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ABSTRACT 

 
 

RAAD ZUHAIR GHARAIBEH.  Studies on the relationships between oligonucleotide 
probe properties and hybridization signal intensities.  (Under the direction of DR. 

CYNTHIA G. GIBAS) 
 
 

Microarray technology is a commonly used tool in biomedical research for 

assessing global gene expression, surveying DNA sequence variations, and studying 

alternative gene splicing.  Given the wide range of applications of this technology, 

comprehensive understanding of its underlying mechanisms is of importance.  The 

focus of this work is on contributions from microarray probe properties (probe 

secondary structure: ∆Gss, probe-target binding energy: ∆G, probe-target mismatch) 

to the signal intensity.  The benefits of incorporating or ignoring these properties to 

the process of microarray probe design and selection, as well as to microarray data 

preprocessing and analysis, are reported.  Four related studies are described in this 

thesis.  In the first, probe secondary structure was found to account for up to 3% of 

all variation on Affymetrix microarrays.  In the second, a dinucleotide affinity model 

was developed and found to enhance the detection of differentially expressed genes 

when implemented as a background correction procedure in GeneChip 

preprocessing algorithms.  This model is consistent with physical models of binding 

affinity of the probe target pair, which depends on the nearest-neighbor stacking 

interactions in addition to base-pairing.  In the remaining studies, the importance of 

incorporating biophysical factors in both the design and the analysis of microarrays 

has been investigated.  First, the impact of incorporation of a complete model of the 
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hybridization equilibrium was tested.  The results suggest that the use of probe 

‘percent bound’, predicted by equilibrium models of hybridization, is a useful factor 

in predicting and assessing the behavior of long oligonucleotide probes.  However, a 

universal probe-property-independent three-parameter Langmuir model has also 

been tested, and this simple model has been shown to be as, or more, effective as 

complex, computationally expensive models developed for microarray target 

concentration estimation.  The simple, platform-independent model can equal or 

even outperform models that explicitly incorporate probe properties, such as the 

model incorporating probe percent bound developed in Chapter Three.  This 

suggests that with a “spiked-in” concentration series targeting as few as 5-10 genes, 

reliable estimation of target concentration can be achieved for the entire 

microarray. 
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CHAPTER 1: INTRODUCTION
 
 
Parallel to the growing pace of high-throughput genome sequencing, there 

are similar efforts for transforming genomic sequence information into functional 

biological knowledge.  DNA Microarray technology has enabled the investigation of 

gene expression at the transcript level on a genome-wide scale, and is considered to 

be one of the primary research tools in the post-genomic era.  DNA microarray 

technology [1] allows thousands of genes to be assayed at once, offering global 

views of biological processes by providing a systematic way to survey gene 

expression and subtle DNA sequence variations [2].  These applications have 

attracted great interest and investment from scientists and companies all over the 

world. 

A microarray is a surface that provides support to tethered nucleic acids 

called probes [3].  These probes are designed to interact with a mixture of labeled 

nucleic acids called targets [3].  The synthetic oligonucleotide probes used in 

microarray experiments vary from short (20-25mer) probes to long (50-70mer) 

probes [4].  The target mixture for gene expression arrays is derived from total 

mRNA extracted from the cell under specific conditions.  Common experimental 

designs include comparison of transcript levels at steady state under different 

conditions, or comparison of samples taken at several time points in a process (e.g. 
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cell division) [2].  When a labeled target binds to its complementary probe, a stable 

interaction results and a signal is detected.  Signal intensity is interpreted as 

reflecting transcript abundance, presence and/or absence of that target [5-6]. 

In order to ensure that the signal intensity detected in the experiment truly 

represents what targets are present in the mixture, careful selection of appropriate 

probes based on a solid understanding of the contributions of probe properties to 

the hybridization signal intensity is important.  This is an essential step in order to 

add quantitative power to microarray technology.  This problem was approached 

from different angles, addressing both specific properties which might later serve as 

design criteria, and integrated models of probe hybridization behavior, as used in 

signal interpretation.  First, probe secondary structure was examined through 

thermodynamic modeling combined with statistical analysis to understand the 

consequences of intramolecular structure formation on the behavior of microarray 

probes.  By employing physical models of binding affinity, which depend on the 

nearest-neighbor stacking interactions in addition to base-pairing, a similar 

approach to the one above was used to study probe affinity.  Using a multi-state 

equilibrium model of solution hybridization provided insights into the usefulness of 

an N-state solution simulation of probe-target interactions in predicting the 

behavior of long microarray probes.  Collapsing the collected knowledge from the 

previous parts resulted in accurate estimation of target concentration on 

microarrays. 
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1.1 Oligonucleotide probe properties and oligoarray design 

Basically, there are two major types of DNA microarrays: cDNA arrays and 

oligonucleotide arrays.  A cDNA array is created by depositing PCR products on the 

array surface.  An oligonucleotide array is made up from synthetic oligonucleotides 

that are either spotted or synthesized in situ on the array surface.  The latter is the 

focus of this dissertation. 

Regardless of the platform used, quantitative detection of transcripts 

requires that the probe exhibit a sensitive and predictable response to a range of 

concentrations of specific targets.  Such a response must occur in the presence of 

complex mixture of non-specific targets.  In fact, the signal intensity obtained from 

the array is highly dependent on the probe design.  A good probe should 

demonstrate several characteristics such as high sensitivity, high specificity, low 

noise and low bias [4, 7].  The process of probe design is dependent on several 

characteristics of the probe (probe properties).  Basic criteria that are used in probe 

design are summarized in Table 1.1. 

It is also likely that factors such as reaction volume, electrostatics, diffusion 

and surface effects, reaction thermodynamics and kinetics, competitive binding 

effects, duplex stability and transition states and target concentrations have crucial 

consequences for probe-target interactions [3, 8-9]. 
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TABLE 1.1  Probe design and selection criteria. 
Commonly used criteria for probe design and selection in freely available 
oligonucleotide probe design tools [4]. 

Design Tool 
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ArrayOligoSelector [10] BLAST No  ?  No  No  

GoArrays [11] BLAST, w 
= 7  Yes  Yes  No  ?  

OligoArray [12-13] BLAST, w 
= 7  ?  No  No  No  

OliCheck [14] BLAST  Yes  No  Yes  Yes  

Oligodb [15] BLAST  No  No  No  No  

OligoDesign [16] BLAST, w 
= 9  No  Yes  No  No  

OligoPicker [17] BLAST, w 
= 8  Yes  Yes  No  No  

OligoWiz [18] BLAST  Yes  Yes  No  ?  

Oliz [19] BLAST  Yes  Yes  No  No  

Osprey [20] BLAST  Yes  ?  No  Yes (?)  

Picky [21] Suffix 
array  Yes  Yes  No  Yes  

PRIMEGENS [22] BLAST  No  ?  ?  ?  

PROBESEL [23] Suffix tree  No  Yes  No  ?  

ProbeSelect [24] Suffix 
array  Yes  No  No  Yes  

Promide [25] Suffix 
array  No  No  No  ?  

ROSO [26] BLAST, w 
= 7  No  Yes  No  ?  

YODA [27] 
SeqMatch, 
w = 4  Yes  Yes  No  ?  
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Table 1.1  (continued) 

Design Tool 

%
GC
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ArrayOligoSelecto
r [10] 

Yes  ?  NN (?)  No  Yes  SW  Yes  ?  

GoArrays [11] No  ?  NN; SL98  Yes  No  MFOLD  ?  ?  

OligoArray [12-
13] Yes  Yes  NN; SL98  Yes  Yes  MFOLD  Yes  Yes  

OliCheck [14] ?  ?  Yes (?)  ?  No  ?  ?  ?  

Oligodb [15] Yes  No  NN; melting  ?  No  MFOLD  Yes  Yes  

OligoDesign [16] No  No  NN; SL98  No  No  Nussinov  Yes  ?  

OligoPicker [17] No  No  GC; 
Schildkraut  Yes  No  BLAST  Yes  Yes  

OligoWiz [18] No  Yes  NN (?)  Yes  No  Yes (unknown)  Yes  ?  

Oliz [19] Yes  No  Yes (?)  Yes  No  No  No  No  

Osprey [20] No  Yes  NN; SL98  Yes  Yes  MFOLD  Yes  Yes  

Picky [21] Yes  ?  NN; SL96  Yes  Yes  Yes (unknown)  Yes  Yes  

PRIMEGENS [22] Primer3  ?  Breslauer  No  ?  Primer3  Yes  ?  

PROBESEL [23] No  No  NN; SL98  No  No  No  No  No  

ProbeSelect [24] Yes  Yes  NN; SL98  No  No  No  No  ?  

Promide [25] No  No  NN; SL98  Yes  No  Yes (unknown)  Yes  No  

ROSO [26] Yes  Yes  NN; SL98  Yes  No  Yes (unknown)  Yes  Yes  

YODA [27] Yes  ?  NN; SL98  Yes  No  Yes (unknown)  Yes  ?  
Sequence Similarity Search: Algorithm used to determine sequence similarity 
between a probe and a non-target sequence; Contiguous Identity: Uses stretches of 
contiguous sequence identities between a probe and a non-target sequence for 
cross-hybridization check; % Identity: Uses the overall percentage of sequence 
identity between a probe and a non-target sequence for cross-hybridization check. 
(Legend continues on the next page) 



 

 

6 
Table 1.1  (continued) 
 
 
Target-Probe Mismatch Position: Account for the impact of mismatch positions 
between the target and probes; Forward/Reverse Strand Match: Uses similarity 
searches against both the forward strand and the reverse-complement; %GC: Uses 
percent of G and C nucleotides in the probe for heuristics; ∆G: Calculates and uses 
the Gibbs free energy ΔG of the probe-target duplex as a measure of duplex stability; 
Tm: Calculates and uses the melting temperature of the probe-target to characterize 
and compare the thermodynamic behavior of probe candidates; Tm Range: Whether 
the melting temperature of probe candidates is thresholded, a wider range of Tms 
provides a larger search space and gives more flexibility for finding specific probes; 
NSH: Non Specific Hybridization, whether the cross-hybridization potential of a 
candidate probe with all its non-targets is calculated; Probe Secondary Structure: 
Whether the tool tries to predict potential stable secondary structures that the 
probe may form; Dimer: Whether the tool makes any calculations to predict 
dimerization of the probe, this is a special case of  probe secondary structure; 
Hairpin: Whether the tool makes any calculations to predict hairpins within the 
probe, this is a special case of probe secondary structure; ?: Not known from 
information published; w: Word size used for BLAST search; NN: Nearest Neighbour 
two-state model; SL98: [28]; SL96: [29]; Schildkraut: [30]; Breslauer: [31]; melting: 
[32]; Nussinov: [33]; Primer3: [34]; BLAST: [35]; MFOLD: [36]; SW: [37] 
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The objective of probe design and selection is to provide a set of probes with 

uniform hybridization properties at the reaction conditions employed.  The design 

and selection process must maximize probe specificity (“the ability of a probe to 

provide a signal that is influenced only by the presence of the target molecule” [38]) 

and sensitivity (“a measure of how little is lost of the signal reflecting specific 

hybridization between the probe and its target” [4]), and minimize probe bias (“the 

systematic deviation of the measurement from the true signal due to probe-specific 

or other technical effects” [4]) and noise (“random signal variation” [4]). 

Probe sequence design is a complex process for many reasons, ranging from 

simple technical difficulties to sophisticated theoretical problems.  To mention some 

of these difficulties, we can consider the fact that the prediction of actively 

transcribed regions of the genome is still far from exhaustive, so the mixture of 

target transcripts that need to be discriminated in a sample is not always fully 

known.  In a case where the transcripts are known, then the prediction of the 

properties of a candidate probe under competitive hybridization with a known 

mixture of different transcripts is, on its own, a very complex thermodynamic 

modeling challenge.  There are many biophysical factors (Table 1.1) that produce 

inter- and intra-molecular interactions that in turn affect probe-target binding 

behavior and affinity.  These factors should be understood in the first place, and 

then taken into account when designing oligonucleotide probes and analyzing 

microarray data. 
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For probes of very short length, such as those used on Affymetrix arrays and 

with the Motorola CodeLink technology, some excellent studies of probe properties, 

target properties and the behavior of probe-target pairs have been published [39-

42], but the findings of these studies cannot be assumed to apply to longer 

oligonucleotide arrays.  This is because the coil to duplex transition is unlikely to be 

two-state [29] due to multiple nucleation sites on longer probes [43].  As a 

consequence, most oligonucleotide probe design approaches regress to crude 

approximations and heuristic approaches, with modeling replaced by sequence 

similarity searches and alignments, and ad hoc rules of thumb regarding probe 

sequence complexity and secondary structure.  These simplified approaches are not 

sufficiently reliable on their own and usually require experimental validation of 

candidate probes in a final probe selection step.  Such experimental validation is 

rarely performed for reasons of complexity and high cost. 

There are two broad effectors that can contribute to both sensitivity and 

specificity: those related to inherent probe properties (which are the focus of this 

research) and those related to the kinetics and the thermodynamics of the 

hybridization reaction (probe concentration, target concentration, sample 

complexity, hybridization temperature and post hybridization washing, 

hybridization and post hybridization washing time, quality of target molecules and 

mixing of the hybridization solution) [9].  Specificity and sensitivity effectors 

inherent to the probe properties and target pairs include, but are not limited to: 

probe-target binding energy: ∆G, probe-target melting temperature: Tm, probe-
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target sequence similarity, probe-target matching position, probe-target contiguous 

match length and position, probe base composition, probe secondary structure: ∆Gss 

and probe length.  Effectors inherited to the target properties include but also not 

limited to: target secondary structure, labeling effects, target-target interactions, 

target diffusion and target length. 

A microarray system has two major players: probes and targets.  Probes are 

more controllable by the researcher, while targets, the subject of the assay, are 

commonly less controllable.  Both contribute to the generated signal and this signal 

is dependent on the probes [7, 44].  Based on that the focus of this dissertation is on 

microarray probes only and target effects are assumed to be constant.  In chapter 

two and chapter three of this dissertation the relationship between probe 

properties (probe secondary structure and probe nearest-neighbor base 

composition) and the hybridization background signal is examined.  Effect of both 

on microarray data preprocessing and analysis is reported. 

1.2 Probe-Target mismatches 

Many applications in molecular biology require rapid and sensitive 

prediction of hybridization, or partial hybridization, between an oligonucleotide and 

potential targets in a genomic DNA or mRNA pool.  Microarray technologies, PCR 

primer design, sequencing by hybridization, and gene diagnostic methods, are all 

technologies for which these predictions are very important [45-47].  

Fundamentally, all of these applications rely on the specificity of hybridization, the 

process by which single stranded DNA oligonucleotides form stable duplexes or 
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hybrids with a complement and/or partially complementary strand.  The binding 

properties of mismatched oligonucleotides are less understood than those of 

perfectly matched oligonucleotides.  Understanding the effects of mismatches at 

various positions in microarray probes on the extent of probe-target hybridization 

is critical for any microarray experiment, because microarray results are often 

interpreted as if they are quantitative, even when all of the variables that may affect 

hybridization are not well understood. 

Hybridization interference that results from the presence of mismatches in 

the probe represents a disadvantage and an advantage in the same time.  Such 

mismatches may degrade the sensitivity and the specificity of the probe by 

producing misleading results through cross hybridization with non-specific targets.  

On the other hand, the properties of mismatched oligonucleotides are important for 

various applications including the technology for detecting SNPs across the genome.  

To ensure there are no cross hybridization events between the probe and non-

specific sequences in the hybridization pool, several approaches are taken by probe 

design algorithms (Table 1.1) to monitor for specificity and sensitivity of the 

generated probes.  These approaches also suffer from the two limitations mentioned 

in the previous section. 

Recently, Oligonucleotide Modeling Platform, a new software tool for 

designing and modeling primers and probes, has been released [48].  The program 

depends mainly on the nearest-neighbor thermodynamic modeling, an approach 

developed originally by Tinoco in the 1970s [49].  The nearest-neighbor (NN) model 
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represents the covalent structure of double-stranded DNA as a collection of unique 

four base-quartets, each consisting of a base pair and its neighboring base pair.  

Each quartet makes a specific energy contribution to the overall duplex structure, 

and energy contributions from a string of nearest-neighbors are combined with a 

helix initiation parameter to predict the free energy of formation of the structure 

[28, 50].  The nearest-neighbor model is parameterized with an experimentally 

validated collection of thermodynamic parameters that account for a wide variety of 

structural phenomena such as mismatches, dangling ends, and loops [51].  The 

model also accounts for the energy needed to unfold unimolecular structures 

formed by each sequence in the duplex, and can be expanded to include the 

competition between the perfect match duplex structure and possible mismatch(es) 

or alternate duplex structures that might form.  In this form it is known as the N-

state model for the important interactions, which are known to occur within and 

between molecules.  The nearest neighbor N-state model is known to perform well 

for those sequences that fall in the range of 9-30-mer, and in a solution context [28-

29, 50-59].  However, since all the parameter information the software uses is 

derived from measurements of short sequences in solution, while microarray 

probes are tethered to a surface, the applicability of the software to longer 

microarray probes needs further investigation. 

In chapter four, experimental and theoretical assessments of these 

mismatches are provided and used to weight the effects of mismatch number and 

identity on the probe design, selection and analysis.  Information gathered from this 
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part also helped validating the accuracy of the current mismatch computational 

hybridization modeling software packages.  It is also important to mention that all of 

the mismatch effects were tested under different target concentrations and in the 

presence and absence of other sequences to clarify the effects and contributions of 

competitive binding between targets to perfect match and mismatch probes on 

hybridization signal intensity. 

1.3 How much does modeling probe properties contribute to array analysis 
results? 

Given its importance as a one of the primary tools for global gene expression 

assessment, microarray design and analysis are well-investigated areas at the 

current time.  Both received tremendous attention from the scientific community, 

and probably every detail in this technology has been investigated.  From the design 

steps to the analysis steps, one can find plethora of resources that address general 

and specific details about this technology. 

The availability of resources and studies about this technology have inspired 

development of many models that relate microarray probe properties to the 

obtained hybridization signal intensity [60-61].  And it has been shown that the 

signal intensities obtained from microarray probes hybridized to series of target 

concentrations are well described by the Langmuir isotherm [62-64].  The Langmuir 

isotherm is a general model, which describes adsorption of a solute or a gas to a 

surface [65]; in a microarray reaction that conforms to this model, there is an 

increase in signal intensity in response to increasing target concentration until the 

signal reaches a saturation concentration.  Consequently, many groups have 
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attempted to employ the isotherm in the process of microarray analysis [62, 66-67].  

To date, many variants of the Langmuir isotherm have been adapted to array 

analysis with varying degree of success [62, 66-67].  Some variants depend on probe 

sequence composition [62] and show acceptable results on one datasets and an 

unreliable output on another.  Other variants depend on the free energy of the 

probe-target hybridization (∆G) and the rate equation for duplex formation and 

melting [66] and involve extensive modeling and a large number of free parameters. 

Previous approaches from other groups and from our lab have used 

sequence characteristics of the probe or target sequence to improve the 

performance of microarray analysis statistics [68-70].  Each approach introduces a 

set of assumptions that may be valid for certain array platforms, but not for others.  

For example, the signal intensity that represents transcript abundance is a 

composite signal collected from more than one probe, in Affymetrix experiments, 

while it can be a signal from a single probe in other types of microarray 

experiments.  Significant difference of this sort between platforms can limit the 

applicability of models developed specifically for one type of data. 

