

BIDIRECTIONAL SCRIPTING AND GEOMETRIC MANIPULATION

by

James William Rodgers Jr.

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Architecture III and
Master of Science in Information Technology

Charlotte

2016

 Approved by:

 Dr. John Gero

 Professor Chris Beorkrem

 Professor Jefferson Ellinger

ii

©2016
James William Rodgers Jr

ALL RIGHTS RESERVED

iii

ABSTRACT

JAMES WILLIAM RODGERS JR. Bidirectional scripting and geometric manipulation.
Under the direction of (DR. JOHN GERO, PROFESSOR CHRIS BEORKREM, and
PROFESSOR JEFFERSON ELLINGER)

Working within the bounds of two-dimensional drawing programs and

algorithmic design software, this project seeks to improve the accessibility to hidden

information that is often obscured in conventional CAD software. Building off of visual

programming tools like Grasshopper and Dynamo, a series of video prototypes have been

constructed. This project proposes that a feasible and usable platform can be devised to

take advantage of a bidirectional link between scripting and direct manipulation. This is

demonstrated in the video prototypes by combining conventions from modern CAD

software, and algorithmic scripting software. A heuristic evaluation is used to analyze the

usability of the proposed software seen in the video prototypes.

iv

TABLE OF CONTENTS

INTRODUCTION 1	

LITERATURE REVIEW 4

METHODOLOGY 19

VIDEO PROTOTYPE: LINE MANIPULATION 23

TEST RESULTS: LINE MANIPULATION 26

VIDEO PROTOTYPE: ADJACENCY DIAGRAMS 32

TEST RESULTS: ADJACENCY DIAGRAMS 35

HEURISTIC EVALUATION ANALYSIS 42

VIDEO PROTOTYPE: PERSPECTIVAL DRAWING 44

FUTURE WORK 48

CONCLUSION 56

REFERENCES 61

BIBLIOGRAPHY 63

1

INTRODUCTION

In the early phases of schematic design, architects explore many ideas at a fast

pace in order to arrive at a suitable solution, without immediately committing themselves

to a particular design. Because of this, CAD is rarely used at this stage due to its level of

precision being inconducive to sketching and iterative drawing. As stated by Gross et al.

(2009) in Computational Support for Sketching in Design: A Review , sketching can be

simply defined as “quickly made depictions that facilitate visual thinking,” as they

represent an opportunity to think through drawing and generate new ideas (p. 3).

“Sketching is the traditional method for early-phase design when both problems and

solutions are unclear.” (p. 10)

Architecture students are often encouraged to sketch freehand rather than using

CAD at early stages of design, usually because of the restrictions and influences that

CAD programs place on designers. These influences arise from the distinct difference

between the way in which a designer views a sketch, and the way the sketch data is stored

in the computer. A designer may be able to interpret their sketch in infinite ways, while

the computer has stored either a fixed or basic interpretation of the drawing. In

conventional CAD software, the designer is presented with a straightforward

representation of their drawing, as this medium is most similar to the way in which

architects work with pencil and paper. This representation can be considered an

abstraction of the underlying data structure, in order to make this data legible and easily

manipulated. However, there is an opportunity to alter the designer’s understanding of the

drawing by presenting them with a less abstracted view of their work. This task has been

2

most notably addressed by programs like Grasshopper for Rhinoceros, a visual

programming language that produces geometry from scripts of pre-made components.

Grasshopper is an effective method for facilitating visual thinking in designers, as

it produces an entirely new way of interpreting data that would normally be viewed as

straightforward geometry. However, Grasshopper fails to be an effective method for

sketching, as creating Grasshopper scripts can be a cumbersome and time-consuming

task. Also, creating geometry in Grasshopper is done entirely with scripting, limiting a

designer to this singular (albeit novel) understanding of the drawing. Gross et al. also

state that “proficiency in sketching goes beyond applying marks to the page - one must

also interpret and re-

interpret drawings in order

to use them effectively.”

If the process of

scripting in grasshopper

were reversed, it would

allow a designer to sketch

and manipulate a drawing,

while their actions were recorded in script as

the computer records them. By offering a simultaneous view of the script and canvas, a

designer could achieve a better understanding of the hidden information, which is

influencing their drawing. Finally, an opportunity to edit the automatically generated

script could be offered, meaning that the designer could move seamlessly between one

interpretation of the drawing to another.

Figure 1: Bidirectional software diagram

3

This concept, combined with the natural advantages of iterative drawing on a

computer (making copies quickly), could be a compelling way of offering visual thinking

through “sketching” in a CAD program. Video prototypes for this software will be built

to demonstrate the phenomenon that occurs when a designer sees and manipulates these

two interpretations of their work. These videos will also show that a feasible and usable

platform can be devised to take advantage of this bidirectional link between scripting and

direct manipulation. These prototypes are made clear and understandable through

combining and adapting affordances from modern CAD software and algorithmic

scripting software. A heuristic evaluation will then be used to analyze the usability of the

proposed software seen in the video prototypes.

4

LITERATURE REVIEW

Drawings and the design process

Drawings are used by architects throughout the design process, generally

increasing in specificity and detail as the process moves forward. Early in the process and

before many decisions are made, freehand sketches are often the tool of choice for many

architects. Donald Schon (1983) speaks about how an architect in this phase “seeks to

discover the particular features of his problematic situation, and from their gradual

discovery, design an intervention.” Schon also points out that there is “a problem in

finding the problem” at these early stages of design. (p. 129) As Schon goes on to

describe, this means that the designer must have a process to set problems and attempt to

solve them, with failed attempts leading to reflection and a revised definition of the

problem. By iterating on these attempts to solve the problem, designers learn from the

series of moves they have completed, and this leads them to reappreciate, reinvent, and

redraw. Describing the work of an example design student and her instructor, Schon

states, “the graphic world of the sketchpad is the medium of reflection-in-action. Here

they can draw and take their moves in spatial-action language, leaving traces which

represent the forms of buildings on the site. Because the drawing reveals qualities and

relations unimagined beforehand, moves can function as experiments.” (p.157) Here it is

made clear how Schon envisions drawings as a tool for exploring design and arriving at

solutions for problems that are often difficult to define.

With the prototype software Constraint Explorer, Mark Gross (1985) sought to

aid designers in defining problems through establishing a collection of constraints. In this

project, constraints are defined as rules, requirements, relations, conventions, and

5

principles that define the context of a design problem. Gross also assumes that a design

will begin with general specifications, and gradual reflection and iteration will lead to a

set of more specific solutions. The proposed prototype allows a user to input constraints

through command line input. These

constraints are then used to establish a set

of rules and relationships, which grow in

complexity with each command from the

user. Figure 2 shows an example of work

produced with this prototype, with a simple

drawing of a lintel and two columns

becoming a complex system of

relationships and constraints. Sometimes

further input is not allowed by the system, as

the new commands may conflict with those set previously by the user. This prototype

represents a design tool which could aid designers in defining a problem through iterative

additions, producing a network of constraints where originally there was little for the

designer to work with.

Relating sketching to the activity of problem definition, Mark Gross et al. (2009)

stated “Sketching is the traditional method for early-phase design when both problems

and solutions are unclear.” (p.10) Gross also offers a concise definition of sketching as

“quickly made depictions that facilitate visual thinking” (p.3). These depictions may be

rough in appearance, but play an important role in the thought process of a designer as

problems are being defined. Belardi (2014) offers a similar definition: “sketching is a

Figure 2: Constraint Explorer diagrams

6

quick, readily available, dense, self-generative, and, above all, extraordinarily

communicative notational system.” (p. 32) Belardi notes that part of the reason sketches

are described as “quickly made” is that the materials for their creation are readily

available, as pens, pencils and scraps of paper are common items used for sketching.

Seeking to expand their definition of sketching, Gross et al. describe sketching as a tool

for thinking and working through a design at its early stages, rather than a

representational tool for clients or contractors. Robbins (1994) posited that sketches and

drawings may be viewed as either instruments for design or representations of complete

work, but on their own neither of these understandings is enough to define drawing

comprehensively. Rather, he states that “drawing both produces architectural knowledge

and is a production of that knowledge.” (p. 5) This suggests that the process of

completing a drawing includes simultaneous actions of learning and representation.

Subsequently, the repetition of these two actions could produce and present a collection

of new knowledge gained from the process.

