.33 0.01
SF -1.08E-08 0.00 6.35 0.01

Parameter Coeff. Std. 
Error

p-valueWald Chi-
Square

1.2 1.0 503.5 505.5

AICCD 
(value/df)

PCS 
(value/df)

AIC
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by miles with speed limit = 45 mph (45mph), for which the prediction is off by “0.0468”.  

The least standard error is for single-family (SF) area, for which the prediction is off by 

“4.2653E-9”. 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.2 and 1.0, respectively (close to the expected range).  The computed AIC = 503.5 and 

AICC = 505.5 for this model.  The estimated dispersion parameter for the model is equal 

to 0.213. 

The developed Negative Binomial log-link distribution based Model 5 is expressed 

in its exponential form as Equation (10). 

 

NC/year = [EXP ((0.159) + (-0.006*IT1) + (-0.015*IT4) + (0.070*NBL) + (-0.033*NSW) 
+ (0.125*45mph) + (-0.00000001075*SF) + (0.00000544*POP))]/6   
         … Equation (10) 

 

5.7 Negative Binomial Log-link Distribution Based Model 6 

Network characteristics that are not correlated to the number of one-way stops on the minor 

street (IT3), land use characteristics that are not correlated to mixed use (MU) and multi-

family (MF) areas, and population are considered initially.  Statistically insignificant 

explanatory variables are eliminated one after another until the model comprises of only 

significant explanatory variables (p<=0.05, at a 95% confidence level).  The results 

obtained for the developed Negative Binomial log-link distribution based Model 6 are 

summarized and shown in Table 11.  The table shows coefficients for each selected 

explanatory variable (unstandardized coefficient), standard errors (Std. Error), Wald Chi-

Square values, p-values (significance values) and goodness-of-fit statistics (Deviance, 

Pearson Chi-Square, AIC and AICC). 
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TABLE 11: Negative Binomial log-link distribution based Model 6 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 6 is statistically significant and the model degrees of freedom is 

eight (8) explanatory variables.  The coefficients for miles with no bicycle lane (NBL), 

area with heavy industrial (HI), area with multi-family (MF), area with research (RES) and 

area with commercial (COM) are positive.  The other explanatory variables such as cul-

de-sacs (IT1), dead-ends (IT4) and miles with no sidewalk (NSW) have negative 

coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 6 is for the intercept, for which the prediction is off by “0.3729”.  This is followed 

by miles with no sidewalk (NSW), for which the prediction is off by “0.0092”.  The least 

standard error is for heavy industrial (HI) area, for which the prediction is off by “6.1997E-

9”. 

(Intercept) -0.635 0.37 2.90 0.09
IT1 -0.007 0.00 8.79 <0.01
IT4 -0.013 0.01 5.71 0.02
NBL 0.08 0.01 137.59 <0.01
NSW -0.035 0.01 14.79 <0.01

HI 1.42E-08 0.00 5.23 0.02
MF 4.24E-08 0.00 12.24 <0.01
RES 6.55E-08 0.00 5.55 0.02
COM 9.81E-08 0.00 10.02 <0.01

493.6 496.1

Std. 
Error

Coeff. AIC AICCParameter

1.2 1.0

D 
(value/df)

PCS 
(value/df)

Wald Chi-
Square

p-value
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The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.2 and 1.0, respectively (close to the expected range).  The computed AIC = 493.640 and 

AICC = 496.140 for this model.  The estimated dispersion parameter for this model is equal 

to 0.164. 

The developed Negative Binomial log-link distribution based Model 6 is expressed 

in its exponential form as Equation (11). 

 

NC/year = [EXP ((-0.635) + (-0.007*IT1) + (-0.013*IT4) + (0.080*NBL) + (-0.035*NSW) 
+ (0.00000001418*HI) + (0.00000004236*MF) + (0.00000006549*RES) + 
(0.00000009813*COM))]/6     … Equation (11) 

 

5.8 Negative Binomial Log-link Distribution Based Model 7 

Network characteristics that are not correlated to the number of one-way stops on 

the minor street (IT3), land use characteristics that are not correlated to single-family (SF) 

and multi-family (MF) areas, and population are considered initially.  Statistically 

insignificant explanatory variables are eliminated one after another until the model 

comprises of only significant explanatory variables (p<=0.05, at a 95% confidence level). 

The results obtained for the developed final Negative Binomial log-link distribution based 

Model 7 are summarized and shown in Table 12.  The table shows coefficients for each 

selected explanatory variable (unstandardized coefficient), standard errors (Std. Error), 

Wald Chi-Square values, p-values (significance values) and goodness-of-fit statistics 

(Deviance, Pearson Chi-Square, AIC and AICC). 

The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 7 is statistically significant and the model degrees of freedom is 
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five (5) explanatory variables.  The coefficients for miles with no bicycle lane (NBL), miles 

with speed limit = 45 mph (45mph) and area with multi-family (MF) are positive.   

The other explanatory variables such as cul-de-sacs (IT1) and miles with no sidewalk 

(NSW) have negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 7 is for the intercept, for which the prediction is off by “0.3740”.  This is followed 

by miles with speed limit = 45 mph (45mph), for which the prediction is off by “0.0470”.  

The least standard error is for area with multi-family (MF) area, for which the prediction 

is off by “1.2287E-8”. 

