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ABSTRACT 

 

 

LIBIN BAI.  Stability and performance of networked control systems.  (Under the 

direction of DR. SHENG-GUO WANG) 

 

 

Network control systems (NCSs), as one of the most active research areas, are 

arousing comprehensive concerns along with the rapid development of network. This 

dissertation mainly discusses the stability and performance of NCSs into the following two 

parts.   

In the first part, a new approach is proposed to reduce the data transmitted in 

networked control systems (NCSs) via model reduction method. Up to our best knowledge, 

we are the first to propose this new approach in the scientific and engineering society. The 

"unimportant" information of system states vector is truncated by balanced truncation 

method (BTM) before sending to the networked controller via network based on the 

balance property of the remote controlled plant controllability and observability. Then, the 

exponential stability condition of the truncated NCSs is derived via linear matrix inequality 

(LMI) forms. This method of data truncation can usually reduce the time delay and further 

improve the performance of the NCSs. In addition, all the above results are extended to the 

switched NCSs.  

The second part presents a new robust sliding mode control (SMC) method for 

general uncertain time-varying delay stochastic systems with structural uncertainties and 

the Brownian noise (Wiener process). The key features of the proposed method are to 

apply singular value decomposition (SVD) to all structural uncertainties, to introduce 

adjustable parameters for control design along with the SMC method, and new 

Lyapunov-type functional. Then, a less-conservative condition for robust stability and a 
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new robust controller for the general uncertain stochastic systems are derived via linear 

matrix inequality (LMI) forms. The system states are able to reach the SMC switching 

surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel 

Lyapunov-type functional for the uncertain stochastic systems is used to design a new 

robust control for the general case where the derivative of time-varying delay can be any 

bounded value (e.g., greater than one). It is theoretically proved that the conservatism of 

the proposed method is less than the previous methods.  

All theoretical proofs are presented in the dissertation. The simulations validate the 

correctness of the theoretical results and have better performance than the existing results.  
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 INTRODUCTION CHAPTER 1: 

 

 

Time delay systems appear in practical control systems and applications, e.g., 

remote control systems (Hokayem and Spong, 2006), unmanned aircrafts (Zeitlin and 

McLaughlin, 2006), industrial control systems (Brooks, 1986, Kaloust et al., 2004, Umeno 

and Hori, 1991) and networked control systems (Chow and Tipsuwan, 2001, Kuperman 

and Zhong, 2011). For decades, it has aroused a lot of research attention in the robust 

control of time delay systems (John and Jacques, 2007, Emilia and Uri, 2003). It is because 

of the fact that dynamic systems usually have uncertainties in the face of changing 

environment and disturbances, especially their time delays are also uncertain in many 

cases, of that we may only know the upper bounds. The uncertainties make those systems 

difficult to be described by accurate mathematic models, and are often the source of 

instability.  

Network control systems (NCSs), as one of the most active research areas, is 

arousing comprehensive concerns along with the rapid development of network. A lot of 

applications of NCSs can be found in different areas, e.g., telesurgery, factory automation, 

autonomous robots, etc. There are several advantages to use network as the shared media to 

transfer signal of remote control systems, e.g., flexibility, low installation cost, easy 

diagnosis and easy maintenance (Walsh and Yeo, 2001). However, bandwidth is always 

limited on network. What's worse, the data might collide on the shared medium. Therefore, 

the network could be congested because of the large data arrival rate. A large data arrival 



2 

 

rate could results in degradation of the overall performance of NCSs, because it is difficult 

for a controller to track the plant state in real-time due to the amount of data and bandwidth 

limitation. Moreover, for most of the networks, there is no quality and time guarantee in 

exchanging of information between the plant and the controller over the shared 

transmission channel. The network-induced delay, either being constant or uncertain, 

might destabilize the whole system and meanwhile degrade the performance. For example, 

TCP/IP protocol involves packet resending if packet loss happens before it reaches the 

destination. The resending would with no doubt increase the delay in transmission. Even 

worse, during busy period, on the networks,  like Ethernet with CSMA/CD (carrier sense 

multiple access with collision detection) strategy, the data exchanging quality largely 

depends on the number of users concurrently, because the shared medium can be used for 

sending data by only one user at one time. There are a lot of research about the NCSs. e.g., 

Xu et al. (2012) discussed the stochastic optimal control of linear NCS with uncertain 

system dynamics, network random delays, and packet losses using an adaptive estimator 

and Q-learning to solve the stochastic optimal and suboptimal regulation control of NCS. 

Ulusoy et al. (2011) presented the time-triggered wireless NCSs over cooperative wireless 

network with a model-based predictive controller. Shi and Yu (2011) investigated the 

two-mode-dependent robust synthesis of NCSs with norm-bounded uncertainties and 

random delays in both forward controller-to-actuator and feedback sensor-to-controller 

links modeled as Markov chains. Then, the stochastic stability,    and    norms are 

discussed. The authors also noticed that the research of real-time performance and its 

application of NCS is an open problem currently (Yang, 2006, Gupta and Chow, 2010, Wu 

et al., 2002). Recently, Wang and Bai (2012) discussed general time delay systems with 
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Brownian motion and structural uncertainties by the SVD and LMI. 