Many researchers have argued for the importance of incorporating probe 

specific effects into the process of microarray analysis [62, 69-70].  Effects such as 

probe secondary structure, probe GC content and probe binding energy are all 

dependent on probe sequence.  Hence, probe sequence has been used in some 

models as the primary factor in analyzing microarray results.  For example, Hekstra 

et al., [62] used a combination of the Langmuir isotherm and probe sequence 
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composition to estimate absolute target concentration on Affymetrix GeneChips.  

Held et al., [66] developed another analysis model based on the Langmuir isotherm 

and probe-target hybridization thermodynamic properties.  Abdueva et al., [67] 

employed a probe-specific Langmuir isotherm model to the analysis of GeneChips, 

combining a non-linear minimization approach with log saturation intensity and log 

non-specific intensity of the probe.  Those two values are predicted from probe 

thermodynamic properties, based also on sequence content.  More recently, Li et al., 

[71] introduced a competitive hybridization model that utilizes probe-specific 

effects to predict probe signal intensity and to quantify absolute target 

concentrations. 

Many models described in the literature are rather complex, and use a large 

number of parameters, giving rise to the potential for overfitting.  Others require 

computationally intensive preprocessing steps.  Still others can be applied to only a 

fraction of the available probes on the array and/or are completely platform-

specific.  In the last chapter of this dissertation we describe the surprising result 

that a simple probe-properties-independent model based on the Langmuir 

isotherm, with only three free parameters, performs as well as or better than all of 

the available models to recover solution concentrations of target based on 

microarray signal. 

1.4 The analysis of microarray hybridization 

Analysis of microarray hybridization is a multi-faceted problem with 

different components that add levels of complexity to it.  The biophysical aspects of 
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microarray hybridization are complicated by many interlacing factors [72].  The 

chemical aspects are many and not well-understood or implemented in microarray 

analysis procedures [73].  The statistical aspects are usually sophisticated and 

involve assumptions that are not always met by microarray output [74]. 

A microarray system is composed of two major players: probes attached to 

the chip surface and targets present in the hybridization mixture.  Here, the focus is 

on the probes and target effects are assumed to be constant.  Our interest in 

microarray probes stems from the fact that in a typical microarray experiment, the 

researcher has more control over the probes but little or no control of the targets, 

since they are the subject of the assay.  Given that probes are dynamic entities, they 

likely to exist in an ensemble of structures with different properties that affect their 

behavior and the way they respond to their targets.  The biophysical characteristics 

of microarray probe are of interest to my research group.  We were interested in the 

behavior of secondary-structure-prone probes on microarray chips.  It is likely that 

modeling microarray probe secondary structure using algorithms developed for in-

solution nucleic acid strands [75] does not always yield accurate output [72].  There 

are steric interactions and electrostatic and surface forces that act on microarray 

probes, but not on in-solution nucleic acid strands [76].  Nonetheless, we attempted 

to relate the minimum folding energy (∆Gss) of microarray probes calculated using 

common solution folding algorithms to their signal intensity.  The results of this 

approach didn’t provide direct evidence, or a simple rule of thumb, for predicting 

the contributions of a probe’s intramolecular structure to its signal intensity.  
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However, extending a previously published model of hybridization background 

signal [77] to include ∆Gss resulted in 3% gain in the explanatory power of the model 

[78]. 

The above result suggested the approach of incorporating a more 

fundamental description of the probe’s biophysical behavior into the same model 

[77].  When we incorporated sequence nearest neighbor (NN) information as a 

parameter, the model was able to explain 10% of all the variance in control and 

experimental data gathered using Affymetrix GeneChip arrays [70].  The 

enhancement gained from these approaches and the available studies on microarray 

hybridization analysis (see [4, 79-80] and references therein) suggested that models 

would benefit from incorporating probe biophysical characteristics, and that the 

quality of the model predictions would likely improve as the biophysical models 

improved.  At the same time, many of the available microarray datasets lack basic 

information needed for proper modeling (for example: probe concentration, probe 

density and probe length consistency).  Consequently, systematic studies of probe 

hybridization profiles and efficiency of the current nucleic acid modeling algorithms 

using those datasets were not feasible.  A well-defined dataset was needed to 

conduct these studies.  We designed and carried out a microarray experiment that 

could be used to study the effects of single, double and triple central mismatches on 

the behavior of 50-mer probes under different target concentrations, which 

simultaneously provided comprehensive concentration response data for all probes 

on the array.  The results of this investigation indicated that the behavior of 50-mer 
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probes is predictable using the current solution hybridization modeling algorithms.  

Probe ‘percent bound’ calculated by equilibrium models of solution hybridization 

was found to be of special importance, since it provided an easy mean to predict and 

assess the behavior of microarray probes. 

We view microarray as a qualitative technology that has the potential to be 

made quantitative.  Given our interest in using probe properties to provide accurate 

quantification of targets, our goal is to employ the results of these studies in 

enhancing microarray data preprocessing and analysis approaches.  Many of the 

available algorithms for microarray analysis report “expression measure” for each 

target [69, 81-82].  This “measure” is just a substitution for target concentration 

without quantitative power attached to it.  That is, target X is present/absent from 

the hybridization mixture or target X is more/less abundant than target Y.  In other 

words, “expression measure” can be described as “an unknown increasing function 

of target concentrations, modulo statistical noise” [74].  Utilizing the Langmuir 

adsorption model [65] of microarray hybridization and probe percent bound to 

estimate absolute target concentration on microarrays showed promising results on 

the 50-mer dataset.  Applying the same approach to estimate target concentration 

on different array platform (Affymetrix) was successful.  We found that a 

combination of both the Langmuir adsorption model of microarray hybridization 

and probe percent bound outperformed previously published models [62, 67, 71] 

for microarray target concentration estimation.  However, working against a null 

model that totally ignores probe properties resulted in the surprising finding that 
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ignoring probe properties yielded better estimates of target concentration on all the 

tested microarray platforms. 

The latter approach requires a training set of 5-10 genes to yield reasonable 

results.  Genes included in the training set must follow a Langmuir-like response to 

their targets; otherwise the performance of the model will be degraded.  Our next 

step will be to use a larger dataset of 50-mer probes to study the factors that 

prevent a probe from showing a Langmuir-like response.  The same dataset will also 

be used to compile a kit of 5-10 genes that show a consistent Langmuir-like 

response under different target concentrations.  This kit would be used as a training 

set for the developed model to enhance the quantitative power of microarray 

technology. 

 
 



 

 

CHAPTER 2: USING PROBE SECONDARY STRUCTURE INFORMATION TO ENHANCE 
AFFYMETRIX GENECHIP BACKGROUND ESTIMATE

 
 
2.1 Abstract  

High-density short oligonucleotide microarrays are a primary research tool 

for assessing global gene expression.  Background noise on microarrays comprises a 

significant portion of the measured raw data.  A number of statistical techniques 

have been developed to correct for this background noise.  Here, we demonstrate 

that probe minimum folding energy and structure can be used to enhance a 

previously existing model for background noise correction.  We estimate that probe 

secondary structure accounts for up to 3% of all variation on Affymetrix 

microarrays. 

 

2.2 Introduction 

Microarray technology holds the promise of capturing global gene expression 

by providing global molecular snapshots of the cell’s transcriptional machinery 

products [83].  The ultimate goal of gene expression microarrays is to measure the 

abundance of each known transcript in the sample under investigation.  The 

abundance is inferred from the signal generated by each probe as a result of a 

hybridization reaction with a labeled target (transcript).  However, this signal 

                                                        
  This chapter is adapted from Gharaibeh et al. [78] 
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includes background noise that not only measures the target abundance, but also 

non-specific binding and autofluorescence of the chip surface. 

In the Affymetrix GeneChip system, each transcript’s abundance is measured 

by a set of 11-20 probe pairs.  Each pair is composed of a perfect match probe (PM), 

which exactly complements a region on the transcript, and a mismatch probe (MM), 

which is identical to the PM probe except at the 13th base, where the reverse 

compliment nucleotide is introduced.  MM probes were originally introduced by 

Affymetrix to measure background noise.  However, it has been shown by many 

groups that MM contain significant amount of PM signal and are therefore unreliable 

as estimators of background noise [77, 84-86].  A true estimate of background noise 

would improve the quality of Affymetrix GeneChip data. 

Inconsistency of the signal generated from each probe is a common 

phenomenon in GeneChip microarray experiments [81, 87].  The differences in the 

signal produced can be attributed to many sources: optical noise, cross-

hybridization, dye-related contributions and probe sequence composition.  Many 

algorithms have been developed to attempt to correct for these inconsistencies [69, 

82, 88].  In particular, it has been found that probe sequence composition can 

significantly affect the intensity of the signal generated from that probe, 

independent of the concentration of its target.  A number of groups have suggested 

models where the background intensity of probes could be estimated based on their 

sequence composition [69, 77]. 
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The process of nucleic acid hybridization in solution has been well studied 

and models such as the nearest-neighbor model provide a robust description of 

hybridization thermodynamics [48].  Probe-target hybridization on the microarray 

surface, however, does not follow the solution analogue, and the nearest-neighbor 

parameters that describe solution hybridization appear to be different than those 

for microarrays [69].  On-chip DNA hybridization is likely to be complicated by the 

geometric constraints of having one strand (i.e. probe) attached to the surface of the 

chip [89].  In addition, many other factors like probe and target secondary structure, 

effective reaction volume, electrostatics, diffusion and surface effects, reaction 

thermodynamics and kinetics, competitive binding effects, hybridization buffer 

composition and probe-probe interactions are believed to affect microarray DNA 

hybridization [76, 90]. 

In this chapter, the effect of predicted probe secondary structure on 

background hybridization noise in Affymetrix microarrays is examined.  Although 

microarray probes are attached to the surface of the chip, they are dynamic 

molecules that, depending on their sequence composition, can fold onto themselves 

into stable secondary structure.  Such stable secondary structure has the potential 

to interfere with probe-target hybridization [90].  Consequently, the signal obtained 

from such probes may not reflect the actual transcript concentrations.  It has been 

shown, for example, that a stable secondary structure motif in a 20-mer probe 

dramatically decreases the final signal obtained to a point where the probe is 

considered insensitive to its intended target [91]. 
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Microarray probes are usually screened for the presence of stable secondary 

structure either by a simple base complementarity check or using more 

sophisticated and time consuming energy minimization algorithms [92].  The base 

complementarity check is more routinely used for its simplicity and speed.  

Discrepancies between methods do exist, and there are no guidelines that determine 

which method is preferable [93].  It is therefore likely that, despite these screening 

procedures, a significant amount of secondary structure is present in probes in 

microarray experiments. 

In this chapter we propose that the hybridization background noise of each 

probe can be modeled as a function of its sequence composition and its minimum 

folding energy and secondary structure.  By incorporating probe secondary 

structure information into a previously described model of background noise [77], 

we improved the fit of that model to microarray data by 1-3% with minimal 

addition of significant free parameters. 

2.3 Methods 

2.3.1 Datasets 

Seven datasets were used in this study (Table 2.1): the human genome U133 Latin 

Square dataset [94], the Choe control dataset [95], a Leukemia dataset [96], a 

Malaria PM only dataset [97], an Etoposide response dataset [98], a BK potassium 

channel knockout dataset [99-100] and an alternative splicing PM only tiling 

microarray dataset [101]. 



 

 

23 
2.3.2 System and software 

All the computational work was done on a 73-node Apple cluster.  Each node is a 

dual 2.7 GHz PowePC G5 with 2GB RAM running Mac OSX 10.4.  Secondary structure 

prediction was done using the hybrid-min-ss program of the UNAFold-2.5 software 

package [92].  All probes were folded as single DNA strands at 45 °C and 1.0 M 

sodium concentration.  All other options were set to the program defaults.  Simple 

linear model fitting and p-value calculations were done using R linear model 

function (lm) [102].  The Naef and Magnasco model [77] and the position-dependent 

secondary-structure attenuated affinity model were implemented in Perl. 



 

 

24 
TABLE 2.1  PSAA performance on different datasets. 
R2 of Naef and Magnasco model [77] (NM) and the position-dependent secondary-
structure attenuated affinity model (PPSA) for the seven data sets used in this study.   
Results presented as average R2 ± SD. 

Dataset naa npb   NM  PSAAc 
Latin Square [94] 42 248152 PM  0.17±0.009  0.184±0.010 
  248152 MM  0.40±0.009  0.416±0.009 
        
Choe [95] 6 195994 PM  0.20±0.022  0.216±0.025 
  195994 MM  0.46±0.017  0.49±0.017 
        
Leukemia [96] 72 201800 PM  0.49±0.063  0.51±0.062 
  201800 MM  0.60±0.036  0.61±0.035 
        
Etoposide response 
[98] 

60 496468 PM  0.05±0.040  0.06±0.040 

  496468 MM  0.11±0.062  0.12±0.062 
        
BK knockout [99-100] 20 496468 PM  0.09±0.035  0.10±0.036 
  496468 MM  0.29±0.050  0.30±0.049 
        
Splicing microarray 
[101] 

75 505916 PM  0.30±0.062  0.31±0.063 

        
Malaria [97] 17 173262 PM  0.36±0.043  0.38±0.043 

ana: number of chips. 
bnp: number of probes. 
c The differences in R2 between NM and PSAA are all statistically significant (P<10-3) 
using paired one-sided Wilcoxon test. 
 
 
 
2.4 Results 

2.4.1 Simple linear models 

The signal intensity generated from each probe can be modeled as: 

 
I j = Oj + N j + S j     Eq. 2.1 

Where I is the raw intensity value of probe j, O is the optical noise, N is the 

background noise of non-specific binding, and S is the signal generated from specific 

binding between probe j and its intended target [82].  Here, we do not model the 

specific binding signal (S) and none of our models therefore contain terms for S.  
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Since the S term, which we are ignoring in our models, is significantly higher in the 

PM probes than the MM probes, each probe type was modeled separately. 

Controlling the GC content of the probe is one of the basic principles of 

microarray probe design.  A probe with high GC content tends to hybridize better 

and to form a stable duplex with both target and non-target sequences.  A simple 

linear model that relates probe intensity to GC content can be written as follows: 

0 1j jj
I B B GC ε= + +     Eq. 2.2 

where I is the raw intensity of probe j, 
j

GC  is the number of GC nucleotides in 

probe j (which is a number between 0 and 25), B0 and B1 are free parameters and εj 

is an error term.  The model explains a modest amount of the overall intensity when 

applied to the Latin Square data set; R2 ≈ 0.02 for PM and 0.12 for MM (Fig. 2.1). 
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FIGURE 2.1  R2 distribution for the simple linear models (Eqs 2.2, 2.3 and 2.4) for all 
the U133 Latin Square chips. 
The null hypothesis that the B1 parameter is equal to zero is rejected with high 
confidence (P < 10-4) for all the models. 
 
 
 
The model explains more of the MM probes intensity because most of the signal 

obtained from MM probes is background noise.  MM intensity is therefore more 

independent of the concentration of the target gene. 

We wondered, compared to the GC content, how much of the background 

noise probe secondary structure would explain when put into a simple linear model.  

The free energy of probe secondary structure formation (ΔGss) is an indicator of the 

stability of secondary structure in which the probe folds on itself.  The more stable 

the secondary structure, the less a probe will be able to hybridize to its target or 

non-target sequences.  As a result, one would expect to observe a low signal from 

such probe. 
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How much of all probe variance can be explained directly by secondary 

structure predictions?  A simple linear model is: 

0 1j ss jj
I B B G ε= + ∆ +     Eq. 2.3 

where ss j
G∆ is probe j minimum folding energy in Kcal/mol. 

If we apply this simple linear model to the Latin Square data set, we find a 

very low r-squared values; R2 < 10-4 (Fig. 2.1).  However, the p-value of the null 

hypothesis that the B1 parameter is equal to zero is rejected with high confidence 

(Fig. 2.1).  These data suggest that there is a statistically significant influence of ΔGss 

on the observed intensity, although this relationship does not explain very much of 

the overall intensity on the array. 

One may argue that the low r-squared values in equation 2.3 are due to the 

fact that ΔGss value does not reflect the size of the secondary structure motif found in 

that probe and the number of free bases available for hybridization.  The program 

hybrid-min-ss reports for the most stable secondary structure of a probe whether a 

given nucleotide is involved in secondary structure formation or not.  We can define 

a value, SL, which is the longest stretch of nucleotides that are not involved in 

secondary structure formation (for example, SL =10 in Fig. 2.2). 
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FIGURE 2.2  Folded probe showing its sequence, minimum folding energy (ΔGss) and 
minimum energy structure. 
The longest free string of bases of the folded probe (SL) is shown in gray box; bases 
involved in hydrogen bonding are shown in green ovals. 
 
 
 

To investigate the relationship between the longest free string of bases of the 

folded probe (SL) and the observed intensity, we can again apply a simple linear 

model: 

0 1j L jj
I B B S ε= + +     Eq. 2.4 

where L j
S is the longest free string of bases in probe j based on its minimum 

energy structure.  This model also has a very low r-squared values when applied to 

the Latin Square data set; R2 < 10-3 (Fig. 2.1), only slightly higher than Eq. 2.3 
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suggesting little direct effects of probe SL on the observed intensity.  However, the p-

value of the null hypothesis that the B1 parameter is equal to zero is also rejected 

with high confidence (Fig. 2.1).  We see that GC content can explain a modest 

amount of overall intensity.  Models based on secondary structure explain much less 

of the intensity data, although they are still highly statistically significant. 

2.4.2 Position-dependent secondary-structure attenuated affinity model 
(PSAA) 

Since the three simple linear models (equations 2.2, 2.3 and 2.4) all hold 

significant relationships with the observed intensity (Fig. 2.1), we wanted to 

combine them into one model that takes into account the base composition, ΔGss and 

SL of the probe.  We found that a simple linear combination of GC, ΔGss and SL did not 

significantly improve on the power of the individual models (data not shown).  We 

reasoned that a model that is aware of each probe's base position and involvement 

in the overall secondary structure of the probe would outperform models that 

ignore this information. 

The model of Naef and Magnasco [77] provides a starting point that meets 

our requirement for individual base information.  In this model, probe background 

is modeled based on sequence composition: 

25

1 ( , , , )
ln / lk lk

k l A T C G
B M S A

= ∈

= ∑ ∑     Eq. 2.5 

where B is the raw probe intensity, M is the median intensity of the array, l is 

nucleotide index, k is the position of l along the probe, S a Boolean variable equals to 
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1 if the probe sequence has l at k and zero otherwise, and A is the per-site per letter 

affinity.  To clarify, consider the probe shown in Fig. 2.2, then equation 2.5 will read: 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

25 25 25 25 25 25 25 25

1 2 3 2

ln /
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ln /

G G A A T T C C

G G A A T T C C

G G A A T T C C

G G A A T T C C

C G A

B M
S A S A S A S A
S A S A S A S A
S A S A S A S A

S A S A S A S A

B M A A A A

=

× + × + × + × +
× + × + × + × +
× + × + × + × +

+ × + × + × + ×

= + + + +



 5C

 

Equation 2.5 is a simple model that has four free parameters for each probe base 

(100 free parameters for a 25-base probe).  The values of these 100 free parameters 

are generated by linear least squares fit [77].  Given the large number of probes on 

each chip (about half a million for the human genome U133 chip, for example) over-

fitting is not a concern. 