Introducing another aspect of the sketching process, Gross (2009) stated that

designers who are proficient with sketching must not only apply marks to a page, but

iteratively interpret and re-interpret their sketches in order to arrive at new conclusions

and to generate ideation. This means that through repeated sketching and reflection,

gradually accumulated discoveries can lead to the design of a successful solution to the

defined problem. Trace paper is a common and traditional tool for completing this task,

as drawings can be layered on top of one another to achieve gradual changes through

iteration. Belardi (1994) describes how the sensory input that occurs when a designer

draws or traces creates knowledge or meaning where previously there was none. Belardi

7

cites a 1970s study by Gerald Edelman, which proposed that before the brain assigns

meaning to a new form of stimulation or sensory input, it is assigned “a certain

‘category,’ a coherent response in the brain that is the antecedent of a ‘meaning.” (p. 20)

This idea is supported by the work of Benjamin Libet, who showed that when a person

traces something, their brain can take 500 milliseconds to process the mark consciously,

while only 150 milliseconds pass before an unconscious sensory reception occurs. This

was found to be particularly common when the drawing act was done impulsively, as

would be expected when tracing over lines from a previous drawing. (p.24) The

mysterious gap in between these two events is likened to a “black hole,” and could be key

for defining exactly how creative ideation occurs. Belardi also proposes how repeating

this process of interpretation could improve a designer’s creativity, stating “successive

‘explorations’— i.e., sensations of the same subject in different times and contexts— are

never the same, each category is determined and then reclassified an infinite number of

times. It is through this endless process of structuring/ destructuring/ restructuring that

each person creates his or her creative aptitude.” (pp. 20-21) Speaking of the way various

tools could effect consciousness during the drawing process, Peter Cook (2008) stated:

“Is it not a spontaneous means of summarizing immediate attention? A form of jotting

down. Shouting, murmuring, kicking or the wandering of the mind are less impeded by

the necessary use of an implement, such as a pencil. The many effects on our

consciousness of such implements has led to ceaseless pondering, whether it involves the

impact of a lead pencil or the use of a particular computer program” (p. 8). The

definitions of sketching put forth by Gross et al. (2009) were proposed in order to assist

human-computer interaction practitioners in creating opportunities for this natural

8

sketching and drawing in a digital environment. The following literature reviews will

seek to outline the challenges as well as the opportunities in completing this task.

The sketching gap in CAD software

Ivan Sutherland’s introduction of Sketchpad (1963) represented one of the first

examples of a digital implement which would have an impact on the way architects

interact with their drawings. As the first example of a graphical user interface, the

concepts demonstrated via the use of this software were entirely novel, needing to be

explained thoroughly to viewers who had no previous conception of what a CAD

program could or should resemble. A particularly important aspect of this software was in

allowing the user to directly manipulate their drawings using a light-pen, and to visualize

the drawing using an x-y point plotter display. In comparison to the command-line

interfaces present in many early CAD systems, Sketchpad’s GUI and direct manipulation

offered a drawing tool that was much closer to traditional drawing methods.

While Sutherland’s development of Sketchpad represented a leap forward in

utilizing traditional drawing methods in a digital environment, modern CAD systems

have been thoroughly developed and integrated in all phases of the design process except

for the areas of sketching and early schematic design. In these early phases of schematic

design, architects explore many ideas at a fast pace in order to arrive at a suitable

solution, without immediately committing themselves to a particular design. Because of

this, CAD is often avoided at this stage due to its level of precision being unconducive to

sketching and iterative drawing. Architecture students are often encouraged to sketch

freehand rather than using CAD at early stages of design. Some of the reasoning behind

9

this is seen in this statement from Sutherland, as he points out the inherent differences

between digital and manual drawing techniques:

An ordinary draftsman is unconcerned with the structure of his drawing material.

Pen and ink or pencil and paper have no inherent structure. They only make dirty

marks on paper. The draftsman is concerned principally with the drawings as a

representation of the evolving design. The behavior of the computer-produced

drawing, on the other hand, is critically dependent upon the topological and

geometric structure built up in the computer memory as a result of drawing

operations. The drawing itself has properties quite independent of the properties

the object it is describing. (Sutherland, 1975 as cited in Stiny, 2006, p. 61)

Since a digital drawing has an underlying structure that is independent from its

visual representation, there are many aspects of the drawing that a novice user may not

understand or be in control of. For architecture students at early phases of design, this

means that those topological and geometric structures from the computer’s memory are

not accessible, but will have great influence on the way the drawing behaves and

translates. While these structures offer advantages to those who are in control of them,

they can represent a hazard for the creativity of those who are less aware.

Gross and Do (1996) have developed a prototype that sought to combine the

strengths of manual and digital drawing to fill the sketching gap in CAD tool usage. The

Electronic Cocktail Napkin offers users many features for digital sketching, one being a

simulation of the way designers use trace paper to copy and combine drawings. As layers

are created they can be stored, hidden, and brought back for use at a later time. An

10

important feature of these layers is their semi-transparency, meaning that the layer

underneath is not totally abandoned once new layers are added. This allows an

opportunity for re-interpretation, as new iterations of the drawing can be created after

thoughtful reflection and the addition of a new semi-transparent layer. In addition to this

layering, the program is capable of recognizing simple shapes as the user draws them.

Groups of these simple shapes can be stored as configurations of elements, which the

system is also capable of recognizing. Through recognizing these items, the system can

then make assumptions about the drawing and relationships between its parts. The data

behind these relationships can be relayed to the designer, which may offer them

knowledge that they would not have gained from a system without “intelligent paper” as

The Electronic Cocktail Napkin describes its interface. This prototype also offers tools

that imitate the results of applying varying levels of pressure with a drawing or painting

implement in analog methods. For example, applying more pressure with the given

drawing instrument in this prototype will result in a darker, thicker line, as would occur

while using a paintbrush. Despite the strengths of this project, architects have not

adopted similar software in a widespread manner. It seems that attempts to directly

replicate pen and paper sketching in digital form are not likely to become preferable to

analog method in the eyes of architects. Features such as the semi-transparent trace paper

overlays that are inspired by sketching, but do not strictly adhere to the analog methods

may be more promising for future development. By taking advantage of the strengths of

the computer, such as duplication, these features can enhance aspects of sketching instead

of trying to imitate them.

11

Limitations in digital sketching

Rahinah Ibrahim (2010) displayed how CAD programs can hinder novice

designers in the early stages of design by being too restrictive and limiting intuitive

ideation. This was completed through a long-term ethnographic study of a design studio

and its designers. Some of the benefits of analog drawing techniques were defined as,

flexibility in ideation due to the tangible interface, ease of use, ease of learning, and ease

in maintaining a design idea during the design process, because of the ability to see and

compare all of the documents together. On the other hand, challenges with the current

CAD tools included difficulty in learning and gaining the ability to use the tools, as well

as losing consistency in the design due to a lack of control over the CAD software.

However, the data collected in the study led the authors of this paper to propose that

when used alone, neither traditional analog sketching tools nor the current CAD tools

were adequate for handling the entire design process in the setting of modern

architectural education. The proposed solution in this case was to devise a new form of

design medium, a virtual reality (VR) device that would ease the transition between

analog and digital drawing techniques.

Zafer Bilda and Halime Demirkan (2002) showed that traditional media was

preferable to digital means in the categories of perception of visual–spatial features,

production of alternative solutions and better conception of a design problem. This study

involved the careful counting and classification of “cognitive actions,” or CA, that a

designer made while completing a design task. It was found that in general, more CA

were carried out during the use of analog sketching and drawing tools than with the given

CAD tools. Bilda and Demirkan proposed that this difference was caused by the

12

designers’ experience with traditional sketching and their habitual activities while using

traditional sketching media, which were not adequately facilitated by the given CAD

tools. The authors cited that the inflexibility of the CAD tools, and the lack of a

“doodling activity” kept the designers from exploring more diagrammatic representations

of their work. To fix this, they suggested that CAD tools could offer semi-transparent

copying activities, modeled after the way tracing paper is used in traditional media. After

an initial sketch is created, a layer of trace paper is placed on top of the drawing, and

another drawing is made on this new surface. Creating this second layer involves reading

or “interpreting” the first drawing, while simultaneously sketching a new drawing. As

more layers of trace paper are applied and sketched upon, the “re-interpretation”

described by Gross et al. (2009) occurs in traditional media. Implementing a similar

process in a digital environment would potentially offer more opportunities for re-

interpretation and diagrammatic representation.

Despite these documented conflicts between digital and manual drawing methods,

Peter Cook (2008) referenced an observation from Perry Kulper, an architecture professor

who strictly works in analog format but is not averse to digital production: ‘I wonder

what about the ‘construction lines’ of the digital world. Might there be some architectural

knowledge embedded there as I find in the construction lines of a drawing when working

manually - constructed latent knowledge, for example?’ (pp. 220-221) The term

“construction lines” is synonymous with the act of drafting manually, as the skilled use of

a T-square, parallel bar and triangle map out the framework of an orthographic drawing.

In Elements of Parametric Design, Robert Woodbury (2010) pointed out the ways in

which parametric modeling programs increase the number of drawing tools and

13

subsequently increase drawing complexity: “Parametric modeling, also known as

constraint modeling, introduces a fundamental change: ‘marks’, that is, parts of a design,

relate and change together in a coordinated way. No longer must designers simply add

and erase. They now add, erase, relate, and repair. Relating and repairing impose

fundamental changes on systems and the work that is done in them.” (p. 8) Since adding

and erasing result in directly visible changes, they are easily recognized by the user.

However, relating and repairing drawing items may result in changes that are not directly

visible, and the user is asked to recall, rather than recognize this criteria.