Stochastic process models are used in many applications, especially on networks, 

in which both variables and processes randomly and dynamically change with the time.  

Thus, robust control on stochastic process has become an active research area, e.g., Wang 

and Stengel (2000) described a robust stochastic control for hypersonic aircraft, and Xu et 

al. (2006) investigated robust stochastic stabilization and robust    control in stochastic 

neutral time-delay systems with uncertainties. Wu et al. (2010) studied delay-dependent 

robust control for a class of uncertain stochastic systems with time-delays for two cases. 

Switched systems, as a class of the hybrid dynamical system consists of a family 

of subsystems governed by the switching signal. It has raised a lot of attention in the past 

decade (Lin and Antsaklis, 2005, Zhao et al., 2009, Hou et al., 2012). The switch feature is 

an intrinsic part of many industrial systems. For example, (i) real-time adjustment of 

system structure parameters, (ii) change of system structure by easily damaged parts, (iii) 

approximation of nonlinear system by linear system. Lin and Antsaklis (2005) described 

the switched system on NCSs in discretized model, and discussed the time delay and 

packet loss following certain probability distributions via stochastic model. Fan et al. 

(2013) investigated exponential stabilization of a dual-rate linear control system via 

switched systems and the input delay approach. 

There are a lot of research done in model reduction, such as Balanced Truncation 

Method (BTM), which is one of the most common model order reduction schemes 

(Heydari and Pedram, 2006, Wang and Wang, 2008), Asymtotic Waveform Evaluation for 

Timing Analysis based on Padé approximation (Wang et al., 2011c), Krylov-based model 

order reduction (Michiels et al., 2011), etc. It is noticed that the BTM is a useful method in 
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model reduction (Reis and Stykel, 2010). The major advantage of BTM is its guaranteed 

reduction error bound over the whole frequency domain. It is generally accepted that 

network induced delay could degrade the performance and even causes instability of 

NCSs. Meanwhile, the reduced data size usually helps to reduce the network induced delay 

during the packet transmission.  

To deal with uncertainties, sliding mode control (SMC) has been frequently used 

in uncertain systems. The system structure switches based on the system state vector in 

order to force the system trajectory toward and/or to stay in a predefined subspace. Because 

of its excellent performance in the presence of external disturbances and parametric 

deviations, SMC has been widely adopted in many areas, especially, in robust control of 

uncertain systems. For example, Roh and Oh (1999) proposed a SMC method for the 

robust stabilization of uncertain linear input-delay systems with nonlinear parametric 

perturbations. A robust control law was derived to reduce the effect of both delay and 

uncertainty. Xia and Jia (2003) introduced a delay-independent robust SMC for time-delay 

systems with mismatched structural uncertainties. Furthermore, Niu et al. (2005) proposed 

an LMI condition to ensure the reachability to the sliding mode surface and the robust 

stochastic stability for general uncertain stochastic systems with time-varying delay based 

on the constructed integral sliding mode surface. The simulation of their results is very 

good. Yu and Chu (1999) also developed an LMI approach to guaranteed cost control of 

linear time-delay systems. De Souza and Li (1999) discussed delay-dependent robust H 

control of uncertain linear state delayed systems. Gouaisbaut  et al. (2002) discussed the 

sliding mode control of uncertain systems with state-delays and additive perturbations, and 

designed a sliding surface to maximize the set of admissible delays and build LMIs for 
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optimization. Choi (1999) proposed a sliding surface design for systems with mismatched 

unstructured uncertainties, and showed SMC as an effective robust control method for both 

uncertain systems and reduced order systems. Choi (2003) further extended the SMC 

strategy to multivariable uncertain systems with mismatched uncertainties. Late, Wu and 

Ho (2010) discussed the SMC of nonlinear singular stochastic systems with Markovian 

switching without time delay .  

The partial major contributions of the chapter 3 in this dissertation include that:  (i) 

Up to our best knowledge, we are the first to introduce the model reduction into NCS to 

reduce data transmission; (ii) The exponential stability condition is given based on the 

NCS with reduced data via the BTM; (iii) The performance optimization method is 

presented to setup the BTM parameter; and (iv) We further extended our theory and 

method to switched NCSs. The main results of this chapter have been published in (Bai and 

Wang, 2014a, Bai and Wang, 2014b). 