 

TABLE 12: Negative Binomial log-link distribution based Model 7 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.1 and 1.0, respectively (within the expected range).  The computed AIC = 501.9 and 

AICC = 503.1 for this model.  The estimated dispersion parameter for the model is equal 

to 0.230. 

The developed Negative Binomial log-link distribution based Model 7 is expressed 

in its exponential form as Equation (12). 

(Intercept) -0.832 0.37 4.94 0.03
IT1 -0.007 0.00 9.09 <0.01

NBL 0.078 0.01 109.71 <0.01
NSW -0.035 0.01 15.73 <0.01
45mph 0.107 0.05 5.17 0.02

MF 4.73E-08 0.00 14.85 <0.01

1.1 1.0 501.9 503.1

D 
(value/df)

PCS 
(value/df)

AIC AICCp-valueParameter Coeff. Std. 
Error

Wald Chi-
Square
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NC/year = [EXP ((-0.832) + (-0.007*IT1) + (0.078*NBL) + (-0.035*NSW) + 
(0.107*45mph) + (0.00000004734*MF))]/6   … Equation (12) 

 

5.9 Negative Binomial Log-link Distribution Based Model 8 

Network characteristics that are not correlated to the number of one-way stops on 

the minor street (IT3), land use characteristics that are not correlated to mixed use (MU) 

and office (OFF) areas, and population are considered initially.  Statistically insignificant 

explanatory variables are eliminated one after another until the model comprises of only 

significant explanatory variables (p<=0.05, at a 95% confidence level).  The results 

obtained for the developed final Negative Binomial log-link distribution based Model 8 are 

summarized and shown in Table 13.  The table shows coefficients for each selected 

explanatory variable (unstandardized coefficient), standard errors (Std. Error), Wald Chi-

Square values, p-values (significance values) and goodness-of-fit statistics (Deviance, 

Pearson Chi-Square, AIC and AICC). 

 

TABLE 13: Negative Binomial log-link distribution based Model 8 - results summary 

 
Note: D = Deviance, PCS = Pearson Chi-Square, AIC = Akaike’s Information Criterion  
          AICC = Finite Sample Corrected AIC 
 

(Intercept) -0.611 0.38 2.58 0.11
IT1 -0.008 0.00 13.09 <0.01

NBL 0.07 0.01 55.67 <0.01
NSW -0.036 0.01 15.78 <0.01
45mph 0.155 0.05 10.39 <0.01
POP 5.82E-05 0.00 6.66 0.01

Parameter Coeff. Std. 
Error

Wald Chi-
Square

p-value

1.2 1.0 509.6 510.8

D 
(value/df)

PCS 
(value/df)

AIC AICC
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The Omnibus Test indicated that the developed Negative Binomial log-link 

distribution based Model 7 is statistically significant and the model degrees of freedom is 

five (5) explanatory variables.  The coefficients for miles with no bicycle lane (NBL), miles 

with speed limit = 45 mph (45mph) and population (POP) are positive.  The other 

explanatory variables such as cul-de-sacs (IT1) and miles with no sidewalk (NSW) have 

negative coefficients. 

The highest standard error in this Negative Binomial log-link distribution based 

Model 8 is for the intercept, for which the prediction is off by “0.3803”.  This is followed 

by miles with speed limit = 45 mph (45mph), for which the prediction is off by “0.0482”.  

The least standard error is for population (POP), for which the prediction is off by 

“2.2535E-5”. 

The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

1.2 and 1.0, respectively (close to the expected range).  The computed AIC = 509.6 and 

AICC = 510.8 for this model.  The estimated dispersion parameter for this model is equal 

to 0.257. 

The developed Negative Binomial log-link distribution based Model 8 is expressed 

in its exponential form as Equation (13). 

 

NC/year = [EXP ((-0.611) + (-0.008*IT1) + (0.070 *NBL) + (-0.036*NSW) + 
(0.155*45mph) + (0.00005816*POP)]/6    … Equation (13) 

 

5.10 Model Validation Results 

As stated in Chapter 3, each developed model was validated using MFE, MAD, 

MSE, RMSE, MAPE and SMAPE.  Validation dataset for 20 randomly selected locations 
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that was not used for modeling is considered for validation.  Tables 14 to 21 summarize 

the results obtained from validation of each developed model. 

 

TABLE 14: Model 1 validation results summary 

 

 

# Actual # of 
Crashes (A)

Est. # of 
Crashes (E)

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 2.0 1.0 1.0 1.0 0.3 5.0
2 1 -0.1 1.1 1.1 1.2 1.1 0.9
3 4 1.0 3.0 3.0 9.3 0.8 5.0
4 2 0.2 1.8 1.8 3.2 0.9 2.2
5 5 2.0 3.0 3.0 9.2 0.6 7.0
6 15 0.7 14.3 14.3 203.4 1.0 15.7
7 6 3.5 2.5 2.5 6.0 0.4 9.5
8 32 3.2 28.8 28.8 829.5 0.9 35.2
9 25 2.9 22.1 22.1 489.8 0.9 27.9

10 7 2.5 4.5 4.5 20.4 0.6 9.5
11 9 0.5 8.5 8.5 72.0 0.9 9.5
12 1 0.1 0.9 0.9 0.8 0.9 1.1
13 3 0.3 2.7 2.7 7.5 0.9 3.3
14 4 1.0 3.0 3.0 8.9 0.7 5.0
15 13 2.5 10.5 10.5 111.2 0.8 15.5
16 2 0.5 1.5 1.5 2.4 0.8 2.5
17 0 -0.9 0.9 0.9 0.7 - -0.9
18 3 0.9 2.1 2.1 4.3 0.7 3.9
19 5 -0.1 5.1 5.1 25.5 1.0 4.9
20 0 2.3 -2.3 2.3 5.4 - 2.3