In our approach, we add the continuous variable θ to reflect the involvement 

of the probe nucleotides in secondary structure formation.  The model now is 

written as: 

25

1 ( , , , )
ln / lk lk

k l A T C G
B M S Aθ

= ∈

= ∑ ∑     Eq. 2.6 

The θ term reflects the degree to which an individual probe base participates in 

secondary structure formation.  In our model, it is represented by any value 

between 0 and 1.  There are a large number of ways in which values for θ could be 

generated.  We made the following simplifying assumptions.  We begin by 

considering nucleotides that are not involved in secondary structure formation.  In 
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cases where a probe's ΔGss > 0 Kcal/mol we can set θ for all bases within that probe 

to 1.  Likewise, when a base within a probe is not involved in secondary structure 

hydrogen bonding (yellow ovals in Fig. 2.2, for example), we can set θ to 1 for that 

base.  To calculate θ for the remaining bases, we set a ΔGss-cutoff value below which θ 

will be constant (θ = tb).  We assumed that the relationship between θ and ΔGss is 

linear in the region where ΔGss is between ΔGss-cutoff and 0 (Fig. 2.3). 

 
 
 

FIGURE 2.3  A model for the relationship between ΔGss and θ for the bases involved 
in secondary structure formation. 
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From the assumption of linearity, we can derive a slope and an intercept to yield: 

cutoff

1 1
 ss j

ss

tb G
G

θ
−

−
= ∆ +

∆
    Eq. 2.7 

This equation has two unknown parameters ΔGss-cutoff and tb.  To find the best values 

for these parameters, we tested the effects of changing ΔGss-cutoff and tb on the 

performance of the model (equation 2.6) on a single chip from the Latin Square 

dataset.  We found that the best performance of the model was obtained at ΔGss-cutoff 

= -3.6 Kcal/mol and a tb = 0.35 (Fig. 2.4). 

 
 
 

 
FIGURE 2.4  Optimizing ΔGss-cutoff and tb. 
Effects of changing the values of ΔGss-cutoff and tb on the performance of the position-
dependent secondary-structure attenuated affinity model using the human genome 
U133 Latin Square Experiment 2 Replicate 1 PM probes. 



 

 

33 
To summarize, we define our position-dependent secondary-structure 

attenuated affinity model (PSAA) as equation 2.6, where B is the raw probe 

intensity, M is the median intensity of the array, l is letter index, k is the position of l 

along the probe, A is the per-site per letter affinity, S a Boolean variable equal to 1 if 

the probe sequence has l at k and zero otherwise, and θ is: 

a. 1, if the probe ΔGss > 0 Kcal/mol. 

b. 1, if the probe ΔGss ≤ 0 Kcal/mol and l is not involved in secondary 

structure hydrogen bonding. 

c.  
0.35, 3.6

0.65 1, 3.6 0
3.6

ss

ss ssj

if G

G if G

∆ ≤ − 
 
 ∆ + − < ∆ ≤ 
 

 and l is involved in secondary 

structure hydrogen bonding. 

Here, the involvement of each probe base in secondary structure hydrogen bonding 

is based on its minimum energy structure. 

When we consider the folded probe presented in Fig. 2.2, equation 2.6 reads: 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

25 25 25 25 25 25 25 25

1
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(( ) ( ) ( ) ( ))
(( ) ( ) ( ) ( ))
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C
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θ
θ
θ

θ
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× + × + × + × +
× + × + × + × +
× + × + × + × +
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= +



2 3 250.64G A CA A A+ + +

 

The model defined in equation 2.6 was fitted to all the datasets (Table 2.1).  The 

fitting was done on the PM and MM probes separately.  Table 2.1 shows a 
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comparison between the native Naef and Magnasco model [77] and our position-

dependent secondary-structure attenuated affinity model.  We see that including 

probe secondary structure information improved the fit of the native Naef and 

Magnasco model [77] by 1-3%, depending on the chip and probe type.  Note that all 

the models (equations 2.2, 2.3, 2.4, 2.5 and 2.6) perform better on the MM probes 

due to the higher background noise present in the MM signal. 

2.4.3 Gains in performance cannot be trivially explained by additional free 
parameters 

We note that there are two distinct kinds of free parameters in our model.  

The 100 free parameters from the original Naef and Magnasco model (equation 2.5) 

are calculated for each chip by linear least squares fit.  We have added two free 

parameters in equation 2.6, ΔGss-cutoff and tb.  These parameters were determined 

from one of the Latin Square dataset chips from the curves shown in Fig. 2.4 and 

were held constant for all the datasets in this chapter.  Given that our fits contain 

between 173,262 and 496,468 data points (Table 2.1), it seems unlikely that the 

improvements in performance could be explained by the addition of the free 

parameters ΔGss-cutoff and tb.  Nonetheless, to further rule out this possibility, we 

refolded the Latin Square data set probes with either a completely random sequence 

(generated with an equal probability of A, C, G and T) or a shuffled sequence.  Then 

we fed equation 2.6 the original probe sequence (i.e. the right l at k) along with the 

new ΔGss and the new minimum energy structure that resulted from folding the 

random or shuffled probe sequence.  For the random sequence case, the 
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performance of the original Naef and Magnasco model [77] was severely degraded 

as shown in Figure 2.5. 

 
 
 

 
FIGURE 2.5  Effects of changing tb or ΔGss-cutoff on the performance of the PSAA 
model. 
Effects of changing (A) the values of tb while holding ΔGss-cutoff = -3.6 or (B) the 
values of ΔGss-cutoff while holding tb = 0.35 on the performance of PSAA: the position-
dependent secondary-structure attenuated affinity model (equation 2.6).  Data 
shown are for the human genome U133 Latin Square Experiment 2 Replicate 1 PM 
probes.  NM: Naef and Magnasco [77] model (equation 2.5).  The suffixes (-SH) and 
(-RD) indicates the R2 after generating the minimum folding energy (ΔGss) and the 
minimum energy structure from shuffled and random sequences, respectively (see 
section 2.4.3 for explanation). 
 
 
 

For the shuffled sequences, the probe's base composition is not affected, but 

the position of each base has been changed due to the shuffling process.  For the 

shuffled sequences, the fit of the model dropped down to that of the original Naef 

and Magnasco model [77].  These results on shuffled and random sequence show 

that the presence of the two additional free parameters ΔGss-cutoff and tb cannot by 
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themselves explain the improved performance over the original Naef and Magnasco 

model [77].  This strongly supports our argument that the gain in the r-squared 

values of our model came from including probe secondary structure information 

and do not arise trivially from the addition of free parameters. 

2.5 Discussion 

In the absence of a clear understanding of the microarray hybridization 

mechanisms and the frequent use of probes that fold into stable secondary structure 

under the hybridization conditions on microarrays, a model is needed to explain or 

approximate the effects of such behavior on microarray signal.  Using simple linear 

models, we saw a modest relationship (R2 < 10-3) between probe intensity and its 

ΔGss or SL.  We propose as a more powerful alternative to two parameter linear 

models, a modification of the Naef and Magnasco model [77] to include probe 

secondary structure effects on the background intensity.  Our model works by 

equating an increase in secondary structure with a decreased contribution to a 

linear least square fit.  If a particular base is involved in secondary structure 

hydrogen bonding (Fig. 2.2), we assign it a low θ score depending on the overall ΔGss 

of the probe (Eq. 2.7).  Consequently, this base contribution is attenuated in the Naef 

and Magnasco model [77].  Consider, for example, the third adenine base in the 

folded probe presented in Fig. 2.2, in the Naef and Magnasco model [77] its 

contribution to the brightness is A3A.  Based on the predictions of hybrid-min-ss, this 

base is involved in secondary structure hydrogen bonding and we therefore expect a 

reduced contribution to the intensity caused by background binding.  We therefore 
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attenuate its contribution to the brightness by θ, and its contribution now is 0.64A3A 

instead of A3A.  Results attenuated by θ have more power than the original Naef and 

Magnasco model [77] over a wide range of Affymetrix datasets (Table 2.1). 

The secondary structure information used here is based on the minimum 

folding energy (ΔGss) and the minimum energy structure, as predicted by an energy 

minimization algorithm [92] that uses the nearest-neighbor parameters [28] to 

predict secondary structure of single-stranded DNA molecules in solution.  In the 

absence of clear understanding of the effects of the geometric constraints of 

attaching one end of the DNA probe to the chip surface on its secondary structure, 

the nearest-neighbor parameters represent a reasonable approximation for 

microarray [66, 80].  We are also fully aware that single-stranded DNA molecules 

are highly dynamic and each molecule is likely to exist in an ensemble of structures.  

Based on that, predicting the minimum folding energy (ΔGss) and the minimum 

energy structure for any single-stranded DNA molecule can be different when using 

different prediction algorithms, even when the same folding conditions are used.  

The results presented here are based on the minimum folding energy (ΔGss) and the 

minimum energy structure calculated using UNAFold [92].  It has been shown that 

the differences in the predicted minimum folding energy (ΔGss) and the minimum 

energy structure between different prediction algorithms are small [103-104].  

Consequently, we would expect similar results no matter which of the currently 

popular secondary structure prediction algorithms were used. 
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The results presented in this chapter suggest that, on average, 1-3% of all the 

intensities on Affymetrix GeneChip microarrays can be explained by probe 

secondary structure independent of any target information.  Given that not all the 

probes form stable secondary structure (50% of the human genome U133 Latin 

Square dataset probes, for example have predicted ΔGss > 0), the 1-3% enhancement 

over the original model is quite satisfactory, and represent a step forward in 

understanding the factors that affect the on-chip hybridization process. 

The current design of GeneChip microarrays devotes half of the chip to MM 

probes.  The sole purpose of these probes is to estimate the background noise 

portion present in the PM signal to enhance the chip ability to detect differently 

expressed genes.  Advances in the ability to correctly estimate background noise on 

Affymetrix GeneChip microarrays based on probe sequence information may in the 

future eliminate the need of MM probes on these arrays offering more space to 

interrogate more genes on the same array. 

 



 

 

CHAPTER 3: BACKGROUND CORRECTION USING DINUCLEOTIDE AFFINITIES 
IMPROVES THE PERFORMANCE OF GCRMA

 
 
3.1 Abstract  

High-density short oligonucleotide microarrays are a primary research tool 

for assessing global gene expression.  Background noise on microarrays comprises a 

significant portion of the measured raw data, which can have serious implications 

for the interpretation of the generated data if not estimated correctly.  We introduce 

an approach to calculate probe affinity based on sequence composition, 

incorporating nearest-neighbor (NN) information.  Our model uses position-specific 

dinucleotide information, instead of the original single nucleotide approach, and 

adds up to 10% to the total variance explained (R2) when compared to the 

previously published model.  We demonstrate that correcting for background noise 

using this approach enhances the performance of the GCRMA preprocessing 

algorithm when applied to control datasets, especially for detecting low intensity 

targets.  Modifying the previously published position-dependent affinity model to 

incorporate dinucleotide information significantly improves the performance of the 

model.  The dinucleotide affinity model enhances the detection of differentially 

expressed genes when implemented as a background correction procedure in 

GeneChip preprocessing algorithms.  This is conceptually consistent with physical 

 

                                                        
  This chapter is adapted from Gharaibeh et al. [70] 



 

 

40 
models of binding affinity, which depend on the nearest-neighbor stacking 

interactions in addition to base-pairing. 

3.2 Introduction 

Affymetrix GeneChip arrays are one of the most popular gene expression 

array systems used by researchers worldwide [83].  The purpose of an expression 

microarray experiment is to measure the abundance of each known transcript in the 

sample under investigation.  Abundance is inferred from the signal generated by a 

set of 11-20 probe pairs.  Each pair is composed of a perfect match probe (PM), 

which exactly complements a region on the transcript, and a mismatch probe (MM), 

which is identical to the PM probe except at the 13th base, where the reverse 

complement nucleotide is introduced [105].  The fluorescent signal from each probe, 

however, includes background noise that not only measures the transcript 

abundance, but also non-specific binding (NSB) and autofluorescence of the chip 

surface.  MM probes were originally introduced by Affymetrix to measure 

background noise.  It has been shown by many groups that MM probes contain 

significant amount of the PM signal and are therefore unreliable as estimators of 

background noise [84-86]. 

A gene expression experiment using the Affymetrix GeneChip system usually 

involves a design step, a preprocessing step, an inference step and finally, a 

validation step [106].  The preprocessing step is of special importance; 

preprocessing transforms the raw fluorescence signals from each probe in a 

probeset into a composite gene expression value.  The main goal of the 
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preprocessing step is to remove non-biological variation from the raw data [106].  

Usually, the preprocessing step in Affymetrix GeneChip array analysis includes three 

main treatments of the raw data.  A background adjustment step separates the 

specific signal from the non-specific signal.  A probe-level normalization step then 

removes non-biological variation between arrays.  Finally, a summarization step 

generates a single expression value for each gene from its corresponding probeset.  

The method described in this manuscript is an implicit physical model that modifies 

the background adjustment step. 

Background noise and non-biological variation of the signal generated from 

each probe are common phenomena in GeneChip microarray experiments [81, 87].  

The differences in the signal produced can be attributed to many sources: optical 

noise, cross-hybridization, dye-related contributions and probe sequence 

composition.  Many preprocessing algorithms have been developed in an attempt to 

correct for these artifacts [88].  According to Allison et al. [106] there is no clear 

winner among the available preprocessing algorithms.  However, GCRMA [68], a 

modification of RMA [107], often performs as well as or better than other 

algorithms [88, 108-110].  GCRMA incorporates probe sequence composition into 

background adjustment, following the physical model of Naef and Magnasco [77].  

The model describes a probe affinity that is dependent on its base composition and 

the position of each base along the probe and suggests that probe sequence can 

significantly affect the intensity of the signal generated from that probe, 

independent of the concentration of its target. 
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Performance assessment of GCRMA has been done using both spike-in [95, 

108, 110-111] and real [109] datasets followed by quantitative real time PCR 

confirmation .  So far, a number of reports have been published recommending the 

use of GCRMA for detecting differentially expressed genes and estimating relative 

expression, emphasizing its outstanding performance in detecting low-intensity, 

differentially expressed genes [110-111].  When comparing microarray analysis 

algorithms, Irizarry et al. [88] have argued for an approach that balances accuracy 

and precision.  Irizarry et al., define accuracy as the ability of the algorithm to detect 

the relative expression of a transcript without bias to its abundance (concentration).  

They define precision as low variance; this is characterized by a steady performance 

on replicates of the same sample.  GCRMA is among the few preprocessing 

algorithms that scores well in both accuracy and precision [110]. 

In this study, we modified the portion of GCRMA derived from the model of 

Naef and Magnasco [77] to calculate probe affinity using position-specific 

dinucleotide information.  The dinucleotide is a fundamental chemical unit that 

contributes a well-understood component to nucleic acid duplex stability and to the 

free energy of duplex formation during hybridization [28, 48].  We applied the new 

model to different datasets, and achieved an improved fit to microarray data with R2 

increasing by 5-10%.  Then, we tested the downstream effect of our modified 

background model on the performance of GCRMA in detecting differentially 

expressed genes, when used to analyze two publicly available control datasets: the 

human genome U133 Latin Square dataset [94] and the golden spikein dataset [95].  
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In both datasets, application of the dinucleotide model in background correction 

improved the detection of differentially expressed genes.  Therefore, we propose 

that probe affinity be modeled based on dinucleotide composition of the probe 

instead of the original single nucleotide approach. 

3.3 Methods 

3.3.1 Datasets 

The U133 Latin square dataset 

This dataset is composed of 14 experiments (three technical replicates for each 

experiment) in which 42 transcripts are spiked at a concentration range of 0.125-

512 pM following a Latin square design.  The dataset files were downloaded from 

Affymetrix web site [94].  For Affycomp analysis, all probesets were included.  For 

the 14 2X comparisons the following probesets were excluded following Affymetrix 

recommendations: 209374_s_at, 205397_x_at, 208010_s_at.  In addition, we 

excluded any probesets with a name starting with AFFX- that was not included in 

the 42 true positive spikeins. 

The Golden spikein dataset 

This dataset has more spikein genes than the Latin Square dataset, but consists of 

only six microarrays, 3 C (control) and three S (spikein) [95].  The S pool contains 

cRNA at concentration equal to or higher than the C pool [95].  Each pool was 

hybridized to the Affymetrix Drosophila array (three technical replicates for each 

hybridization).  Probesets measuring spikein transcripts were determined based on 
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the analysis of Schuster et al. [111].  We considered all probeset that measure 

differentially expressed genes to be true positives (a total of 1353 probesets). 

Several issues have been raised concerning the use of the Golden spikein dataset in 

validating GeneChip preprocessing algorithms [112-114].  However, the analysis of 

Pearson [115] shows clearly that the Golden spikein dataset can be used to validate 

and compare the performance of GeneChip preprocessing algorithms. 

3.3.2 Model implementation 

The single nucleotide model was implemented in Perl [78], the dinucleotide model 

was implemented in Java.  All the models were fitted using the least squares method.  

The fitted parameters for the dinucleotide model for each of the two datasets were 

used to generate an affinity.info matrix for that dataset.  This affinity.info matrix was 

used in GCRMA analysis later on.  Affinity.info matrix generation was done using a 

local R script following the steps found in GCRMA source code (available here 

[116]).  The Java code for the dinucleotide model is provided here [116]. 

3.3.3 Data analysis 

All analysis steps were performed using R [102] version 2.5.0 and Bioconductor 

[117] unless otherwise indicated. 

Expression summaries were generated using the full model of GCRMA version 2.8.1.  

The commands used to generate the summaries for GCRMA-NN, GCRMA-L and 

GCRMA-R can be found here [116].  The affinity.info matrix for the U133 Latin 

square dataset and the Golden spikein dataset affinity.info matrix can be found here 

[116]. 
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Affycomp analysis was done using a locally installed Affycomp 1.14.0 package.  All 

expression summaries were converted back from the log scale to the original scale 

and formatted to a comma-delimited text files using a local Perl script.  Metrics 

generation for the expression summaries was done using a local R script following 

the directions of the package maintainers.  The following metrics were used to 

evaluate the performance of each algorithm (definitions are according to Affycomp 

website [118]): Median SD is the median standard deviation across replicates.  It 

measures the consistency of the algorithm (variance across the range of expression 

levels); the lower the median SD the more consistent the algorithm.  Null log-fc IQR 

and null log-fc 99.9% are the interquartile range and the 99.9th percentile of the log 

fold changes from probesets, for genes that should not change.  A perfect score is 0 

for both metrics.  Signal detect slope is the slope obtained from regressing 

expression values on nominal concentrations in the spikein data.  Signal detect R2 is 

the R squared obtained from regressing expression values on nominal 

concentrations in the spikein data.  Low.slope, med.slope and high.slope are as in 

signal detect slope, but for probesets targeting low (<4 pM), medium (4-32 pM) and 

high (> 32 pM) spikeins, respectively. Obs-intended-fc and Obs-(low)int-fc slopes 

are slopes obtained from regressing observed log fold changes against nominal log 

fold changes for all probesets, and for those with nominal concentration less than 2 

pM, respectively.  Low, med and high AUC reflect the area under the ROC curve 

(with up to 100 false positives) for spikeins with low, medium and high intensities, 

standardized so that optimum is 1, respectively.  Weighted avg AUC is the weighted 
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average of the previous three ROC curves with weights related to amount of data in 

each class (low, medium and high). 

ROC curve generation was implemented in Java and cyber t analysis was done in R.  

Detailed description of the implementation and the analysis can be found here [98]. 

