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ABSTRACT 
 
 

ANDREW HONEYCUTT.  Period-n bifurcations in milling.   
(Under the direction of DR. TONY SCHMITZ) 

 
 

 Period-n bifurcations in milling operations are studied in this dissertation. 

Period-n bifurcations represent a special type of unstable dynamic behavior because 

they have a response period that is an integer multiple (n) of the forcing period. The 

existence of period-n bifurcations is demonstrated both through numerical simulation 

and experimental validation. Period-2, -3, -6, -7, -8, and -15 bifurcations are 

identified and verified by using once-per-tooth sampling (i.e. synchronous sampling) 

of in-process dynamic signals (time-varying system displacement and velocity) and 

the corresponding Poincaré maps. The sensitivity of period-n bifurcations to 

variations in the dynamic system’s natural frequency and damping ratio is also 

studied both through numerical simulation and experiments.  

A milling time domain simulation is presented that is capable of 

automatically detecting stable, unstable, and period-n behavior. This enhanced 

simulation allows the global existence of period-n bifurcations to be studied. Surface 

location error (SLE), or the difference between the commanded and actual surface 

locations due to milling dynamic behavior, and surface roughness is predicted and 

verified for period-2 and stable milling conditions. 
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CHAPTER 1:  INTRODUCTION 

1.1 Milling Stability 

Computer numerically-controlled (CNC) milling is a subtractive manufacturing 

method that can produce discrete parts with high tolerances. Surface roughness is also an 

important metric to consider for CNC milled parts. Stable machining behavior is 

desirable in order to achieve the required surface finish. Unstable machining, on the other 

hand, leads to poorer surface finish. Milling behavior is typically defined as either stable 

or unstable. Conventionally, two primary methods exist for determining whether or not 

the milling behavior is stable: 1) record the sound (or other representative dynamic 

signal) of the milling operation and evaluate it qualitatively or interrogate the frequency 

content quantitatively; and 2) evaluate the surface roughness of the features that were 

created. These two methods help determine whether or not a part was machined under 

stable conditions. Prior research has been devoted to determining the limit of stability for 

milling operations and this research has helped manufacturers produce high quality, high 

precision parts.  

1.2 Dynamic Stability 

Dynamic stability in milling is a complex subject and has several metrics for 

evaluation. Since stability is typically a binary characterization for milling operations, the 

definition for dynamic stability for this study will be the synchronous response of a 

dynamic system with the forcing frequency. In other words, the dynamic system is 

vibrating at the same frequency as the forcing function. Consequently, this work will 
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apply a once-per-tooth sampling technique in order to determine if the dynamic response 

is stable or unstable. 

1.3 Unstable Dynamics 

Unstable dynamic behavior will be defined as anything that is not stable behavior. 

Different types of unstable behavior exist and will be described in the following sections. 

The goal of this research is to explore and describe a special type of unstable dynamic 

behavior known as a period-n bifurcation.  
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CHAPTER 2:  LITERATURE REVIEW 

In science and engineering fields, new discoveries are typically followed by a burst 

of follow-on research activity and corresponding publications. These discoveries tend to 

serve as a catalyst to the research community and often result in new insights, improved 

understanding of fundamental phenomena, and enhanced modeling capabilities. For 

machining, one such period of rapid progress began in the mid-19th century [1]. During 

this time, self-excited vibrations were first described using time-delay differential 

equations [2]. The notion of “regeneration of waviness” was promoted as the feedback 

mechanism (time-delay term), where the previously cut surface combined with the 

instantaneous vibration state dictates the current chip thickness, force level, and 

corresponding vibration response [3-7]. This work resulted in analytical algorithms that 

were used to produce the now well-known stability lobe diagram that separates the 

spindle speed-chip width domain into regions of stable and unstable behavior [4-17] see 

Figure 2.1. 

 
Figure 2.1: Example stability lobe diagram. 
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In 1998, a similar step forward in the understanding of machining behavior was 

realized. Davies et al. used once-per-revolution sampling to characterize the 

synchronicity of cutting tool motions (measured using a pair of orthogonal capacitance 

probes) with the tool rotation in milling [18]. This approach was an experimental 

modification of the Poincaré maps used to study state space orbits in nonlinear dynamics. 

They observed the traditional quasi-periodic chatter associated with the secondary 

(subcritical) Hopf, or Neimark-Sacker, bifurcation that can occur for systems described 

by periodic time-delay differential equations [19]. This was an expected result and was 

observed as an elliptical cluster of once-per-revolution sampled points in the x-y 

measurement plane perpendicular to the endmill axis as depicted in Figure 2.2 (a). This 

elliptical collection of points occurred because the chatter frequency was incommensurate 

with the tooth passing frequency and quasi-periodic behavior was obtained. However, 

they also recorded period-3 tool motion (i.e., motion that repeated with a period of three 

cutter revolutions) during partial radial immersion milling. This period-3 motion 

manifested itself as three distinct clusters of once-per-revolution sampled points in the x-y 

plane; see Figure 2.2(b). They noted that this behavior was “inconsistent with existing 

theory” [18]. 
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Figure 2.2: Once-per-revolution sampling of cutting tool motions (a) Hopf instability; (b) 
period-3 instability. 

In 2000, Davies et al. further examined the stability of highly interrupted (or low 

radial immersion) milling [20]. They developed a two-stage map to describe: 

1. non-cutting motions governed by an analytical solution (damped free  

vibration); and 

2. motions during cutting using an approximation (fixed tool position with a 

change in momentum). 

They reported a doubling of the number of optimally stable spindle speeds when the time 

in cut is small (i.e., low radial depth of cut). These extra spindle speeds, Ω (rpm), were 

defined using the (dominant) damped natural frequency, fd (Hz), of the structural 

dynamics, and number of cutter teeth, Nt:  
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 Ω = 2𝑓𝑓𝑑𝑑
𝑁𝑁𝑡𝑡𝑗𝑗

60 (1)                                                          

where j = 1, 3, 5, … The traditional secondary Hopf bifurcation lobes correspond to j = 2, 

4, 6, … Milling experiments confirmed the new, low radial immersion best speeds. 

In 2001, Moon and Kalmár-Nagy reviewed the “prediction of complex, unsteady 

and chaotic dynamics” in machining [19]. They listed the various contributors to 

nonlinear behavior, including the loss of tool-workpiece contact due to large amplitude 

vibration and workpiece material constitutive relations, and highlighted previous 

applications of nonlinear dynamics methods to the study of chatter [21-26]. They also 

specified the use of phase-space methods, such as Poincaré 

maps, to identify changes in machining process dynamics. 

Time domain simulation offers a powerful tool for exploring milling behavior and 

has been applied to identify instability [27-28]. For example, Zhao and Balachandran 

implemented a time domain simulation which incorporated loss of tool-workpiece contact 

and regeneration to study milling [29]. They identified secondary Hopf bifurcation and 

suggested that “period-doubling bifurcations are believed to occur” for low radial 

immersions [29]. They included bifurcation diagrams for limited axial depth of cut ranges 

at two spindle speeds to demonstrate the two bifurcation types. Davies et al. extended 

their initial work in 2002 to present the first analytical stability boundary for highly 

interrupted machining [30]. It was based on modeling the cutting process as a kicked 

harmonic oscillator with a time delay and followed the two-stage map concept described 

previously [20]. They used the frequency content of a microphone signal to establish the 

existence of both secondary Hopf and period-2 (period-doubling or flip) instabilities. 
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Mann et al. also provided experimental validation of secondary Hopf and period-2 

instabilities for up and down milling [31]. They reported “a kind of period triple 

phenomenon” [31] observed using the once-per-revolution sampled displacement signal 

recorded from a single degree of freedom flexure-based machining platform. 

The semi-discretization, time finite element analysis, and multi-frequency 

methods were also developed to produce milling stability charts that demonstrate both 

instabilities [32-36].  In [37], it was shown using the semi-discretization method that the 

period-2 bifurcation exhibits closed, lens-like, curves within the secondary Hopf lobes, 

except for the highest speed stability lobe; see Figure 2.3, where b is the axial depth of 

cut for peripheral milling. Simultaneous quasi-periodic (secondary Hopf) and period-2 

bifurcation behavior was also observed. It was reported that this “combination” behavior 

occurred at unstable axial depths of cut above the period-2 lobes. Additionally, period-3 

instability was seen and it was noted that this “periodic chatter” with period-3 (or higher) 

always occurred above a secondary Hopf stability limit. The same group [38] reported 

further experimental evidence of quasi-periodic (secondary Hopf), period-2, period-3, 

period-4, and combined quasi-periodic and period-2 chatter, depending on the spindle 

speed-axial depth values for a two degree of freedom dynamic system. A perturbation 

analysis was performed in [39] to identify the secondary Hopf and period-2 instabilities. 

Additionally, numerical integration was implemented to construct a bifurcation diagram 

for a selected spindle speed that demonstrated the transition from stable operation to 

quasi-periodic chatter as the axial depth is increased. 
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Figure 2.3: Stability lobe diagram with Hopf (dashed) and period-2 (solid) stability 
boundaries [37]. 

Stépán et al. continued to explore the nonlinear aspects of milling behavior in 

2005 [40]. They described stable period-2 motion where the tool does not contact the 

workpiece in each tooth period (even in the absence of runout). For a two flute cutter, for 

example, only one tooth contacts the workpiece per revolution; they referred to this 

condition as the “fly over effect” and included a bifurcation diagram for these proposed 

stable and unstable period-2 oscillations. 

The effect of the helix angle on period-2 instability was first studied by [41]. They 

found that, depending on the helix angle, the closed, lens-like, curves within the 

secondary Hopf lobes change their size and shape. They also found that these closed 

islands of stability can appear even in the highest speed stability lobe (in contrast to the 

results when helix angle is not considered). Experimental results were provided. This 
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work was continued in [42], where the authors emphasized that at axial depths equal to 

the axial pitch, p, of the cutter teeth: 

 𝑝𝑝 = 𝑑𝑑𝑑𝑑
𝑁𝑁𝑡𝑡tan (𝛾𝛾)

 (2)                                                            

the equation of motion becomes an autonomous delay differential equation so the period-

2 instability is not possible (d is the cutter diameter, Nt is the number of teeth, and 𝛾𝛾 is the 

helix angle). Therefore, axial depths that are integer multiples of p form the horizontal 

boundaries between the stability islands. Patel et al. also studied the helix effect in up and 

down milling using the time finite element approach [43]. 
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CHAPTER 3: STABILITY OF DYNAMIC RESPONSE 

3.1 Poincaré Maps and Once-per-tooth Sampling in Milling 

In this study, Poincaré maps were developed using both experiments and 

simulations. For the experiments, the displacement and velocity of the flexible workpiece 

were recorded and then sampled once-per-tooth period. In simulation, the displacement 

and velocity were predicted, but the same sampling strategy was applied. By plotting the 

displacement versus velocity, the phase space trajectory can be observed in both cases. 