Algorithmic CAD software

Woodbury (2010) described how digitally produced drawings can often be

described with “directed graphs” which are made up of nodes and links. These nodes can

represent the ‘marks’ in a design, as well as the actions of adding, erasing, relating and

repairing. Each node is connected via links, and the resulting graph can be seen as a

diagrammatic representation of the drawing and all of its parts. Schleich (1994) discussed

how this can lead to a large amount of “hidden information” which is often not

conveniently accessible to the user. This is distinctly different from a manual drawing,

where all of the drawing’s information is visible to the designer. Schleich cited this is a

problem with WYSIWYG (What You See Is What You Get) software, where a drawing,

text, or other graphics can be seen and edited in a form that is close or exactly like what

the final product will be. The “final product” in the case of graphics editors refers to the

image that will be produced by a printer. However, the computer’s memory will usually

store much more information than the printer can relay visually. Schleich refers to this as

14

hidden information, which is part of the topological and geometric structure that is

compiled as the user creates a drawing. He offered an array of potential hidden

information, including exact dimensions of an object, object grouping, invisible

attributes, constraints, and design history. The solution in this case was a prototype that

displayed all of this hidden information in the form of a “structure browser”, so that it

would be directly accessible to the user. These structure browsers consist of a series of

nodes and links referring to all of the elements and attributes the drawing contains. By

editing these structure browsers, a user may change grouping characteristics among

items, as well as the application of attributes to specific items. When this representation

of the drawing grows larger, the user has an opportunity to expand or collapse branches

of the structure browser to hide or reveal the nodes as they wish. While an advanced user

of the WYSIWYG graphics editor may have full knowledge of the underlying

information that they have produced in the process of completing a drawing, this

prototype makes the hidden information more accessible to the casual user.

Common algorithmic CAD tools such as Grasshopper and Dynamo utilize similar

structures to represent drawing objects and tools, allowing designers to build their

drawings through the medium of nodes and links. In a conceptual project by Daniel

Belcher’s Sketching Dynamic Geometry, (2013) a designer can sketch on a canvas and

see his drawing steps automatically mapped onto a Grasshopper-like node and link

interface. Whereas Grasshopper allows users to build and manipulate a network of nodes

and links that produce a drawing, Belcher’s project suggests that direct input in a drawing

canvas could be interpreted by the system as a network of nodes and links. When the user

draws as they would in a conventional graphics editor, script components appear

15

automatically in a separate window. In turn, these script components can be edited and

manipulated to better reflect the mental model the designer holds of the drawing. The

dual view of a sketch offers a designer an insight into the way that sketching data is

stored, and fosters a meaningful relationship between the designer’s mental model of

their design and the contrasting model stored in the computer. In this way, some or all of

the hidden information behind the drawing’s WYSIWIG representation become more

transparent and accessible to the user. Actions in one screen are mapped to the other, so

that the designer moves bidirectionally, back and forth constantly from a literal version of

their drawing to its graph representation. In this way, the gap between the user’s creative,

imaginative understanding of the drawing and the computer’s concrete, constrained

storage of the drawing begin to be bridged. These constraints can also become useful to

the designer as their relationship to one another becomes clear, and design options can be

narrowed down to find a solution that fits within the set constraints.

However, the bidirectional actions seen in Belcher’s conceptual video are quite

simple, e.g. a single line is drawn, and the two endpoints are stored as data in a directed

graph format. A more well-established program that also exhibits this type of

bidirectionality is Adobe Dreamweaver, a commonly used WYSIWYG aid for producing

web pages quickly and without the need for detailed programming skill. HTML code is

generated automatically as the designer draws out a webpage in a more conventional

vector drawing format. However, this is still not very useful as a manipulable

programming language, according to Paul Coates’ definition in Programming

Architecture (2010). Here he explained the distinctions between HTML and more

complete programming languages: “A list of coordinates is similarly just data. For the

16

text to read itself we need a full set of conditional expressions, control structures and

arithmetic operators. HTML and lists of numbers are essentially collections of nouns, a

programming text in the sense I mean here also has verbs, adjectives and adverbs.” (p. 3)

Here, Coates distinction between ‘nouns’ and ‘verbs, adjectives and adverbs’ can easily

be compared to Robert Woodbury’s description of ‘adding and erasing’ versus ‘relating

and repairing.’ Coates also mentioned the difference between simple data storage and a

true parametric algorithm: “Many people casually refer to any slightly ‘techy’ text as a

computer code, but, for instance, HTML is not a language in the sense I am trying to

develop here, but a piece of data. It has a syntax and a lexicon all right, but in order to

produce a web page it has to be read by an algorithm written in a programming language,

which, using the data renders the page by painting the dots on the screen different colors

to make words and pictures” (p. 3). By this definition, HTML code is only capable of

storing the adding and erasing actions spoken of in Woodbury’s text. The actions of

relating and repairing are better suited for a more articulate programming language that

can describe the relationships between each element within the data.

In addition to lacking the complexity and modifiers necessary for an

encompassing description of an architectural drawing and its hidden information, the

HTML code produced by WYSIWYG programs such as Dreamweaver is often

unnecessarily bulky and untidy. Spiesser (2004) outlined the pitfalls of this bloated code,

which can cause high storage costs, transmission costs, and increased download times.

Because the user’s actions are automatically translated into HTML code, the inefficient

repetition of elements and attributes often occurs. In many cases, an attribute that could

be generally applied to a large number of elements at once is instead applied repetitively

17

to every single element. Also, unnecessary formatting often results in dead code that

serves no computational purpose, nor is it useful or intuitive for a user to interpret

visually. Spiesser’s work focused on finding new optimization techniques for this code,

seeking out algorithms and processes that would run through the code automatically and

result in a more efficient product. This often involved the elimination of unnecessary

dead code, as well as reducing the repetition of attributes. While these optimization

techniques may be useful and replicable, it is clear that any time a WYSIWYG software

attempts to represent direct graphic manipulation through code or graphs, inefficiency

and unnecessary repetition is likely to occur. This represents a challenge when attempting

to improve upon the bidirectional functionality seen in Daniel Belcher’s prototype

software.

Research through design

In order to explore this concept of bidirectional scripting and direct geometric

manipulation, this project will consist of a series of video prototypes demonstrating the

capabilities of a proposed bidirectional interface. These prototypes will be heuristically

evaluated to determine both their usability and usefulness to architects and HCI

designers. Zimmerman et al. (2007) have put forth the values of using design as a vehicle

for research, and as the topic of research based papers. They have presented a model of

research that involves repetitive design and reflection, allowing research and design to

occur simultaneously. In order to bring greater validity and standardization to this type of

research, Zimmerman has proposed four types of criteria for judging these design

research contributions. The first of these is process, judging the rigor used in selecting a

18

methodology for the design activities. The iterative production of video prototypes and

their individual heuristic evaluations will represent the process in this case. Zimmerman’s

next criteria is the invention, stating that the designers must show that they have

produced a novel integration of different subject matters, and how this product advances

the particular field of technology. The third criteria for judging design research

contributions is relevance. The term relevance is used here as opposed to “validity,” as

validity may suggest there would be a particular right answer that designers should arrive

at, given a particular problem. Relevance is a preferable term in this situation because it

suggests that the product of a design research project is useful for solving the given task,

and preferable to other tools or methods. The last criteria is extensibility, meaning that

the given work documented and described in a way that will allow future practitioners to

leverage the knowledge gained from the design research. Using this model, video

prototypes will be constructed to demonstrate the feasibility and usage of bidirectional

scripting and geometric manipulation at the early schematic design level.

19

METHODOLOGY

The experiment design for this project consists of a single condition study: a

video prototype usability study. In order to test the video prototypes, the videos have

been completed and hosted on a collaborative video commenting platform developed in

the UNCC Human-Computer Interaction department, called the Video Collaboratory.

Human-Computer Interaction and User Experience design experts, including UNCC

Software and Information Systems department faculty and students, were asked to view

the video and provide comments based on the Nielsen Usability Heuristics. Architecture

professors and advanced students with extensive experience with current CAD software

have also participated and added comments within this forum. The Nielsen Heuristics

include a list of 10 standards which are meant to be universally applicable for evaluating

the usability and quality of user experience that a given interface possesses. These

comments were taken into consideration during the design of subsequent video

prototypes.

Figure 3: Video prototype screenshot

20

 In figure 3, a screenshot from the proposed interface can be seen. The screen on

the left is a canvas allowing for direct manipulation as would be seen in any modern 2D

vector drawing platform. On the right, a script panel hosts the drawing data in algorithmic

form, borrowing language and affordances from programs such as Grasshopper and

Dynamo. In figure 4, the interface is labeled to display all of the available tools for

drawing and scripting. A central menu has been purposefully placed between the two

screens, as each tool is meant to be useful on both sides of the screen. For example, the

user may select the line tool and draw as they would using a conventional drawing

program on the canvas side. They may also select the line tool and use this to create a

new line component by clicking within the scripting window.

Figure 4: Labeled interface diagram

 Two video prototypes have been hosted on the Video Collaboratory App created

at UNCC, and shared with 10 HCI and architecture faculty and student experts in the

field of UX design and architecture. They were asked to provide comments on specific

21

moments of the videos, with positive or negative points based on the Nielsen Usability

Heuristics listed below:

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose, and recover from errors

The HCI, UX experts were given several example comments (positive and negative) to

help guide them through the review process:

"Visibility of System Status- When a user creates a line, the parameters for its

coordinates are not visible by default. This means it may be difficult for the designer to

understand the exact coordinates being used by the line."

"Minimalist Design - When a user creates a line on either the canvas or the script side of

the screen, the same line button is used for each option. This is a good use of minimalist

design."

22

 The results gathered from this study consist of all of the comments posted by the

participants on the online Video Collaboratory forum. They are sorted by Heuristic, and

counted. This is done to aid in finding areas of strength and weakness in the interface.

This sorting and the comments themselves have influenced the design of a final video

prototype incorporating the advice and lessons learned from the heuristic evaluations.