The main contributions of the chapter 4 include:  (i) to propose less-conservative 

methods for general uncertain stochastic systems with time-varying delay and structural 

uncertainties by introducing the SVD on the structural matrices of uncertainties for 

uncertain time-delay systems as a first time in the literature; (ii) to derive the robustly 

stochastic stability conditions by developing new Lyapunov-type functional for uncertain 

stochastic time-varying delay systems with general cases of time-delay derivative  ̇    

     , where      is the time-varying delay, and the bound   may be greater than one; 

and (iii) to show our new results are less conservative than the existing results by 

theoretical analysis, proof and examples. The main results of this chapter have been 

published in (Wang and Bai, 2012, Wang and Bai, 2014). 
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Besides, the author of this dissertation has several other publications in image 

process (Bian et al., 2011, Bian et al., 2012), traffic modeling (Wang et al., 2011b, Wang et 

al., 2011a), and smart grid (Rahman et al., 2012). 

The rest of this dissertation is organized as follows. Chapter 2 is the survey of the 

networked control systems, including a brief description of the NCS structure and current 

research. Chapter 3 mainly presents the performance optimization of remote networked 

control systems via model reduction method. Chapter 4 discusses the integral robust 

sliding mode control of the more general time-varying delay stochastic systems with 

structural uncertainties. Chapter 5 presents concludes the dissertation. 

Notations: Euclidean norm of a vector is denoted by ‖ ‖ in the following section. 

The minimum and maximum eigenvalue of matrix   are denoted by         and 

        respectively.  

 



 

 

 

 

 

 

 

 NETWORKED CONTROL SYSTEMS CHAPTER 2: 

 

 

This chapter is a survey mainly about the history and methodologies in the 

research of NCSs. This chapter is organized as follows. As a more general form of NCSs, 

time-delay systems are firstly presented in section A about the mathematical forms and the 

basic concept of stability. Section B provides the research history of NCSs. Section C 

discusses two kinds of structure of NCSs. Since the time-delay is one of the major 

considerations of NCSs, Section D presents the delay analysis in the NCSs. The following 

section E is about the current compensation of the network-induced delay. The control 

methodologies in NCSs are discussed in section F. The rest two sections are the concept of 

stability and some open problems respectively.  

2.1  Summary of Time-Delay Systems 

NCS is a special form of time-delay systems, most of the methodologies and 

concepts are similar. The theory of time-delay systems is very important in the modeling 

and analyzing of NCSs. Therefore, before going through the NCS, this chapter first starts 

with the time-delay systems. The mathematic forms, some important definitions (e.g., 

stability and controllability) and some important theorems will be briefly summarized.  

Time-delay system (also called systems with aftereffect or dead-time, hereditary 

systems, equations with deviating argument or differential-difference equations) appears in 

many kinds of control systems. Time-delay effect is usually an intrinsic part of some 

systems (e.g. many industrial systems and the recent X-37B unpiloted space plane) and 
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cannot be ignored in the analyzing. Time-delay, in most of the cases, can degrade the 

performance of a system and is the source of instability.  Moreover, time-delay systems 

usually are infinite dimensional and are generally much harder to analyze than ordinary 

differential equations. Therefore, a careful attention needs to be devoted in modeling and 

analyzing.   

 History of Time-Delay systems 2.1.1

TABLE 1 shows the important events in the development of the theory of 

time-delay systems (Richard, 2003). 

TABLE 1:  The important events of the time-delay system 

Period Event 

18th century The delay equations were firstly considered in the literature 

(e.g. the works of Bernoulli, Euler or Condorcet)(Emilia and 

Uri, 2003). 

1920’s to the end of 

1940’s 

Systematic study of delay equations by V. Volterra , A. 

Myshkis and R. Bellman(Emilia and Uri, 2003). 

1940’s Stability of time-delay systems became a formal subject of 

study with the contribution of Pontryagin and 

Bellman(Pontryagin, 1954, Gu et al., 2003, Pontryagin, 1966, 

Bellman and Dreyfus, 1959, Bellman and Zadeh, 1970 ). 

The end of 1950’s Lyapunov’s second method for the stability of delay systems 

was developed by N. Krasovskii and by B. Razumikhin 

(Krasovskii, 1963, Razumikhin, 1960, Emilia and Uri, 2003). 

1959 Smith controller was invented (Smith, 1959). 
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1960’s The monographs of Pinney and Bellman and Cooke with a 

particular interest in the complex-doman approach and related 

frequency-domain techniques and methods (Michiels and 

Niculescu, 2007). 

1970’s The theory arrived to some degree of maturity (Michiels and 

Niculescu, 2007). 

After 1990’s A lot of research was on analysis and synthesis of uncertain 

systems with time-delay. Based on Lyapunov stability theory, 

plenty of outcomes have been obtained. e.g. 

finite-dimensional sufficient conditions.(Emilia and Uri, 

2003) 

 

Time-delay systems have received a great deal of attention the areas such as 

mathematics and control engineering after 1950s. The invention of Lyapunov function of 

stability and its improvement developed by N. Krasovskii and by B. Razumikhin result in 

many theories such as the sufficient conditions of stability (Emilia and Uri, 2003, Michiels 

and Niculescu, 2007, John and Jacques, 2007). 

Recently, a lot of researchers are interested in robust control, which treats delays 

in dynamic systems as uncertainty (John and Jacques, 2007). 