The once-per-tooth period samples are then superimposed and used to interrogate the 

milling process behavior. For stable cuts, the motion is periodic with the tooth period, so 

the sampled points repeat and a single grouping of points is observed. When secondary 

Hopf instability occurs, the motion is quasi-periodic with tool rotation because the chatter 

frequency is (generally) incommensurate with the tooth passing frequency. In this case, 

the once-per-tooth sampled points do not repeat, and they form an elliptical distribution. 

For period-2 instability, on the other hand, the motion repeats only once every other cycle 

(i.e., it is a sub-harmonic of the forcing frequency). In this case, the once-per-tooth 

sampled points alternate between two solutions. For period-n instability, the sampled 

points appear at n locations. 

3.2 Bifurcation Diagrams 

A bifurcation diagram enables the evolution of system behavior (e.g., tool motion) 

with a control variable of interest (such as axial depth of cut in milling) to be efficiently 

observed. The diagram uses the periodic sampling strategy to identify periodic (or 

aperiodic) responses over the selected range of the control variable. For milling, the tool 
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motion in the feed, x, or y direction is sampled once-per-spindle revolution for a given 

axial depth of cut (and fixed spindle speed). This produces a sequence of points over 

multiple cutter revolutions (see Figure 2.2 for example). This collection of points is then 

truncated to remove the transient portion of the motion (typically the first few 

milliseconds). 

 For stable milling with motion that is periodic with the cutting force (i.e., only 

forced vibrations are present), these sampled points repeat each revolution because the 

cutting force and subsequent vibration response is periodic with the spindle rotation. The 

superposition of all these repeated points therefore gives a single point (or nearly so) on a 

bifurcation diagram of axial depth (horizontal axis) versus once-per-revolution sampled 

tool motion (vertical axis). 

 For a higher axial depth at the same spindle speed, secondary Hopf instability 

may occur and then the motion is quasi-periodic with tool rotation because the chatter 

frequency is (generally) incommensurate with the tooth passing frequency. In this case, 

the once-per-revolution sampled points do not repeat and they form a distribution (as 

shown in Figure 2.2(a)). When plotted on the bifurcation diagram, this distribution 

appears as a vertical “spread” of points. 

 For period-2 instability, on the other hand, the motion repeats only once every 

other cycle (i.e., it is a sub-harmonic of the forcing frequency). In this case, the once-per-

revolution sampled points alternate between two solutions. On the bifurcation diagram, 

the points appear in two distinct vertical locations (recall that the vertical axis is the 

sampled tool motion). For period-n instability, the sampled points appear at n vertical 
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locations. The bifurcation diagram construction from results at multiple axial depths of 

cut for a selected spindle speed is depicted in Figure 3.1. 

 
Figure 3.1: Description of stable/unstable behavior for a milling bifurcation diagram. 

3.3 Stable, Unstable, and Period-n Responses 

A powerful interrogation tool for milling dynamics is the Poincaré map, where the 

tool (or workpiece) displacement is plotted versus the velocity and then sampled once-

per-tooth period. This sampling establishes the synchronicity of the motion (response) 

with the cutting force (excitation). For stable cutting conditions, only forced vibration is 

present, and the sampled point repeats for each tooth passage. For unstable cutting, on the 
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other hand, the repetition of a single point is not observed, and the character of the 

sampled points identifies the type of instability: secondary Hopf or period-n bifurcations. 

As an example, consider symmetric, single degree-of-freedom dynamics for 5% 

radial immersion up milling with a spindle speed of 30,000 rpm. The modal parameters 

are: 721 Hz natural frequency, 0.009 viscous damping ratio, and 4.1 × 105 N/m stiffness. 

The cutter has one tooth, a 45 deg helix angle, and an 8mm diameter. The aluminum 

alloy cutting force coefficients are: kt = 604×106 N/m2 and kn = 223×106 N/m2 (zero edge 

coefficients). The time-dependent x vibration, as well as the once-per-tooth sampled 

points, for a stable cut (0.5 mm axial depth), is displayed in Figure 3.2. The 

corresponding Poincaré map is also shown; the sampled points repeat with each tooth 

period for the forced vibration response.  

 
Figure 3.2: Stable cut, b = 0.5 mm (left) time response for x (feed) direction 
displacement; (right) Poincaré map which plots x displacement versus velocity. The once-
per-tooth sampled points are displayed as circles 

Figure 3.3 shows the results for a period- 2 bifurcation (2.5 mm); here, two clusters of 
points occur. 
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Figure 3.3: Period-2, b = 2.5 mm (left) time response for x (feed) direction displacement; 
(right) Poincaré map 

 Figure 3.4 represents a secondary Hopf bifurcation (5 mm); an elliptical grouping of 
points is seen in the Poincaré map for the quasi-periodic response. 

 
Figure 3.4: Secondary Hopf, b = 5.0 mm (left) time response; (right) Poincaré map 

This transition in behavior with increasing axial depth (30,000 rpm spindle speed) is 

conveniently presented using a bifurcation diagram, where the sampled displacement 

points from the Poincaré maps (e.g., Figure 3.2, 3.3, and 3.4) are plotted versus the 

control variable, which is axial depth of cut in this case. In the diagram, a stable cut 

appears as a single point (i.e., the repeating sampled points) for the selected axial depth. 

A period-2 bifurcation appears as a pair of points offset from each other in the vertical 
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direction. An example diagram is provided in Figure 3.5, where the stable depths up to 

0.77 mm (labeled A, representing Figure 3.2), as well as the period-2 from 0.77 mm to 

2.59 mm (B, Figure 3.3) and secondary Hopf (C, Figure 3.4) bifurcation depths, are 

observed. The bifurcation diagram also reveals a combination of period-2 and secondary 

Hopf instabilities (D) and period-7 bifurcation (E). 

 
Figure 3.5: Bifurcation diagram for selected spindle speed (30,000 rpm) and system 
dynamics. 
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CHAPTER 4: TIME DOMAIN MILLING SIMULATION 

Time-domain simulation entails the numerical solution of the governing equations of 

motion for milling in small time steps. It is well-suited to incorporating all the intricacies 

of milling dynamics, including the nonlinearity that occurs if the tooth leaves the cut due 

to large amplitude vibrations and complicated tool geometries (including runout, or 

different radii, of the cutter teeth, non-proportional teeth spacing, and variable helix). The 

simulation is based on the Regenerative Force, Dynamic Deflection Model described by 

[27]. As opposed to stability lobe diagrams that provide a “global” picture of the stability 

behavior, time-domain simulation provides information regarding the “local” cutting 

force and vibration behavior (at the expense of computational efficiency) for the selected 

cutting conditions. The simulation proceeds as follows: 

 
Figure 4.1: Milling simulation geometry. The normal and tangential direction cutting 
forces, Fn and Ft, are identified. The fixed x and y directions, as well as the rotating 
normal direction, n, are also shown. The angle 𝜙𝜙 defines the tooth angle. The tool feed is 
to the right for the clockwise tool rotation and the axial depth is in the z direction. 
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1. the instantaneous chip thickness is determined using the vibration of the current 

and previous teeth at the selected tooth angle 

2. the cutting force components in the tangential (t) and normal (n) directions are 

calculated using 

 𝐹𝐹𝑡𝑡(𝑡𝑡) = 𝑘𝑘𝑡𝑡𝑡𝑡𝑏𝑏ℎ(𝑡𝑡) + 𝑘𝑘𝑡𝑡𝑡𝑡𝑏𝑏  (3) 

 𝐹𝐹𝑛𝑛(𝑡𝑡) = 𝑘𝑘𝑛𝑛𝑡𝑡𝑏𝑏ℎ(𝑡𝑡) +  𝑘𝑘𝑛𝑛𝑡𝑡𝑏𝑏 (4)                                           

where b is the axial depth of cut, h(t) is the instantaneous chip thickness, and the 

cutting force coefficients are identified by the subscripts t or n for direction and c 

or e for cutting or edge effect  

3.  the force components are used to find the new displacements by numerical 

solution of the differential equations of motion in the x (feed) and y directions 

 𝑚𝑚𝑥𝑥�̈�𝑥 + 𝑐𝑐𝑥𝑥�̇�𝑥 + 𝑘𝑘𝑥𝑥𝑥𝑥 = 𝐹𝐹𝑡𝑡(𝑡𝑡) cos(𝜙𝜙) + 𝐹𝐹𝑛𝑛 sin(𝜙𝜙) (5) 

 𝑚𝑚𝑦𝑦�̈�𝑦 + 𝑐𝑐𝑦𝑦�̇�𝑦 + 𝑘𝑘𝑦𝑦𝑦𝑦 = 𝐹𝐹𝑡𝑡(𝑡𝑡) sin(𝜙𝜙) − 𝐹𝐹𝑛𝑛cos (𝜙𝜙) (6)                          

4.  the tooth angle is incremented and the process is repeated. Modal parameters are 

used to describe the system dynamics in the x (feed) and y directions, where 

multiple degrees of freedom in each direction can be accommodated. 

The instantaneous chip thickness depends on the nominal, tooth angle-dependent chip 

thickness, the current vibration in the direction normal to the surface, and the vibration of 

previous teeth at the same angle. The chip thickness can be expressed using the circular 

tool path approximation as 

 ℎ(𝑡𝑡) = 𝑓𝑓𝑡𝑡 sin(𝜙𝜙) + 𝑛𝑛(𝑡𝑡 − 𝜏𝜏) − 𝑛𝑛(𝑡𝑡) (7)                                  
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where ft is the commanded feed per tooth, 𝜙𝜙 is the tooth angle, n is the normal direction, 

and 𝜏𝜏 is the tooth period. The tooth period is defined as 

 𝜏𝜏 = 60
Ω𝑁𝑁𝑡𝑡

(𝑠𝑠𝑠𝑠𝑐𝑐) (8)                                                 

where 𝛺𝛺 is the spindle speed in rpm and Nt is the number of teeth. The vibration in the 

direction of the surface normal for the current tooth depends on the x and y vibrations as 

well as the tooth angle according to 

 𝑛𝑛 = 𝑥𝑥𝑠𝑠𝑥𝑥𝑛𝑛(𝜙𝜙) − 𝑦𝑦𝑐𝑐𝑦𝑦𝑠𝑠(𝜙𝜙) (9)                                            

For the simulation, the strategy is to divide the angle of the cut into a discrete 

number of steps. At each small time step, dt, the cutter angle is incremented by the 

corresponding small angle, d𝜙𝜙. This approach enables convenient computation of the 

chip thickness for each simulation step because: 1) the possible teeth orientations are 

predefined; and 2) the surface created by the previous teeth at each angle may be stored. 

The cutter rotation 

 𝑑𝑑𝜙𝜙 = 360
𝑆𝑆𝑆𝑆

(𝑑𝑑𝑠𝑠𝑑𝑑) (10)                                                  

depends on the selection of the number of steps per revolution, SR. The corresponding 

time step is 

 𝑑𝑑𝑡𝑡 = 60
𝑆𝑆𝑆𝑆∙Ω

(𝑠𝑠𝑠𝑠𝑐𝑐) (11)                                                  

A vector of angles is defined to represent the potential orientations of the teeth as the 

cutter is rotated through one revolution of the circular tool path, 𝜙𝜙= [0, d𝜙𝜙, 2d𝜙𝜙, 3d𝜙𝜙, … 
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, (SR – 1) d𝜙𝜙]. The locations of the teeth within the cut are then defined by referencing 

entries in this vector. 