23

VIDEO PROTOTYPE: LINE MANIPULATION

 In this first video prototype, Line Manipulation, a user can be seen drawing and

manipulating two lines using the bidirectional interface. This simple interaction is meant

to demonstrate how the user is allowed to use both the canvas and script windows to

create the drawing. In figure 5, a single line has been drawn, and the script components

referencing the line can be seen appearing automatically after the line is drawn.

Figure 5: A line is recorded

 In figure 6, another line has been drawn using the canvas window. Also in this

screenshot, we can see that the user has expanded the slider components for the second

point from the first line. This is done using the plus and minus buttons at the end of each

connector in the scripting window. This expanding and collapsing feature has been added

in order to give the user control over the amount of information seen in the scripting

window.

24

Figure 6: A second line is added

 Finally in figure 7, the user has used the scripting window to create a relationship

between the two lines they have drawn. The second point from the first line is now shared

as a point for the second line. The video prototype displays how this change effects the

way the drawing behaves in the canvas window, as the user drags one line but both are

affected because of the shared point.

25

Figure 7: The two lines share a point

 This video prototype is meant to be a simple introduction to how this bidirectional

interface could be usable and understandable. In the next section, the results of a heuristic

evaluation of this video prototype will be displayed.

26

TEST RESULTS: LINE MANIPULATION

 In this heuristic evaluation, 5 reviewers offered 22 total comments on the first

video prototype, each relating to a single Nielsen Heuristic. The results, including the

relevant moment from each video, are sorted by Heuristic and displayed below. The

reviewers have been de-identified and their names replaced with ID numbers.

Table 1: Consistency & Standards

Reviewer
ID

Video
Time

Comment

3 00:09 When the user draw a line, the line already has X, Y value but
it needs a slider to change the value. If the user can change the
X, Y value on the canvas window, why do we need the slider?
it is not natural. We can think about another way since the user
should explore a model on the canvas screen more freely. This
problem is related with following similar interface with
Grasshopper. It might need automatically generated slider or
text box in the point component, not slider.

3 00:20 What is the small black box in the second line components?

5 00:24 The use of color to code the two sets of tools is reasonable, but
it would help to have the color of the tools match the color of
either scripting or canvas. Also it would help to have the tool
that is being used or activated highlighter on the screen

3 00:25 Some usage is different with my modeling and scripting
experience. It should consider users' mental model.

5 00:33 I think the conventions of using a grid in the canvas would
really be helpful. It is now well established that it will be
difficult to float the elements in empty space without
disorienting the users.

27

1 00:40 Save buttons normally save projects, this sounds like you are
exporting the project to an image.

4 00:40 Too picky, but I'll add another snap point on the middle of the
line on 'spline' icon.

These comments relate to consistency and standards, and one of the most

interesting is seen on top, suggesting that sliders are an affordance that is only necessary

when direct manipulation of the canvas is not available. In Grasshopper, sliders are

commonly used and scrubbing the cursor back and forth using a slider often results in

movement or changes in the Rhinoceros 3D modeling window. This means that the

affordance of moving a slider directly relates to the movement in the modeling window,

creating a clearer mental model for the user. In this bidirectional interface where both

direct manipulation and scripting have been made available, it may be more useful to

have a text box for entering exact dimensions. This would coincide with Schleich and

Durst’s (1994) emphasis on exact dimensions being critical hidden information in

WYSIWYG programs. Many of the other comments relate to consistency and standards

as compared to modern graphics editors, which can be easily applied to increase clarity.

Table 2: Visibility of system status

Reviewer
ID

Video
Time

Comment

1 00:03 When a control is selected, there is no feedback that the control
is actually selected.

2 00:09 When a user creates a line, the sliders for its parameters are not
visible by default, meaning that it may be difficult to
understand the exact coordinates being used by the line's

28

endpoints.

3 00:20 How does the user know which point(canvas window) is which
component(script window)? It just automatically generate
points

4 00:21 It is really hard to follow the order of the points from the script
to the geometry specially at this moment when it gets more
complicated. Perhaps, it is better to mark the points on the
screen (LEFT), all in red, and once you click on the right side
the associated point becomes green on left.

1 00:30 There no indication that these items will be selected. Basically
it's unclear if I need to envelop the items for them to be selected
or if it might include the items crossed by the bounding box
borders.

The comments in Table 2 highlight many drawing conventions that are common

in modern drawing programs, but missing from the video prototype. The first comment

about knowing which tool is selected is usually solved by having distinct cursors for each

tool. There are also comments unique to this category of software involving multiple

windows displaying the same information through different means. When the user selects

an item or component in one window there should be an indication, such as highlighting,

of what corresponds to the currently selected item in the other window.

29

Table 3: Recognition rather than recall

Reviewer
ID

Video
Time

Comment

5 00:27 It would be really useful to have some way to highlight the
links between the canvas and the script. Perhaps some form of
highlighting would really help, particularly as both side become
more and more complex

5 00:31 The two shape tools at the bottom of the toolbar are different in
kind than the others, but the graphics are not very clear about
that

1 00:34 Rotational tools normally indicate the central point of rotation.
This helps the user recognize where the originally set the point
(e.g., clicked on line) especially as they drag their cursor away
to rotate the object.

Again, highlighting between two windows is referenced in the heuristic

“recognition rather than recall.” This is understandable since without any indication of

what script components control which drawing items, a user would have to remember all

of the connections they have made. In this drawing where only two lines are drawn, it is

not terribly difficult to recall which script component refers to which line. However,

these scripts will grow much larger, and with each added script component the task of

recalling the connections between drawing and script will become more difficult.

Table 4: User control and freedom

Reviewer
ID

Video
Time

Comment

4 00:11 The number sliders need to show numeric values with the
option to be flexible from both sides.

30

4 00:33 It's nice you can rotate intuitively but what if you what to
give specific rotation angles... this may be fixed by adding a
number slider to the right side once you click on rotation
icon.

Table 5: Aesthetic and minimalist design

Reviewer
ID

Video
Time

Comment

3 00:25 Most modeling or drawing apps use top menu bar and left
menu bar since it is useful for utilization of space. Moreover
center menu prevent users' attention to modeling.

2 00:42 When the user creates a line on the canvas or script side, the
same line button is selected from the central menu. this is a
good example of minimalist design

In table 5 it is seen that the choice to introduce a central menu may be

controversial, as it could be distracting to designers in the center of their view. However,

for demonstration purposes the central menu may be an effective way to remind users

that the menu tools can be used on either side of the screen.

Table 6: Match between system & real world

Reviewer
ID

Video
Time

Comment

4 00:11 The number sliders need to show numeric values with the
option to be flexible from both sides.

4 00:33 It's nice you can rotate intuitively but what if you want to
give specific rotation angles... this may be fixed by adding a
number slider to the right side once you click on rotation
icon.

31

Table 7: Error prevention

Reviewer ID Video
Time

Comment

1 00:21 There’s no indication (like it turns red) when making this
connection that the previously connected module will be
removed.

Error prevention, as referenced in table 7, is something that has not been addressed in

this prototype, but would likely be key to the success of such a bidirectional interface.

Error Prevention and management of errors is a very important topic for this software

which will be prone to mistakes, but the user in the video does not cause any errors.

 Often there will be limitations because of the need for communication between the dual

windows, and the user must be well informed of these limitations. The comments relating

to visibility of system status reflect that When a user makes changes on one side of the

screen, it needs to be more clear what changes are happening on the other side, and why.

Also, some affordances from grasshopper, such as sliders, may not be appropriate since

direct manipulation has been enabled in this proposed interface. Lastly, Consistent

standards for drawing software are widely known and used, and the next video needs to

follow these more closely. Overall, the collection of comments on this first video

prototype consisted of constructive criticism and were useful in producing the next video

prototype, which grows in complexity and will be shown in the next section.

32

VIDEO PROTOTYPE: ADJACENCY DIAGRAMS

 In this second video prototype, Adjacency Diagrams, a user can be seen

constructing an adjacency or “bubble” diagram and manipulating the relationships

between the items, which are represented by circles. Bubble diagrams, or adjacency

diagrams, are a tool used by architects in certain settings for space planning at an early

phase in the design process. Each “bubble” represents a space, room, or other

programmatic requirement in a building. In figure 8, the user has used the canvas to draw

two circles as the first two items in the diagram. Then, using the script window, the user

creates a relationship between the two items – in this case the radius of the second circle

is set to be equal to one third of the distance between the two circles. Moving back to the

drawing canvas, the user then moves one of the circles and the radius of the second circle

is impacted, as the distance between the two circles has changed. This is an example of

the user seeing and modifying the hidden information in their drawing, which then has an

effect on the way the drawing reacts to direct manipulation.

33

Figure 8: Relationship between two diagram items

In figure 9, the diagram has been completed with two more circles, and each

radius is related to the distances between the circles. These important dimensions are

displayed as dashed lines in the video prototype. The user constructs these relationships

in two ways. First, the distance tool is selected, a component is created in the script

window and then the desired circles are related to one another by manipulating the script

connectors. Then, the user again selects the distance tool and uses it by directly clicking

on the two circles in the drawing window which they wish to relate. When a circle is

selected for use, the corresponding circle script component is highlighted to aid the user

in understanding the automatically generated distance component which follows.

34

Figure 9: Adjacency diagram w/ complexity added

35

TEST RESULTS: ADJACENCY DIAGRAMS

In this heuristic evaluation, 6 reviewers offered 26 total comments on the second

video prototype, each relating to a single Nielsen Heuristic. The results, including the

relevant moment from each video, are sorted by Heuristic and displayed below. The

reviewers have been de-identified and their names replaced with ID numbers.