 Mathematical Forms of Time-Delay Systems 2.1.2

2.1.2.1 General Model of Retarded Systems 

The retarded time-delay systems can be described by functional differential 

equations (FDEs), 
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 ̇                   

               , 

                          

                         

                         (1) 

where          is the state variable at time t,             ,      is the initial 

condition function mapping [    ]  to   , for which can be simplified to   

  [       ]  
  . 

2.1.2.2 General Model of Neutral Systems 

 ̇            ̇          (2) 

The difference between retarded system and neutral system is the introduction of 

 ̇ , which means the current state not only depends on the past state but also the derivative of 

past state. 

The formula (2) could also be rewritten in Hale’s form  

   ̇  
    

  
            (3) 

2.1.2.3 Model of LTI Systems 

The linear time-invariant time-delay system (LTI) can be represented as (Richard, 

2003): 

 ̇    ∑    ̇      
 
     

 ∑(                  )

 

   

 ∑∫ (                   )    
 

    

 

   

 
 



11 

 

     ∑         

 

   

 ∑∫            
 

    

 

   

 (4) 

where the matrices    make the neutral part;    and    represents discrete-delay 

phenomena; the sum of integral corresponds to distributed delay effects;      is the output. 

2.1.2.4 Some Typical Time-delay Systems 

A system with a single delay on state variable can be represented as follows: 

 ̇                   

                           (5) 

where          ;   is a nonnegative delay; the initial states from the segment [    ] 

is needed to be defined as      in order to get a unique solution. 

As an extension, a system with multiple time-delays can be represented in the 

following form: 

 ̇          ∑         

 

   

 

                      
      

          (6) 

As a special case, a LTI system with the following form is called time-delay 

systems with commensurate delays. 

 ̇           ∑         

 

   

          (7) 

where all the delays is the multiple of  . 

Otherwise, the LTI system is called time-delay systems with incommensurate 

delays. Basically, the stability analyzing of incommensurate delays system is much harder 

than commensurate case. What’s more,  many stability problem of incommensurate cases 
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are proved to be NP hard (Gu et al., 2003, Kharitonov, 1999). 

A more general form is distributed delay system as stated in (Kharitonov, 1999): 

 ̇    ∫[     ]      

 

  

 

∫‖     ‖

 

  

   

                             (8) 

The initial state      need to be specified in the region [    ].   With the 

appropriate choosing of     , system (8) could be converted into system (5) and (6).  

 Stability of Time-Delay Systems 2.1.3

This part is about the conception of stability and criteria. 

2.1.3.1 Stability Criteria 

Definition 1. The system (2) is said to be Lyapunov stable if for every positive   there exit 

a positive   such that if ‖    ‖   , then ‖            ‖    for all      . 

Remark 1. If the value   from the above definition may be chosen such that in addition 

               when     , then the system (2) is said to be asymptotic stable. 

Definition 2. The system (2) is said to be exponential stable if there exist positive constant 

  such that every solution of the system satisfy the following inequality 

‖            ‖   ‖    ‖           for all     . (9) 

The above two definitions and remark can be found in (Kharitonov, 1999). 

There are two kinds of uncertainty that might affect the stability in time-delay 

systems. The first one is in system structure description, e.g.,    and     in the simple 

linear time-delay system (10). The second one is the uncertainty in delay constant, e.g.,    
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and     in system (10). 

 ̇                        (        )

        (          ) (10) 

Definition 3. Given a time-delay system with uncertainty description   (time-delay) and 

 (system matrices), the system is said to be robustly stable if it is stable for all delay 

elements from   and for all system matrices from   (Kharitonov, 1999). 

A system is called uncertainty free system if both uncertainty description sets   

and   contain only one element.  As stated in (Özbay, 1996), the systems with time-delay 

uncertainty are much more complex to analyze than those with system uncertainty.   

2.1.3.2 Lyapunov-Krasovskii Theorem 

Theorem 1. The time-delay system (2) with      is asymptotical stable if there exists a 

continuous functional      such that (Su et al., 2007, Krasovskii, 1963) 

i.    ‖    ‖             ‖    ‖  

ii. 
 

  
        ‖    ‖ , for a positive constant  . 

Generally, the construction and analysis of functional      for a system is a very 

difficult task. It is often used for deriving sufficient conditions. 

2.1.3.3 Lyapunov-Razumikhin Theorem 

Theorem 2. The system (2) with      is said to be stable if there exit a continuous 

function         and an increasing function        such that (Razumikhin, 1960, 

Kharitonov, 1999) 

i.  (    )   (       )      [     ]      

ii.  ̇           ‖ ‖     

where   is nonnegative constant, and satisfy                . 
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Compare to Theorem 1, this theorem can obtain an upper bound of the time 

derivative independent of past states and therefore reduces the computing complexity, 

however, it also brings some conservative (Kharitonov, 1999). 