 In order to accommodate the helix angle for the tool’s cutting edges, the tool may 

be sectioned into a number of axial slices. Each slice is treated as an individual straight 

tooth endmill, where the thickness of each slice is a small fraction, db, of the axial depth 

of cut, b. Each slice incorporates a distance delay 

 𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑏𝑏 ∙  tan (𝛾𝛾) (12)                                                 

relative to the prior slice (nearer the cutter free end), which becomes the angular delay 

between slices: 

 𝑟𝑟 = 𝑑𝑑𝑏𝑏 ∙ tan(𝛾𝛾)
𝑟𝑟

= 2𝑑𝑑𝑏𝑏 ∙ tan(𝛾𝛾)
𝑑𝑑

(𝑟𝑟𝑎𝑎𝑑𝑑) (13)                                 

for the rotating endmill, where d is the endmill diameter and 𝛾𝛾 is the helix angle. In order 

to ensure that the angles for each axial slice match the predefined tooth angles, the delay 

angle between slices is 𝑟𝑟 = 𝑑𝑑𝜙𝜙. This places a constraint on the db value. By substituting 

d𝜙𝜙 for 𝑟𝑟 and rearranging, the required slice width is 

 𝑑𝑑𝑏𝑏 = 𝑑𝑑∙𝑑𝑑𝑑𝑑
2tan (𝛾𝛾)

 (14)                                                    

Once the x and y direction displacements are determined (Eqs. (5) and (6)), the 

final spatial trajectory for each tooth is determined by summing these vibration-induced 

displacements with the nominal cycloidal motion of the teeth due to the combined 

translation and rotation. This final spatial trajectory is finally used to define the machined 

surface and, subsequently, to predict the SLE and surface roughness. The nominal 
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cycloidal motion components in the x and y directions are defined in Eqs.(15) and (16) , 

where i is the time-step index and 𝛥𝛥f is the linear feed per time-step (see Eq. (17)). 

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑟𝑟 sin(𝜙𝜙) + 𝑥𝑥Δ𝑓𝑓 (15) 

 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑟𝑟 cos (𝜙𝜙) (16) 

 Δ𝑓𝑓 = 𝑓𝑓𝑡𝑡𝑁𝑁𝑡𝑡
𝑆𝑆𝑆𝑆

 (17) 

This simple description can be extended to include: 

(1)  Multiple tool modes – the x and y forces are used to calculate the 

acceleration, velocity, and displacement for each tool mode (represented 

by the modal parameters) and the results are summed in each direction. 

(2)  Flexible workpiece – the x and y forces are also used to determine the 

workpiece deflections, again by numerical integration, and the relative 

tool-workpiece vibration is used to calculate the instantaneous chip 

thickness. 

(3)  Runout of the cutter teeth – the chip thickness is updated by the runout of 

the current tooth. 

(4)  Unequal teeth spacing – the tooth angle vector is modified to account for 

the actual tooth pitch. 

Using the time-domain simulation approach, the forces and displacements may be 

calculated. These results are then once-per-revolution sampled to generate the bifurcation 

diagrams. 
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4.1 Automated Stability Identification 

While bifurcation diagrams (e.g., Figure 4.3) provide an effective visual 

representation of the stability behavior using the once-per-tooth sampled data, it is also 

beneficial to represent the process stability over a large domain of spindle speeds (in 

addition to axial depths). This is the traditional stability lobe diagram. To construct this 

stability map, time domain simulations are completed over the desired grid of spindle 

speed and axial depth values. A primary challenge for time-domain simulation, however, 

is automatically establishing the stability limit. In this research, a new stability criterion 

based on the once-per-tooth sampled data is implemented. The metric builds on the 

approach in [44–46] where the standard deviation of the periodically sampled milling 

audio signal was calculated. 

The stability metric is 

 𝑀𝑀 = ∑ |𝑥𝑥𝑠𝑠(𝑖𝑖)−𝑥𝑥𝑠𝑠(𝑖𝑖−1)| 
𝑁𝑁

𝑁𝑁
𝑖𝑖=2  (18)                                                 

where 𝑥𝑥𝑠𝑠 is the vector of once-per-tooth sampled x displacements and N is the length of 

the 𝑥𝑥𝑠𝑠 vector. Other variables, such as y displacement or cutting force could be selected 

as well. With this new stability metric, the absolute value of the differences in successive 

sampled points is summed and then normalized. As seen in Figure 3.2, the sampled 

points repeat for a stable cut, so the M value is ideally zero. For unstable cuts, however, 

M > 0. 

 As an example, consider symmetric, single degree-of-freedom dynamics for 5% 

radial immersion up milling with a spindle speed of 30,000 rpm. The modal parameters 
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are: 721 Hz natural frequency, 0.009 viscous damping ratio, and 4.1×105 N/m stiffness. 

The cutter has one tooth, a 45 deg helix angle, and an 8 mm diameter. The aluminum 

alloy cutting force coefficients are: ktc = 604×106 N/m2 and knc = 223×106 N/m2 (zero 

edge coefficients). An example stability map is provided in Figure 4.2, where the spindle 

speed resolution is 10 rpm, the axial depth resolution is 0.1 mm, and the initial transients 

(i.e., the homogeneous part of the differential equation solution) were removed prior to 

analysis. Figure 4.2 is a height map of M values, where only one contour line is plotted. 

This contour represents an M value of 1 𝜇𝜇m and identifies the stability limit as a function 

of spindle speed and axial depth (M = 0 was not used due to limited numerical precision; 

instead, the small value of 1 𝜇𝜇m was selected).  
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Figure 4.2: Simulated stability map (M = 1 𝜇𝜇m contour) 

Figure 4.2 includes a vertical line at 30,000 rpm. This is the range of axial depths used to 

generate the bifurcation diagram in Figure 4.3.  
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Figure 4.3: Bifurcation diagram for selected spindle speed (30,000 rpm) and system 
dynamics 

It is seen that stable behavior is achieved up to 0.77 mm (A). There is then a transition to 

the period-2 bifurcation (B); this is the elliptical-shaped zone immediately above the 

stability limit in the 29,000-33,000 rpm range. At higher axial depths, there is a transition 

to secondary Hopf instability (C). The stability diagram does not provide the amplitude 

and bifurcation behavior, however. In this way, the bifurcation diagram can be 

considered to be a data-rich vertical slice of the stability lobe diagram. 
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4.2 Automated Subharmonic Interrogation for Period-n Identification 

Periodic sampling at the tooth period, 𝜏𝜏, enables stable and unstable zones to be 

identified, but this approach does not distinguish between secondary Hopf and period-n 

instabilities. Consider an example where the workpiece (flexure) dynamics were 

identified by modal testing to be: 163 Hz natural frequency, 0.007 viscous damping ratio, 

and 5.2 × 106 N/m stiffness in the flexible (feed) direction. The dynamics for the 19.1 

mm diameter, 30 deg helix angle tool (one tooth) were symmetric: 1050 Hz natural 

frequency, 0.045 viscous damping ratio, and 3.85×107 N/m stiffness. The aluminum alloy 

cutting force coefficients were: kt = 792×106 N/m2, kn = 392×106 N/m2, kte = 26×103 N/m, 

and kne = 28×103 N/m. As shown in Figure 4.4, the unstable zone is identified, but the 

different types of instabilities of are not.  

 A simulated stability map for up milling with a radial depth of 5 mm (26% radial 

immersion) and 0.15 mm feed per tooth was generated for axial depths of cut from 0.1 

mm to 8 mm in steps of 0.1 mm and spindle speeds from 3300 rpm to 4300 rpm in steps 

of 10 rpm. See Figure 4.4, where the initial transients were removed prior to analysis 

using Eq. (18) (i.e., the final 75 tooth periods of a 750 tooth period simulation were 

analyzed). A single filled contour at M = 1 𝜇𝜇m is displayed to distinguish between stable 

(white zone below the contour) and unstable (dark zone above the contour) conditions. 

An unstable “island” is seen starting at approximately 4000 rpm within the large stable 

zone. 
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Figure 4.4: Simulated stability map for 26% radial immersion (M = 1 𝜇𝜇m contour) 

For example, from Figure 4.5 it is known that both secondary Hopf and period-3 

bifurcations are present at 3800 rpm, but both simply appear in the unstable zone in 

Figure 4.4.  
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Figure 4.5: Simulated bifurcation diagram for 3800 rpm, 26% radial immersion 

However, using subharmonic sampling at n𝜏𝜏 (n = 2, 3, 4,…), the corresponding period-n 

bifurcations can be separately established. For example, when sampling at 2𝜏𝜏, the 

stability metric becomes “blind” to period-2 bifurcations. By sampling at every other 

tooth passage (2𝜏𝜏), the period-2 behavior appears as synchronous motion (stable). The 

same is true for period-3 bifurcations if the sampling interval is 3𝜏𝜏, and so on. 

 Considering the same flexure-based dynamic system, a simulation was performed 

for a spindle speed of 4070 rpm at an axial depth of 3.6 mm. This is within the unstable 

island in Figure 4.4. The time history and Poincaré map are displayed in the top row of 

Figure 4.6 for once-per-tooth sampling. 
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Figure 4.6: Simulation results for a spindle speed of 4070 rpm at an axial depth of 3.6 
mm. The workpiece x and y displacements are shown. (Top row) Time history (left) and 
Poincaré map (right) for once-per-tooth sampling (𝜏𝜏 sampling period). (Bottom row) 
Time history (left) and Poincaré map (right) for subharmonic sampling at 2𝜏𝜏. 