Total 115.0 119.6 1811.6 12.1 165.0

20
5.7
6.0
90.6
9.5

67.5
0.7Symmetric Mean Absolute Percent Error (SMAPE)

Number of Samples (N)
Mean Forecast Error (MFE)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)
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TABLE 15: Model 2 validation results summary 

 

 

# Actual # of 
Crashes (A)

Est. # of 
Crashes 

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 3.1 -0.1 0.1 0.0 0.0 6.1
2 1 0.9 0.1 0.1 0.0 0.1 1.9
3 4 2.7 1.3 1.3 1.8 0.3 6.7
4 2 3.6 -1.6 1.6 2.6 0.8 5.6
5 5 9.2 -4.2 4.2 18.1 0.8 14.2
6 15 6.3 8.7 8.7 76.4 0.6 21.3
7 6 15.0 -9.0 9.0 81.6 1.5 21.0
8 32 32.0 0.0 0.0 0.0 0.0 64.0
9 25 8.3 16.7 16.7 279.4 0.7 33.3

10 7 10.8 -3.8 3.8 14.5 0.5 17.8
11 9 6.1 2.9 2.9 8.6 0.3 15.1
12 1 3.5 -2.5 2.5 6.1 2.5 4.5
13 3 3.9 -0.9 0.9 0.8 0.3 6.9
14 4 7.9 -3.9 3.9 15.3 1.0 11.9
15 13 8.1 4.9 4.9 23.7 0.4 21.1
16 2 1.5 0.5 0.5 0.3 0.3 3.5
17 0 0.7 -0.7 0.7 0.5 - 0.7
18 3 2.5 0.5 0.5 0.2 0.2 5.5
19 5 2.8 2.2 2.2 4.7 0.4 7.8
20 0 2.9 -2.9 2.9 8.3 - 2.9

Total 8.2 67.6 542.8 10.8 271.8

20
0.4
3.4

27.1
5.2

59.8
0.2

Mean Absolute Percentage Error (MAPE)
Symmetric Mean Absolute Percent Error (SMAPE)

Mean Forecast Error (MFE)
Number of Samples (N)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
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TABLE 16: Model 3 validation results summary 

 

 

# Actual # of 
Crashes (A)

Est. # of 
Crashes (E)

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 2.6 0.4 0.4 0.2 0.1 5.6
2 1 1.4 -0.4 0.4 0.2 0.4 2.4
3 4 2.5 1.5 1.5 2.3 0.4 6.5
4 2 4.7 -2.7 2.7 7.4 1.4 6.7
5 5 5.9 -0.9 0.9 0.9 0.2 10.9
6 15 26.4 -11.4 11.4 129.5 0.8 41.4
7 6 8.0 -2.0 2.0 4.1 0.3 14.0
8 32 25.3 6.7 6.7 44.6 0.2 57.3
9 25 10.9 14.1 14.1 199.8 0.6 35.9
10 7 5.2 1.8 1.8 3.2 0.3 12.2
11 9 14.1 -5.1 5.1 26.0 0.6 23.1
12 1 2.6 -1.6 1.6 2.5 1.6 3.6
13 3 2.6 0.4 0.4 0.1 0.1 5.6
14 4 5.2 -1.2 1.2 1.4 0.3 9.2
15 13 7.6 5.4 5.4 29.6 0.4 20.6
16 2 1.1 0.9 0.9 0.8 0.4 3.1
17 0 0.7 -0.7 0.7 0.6 - 0.7
18 3 1.9 1.1 1.1 1.1 0.4 4.9
19 5 2.5 2.5 2.5 6.4 0.5 7.5
20 0 4.0 -4.0 4.0 16.1 - 4.0

Total 4.74 64.99 476.89 7.82 275.26

20
0.2
3.2
23.8
4.9
43.4
0.2Symmetric Mean Absolute Percent Error (SMAPE)

Number of Samples (N)
Mean Forecast Error (MFE)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)
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TABLE 17: Model 4 validation results summary 

 

 

# Actual# of 
Crashes (A)

Est. # of 
Crashes (E )

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 2.3 0.7 0.7 0.5 0.2 5.3
2 1 1.2 -0.2 0.2 0.0 0.2 2.2
3 4 2.1 1.9 1.9 3.7 0.5 6.1
4 2 3.8 -1.8 1.8 3.1 0.9 5.8
5 5 7.4 -2.4 2.4 5.9 0.5 12.4
6 15 30.1 -15.1 15.1 227.0 1.0 45.1
7 6 8.1 -2.1 2.1 4.4 0.3 14.1
8 32 24.0 8.0 8.0 63.6 0.2 56.0
9 25 9.7 15.3 15.3 235.3 0.6 34.7
10 7 5.9 1.1 1.1 1.3 0.2 12.9
11 9 7.1 1.9 1.9 3.5 0.2 16.1
12 1 3.5 -2.5 2.5 6.2 2.5 4.5
13 3 4.0 -1.0 1.0 1.0 0.3 7.0
14 4 8.8 -4.8 4.8 23.5 1.2 12.8
15 13 11.8 1.2 1.2 1.4 0.1 24.8
16 2 1.0 1.0 1.0 0.9 0.5 3.0
17 0 0.6 -0.6 0.6 0.3 - 0.6
18 3 2.7 0.3 0.3 0.1 0.1 5.7
19 5 3.2 1.8 1.8 3.1 0.4 8.2
20 0 2.5 -2.5 2.5 6.3 - 2.5