3.4 Results 

3.4.1 Dinucleotide affinity model 

Naef and Magnasco [77] model probe affinity (probe hybridization effect) 

based on sequence composition as follows: 

  
ln B / M = Slk Alk

l∈( A,T ,C ,G )
∑

k =1

25

∑     Eq. 3.1 

where B is the raw probe intensity, M is the median intensity of the array, l is the 

nucleotide index (A,C,G or T), k is the position of l along the probe (note that k has a 

range of 1 to sequence length, that is 25 for GeneChip probes), S is a Boolean 

variable equal to 1 if the probe sequence has l at k and zero otherwise, and A is the 

per-site-per- nucleotide affinity.  As an example, consider the following sequence: 

CGAC, for which equation 3.1 reads: 

  

ln B / M =

(S1G × A1G ) + (S1A × A1A ) + (S1T × A1T ) + (S1C × A1C ) +

(S2G × A2G ) + (S2 A × A2 A ) + (S2T × A2T ) + (S2C × A2C ) +

(S3G × A3G ) + (S3A × A3A ) + (S3T × A3T ) + (S3C × A3C ) +

(S4G × A4G ) + (S4 A × A4 A ) + (S4T × A4T ) + (S4C × A4C )

ln B / M = A1C + A2G + A3A + A4C
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Equation 3.1 is a simple model that has four free parameters for each probe base 

(100 free parameters for a 25-base probe).  The values of these 100 free parameters 

are generated by linear least squares fit.  Given the large number of probes on each 

chip (about half a million for the human genome U133 chip, for example) over-

fitting is not a concern. 

Figure 3.1 shows the 25 parameters (term A in Equation 1) of the four 

nucleotides as a function of their position along the probe for the U133 Latin square 

dataset (parameters derived from a single chip are shown in panel A and an average 

of the parameters across all the 42 chips is shown in panel B).  A similar pattern of 

parameters have been obtained fitting equation 1 to other Affymetrix datasets (data 

not shown and [77]).  These fitted per-site-per-nucleotide affinities imply that the 

signal generated from each probe will be affected by the probe sequence.  Consider 

two probes interrogating two transcripts, which are present in identical 

concentration.  In such a case, a probe containing many adenines (A) will produce a 

lower signal intensity than the probe with many cytosines (C), especially if the As or 

Cs are concentrated at or near the center of the probe (position 13). 
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FIGURE 3.1  Affinity parameters calculated using single nucleotide model. 
Affinity parameters calculated using equation 3.1 for the human genome U133 Latin 
Square.  Panel A is for Experiment 11 Replica 2 and panel B shows an average of the 
parameters across all the 42 chips.  K represents the position of each nucleotide 
along the probe length.  Affinity parameters calculated using equation 3.2 are shown 
as solid lines.  Higher affinity (Y-axis) indicates brighter signal. 
 
 
 

The model defined in equation 3.1 can also be expressed as a polynomial of 

degree 3, thus reducing the free parameters from 100 to 16 as shown below: 

  
ln B / M = Slk Alt

t =0

3

∑
l∈( A,T ,C ,G )

∑
k =1

25

∑ kt     Eq. 3.2 
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By assuming the affinities can be modeled as a third order polynomial function of 

position, the number of free parameters in the model can be reduced from 100 to 16 

with little loss of predictive accuracy as the polynomial generated with 16 

parameters (Fig. 3.1 solid lines) closely matches the 100 independently estimated 

parameters (Fig. 3.1 symbols) and the R2 of both models are similar (Fig. 3.2). 

 
 
 

 
FIGURE 3.2  Box plots of the R2 of the single nucleotide model and the dinucleotide 
model. 
Box plots showing the R2 of the single nucleotide model (N) (using the 100 free 
parameters (N100), equation 3.1, and the 16 free parameters (N16), equation 3.2) 
and the dinucleotide model with 64 free parameters (NN 64), equation 3.4 on the 42 
Latin square chips.  PM indicates the fit was done on the perfect match probes, MM 
indicates the fit was done on the mismatch probes, shuffled indicates the fit was 
done on the shuffled probe sequences and random indicates the fit was done on 
randomly generated probe sequences. 
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In the dinucleotide model, we follow a similar strategy to the above, but we 

model composition-biased probe affinity using dinucleotides (pairs of adjacent 

bases), which are a fundamental chemical unit in physical models of nucleic acid 

folding and hybridization rather than single nucleotides.  The dinucleotide model is 

as follows: 

  
ln B / M = Slk Alk

l∈NN
∑

k =1

24

∑     Eq. 3.3 

where B is the raw probe intensity, M is the median intensity of the array, l is the NN 

nucleotide pair (AA, AC AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG or TT), k is 

the position of l along the probe (note that k has a range of 1 to sequence length 

minus one, that is 24 for GeneChip probes), S is a Boolean variable equal to 1 if the 

probe sequence has l at k and zero otherwise, and A is the per-site-per-dinucleotide 

affinity.  We then again assume that the per-site-per-dinucleotide affinity follows a 

polynomial of degree 3 as a function of the position k as outlined in equation 3.4: 

  
ln B / M = Slk Alt

t =0

3

∑
l∈NN
∑

k =1

24

∑ kt   Eq. 3.4 

This reduces the number of free parameters from 384 (16 dinucleotides x 24 

nucleotide positions, equation 3.3) to 64 (16 dinucleotides x 4 parameters, equation 

4), which makes this approach computationally feasible.  As an example, consider 

the following sequence: CGAC (three dinucleotides: CG for k=1, GA for k=2, and AC 

for k=3), for which equation 3.4 reads: 
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ln B / M =

( ACG0 ) + ( ACG1 × 1) + ( ACG2 × 12 ) + ( ACG3 × 13) +

( AGA0 ) + ( AGA1 × 2) + ( AGA2 × 22 ) + ( AGA3 × 23) +

( AAC0 ) + ( AAC1 × 3) + ( AAC 2 × 32 ) + ( AAC3 × 33) +

ln B / M = 4ACG + 15AGA + 40AAC

 

Note that we do not explicitly fit the stacking energies of the NN pairs; rather we 

explicitly fit the NN pairs’ affinities along the probe sequence position.  The fitted 

per-site-per-dinucleotide affinities are shown in Fig. 3.3 for the Latin square dataset. 
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FIGURE 3.3  Affinity parameters calculated using dinucleotide model. 
Affinity parameters calculated using equation 3.4 for the human genome U133 Latin 
Square.  Affinity parameters are averaged across all the 42 chips; parameters for any 
single chip resemble those shown here.  The first letter of each dinucleotide is 
indicated at the top of the figure, the second letter is indicated on the connected 
lines.  K represents the position of each dinucleotide along the probe length.  Higher 
affinity (Y-axis) indicates brighter signal. 
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Parameters obtained from other datasets are similar to the Latin square dataset 

parameters (data not shown).  The figure shows that a probe with many AN (N=A, C, 

G, T) pairs (Fig 3.3A) tends to have much lower intensity than a probe with many CN 

pairs (Fig 3.3B) especially when those pairs are located at or near the probe center.  

This is broadly what we expect from the single nucleotide model.  However, 

examining the effect caused by second nucleotide in each NN pair shows a 

pronounced effect for certain dinucleotides, which cannot be captured in the single 

nucleotide model.  This can be seen in Fig. 3.3C and 3.3D.  GA and GT rich probes are 

significantly brighter than GC rich probes, and TA rich probes are brighter than TC 

and TG rich probes. 

The model defined in equation 3.4 was fitted to a number of datasets (see 

Methods section of this chapter).  Fitting was performed on the PM and MM probes 

separately.  Table 3.1 shows a comparison between the native Naef and Magnasco 

[77] affinity model (single nucleotide model, equation 3.1) and our dinucleotide 

affinity model (equation 3.4).  We see that the dinucleotide model gives a better fit 

to microarray data by 5-10% on average (Table 3.1 and Fig. 3.2), depending on the 

chip and probe type.  Note that both models perform better on the MM probes due 

to the higher background noise present in the MM signal. 
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TABLE 3.1  Dinucleotide model performance on different datasets. 
R2 of Naef and Magnasco [77] model (Single nucleotide) and the dinucleotide model 
for the five data sets used in this study.  Results presented as average R2 ± SD 

Data set nca npb   Single 
nucleotide 
model (Eq. 

3.1) 

 Dinucleotide 
model (Eq. 3.4)c 

Latin Square [94] 42 248152 PM  0.17±0.01  0.22±0.01 
  248152 MM  0.40±0.01  0.50±0.01 
        
Golden spikein [95] 6 195994 PM  0.20±0.02  0.22±0.02 
  195994 MM  0.46±0.02  0.51±0.02 
        
Leukemia [96] 72 201800 PM  0.49±0.06  0.55±0.07 
  201800 MM  0.60±0.04  0.69±0.04 
        
Etoposide 
response 

60 496468 PM  0.05±0.04  0.08±0.06 

[98]  496468 MM  0.11±0.06  0.16±0.08 
        
BK knockout 20 496468 PM  0.09±0.04  0.13±0.04 
[99-100]  496468 MM  0.29±0.050  0.36±0.06 

a nc: number of chips. 
b np: number of probes. 
c The differences in R2 between single nucleotide model and dinucleotide model are 
all statistically significant (P < 10-3) using paired one-sided Wilcoxon and t tests. 
 
 
 

Given that our fits contain between 195,994 and 496,468 data points (Table 

3.1), it seems unlikely that the improvements in performance of our model could be 

explained by the additional free parameters (64 for our model vs. 16 for the original 

Naef and Magnasco model).  Nonetheless, to rule out this possibility, we fitted both 

the single nucleotide model (N) (using the 100 free parameters and 16 free 

parameter version of the Naef and Magnasco model, equation 3.1 and 3.2, 

respectively) and the dinucleotide model (NN) with 64 free parameters (equation 

3.4) to the Latin Square dataset using completely random probe sequences 
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(generated with an equal probability of A, C, G and T).  We also performed the same 

test on shuffled probe sequences in which the probe's base composition is not 

affected, but the position of each base has been changed due to the shuffling process.  

The results of this analysis are shown in Figure 3.2.  We see that the R2 of the 

shuffled and random probe sequences are nearly identical, no matter which method 

is used.  The presence of additional free parameters in our model, therefore, cannot 

by itself explain the improved performance over the Naef and Magnasco model.  

This strongly supports our argument that the gain in the r-squared values of the NN 

model comes from including dinucleotide information and does not arise trivially 

from the addition of free parameters. 

3.4.2 Background adjustment using dinucleotide affinity model 

Using a more accurate estimate of background noise should improve the 

quality of Affymetrix GeneChip data.  Given the better fits observed using the 

dinucleotide affinity model, we expected it to improve the analysis results to some 

degree when applied to control datasets.  We tested the downstream effects of using 

this model on the quality of microarray data.  We chose to implement the model 

within GCRMA [68], since it already has the single nucleotide model implemented in 

its background correction procedure, and therefore the two models could be 

directly compared. 

In GCRMA, Wu et al. [68] model the signal intensity generated from each 

probe as: 
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PM = OPM + N PM + S ,
MM = OMM + N MM + φS

    Eq. 3.5 

where O is the optical noise, N is the background noise of non-specific binding, and S 

is the signal generated from specific binding between the probe and its intended 

target.  The parameter φ  reflects the fact that for some probe pairs, the MM signal 

may contain specific signal.  The background components log(NPM) and log(NMM) are 

assumed to follow a bivariate distribution with means of μpm= h(αPM) and μmm= 

h(αMM), where h is a smoothing function and α (probe affinity) is defined by 

equation 3.1.  In this paper, we make these same assumptions, but we derive α using 

equation 3.4. 

We reasoned that GCRMA with background correction using the dinucleotide 

model, which we will subsequently refer to as GCRMA-NN, would perform better 

than the native GCRMA model.  It is important to clarify that GCRMA offers two 

options for background correction, the first of which uses a precomputed α (called 

reference affinity) from the authors’ own non-specific binding (NSB) experiments, 

while the second computes α directly from the data (called local affinity).  In the 

following sections, we compare GCRMA-NN (where α is computed directly from the 

data using equation 3.4) to GCRMA-L (GCRMA with local affinity) and GCRMA-R 

(GCRMA with reference affinity). 

3.4.3 Application of the dinucleotide affinity model to the Human Genome 
U133 Latin square dataset 

We obtained expression measures for the Human Genome U133 Latin square 

dataset after processing it with GCRMA-R, GCRMA-L and GCRMA-NN.  The three 
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expression measures were evaluated using two approaches.  The first approach is 

based on Affycomp [118-119], a performance evaluation tool for preprocessing 

algorithms (see below).  The second approach is based on the number of true 

positives captured for all the 14 2X comparisons of the Latin square dataset at a 

cutoff of four false positives after using the cyber t test [120].  Cyber t is a popular 

variant of the t test, in which a weighted standard deviation replaces the 

conventional standard deviation and an adjusted number of degrees of freedom is 

used instead of the conventional degrees of freedom. 

Performance of GCRMA-R, GCRMA-L and GCRMA-NN as reported by 

Affycomp based on 14 metrics is shown in Table 3.2. 
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TABLE 3.2  Affycomp scores for GCRMA-L, GCRMA-R and GCRMA-NN. 
Fourteen Affycomp metrics for the U133 Latin square dataset rounded to two 
decimal points. 

Metric* GCRMA-L GCRMA-R GCRMA-NN Perfect score 
Median SD 0.06 0.06 0.07 0 

null log-fc IQR 0.05 0.03 0.08 0 
null log-fc 99.9% 0.62 0.61 0.64 0 

Signal detect slope 0.99 1 0.98 1 
Signal detect R2 0.89 0.91 0.91 1 

low.slope 0.49 0.48 0.55 1 
med.slope 1.05 1.06 1.02 1 
high.slope 0.97 0.97 0.96 1 

Obs-intended-fc slope 0.99 1 0.98 1 
Obs-(low)int-fc slope 0.48 0.47 0.53 1 

low AUC 0.44 0.45 0.50 1 
med AUC 0.87 0.87 0.86 1 
high AUC 0.85 0.86 0.83 1 

weighted avg AUC 0.55 0.56 0.59 1 
*A brief description of each metric is provided under the Methods section of this 
chapter. 
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One notable performance enhancement of GCRMA-NN over GCRMA-L and GCRMA-R 

is a 3-4% increase in the weighted average area under the curve (AUC) (Table 3.2).  

This is a receiver operator characteristics (ROC) based metric, in which the absolute 

log-ratios for the expression summaries, for every comparison of any two pairs of 

the 14 arrays (92 comparisons), are sorted.  After that, the number of true and false 

positives is found, and then the number of true positives at 100 false positives is 

determined for each pair of arrays.  Finally, the resulting values are averaged over 

the three concentration groups (low, med and high), weighted by the number of 

probesets in each group and a score is recorded.  Note that a perfect algorithm will 

have a score of 1, where all the true positives are captured before any false positive 

is recorded. 

Examining Table 3.2 shows that the increase comes mainly from the AUC for 

low intensity targets (low AUC entry in Table 3.2).  The low intensity genes make up 

most of the genes in a typical Affymetrix experiment [110] and are also the hardest 

to detect.  Algorithms that perform inference generally can detect large changes 

involving highly expressed genes.  It is much more difficult to detect changes in the 

more frequently observed genes that produce low intensities on the array.  GCRMA-

NN enhanced the detection of low intensity targets, while maintaining similar values 

for the medium and high intensity ones.  The enhancement in detecting low 

intensity targets is also evident in the form of an increase in the low detection slope 

(low.slope entry in Table 3.2).  
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In the crucial category of low intensity genes, we argue that our algorithm 

outperforms most of the algorithms submitted to Affycomp, including GCRMA-R and 

GCRMA-L.  The Affycomp webpage currently contains data for 88 algorithms for 

analyzing Affymetrix microarrays.  For each of these algorithms, Affycomp defines 

accuracy as the slope obtained from regressing expression values on nominal 

concentration.  An algorithm with a perfect accuracy would have a slope of 1, 

reflecting a perfect correspondence between nucleotide concentration and signal.  

Affycomp defines precision as the 99.9% percentile of the log fold changes of null 

(true negative) probesets across arrays.  A perfect algorithm would have a precision 

of 0 reflecting a fold change of 1 (i.e. no change).  Figure 3.4 is a plot of precision vs. 

accuracy for the Latin Square dataset for the 88 algorithms submitted to the 

Affycomp webpage.  In Figure 3.4A, we see that when looking at overall accuracy vs. 

precision, the GCRMA-NN algorithm (blue dot) performs about as well as GCRMA-R 

(green dot) and GCRMA-L (red dot).  However, for the crucial low intensity genes, 

for which inference is the most difficult, GCRMA-NN provides a better accuracy with 

no loss of precision (Fig. 3.4B). 
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FIGURE 3.4  Accuracy and precision of GCRMA-R, GCRMA-L and GCRMA-NN. 
A) Accuracy and precision of GCRMA-R (green dot), GCRMA-L (red dot) and GCRMA-
NN (blue dot) compared to other preprocessing algorithms (black dots) submitted 
to Affycomp [118], information retrieved from Affycomp on November, 14th 2007.  
B) As A but for low expressed genes (< 4 pM).  A perfect score is shown as an (×) on 
both panels.  See Results section of this chapter for explanation. 
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Since the results of Affycomp suggest an improvement for the low intensity, 

hard to detect spikeins, we reasoned that inference performed with GCRMA-NN 

would be more successful than inference with GCRMA-R or GCRMA-L.  We therefore 

applied GCRMA-NN, GCRMA-R and GCRMA-L to the U133 Latin square dataset.  We 

considered only the 14 2X comparisons, in which the ratio of each spikein, between 

any two consecutive pair of arrays, is 2.  Then we used the cyber t statistic [120] to 

generate a list of P values for the null hypothesis that the mean signal intensity in 

each comparison is the same.  The lists were ordered, and for each of the 14 

comparisons we generated an ROC curve.  Figure 3.5 shows the average of these 14 

ROC curves.  For each ROC curve, we determined the number of true positives 

captured at an arbitrary cutoff of four false positives (vertical dashed line in Fig. 

3.5A).  The result of this analysis is summarized in Figure 3.5B.  We see that GCRMA-

NN outperforms GCRMA-R and GCRMA-L with a small but significant improvement.  

One-sided Wilcoxon and t tests reject the null hypothesis that GCRMA-NN is the 

same as GCRMA-R and GCRMA-L with all tests P < 0.005.  These are consistent with 

the results we would have expected based on the Affycomp comparison (Table 3.2). 
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FIGURE 3.5  Performance of GCRMA-R, GCRMA-L and GCRMA-NN on the Latin 
square dataset. 
A) ROC curves showing the average true positives and false positives across the 14 
2X Latin square experiments following application of the cyber t test.  B) The 
number of true positives captured for all the 14 2X Latin square experiments at a 
cutoff value of four false positives (dashed vertical line in panel A).  The differences 
in panel B between GCRMA-R, GCRMA-L and GCRMA-NN are statistically significant 
(P < 0.005) using paired one-sided Wilcoxon and t tests. 
 
 
 
3.4.4 Application of the dinucleotide affinity model to the golden spikein 

dataset 

In order to ensure that our data were valid for more than one control data 

set, we next applied GCRMA-R, GCRMA-L and GCRMA-NN to the “golden spikein 

dataset” [95], which is not included in Affycomp.  Figure 4.6 shows a ROC graph for 

the differentially expressed genes between the S and the C “golden spike” samples 

(see Methods section of this chapter) detected by GCRMA-R, GCRMA-L and GCRMA-
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NN.  As in the Latin Square data, the graph shows that GCRMA-NN is capable of 

capturing more true positives at lower false positive rate than both GCRMA-R and 

GCRMA-L.  This supports our assertion that an improved background correction 

algorithm can have a noticeable effect on downstream analyses. 