A period-2 bifurcation is observed. The M value is 106.7 𝜇𝜇m for the period-2 instability; 

this value was calculated from the flexure (workpiece) x direction displacement for the 

final 75 tooth periods of a 750 tooth period simulation. The bottom row shows the results 

for 2𝜏𝜏 subharmonic sampling. The metric for this case is 

 𝑀𝑀2 = ∑ |𝑥𝑥𝑠𝑠2(𝑖𝑖)−𝑥𝑥𝑠𝑠2(𝑖𝑖−1)| 𝑁𝑁
𝑖𝑖=2

𝑁𝑁
 (19)                                                
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where xs2 is the vector of x displacements sampled once every other tooth period (i.e., a 

2𝜏𝜏 sampling period), and N is the length of the xs2 vector. It is observed that the cut now 

appears to be stable; the M2 value is 1.2 × 10-9 𝜇𝜇m ≅ 0. Generically, the metric can be 

expressed as shown in Eq. (20), where the integer n = 1, 2, 3,… defines the sampling 

period (i.e., n𝜏𝜏) 

 𝑀𝑀𝑛𝑛 = ∑ |𝑥𝑥𝑠𝑠𝑛𝑛(𝑖𝑖)−𝑥𝑥𝑠𝑠𝑛𝑛(𝑖𝑖−1)| 𝑁𝑁
𝑖𝑖=2

𝑁𝑁
 (20)                                                

Next, the stability map shown in Figure 4.4 was developed using n𝜏𝜏 sampling with n = 1, 

2, 3, and 4. These results are provided in Figure 4.7. In Figure 4.7(a), once-per-tooth 

sampling (𝜏𝜏 sampling period) was applied to calculate M1 using Eq. (20). A single 

contour is plotted at M1 = 1 𝜇𝜇m. For Figure 4.7(b), the sampling period is 2𝜏𝜏. It is seen 

that the unstable island no longer appears. This follows from Figure 4.6, where it is seen 

that the 2𝜏𝜏 sampling is blind to period-2 bifurcations. A single contour is plotted at M2 = 

1 𝜇𝜇m according to Eq. (20). In Figure 4.7(c), 3𝜏𝜏 sampling is applied. The period-2 

bifurcation zone reappears as shown in Figure 4.7(a), but a new “stable” zone is also 

visible. This is the region of period-3 bifurcations that is demonstrated in Figure 4.5, but 

was not previously visible with the once-per-tooth sampling approach. Figure 4.7(d) 

displays the results for 4𝜏𝜏 sampling. The period-2 bifurcations are again eliminated 

because 2𝜏𝜏 is a factor of 4𝜏𝜏. However, a new stable band also appears to the left of the 

period-3 bifurcation zone in Figure 4.7(c). This new band identifies period-4 bifurcations 

and would not have been discovered without subharmonic sampling. In Figures 4.7(c) 
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and 4.7(d), the stability metric was updated to accommodate the new sampling periods, 

and a single contour at a metric value of 1 𝜇𝜇m was plotted. 

 
Figure 4.7: (a) Once-per-tooth sampling (𝜏𝜏 sampling period), (b) 2𝜏𝜏 sampling period, (c) 
3𝜏𝜏 sampling period, and (d) 4𝜏𝜏 sampling period. The zones that appear to be stable and 
unstable, depending on the sampling period, are marked. 

To illustrate the period-4 bifurcations in Figure 4.7(d), a simulation was completed at 

3640 rpm with an axial depth of 5.3 mm. The time history and Poincaré map for both 𝜏𝜏 

and 4𝜏𝜏 sampling periods are displayed in Figure 4.8. The period-4 behavior is seen. 
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Figure 4.8: Simulation results for a spindle speed of 4070 rpm at an axial depth of 3.6 
mm. The workpiece x and y displacements are shown. (Top row) Time history (left) and 
Poincaré map (right) for once-per-tooth sampling (𝜏𝜏 sampling period). (Bottom row) 
Time history (left) and Poincaré map (right) for subharmonic sampling at 4𝜏𝜏. 

Figures 4.7(b) and 4.7(d) show the residual content where the period-2 bifurcations were 

previously present prior to the 2𝜏𝜏 sampling. To explore these remaining unstable zones, a 

bifurcation diagram was generated at an axial depth of 6.4 mm for spindle speeds from 

3950 rpm to 4150 rpm. This spindle speed range transitions from the unstable zone, to the 

stable zone, through the residual unstable point, to the period-2 bifurcations, and finally 

back to the stable zone (to the right of the period-2 island). The diagram is shown in 

Figure 4.9, and the various behaviors are identified. 
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Figure 4.9: Bifurcation diagram for an axial depth of 6.4 mm. Hopf (Hopf), period-2 (2), 
stable (stable), and combination Hopf and period-2 (Hopf-2) behaviors are specified. 

The combination secondary Hopf/period-2 behavior (labeled Hopf-2) is the reason for the 

residual unstable zones in Figures 4.7(b) and 4.7(d). This quasi-periodic instability is 

shown in Figure 4.10, which displays the time history and Poincaré map for a spindle 

speed of 4150 rpm, where two separate ellipses are observed. The elliptical distribution 

of once-per-tooth sampled points is characteristic of 

secondary Hopf bifurcations; two ellipses indicate the simultaneous presence of period-2 

behavior. 
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Figure 4.10: Simulation results for a spindle speed of 4150 rpm at an axial depth of 6.4 
mm. The workpiece x and y displacements are shown. (Top row) Time history (left) and 
Poincaré map (right) for once-per-tooth sampling. (Bottom row) Higher magnification 
views of the two elliptical distributions of once-per-tooth sampled points. 

The subharmonic sampling approach is now implemented to construct a stability 

map that individually identifies each bifurcation type. The metrics M1 – M7, which 

represent 𝜏𝜏–7𝜏𝜏 integer sampling periods, are used to isolate the stable zone as well as the 

different bifurcation types: period-2, -3, -4, -5, -6, -7, and secondary Hopf. The logic used 

to construct the stability map is as follows: 

 if M1 ≤ 1 𝜇𝜇m 
(stable, do nothing) 
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elseif M2 ≤ 1 𝜇𝜇m 
plot a circle (period-2) 

elseif M3 ≤ 1 𝜇𝜇m 
plot a triangle (period-3) 

elseif M4 ≤ 1 𝜇𝜇m and M2 > 1 𝜇𝜇m 
plot a square (period-4, excludes period-2) 

elseif M5 ≤ 1 𝜇𝜇m 
plot a + (period-5) 

elseif M6 ≤ 1 𝜇𝜇m and M2 > 1 𝜇𝜇m and M3 > 1 𝜇𝜇m 
plot a diamond (period-6, excludes period-2 and period-3) 

elseif M7 ≤ 1 𝜇𝜇m 
plot an × (period-7) 

else 
plot a dot (secondary Hopf or high order period-n) 

end 

The result is displayed in Figure 4.11. The stable zone is the open white area, and the 

various instabilities are indicated by the symbols. Note that the behavior shown in 

Figures 4.9 and 4.10 is captured in the map at an axial depth of 6.4 mm. The single 

unstable point within the period-2 zone is seen. The box in the figure indicates the spindle 

speed range and axial depth (6.4 mm) for the bifurcation diagram in Figure 4.9. 
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Figure 4.11: New stability map. Period-2 (circle), period-3 (triangle), period-4 (square), 
period-5 (+), period-6 (diamond), period-7 (×), and secondary Hopf (dot) bifurcations are 
individually identified. The box indicates the spindle speed range and axial depth (6.4 
mm) for the bifurcation diagram in Figure 4.9. 

By following the bifurcations in the map from period-2 (circle), to -3 (triangle), to 

-4 (square), to -5 (+), to -6 (diamond), and to -7 (×), it appears that a pattern is emerging. 

Within the single stability lobe, the increasing order shifts the period-n zones to 

progressively lower spindle speeds. Also, the size of the zones diminishes with increasing 

order. The period numbers for the various zones are provided above the stability map in 

Figure 4.11. For period-5 and -7 bifurcations, there are additional zones that appear to 

“fold over” to higher speeds; these are denoted by parenthetical order numbers in Figure 

4.11. There is one of these fold over zones for period-5 and two for period-7. 
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CHAPTER 5: EXPERIMENTAL SETUP 

5.1 Cutting Force Coefficients 

The cutting force coefficients were determined using a mechanistic linear 

regression method described in [57]. This model assumes that the average cutting force in 

the x and y direction increases linearly with the feed per tooth value. A series of cutting 

tests are performed over a range of specified feed per tooth values. The average x force, 

𝐹𝐹𝑥𝑥� , and average y force, 𝐹𝐹𝑦𝑦�  are plotted against the feed per tooth values. The cutting force 

coefficients are then extracted via linear regression fitting where the cutting coefficients, 

ktc and knc, can be determined from the slopes of the linear fit, and the edge coefficients, 

kte and kne, can be determined from the y intercepts of the linear fit. 

5.2 Flexures for Milling Experiments 

Time and frequency domain milling process models maybe implemented to enable 

pre-process parameter selection for increased material removal rate, improved surface 

finish, and enhanced accuracy [47-49]. To complete these simulations and validate the 

results, the system dynamics must be known. Typically, the cutting tool flexibility 

dominates the system dynamics, although the workpiece can introduce significant 

flexibility in some cases as well. 

To realize a validation platform with simple (often single degree of freedom) 

dynamics, flexures may be used to support the workpiece (Figure 5.1). In this 

configuration, the flexure stiffness maybe selected to be much lower than the tool 

stiffness so that the tool dynamics can be effectively ignored. 
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The basis for the milling platform designed and tested in this study is a 

parallelogram, leaf-type flexure. By selecting the leaf geometry and workpiece/platform 

mass, the stiffness and natural frequency can be defined to meet the experimental 

requirements. The design approach is described in [50] and, for brevity, is not discussed 

here. As noted, however, the damping for this geometry, particularly monolithic designs, 

is low. 

 

Figure 5.1: Example parallelogram, leaf-type flexure used for milling experiments. A 
workpiece is mounted to the top of the flexure, an accelerometer is used to measure the 
vibration during cutting, and an inserted cutting tool is pictured. 
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5.3 Variable Damping Flexure 

In order to study the effect of damping on period-n bifurcations, a variable damping 

flexure is used. The variable damping flexure allows the damping ratio of a flexure to be 

adjusted through the use of an eddy current damper. To introduce higher damping using a 

first principles model, the addition of an eddy current damper to the flexure setup is 

investigated here. The viscous (velocity-dependent) damping force for an eddy current 

damper can be described analytically. Figure 5.2 displays the motion of a conductor 

relative to a magnet (or magnet pair) with the motion perpendicular to the magnet pole 

direction. The eddy current density, 𝐽𝐽, depends on the conductivity, 𝜎𝜎, and the cross 

product of the velocity, �⃑�𝑣 , and magnetic field, 𝐵𝐵�⃑  (see Eq. (21)). The eddy current force is 

then calculated as the volume integral of the product of the eddy current density and the 

magnetic field (see Eq. 22). Mathematically, the two cross products yield a damping 

force which acts in the direction opposite to the velocity. 

 �⃑�𝐽 = 𝜎𝜎(𝑣𝑣��⃑ ×𝐵𝐵���⃑ ) (21) 

 𝐹𝐹��⃑ = ∫ ��⃑�𝐽×𝐵𝐵���⃑ � 𝑑𝑑𝑑𝑑 
𝑑𝑑   (22) 

 The damping force magnitude, �⃑�𝐹, is described by Eq.(23) , where 𝛿𝛿 is the 

conductor thickness, 𝐵𝐵�⃑  is the magnetic field strength, S is the magnet surface area, 𝛼𝛼1 

incorporates surface charge effects, 𝛼𝛼2 describes end effects from the finite dimension 

conductor, and 𝑣𝑣 is the velocity magnitude [51]. As shown, Eq. (23) can be rewritten as 

the product of a viscous damping coefficient, c, and the velocity magnitude. This viscous 
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damping coefficient enables model-based damping prediction and selection for milling 

simulation and experiments. 