Table 8: Visibility of system status

Reviewer
ID

Video
Time

Comment

3 00:00 -
00:14

When the user create a circle in Canvas, the circle box in the
Script screen does not shows X, Y, and radios value.

8 00:04 It is visible that the system automatically generating scripts
from geometric manipulation, which keep users informed
about what is going on.

3 00:14 What does the black box of second circle in the Script Screen
mean?

7 00:34 -
00:39

Wished I could see the numbers for radiuses and distance as
playing with the circles position. It would be helpful to see a
numeric representation of the calculations in addition to the
visuals.

9 00:43 When you select a circle and move the script module is also
highlighted. It shows "system status".

8 00:59 There are 4 circles in the script, two of them includes black
squares in the box, but it couldn't tell what is that in the
circles that are in the canvas.

9 01:04 When you move the circles around and change the distance,
the distance is not reflected in the script. And it does not
show that the distance is changing. so system status here is
not visible.

7 01:04 When user selects an object in the canvas the related code
block changes color to clarify the relation. But the opposite

36

does not happen when the user starts by selecting from the
script area.

As with the first video prototype, visibility of system status was one of the most

referenced heuristics in this evaluation. In this second round of evaluation, it seems that

the comments have grown more specific, and there may be less confusion about the

connections between the canvas and script windows. Unfortunately something that has

been referenced in both evaluations was a black box that resulted from a rendering error

in the video, and it is imperative to fix this for the final video prototype.

Table 9: Flexibility and efficiency of use

Reviewer
ID

Video
Time

Comment

3 00:03 Most icons in the menu support only either Canvas screen or
Script screen. It means that each screen has own functions. If
all menu can support both screens, it will be better for expert
user. In addition, providing more functions in Canvas screen
can encourage to design more freely. (Current video shows
that Canvas screen looks controlling an established script.

8 00:04 With the feature of automatically generating scripts from
geometric manipulation, users can see the model results
directly and also control the variable value in script
accurately. The way that system generates scripts
automatically will really be flexible and efficient for user to
build the model.

3 00:57 The circles have same rules. If the user can copy a set of rule
in the both screen (Canvas and Script screen), it will be
easier to design a repetitive pattern.

5 0:00:23 Distinction between novice and expert users may be critical.
It would seem that assuming that users will already know
scripting could be a given, but if you are designing for users
with limited understanding of scripting, you may need a
more suggestive interface for it to be useful. Or the interface
could have shortcuts for experts.

37

A common area of confusion in these evaluations seems to be raised around the

central menu. Each tool in the central menu is meant to be usable in both the canvas and

script windows, allowing the user to choose between interacting directly with drawing, or

indirectly through the script they have created. However, many of the reviewers seem to

have interpreted some of the tools as being useful only in one window.

Table 10: Recognition rather than recall

Reviewer
ID

Video
Time

Comment

3 00:57 Current system depends on Script to establish a rule for
modeling. For example, if I want to replace the circles as
other shapes such as rectangle and star keeping current
script, I should have same process again going back and
forth between Canvas and Script screen. However, I want to
simply sketch a modeling having automatically creating
script.

5 00:58 The layout of the scripting size does a good job of expressing
the relationships of the different element (better that with the
single pair where the connecting lines sometimes are hard to
read. How will be handled automatically with some sort of
"cleanup" function, or are you thinking that you will use the
user input to keep it organized and legible?

8 00:59 Once user creates several circles in the canvas, it is hard to
remember which circle is related to specific circle box in the
script. sometimes the system highlights the circle box when
user clicks the circle but sometimes not, and it didn't
highlight the circle when user clicks the circle box. It will be
great if user can understand easily which circle and circle
box that they are exactly using.

Here it is pointed out that the highlighting has been implemented from script to

canvas, but vice versa is still difficult to recognize. These comments do seem to confirm

38

that using highlighting as a way of making these connections between the two windows

clear. However, the highlighting will need to occur consistently across both screens if this

feature is going to be considered truly bidirectional.

Table 11: User control and freedom

Reviewer
ID

Video
Time

Comment

8 00:32 The two buttons in the top are helpful for users to undo/redo,
they are easy to understand and provided the options for
users.

6 0:00 User control and freedom: the locks on the buttons could be
placed to the left near the things that they are actually
locking, it isn't obvious when looking at them that there
shouldn't be two outs from the node where they are sitting
currently.

 The padlock options on each script component allow for constraints to be applied

to the drawing. If a padlock is “locked” then the unit which it refers to will not be

allowed to change during direct manipulation of the drawing. The second comment in

table 11 critiques the readability of this feature, and there is no precedent for a feature

like this to be taken from Grasshopper. As suggested in the comment, moving the

padlocks to the left side of the script components may make them more readable, but this

may interfere with the “+ and -” icons which allow for collapsing and expanding of the

script.

Table 12: Match between system and real world

Reviewer
ID

Video
Time

Comment

9 00:22 Some controls are intended for Script only, and some controls
are intended for both and it's not obvious which is which. I

39

think the menu icon placement is peculiar, which relates to
the "real word" heuristic.

7 00:33-
00:36

I guess the black box in the second circle script means the
radius is a dependent variable. It was not clear how it was
created that way and the box is not a familiar way to represent
that.

6 00:25 The Math operation could be more cleanly organized its not
obvious how it works at first glance

5 00:47 The fact that the bubbles change size can be confusion for
users of these diagrams who expect that the size of the
bubbles represents the area of each activity, and that it does
not change because of adjacency.

 In table 12, the first comment references some confusion about the central menu

that seems to be shared by many of the reviewers. Each tool in the central menu is meant

to be usable in both the canvas and script windows, allowing the user to choose between

interacting directly with drawing, or indirectly through the script they have created.

However, many of the reviewers seem to have interpreted some of the tools as being

useful only in one window. This would likely be quickly made clear in a working

prototype, but this confusion may be resulting from the menu’s two colors divided

between the two windows.

40

Table 13: Aesthetic and minimalist design

Reviewer
ID

Video
Time

Comment

8 00:04 The design of interface is clear and contains relevant
information of main function.

6 00:25 The swoopy curves could be more like grasshoppers, I think
the longer ones need to straighten out as they get longer.

5

00:00

The gridding on the drawing end seems appropriate to its
spatial character.

Table 14: Error prevention

Reviewer
ID

Video
Time

Comment

7 01:10 We cannot judge your design in term of error prevention as
we are not trying the design ourselves and no evidence of
error prevention was shown in this video.

Table 15: Consistency and standards
Reviewer
ID

Video
Time

Comment

5 0:00

The tool palette would be clearer if it was separated in sets of
tools that are
a. available to both drawing and scripting sides (selection tools,
etc.)
b. Available only to the drawing side
c. Available only to the scripting side.
Use of color background and or location on the screen could
help with this

41

 Again in Table 15, confusion surrounding the central menu is brought up.

Regarding consistency and standards, this confusion may be related to one inconsistent

feature that has been seen in the first two video prototypes. When the user uses the move

tool in the canvas view, no move script component is reflected in the script window. In

Grasshopper, a move script component applied to a shape would result in a copy of that

shape, after the translation implemented by the move component has been applied. If this

were directly implemented in the bidirectional interface, countless translation script

components would be automatically generated whenever the user manipulates the

drawing directly. It seems that the user needs options to make simple translations without

recording inconsequential movements in script form, but also an option to make more

deliberate translations recorded as script components. A resolution here could involve

offering a “resize” tool when the user hovers over or clicks on shapes in the canvas, as

seen in programs like Adobe Illustrator. Accompanied by changes in the cursor reflecting

opportunities to stretch, move, or rotate the object, this convention could allow the user to

make changes without creating new script components. Rather, the changes would be

reflected in the data which has been stored for that particular shape. This can be seen in

the video prototype, Space Planning. In this video the user stretches rectangles and the

sliders which refer to them can be seen changing to reflect the new values for their width

and height. In future prototypes, selecting the move tool from the central menu should

result in new script components being created, while translations done without selecting a

tool from the menu will not result in new components.

42

HEURISTIC EVALUATION ANALYSIS

 A grand total of 48 comments were gathered during the heuristic evaluations,

from nine different reviewers. Visibility of System Status was the most consistently cited

heuristic, and this is likely due to the need for better affordances to highlight the

connections between the script and canvas windows.

Table 16: Comment totals per heuristic

Number of Comments

Nielsen Heuristic
Line Manipulation Adjacency Diagrams

Consistency & Standards 7 1

Visibility of System Status 5 8

Flexibility and Efficiency of Use 0 4

Recognition Rather than Recall 3 3

User Control and Freedom 2 2

Aesthetic and Minimalist Design 2 3

Match Between System and Real World 2 4

Error Prevention 1 1

TOTAL 22 26

It is difficult to gather significant observations from Table 16, as the comment

totals are different and not all of the reviewers were present for both evaluations. There is

also the factor of the Video Collaboratory being a public forum where the reviewers can

see each other’s comments, and this may have some influence on the popularity of a

43

particular heuristic over another. Two of the Nielsen Heuristics were never mentioned in

the review: Help users recognize, diagnose and recover from errors, and help and

documentation. This means that these two heuristics were either not relevant or not

applicable with the content given in the video prototypes. Error Prevention was only

mentioned once in both evaluations, since this was not a topic covered in the prototypes.