 
 
 

 
 
FIGURE 3.6  Performance of GCRMA-R, GCRMA-L and GCRMA-NN on the Golden 
spikein dataset. 
ROC curves for the Golden spikein experiments C versus S after application of the 
cyber t test. 
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3.5 Discussion 

Background estimation and correction are important steps in analyzing the 

data generated by GeneChip arrays.  Improving algorithms for these steps increases 

the amount of true “signal” that we can detect from microarrays.  Understanding 

background noise on GeneChip arrays, especially the part contributed by NSB signal, 

requires a deeper understanding of the behavior of on-chip hybridization.  Given 

that we lack a detailed physical model of on-chip hybridization derived from first 

principles, an empirical model that estimates the specific and non-specific signal 

based on the data on the array and probe sequence is a useful tool for 

understanding the on-chip hybridization process. 

Nucleic acid hybridization in solution is well approximated by the nearest 

neighbor model [121], which describes duplex formation as a function of the two 

adjacent nucleotides and their stacking orientation.  This approach was used by 

Zhang et al. [69] to model the on-chip specific and nonspecific hybridization using 

the free energy formation for the adjacent nucleotides.  Zhang et al. concluded that 

the on-chip hybridization parameters are different than the solution ones.  Using a 

different approach to background correction, Naef and Magnasco [77] used single 

nucleotides to assign an overall affinity score for a probe based on its sequence 

away from the energy contributions of the dinucleotide pairs.  This approach was 

used to perform background correction for the GCMRA algorithm [68] while the 

Zhang et al. approach was used to create the algorithm PerfectMatch [69].  

PerfectMatch estimates the signal and the background at the same step while 
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GCRMA estimates background noise first then proceed to signal estimation.  

PerfectMatch is, therefore, much more computationally demanding than GCRMA as 

the parameter space searched by PerfectMatch is vast and is sampled with Monte 

Carlo methods.  Direct comparison between GCRMA and PerfectMatch has proven 

controversial.  Such a comparison is beyond the scope of this chapter, and can be 

found elsewhere [110, 112, 122]. 

In this chapter we combine some elements of GCRMA and PerfectMatch.  We 

replace the single nucleotide model of Naef and Magnasco with a model in which the 

affinity of each probe is a function of its dinucleotide composition.  Because we use 

GCRMA’s approach of separating estimates of background and signal, we can use a 

linear model and avoid the Monte Carlo simulation approach of PerfectMatch [69].  

Our approach is therefore both computationally more efficient and guarantees the 

best fit to the data.  This approach enables us to examine the contribution of 

different dinucleotides at different positions to the raw probe signal (Fig. 3.3), 

rather than assigning one weight function to all the dinucleotides, as is done with 

PerfectMatch [69].  This allows our model to capture several important features of 

the background data such as the effect of the first versus the second nucleotide on 

probe affinity (e.g. CA vs. CG), and the effect of the stacking orientation (AC vs. CA).  

In general, we find that the dinucleotide approach has more power than the single 

nucleotide approach over a wide range of datasets (Table 3.1). 

The mechanism that determines why particular dinucleotides affect probe 

affinities the way they do is, in some cases, unclear.  However, we observe that the 
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NN model bears some similarities to the models of both Naef and Magnasco and 

Zhang et al.  All three models emphasize the importance of the probe middle region; 

this is probably due to the surface attachment, as well as to the relative instability of 

the free end in RNA-DNA hybridization.  The effect of the stacking orientation is in 

agreement with the findings of Zhang et al. [69].  The AN versus CN (where N refers 

to any of the four nucleotides: A, C, G, T; AN for example means AA, AC, AG and AT) 

asymmetry (Fig. 3.3A and 3.3B) is in agreement with Naef and Magnasco [77].  

When comparing these affinity curves to the original Naef and Magnasco result, it is 

important to recognize that the NN model considers the affinity of dinucleotides 

rather than single nucleotides.  Therefore, we do not necessarily expect to see the 

same asymmetry within CN or AN, i.e. there will be no asymmetry between CA and 

CC (Fig. 3.3B), or between AA and AC (Fig. 3.3A).  The NN model, however, does 

show unexpected behavior for the GN and TN dinucleotides.  While both G and T 

show slight asymmetry in the Naef and Magnasco model, the effect of these two 

nucleotides is magnified in the NN model.  GN contributes positively to the signal 

but not when the second nucleotide is C (Fig. 3.3C).  TN contributes negatively but 

not when the second nucleotide is A (Fig. 3.3D).  This trend is partially explained by 

the fact that T forms fewer hydrogen bonds than G, therefore contributing 

negatively, while the G has stronger binding, thus contributing positively.  This 

trend is not consistent, and appears to be dependent on the adjacent nucleotide.  It 

could also be due to the biotin label present on the RNA target sequence. 
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When applied to two control datasets, GCRMA-NN showed improved 

performance (Figs. 3.5 and 3.6) especially on low intensity targets (Table 3.2; Fig. 

3.4).  We argue that this is due to better background correction for these targets; a 

higher percentage of low intensity signal will be made up of background, so it is 

therefore not surprising that better background correction will make more of a 

difference on low intensity targets.  The detection of low intensity targets 

represents the most significant challenge to microarray analysis algorithms, which 

makes any enhancement in the detection of these targets significant. 

In conclusion, incorporating dinucleotide information into a previously 

described probe affinity model increases the fit of the model by 5-10%.  The 

dinucleotide affinities highlight the importance of the stacking orientation on probe 

behavior.  This is in agreement with the physical models that describe hybridization 

binding affinities.  The results presented here show that the affinity of any single 

nucleotide is affected by its neighbor, in addition to its location along the probe.  

Considering the second nucleotide offers more insights into the on-chip behavior of 

the four bases in relation to each other.  Such insights are important to develop a 

better understanding of the on-chip hybridization process and therefore better 

analysis procedures.  The model described here enhances the performance of an 

existing widely-used preprocessing algorithm for GeneChip data.  We expect the 

same model to enhance the performance of preprocessing algorithm for other types 

of arrays, in particular those used for SNP analysis. 



 

 

CHAPTER 4: APPLICATION OF EQUILIBRIUM MODELS OF SOLUTION 
HYBRIDIZATION TO MICROARRAY DESIGN AND ANALYSIS

 
 
4.1 Abstract 

Mismatches in sequence between target and probe on microarrays affect the 

behavior and the quality of the data obtained from such probes.  Although long 

oligonucleotide microarrays are in widespread use, there are a limited number of 

controlled studies of probe response to mismatched targets on these arrays, and the 

properties of mismatched duplexes are not well understood, as they are for 25-mer 

based platforms.  The probe percent bound calculated using multi-state equilibrium 

models of solution hybridization is shown here to be useful in understanding the 

hybridization behavior of microarray probes up to 50 nucleotides in length. 

We present a comprehensive analysis of the effects of single, double and 

triple central mismatches on the behavior of 50-mer probes at eight different target 

concentrations.  The results show that differentiation between the perfect match 

signal and the mismatch signals is possible at medium (100 pM to 200 pM) target 

concentrations, and that this behavior is predictable using solution hybridization 

modeling methods. Both the models and the array platform are sensitive to the 

effects of single, double and triple central mismatches on hybridization of 50-mer 

probes at multiple target concentrations.  We discuss the impact of these results on 

microarray design, optimization and analysis. 
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Our results highlight the importance of incorporating biophysical factors in 

both the design and the analysis of microarrays.  We suggest use of the probe 

‘percent bound’ predicted by equilibrium models of hybridization as a factor in 

predicting and assessing the behavior of long oligonucleotide probes. 

4.2 Introduction 

DNA microarrays [1] have revolutionized every area in biology [2].  

Microarrays allow thousands of genes to be assayed at once, offering global views of 

biological processes by providing a systematic way to survey gene expression [105], 

DNA sequence variation [2], alternative splicing [123], and to rapidly perform 

cancer classification [124], genome annotation [125] and functional genomics 

assays [126].  The biology research community, both commercial and nonprofit, has 

invested heavily in microarray technology despite ongoing challenges with data 

quality and data interpretation. 

A microarray chip is a surface, which provides support to tethered nucleic 

acids called probes [3].  These probes are designed to interact with a mixture of 

labeled nucleic acids called targets [3].  Chemically synthesized oligonucleotide 

probes vary from short (20-30mer) probes to long (50-70mer) probes [4].  The 

origin of the targets depends on the type of the experiment.  For example, targets for 

gene expression arrays are derived from total mRNA extracted from the cell under 

specific conditions.  For SNP (single nucleotide polymorphism) arrays, targets are 

derived from genomic DNA.  When a labeled target binds to its complementary 

probe, a stable interaction results and a signal is detected.  This signal is interpreted, 
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for example, as reflecting transcript abundance, presence and/or absence in gene 

expression experiments [5-6], or used for genotype calling in genetic analysis and 

SNP experiments [127]. 

It has been shown that probes between 50-70 nucleotides in length can 

deliver higher sensitivity than shorter probes [21], due to their higher target 

affinities, and that longer probe lengths allow for the design of microarrays with 

fewer, but more selective probes [7, 128].  As a result, the use of long oligo 

microarrays is widespread, but model development for analysis of hybridization 

signal from these arrays has received relatively little attention.  Most of the available 

modeling, optimization and analysis studies have been done on short 

oligonucleotide microarrays [66, 129-130].  Our long-term goal is to address the 

deficiencies in modeling of long-oligo microarrays, and we report a significant step 

toward that goal below. 

Like many applications in molecular biology, microarrays rely on stable 

duplex formation between an oligonucleotide probe and a potential target in a 

genomic DNA or mRNA pool.  Accurate interpretation of the signal relies on the 

specificity of hybridization, the discrimination that can be achieved between 

completely complementary hybrids and those with some degree of mismatch [131].  

While the biophysics of short oligonucleotide binding in solution is well understood 

[48], the binding properties of longer, tethered oligonucleotides are less well 

characterized [48].  Understanding the effects of mismatches at various positions in 

long probes (50-70 nucleotides) on the extent of probe-target hybridization is 
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critical for any microarray experiments, because microarray results are often 

interpreted as if they are quantitative, even when all of the variables that may affect 

hybridization are not well understood. 

The hybridization interference that results from the presence of mismatches 

between probe and target represents a data analysis challenge and a potential 

opportunity at the same time.  Mismatches may degrade the sensitivity and the 

specificity of the probe by reducing the affinity of the probe for its intended target, 

or, if present in sufficient number, mismatches may lead to false positive results 

through cross hybridization with unintended targets [132].  On the other hand, the 

properties of mismatched oligonucleotides are important for applications including 

interspecies microarray hybridization [133], detection of SNPs across the genome, 

and background noise estimation [105]. 

The effect of a small number of mismatches on the hybridization of short 

oligonucleotides (20-30 nucleotides) has been well investigated [69, 85, 134-136], 

and they are well suited to discriminating small sequence differences.  However, the 

limit of detection of mismatches in the hybridization of long oligonucleotides, 50-

mers particularly, has not been comprehensively investigated.  Instead, most 

investigations have focused on determining the minimum number of base pairs 

required for detection of significant signal contributions from non-specific 

hybridization [132, 137].  Published studies of long oligonucleotide probes up to this 

point use a very limited number of sequences, only deal with more than three 

mismatches in a long probe, or only investigate the outcome of a mismatch between 
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probe and target at a single target concentration [129, 132].  This study extends our 

understanding of perfect match (PM) vs. mismatch (MM) binding behavior to longer 

oligo lengths. 

A common feature of the available studies on both short and long 

oligonucleotide probes is the assumption that probe-target hybridization follows a 

simple nearest-neighbor two-state model.  It has been shown that microarray 

hybridization is more complicated and that factors such as probe folding, target 

folding, probe-probe interaction, target-target interactions and competition from 

other similar sequence strands limit the applicability of the traditional two-state 

model to microarray hybridization modeling [76, 90, 138].  Multi-state models 

where all of the above mentioned factors are taken into consideration are suggested 

for a more accurate modeling of nucleic acid hybridization [48]. 

Available thermodynamic modeling studies of long oligos have previously 

been aimed at comparing solution hybridization free energy (nearest neighbor) 

parameters and microarray hybridization free energy parameters [80, 139-140].  

Such studies provide valuable information about the molecular interactions that 

take place on different microarray platforms.  These studies provide a proof of 

concept for using solution hybridization parameters as a valid approximation for 

microarray hybridization, enabling the use of solution hybridization parameters in 

predicting the behavior of microarray probes. 

Application of nearest-neighbor based models of solution hybridization to 

predict the behavior of long oligonucleotide probes has been limited by the fact that 
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the model is thought to be most accurate for probes with length ≤ 40 

oligonucleotides [141].  Recently, several groups have shown that solution 

hybridization parameters based on the nearest-neighbor model can be applied to 

short oligonucleotides [139-140].  Hooyberghs et al. [80] showed that the nearest-

neighbor parameters of solution hybridization and microarray hybridization are 

well correlated (r= 0.839) for probes of 30 oligonucleotides in length.  To our 

knowledge, application of multi-state solution hybridization models to predict the 

behavior of oligonucleotide probes, above the 40nt length at which accuracy of 

solution models is predicted to decline, has not been previously demonstrated.  

Extension of these models to long-oligonucleotide platforms is the focus of our 

present research. 

In this study, we designed and modeled the binding behavior of a set of ten 

50-mer probes, each of which has six counterparts with different introduced 

mismatches.  We subsequently refer to the base set of 10 probes as perfect match 

(PM) probes, and their permuted counterparts as mismatch (MM) probes.  The full 

set of 70 probes was spotted on a standard epoxysilane-coated glass slide substrate, 

and the resulting arrays hybridized to a mixture of well-defined targets.  By creating 

mismatches as permutations of the surface-bound probes rather than permutations 

in the target, we are able to unambiguously separate and directly compare the signal 

from a perfectly matched duplex and an analogous duplex with one, two or three 

central mismatches.  This experiment confirms the accuracy of current 

computational models of multi-state solution hybridization for the microarray 
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surface context, with the caveat that the experimental system is still somewhat 

simplified relative to the complexity of a typical microarray experiment.  Below, we 

extract the signal and then model the effects of central single, double and triple 

mismatches on the hybridization signal intensity detected at 50-mer probes under 

different target concentrations.  Finally, we propose a simple model to predict signal 

intensity based on computational models of solution hybridization.  This model uses 

the probe percent bound calculated based on a multi-state equilibrium model of 

solution hybridization, as implemented in the OMP (Oligonucleotide Modeling 

Platform) software [142], as a predictor. 

4.3 Methods 

4.3.1 Probe design and selection 

Perfect match probes (PM) were designed using a two-stage process of rapid 

sequence screening followed by biophysical modeling (Fig. 4.1).  Briefly, the design 

process used Yoda [27] as the primary selection tool.  In order to produce probes 

having a natural sequence composition, probes were generated based on known 

gene sequences from the genome of Brucella suis.  Yoda-generated probes were then 

screened for secondary structure formation potential using the program hybrid-ss-

min from the UNAFold package [143].  Finally, hybridization behavior of probes that 

passed this step was simulated using OMP against a 50-mer perfect match target. 
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FIGURE 4.1  Probe design schema. 

2. Probe 
Design 

Yoda design tool 
Maximum consecutive: 15 

Maximum percent identity: 75% 
Probe Tm range: 5 

Probe %GC range: 12 
Probe length: 50 

hybrid-ss-min 
Folding Temperature: 60 °C 
Na Concentration: 0.6 mol/L 

1. Sequences 
Brucella suis 

NC_004310 (chromosome I) 
NC_004311 (chromosome II) 

OMP modeling 
Assay Temperature: 60 °C 

Na Concentration: 0.6 mol/L 
[probe]=1000 pM 

[target]=6.25, 12.5, 25, 
50,100,200,1000,5000 pM 

MySql 
Pick n probes where: 

Max. ΔG with intended Target 
Min. ΔG with other Targets 

Probe ΔGss > 0 
Uniform Tm 

Max. percent bound to Target 
Targets do not form homodimer 
Targets do not form heterodimer 

3. Hybridization 
Simulation 

4. Pick Probes 
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Simulation results for all probe candidates were stored in a MySQL database and the 

most optimal ten probes were selected using an ad hoc multi-criterion sort.  Six 

mismatch (MM) counterparts were designated for each of the ten probes.  The first 

MM has a single mismatch at position 24, the second MM has a single MM at position 

25 and the third MM has a single MM at position 26.  The first double-mismatch 

probe has two permutations at positions 24 and 25, the second at positions 25 and 

26.  The last MM probe has triple-mismatches at positions 24, 25 and 26.  All 

permutations were generated using a local Perl script.  Six probes from Arabidopsis 

thaliana genome were designed using the same approach, to serve as negative 

controls. 

4.3.2 Fabrication of microarray slide 

All probes were synthesized with amino-C6 linkers at the 5` end by Operon 

Biotechnologies (Huntsville, AL).  Microarray slides were manufactured by ArrayIt 

(Sunnyvale, CA).  Probe purity and concentration were verified 

spectrophotometrically and with PAGE.  Each probe was spotted in six replicate 

spots on each slide.  After preliminary hybridization tests with multiple spotting 

buffers, a buffer containing 10 µM probe concentration was chosen as the optimal 

spotting concentration for the current experiment. 

4.3.3 Preparation of target mixture 

Perfect match (PM) targets (50-mer length) for the ten original PM probes were 

synthesized and Cy3 labeled at the 5` end by Operon Biotechnologies (Huntsville, 

AL).  All targets were HPLC purified to ensure length and labeling uniformity and 
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verified spectrophotometrically and with PAGE for purity and concentration.  Target 

Oligos were re-suspended to 100 µM concentration in 2X SSC.  A target master 

mixture was made by adding all ten targets into a single solution.  This solution was 

aliquoted and then diluted to a series of concentrations using a target buffer 

solution (0.4 mg/ml salmon sperm, 4X SSC, 0.5% SDS) which had been heated to 95 

°C for 5 minutes, and then chilled on ice for 10 minutes before the addition of the 

oligos.  The following target concentrations were used: 5000 pM, 1000 pM, 200 pM, 

100 pM, 50 pM, 25 pM, 12.5 pM and 6.25 pM. 

4.3.4 Array hybridization 

The slides (two technical replicates for each concentration) were placed in a HS 

4800 Pro Hybridization Station (Tecan, Mannedorf, Switzerland), which had been 

preheated to 55 °C.  All wash solutions were also preheated by the hybridization 

station.  The slides were then wetted by a brief rinse with a Hyb Wash solution (0.5X 

SSC, 0.005% SDS) so that the slide was not dry when it receives the blocking buffer.  

The slides were blocked with BlockIt solution (ArrayIt, Sunnyvale, CA) for 30 

minutes.  The slides were then washed again for 2 minutes with the Hyb Wash 

solution.  60 µL of target solution was then added and the slides were hybridized for 

18 hours at 55 °C.  Slides were subject to mechanical agitation at medium intensity 

(1.1 minutes agitation with 3.5 minutes break) during hybridization.  Then the 

slides were washed three times in the Hyb Wash solution for 30 seconds, then 

washed for a minute with the Hyb Wash solution and cooled to 50 °C.  The slides 

were then washed with TE for 30 seconds and cooled to 45 °C, washed with 0.5X TE 
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for 30 seconds and cooled to 40 °C, washed with 5% alcohol (Sigma Aldrich, St. 