 

Figure 5.2: Schematic of an eddy current damper. 

 𝐹𝐹 = �𝜎𝜎𝛿𝛿𝐵𝐵2𝑆𝑆(𝛼𝛼1 + 𝛼𝛼2)�𝑣𝑣 = 𝑐𝑐𝑣𝑣  (23) 

 The surface charge effects term, 𝛼𝛼1, is calculated using Eq. (24),where 2a is the 

height of the magnet area and 2b is the width. For the setup described here, a = 25.4 mm 

and b = 50.8 mm so that 𝛼𝛼1= 0.352. 

 𝛼𝛼1 = 1 − 1
2𝑑𝑑
�4 𝑡𝑡𝑎𝑎𝑛𝑛−1 �𝑏𝑏

𝑎𝑎
�  + �𝑏𝑏

𝑎𝑎
� ln �1 + 𝑎𝑎2

𝑏𝑏2
� − 𝑎𝑎

𝑏𝑏
ln �1 + 𝑏𝑏2

𝑎𝑎2
� �  (24) 

 The end effects term for the conductor, 𝛼𝛼2, is determined using Eq. (25), where I1 

and I2 are defined by Eqs. (26) and (27). In these equations, 2H is the height of the 
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conductor, h = ba-1 , and w = Ha-1 . For the eddy current damper designed and 

constructed in this study, H = 38.1 mm and 𝛼𝛼2= -0.177. 

 𝛼𝛼2 = − 1
2𝑑𝑑

(𝐼𝐼1 + 𝐼𝐼2)   (25) 

 𝐼𝐼1 = 4𝑤𝑤 tan−1 �ℎ
𝑤𝑤
� − 4(1 − 𝑤𝑤) tan−1 � ℎ

1−𝑤𝑤
� + 𝑤𝑤2

ℎ
ln(𝑤𝑤2) −

           1
ℎ

(𝑤𝑤2 − ℎ2) ln(𝑤𝑤2 +  ℎ2) − 1
ℎ

(1 − 𝑤𝑤)2 ln(1 − 𝑤𝑤)2 +

           1
ℎ

((1 − 𝑤𝑤)2 − ℎ2)ln ((1 − 𝑤𝑤)2 + ℎ2) (26) 

 𝐼𝐼2 = 4𝑤𝑤 tan−1 �ℎ
𝑤𝑤
� − 4(1 + 𝑤𝑤) tan−1 � ℎ

1+𝑤𝑤
� + 𝑤𝑤2

ℎ
ln(𝑤𝑤2) −

           1
ℎ

(𝑤𝑤2 − ℎ2) ln(𝑤𝑤2 + ℎ2) − 1
ℎ

(1 + 𝑤𝑤)2 ln(1 + 𝑤𝑤)2 +

           1
ℎ

((1 + 𝑤𝑤)2 − ℎ2)ln ((1 + 𝑤𝑤)2 + ℎ2) (27) 

 The eddy current damper concept displayed in Figure 5.2 was embedded inside an 

aluminum flexure as shown in Figure 5.3. The conductor was attached to the aluminum 

flexure platform and two permanent magnet sets were attached to the aluminum flexure 

base, one on each side of the conductor. The arrangement of the eight 25.4 mm square 

neodymium magnets (K&J Magnetics BXOXO8DCB) is shown in Figure 5.4; aluminum 

socket head cap screws were used to avoid disrupting the magnetic field. 

 The solid model displayed in Figure 5.3 was constructed and tested. As shown in 

Eq. (23), the viscous damping coefficient can be predicted using 𝜎𝜎, 𝛿𝛿, B, S, and the 

surface charge/end effect terms, which serve to reduce the damping value (see Table 

5.1).The conductor was a 19.1 mm thick copper plate that extended outside the magnet 

surface area. The magnetic field strength was measured at 64 locations over the surface 
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of the eight permanent magnets using a gaussmeter (Integrity Design & Research Corp. 

IDR-329-T). Measurements were performed at a distance of 0.8 mm from the surface; 

this was the approximate air gap between the magnets and conductor after assembly. The 

average value for all 64 measurements at the 0.8 mm distance is listed in Table 5.1. 

 

Figure 5.3: Flexure with embedded eddy current damper 
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Figure 5.4: Permanent magnet mount. The magnets face the conductor with one mount on 
each side. 

Table 5.1: Eddy current damper design parameters 

Parameter 𝜎𝜎 𝛿𝛿 B S 𝛼𝛼1 𝛼𝛼2 

Value 5.96×107 19.1 4580 4.60×10-3 0.352 -0.177 

units A/Vm mm Gauss m2 - - 
 
 For the values listed in Table 5.1, the predicted eddy current damper c value is 

192 N s/m. The corresponding dimensionless damping ratio, 𝜁𝜁, is calculated using Eq. 

(28), where k is the flexure stiffness provided in Eq. (29) and m is the equivalent flexure 

mass given by Eq. (30) [50]. In Eq. (29), E is the aluminum leaf’s elastic modulus (69 

GPa), w is the width (101.6 mm), t is the thickness (3.8 mm), and l is the length (88.9 

mm). In Eq. (30), mp is the combined mass of the platform, conductor, top leaf clamps, 

and fasteners (2.098 kg) and ml is the leaf mass (0.12 kg). The predicted damping ratio is 

0.063 (6.3%). Using the flexure stiffness (1.093×106 N/m) and mass values (2.277 kg), 

the predicted undamped natural frequency is fn = 110 Hz. 
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 𝜁𝜁 = 𝑡𝑡

2√𝑘𝑘𝑛𝑛
  (28) 

 𝑘𝑘 = 2𝐸𝐸𝑤𝑤 �𝑡𝑡
𝑙𝑙
�
3

  (29) 

 𝑚𝑚 = 𝑚𝑚𝑝𝑝 + �26
35
�𝑚𝑚𝑙𝑙  (30) 

 Modal tests were performed to identify the actual damping ratio for the flexure. 

The setup is shown in Figure 5.5. An instrumented hammer (PCB 086C04) was used to 

excite the structure and the response was measured using a low-mass accelerometer (PCB 

352C23). The modal parameters extracted from the single degree of freedom frequency 

response function were: fn = 110 Hz, k = 1.06×106 N/m, and 𝜁𝜁 = 0.046 (4.6%). The 

disagreement in the damping ratio is attributed to approximations in the surface charge 

and end effects terms, 𝛼𝛼1 and 𝛼𝛼2. The eight individual magnets were assumed to 

comprise a single magnetic surface with the area reduced by the cap screw holes. Also, 

the actual magnetic field strength is strongly sensitive to the air gap, which was set with a 

plastic shim during damper assembly, and the viscous damping coefficient varies with the 

square of this value. 

 Modal tests were also performed after removing the magnets so that the eddy 

current damping effect was eliminated, but the structure was not otherwise modified. The 

modal parameters extracted from the single degree of freedom frequency response 

function were: fn = 108 Hz, k = 9.03×105 N/m, and 𝜁𝜁 = 0.014. The addition of the eddy 

current damper provided a 229% increase in damping. 

 The damping ratio of the flexure can be varied by changing the air gap between 

the permanent magnets and the conductor. The modal parameters of this flexure were 
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always measured through impact testing before any experiment was conducted or after 

the air gap was adjusted on the flexure. This variable damping flexure was necessary in 

studying the effect of damping ratio on period-n bifurcations. 

 

Figure 5.5: Impact testing setup for experimental identification of damped flexure 
dynamics. 

5.4 Once-per-tooth Sampling of Flexure Dynamic Response 

A single degree-of-freedom (SDOF) flexure was used to define the system 

dynamics, where the SDOF flexure was much less stiff than the cutting tool. The flexure 

setup also simplifies the measurement instrumentation. The flexure motions are measured 

using a capacitance probe (CP), laser vibrometer (LV), and low mass accelerometer. In 

order to enable once-per-tooth sampling of the vibration signals, a laser tachometer (LT) 

is used. A small section of reflective tape is attached to the tool holder and the 
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corresponding (digital) tachometer signal was used to perform the periodic sampling. The 

laser tachometer ensures synchronous sampling of the vibrations signals (ie, laser 

vibrometer, capacitance probe, etc.) with the forcing function (ie, the cutting tool). Figure 

5.6 shows the experimental setup used to measure and once-per-tooth sample the 

response of the SDOF flexure. 

 

Figure 5.6: Milling experimental setup with laser vibrometer (LV), low mass piezo-
accelerometer (PA), laser tachometer (LT), and capacitance probe (CP). 

CHAPTER 6: BIFURCATIONS IN MILLING 

6.1 Experimental Bifurcation Diagram 

A bifurcation diagram for a spindle speed of 3800 rpm, radial depth of 5mm, and 

up milling feed of 0.15 mm/tooth was predicted by simulation and then cuts were 

performed from 1mm to 7mm axial depths in 0.5mm steps. The capacitance probe (CP) 

displacement signal was sampled using the laser tachometer (LT) to construct an 

experimental bifurcation diagram; Figure 6.1 provides the comparison between prediction 

and experiment. For this axial depth of cut range, period-3 bifurcations were observed. 
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The flexure dynamics were: 163 Hz natural frequency, 0.0108 viscous damping ratio, and 

5.6×106 N/m stiffness. For this bifurcation diagram, the cutting tool was a 19.1 mm 

diameter, single flute carbide square endmill (30 degree helix angle).The cutting tool 

dynamic response was: 1055 Hz natural frequency, 0.045 viscous damping ratio, and 

4.2×107 N/m stiffness. The 6061-T6 aluminum alloy cutting force coefficients were: ktc = 

792×106 N/m2, knc = 352×106 N/m2, kte =  26×103 N/m, and kne = 28×103 N/m. The 

experimental setup is shown in Figure 5.6. 

 

 

Figure 6.1: Bifurcation diagram for 3800 rpm and 5 mm (26%) radial depth of cut. 
Simulated diagram (left) and experimental diagram (right). 

 A simulated stability map for the same axial depth of cut range as Figure 6.1, but 

spindle speeds from 3300 rpm to 4300 rpm, is displayed in Figure 6.2 (the same 

dynamics were again used). The diagram was constructed by completing time domain 

simulations over a grid with a spindle speed resolution of 10 rpm and an axial depth 

resolution of 0.1 mm. The initial transients were removed and the M value for each 

simulation was calculated (see Eq. (18)). An arbitrarily small value of 1 𝜇𝜇m was selected 
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to differentiate between stable and unstable parameter combinations; this contour is 

shown in Figure 6.2 and identifies the stability limit. The transition from stable to 

unstable behavior at 3800 rpm observed in Figure 6.1 is replicated. The transition from 

secondary Hopf to period-3 to secondary Hopf seen in the bifurcation diagram is not 

detailed in the stability map, however. 

 

Figure 6.2: Simulated stability map for period-3 experimental setup. The transition from 
stable to unstable behavior occurs at approximately 2.6 mm for a spindle speed of 3800 
rpm. The inset shows the bifurcation diagram progression at 3800 rpm from stable to 
quasi-periodic instability to period-3 and back to quasi-periodic behavior. 