Total 0.2 66.0 591.0 8.8 279.8

20
0.0
3.3

29.5
5.4

49.1
0.2

Mean Absolute Percentage Error (MAPE)
Symmetric Mean Absolute Percent Error (SMAPE)

Number of Samples (N)
Mean Forecast Error (MFE)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
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TABLE 18: Model 5 validation results summary 

 

 

# Actual # of 
Crashes (A)

Est. # of 
Crashes (E )

A-E Abs(A-E)  (A-E)2 % Error SMAPE

1 3 4.5 -1.5 1.5 2.1 0.5 7.5
2 1 1.2 -0.2 0.2 0.1 0.2 2.2
3 4 3.0 1.0 1.0 0.9 0.2 7.0
4 2 4.1 -2.1 2.1 4.2 1.0 6.1
5 5 9.7 -4.7 4.7 21.8 0.9 14.7
6 15 22.2 -7.2 7.2 51.5 0.5 37.2
7 6 9.9 -3.9 3.9 15.2 0.7 15.9
8 32 28.2 3.8 3.8 14.8 0.1 60.2
9 25 11.2 13.8 13.8 191.2 0.6 36.2
10 7 6.9 0.1 0.1 0.0 0.0 13.9
11 9 6.0 3.0 3.0 8.8 0.3 15.0
12 1 3.2 -2.2 2.2 5.1 2.2 4.2
13 3 2.6 0.4 0.4 0.2 0.1 5.6
14 4 7.7 -3.7 3.7 13.6 0.9 11.7
15 13 8.1 4.9 4.9 24.5 0.4 21.1
16 2 1.5 0.5 0.5 0.3 0.3 3.5
17 0 0.7 -0.7 0.7 0.5 - 0.7
18 3 3.0 0.0 0.0 0.0 0.0 6.0
19 5 2.4 2.6 2.6 6.6 0.5 7.4
20 0 3.6 -3.6 3.6 13.2 - 3.6

Total 0.3 59.8 374.3 8.3 279.7

20
0.0
3.0
18.7
4.3
45.9
0.2Symmetric Mean Absolute Percent Error (SMAPE)

Number of Samples (N)
Mean Forecast Error (MFE)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)
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TABLE 19: Model 6 validation results summary 

 

 

# Actual# of 
Crashes (A)

Est. # of 
Crashes 

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 2.3 0.7 0.7 0.4 0.2 5.3
2 1 1.5 -0.5 0.5 0.2 0.5 2.5
3 4 2.3 1.7 1.7 2.8 0.4 6.3
4 2 4.8 -2.8 2.8 7.6 1.4 6.8
5 5 6.1 -1.1 1.1 1.1 0.2 11.1
6 15 30.2 -15.2 15.2 231.3 1.0 45.2
7 6 8.6 -2.6 2.6 6.6 0.4 14.6
8 32 27.2 4.8 4.8 23.1 0.2 59.2
9 25 11.5 13.5 13.5 182.0 0.5 36.5
10 7 5.2 1.8 1.8 3.1 0.3 12.2
11 9 11.4 -2.4 2.4 5.9 0.3 20.4
12 1 2.3 -1.3 1.3 1.7 1.3 3.3
13 3 2.8 0.2 0.2 0.0 0.1 5.8
14 4 5.2 -1.2 1.2 1.5 0.3 9.2
15 13 7.7 5.3 5.3 27.6 0.4 20.7
16 2 1.0 1.0 1.0 1.0 0.5 3.0
17 0 0.7 -0.7 0.7 0.4 - 0.7
18 3 2.1 0.9 0.9 0.9 0.3 5.1
19 5 2.4 2.6 2.6 6.6 0.5 7.4
20 0 3.5 -3.5 3.5 12.5 - 3.5

Total 1.1 63.6 516.7 7.6 278.9

20
0.1
3.2

25.8
5.1

42.0
0.2

Mean Absolute Percentage Error (MAPE)
Symmetric Mean Absolute Percent Error (SMAPE)

Number of Samples (N)
Mean Forecast Error (MFE)

Mean Absolute Deviation (MAD)
Mean Square Error (MSE)

Root Mean Square Error (RMSE)
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TABLE 20: Model 7 validation results summary 

 

 