2.1.3.4 Frequency Domain Robust Stability Analysis 

As the classical method, frequency domain stability analysis uses the method like 

Nyquist test and root-locus. “With the aid of the small gain theorem, frequency domain 

tests have become increasingly more prevalent in stability analysis, and have played 

especially a central role in the theory of robust control.”  (Gu et al., 2003) 

The stability of an LTI retarded delay systems can be analyzed by position of poles 

in s plane, which is zeros or roots of characteristic function. 

Consider a LTI retarded system (6), its characteristic function is in the form of 

                       (     ∑   
    

 

   

) (11) 

Specifically, the sufficient and necessary condition of stable is 

                   has no zero with nonnegative real parts. 

In addition, for a neural type time-delay system, the stability conditions require 

that: for all the characteristic roots   ,            for some    . 

2.1.3.5 Stability Independent of Delay 

A time-delay system is said to be stability independent of delay (i.o.d) if for all the 

possible nonnegative delay the system is stable. Otherwise, if time-delay systems are stable 

for only a subset of nonnegative delay, this kind of system is called dependent of delay 

(d.d).  Typically, if the system (6) is stable with delays            ,  this system can 

remain be stable in a certain neighborhood area of those delays. That is within this area the 
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zeros of                    stay in the left half plane. 

For time-delay system with commensurate delays, it has the following theorem 

about stability. 

Theorem 3. The system (7) is i.o.d stable if and only if 

i.   is stable. 

ii.   ∑   
 
    is stable, and 

 (      )             (12) 

where 

      (

           
  

                      

  
                          
                         

  
                            
                            

) 

and      is spectral radius. See (Gu et al., 2003) 

 Controllability  2.1.4

It has to be mentioned the definitions of controllability of time-delay system are 

different from those with time-delay free. 

i. In delay free system, the state controllability means the ability to move from one 

state to any other states in a finite interval, where controllability in delay system means the 

ability to move from a vector {         [              ]}  to other vectors 

{         [               ]}. 

ii. The introduction of delay also introduced the minimum reaching time. e.g., the 

system  ̇               cannot be controlled within 1sec (Richard, 2003). 

2.2  The Earlier History of NCSs 

The typical early controller is centralized controller. The components (e.g. sensor, 

observer, controller, and actuator) are connected directly by wire. In this period, 
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researchers did not need to worry about time delay and signal loses. With the development 

of system, the controllers become much complex. The large-scale system is divided into 

several sub-systems with interconnections between each other as depicted in FIGURE 1.  

This is decentralized control scheme, which was the only solution for some applications in 

that time. The controllers are connected to their corresponding subsystems, however, the 

controllers cannot exchange signal between each other in this structure. 

 

FIGURE 1: Decentralized control scheme (Yang, 2006) 

This structure was very useful at that time. However, it has fatal defects. It has 

been proved that for some systems, there is no decentralized controller which could make 

the systems stable. To solve this problem, quasi-decentralized control scheme as depicted 

in FIGURE 2 was proposed (Yang et al., 2000). In this control scheme, local controllers 

have very limited ability to exchange data with other local controllers. Because the remote 

communication is expensive before 1990s, the exchanging data between local controllers 

need to be minimized.  
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FIGURE 2: Quasi-decentralized control scheme (Yang, 2006) 

In decades, the fast development of network with far better performance and less 

cost greatly make the application of distributed systems more practical. Because of its wide 

applications, NCS becomes a very promising research field. For more detail about the 

history of NCS, please refer to (Yang, 2006) . 

Recently, although there are a lot of research on NCSs, the research of NCSs could 

be categorized into two parts (Gupta and Chow, 2010): 

iii. Control of network:  e.g., congestion control, routing control and etc.  

iv. Control over network: It includes control strategy, control system design and 

stability condition. 

2.3  Structure of NCS 

Despite the slight difference in applications, generally, there are two kinds of 

structure of NCS. One is direct structure, the other is hierarchal structure (Tipsuwan and 

Chow, 2003). Those two kinds of structure will be presented in this part. 
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 Direct Structure 2.3.1

 

 

This configuration, as depicted in FIGURE 3, mainly includes two parts: remote 

system and controller. Those two parts communicate by exiting network. The state or 

output of the plant (e.g. temperature, speed, and position et al.) is converted into electric 

signal by sensors. Since continuous analogy signal usually cannot be transferred on 

network, those signals are then discretized by sampler. The quantizer is used to convert 

signal into digital code which could be transferred on network.  When controller get the 

feedback signal     ), as depicted in FIGURE 3, control signal       is then generated 

and sent to ZOH (zero-order hold), which can continuous output one value until a new 

input comes.  Usually, the time-delay on sampler and quantizer could be neglected, since 
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FIGURE 3: Direct structure NCS 
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it’s usually too small compare to the network induced delay. 

 

FIGURE 4: A NCS system with multiple sensors and actuators (Zhang et al., 2001) 

Particularly, for some plants with multiple sensors and actuators, as depicted in 

FIGURE 4, this structure also belongs to direct structure. A lot of systems belong to this 

case in application. For example, a car might have to sample its engine temperature and 

exhaust to its controller by using several sensors. 