6.2 Existence of High Order Period-n Bifurcations 

In this section, comparison is made between time domain simulation predictions 

and milling experiments for multiple setups; the presence of period-n bifurcations is 

presented. A single degree-of-freedom (SDOF) flexure was used to define the system 

dynamics, where the SDOF flexure was much less stiff than the cutting tool [52]. The 
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cutting tool described in Section 6.1 was used. The aluminum alloy cutting force 

coefficients were the same as the coefficients described in Section 6.1. The flexure setup 

also simplified the measurement instrumentation. The flexure motions were measured 

using a capacitance probe (CP), laser vibrometer (LV), and low mass accelerometer. In 

order to enable once-per-tooth sampling of the vibration signals, a laser tachometer (LT) 

was used. A small section of reflective tape was attached to the tool holder and the 

corresponding (digital) tachometer signal was used to perform the periodic sampling. 

Results for period-2, 3, 6, 7, and 8, and 15 bifurcations are displayed in Figures 6.3- 

6.9. In each figure, the left plot shows the simulated behavior and the right plot shows the 

experimental result, where the cut entry and exit transients were removed before plotting. 

Good agreement is observed in each case. The cutting conditions and flexure dynamics 

for each experiment can be found in Table 6.1. 

Table 6.1: Cutting conditions and flexure dynamics for experiments 
                

 

Cutting conditions  Flexure dynamics 

Period-n Spindle Axial Radial 
 

Stiffness Natural Viscous 
(figure 
number) 

speed 
(rpm) 

depth 
(mm) 

depth 
(mm) 

  
(N/m) 

frequency 
(Hz) 

damping 
ratio (%) 

2 (6.3) 3486 2.0 1.0 
 

9.0 × 105 83.0 2.00 
3 (6.4) 3800 4.5 5.0 

 
5.6 × 106 163.0 1.08 

6 (6.5) 3200 18.0 1.0 
 

5.6 × 106 202.6 0.28 
6 (6.6) 3250 15.5 1.0 

 
5.6 × 106 205.8 0.28 

7 (6.7) 3200 14.5 1.0 
 

5.6 × 106 204.1 0.28 
8 (6.8) 3310 15.0 2.0 

 
2.1 × 106 130.1 1.47 

15 (6.9) 3200 14.0 1.0   5.6 × 106 204.8 0.28 
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Figure 6.3: Poincaré map for period-2 bifurcation. (Left) simulation and (right) 
experiment. The phase space trajectory is represented by the solid line and the once-per-
tooth sampled points are displayed as circles. 

 
Figure 6.4: Poincaré map for period-3 bifurcation. (Left) simulation and (right) 
experiment 
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Figure 6.5: Poincaré map for period-6 bifurcation. (Left) simulation and (right) 
experiment 

 
Figure 6.6: Poincaré map for period-6 bifurcation. (Left) simulation and (right) 
experiment 

 
Figure 6.7: Poincaré map for period-7 bifurcation. (Left) simulation and (right) 
experiment 
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Figure 6.8: Poincaré map for period-8 bifurcation. (Left) simulation and (right) 
experiment 

 
Figure 6.9: Poincaré map for period-15 bifurcation. (Left) simulation and (right) 
experiment 

6.3 Sensitivity of Period-n Bifurcation to System Natural Frequency 

Experiments were completed to demonstrate the sensitivity of the period-n 

bifurcation behavior to changes in natural frequency. During the up milling cutting trials, 

material was removed from the workpiece. This lowered the workpiece mass and, 

subsequently, increased the flexure’s natural frequency. Since the mass of the 

chips is much smaller than the workpiece, this material removal resulted in small changes 

in natural frequency. The variation in system dynamics for the results presented in 
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Figures 6.10-6.13 is provided in Table 6.2 and the cutting conditions are provided in 

Table 6.3. The higher period-n bifurcations exhibited sufficient sensitivity to flexure 

natural frequency that, within a single cut, both period-n bifurcation and quasi-periodic 

behavior (secondary Hopf bifurcation) were observed. For these tests, the cutting tool 

described in Section 6.1 was used while feeding at 0.15 mm/tooth. The aluminum alloy 

cutting force coefficients were the same as the coefficients described in Section 6.1. 

Figures 6.10-6.13 display the flexure’s feed direction velocity (dx/dt) in the time 

domain. The continuous signal is displayed as a solid line, while the circles are the once-

per-tooth sampled points. In each figure, the left plot shows the simulated behavior and 

the right plot shows the experimental behavior. Good agreement is observed. The time 

domain simulation was modified to account for the changing natural frequency due to 

mass loss. After each time-step, the change in mass was calculated based on the volume 

of the removed chip and the density of the workpiece material (2700 kg/m3). This change 

in mass was then used to update the flexure’s natural frequency for the next time-step. 

 

Figure 6.10: Variation in bifurcation behavior with changes in natural frequency. Period-
6 bifurcation is observed. (Left) simulation and (right) experiment. Period-6 behavior is 
observed from 4 to 11 s, followed by quasi-periodic behavior until the end of the cut. 
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Figure 6.11: Variation in bifurcation behavior with changes in natural frequency. Period-
6 bifurcation is observed. (Left) simulation and (right) experiment. Period-6 behavior is 
observed from 4 to 13 s, followed by quasi-periodic behavior until the end of the cut. 

 
Figure 6.12: Variation in bifurcation behavior with changes in natural frequency. Period-
7 bifurcation is observed. (Left) simulation and (right) experiment. Quasi-periodic 
behavior is observed from the beginning of the cut until 11s and then period-7 behavior 
from 11 to 15 s. 
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Figure 6.13: Variation in bifurcation behavior with changes in natural frequency. Period-
15 bifurcation is observed. (Left) simulation and (right) experiment. Quasi-periodic 
behavior is observed from the beginning of the cut until 8 s, period-15 behavior from 8 to 
13 s, and then quasi-periodic behavior until the end of the cut. 

Table 6.2: Changes in natural frequency due to mass removal 
          

 
Flexure dynamics 

Period-n Natural Frequency, 
beginning of cut 

(Hz) 

Natural frequency, 
end of cut  

(Hz) 

Change in natural 
frequency  

(Hz) 

Change in 
mass 
(g) 

(figure 
number) 

6 (6.10) 202.4 202.7 0.3 4.8 
6 (6.11) 205.7 205.9 0.2 4.1 
7 (6.12) 204.1 204.3 0.2 3.9 
15 (6.13) 204.7 204.9 0.2 3.7 

 

Table 6.3: Cutting conditions for Table 6.2 
          

 
Cutting conditions 

Period-n Spindle Speed  
(rpm) 

Axial depth  
(mm) 

Radial depth  
(mm) (figure number) 

6 (6.10) 3200 18.0 1.0 
6 (6.11) 3250 15.5 1.0 
7 (6.12) 3200 14.5 1.0 

15 (6.13) 3200 14.0 1.0 
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6.4 Sensitivity of Period-2 Bifurcations to Damping Ratio 

To explore the sensitivity of period-n behavior to damping, machining trials were 

conducted over a range of axial depths of cut (1 mm to 10 mm) with four different 

flexure damping values. In all cases, the spindle speed was 3310 rpm, the radial depth of 

cut was 2 mm, and the feed per tooth was 0.1 mm/tooth. For these tests, the cutting tool 

described in Section 6.1 was used. The aluminum alloy cutting force coefficients were 

the same as the coefficients described in Section 6.1. Table 6.4 details the tunable flexure 

dynamics for the four damping values.  The experimental setup is shown in Figure 6.18. 

Table 6.4: Flexure dynamics for damping sensitivity experiments 
          
Period-n Stiffness 

(N/m) 
Natural frequency 

(Hz) 
Viscous damping ratio 

(%) (figure number) 

2 (6.14) 2.1×106 130.0 1.47 
2 (6.15) 2.1×106 130.0 1.91 
2 (6.16) 2.1×106 130.0 2.34 
-  (6.17) 2.1×106 130.0 3.55 

 

Simulated and experimental bifurcation diagrams are presented in Figures 6.14-

6.17 for the dynamics defined in Table 6.4. It is observed that as the damping increases, 

the region of period-2 behavior diminishes in size and, in Figure 6.17 with a damping 

ratio of 3.55%, it disappears all together. The stable behavior persists up to an axial depth 

of approximately 4 mm for Figures 6.14-6.16. The period-2 behavior is then seen for 

decreasing ranges of axial depth as the damping increases. It continues to approximately 

8.2 mm for 1.47%, to approximately 7.6 mm for 1.91%, and to approximately 6.8 mm for 
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2.34%. In all cases, the period-2 behavior is followed by a second stable zone at higher 

axial depths. 

 

Figure 6.14: Bifurcation diagram for 1.47% damping (3310 rpm). (Left) simulation and 
(right) experiment. Stable behavior is observed up to approximately 4 mm, period-2 
behavior then occurs up to approximately 8 mm, then stable behavior is again seen. 

 
Figure 6.15: Bifurcation diagram for 1.91% damping (3310 rpm). (Left) simulation and 
(right) experiment. 
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Figure 6.16: Bifurcation diagram for 2.34% damping (3310 rpm). (Left) simulation and 
(right) experiment. 

 
Figure 6.17: Bifurcation diagram for 3.55% damping (3310 rpm). (Left) simulation and 
(right) experiment. 
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Figure 6.18: Milling experimental setup with variable viscous damping. The setup 
includes a laser vibrometer (LV), low mass piezo accelerometer (PA), laser tachometer 
(LT), capacitance probe (CP), moving copper conductor (MC), and permanent magnet 
(PM); the copper conductor is visible inside the parallelogram leaf-type flexure. The 
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lower photograph shows the PM in place. The magnets are positioned on both sides of the 
copper conductor and provide the eddy current damping effect. 

To observe the global behavior, stability maps were generated using the same 

time domain simulation implemented to construct Figures 6.14-6.17. The spindle speed 

range was 2600 rpm to 3800 rpm in steps of 20 rpm and the axial depth range was 0.2 

mm to 10 mm in steps of 0.2 mm. The results are presented in Figures 6.19-6.22, where a 

vertical line is added to each figure at 3310 rpm to indicate the position of the bifurcation 

diagrams in Figures 6.14-6.17. The stability metric defined in Eq. (18) was used to 

identify stable and unstable conditions for each grid point. 

 

Figure 6.19: Simulated stability map for 1.47% damping (M = 1 𝜇𝜇m contour). As the 
axial depth is increased, the transition from stable to period-2 (3.8 mm), period-2 back to 
stable (8.2 mm), and stable to quasi-periodic behavior (9.2 mm) is observed. 
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Figure 6.20: Simulated stability map for 1.91% damping (M = 1 𝜇𝜇m contour). As axial 
depth is increased, the transition from stable to period-2 (4.2 mm) and period-2 back to 
stable (7.6 mm) is observed. 