It would be ideal to showcase some ideas for error prevention and handling in the future.

The most significant change from one evaluation to the next was in consistency and

standards, from 7 comments in the first to one comment in the second evaluation. Perhaps

this can be attributed to an increase in consistency from the first prototype to the second,

but it may be more likely this was due to the public nature of the comments amongst the

reviewers.

44

VIDEO PROTOTYPE: PERSPECTIVAL DRAWING

 In this final video prototype, Perspectival Drawing, the user can be seen drawing

a basic two-point perspective drawing using the bidirectional interface. The choice of a

perspective drawing for the subject matter in this video may be seen as a departure from

the environment of early design sketching, as perspective drawings are not a universally

utilized tool at this stage. However, perspective drawings are sometimes used at these

early phases to make design decision a about a three dimensional space. Also, a

perspective drawing offers opportunities for visually interesting adjustments in the canvas

window, and constraints set in the script window that will affect those canvas view

adjustments. A new feature seen in this video is the use of an “object snap” feature that

many drawing software users are familiar with from programs such as AutoCAD. When

the user hovers over a point or intersection of two lines in the canvas view, a yellow

symbol appears to allow them to select an endpoint or intersection point. In turn, this

point is referenced in the script for any new shapes that are drawn. In figure 9, the user

has established one of the points as a vanishing point, editing its title to reflect this

designation. The vanishing point is then used to draw four perspective lines, with each

new line component utilizing the vanishing point as its first endpoint. In this way, another

level of automatic generation occurs, since the interface can interpret which point the user

would like to reference automatically. Also, figure 10 demonstrates how the vanishing

point component is highlighted when the user references it, improving the visibility of

system status. This was a major area of concern raised in the heurist evaluations.

45

Figure 10: Establishing a vanishing point

 In figure 11, the user has created all of the parts necessary for their perspective

drawing. Using the intersection object snap, points were created which represent each

corner of the 3D volume drawn on the 2D canvas. Then, these points are referenced by

three quadrilateral shapes, so that they are dynamically attached to the perspective lines.

Now the user will be able to manipulate their perspective drawing directly in the canvas,

while setting constraints for the drawing by editing the script components.

46

Figure 11: Two-point perspective is established

 Finally in figure 12, the user has used the zoom tool on both the canvas and script

views. In the script view, this zoom was carried out to isolate the script components

which the user wishes to edit. By utilizing the padlock icon, the x values of the two

vanishing points have been constrained to their original values. Consequently, when the

user drags elements of the drawing, these points will be immovable in the x-axis. This

represents a constraint that the user wishes to impose on their drawing. Another

modification of the script that has occurred is the grouping of the two vanishing points, so

that when one point is moved, the other will receive the same translation. In this way, the

user has applied a constraint that will effectively act as a movable horizon line for the

perspective drawing. After these constraints are applied, the user may skew the entire

drawing by dragging just one of the vanishing points. As seen in figure 11, this results in

a new view of the 3D volume that can perhaps be seen as an eye-level view of an

architectural volume, as opposed to the “helicopter” view that was seen beforehand.

47

Figure 12: Perspective manipulation

 Any number of constraints could be applied to this drawing according to the

user’s intent. The first constraint applied effectively allows for adjusting the field of view

in the perspective, while the second collection of constraints results in a manipulable

horizon line. If the design problem in this case were to create an appealing perspective of

the given volume, the user has further defined the problem by restricting which items can

be changed. By manipulating what would normally be hidden information in a

conventional 2D drawing interface, the user has created a dynamic and parametric

perspective drawing. Without the script view and the established relationships between

each shape and point in the drawing, the user would have to shift all of these elements

every time they wished to make an adjustment. The borrowed conventions of object snap

allow this proposed interface to feasibly interpret the users’ intent, resulting in a drawing

that can be manipulated efficiently.

48

FUTURE WORK

 Future work stemming from this project would of course lend itself to producing a

working prototype based on the video prototypes and their heuristic evaluations. A user

study involving design students completing a simple design task could potentially allow

for a bolder hypothesis regarding the capabilities this software could lend to its users. If

it can be shown that this bidirectional platform could have a positive effect on the insight

a designer gains from the act of completing a sketch, this would be very encouraging for

further research in this area. If a working prototype were created, a user study could

involve an analysis of design work done with bidirectional scripting and geometric

manipulation. The product of this analysis could then be compared to work done by

designers completing similar tasks within the type of single direction interaction that has

already been seen in scripting programs such as Grasshopper. Think-aloud protocol could

be utilized to gather more intangible observations from the users of each software, and

differences in the design process of the two groups of users. Another primary feature that

Grasshopper’s single direction interaction does not offer is highlighting connections to

the script as a user manipulates the drawing directly. By offering this feature, the

bidirectional prototype could help users in learning how each script component affects

the drawing in a fluid manner. Hypothetically, users and their design work would benefit

from this new ability to fully manipulate and understand two separate representations of

their drawing in script and canvas windows.

As script components are automatically generated from direct input, an interesting

phenomenon could occur in reference to Belardi’s (1994) analysis of cognitive studies

completed by Benjamin Libet. In these studies, Libet found that after an impulsive

49

drawing act, the brain takes 500 milliseconds to process the act consciously, while the

sensory reception of the act occurs in 150 milliseconds. It is possible that the appearance

of newly generated script components would occur during this “black hole” gap in

cognition as Belardi has described it. As the user assigns a conscious meaning to the act

of drawing they just completed, they may also become aware of the script definition that

the system has assigned to their action. The influence that this could have on the user’s

creativity and the quality of their drawing could potentially be revealed through a user

study, given that a working prototype is completed. Since the generated script definition

of the user’s actions could conflict with their personal assigned meaning of the action, the

influence this has on the user could certainly be negative as well as positive. However,

any substantial influence would be encouraging for further research. Negative results

regarding the system’s influence on the user and drawing could also reflect and validate

the discrepancies between hidden information and the mental models that CAD users

hold of their drawings.

In terms of improving the development of this type of software, such a user study

could also reveal critical scenarios where error handling and management would need to

take place, as the user misunderstands the interface or completes an action that is not

possible within the bounds of the bidirectional platform. In the current video prototypes,

the “user” moves along a predetermined script without making mistakes, getting

confused, or changing their mind at any point during the process. Designers using a

working prototype of this bidirectional interface would likely go through all of these

actions, and their difficulties with the software would be helpful for designing further

error handling.

50

If this platform were also accessible as a plug-in for more robust software such as

Rhinoceros or any Autodesk product, a user could potentially switch back and forth

between the bidirectional software for an environment conducive to ideation, and the

more technical environment offered by the established software. Autodesk has shown its

interest in a platform such as this with their development of FormIt (2012) which is

essentially a Sketchup competitor that would be directly compatible with their other lines

of software. Currently, products such as Revit are a necessity for architectural offices to

use due to its efficiency and the competitive nature of the architectural practice.

However, these tools do not currently offer dedicated sketching or preliminary design

features. Belardi (1994) notes that two primary qualifying features of sketching is that it

must be quick and readily available (p.32). If designers using Revit or similar products

had tools dedicated to early design that could be described as “readily available” without

exiting their CAD software, this may allow for the advantages of sketching to be

implemented. The current lack of such tools may lead to a use of premade, detailed

components at early phases of design. Consequently, the user would lose control and

awareness of an abundance of hidden information that is held within these components.

Donald Schon (1983) pointed out the advantages of manual drawing in this regard,

“drawing functions as a context for experiment precisely because it enables the designer

to eliminate features of the real-world situation which might confound or disrupt his

experiments.” (p.159) Where analog sketching can be beneficial by forcing abstraction,

the use of digital drawing tools which infer information may introduce unnecessary and

unintentional variables to the creative “experiment” which Schon discusses. A platform

that is honest and accessible in regard to the automatically generated hidden information

51

could be helpful in this instance. While experienced users may not miss this hidden

information, it could undoubtedly become useful to designers who would like to have

greater access to the geometric and topological structures that are created as they

complete their drawing.

The video prototype Perspectival Drawing introduces the capability for users of

this proposed software to apply and edit constraints in their drawing. One of these

opportunities is seen in the padlock feature that has been proposed in this interface. This

feature is used to demonstrate methods for setting constraints in the script window of the

prototype, which add definition and complexity to the drawing. The “group” tool is also

used as a constraint, as two grouped points cannot be moved independently from one

another, and the distance between them is made static. A collection of constraints can

make up the definition of a design problem. As seen in Donald Schon’s The Reflective

Practitioner, (1983) identifying and developing design problems is key to procuring an

effective solution. Currently, the padlock feature allows the user to lock specific values,

which will result in elements in the drawing window no longer being open to direct

manipulation. The concept of constraints could be expanded to other areas of the

presented drawings, such as allowing the definition of maximum and minimum

dimensions or point values for each element. These are features seen in Mark Gross’

(1985) prototype Constraint Explorer, and future work on this bidirectional interface

would benefit from the addition of these options.