A more general framework of direct structure is presented in (Yang, 2006). 
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 Hierarchical Structure 2.3.2

 

FIGURE 5: Hierarchical structure NCS 

Unlike direct structure NCS without any controller in the plant side, hierarchical 

structure as depicted in FIGURE 5 consists of two controllers: remote controller in remote 

side with plant and the main controller. The remote controller is used here to perform local 

closed-loop control. For remote controller, the time-delay in exchanging data with plant 

could be neglected. Compare to the remote controller, the delay in exchanging data 

between the main controller and the plant usually needs to be taken into consideration. The 

outputs of two controllers are combined together as reference signal of plant. Hierarchical 

structure NCS can be implemented to handle multiple networked control loops for several 

remote systems. There are several applications of this structure, e.g., mobile robot 
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(Tipsuwan and Chow, 2002) or teleoperation (Xi and Tarn, 1998, Hokayem and Spong, 

2006). 

 

FIGURE 6: NCS with two-level communications (Yang, 2006) 

Another hierarchical structure introduced by Yang (Yang, 2006, Yang et al., 2004) 

is depicted in FIGURE 6. Instead of controlling directly to the plant in FIGURE 5, 

high-level controller controls microcontrollers in L2C. The two networks L1C (level 1 

communication) and L2C (level 2 communication) are independent from each other. This 

kind of structure can be used in many applications, e.g. industrial process plant with several 

embedded microcontrollers supervised by computers as stated in (Yang, 2006). 

2.4  Analysis of Delay 

Generally, there are four kinds of delays introduced by network (Wikipedia, 

2009). 

i. Computing delay: time spent to process data, e.g., encryption/decryption process. 

ii. Waiting/Queuing delay: time spent in service / routing queues. 

iii. Transmission delay: time spent in placing a frame/packet on link. 

iv. Propagation delay: time spent for a frame/packet travelling through the physical 

actuators distributed plant sensors 

L

L

Micro C Micro C . . 

High-level controller other data 

http://en.wikipedia.org/wiki/Queuing_delay
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link.  

In most of the applications, the computation delay can be neglected, because it is 

usually very minor compare to other kinds of delay in NCSs or it can be lumped into delay 

from controller to actuator in analysis.  The three kinds of delay (waiting/Queuing delay, 

transmission delay, and propagation delay) can be lumped into network induced delay. e.g., 

    and     in FIGURE 3 and FIGURE 5, where     means the time-delay from quantizer 

to controller and     means time-delay from the controller to the ZOH. It needs to be 

mentioned that the delays on the sampler, quantizer and ZOH are ignored in the following 

part, therefore     (delay from the sensor to the controller) is equal to    , and     

(time-delay from controller to actuator) is equal to    . 

The network induced time-delay has different characteristics depends on the type 

of network used for exchanging data. 

i.  Cyclic-service network. Data on cyclic-service network exchange in a cyclic 

order, therefore the time-delays     and     are deterministic or even constant (ideal case) 

in this kind of network. However, in practice there are small uncertainties of delay for 

various reasons. The protocols in this category include token passing (e.g. IEEE 802.4, 

SAE token bus, PROFIBUS, Fieldbus), token ring (e.g., IEEE 802.5, SAE token ring), and 

polling (e.g., MIL-STD-1553B, FIP, etc.). For more information please refer to (Chow and 

Tipsuwan, 2001, Tipsuwan and Chow, 2003, Yang, 2006). 

ii. Random access network. Time-delay on this kind of network involves much 

more uncertainties, because of the presence of queuing and collision. Moreover, the 

networks such as TCP/IP often change the routing path while exchanging package.  It 

definitely increases the uncertainty on delay. Most of the protocols belong to this case. 
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It’s a generally accepted fact that network induced delay could degrade the 

performance and even causes instability of NCSs. The time-delay might change the poles 

of a system and it usually has infinite order. Network-induced delay could be modeled in 

many methods, e.g., independent random delay, delay with known probability distribution 

governed by Markov chain (Gupta and Chow, 2010). 

2.5  Compensation for Network-Induced Delay 

The network induced delay could to some extend be compensated in pre-estimated 

approach. An approach has been proposed in (Zhang et al., 2001). Generally, the delay 

from quantizer to controller     could be detected by controller. For example, in TCP/IP 

protocol, a timestamp is set for each packet when it begins to be sent, if the clocks of all 

components are synchronized, the delay     is very easy to be calculated by letting the 

reach time to controller minus its timestamp. Therefore, the pre-estimator could use     

and pasting states to predict current state of plant without delay. However, the time-delay 

from controller to actuator is hard to be predicted by controller, as stated in (Zhang et al., 

2001).  

An example of how to design a pre-estimator to compensate time-delay is shown 

below. 