 
Figure 6.21: Simulated stability map for 2.34% damping (M = 1 𝜇𝜇m contour). As the 
axial depth is increased, the transition from stable to period-2 (4.6 mm) and period-2 back 
to stable (6.8 mm) is observed. 
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Figure 6.22: Simulated stability map for 3.55% damping (M = 1 𝜇𝜇m contour). Stable 
behavior is observed at all axial depths. 

6.5 Surface Location Error and Surface Roughness for Period-2 Bifurcations 

To demonstrate stability, SLE, and surface roughness results obtained from time 

domain simulation, a numerical example is presented. The strategy of periodic sampling 

is applied to differentiate between stable machining and bifurcation behavior. The cutting 

conditions for the simulation are 5% radial immersion up 

(conventional) milling at 30,000 rpm with a feed per tooth of 0.1 mm/tooth. The 8 mm 

diameter, 45 deg helix, single tooth tool has symmetric dynamics with a 721 Hz natural 

frequency, a viscous damping ratio of 0.009, and a 4.1×105 N/m stiffness. 

The aluminum workpiece cutting force coefficients are ktc = 604×106 N/m2 and knc = 

223×106 N/m2 (zero edge coefficients). 
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The tool vibration in the feed (x) direction for an axial depth of b = 0.5 mm is 

displayed in Figure 6.23. For this stable cut, the once-per- tooth sampled points (circles) 

repeat because stable cuts exhibit forced (synchronous) vibrations. The corresponding 

Poincaré map, which plots displacement versus velocity, is also 

included in Figure 6.23. It is observed that a single point is obtained from the once-per-

tooth (periodic) sampling. This identifies stable behavior that repeats with each tooth 

passage. Figure 6.24 shows results for b = 2.5 mm. This provides an example of period-2 

behavior. In this case, the vibration repeats every other tooth passage, so two distinct 

points are visible in the Poincaré map. Secondary Hopf behavior is demonstrated in 

Figure 6.25 with b = 5.0 mm. Here, the chatter frequency near the system natural 

frequency causes the quasi-periodic behavior and an elliptical distribution of points 

appears in the Poincaré map. This distribution is indicative of the traditional, secondary 

Hopf instability. 

 

Figure 6.23: (Left) Feed direction (x) vibration versus time with once-per-tooth sampled 
points (circles) for b = 0.5 mm. (Right) Poincaré map with once-per-tooth sampled 
points. Because the cut is stable, all sampled points appear at the same location. 
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Figure 6.24: (Left) Feed direction (x) vibration versus time with once-per-tooth sampled 
points (circles) for b = 2.5 mm. (Right) Poincaré map with once-per-tooth sampled 
points. The period-2 bifurcation behavior shows two sampled point locations. Because 
the solution alternates between two values, this is referred to as a flip bifurcation. 

 
Figure 6.25: (Left) Feed direction (x) vibration versus time with once-per-tooth sampled 
points (circles) for b = 5.0 mm. (Right) Poincaré map with once-per-tooth sampled 
points. The secondary Hopf instability yields an elliptical distribution of sampled points. 

The spatial trajectory of the cutter tooth is displayed in Fig. 5. It includes both the 

nominal path and the vibrations due to the cutting force (i.e., the x solution to Eqs. (5) 

and (6) is summed with xnom from Eq. (15) and the y solution to Eqs. (5) and (6) is 

summed with ynom from Eq. (16)). Because this is up milling, the uppermost points define 



64 
 
 
 
the machined surface (for down milling, it would be the lowermost points). The upper 

surface is shown in more detail in the inset. It is seen that the period-2 behavior causes 

the final surface to be defined by every other tooth passage. The trajectories with their 

apex at approximately 4006 𝜇𝜇m produce the surface, while the alternating trajectories at 

approximately 3991 𝜇𝜇m remove material, but do not affect the final surface details. In 

this case, the surface location error is 6 𝜇𝜇m because the 8mm diameter (4mm radius) tool 

should leave the surface at 4000 𝜇𝜇m. This surface is overcut by 6 𝜇𝜇m, i.e., more material 

is removed than commanded. The arithmetic average surface roughness for the profile is 

Ra = 0.3 𝜇𝜇m. 

 

Figure 6.26: (Left) Spatial trajectory of the cutter tooth for b = 2.5 mm. (Right) 
Magnified view of upper surface of tooth trajectory. The machined surface is defined by 
the points at the top of the trajectory for the up milling cut. The period-2 behavior gives 
upper and lower tooth paths. The upper path defines the final surface, although material is 
removed for each tooth passage. 

For the selected system dynamics, the traditional stability limit (i.e., the transition 

from stable to any bifurcation behavior) at 30,000 rpm is 0.77 mm. At the selected 

spindle speed, therefore, the optimum axial depth of cut would be 0.77 mm or less. If the 
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2.5 mm axial depth that resulted in period-2 behavior was chosen, a 225% increase in 

material removal rate would be achieved. Provided the 6 𝜇𝜇m SLE and 0.3 𝜇𝜇m Ra are 

acceptable for the selected application, this presents a compelling case for machining at 

the period-2 conditions. 

The flexure-based setup displayed in Figure 6.27 was used to define a physical 

system for simulation and testing [52,53]. The setup included a parallelogram leaf-type 

flexure with an aluminum workpiece mounted on top. The in-process vibration data were 

collected using a Polytec OFV-5000 laser vibrometer (velocity) and Lion Precision 

DMT20 capacitance probe (displacement). Both were aligned with the flexible direction 

for the single degree-of-freedom flexure. Note that the feed direction is perpendicular to 

this flexible direction. This orientation was selected to emphasize variations in surface 

location error and surface finish with machining conditions. Once-per-tooth sampling 

was accomplished using a laser tachometer (LT), where the reflective target was attached 

to the rotating tool holder. The flexure dynamics were identified by modal testing: 125.8 

Hz natural frequency, 0.0136 viscous damping ratio, and 1.75×106 N/m stiffness in the 

flexible (feed) direction. The dynamics for the 19.1 mm diameter, 0 deg helix angle tool 

(one insert) were symmetric: 1188 Hz natural frequency, 0.095 viscous damping ratio, 

and 4.24×107 N/m stiffness. The 6061-T6 aluminum alloy cutting force coefficients were: 

ktc = 770×106 N/m2, knc = 368×106 N/m2, kte = 22×103 N/m, and kne = 22×103 N/m. The 

up milling cutting conditions were: 5 mm axial depth, 2 mm radial depth, 0.35 mm/tooth, 

and variable spindle speed. Spindle speed values were selected to span from period-2 to 
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stable cutting conditions while holding all other parameters constant. These spindle 

speeds and the corresponding behavior are listed in columns one and two of Table 6.5. 

 

Figure 6.27: Flexure-based experimental setup with laser vibrometer (LV), laser 
tachometer (LT), and capacitance probe (CP). The feed direction and the flexible 
direction for the single degree-of-freedom flexure are also identified. The setup was 
located on a Haas TM-1 CNC milling machine. 

The workpiece geometry is presented in Figure 6.28. The initial ribs were 

machined directly on the flexure so it could be ensured that the part was aligned with the 

machine axes. Low axial and radial depths were selected to minimize vibration levels and 

the same conditions were used to machine each rib. Prior to beginning the SLE/Ra 

experiments, a test workpiece was machined and the four ribs were 

measured on a coordinate measuring machine (CMM) to evaluate the repeatability of the 

starting rib dimensions (Zeiss Prismo). The mean value was 9.82 mm with a standard 



67 
 
 
 
deviation of 2.8 𝜇𝜇m. Given the adequate repeatability of the initial ribs, the 11 spindle 

speeds in Table 6.5 were used to machine 11 ribs (three total workpieces). All machining 

conditions were identical other than spindle speed. 

 

Figure 6.28: The workpiece included four ribs that were initially machined to the same 
dimensions. The {5 mm axial depth, 2 mm radial depth} cuts were then performed on one 
edge at a different spindle speed for each rib. The SLE was calculated as the difference 
between the commanded, C, and measured, M, rib widths. The flexible direction for the 
flexure is identified. 

Table 6.5: Comparison of measured and predicted SLE results for rib cutting tests 
          

Spindle speed 
(rpm) Behavior 

Measured SLE 
(µm) 

Predicted SLE 
(µm) 

Error 
(µm) 

3180 Period-2 -4 0 -4 
3190 Period-2 -8 -6 -2 
3200 Period-2 -13 -15 +2 
3210 Period-2 -19 -21 +2 
3270 Stable -29 -30 +1 
3300 Stable -32 -32 0 
3330 Stable -33 -35 +2 
3360 Stable -38 -38 0 
3400 Stable -44 -42 -2 
3500 Stable -55 -58 +3 
3600 Stable -90 -85 -5 
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The predicted and measured Poincaré maps for three of the 11 spindle speeds are 

presented in Figures 6.29-6.31. Figure 6.29 displays the 3180 rpm results that exhibit 

period-2 behavior. Figures 6.30 and 6.31 both demonstrate stable behavior (3300 rpm and 

3600 rpm, respectively). The vibration amplitude is larger in Figure 6.31 because this 

spindle speed is nearer to the first integer fraction of the resonant spindle speed ((125.8 × 

60)/2 = 7548/2 = 3774 rpm). The forced vibration amplitude is therefore increased. This 

would be considered a “best” spindle speed in traditional analyses because it identifies 

the peak of the corresponding secondary Hopf stability lobe. 

The SLE results are presented in Figure 6.32 and Table 6.5. Four tests were 

completed under period-2 conditions and seven were performed under stable conditions. 

Good agreement is observed between prediction and measurement. The average error 

between prediction and measurement is 0.5 𝜇𝜇m for the 11 tests. 

 

Figure 6.29: Predicted (left) and measured (right) Poincaré maps for 3180 rpm. Period-2 
behavior is seen. Note that x indicates the flexible direction for the flexure. The feed 
direction was y for these experiments. 
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Figure 6.30: Predicted (left) and measured (right) Poincaré maps for 3300 rpm. Stable 
behavior is seen. 

 
Figure 6.31: Predicted (left) and measured (right) Poincaré maps for 3600 rpm. Stable 
behavior is seen with increased amplitude relative to 3300 rpm (Figure 6.30). 
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Figure 6.32: SLE prediction from time domain simulation (line) and experimental results 
from rib cutting tests (circles). The four period-2 bifurcation tests are identified. 

Figures 6.33- 6.35 provide a direct comparison between the time domain simulation 

and the CMM surface points obtained by continuous scanning along the machined 

surface. In these figures, the commanded surface is identified by the dashed line, the solid 

line is the CMM data, and the circles are the simulation results. The SLE is the difference 

between the commanded and actual surface and, again, good agreement is observed 

between simulation and measurement. 
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Figure 6.33: Commanded surface (dashed line), CMM scan (solid line), and simulation 
result (circles) for 3180 rpm (period-2). These results correspond to Figure 6.29. 
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Figure 6.34: Commanded surface (dashed line), CMM scan (solid line), and simulation 
results (circles) for 3300 rpm (stable). These results correspond to Figure 6.30. 
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Figure 6.35: Commanded surface (dashed line), CMM scan (solid line), and simulation 
results (circles) for 3600 rpm (stable). These results correspond to Figure 6.31. 