Another less intentional constraint for users of this bidirectional system will be

the limitations of the software. When live users are introduced in a working prototype,

they will often attempt actions that are beyond the capabilities of the software. Error

52

prevention represents an area that has not been thoroughly addressed in this project, and

this would likely be critical to the user experience in a working prototype of this

software. As Spiesser (2004) has established, a bidirectional platform such as

Dreamweaver often produces code that is far from perfect, and proper error prevention

could be a solution to this. If the software could guide a user toward making decisions

that made efficient scripts, this burden would be partially lifted from the software’s

automatic script generation algorithms. The Nielsen heuristic “help users diagnose and

recover from errors” could potentially even become more important than error prevention

in this case. Inevitably, users of this bidirectional interface will complete actions that are

either impossible or are inadvisable because of the inefficient script that they would

produce.

Scalability is another area of concern that has not been fully addressed by the

video prototypes produced in this project. While the script in Perspectival Drawing

grows to contain 20 components, complex scripts produced in Grasshopper may contain

hundreds of components. Given that components are automatically generated in this

bidirectional interface, the size and computability of the scripts could quickly become

unmanageable if the user draws in the canvas without concern for the resulting

consequences in the script window. One fundamental feature in Grasshopper is the ability

to use lists of data, and this feature is not seen in any of the video prototypes. These lists

can be used as a collection or container, in order to group some variable number of data

items that have a shared significance to the problem being solved and need to be operated

upon together in some controlled fashion. An example where this could be utilized is

seen in the video prototype Adjacency Diagrams when the user draws two circles, and

53

this results in 4 components; two circle nodes and two point nodes related to their centers.

In Grasshopper, a single circle node could be given a list containing the data for those

two center-point nodes, and the drawing would remain the same. More coordinate data

could be added to the collection, resulting in more circles in the drawing, but still just one

circle component. This is an issue that other WYSIWIG interfaces such as dreamweaver

often fail to complete efficiently, sometimes creating a great number of separate elements

that could easily be condensed into a collection or list. If the user in this bidirectional

interface could group data into a list, or if it could be done automatically, this would

reduce the size and the “spaghetti-like” nature of scripts. One feature that was seen in the

prototypes for this issue is the “+ and -” icons, which are meant to allow for collapsing

and expanding of branches of the script. While this would not actually reduce the size of

the overall script, a user could hide components that are not important or necessary for

their intentions. This would result in a script that is more usable and understandable for

the user, without actually compressing or losing any complexity of script data.

Just as Dreamweaver is a tool often used by those without the coding experience

to directly script a webpage in HTML, this proposed bidirectional interface could be an

entry point or teaching tool for architecture students and professionals who wish to move

toward a more technically complex algorithmic software like Grasshopper or Dynamo.

Since direct manipulation of the canvas is available, anyone familiar with modern vector

drawing programs could begin a drawing in the canvas view of this program. As the

script updates in a live format, the user would potentially be able to learn quickly about

the links and nodes that are generated by their actions. As the video prototypes for this

project were produced, improving the visibility of system status was a major focus from

54

one video to the next. If this platform were to be viewed as a teaching tool, the

highlighting of nodes in the script and drawing items in the canvas would be absolutely

critical to new users who are trying to learn what effect their drawing inputs have caused.

While seeing script components automatically generate during the drawing process will

be helpful for the comprehension of these new users, things may happen too quickly and

abruptly for full understanding. In this case, the ability to select each item and see its

corresponding script or drawing element in the opposite window become highlighted

could be a highly effective method for gaining understanding of the script.

Overall, the future work for this project would consist of a working prototype

based on the heuristic evaluation of the given series of video prototypes. This working

prototype would carry forward the goal of improving visibility of system status that have

been addressed through the series of videos. As live users are introduced to this working

prototype, they may be asked to find solutions for simple design problems. This would

allow for an evaluation of the results of their activity against similar tasks performed in

scripting interfaces that do not offer bidirectionality. The benefits of this proposed

bidirectional software at early phases of design could then be measured, through the

quality and creativity of the design solutions the users in each system produce. Think-

aloud protocol could also be used during these user studies, to compare the understanding

that users of the bidirectional software gain to those of the single direction interface.

Error handling and prevention issues would also arise as the user pushes the bidirectional

system to limits that it cannot reach. Managing these errors would be part of a constraint

defining system that would also offer opportunities to lock numeric values, group objects,

and set maximum and minimum dimensions of shape items. As a designer establishes a

55

collection of constraints, the design problem will become more properly defined, and the

corresponding solution could benefit from this clarity.

56

CONCLUSION

In reference to a lack of effective sketching and preliminary design tools in

modern CAD software, Gross et al. (2009) established a set of guidelines for future

software development in this field. To describe sketching, Gross stated that designers

who are proficient with sketching must not only apply marks to a page, but iteratively

interpret and re-interpret their sketches in order to arrive at new conclusions and to

generate ideation. Belardi (1994) reflects this statement with his proposal that repeated

exploration of a single drawing in different times and contexts leads to restructuring of

the drawing, and that the repetition of this process is key for the creativity and ideation

(p.20) New types of CAD software could utilize this description of sketching by offering

opportunities for re-visualizing a drawing across different forms of diagrammatic

representation. In order to achieve this goal, this project has sought to find ways to

combine the strengths of direct digital drawing and algorithmic scripting software. This

project has also pursued methods for improving the accessibility to information that is

often obscured in conventional CAD software. Schleich (1994) discussed how a large

amount of “hidden information” which is often not conveniently accessible to the user

could be found in the drawing software of that time period. This is distinctly different

from a manual drawing, where all of the drawing’s information is visible to the designer.

 Schleich offered an array of potential hidden information, including exact dimensions of

an object, object grouping, invisible attributes, constraints, and design history.

 Borrowing affordances from visual programming tools like Grasshopper and

drawing software such as AutoCAD, a series of video prototypes have been constructed

57

to evaluate the usability of a software that focuses on this hidden information. After a

heuristic evaluation to analyze the usability of the proposed software seen in the video

prototypes, the collected comments and advice have been used to produce a more

complex example of a user manipulating this type of bidirectional interface. From this

evaluation it has become clear that visibility of system status may be the most commonly

relevant heuristic for a dual window interface like this. Each window contains a different

representation of the same drawing data, and a user must be able to see clearly which

elements of the drawing relate to each script component, and vice versa. Improving the

prototypes in this area through a highlighting feature has made them more consistently

readable. Recognizing the connections between the parallel representations of script and

canvas also offers the user an opportunity to re-interpret their drawing as they move back

and forth from manipulation in one window to the other. As automatically generated

script components appear due to direct manipulation of the canvas, the user’s

understanding of their drawing will either coincide or conflict with these script

components and their relationships to the drawn elements. Belardi (1994) has stated:

“successive “explorations”— i.e., sensations of the same subject in different times and

contexts— are never the same, each category is determined and then reclassified an

infinite number of times. It is through this endless process of structuring/ destructuring/

restructuring that each person creates his or her creative aptitude.”(pp. 20-21). Any

conflict between the user’s understanding and the automatically generated script could

potentially prompt the user to restructure – either altering the script or even their own

understanding, in order to reach a better union between the two models. The clarity of the

connections between the canvas drawing and its script representation has also opened a

58

conversation about this interface as a teaching tool for novice users of algorithmic design

software, as they may be able to learn from the connections between script and canvas

after creating a simple drawing using direct manipulation.

This movement between two representations of a drawing may be a tool for re-

interpretation in the same way that Schon (1983) states that drawing and talking are

parallel means of designing. (p.80) In his discussion of reflective design, Schon

described a design review conversation between a studio master (named “Quist”) and an

architectural student who is presenting a set of drawings (named “Petra”): “The verbal

and non-verbal dimensions are closely connected. His [Quist’s] words are obscure except

insofar as Petra can connect them with the lines of the drawing. His talk is full of dychtic

utterances- “here,” “this,” “that” – which Petra can interpret only by observing his

movements… We must reconstruct Quist’s pointing and drawing, referring to the

sketches which accompany the transcript.” (p. 81) When separated, Quist’s verbal

critique of Petra’s drawings and the visual representation of the drawings themselves are

less powerful than when they are connected by Quist’s pointing and gestures. This is

indirectly similar to the way a software that offers bidirectionality between dual

representations of a drawing would need to make clear connections between the two

models. In turn, these connections could push the design forward by encouraging a

dialogue of reflection and re-interpretation. Another comparison between dialogue and

the sketching process comes from Robbins (1997): “The drawing is used by architects in

their own thinking and design process as a kind of internal conversation and as a way to

record, test and reflect on a design.” (p. 32) Information that is hidden or obscured in

WYSIWIG drawing programs could be seen as a hindrance to this dialogue, as some of

59

the hidden information could be important and useful in the designer’s creative process.

The video prototypes that have been produced seek to show how this bidirectional

interface could improve the accessibility of this hidden information.

The bidirectional interface that has been proposed may offer seamless and fluid

movement between two representations of the drawings in script and canvas, but it seems

that the process of producing drawings in this interface would not be fast or particularly

efficient without an expert user. However, this does not invalidate the usefulness of the

interface, as it should be viewed as a design tool that seeks to aid users in gaining new

insights or ideas by re-interpreting their original drawing. The final video prototype

involves a perspectival drawing, which is a context that strays somewhat from the

original intent of producing quick sketches or diagrams early in an architectural design.