# Actual# of 
Crashes (A)

Est. # of 
Crashes 

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 3.0 0.0 0.0 0.0 0.0 6.0
2 1 1.4 -0.4 0.4 0.2 0.4 2.4
3 4 2.0 2.0 2.0 4.1 0.5 6.0
4 2 3.0 -1.0 1.0 1.0 0.5 5.0
5 5 6.5 -1.5 1.5 2.4 0.3 11.5
6 15 36.7 -21.7 21.7 471.1 1.4 51.7
7 6 14.7 -8.7 8.7 75.9 1.5 20.7
8 32 24.8 7.2 7.2 52.1 0.2 56.8
9 25 10.0 15.0 15.0 224.3 0.6 35.0
10 7 6.4 0.6 0.6 0.4 0.1 13.4
11 9 6.5 2.5 2.5 6.2 0.3 15.5
12 1 2.8 -1.8 1.8 3.1 1.8 3.8
13 3 2.3 0.7 0.7 0.5 0.2 5.3
14 4 5.3 -1.3 1.3 1.7 0.3 9.3
15 13 7.7 5.3 5.3 28.2 0.4 20.7
16 2 1.3 0.7 0.7 0.5 0.4 3.3
17 0 0.7 -0.7 0.7 0.5 - 0.7
18 3 2.9 0.1 0.1 0.0 0.0 5.9
19 5 2.2 2.8 2.8 7.8 0.6 7.2
20 0 1.6 -1.6 1.6 2.5 - 1.6

Total -1.7 75.8 882.6 8.6 281.7

20
-0.1
3.8

44.1
6.6

47.9
0.3

Number of Samples (N)

Symmetric Mean Absolute Percent Error (SMAPE)

Mean Forecast Error (MFE)
Mean Absolute Deviation (MAD)

Mean Square Error (MSE)
Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)
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TABLE 21: Model 8 validation results summary 

 

 

# Actual# of 
Crashes (A)

Est. # of 
Crashes 

A-E Abs(A-E)  (A-E)2 % Error A+E

1 3 4.5 -1.5 1.5 2.2 0.5 7.5
2 1 1.8 -0.8 0.8 0.6 0.8 2.8
3 4 2.9 1.1 1.1 1.3 0.3 6.9
4 2 3.3 -1.3 1.3 1.6 0.6 5.3
5 5 8.1 -3.1 3.1 9.5 0.6 13.1
6 15 29.5 -14.5 14.5 210.7 1.0 44.5
7 6 12.9 -6.9 6.9 48.1 1.2 18.9
8 32 29.3 2.7 2.7 7.2 0.1 61.3
9 25 10.8 14.2 14.2 200.5 0.6 35.8
10 7 7.9 -0.9 0.9 0.8 0.1 14.9
11 9 6.4 2.6 2.6 6.9 0.3 15.4
12 1 3.2 -2.2 2.2 4.9 2.2 4.2
13 3 2.4 0.6 0.6 0.3 0.2 5.4
14 4 6.4 -2.4 2.4 5.6 0.6 10.4
15 13 5.9 7.1 7.1 49.9 0.5 18.9
16 2 1.5 0.5 0.5 0.2 0.2 3.5
17 0 1.0 -1.0 1.0 1.0 - 1.0
18 3 3.8 -0.8 0.8 0.6 0.3 6.8
19 5 2.6 2.4 2.4 5.9 0.5 7.6
20 0 2.0 -2.0 2.0 4.0 - 2.0

Total -6.2 68.5 561.9 9.3 286.2

20
-0.3
3.4
28.1
5.3
51.7
0.2

Number of Samples (N)

Symmetric Mean Absolute Percent Error (SMAPE)

Mean Forecast Error (MFE)
Mean Absolute Deviation (MAD)

Mean Square Error (MSE)
Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)
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5.10.1 Model 1 Validation Interpretations 

The results obtained from validation of Model 1 are summarized in this subsection. 

(1) The computed MFE for Model 1 is 5.7.  This indicates the model’s tendency to 

underestimate i.e., the actual number of bicycle-vehicle crashes is more than the estimated 

number of bicycle-vehicle crashes. 

 (2) The computed MAD and MSE are 6.0 and 90.6, respectively.  They cannot be 

considered on their own and need to be compared to MAD and MSE of other models or 

standards.  These two validation test parameters are called “comparative numbers”.  In 

comparison of models, the lower the MSE or MAD, the better or close to actual estimates. 

 (3) The computed RMSE is 9.5, while the computed MAPE is 67.5.  MAPE is a 

measure of prediction accuracy of a forecasting method in statistics, which expresses 

accuracy as a percentage.  MAPE has issues arising from its practical applications.  It 

cannot be used if there are zero values in the actual number of bicycle-vehicle crashes 

(because there would be a division by zero).  When MAPE is used to compare the accuracy 

of prediction methods, it is biased in that it systematically selects a method whose forecasts 

are too low.  In addition, it puts a heavier penalty on negative errors (A < E) than on positive 

errors.  To overcome these issues with MAPE, SMAPE or Mean Absolute Scaled Error 

(MASE) are used. 

 (4) The computed SMAPE is 0.7.  It is an accuracy measure based on percentage 

errors.  It measures the direction of bias in the data by generating a positive and a negative 

error on line item level.  SMAPE is better protected against outliers and the bias effect.  

The limitation to SMAPE is that if the actual value or estimated (forecast) value is zero (0), 
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the value of error will boom up to the upper limit of error.  Having two zeros in the actual 

number of bicycle-vehicle crashes does not guaranty a good result from SMAPE neither. 

5.10.2 Model 2 Validation Interpretations 

The results obtained from validation of Model 2 are summarized in this subsection. 

(1) The computed MFE is 0.4 for Model 2.  Even this model has the tendency to 

underestimate. 

(2) The computed MAD and MSE are 3.4 and 27.1, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 5.2, 59.8 and 0.2, respectively. 

5.10.3 Model 3 Validation Interpretations 

The results obtained from validation of Model 3 are summarized in this subsection. 

(1) The computed MFE is 0.2 for Model 3.  Even this model has the tendency to 

underestimate. 