 
 

The surface roughness was also measured using a scanning white light interferometer 

(ZeGage, Zygo Corporation, Middlefield, CT). These results are presented in Table 6.6, 

where the Ra values were calculated from a line scan at the midpoint of the axial depth of 

cut extracted from the surface topography. The Ra 

is clearly larger for the period-2 conditions, where every other tool passage defines the 

surface roughness. The mean Ra for the period-2 conditions (four tests, 1.87 𝜇𝜇m) is 5.2 

times larger than the mean Ra for the stable conditions (seven tests, 0.36 𝜇𝜇m). 
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Table 6.6: Surface roughness results for rib cutting tests 
      

Spindle speed (rpm) Behavior Ra (𝜇𝜇m) 
3180 Period-2 1.76 
3190 Period-2 1.77 
3200 Period-2 1.87 
3210 Period-2 2.09 
3270 Stable 0.28 
3300 Stable 0.35 
3330 Stable 0.44 
3360 Stable 0.34 
3400 Stable 0.39 
3500 Stable 0.36 
3600 Stable 0.35 

 

The predicted and measured surface profiles are compared in Figures 6.36-6.38. 

The change in cusp height and spacing between the period-2 (Figure 6.36) and stable 

(Figures 6.37 and 6.38) results is clearly seen.  

 

Figure 6.36: Scanning white light interferometer line scan (line) and simulation results 
(circles) for 3180 rpm (period-2) 
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Figure 6.37: Scanning white light interferometer line scan (line) and simulation results 
(circles) for 3300 rpm (stable) 

 
Figure 6.38: Scanning white light interferometer line scan (line) and simulation results 
(circles) for 3600 rpm (stable) 
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The stability and SLE information are combined in Figure 6.39. In Figure 6.39, 

the dark area represents secondary Hopf instability, the dotted area identifies the period-2 

bifurcations, and the contour lines give the SLE as a function of spindle speed (horizontal 

axis) and axial depth of cut (vertical axis). Zero SLE is seen near the traditional best 

speed of 3774 rpm. However, a steep gradient for small changes in spindle speed is also 

seen near this speed (i.e., the zero SLE contour is vertical). A zero SLE contour is also 

observed within the period-2 zone. Interestingly, the SLE gradient is not as steep within 

the period-2 zone as it is near the best speed at 3774 rpm. This also supports the 

possibility of producing acceptable parts under period-2 bifurcation machining 

conditions. 
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Figure 6.39: Combined stability and SLE map for rib cutting process dynamics. The 
secondary Hopf instability is represented by the dark zone, the period-2 behavior is 
identified by the dotted zone, and the SLE is given by the contours (i.e., lines of constant 
SLE). 

Surface location error and surface roughness predictions were completed using 

time domain simulation for both stable and period-2 milling conditions. The predictions 

were compared to experiment using a flexure-based platform with displacement and 

velocity metrology. It was observed that the simulation accurately predicted the milling 

performance using: (1) Poincaré maps, which plot the displacement versus velocity and 

are used to identify period-2 behavior via periodic sampling; (2) surface location error 

measurements completed using a coordinate measuring machine; and (3) surface 
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roughness measurements carried out using a scanning white light interferometer. It was 

shown that the surface location error for period-2 (unstable) behavior follows similar 

trends observed for (stable) forced vibration, so zero or low error conditions may be 

selected even for period-2 bifurcation conditions. The surface roughness for the period-2 

instability was seen to be larger than for stable conditions, although the final surface was 

still periodic. This increase in surface roughness occurs because the surface is defined by 

every other tooth passage and the apparent feed per tooth is increased. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Period-n milling bifurcations were further explored using Poincaré maps, time 

domain simulation and bifurcation diagrams. The milling time domain simulation 

described in [27] is further improved so that automated determination of stability is 

possible. The simulation is also improved with the addition of subharmonic interrogation 

for the automated determination of period-n bifurcations. These new additions to the time 

domain simulation allow the global behavior of period-n bifurcations to be explored. 

Human determination of period-n bifurcations is very time consuming and impractical in 

the study of the global behavior of period-n bifurcations.  

The traditional binary description of milling stability should be altered to 

accommodate different types of instabilities such as secondary Hopf and period-n 

bifurcations. Milling behavior can now be explored at axial depths of cut that are well 

beyond the traditional stability limit. New insights and strategies may be discovered and 

exploited due to the improvements of the time domain milling simulation. Manufacturers 

are always seeking to increase material removal rates thereby decreasing cycle times and 

increasing production rates. Experimental exploration of the traditional unstable zones 

can be very expensive and time consuming due to broken tools and labor costs. The 

enhanced time domain simulation can now explore these regions of traditional instability 

in order to better understand the different types of unstable behavior and, possibly, 

secondary zones of stability that are above the traditional stability limit. 
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Experimental results show good agreement with the simulated (predicted) results. 

Period -2, -3, -6, -7, -8, and -15 bifurcations were both predicted by simulation and 

validated by experiment. These high order period-n bifurcation are interesting in that they 

do not exhibit forced vibration, or a response period equal to the forcing period, 𝜏𝜏. 

Typically, any response that does not exhibit a period equal to the forcing period is 

considered to be unstable. Period-n bifurcations, however, exhibit a response that is an 

integer multiple of the forcing period. This suggests that there is some order in the 

response. A chaotic and unpredictable response is easily classified as unstable and 

unpredictable, but a period-n bifurcation exhibits a repeatable and predictable response 

that shares a relationship with the forcing period. Period-n “stability” may have 

advantages that have not yet been exploited. 

Period-n bifurcations are, however, sensitive to system natural frequencies. 

Simulated and experimental results demonstrated that changes to system natural 

frequency on the order of 0.1 Hz can cause a system response to no longer exhibit period-

n behavior. This behavior is especially important when the workpiece stiffness is much 

lower than the cutting tool stiffness because the workpiece natural frequency will change 

due to material removal. Therefore, small changes in workpiece natural frequency can 

have large effects on the process behavior. 

Period-n bifurcation behavior is also sensitive to damping. Lowly damped tools can 

result in global behavior with lens-like period-2 bifurcation islands. However, simulated 

and experimental results demonstrated the existence of this period-2 bifurcation island at 
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low damping ratios (see Figure 6.19) and no period-2 bifurcation island at higher 

damping ratios while holding all other parameters constant (see Figure 6.22).  

Surface location error and surface roughness values were predicted using the time 

domain simulation under stable and period-2 conditions. These results were validated by 

experiments. It was observed that period-2 bifurcation behavior results in a higher surface 

roughness. This higher surface roughness is due to the fact that the two different tool 

orbits remove material, but only one of the orbits creates a surface. The surface that is left 

behind is created by every other tooth passage, and therefore, appears to have a doubled 

feed rate. However, a surface location error of zero is achievable under period-2 

bifurcation behavior and the gradient of SLE due to small changes in spindle speed is 

much smaller near period-2 zones relative to the traditional optimal spindle speeds (see 

Figure 6.39). 

Since cutting speed is often a limiting factor when selecting machining parameters 

(especially when cutting hard-to-machine metals), it may not be possible to exploit the 

higher allowable depths of cut available at higher spindle speeds. It has been shown 

through experiment that machining under period-2 bifurcation behavior can result in low 

SLE and a higher surface roughness. It may be advantageous to intentionally select 

machining parameters that result in period-2 behavior due to higher material removal 

rates. As an example, consider the global stability map presented in Figure 6.39 where 

the workpiece material is changed to a low carbon steel and the cutting tool is changed to 

a 12 mm diameter carbide endmill. A typical cutting speed of a carbide tool and low 

carbon steel is approximately 1100 m/min. This cutting speed would limit the spindle 
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speed to 3200 rpm. The best spindle speed of 3780 rpm is no longer appropriate due to 

cutting speed restrictions and the next best spindle speed of 2520 rpm might be selected. 

A stable cut at a spindle speed of 2520 rpm, axial depth of 8 mm, and radial depth of 2 

mm would result in a material removal rate of 14,100 mm3/min. If a higher surface 

roughness was acceptable, then the same cut could be made at 3200 rpm which would 

result in period-2 bifurcation behavior. By intentionally selecting machining parameters 

that result in period-2 bifurcation behavior, the material removal rate would be 17,900 

mm3/min, which is a 27% increase from the stable cut made at 2520 rpm. 

Selecting period-2 bifurcation behavior may also be advantageous at high spindle 

speeds as well. As an example, consider the bifurcation diagram presented in Figure 4.3. 

Stable machining is achievable up to an axial depth of 0.77 mm, while period-2 

bifurcation behavior is achievable up to an axial depth of 2.5 mm. The surface roughness 

of period-2 bifurcation behavior is always worse compared to stable machining behavior. 

If, however, the decrease in surface quality is acceptable, machining at an axial depth of 

2.5 mm would result in a 225% increase in material removal rate. Even though the 

surface created by machining under period-2 conditions results in higher surface 

roughness, the surface roughness is uniform and appears as a stable cut with double the 

feed rate. This increase in surface roughness may even be negligible for parts that require 

post process surface treatment. 

Period-2 bifurcations create uniform surface undulations that may be desirable. The 

surface undulations of surfaces cut under period-2 conditions appear to have been 

machined under stable conditions with double the feed rate. Ultimately, machining under 
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period-2 bifurcation conditions may provide an efficient way to create accurate part 

features that also possess regular surface undulations with a selectable wavelength. 

7.2 Remaining Work 

The effect of period-2 bifurcation behavior on tool wear was not considered in this 

work. Aluminum workpieces and carbide tools were specifically chosen so that the 

effects of tool wear could be removed from the many input variables. If period-2 

conditions are to be intentionally selected for a machining operation, it needs to be 

known what effect the period-2 bifurcation behavior has on tool wear. To better 

understand the potential effect of non-constant chip load on multiple teeth, the actual chip 

thickness will be identified in time domain simulation and the tooth-to-tooth variation 

will be quantified. 

Experimental results have shown that period-n bifurcations have periodic responses 

that are integer multiples of the forcing period. Even though period-n bifurcations are not 

considered stable under traditional stability theory, they do represent a response that 

repeats and is predictable. Using automated period-n bifurcation identification and the 

system dynamics presented in section 6.1, a new global stability map was generated that 

includes the zones of period-n behavior in the Tlusty N=0 lobe. Figure 7.1 shows this 

new global stability map.  
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Figure 7.1: Tlusty N=0 lobe global stability map with period-n zones identified. 

 
 The period-n zones are identified by the number that is beside the zone. For 

example, there is a period-7 zone at 14 krpm from 5mm to 15mm axial depth of cut. 

Everything above the bold black line that is not a period-n zone is secondary Hopf 

bifurcation behavior and everything below the bold black line is stable behavior. Period-2 

behavior is not seen beyond the N=0 lobe. Experimental validation of these period-n 

bifurcations in the N=0 lobe would also be of value for future work. 
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