Perspectival sketching can be useful for architects, but is less commonly recognized as a

widely used device at this stage of design. The motivation for this content was to

showcase a user manipulating their script to apply a series of constraints to their drawing,

and to see these constraints cause the drawing to react differently to direct manipulation

in the canvas. As the user modifies the constraints applied to their drawing, they are

exercising a process of problem definition. As Donald Schon (1985) makes clear, there is

“a problem in finding the problem” at these early stages of design. (p. 129) As this

exercise takes place, the actions in Perspectival Drawing can also be viewed as a form of

re-interpretation. As the user changes the drawing, they make adjustments to its script

definition without abandoning its original format. This is comparable to the way trace

paper can be used in traditional media, creating semi-transparent overlays that allow for

new drawings that are different and further developed, but are still inspired by the

60

previous layer underneath. Schon also describes how an effective designer “seeks to

discover the particular features of his problematic situation, and from their gradual

discovery, designs an intervention.” (p.129) This bidirectional software could allow for

this process as the user repetitively adjusts the definition of their drawing in script form,

and tests the effects of this change in the canvas. In Perspectival Drawing, this type of

repeated adjustment ends with the user establishing and manipulating a set horizon line

for their drawing. By also taking advantage of conventions from parametric modeling

software, these adjustments are done in Perspectival Drawing with much less effort than

what could be required using pen and paper.

Future work in this area would involve applying the lessons learned from heuristic

evaluation to the development of a working software prototype. This prototype could be

useful for user studies, to discover the benefits that this bidirectional tool may offer to

users over the single direction tools that have been seen in programs such as Grasshopper

and Dynamo. These studies would also be useful to find and manage the real problems

that will occur due to errors, scalability, and readability as scripts grow to include great

numbers of components. Most importantly, these user studies could be used to show how

encouraging constant re-interpretation of a preliminary design sketch in this bidirectional

platform could have a positive effect on the insight a designer gains from the act of

completing the sketch.

61

REFERENCES

Belardi, P. (2014). Why Architects Still Draw. Cambridge, MA: The MIT Press.

Belcher, D. (2013). Sketching Dynamic Geometry [Video file]. Retrieved June 21, 2016,

from vimeo.com/53042541

Bilda, Z., & Demirkan, H. (2002). An insight on designers’ sketching activities in

traditional versus digital media. Retrieved June 21, 2016, from
yoksis.bilkent.edu.tr/pdf/files/10.1016-S0142-694X(02)00032-7.pdf

Coates, P. (2010). Programming Architecture. New York: Routledge.

Cook, P. (2008). Drawing: The Motive Force of Architecture. Chichester, England:
Wiley.

Gross, M. (1985). Design as Exploring Constraints. Retrieved August 3, 2016, from

depts.washington.edu/dmgftp/publications/pdfs/gross_thesis.pdf.

Gross, M., & Do, E. Y. (1996). Demonstrating the electronic cocktail napkin. Conference

Companion on Human Factors in Computing Systems Common Ground - CHI
'96. doi:10.1145/257089.257092

Gross, M., Do, E. Y., Johnson, G., & Hong, J. (2009). Computational Support for

Sketching in Design: A Review. Foundations and Trends in Human–Computer
Interaction. Retrieved June 30, 2016, from
code.arc.cmu.edu/archive/upload/1100000013_Johnson.0.pdf

Ibrahim, R. Comparison of CAD and Manual Sketching Tools for Teaching Architectural

Design. Universiti Putra Malaysia, 2014, from
researchgate.net/publication/259841007_Comparison_of_CAD_and_manual_sket
ching_tools_for_teaching_architectural_design

Introducing Autodesk FormIt [Video file]. (2012, November 25). Retrieved July 23,

2016, from youtube.com/watch?v=M-4MH64pnWw

Robbins, E., & Cullinan, E. (1994). Why architects draw. Cambridge, MA: MIT Press.

Schleich, R., & Durst, M. (1994). Beyond WYSIWYG: Display of Hidden Information in

Graphics Editors. Computer Graphics Forum, 13(3), 185-194. doi:10.1111/1467-
8659.1330185

Schön, D. (1983) The Reflective Practitioner: How Professionals Think in Action. New

York: Basic.

62

Spiesser, J., & Kitchen, L. (2004). Optimization of html automatically generated by
wysiwyg programs. Proceedings of the 13th Conference on World Wide Web -
WWW '04. doi:10.1145/988672.988720

Stiny, G. (2006). Shape: Talking about seeing and doing. Cambridge, Mass: MIT Press.

Sutherland, I. (2007, November 17). Ivan Sutherland : Sketchpad Demo [Video file].

Retrieved June 30, 2016, from youtube.com/watch?v=USyoT_Ha_bA

Woodbury, R. (2010). Elements of parametric design. London: Routledge.

 Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research Through Design as a

Method for Interaction Design Research in HCI. Carnegie Mellon University
Research Showcase @ CMU. Retrieved June 21, 2016, from
repository.cmu.edu/cgi/viewcontent.cgi?article=1041&context=hcii

VIDEO PROTOTYPES

Rodgers, J. (2016, July 27). Line Manipulation. Retrieved August 03, 2016, from

vimeo.com/175910406

Rodgers, J. (2016, July 27). Adjacency Diagrams. Retrieved August 03, 2016, from

vimeo.com/175910041

Rodgers, J. (2016, July 27). Space Planning. Retrieved August 03, 2016, from

vimeo.com/176980841

Rodgers, J. (2016, July 27). Perspectival Drawing. Retrieved August 03, 2016, from

vimeo.com/175910501

63

BIBLIOGRAPHY

Banks, M., & Cohen, E. (1990). Realtime Spline Curves from interactively Sketched

Data. ACM SIGGRAPH Computer Graphics. Retrieved June 30, 2016, from
dl.acm.org/citation.cfm?id=91425

Carpo, M. (2011). The Alphabet and the Algorithm. Cambridge, MA: The MIT Press.

Carpo, M. (2013). The Digital Turn in Architecture. West Sussex, UK: Wiley.

Eggli, L., Hsu, C., Bruderlin, B., & Elber, G. (1997). Inferring 3D models from freehand

sketches and constraints. Computer-Aided Design. Retrieved June 30, 2016, from
pages.cpsc.ucalgary.ca/~samavati/cpsc789/paper_list/hsu-eggli-cad.pdf

Fish, J. (1990)Amplifying the Mind's Eye: Sketching and Visual Cognition. 1st ed. Vol.

23. Boston: MIT, 117-126.
jstor.org/stable/1578475?seq=1#page_scan_tab_contents

Gero, J. S., & Purcell, A. T. (2006). Drawings and the design process. DST: Design

Studies. Retrieved June 30, 2016, from
mason.gmu.edu/~jgero/publications/1998/98PurcellGeroDesignStudies.pdf

Hammond, T. and Davis, R. (2002). Tahuti: A Geometrical Sketch Recognition System

for UML Class Diagrams.
rationale.csail.mit.edu/pubs/hammond/SSS902Hammond.pdf

Igarashi, T., Kawachiya, S., Tanaka, H., & Matsuoka, S. (1998). Pegasus. CHI 98

Conference Summary on Human Factors in Computing Systems - CHI '98.
doi:10.1145/286498.286511

Kay, A. (2009, January 18). Alan Kay Demos GRaIL [Video file]. Retrieved June 30,

2016, from youtube.com/watch?v=QQhVQ1UG6aM&feature=related

Lin, J., Newman, M., Hong, J., & Landay, J. (2002). DENIM: An Informal Sketch-based
Tool for Early Stage Web Design. Retrieved June 30, 2016, from
cs.cmu.edu/~jasonh/publications/aaai2002-denim-final.pdf

Lissitzky, El. Prounenraum (Proun Room). 1923. Yale University Art Gallery, New

Haven, CT.

March, L., & Steadman, P. (1971). The Geometry of Environment. London: RIBA.

McConnell, C. Designing with Parametric Sketches. Calgary: Mechanix Design

Solutions. Retrieved June 30, 2016, from cadlinecommunity.co.uk/hc/en-us/articl
es/201699182-Autodesk-Inventor-D esigning-with-Parametric-Sketches

64

McCullough, M., & Mitchell, W. J. (1990). The Electronic Design Studio. Cambridge,

MA: The MIT Press.

McGrath, B., & Gardner, J. (2007). Cinemetrics: Architectural Drawing Today. West
Sussex, UK: Wiley.

Negroponte, N. (1975). Soft Architecture Machines. Cambridge, MA: The MIT Press.

Rowe, P. Design Thinking. (1987) Cambridge, Mass: MIT Press.

Schutze, M., Sachse, P., & Romer, A. (2003, May). Support value of sketching in the

design process. Research in Engineering Design. Retrieved June 30, 2016 from
link.springer.com/article/10.1007/s00163-002-0028-7

Sezgin, M. Sketch Based Interfaces: Early Processing for Sketch Understanding.

Cambridge, Mass: MIT Press, Retrieved June 30, 2016, from
iui.ku.edu.tr/sezgin_publications/2007/Sezgin-SIGGRAPH-2007.pdf

Stevens, P. (1980) Handbook of Regular Patterns: An Introduction to Symmetry in Two

Dimensions. Cambridge, Mass: MIT Press.

Szalapaj, P. (2001). CAD Principles for Architectural Design. Woburn, MA:

Architectural Press.

Zeleznik, R., Herndon, K., & John, H. (1996). SKETCH: An Interface for Sketching 3D

Scenes. Computer Graphics Proceedings. Retrieved June 30, 2016, from
cs.brown.edu/~jfh/papers/Zeleznik-SAI-1996/paper.pdf