Louis, MO) for 1 minute and cooled to 30 °C, and finally washed twice with ddH2O 

for 40 seconds and cooled to 25 °C.  After these washes the slide was dried under 

nitrogen for 3 minutes. 

4.3.5 Image acquisition and data analysis 

Slides were scanned with the 532nm laser, a 575nm filter, 10μm resolution, an over 

sampling factor of 2 and a 150 PMT gain in the LS Reloaded Scanner (Tecan, 

Mannedorf, Switzerland).  Images were saved as Tagged Image File Format (tif) and 

then analyzed using SPOT (CSIRO, Sydney, Australia, http://www.hca-

vision.com/product_spot.html), with the segmentation option set to ‘seeded region 

growing’.  The quality of each array and its spots were determined according to He 

et al. [132].  The raw intensities were loaded into the LIMMA [144] package (version 

2.12.0) of Bioconductor [117] using the read.maimages function.  LIMMA was also 

used for between-array (quantile) normalization for each pair of technical 

replicates.  The analysis presented in this work was done using R (version 2.6.1) 

[145]. 

4.3.6 OMP hybridization simulation 

Hybridization simulations for probe design and signal intensity prediction were 

done using OMP DE (version 1.1.0.2089) running on Red Hat Enterprise Linux 4.  In 

this case, the complete system of 76 probes (including negative controls) and ten 

50-mer targets could be simulated simultaneously, as the sequence lengths of the 

system was manageable by OMP in a reasonable period of time.  For each probe, the 
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following data were collected from the OMP output: ∆G, ∆H, ∆S, Tm, basepair count 

and probe percent bound (PPB).  All the parameters used in the hybridization 

simulations are shown explicitly in Figure 4.1.  Target concentrations for signal 

prediction are listed in section 4.3.3 above. 

4.3.7 Langmuir isotherm fitting 

The Langmuir isotherm is a chemical adsorption model [146] that has been applied 

successfully to short oligonucleotide microarrays [62, 66-67].  The model is simply a 

hyperbolic response function in the form of: 

I j = A
cj

K + cj

+ bg     Eq. 4.1 

where Ij is the signal intensity from the probe at target concentration j.  A, K and bg 

are the model fitting parameters, c is the target jth concentration in pM.  This model 

has three free parameters (A, K and bg) fitted to eight different concentrations 

(5000 pM, 1000 pM, 200 pM, 100 pM, 50 pM, 25 pM, 12.5 pM and 6.25 pM).  The 

fitting parameter K is the probe affinity constant, A is the saturation intensity 

(assuming no cross-hybridization, i.e. bg = 0) and bg is a background component 

[62, 71, 73, 146].  The model was fitted using the nls function of R (version 2.6.1) 

[145]. 

4.3.8 Predicting signal intensity using probe percent bound 

We aim to explain the response of each probe in the experiment according to the 

physical chemistry of hybridization.  Based on OMP simulations, we developed a 

simple linear model with only two free parameters to predict the signal intensity.  
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Our model makes use of probe percent bound (PPB) as a predictor of the signal 

generated from each probe, following the equation below: 

I j = B0 + B1 %Bound j + ε j     Eq. 4.2 

where Ij is the signal intensity from the probe at target concentration j.  %Bound is 

the PPB of the probe at target concentration j.  B0 and B1 are free parameters and εj 

is an error term.  OMP percent binding predictions were computed in the presence 

of all targets (competitive hybridization), at eight different target concentrations: 

5000 pM, 1000 pM, 200 pM, 100 pM, 50 pM, 25 pM, 12.5 pM and 6.25 pM.  This 

model has two free parameters (B0 and B1) fitted to eight PPB values.  The model 

was fitted using the lm function of R (version 2.6.1) [145]. 

4.3.9 The U133 Latin square dataset 

This dataset is composed of 14 experiments (three technical replicates for each 

experiment) in which 42 transcripts are spiked at a concentration range of 0.125-

512 pM following a Latin square design.  The dataset files were downloaded from 

Affymetrix web site [94]. 

4.3.10 Code and data 

The code and data used in this chapter are available as an R package and can be 

downloaded from [147].  The complete set of figures for this study can be 

reproduced using this package. 
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4.4 Results 

4.4.1 Effect of central mismatches on signal intensity 

It is well known that mismatches in the central part of a short (25-35mer) probe 

have the most destabilizing effect on the probe-target duplex.  This effect has not 

been examined thoroughly for longer oligonucleotides, and the concentration 

dependence of the effect has not been studied.  Although the presence of one or a 

few mismatches in a long probe will not abolish hybridization, it is likely to reduce 

hybridization efficiency [148].  We seek to understand how much efficiency 

reduction such mismatches will introduce in a 50-mer probe at different target 

concentrations.  In Figure 4.2, we examine the effect of single-, double- and triple-

MM on the hybridization signal intensity at eight different target concentrations. 
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FIGURE 4.2  PM and MM probes responses to eight target concentrations. 
Hybridization signal intensities for PM probe 5005 (black) and its six MM 
counterparts: 5035 (green), 5036 (blue), 5037 (cyan), 5038 (red), 5039 (pink), 
5040 (gray) under the eight target concentrations used in this study.  The type, 
identity and location of the mismatch are indicated beside the symbol of each probe: 
1MM: single-MM, 2MM: double-MM, and 3MM: triple-MM.  Dotted line shows the 
average background signal across eight concentrations. 
 
 
 
Figure 4.2 shows an example of the differences in signal intensity between PM, 

single-, double- and triple-MM for probe 5005 and its six mismatch probes.  

Noticeably, even three mismatches in the middle of the probe did not abolish the 

hybridization signal.  Figure 4.2 also shows a correlation between the target 
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concentration and the effect of mismatches.  At the lowest target concentration 

examined (6.25 pM), no visible differences can be seen.  The three categories of MMs 

have approximately the same signal intensity as the PM probe but they are 

marginally above the background signal.  At medium target concentrations (12.5-

200 pM), the differential effect of mismatches is clearly noticeable.  The signal 

intensity is reduced with increasing number of mismatches (PM > single-MM > 

double-MM > triple-MM).  At higher target concentrations (1000 pM and 5000 pM) 

the signal intensities obtained from each MM probe are close to that of the PM 

probe, and no visible effect of the presence of mismatch on the generated signal 

intensity can be seen.  It should be noted that the above analysis was also conducted 

using raw intensities (no normalization) and similar trends were observed for all 

probe sets. 

Based on the analysis shown in Figure 4.2, we wanted to test if the differences in the 

signal obtained from the PM and the three different categories of mismatches are 

statistically significant.  Using one-sided t-test, we tested the null hypothesis that the 

mean signal intensity of each PM probe is lower than the mean signal intensity of its: 

(A) single-MM counterparts (each PM probe has three single-MM probes, which 

results in 10 x 3 tests), (B) double-MM counterparts (each PM probe has two 

double-MM probes, which results in 10 x 2 tests), (C) triple-MM counterpart (each 

PM probe has one triple-MM probe, which results in 10 x 1 tests).  The result of this 

analysis, for all the probes, is presented in Figure 4.3 and indicates that the observed 

differences are significant. 
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FIGURE 4.3  Single-MM, double-MM and triple-MM signal can be differentiated from 
the PM signal. 
Box plots for the p-values of testing the null hypothesis (A) PM signal intensity < 
single-MM signal intensity, (B) PM signal intensity < double-MM signal intensity and 
(C) PM signal intensity < triple-MM signal intensity for all probes under the eight 
target concentrations used in this study.  Dotted line indicates P = 0.05 level, dashed 
line indicates P = 0.05/(30 or 20 or10) level (Bonferroni correction using the 
number of hypothesis tests conducted at each concentration; 30 comparisons for 
single-MM probes or 20 comparisons for double-MM probes or 10 comparisons for 
triple-MM probes) and solid line indicates P = 0.05/(240 or160 or 80) level 
(Bonferroni correction using the sum of all the conducted tests; 8 concentrations x 
30 comparisons for single-MM probes or 8 concentrations x 20 comparisons for 
double-MM probes or 8 concentrations x 10 comparisons for triple-MM probes). All 
the tests were done using a one-sided t-test.  A Wilcoxon signed-rank test returned 
similar results. 
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In all cases the more mismatches the greater the discrimination, as expected.  And 

the results were most clearly seen where there was sufficient but not saturating 

signal.  The result also shows a dependency on the target concentration, in 

particular, target concentrations in the range of 100-200 pM yielded the most 

significant results.  Figure 4.3A shows box plots of p-values for the difference 

between PM and single-MM probes.  Although Figure 4.2 shows no visible 

differences in the signal intensity between PM and single-MMs at the eight target 

concentrations, we were able to confidently differentiate between PM signal and 

single-MM signal at target concentrations of 100 and 200 pM.  Figures 4.3B and 4.3C 

show box plots of p-values for the difference between PM and double- and triple-

MM, respectively.  Most of the observed differences in Figure 4.2 are statistically 

significant.  We were able to differentiate between PM signal and double- and triple-

MM signals at all the tested concentrations except at extremely low target 

concentrations 6.25, 12.5 and 50 pM (PM and double-MM) and 6.25 and 12.5 pM 

(PM and triple-MM). 

Similar results were obtained when comparing single-MM vs. double-MM, single-

MM vs. triple-MM and double-MM vs. triple-MM.  Target concentrations of 100 and 

200 pM showed the most significant difference, while 6.25 and 12.5 pM showed no 

statistically significant difference in mean signal intensity.  Comparing the mean 

signal intensity obtained from single-MM at three different positions (24, 25 and 26) 

did not show any significant difference.  Signal intensity obtained from double-MM 
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at two different positions (24 + 25 and 25 + 26) did not also show any significant 

difference. 

Surprisingly, given the results of prior studies in 25-mers, which showed strong 

sequence dependence of binding affinity [62, 70, 77-78], there seem to be no 

dependency on the identity of the mismatch.  For all the 70 probes studied, we 

grouped probes based on the identity of the mismatch and compared their mean 

signal intensity.  Changing A→T, T→A, G→C or C→G did not affect the generated 

signal significantly.  Similarly, no differences were detected between double-MM 

regarding the identity of the mismatch. 

4.4.2 50-mer probe signal intensities show nonlinear response over target 
concentrations 

To study the hybridization characteristics of 50-mer probes, we fitted the data to 

equation 4.1.  Figure 4.4 shows, as an example, the responses of probe 5003 and its 

six MM probes to eight different target concentrations.  The responses are typical of 

the Langmuir isotherm model and show that the model captures the physical 

chemistry of hybridization with R2 ≥ 0.97.  Figure 4.4 also shows a clear distinction 

between PM, single-, double- and triple-MM probes.  The model can predict the 

response of each probe type at different target concentration with good 

discrimination between PM, single-, double- and triple-MM probes.  This trend was 

observed for all the probes investigated in this study. 
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FIGURE 4.4  Signal intensity versus target concentration. 
Signal intensity versus target concentration for PM probe 5003 and its six MM 
counterparts.  Points represent the observed PM intensities and lines represent 
Langmuir Fit (equation 4.1) for PM (solid), single-MM (dashed), double-MM 
(dotted) and triple-MM (dot-dashed) probes.  The observed MM intensities are 
omitted for clarity. 
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We did not observe any significant differences between the three types of single-MM 

probes; they have similar responses and cannot be differentiated from each other 

but can be differentiated from the other classes of probes in the set (Fig. 4.4).  That 

is, single-MM probes appear to respond to target concentrations with very similar 

curves despite the fact that they have different mismatches at different locations.  

The two types of double-MM probes also show similar response curves and cannot 

be differentiated from each other but can be differentiated from other classes of 

probes in the set (Fig. 4.4).  Finally, triple-MM probes have distinctive response 

curves, which can be differentiated from the PM, single- and double-MM probes.  

This trend is seen for all of the ten sets of probes under investigation. 

Figure 4.4 also shows the chemical saturation of the probes.  All the probes (PM and 

MM) saturate between 1000 and 5000 pM target concentration, with different final 

saturation intensities.  As expected, the PM probe has the highest saturation 

intensity followed by the single-MM probes, then the double-MM probes and lowest 

for the triple-MM probe.  To examine the response of all probes used in this study, 

we collected the saturation intensity (the fitted parameters A + bg in equation 4.1) 

and the affinity constant (the fitted parameter K in equation 4.1) for each group of 

probes (PM, single-MM, double-MM and triple-MM), and we present them in Figure 

4.5. 
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FIGURE 4.5  Langmuir parameters comparison. 
Box plots of the fitted Langmuir parameters (A) affinity constant (the fitted 
parameter K in equation 4.1) and (B) saturation intensity (the fitted parameters A + 
bg in equation 4.1).  PM: Perfect Match, 1MM: single-MM, 2MM: double-MM, and 
3MM: triple-MM. 
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Figure 4.5A shows the affinity constant K for the four groups of probes.  The figure 

clearly indicates how the number of mismatches affects the affinity of the probe.  A 

small K value implies high probe affinity, whereas a large K value implies low probe 

affinity.  As expected, PM probes have the smallest K values, followed by the single-

MM probes with a slightly larger K values, the difference is statistically significant (P 

< 0.05, one-sided Wilcoxon test).  The double-MM probes show significantly larger K 

values than the PM probes and the single-MM probes (P < 2 X 10-3, one-sided 

Wilcoxon test).  The largest K values of all the probe groups are for the triple-MM 

probes (P < 5 X 10-4, one-sided Wilcoxon test).  As expected, PM probes have the 

highest affinity to targets followed by single-MM probes then double-MM probes, 

and the triple-MM probes show the lowest affinity for their targets.  This is 

emphasized in Figure 4.5B.  High affinity probes hybridize better with their targets 

than low affinity probes and as a result show higher saturation intensities.  PM 

probes show significantly higher saturation intensities than the MM probes (P < 3 X 

10-5, one-sided Wilcoxon test).  The saturation intensity decreases as the number of 

mismatches increase; double-MM probes (P < 4 X 10-5, one-sided Wilcoxon test) and 

triple-MM probes (P < 5 X 10-4, one-sided Wilcoxon test). 

4.4.3 Relationship between signal intensity and ∆G 

The results shown so far suggest detectable and significant differences between the 

four groups of probes.  We aim to explain and predict these differences based on the 

physical chemistry of the hybridization and link them to probe design and 

optimization processes.  We first choose free energy of probe-target duplex 
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formation (∆G) as our explanatory factor.  ∆G has been used in several studies to 

explain the differences observed among short oligonucleotide probes [66, 71].  

Moreover, ∆G can be easily calculated from probe sequence [48] and is one of the 

most frequently used parameters in microarray probe design [4]. 

We investigated the effects of mismatches on the signal intensity for each MM probe 

group compared to the perfect match group.  We examined the relative signal 

intensity of the three groups of MM probes and find it, as expected, to decrease 

when the number of mismatches increases.  The relative signal intensities across the 

eight target concentrations for single-MM probes, double-MM probes and triple-MM 

probes were: 85%, 70% and 48%, respectively.  On the other hand, relative values of 

predicted ∆G for single-MM probes, double-MM probes and triple-MM probes were: 

95%, 88% and 84%, respectively.  We calculated relative intensities at each 

concentration separately and found them to be in agreement with the values 

reported above.  Based on that, we can safely conclude that ∆G, generally, affects 

signal intensity.  The lower the predicted ∆G value, the stronger the affinity between 

the probe and its target, which results in higher probe signal.  But ∆G alone does not 

explain the variation seen at each separate concentration.  To account for that, we 

tested how much of the difference in signal intensity at each target concentration 

can be explained by ∆G using a simple linear model like the one presented in 

equation 4.2, but using ∆G instead of %Bound.  Examining the correlation between 

log signal intensity at each target concentration and predicted ∆G of duplex 

formation reveals a weak correlation between them (R2 between 0.05-0.28) at the 
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first seven concentrations.  However, we find a stronger correlation (R2 = 0.79) 

between log signal intensity and ∆G at the highest target concentration (5000 pM) 

(Fig. 4.6). 
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FIGURE 4.6  Relationship between probe-target ∆G and signal intensity. 
Relationship between probe-target free energy of duplex formation (∆G) and 
hybridization signal intensity, at a target concentration of 5000 pM.  Each dot 
represents one probe: PM probes are shown in black, single-MM probes are shown 
in red, double-MM probes are shown in green and triple-MM probes are shown in 
blue.  The regression line is shown as a solid black line. 
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This observation suggests that in principle ∆G is a good, but insensitive, estimator of 

probe signal variations.  It is important to emphasize that probes respond to 

different target concentration with a wide range of signal intensity, while probe-

target ∆G changes little over the same range of probe and target concentrations, 

since the probe concentration is the driver and is constant and relatively high.  It is 

important to mention that we are not claiming ∆G as unusable, rather we point out 

that ∆G alone is insensitive to variations in target concentration. 

4.4.4 Explaining probe signal intensity variation using predicted probe 
percent bound (PPB) 

Given the results above, ∆G alone cannot be used to explain the variations in signal 

intensity between different probes at different target concentrations.  We shift our 

focus to probe percent bound (PPB), a quantity calculated by nucleic acid modeling 

software packages such as OMP which perform multi-state equilibrium modeling of 

each nucleic acid molecule and its binding partner or partners under the prevailing 

hybridization conditions.  PPB can be defined, in microarray terms, as the 

percentage of each probe molecule that exists as a heterodimer with its target under 

the relevant hybridization conditions (see [142] for more details).  PPB, like ∆G, can 

be easily calculated for each probe under different target concentrations, but unlike 

duplex ∆G, this quantity is highly sensitive to variations in target concentration 

when the probe saturation concentration (the highest target concentration after 

which no significant increase in signal intensity can be detected from each probe) or 

the approximate probe concentration is known for each probe. 
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We developed a simple linear model (equation 4.2), which relates probe observed 

signal intensity to the probe’s PPB value.  The model was fitted to data from the four 

probe groups (PM, single-MM, double-MM and triple-MM).  Figure 4.7 shows a 

typical example of the results obtained for the PM probes.  Figure 4.7A shows PPB 

vs. probe signal intensity represented by probe 5006 and Figure 4.7B shows a 

summary of R2 of the fitted model (equation 4.2) and the p-value given the null 

hypothesis that the B1 parameter in equation 4.2 is equal to zero for all the PM 

probes. 
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FIGURE 4.7  Probe percent bound is a sensitive predictor for both PM probe 
behavior and signal intensity. 
(A) Relationship between probe signal intensity and predicted percent bound (PPB) 
at each target concentration for probe 5006 from the PM group.  Points represent 
observed intensities, and the solid line represents the fit of the model (equation 2).  
(B) Box plots for the obtained R2 and p-values of the null hypothesis that the B1 
parameter in equation 4.2 is equal to zero from all PM probes.  Dotted line indicates 
P = 0.05. 
 
 
 
Clearly, PPB captures the variations in signal intensity according to target 

concentrations.  Low target concentrations yield low PPB and therefore low signal 

intensity.  Fitting the data to the model (equation 4.2), we found a strong correlation 

between PPB and signal intensity (R2 = 0.98).  This means that the variations in 

signal intensity can be explained by PPB alone.  Fitting the model to intensity values 

from all ten PM probes (Fig. 4.7B) confirms that PPB is capable of capturing the 
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variation in signal intensity with target concentration for all of the ten PM probes.  