A system without network induced delay defined in (Zhang et al., 2001) is 

modeled as: 

 ̇                

           (13) 

If NCS has a full-state feedback, which is            , the discrete controller 

is defined as: 
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                         (14) 

The plant state estimate at the time       received is defined as: 

 ̅      
           

        
  
      ∫   (     

    )       
     

  

  

 
(15) 

Then the control law is computed by 

       
       ̅      

   . (16) 

Using this control law, the closed-loop system becomes 

 (         
  )   ̃             (17) 

where  

         
     

  , 

 ̃                 , 

          , 

      ∫       
  

 
. 

It can be inferred from (17), since the   
   and     

   are known by controller, the 

time-delay effect from sensor to controller is fully compensated.  

For the system with output feedback, the pre-estimator is slightly different.  

Assume the plant state is             , the estimator can be described as: 

 ̅(      )   ̂(      )    ( (      )    ̂(      )) 

 ̂(      )    ̅            (18) 

where    is the current estimator gain. 

Using the two formulas defined above, the closed-loop system with the estimator 

is 

 (           )   ̅             (19) 

where 
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 ̅     [
            

               
]. 

2.6  Control Methodologies 

 Stochastic Lyapunov Function 2.6.1

This method was originally used on multi-loop control systems with feedback 

loop closed through a time-shared digital computer. Because of the similarity, stochastic 

delay-differential equation could be used to model NCS with a randomly distribute traffic 

on the network (Wu et al., 2002, Isle and Kozin, 1972, Isle, 1975). 

 Augmented Deterministic Discrete-Time Model Methodology 2.6.2

This method was firstly proposed by halevi and Ray (1988). The system is 

represented by an augmented state vector consisted of two parts: (i) past values of the plant 

input and output, and (ii) current states of both the plant and controller. A 

finite-dimensional and time-varying discrete model is formed. For more information 

please refer to (Wu et al., 2002, Tipsuwan and Chow, 2003, Liou and Ray, 1991a, Liou and 

Ray, 1991b) 

 Queuing Method 2.6.3

Queuing method (or buffering method) is a popular method. This method could 

convert a NCS into a time-invariant system. It has several advantage such as (i) no need to 

redesign the existing predictive controller; (ii) no need of clock synchronization; and (iii) 

slightly influence of bad network condition (Gupta and Chow, 2010). 

Lucka and Ray (1990) at first proposed queuing theory into NCS, this method uses 

queue and the received plant state sequence to predict current state by controller. 

Chan and Ozguner (1994) proposed a new kind of estimator design based on 

queuing theory. The configuration of is depicted in FIGURE 7. The assumptions of this 
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system include: 

i. The queue is FIFO (first in first out) /FCFS (first come first serve) 

ii. The sensor will send data by communication link as long as the queue is not 

empty. 

iii. The communication link is shared. 

 

FIGURE 7: Block diagram of the controlled system involving queue and communication 

link (Chan and Ozguner, 1994) 

Define   as the queue length,     as the sensor sample period and    as the 

processor sampling period. Let         in this NCS. In the data sending process, 

sensor will send the current length of queue   attached with sampled data. Therefore the 

queue length is known by control processor. The assertion defined is: “At the  th processor 

sampling instant, if it is know that the queue length   is equal to  , then the corresponding 

data is either      or              (where m is the queue buffer size)”.  

Consider a plant as: 

                                          (20) 

Assume the full state is transmitted. The received state of control processor is      
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or        (  is equal to queue size  ) the prediction of current state of plant is: 

 ̂    ( 
        )    ( 

        ) (21) 

where  

     

   [         ] [

    

    

 
      

], (22) 

  ,    are weighting matrices.  

The calculation of optimal   ,    and the feedback without full state information 

feedback is also discussed in (Chan and Ozguner, 1994). What’s more, the observer is 

introduced if this feedback system is not full state feedback. 

 Optimal Stochastic Control Methodology 2.6.4

John Nilsson proposed an approach that treat NCSs with random network-induced 

delay as LQG (Linear-Quadratic-Gaussian) problem, which is one of the most fundamental 

optimal control problem (Nilsson, 1998, Nilsson et al., 1996, Athans, 1971).  

This approach is based on following assumptions: 

i.   
     

    , which means the summation of delay from sensor to actuator 

and delay from actuator and sensor is less that sampling period  .  

ii. The set {  
       

     
         

  } is known by controller. This is actually 

very easy to be obtained by applying timestamp. 

Consider a controlled process be 

  

  
                  (23) 

where      is white noise with zero mean. 
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Discretization of system (23) with the consideration of time-delay gives 

              
     

           
     

           

          (24) 

where  

      

     
     

    ∫      
    

     
  

 
 , 

     
     

    ∫      
 

    
     

   , 

and    and    are unrelated white noise. 

In order to derive the optimal controller, John Nilsson defined an object function 

    [  
     ]   [∑ [

  

  
]   

    [
  

  
]], (25) 

where   is symmetric and positive semi-definite. 

Q has the following form: 

  [
      

   
    

], (26) 

where     is positive definite,. 