(2) The computed MAD and MSE are 3.2 and 23.8, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 4.9, 43.4 and 0.2, respectively. 

5.10.4 Model 4 Validation Interpretations 

The results obtained from validation of Model 4 are summarized in this subsection. 

 (1) The computed MFE is 0.0 for Model 4.  It is lowest of all the developed models. 

(2) The computed MAD and MSE are 3.3 and 29.5, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 5.4, 49.1 and 0.2, respectively. 

5.10.5 Model 5 Validation Interpretations 

The results obtained from validation of Model 5 are summarized in this subsection. 

 (1) The computed MFE is 0.0 for Model 5 as well. 

(2) The computed MAD and MSE are 3.0 and 18.7, respectively. 
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(3) The computed RMSE, MAPE and SMAPE are 4.3, 45.9 and 0.2, respectively.  

5.10.6 Model 6 Validation Interpretations 

The results obtained from validation of Model 7 are summarized in this subsection. 

(1) The computed MFE is 0.1 for Model 6.  Even this model has the tendency to 

underestimate. 

(2) The computed MAD and MSE are 3.2 and 25.8, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 5.1, 42.0 and 0.2, respectively. 

5.10.7 Model 7 Validation Interpretations 

The results obtained from validation of Model 7 are summarized in this subsection. 

(1) The computed MFE is -0.1 for Model 7.  This model has the tendency to 

overestimate. 

(2) The computed MAD and MSE are 3.8 and 44.1, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 6.6, 47.9 and 0.3, respectively. 

5.10.8 Model 8 Validation Interpretations 

The results obtained from validation of Model 8 are summarized in this subsection. 

(1) The computed MFE is -0.3 for Model 8.  This model has the tendency to 

overestimate as well. 

(2) The computed MAD and MSE are 3.4 and 28.1, respectively. 

(3) The computed RMSE, MAPE and SMAPE are 5.3, 51.7 and 0.2, respectively.  

5.11 Comparison and Selection of the Best Model 

Table 22 summarizes the goodness-of-fit statistics for all the developed eight 

models, while Table 23 summarizes model validation results for all the developed eight 

models. 
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The computed Deviance and Pearson Chi-Square values per degrees of freedom are 

highest for Model 1, followed by Model 2.  It is lowest for Model 7 (an indicator of low 

residuals).  The Pearson Chi-Square values per degrees of freedom is equal to 1.0 for 

models 3 to 8, when explanatory variables that are not correlated to each other were 

considered for modeling.  The AIC and AICC are lowest for Model 2, followed by Model 

3 and Model 6. 

 

TABLE 22: Summary of model goodness-of-fit statistics 

Model # Deviance 
(value/df) 

Pearson Chi-
Square 

(value/df) 
AIC AICC 

1 1.9 1.8 498.4 659.7 
2 1.3 1.2 475.9 480.9 
3 1.2 1.1 491.8 495.4 
4 1.2 1.0 501.4 503.0 
5 1.2 1.0 503.5 505.5 
6 1.2 1.0 493.6 496.1 
7 1.1 1.0 501.9 503.1 
8 1.2 1.0 509.6 510.8 

 

TABLE 23: Summary of model validation results 

Model # MFE MAD MSE RMSE MAPE SMAPE 
1 5.7 6.0 90.6 9.5 67.5% 70.0% 
2 0.4 3.4 27.1 5.2 59.8% 20.0% 
3 0.2 3.2 23.8 4.9 43.4% 20.0% 
4 0.0 3.3 29.5 5.4 49.1% 20.0% 
5 0.0 3.0 18.7 4.3 45.9% 20.0% 
6 0.1 3.2 25.8 5.1 42.0% 20.0% 
7 -0.1 3.8 44.1 6.6 47.9% 30.0% 
8 -0.3 3.4 28.1 5.3 51.7% 20.0% 
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The computed MFE, MAD, MSE, RMSE, MAPE and SMAPE are lowest for 

Model 5, followed by Model 3.  The models 1, 2, 3, and 6 seem to underestimate bicycle-

vehicle crash frequency, while models 7 and 8 seem to overestimate bicycle-vehicle crash 

frequency.  The MFE is 0 for models 4 and 5. 

The computed MAD values (mean of errors without the basis of overestimating or 

underestimating) indicates that Model 5 is off by an average of 3.0 units, Model 3 and 6 

are off by an average of 3.2 units, Model 4 is off by an average of 3.3 units, Model 2 and 

8 are off by an average of 3.4 units, Model 7 is off by an average of 3.8 units and Model 1 

off by an average of 6.0 units (highest) from the actual bicycle-vehicle crash frequency. 

On the other hand, MSE penalizes large errors by giving weights when validating.  

Model 5 has the lowest MSE of 18.7, followed by Model 3 with 23.8.  Likewise, RMSE is 

lowest for Model 5, followed by Model 3.  Model 1 has the highest MSE and RMSE. 