Moreover, the null hypothesis, that the B1 parameter in equation 4.2 is equal to zero, 

is rejected with high confidence (Fig. 4.7B).  The same analysis was performed on 

single-MM probes, double-MM probes and triple-MM probes.  The results for single-

MM probes are presented in Figure 4.8.  As in the case of PM probes, we see 

excellent correlation between PPB and signal intensity.  The analyses of double-MM 

probes and triple-MM probes produced similar results and are shown in Figure 4.9 

and Figure 4.10, respectively. 
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FIGURE 4.8  Probe percent bound is a sensitive predictor for both single-MM probe 
behavior and signal intensity. 
(A) Relationship between probe signal intensity and predicted percent bound (PPB) 
at each target concentration for probe 5037 from the single-MM group.  Points 
represent observed intensities, and the solid line represents the fit of the model 
(equation 4.2).  (B) Box plots for the obtained R2 and p-values of the null hypothesis 
that the B1 parameter in equation 4.2 is equal to zero from all single-MM probes.  
Dotted line indicates P = 0.05. 
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FIGURE 4.9  Probe percent bound is a sensitive predictor for both double-MM probe 
behavior and signal intensity. 
(A) Relationship between probe signal intensity and predicted percent bound (PPB) 
at each target concentration for probe 5056 from the double-MM group.  Points 
represent observed intensities, and the solid line represents the fit of the model 
(equation 4.2).  (B) Box plots for the obtained R2 and p-values of the null hypothesis 
that the B1 parameter in equation 4.2 is equal to zero from all double-MM probes.  
Dotted line indicates P = 0.05. 
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FIGURE 4.10  Probe percent bound is a sensitive predictor for both triple-MM probe 
behavior and signal intensity. 
(A) Relationship between probe signal intensity and predicted percent bound (PPB) 
at each target concentration for probe 5034 from the triple-MM group.  Points 
represent observed intensities, and the solid line represents the fit of the model 
(equation 4.2).  (B) Box plots for the obtained R2 and p-values of the null hypothesis 
that the B1 parameter in equation 4.2 is equal to zero from all triple-MM probes.  
Dotted line indicates P = 0.05. 
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4.5 Discussion 

Detection of low numbers of mismatches in long oligonucleotides.  Given the 

large number of possible locations and permutations for mismatches, its not feasible 

to study all types of mismatches that can be made to a 50-mer probe.  Our initial 

modeling (data not shown) and other studies [66, 129-130] have demonstrated that 

permutations at the middle of the probe will have a more significant effect on 

discrimination than permutations at the ends.  Our current study focuses on single-, 

double- and triple-MM introduced at the central region of the probe.  The identity of 

the mismatches follows Affymetrix GeneChip mismatch probe rules of homomeric 

transversions, i.e. A→T, T→A, G→C and C→G, which provides a good starting point 

for future modeling studies, and facilitates comparisons with the mismatch 

modeling and prediction results reported in the literature for Affymetrix GeneChip 

arrays. 

Most of the studies available on mismatches in long oligonucleotides use very 

limited numbers of probe-target pairs.  They deal with a relatively high and fixed 

number of mismatches (i.e. four mismatches in 50-mer probe) or measure signal 

only at a single target concentration [129, 149].  Here, we try to expand the available 

data by using a larger number of probe-target pairs, and we examine the behavior of 

different numbers of mismatches, over a range of target concentrations, in a 

consistent experimental context.  The use of a range of concentrations is of special 

importance, since not all genes or genomic segments are present at the same 

concentration in the microarray context.  Probes, especially those that have different 
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sequence composition and consequently different thermodynamic properties, also 

respond differently to different concentrations of their targets.  Based on that, rules 

for probe performance deduced under one concentration may not hold true under 

another concentration.  The results presented in Figure 4.2 and 4.3 confirm the 

importance of target concentration.  For single-MM probes, PM signal can be 

differentiated from MM signal only at higher target concentrations.   

Probes with one mismatch tend to have similar responses even if they differ 

in the identity and the position of the mismatch.  This lack of specificity is probably a 

result of the length of the probe and its ability to accommodate one base change, and 

the low cost in terms of ∆G of having one mismatch (an average of 5% less than the 

PM).  On the other hand, none of the single-MM probes showed a signal higher than 

the PM signal, analogous to the common MM > PM phenomenon seen in short 

probes used for GeneChip arrays [77].  We attribute that to two causes: the first is 

the absence of targets at extremely low concentration; the second is our method of 

target labeling, which is not sequence content dependent.  We examined the MM > 

PM phenomenon on GeneChips using the Latin square dataset and we see a 

correlation between target concentration and the severity of the MM > PM 

phenomenon.  Most of the MM > PM signal is seen under target concentrations < 2 

pM.  The second cause is likely the end-labeling protocol used in our study, which is 

not biased by sequence content. 

For the double-MM and triple-MM probe-target pairs, we also notice a 

dependency on target concentration.  Generally, we can detect double-MM and 
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triple-MM signal differences at lower concentrations than we can detect single-MM 

differences.  Medium target concentrations (100 and 200 pM) gave the most 

statistically significant results.  The identity and the exact position of the mismatch 

in double-MM probes, made no significant difference in the detected signal, as 

observed with the single-MM probes.   

The comparatively lower signal intensity with increasing number of 

mismatches is due to the destabilizing effect of mismatches and the high cost of the 

presence of double- and triple-MM in the probe, in terms of binding energy.  

Duplexes containing a double mismatch had nearest-neighbor ∆G 12% less than the 

corresponding perfect match duplex, and triple mismatches reduced ∆G by 16%.  

The signal intensity difference between perfect match and triple-MM probes is 

similar to what is reported elsewhere in the literature, for probes of the same length 

and same number of mismatches [132], and provides a confirmation of earlier 

studies done with very few example probe-target pairs. 

Predicting microarray outcomes using multi-state equilibrium models of 

solution hybridization.  The widespread use of array applications demands an in-

depth understanding of the dynamics of array hybridization.  Regardless of the 

array application, the quality of the results depends heavily on appropriate 

interpretation of the detected signal.  Understanding the factors that affect this 

signal is of importance to both the scientists who design the array and those who 

use it.  While the current experiment is greatly simplified relative to, for example, a 

genomic expression array, and factors such as internal structure and diffusion of 
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large target molecules have been eliminated, the results of this study demonstrate 

that probe percent bound (PPB), as predicted using a standard computational 

method for equilibrium modeling of systems of interacting oligonucleotides, is an 

excellent predictor of detected signal intensity on the microarray surface.  This is 

significant because the current state of the art in hybridization modeling does not 

include well-determined models of surface effects.  If predicted solution behavior of 

oligonucleotide molecules can be used as a reasonable approximation of surface 

behavior, the interpretation of microarray results becomes immediately better 

informed by our understanding of hybridization chemistry. 

It has long been assumed that solution models can be used as a proxy for 

behavior at the microarray surface under the right conditions, but there has been 

relatively little experimental confirmation of this assumption [80, 129].  The results 

presented in this study serve as a proof of principle for the validity of using PPB as a 

sensitive predictor for both probe behavior and signal interpretation.  Given the 

straightforward computational procedure for calculating PPB, it is not difficult or 

computationally expensive to consider this factor in probe design and selection.  

PPB can also be incorporated into array analysis algorithms to enhance the quality 

of the results.  The only limitation of PPB calculation is its dependence on the probe 

saturation concentration or the approximate probe concentration.  However, for 

most commercial microarray platforms, this quantity is either published, or an 

approximation can be provided by the array manufacturer or determined from 

independent optimization results reported in the literature (see [71] for an 
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example).  For other platforms, the probe saturation concentration or the 

approximate probe concentration can be deduced by a simple target concentration 

titration experiment.  The results obtained regarding PPB support previous 

research regarding the importance of incorporating biophysical factors in both the 

design and analysis of microarrays [62, 64, 66-67, 77]. 

Our primary goal in this experiment was to understand and explain the 

differences between perfect match and mismatched duplex concentrations on the 

microarray via modeling of biophysical parameters.  Therefore we also examined 

the relationship between probe-target binding energy (∆G) and signal intensity.  The 

results suggest that ∆G alone is not as capable of explaining all the observed 

differences in signal with the same accuracy as does probe percent bound (PPB).  

The correlation between ∆G and the observed signal intensity increases as the target 

concentration increases (Fig. 4.6).  This is in agreement with a recent modeling 

study presented by Li et al. [71] in which a good correlation between ∆G and signal 

intensity is shown at the highest target concentrations. This result supports the 

notation of a universal fundamental principle for on-chip hybridization, but it does 

not accurately represent the concentration dependence of hybridization chemistry 

in general. 

Fitting the Langmuir isotherm model to our data showed clearly that both 

perfectly matched and mismatched probes reach chemical saturation at high target 

concentrations (Fig. 4.4).  Again, this emphasizes the importance of target 

concentration in both experimental design and modeling, and shows that long 
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oligonucleotide probes have a physical hybridization profile similar to their shorter 

kin.  This opens the door for further improvements in the analysis of long 

oligonucleotide probes.  Given the advantages of using physical models in the 

analysis of microarray data, approaches like the one developed by Abdueva et al. 

[67] can now be applied to long oligonucleotide arrays.  This will enhance the 

quality of the results obtained from these arrays and will also help shed more light 

on the physical principles of on-chip hybridization.  Examining the fitted parameters 

of the Langmuir isotherm models for the four groups of probes (Fig. 4.5) confirms 

the similarities of their physical hybridization profile to that of shorter probes.  

Hekstra et al. [62] reported similar results when comparing the fitted parameters 

between PM and single-MM probes when the Langmuir isotherm model is applied to 

Affymetrix GeneChip probes.  This supports the concept of a fundamental common 

ground of on-chip hybridization. 

Impact on array design and analysis. Target concentration is, of course, the 

principal unknown quantity in standard array applications, and determining exact 

target concentration as an input for biophysical modeling at the design stage of a 

microarray experiment is not possible.   However, the results of this experiment are 

significant from an experimental design point of view.  During the process of probe 

design and selection, most probe design applications that consider concentration in 

their design process model relatively high target concentrations, usually 50 nM or 1 

µM [13, 21, 27].  Based on the results obtained in this experiment for the array 

platform used, it is likely that these concentrations are too high and will not give the 
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best result; instead, the entire array design will be optimized for response to high 

copy number targets.  We therefore recommend the use of either 100 or 200 pM 

concentration should be considered in biophysical modeling to support probe 

selection for array platforms like the one used in this study.  For other array 

platforms, the optimal target concentration can be determined based on simple 

optimization procedure, after taking probe saturation concentration or approximate 

probe concentration into account. 

From the position of enabling improved retrospective analysis of 

experimental results, given consistent concentration-dependent behavior, it should 

be possible to project target concentration from intensity across the experiment 

either based on a spike-in calibration mixture or from calibration functions based on 

predictions over a range of concentrations combined with multi-state solution 

hybridization modeling.  In fact, we have developed a new model for array analysis 

that shows promising results when applied to the array platform used here.  The 

model is able to predict target concentration based on probe signal intensity and 

PPB, with an average R2 between nominal and predicted target concentrations ≥ 0.8.  

We mention this result here to give the reader an understanding of the practical 

application of the work reported in this paper.  However, we are in the process of 

testing the model on other array platforms, and the complete results will appear in a 

subsequent manuscript. 

In conclusion, we have demonstrated that single mismatches in long 

oligonucleotide probe/target pairs are detectable, and that additional mismatches 
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give progressively larger decreases in intensity, but that with respect to the three 

central positions in a 50-mer, the position of those mismatches does not give a 

diagnostic intensity difference.  One of the many factors an analyst would like to 

know, in order to understand hybridization behavior on long oligonucleotide 

microarrays, is the effect of mismatches, including their presence, number, 

nucleotide identity and location.  This study explores the limit of observable 

mismatch effects in 50mers; at all but the lowest concentrations of target, single, 

double and triple mismatches between the probe and target are detectable and 

significant.  Our second significant finding is that binding predictions, in terms of 

predicted probe percent bound (PPB), derived from multi-state solution 

hybridization models, are strongly correlated with microarray signal, at least in 

cases where many variables have been controlled.  While it remains to be seen 

whether this finding will hold for more complex probe-target systems, this study 

suggests that appropriately parameterized solution models of hybridization will 

accurately represent interactions on the DNA microarray surface. 

This study presents additional experimental evidence that the use of proper 

thermodynamic modeling yields probes that have better performance in terms of 

specificity, sensitivity, noise and bias [44].  It demonstrates that even with the 

limitations of current probe design tools and array analysis algorithms, satisfactory 

results can be achieved when the hybridization of probe and target is understood 

and appropriate biophysical factors are taken into account during the design and 

the analysis steps.  This study also highlights the validity of solution nucleic acid 
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hybridization modeling and prediction approaches in the microarray context.  

Although the current approaches are not perfect, they provide a good starting point 

for further developments.  Most of the tools used in this study provided satisfactory 

results within a reasonable margin of error.  As more enhancements to this field are 

introduced, our ability to relate observed microarray signal directly to predicted 

hybridization behavior will help researchers in many disciplines overcome the 

current limitations of microarray technology. 



 

 

CHAPTER 5: ACCURATE ESTIMATES OF MICROARRAY TARGET CONCENTRATION 
FROM A SIMPLE SEQUENCE-INDEPENDENT LANGMUIR MODEL

 
 
5.1 Abstract 

Microarray technology is a commonly used tool for assessing global gene 

expression.  Many models for estimation of target concentration based on observed 

microarray signal have been proposed, but in general these models have been 

complex and platform-dependent.  We introduce a universal simple model, 

characterized by only three free parameters.  We find that this model, which ignores 

all sequence-based features of DNA probes, yields excellent predictions across 

different microarray platforms, including Affymetrix, Agilent, Illumina and a custom 

microarray developed in our lab.  We demonstrate that a generalized 3-parameter 

Langmuir model can equal or even outperform models that explicitly incorporate 

sequence properties.  In doing so, we eliminate the need for approaches that 

incorporate detailed models of the sequence.  From a microarray design 

perspective, the results obtained here suggest that with a “spiked-in” concentration 

series targeting as few as 5-10 genes, reliable estimation of target concentration can 

be achieved for the entire microarray. 
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5.2 Introduction 

DNA microarrays [1] are a primary research tool for assessing global gene 

expression.  Structurally, a microarray is a solid surface on which nucleic acid 

strands (probes) are attached.  Functionally, they operate on the principle of nucleic 

acid complementarity between the attached probes and components of the target 

mixture (a mixture of labeled nucleic acids).  The result is formation of a stable 

duplex, from which a signal is detected at each probe if there is a complementary 

molecule present in the labeled target mixture.  This signal is then used in further 

analysis and inference steps. 

Models that attempt to estimate target concentrations on microarrays can be, 

generally, divided into two main categories:  The first includes models that rely on 

the Langmuir isotherm [62, 66-67, 150], which in its simplest form is a hyperbolic 

response function in the form of: 

I = d + a c / (b + c) 

where I is the signal intensity from a given microarray probe at target concentration 

c, and a, b and d are the model fitting parameters.  The model has three free 

parameters (a, b and d) fitted to different target concentrations.  The fitting 

parameter a is the saturation intensity (assuming d = 0), b is the target 

concentration that saturates half of the probes, and d is the background component 

[62].  Some of the models in this category predict these parameters from probe 

sequence composition [62] or probe/target and target/target binding energy [66, 

150].  Other models [67] fit the data to the Langmuir isotherm and obtain a, b and d 
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for each probe using a non-linear minimization approach.  In all of these models, 

each probe is characterized by its own a, b and d.  If a microarray has n probes or 

probesets, then there are 3n parameters.  Once the three parameters are 

determined, target concentration is predicted by inverting the isotherm.  A second 

category of models depend on competitive hybridization chemistry [40, 69, 71] to 

predict probe signal intensity, which is translated either to expression level or 

absolute target concentration.  Those models are based on the thermodynamics of 

hybridization, and parameterized based on in-solution DNA hybridization [28, 48].  

They rely on individual probe properties and consequently are prone to over-

parameterization. 

We developed a simple probe-property-independent model to predict 

absolute target concentration on different microarray platforms, including 

Affymetrix, Agilent, Illumina and a locally developed custom microarray.  Our 

predictions of target concentration on these microarray platforms outperform 

previous models.  We report the first approach that works on multiple array 

platforms, using fewer parameters than most other models. 

5.3 Methods 

5.3.1 The Langmuir isotherm 

The Langmuir isotherm is a hyperbolic response function in the form of: 

I j = a
cj

b + cj

+ d     Eq. 5.1 

where Ij is the signal intensity from the probes at target concentration j.  a, b and d 

are the model fitting parameters, and c is the target jth concentration in pM.  This 



 

 

114 
model has three free parameters (a, b and d) fitted to different concentrations, 

depending on the dataset used.  The fitting parameter a is the saturation intensity (if 

there is no cross-hybridization, i.e. d = 0), b is the target concentration that saturates 

half of the probes, and d is the background component [62].  The model was fitted 

using the nls function of R [151].  In contrast with commonly used approaches, the 

three parameters were obtained by fitting the model to data from a number of 

probes (training probes) and not specifically to individual probes. 

5.3.2 Estimation of target concentration 

To estimate target concentration ( x̂ ), we used the approach described by Burden et 

al. [146] with a slight modification: 

x̂ =

X, if I > â + d̂

b̂(I − d̂) / (â + d̂ − I ), if d̂ < I < â + d̂

Y, if I < d̂



















   Eq. 5.2 

where â , b̂  and d̂  are the fitted parameters of equation 1 above.  X is an arbitrarily 

chosen large concentration, assigned when the probe has signal intensity above the 

Langmuir saturation limit.  Y is an arbitrarily chosen small concentration, assigned 

when the probe has signal intensity below the predicted background limit.  X and Y 

were set above the largest target concentration and below the smallest target 

concentration in each dataset, respectively. 

In this report we divide spike-ins into three categories: low, medium and high, 

following McCall et al. [152].  For Figures 5.1, 5.2, 5.3, 5.4, 5.6, 5.7 and 5.8, we do not 
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estimate target concentrations for all spike-ins in the low concentration category.  

These data are provided in Figure 5.5. 

5.3.3 Datasets 

Four control datasets were used to evaluate the performance of the model.  The first 

three datasets (Affymetrix HGU133A GeneChip Latin Square dataset, Agilent 4x44K 

Whole Human Genome Oligo Microarray control dataset and Illumina’s Human-6 v2 

Beadchip control dataset) are part of the External RNA Control Consortium [153].  

Full descriptions of those datasets, along with the raw data can be found here [152] 

and in references therein.  The last dataset is an ArrayIt 50-mer control dataset 

spotted on a standard epoxysilane-coated glass slide substrate, described previously 

in [154]. 

5.3.4 Algorithms and data manipulation 

Two previously described algorithms (for Affymetrix GeneChip) were used in this 

study for performance evaluation.  The first algorithm is developed by Abdueva et 

al. [67] and the second is developed by Li et al. [71].  The source code and data for 

both algorithms were obtained from the authors.  Signal intensities were 

normalized using quantile normalization [155] for the Abdueva et al. procedure.  

For Li et al., signal intensities were used without normalization and prepared 

according to the author’s instructions [71].  Briefly, the raw signal intensities from 

355 probes corresponding to 19 transcripts (out of 42 transcripts) fitted the authors 

filtering procedure and were used for estimating target concentration.  Probe 

intensity was taken as the average across technical replicates.  For our model, all 
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signal intensities were used without normalization (unless indicated).  The signal 

intensity of each probe was taken as the average signal across technical replicates.  

R2 and slope values presented here were calculated using the lm function of R [151] 

using the default settings, except that the intercept term was omitted. 

5.3.5 Training set and number of probes 

For the purpose of determining the values of â , b̂  and d̂ , the global average model 

(GLAM) requires a training set of known spike-ins.  In this report we follow a 

standard N choose K, where N is the total number of spike-ins and K is the number of 

probes or probesets included in the training set.  K has a value between one and N 

minus one.  To illustrate, consider Figure 5.9, which shows the results on Affymetrix 

U133A control dataset.  In this dataset there are 42 spike-ins, thus K (x axis of Fig. 

5.9) has a range from 1 to 41.  When there are more than 42 possible combinations, 

we choose 42 at random and we take them as a representative for all possible 

combinations.  To illustrate this mechanism, consider the first box plot in Figure 5.9, 

it represents all the 42 combinations of 42 choose 1.  We call this leave-41-out, 

which means that GLAM was trained on one probeset and predicted the remaining 

41 spike-ins.  The second box plot is for 42 choose 2, since there are 861 different 

combinations, we shuffle the list of all the 42 probesets, then we choose two 

probesets at random and run the model, we repeat this process 42 times, thus each 

box plot in Figure 5.9 have 42 data points.  The last box plot is for 42 choose 41, we 

call this leave-one-out, which means that the GLAM was trained on 41 probesets and 

predicted the concentration of the remaining spike-in. 
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5.4 Results 

As an alternative to commonly used approaches (see introduction) for estimating 

target concentrations on microarrays, we tested the performance of a model in 

which the three parameters of the Langmuir isotherm were fit to all the data from 

each microarray.  Instead of characterizing each probe or probeset with its own a, b 

and d, we characterize a group of experiments with one a, b and d, thus reducing the 

number of free parameters to three for each microarray.  This model, which we call 

the global average model (GLAM), has the advantage that, unlike other algorithms 

[8, 67, 71] it can be fit with spike-in dose-response data from a small number of 

genes and make predictions for the entire microarray.  Also, unlike most other 

algorithms [69, 81, 110] it is applicable to microarrays that don’t have multiple 

probes per probeset.  We tested the performance of GLAM on control datasets from 

each of the most popular microarray platforms.  We describe our results for each of 

these control datasets below. 

5.4.1 Estimation of target concentration on the Affymetrix platform 

The Affymetrix U133A Latin square control dataset has 42 transcripts spiked in at 

concentration range of 0.125-512 pM in a Latin square fashion [88, 152].  We apply 

the GLAM model presented in equation 5.1 (see Methods) to this dataset.  We 

obtained â , b̂  and d̂  by fitting the model to training set composed of three 

randomly chosen probesets (Fig. 5.1A and 5.2A; red symbols).  Figures 5.1 and 5.2 

show that GLAM is able to recover absolute target concentration with R2 of 0.99. 
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FIGURE 5.1  Estimation of transcript concentrations on the Affymetrix platform for 
19 transcripts chosen by Li et al.. 
(A) Results obtained from a training set of three probesets for GLAM (red) and those 
obtained from Li et al. approach (black).  Error bars are standard deviations.  The 
solid line is the identity line (x=y).  (B) Comparison of error bar lengths for each 
concentration for our approach (red) and Li et al. approach (black). 
 
 
 
To evaluate the consequences of ignoring probe specific effects we compared the 

performance of GLAM to other algorithms.  Figure 5.1A compares GLAM to absolute 

target estimates from Li et al. [71]. 
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FIGURE 5.2  Estimation of transcript concentrations on the Affymetrix platform for 
all 42 transcripts in the Latin Square dataset. 
(A) Results obtained from a training set of three probesets for GLAM (red) and those 
obtained from Abdueva et al. approach (black).  Error bars are standard deviations.  
The solid line is the identity line (x=y).  (B) Comparison of error bar lengths for each 
concentration for our approach (red) and Abdueva et al. approach (black). 
 
 
 
Their approach depends on competitive hybridization chemistry, and target 

concentration is determined by the following equation [71]: 

T̂ =
S
A

+
kdγ

Ap / S − kd / kb − 1
    Eq. 5.3 

where T̂  is the predicted target concentration, S  is the observed signal intensity 

after scanner bias and background subtraction, A is the detection coefficient of 

fluorescence, kd is the probe affinity coefficient, γ  is a cross-hybridization factor, p 
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is the total number of probes in molar concentration units and kb is the binding rate 

for target molecules [71]. 

Their estimates are based on a subset of 19 transcripts, which were selected based 

on target sequence alignment matching and probe signal intensity, and sorted based 

on probe thermodynamic properties.  We estimate transcript concentrations for 

these 19 transcripts using GLAM, choosing three randomly selected probesets as a 

training set (Fig. 5.1).  The results show that both approaches are able to recover 

target concentration with high R2 (0.998 for GLAM and 0.983 for Li et al. [71]).  

Absolute target concentrations obtained using our approach show a slope of 0.958 

and those obtained using the approach of Li et al. [71] have a slope of 1.045.  The 

slope value describes the accuracy of the predictions [88]; a value of 1 is considered 

to be the perfect score.  Values below or above 1 indicate underestimation or 

overestimation, respectively.  Although the Li et al. model attempts to control for 

factors that might increase error (such as scanner bias), the errors between the two 

approaches are comparable (Fig. 5.1B) with GLAM having slightly higher errors for 

target concentrations less than 4 pM, but much lower errors for target 

concentrations > 4 pM. 

Abdueva et al., [67] developed a Langmuir-based approach similar to GLAM.  The 

main difference between the two is probe effects.  In the Abdueva et al. [67] 

approach; â , b̂  and d̂  are estimated for each probe, and the final transcript 

concentration is calibrated based on log predicted saturation intensity and log non-

specific intensity of the probe.  Those two values are predicted from probe 



 

 

121 

thermodynamic properties, based on sequence content.  In GLAM, â , b̂  and d̂  are 

global, based only on a training set.  We applied both approaches to the U133A 

Affymetrix control dataset, and estimated the absolute concentrations of the 42 

transcripts.  The results are presented in Figure 5.2.  Both approaches perform well 

(Fig. 5.2A) but GLAM has a higher R2 (0.998) than the Abdueva et al. approach 

(0.990) despite using significantly fewer free parameters.  Examining the slope of 

the predicted target concentrations shows that GLAM predictions have a slope of 

0.997, while the Abdueva et al. [67] predictions’ slope is 1.007.  Both approaches 

have similar error values, as shown in Figure 5.2B. 

The Abdueva et al. [67] predictions are based on normalized signal intensities, while 

ours are based on raw signal intensities.  To provide a fair comparision, we also 

predicted target concentrations using GLAM on the quantile normalized signal 

intensities used by Abdueva et al. [67] (Fig. 5.3).  Similar results are obtained, with 

slight differences in the length of error bars and a slope of 0.994 for GLAM.  The use 

of normalization does not appear to affect our conclusions. 



 

 

122 

 

 
FIGURE 5.3  Estimation of transcript concentrations on the Affymetrix platform 
using quantile normalized signal intensities. 
(A) Results obtained from a training set of three probesets for GLAM (red) and those 
obtained from Abdueva et al. approach (black).  Error bars are the standard 
deviations of the 42 transcripts.  The solid line is the identity line (x=y).  (B) 
Comparison of error bar lengths for each concentration for our approach (red) and 
Abdueva et al. approach (black). 
 
 
 
In the interest of complete assessment, we compared the performance of GLAM to 

the model of Abdueva et al. [67], but without calibrating the final transcript 

concentration (i.e. without including any probe properties).  The only difference 

between these two approaches is that GLAM has a single set of parameters for a, b 

and d while Abdueva et al. model each probe individually.  Figure 5.4 shows that 

removing probe properties causes the performance of Abdueva et al. model [67] to 

degrade, R2 dropped to 0.843 and slope dropped to 0.53, while GLAM is unaffected. 
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FIGURE 5.4  Performance comparison between GLAM (red) and probe-property-
independent Abdueva et al. approach (black) on the Affymetrix platform. 
Results obtained from a training set of three randomly chosen probesets for GLAM.  
Error bars are the standard deviations of the 42 transcripts.  The dashed line is the 
identity line (x=y); solid lines are the regression lines.  R2 and slope values are 
colored coded according to the schema above and indicated on the graph. 
 
 
 
While our method yielded excellent predictions of absolute transcript 

concentration, we did not predict concentration for all transcripts in the low 

concentration category (Fig. 5.1 and 5.2).  This is because there is a poor correlation 

between signal intensity and target concentration at the low end [152], and because 

the signal obtained from these targets can’t be differentiated from background noise 
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[86].  Also, microarray scanner nonlinearity is at its worst at low intensity [71, 156].  

We show the results of predicting the full range of concentrations in Figure 5.5. 

 
 
 

 
 
FIGURE 5.5  Estimation of transcript concentrations on the Affymetrix platform 
using the full range of concentrations (14 total). 
Results obtained from a training set of three randomly chosen probesets for GLAM 
(red circles).  Abdueva et al. approach results are shown as black squares and Li et 
al. approach results are shown as blue triangles.  Error bars are the standard 
deviations of the 42 transcripts in the case of GLAM and Abdueva et al. approach 
and 19 transcripts in the case of Li et al. approach.  The solid line is the identity line 
(x=y).  R2 and slope values are colored coded according to the schema above and 
indicated on the graph. 
 
 
 
Although the three models show a decrease in terms of R2 and slope values when 

low concentration transcripts are considered, the overall results do not affect our 
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conclusions.  All of the models, including GLAM, have the same difficulty predicting 

low target concentrations. 

5.4.2 Estimation of target concentration on the Agilent platform 

We next tested the applicability of GLAM to the Agilent platform, which has different 

probe and surface properties than the Affymetrix platform.  A publically available 

Agilent control dataset is composed of ten transcripts spiked at ten concentrations 

[152].  We predicted transcript concentrations using GLAM, again without taking 

probe effects into consideration.  Figure 5.6A shows the results using a summary of 

leaving-one-out procedure, where every nine probes were used as a training set and 

the resulting â , b̂  and d̂  were used to estimate the concentration of the remaining 

tenth transcript.  The average estimated concentrations agree well with the 

reported nominal concentrations with an R2 of 0.999 and a slope of 0.997. 
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FIGURE 5.6  Estimation of transcript concentrations on the Agilent platform. 
(A) Results obtained from a comprehensive leave-one-out procedure.  Error bars 
are the standard deviations of the ten transcripts.  The solid line is the identity line 
(x=y).  (B) Box plots of R2 for the ten estimations of leave-one-out procedure and R2 
for five estimations of leave-nine-out procedure. 
 
 
 
The above-mentioned R2 was obtained by training GLAM on nine probes and 

predicting the remaining tenth transcript, which raised the possibility of overfitting.  

We then tested the effect of changing the fraction of total probes included in the 

training set, since a spike-in control procedure would be most useful if it could be 

trained on a small fraction of the array data.  Figure 5.6B shows box plots of R2 for 

the ten estimations of the leave-one-out procedure described above, and R2 for five 

estimations of a leave-nine-out procedure.  In the leave-nine-out procedure, â , b̂  

and d̂  were estimated from a training set of one probe and used to predict the 

concentrations of the remaining nine transcripts.  The leave-nine-out procedure 
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uses a small training set that is sensitive to the choice of probe for training.  Probes 

showing non-Langmuir-like behavior can be avoided without explicit modeling and 

knowledge of their sequence, so five probes returning unphysical (negative) values 

for either â , b̂  or d̂ , were not used to predict target concentration.  Transcript 

concentration estimation with parameters obtained from well-behaved single 

probes show excellent R2 with a minimum of 0.992, depending on which probe was 

used for parameter estimation. 

5.4.3 Estimation of target concentration on the Illumina platform 

We also tested GLAM on an Illumina control dataset composed of 34 transcripts 

spiked at 11 different concentrations [152].  We follow the same procedures as with 

the Agilent platform, and the results are shown in Figure 5.7.  Application of a 

comprehensive leave-one-out procedure (Fig. 5.7A) shows that our approach to 

estimating transcript concentration performs well on the Illumina platform; the 

average estimated concentrations show an R2 of 0.992 and a slope of 1.165.  The R2 

values obtained from 34 trials of the comprehensive leave-one-out procedure are 

shown in Figure 4B.  Out of 34 probes, 18 probes returned unphysical values for one 

of the parameters and therefore were not used to train the model for target 

concentration prediction.  We were able to use the remaining 16 probes in a leave-

33-out procedure with excellent results, and the R2 values are shown in Figure 4B. 

It is clear from Figure 4A that GLAM underestimates transcript concentrations of 0.1 

and 0.3 pM and overestimates transcript concentrations of 300 and 1000 pM on the 

Illumina platform. 
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FIGURE 5.7  Estimation of transcript concentrations on the Illumina platform. 
(A) Results obtained from a comprehensive leave-one-out procedure.  Error bars 
are the standard deviations of the 34 transcripts.  The solid line is the identity line 
(x=y).  (B) Box plots of R2 for the ten estimations of leave-one-out procedure and R2 
for five estimations of leave-33-out procedure. 
 
 
 
However, the regression slope values reported by McCall et al. [152] for this 

platform suggest that there is simply poor agreement between signal intensity and 

nominal spike-in concentration in those ranges. 

5.4.4 Estimation of target concentration on a pin-spotted platform 

Our pin-spotted array data set is a custom 50mer array that was developed in our 

laboratory and described in [154].  The platform is similar to many custom 

microarrays, where probes are contact-spotted using a robot.  The platform differs 

from commercially available platforms in the attachment chemistry.  The control 
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experiment that uses this array has ten targets spiked at eight different 

concentrations [154].  We follow the same steps used for the above datasets and we 

estimate target concentrations for this dataset by obtaining â , b̂  and d̂  using either 

a leave-one-out or leave-nine-out procedure. 

Figure 5.8A shows the averaged predicted target concentrations for a leave-one-out 

procedure with an R2 of 0.992 and a slope of 0.969.  A leave-nine-out procedure (Fig. 

5.8B) shows that even one probe was sufficient to retain R2 ≥ 0.95.  Of the ten 

probes, one returned unphysical values for one of the parameters and was not used 

for estimating target concentration. 
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FIGURE 5.8  Estimation of transcript concentrations on the pin-spotted platform. 
(A) Results obtained from a comprehensive leave-one-out procedure.  Error bars 
are the standard deviations of the ten transcripts.  The solid line is the identity line 
(x=y).  (B) Box plots of R2 for the ten estimations of leave-one-out procedure and R2 
for five estimations of leave-nine-out procedure. 
 
 
 
Although the R2 and slope was lowest for this dataset, the model was able to produce 

acceptable target estimates.  We believe the slight difference in model behavior for 

this platform was due to the different attachment chemistry, and to the presence of 

competing mismatch probes for each target in this dataset . 

5.4.5 How many training probes are necessary for GLAM? 

We examined the effect of varying the number of probes/probesets included in the 

training set on the performance of GLAM.  We ran GLAM on the four datasets used in 

this study and considered all the possible numbers of training probes/probesets.  

The performance of GLAM in terms of R2 is shown in Figure 5.9 for the Affymetrix 
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U133A Latin square control dataset.  Figure 5.9 shows that five probesets are 

enough for GLAM to return reliable results. 

 
 
 

 
 
FIGURE 5.9  Effect of varying the number of probesets included in the training set on 
the performance of GLAM on the Affymetrix U133A control dataset. 
Each Box plot shows the obtained R2 (y axis) for 42 choose K (x axis) of the 
estimated target concentrations using the Affymetrix U133A control dataset.  Each 
box plot has 42 data points (see Methods section of this chapter). 
 
 
 
The effect of training set size on the performance of GLAM for the other three 

datasets is shown in Figures 5.10-5.12.  Note that the x-axis in Figure 5.9 is the 

number of probesets (each probeset has 11 probes in general); while in Figures 

5.10-5.12 x-axis is the number of individual probes. 
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FIGURE 5.10  Effect of varying the number of probes included in the training set on 
the performance of GLAM on the Agilent control dataset. 
Each Box plot shows the obtained R2 (y axis) for 10 choose K (x axis) of the 
estimated target concentrations using the Agilent control dataset.  Each box plot has 
10 data points. 
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FIGURE 5.11  Effect of varying the number of probes included in the training set on 
the performance of GLAM on the Illumina control dataset. 
Each Box plot shows the obtained R2 (y axis) for 34 choose K (x axis) of the 
estimated target concentrations using the Illumina control dataset.  Each box plot 
has 34 data points. 
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FIGURE 5.12  Effect of varying the number of probes included in the training set on 
the performance of GLAM on the pin-spotted control dataset. 
Each Box plot shows the obtained R2 (y axis) for 10 choose K (x axis) of the 
estimated target concentrations using the pin-spotted control dataset.  Each box plot 
has 10 data points. 
 
 
 
5.5 Discussion 

Many approaches have been used to relate microarray probe properties to 

hybridization signal intensity [60, 79].  In this report, we showed that a simple 

model that captures array-wide binding parameters is comparable in performance 

to models that use per-probe parameters.  We compared results from our GLAM 

approach to the results of two algorithms [67, 71], which have been demonstrated 

to be the best-performing of the Langmuir-based and hybridization chemistry-based 

algorithm types.  Our results show that despite the differences in probe design and 
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sequence, probe effects average out and may be modeled globally to recover specific 

transcript concentrations. 

Obtaining â , b̂  and d̂  for a training set of probes, then using those values to 

predict the behavior of other probes, implies that all probes have the same â , b̂  and 

d̂ ,.  We know from past studies that each probe has its own â , b̂  and d̂ , which are 

generally dependent on sequence composition [62].  Given that basic microarray 

probe design procedures usually require that all probes have similar GC content, on 

a carefully-designed array it may be sufficient to use global â , b̂  and d̂  to 

parameterize the Langmuir isotherm.  Fine-tuning parameters to reflect the 

differences of each probe based on its sequence composition and thermodynamic 

properties, or based on the observed response of each probe, may be unnecessary 

and likely leads to overfitting.  What we find important is predicting these 

parameters from probes that show Langmuir-like response, and as we have shown, 

this should be enough to ensure reliable results (Figures 5.9-5.12).  The number of 

probes or probesets used in the training set does not seem to affect the performance 

of our model as long as the probes included in the training set show Langmuir-like 

response or their number is sufficient to average the effect of other probes that do 

not follow Langmuir-like response (Figures 5.9-5.12).  Using probes that do not 

follow Langmuir-like response to estimate â , b̂  and d̂  (i.e. have negative values for 

any of these parameters) will degrade the performance of GLAM.  This can be 

avoided by including more probesets in training GLAM or by using a set of probes 

that are demonstrated to follow a Langmuir-like response. 
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In conclusion, we have shown that using a simple form of the Langmuir 

isotherm model, with a minimum of parameters and assumptions and without 

explicit modeling of individual probe properties, we were able to recover absolute 

transcript concentrations with high R2 on four different array platforms.  To our 

knowledge, this is the first report to produce a working model that is equally valid 

for four of the most frequently used microarray array formats.  Given the choice of 

models with equivalent performance, Occam's razor dictates that the model with the 

fewest free parameters is to be preferred.  Our results therefore suggest that, 

despite considerable efforts by the bioinformatics community [60, 67, 70-71], the 

additional complexity introduced by models that attempt to use probe 

characteristics to improve estimates of absolute concentration is not justified by a 

corresponding increase in performance.  Given consistent concentration-dependent 

behavior, it should be possible to project target concentration from intensity across 

the experiments based on a spike-in calibration mixture containing only few probes. 
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