The computed RMSE values range from 4.3 to 9.5.  These values seem to be high, 

greater than the mean bicycle-vehicle crash frequency in some cases.  Overestimating or 

underestimating bicycle-vehicle crash frequency at locations with higher bicycle-vehicle 

crash frequency (> 20 bicycle-vehicle crashes) and congested traffic conditions is observed 

to be the primary problem.  This can be observed from the spatial pattern of computed 

residuals shown in figures 17 to 24.  To further assist with the interpretation of spatial 

patterns in residuals, Global Moran's Index was computed in GIS environment to examine 

if the spatial pattern of residuals from each model is clustered, dispersed, or random.  An 

inverse distance concept was felt appropriate and used for analysis.  When the z-score 

indicates statistical significance, a Moran's Index value close to +1.0 indicates clustering 
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while a Moran’s Index value close to –1.0 indicates dispersion.  The results obtained are 

summarized in Table 24. 

 

TABLE 24: Summary of Moran’s Index, z-score and p-values 

 

 

The z-score of Model 1 indicates that the spatial pattern of its residuals is clustered 

at a 99% confidence level.  On the other hand, the z-scores of Model 8 and Model 4 indicate 

that the spatial pattern of their residuals is dispersed at 95% and 90% confidence level, 

respectively.  For all other models, the spatial pattern does not appear to be significantly 

different than random (possibly attributed to the selection of locations for modeling).  In 

general, the computed Moran’s Index values are close to 0, indicating weak to no spatial 

correlation between residuals of each model. 

Comparing parameters and validation results for models 3 to 8 with models 1 and 

2 indicates that considering explanatory variables that are not correlated to each other and 

eliminating statistically insignificant variables improve the predictability of bicycle-

vehicle crash frequency models.  Further, the number of explanatory variables (hence, data 

collection efforts) could be minimal if models 3 to 8 are used. 

Model # Moran's 
Index z-score p-value

Model 1 0.05 5.03 <0.01
Model 2 -0.01 -0.27 0.79
Model 3 -0.03 -1.53 0.13
Model 4 -0.03 -1.73 0.08
Model 5 -0.03 -1.59 0.11
Model 6 -0.03 -1.36 0.18
Model 7 -0.02 -1.01 0.31
Model 8 -0.04 -2.06 0.04
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Based on results from validation, Model 5 could be classified as a good model. 

However, it does not consider critical variables such as traffic lights (directly related to 

conflicting situations), high speed urban roads, research, commercial and land use mix such 

as multi-family and uptown mixed use areas that were identified as critical explanatory 

variables by past researchers. 

Model 3, on the other hand, seem to perform more consistently based on statistical 

parameters and validation results and is, therefore, recommended as the model to estimate 

bicycle-vehicle crash frequency.  Additional justification for selection of Model 3 is 

presented next. 

(1) First, many previous studies observed that intersections are critical locations that 

play a major role in the number of reported traffic crashes (Wachtel and Lewiston, 1994); 

Klop and Khattak, 1999; Delmelle and Thill, 2008; Reynolds et al., 2009; Pulugurtha and 

Repaka, 2011; Wei and Lovegrove, 2012; Strauss et al., 2013; Pulugurtha and Imran, 2013; 

Wang et al., 2013; Figliozzi et al., 2013).  In particular, traffic lights are major contributors 

of bicycle-vehicle crashes (Pulugurtha & Thakur, 2015).  This explanatory variable (IT5) 

is included in Model 3. 

(2) Second, bicyclists are three to four times at higher risk (based on traffic conditions) 

while traveling on segments without on-street bicycle lane than on segments with on-street 

bicycle lane (Pulugurtha & Thakur, 2015).  Reynolds et al (2009) indicated that on-road 

marked bicycle lane is associated with the lowest risk for bicyclists.  This factor is captured 

as center-line miles without bicycle lane (NBL) and included in Model 3. 

(3) Third, past research affirmed that institutional areas (e.g. schools), research, 

business districts, commercial, employment, local city streets, sidewalks, and land use mix 
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increase risk to bicyclists (Wachtel and Lewiston, 1994; Kim et al., 2007; Delmelle and 

Thill, 2008; Reynolds et al., 2009; Delmelle et al., 2012; Strauss et al., 2013).  Several of 

these explanatory variables are included in Model 3. 

The absence of sidewalk decreases bicycle-vehicle crash frequency in such way 

that the bicyclist is less distracted by the presence of pedestrians on the sidewalk.  Bicyclists 

often make sudden intrusion on the vehicle path in an effort to avoid the collision with a 

pedestrian on the sidewalk.  The unevenness of travel path (example, at intersection with 

ADA ramps) only aggravates the problem.  Dead-ends (IT4) and cul-de-sacs (IT1) have 

relatively lower number of conflicts, while the risk of getting involved in a bicycle-vehicle 

crash is high at traffic lights with relatively more number of conflicts.  The absence of 

bicycle lane exposes bicyclists to additional risk.  Traffic volumes and speeds are higher in 

heavy industrial, research and commercial areas (increasing risk of bicyclist getting 

involved in a crash), while bicycling activity is typically higher in multi-family and mixed 

use areas.  Therefore, using Model 3 will help better forecast bicycle-vehicle crashes on 

urban roads.  This forecasting model helps identify appropriate solutions and proactively 

improve safety of bicycle riders in urban settings. 
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FIGURE 17: Model 1 residuals - spatial pattern 
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FIGURE 18: Model 2 residuals - spatial pattern 
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FIGURE 19: Model 3 residuals - spatial pattern 
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FIGURE 20: Model 4 residuals - spatial pattern 
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FIGURE 21: Model 5 residuals - spatial pattern 
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FIGURE 22: Model 6 residuals - spatial pattern 
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FIGURE 23: Model 7 residuals - spatial pattern 
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FIGURE 24: Model 8 residuals - spatial pattern



   
  

 

 

CHAPTER 6: CONCLUSIONS 

In this research, macroscopic bicycle-vehicle crash frequency models were 

developed with emphasis on demographic, land use, and network characteristics.  The 

methodology adopted used tools available in GIS, data analytics and statistical methods to 

identify explanatory variables and estimate bicycle-vehicle crash frequency (safety 

performance function). 

Selected demographic characteristics, land use characteristics and various network 

characteristics (overall, 55 explanatory variables) were captured in GIS environment for 

119 locations.  These locations account for 91.8% of the observed bicycle-vehicle crashes 

during the study period.  The selected locations are geographically distributed and fall in 

high, medium, low and no risk locations. 

Data for 99 randomly selected locations was used to develop bicycle-vehicle crash 

frequency models, while data for 20 randomly selected locations was used to validate the 

models.  These macroscopic models estimate the overall bicycle-vehicle crash frequency 

in an area within a radius equal to 1-mile.  The results from analysis and models can assist 

planners, professionals, practitioners and policy-makers to correct the hazards, to develop 

rezoning plans, and understand the role of developments for improving the safety of 

bicyclists on urban roads. 

Results obtained from “One Sample Kolmogorov-Smirnov Test” and “Descriptive 

Statistics” indicate that the bicycle-vehicle crash data used in this research is over-

dispersed.  Therefore, Negative Binomial log-link distribution based models were 
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developed to estimate bicycle-vehicle crash frequency than Poisson log-link distribution 

based count models. 

Strong correlations were observed between bicycle-vehicle crash frequency on 

urban roads and most network, land use, and demographic characteristics within a 1-mile 

radius.  With exceptions of the number of cul-de-sacs (IT1), mixed use residential (MUR) 

area and single-family (SF) residential area, an increase in all other considered significant 

explanatory variables could lead to an increase in bicycle-vehicle crash frequency. 

The computed Pearson correlation coefficients indicate that strong correlations 

exist between selected network, land use and demographic characteristics (p-value 

=~0.000).  Bicycle-vehicle crash frequency models were, therefore, developed with and 

without considering explanatory variables that are strongly correlated to each other, and, 

with and without eliminating statistically insignificant explanatory variables. 

The results obtained from analysis and modeling indicate that bicyclists are at a 

significantly higher risk of getting involved in a crash while traveling 

(1) on segments with no bicycle lane, 

(2) on segments with traffic lights, 

(3) on segments with 45 mph as speed limit, 

(4) in commercial areas, 

(5) in areas with research activity and institutions, 

(6) in areas with multi-family residential units (densely populated), and, 

(7) in heavy industrial areas. 
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These could be associated with exposure (conflicting situations, high speed / high 

volume roads, etc.) and areas with high bicycling activity levels.  On the other hand, cul-

de-sacs, dead-ends and single-family residential area could have a lower but smoothing 

effect on bicycle-vehicle crash frequency.  Overall, based on the results and observed 

magnitude of forecasting errors, network characteristics have equal or better predictive 

ability than land use and demographic characteristics considered in this research. 

Not considering two explanatory variables that are correlated to each other and 

eliminating insignificant explanatory variables when developing bicycle-vehicle crash 

frequency models tend to improve the predictability of the models.  This is well supported 

by results obtained from model validation. 

The developed methodology and bicycle-vehicle crash frequency models (safety 

performance functions) can be used to estimate bicycle-vehicle crash frequency within the 

vicinity of any location and proactively incorporate bicyclist’s safety into land use 

decisions, transportation improvement programs, metropolitan transportation plans and 

comprehensive transportation plans to minimize projected bicycle-vehicle crash frequency. 

6.1 Limitations and Scope for Further Research 

Only 22 fatal and severe injury (Type A) bicycle-vehicle crashes were observed in 

the study area during the study period.  This sample is inadequate to develop bicycle-

vehicle crash frequency models by severity.  Data from multiple study areas should be 

combined to develop and test the validity of bicycle-vehicle crash frequency models by 

severity. 
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The residuals seem to be relatively high for locations with higher number of 

bicycle-vehicle crash frequency.  The bicycle-vehicle crash frequency is typically higher 

in and around uptown/downtown area.  Developing bicycle-vehicle crash frequency 

models by area type (central business district, urban and suburban areas) might lead to 

accurate estimates.  Large data from multiple study areas should be gathered and used to 

develop and validate such bicycle-vehicle crash frequency models by area type. 

Explanatory variables such as bicycle counts, AADT, gender, and age-group were 

not considered for analysis and modeling.  Bicycle counts are not available for the study 

area, while AADT was not available for collector and local roads that constitute the 

majority of urban roads in this study.  Likewise, gender and age was not available in the 

obtained bicycle-vehicle crash data.  Additionally, implementation of bicycle racks and 

rentals is growing.  Collecting and considering such data for analysis and modeling not 

only improves predictability and understand the role of causal factors but also helps to 

identify solutions and strategies that enhance safety of bicyclists on urban roads.  This 

would certainly benefit from incorporating bicycle counts and expanding traffic counts as 

a part traffic data collection programs. 

The accuracy of estimates from the models depend on the accuracy of data used for 

developing the models.  Likewise, collecting the data regularly and adopting consistent 

standards to maintain the data is key when data from multiple study areas are used for 

modeling. 
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