 The optimal controller should minimize   . Based on    and assume      , the 

optimal control law of system (23) is given by: 

         
      [

  

    
], (27) 

where, for             , we have 

     
      (     ̃ 

       )
  

[   
   ̃ 

        ̃ 
       ], 

 ̃          
  (  ∑               

        
   ), 
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  [
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   ̃            ), 
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   [
  

      
      

  
], 

   [
   
  

]. 

In equation (27) the    is the Markov state,       is the symmetric matrix 

represented the cost to go at time   if     , ( ̃ 
  )    is block       of symmetric matrix 

  ̃   , and     is the block       of symmetric constant matrix  . 

This approach has shown better performance than deterministic predictor-based 

method in example of (Nilsson et al., 1996) . However, as stated by Tipsuwan and Chow 

(2003), this approach require large amount of memory in controller to store a large amount 

of past information. Moreover, this approach might be not effective for fast response 

systems. 

 Gain Scheduler Middleware 2.6.5

Since the controller and strategy are usually needed to be re-designed for another 

specific application or environment, this would definitely increase cost and time. Tipsuwan 

and Chow (2004b) introduced Gain Scheduler Middleware (GSM) to use exiting 

delay-free controllers for network control.  As depicted in FIGURE 8, the GSM includes: 

network traffic estimator, feedback preprocessor and gain scheduler. Feedback 

preprocessor is used to preprocess the feedback data from remote system before 

forwarding the signal to the controller. Gain scheduler is used to modify the controller 
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output with respect to the current network conditions. Network traffic estimator is used to 

estimate the current network traffic condition. In the experiment of (Tipsuwan and Chow, 

2004b, Tipsuwan and Chow, 2004a), it is used to measure the distribution of network 

time-delay and find the best parameter for feedback preprocessor and gain scheduler.  

 

FIGURE 8: Block diagram of GSM module designed by Tipsuwan and Chow for network 

delay compensation (Tipsuwan and Chow, 2004b) 

 Other Important Control Methodologies 2.6.6

Robust control methodology applies robust control theory into the design of 

network controller. The main advantage of this approach is there is no need for priori 

information of network delays probability distributions as stated in (Tipsuwan and Chow, 

2003, Goktas, 2000). 

Fuzzy logic modulation methodology proposed by Almutairi applied fuzz logic 

into the compensation of network induced delay in controlling a DC motor (Zadeh, 1965, 

Almutairi et al., 2001, Almutairi and Chow, 2001). 

2.7  Stability Condition 

Like time-delay systems, the stability condition of NCS is usually inferred from 

Lyapunov functional. 

Zhang and Branicky el al. (2001) discussed the stability of NCSs with n sensors as 
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depicted in FIGURE 4. The analysis is divided in two cases: total network induced 

delay(           ) less than sample interval and total network induce delay longer than 

sample interval. The conclusions and stability region    are given in each case mentioned 

above. The case of sample interval shorter than network induced delay is much more 

complicated than other one. 

Gao and Chen et al. (2008) discussed a direct structure NCS with bounded delays.  

This article firstly defined a new Lyapunov-krasovskii functional which make full use on 

       and       . Based on a network model with logarithmic quantizer and bounded 

disturbance, the new stability conditions are given in LMI form. 

2.8  Some Open Problems 

Since the research on NCS is still in infancy, there are a lot of opening problems. 

However, most of the research on NCS so far is on stability condition. The performance 

and the design of controller has been overlooked as stated in (Antsaklis and Baillieul, 

2007). 

It’s mentioned in (Wu et al., 2002, Gupta and Chow, 2010, Yang, 2006) that the 

further research might includes: 

i. Real-time performance is very important part of NCS. Because of the bandwidth, 

dropout, end bit error of NCS, there are a lot of problems need to solve with different 

protocol. 

ii. Techniques for evaluating the structure of the NCS. 

iii. Inter-operability and integration techniques. 

iv. Dynamic neuron-fuzzy modeling for NCSs. 

v. Design theory and optimal scheduling method. 
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vi. Security and reliability of NCSs, especially real-time secured control. The 

network, especially wireless network, is very easy to be intercepted. The security need to 

be great concerned in the application e.g., nuclear reactor power plant, space projects. The 

survey of those security issues in industrial automation is given in (Dacfey Dzung et al., 

2005). 

vii. Middleware technical of NCS. It is the base technology of intelligent space as 

depicted in FIGURE 9. The compatible OSs of NCS middleware include AlphaOS (Yang 

et al., 2005), Autosar (Heinecke and Bielefeld, 2006). 

viii. Multi-agent traffic control: With the help of technologies e.g., GPS, 

electronics atlas (Google map). E.g. safe vehicle operation in multithreaded 

environment stated in (Murray, 2009). 

 

 

FIGURE 9: Conceptual diagram of iSpace – another example/application NCS (Gupta et 

al., 2008) 
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 PERFORMANCE OPTIMIZATION OF REMOTE NETWORKED CHAPTER 3: 

CONTROL SYSTEMS VIA MODEL REDUCTION METHOD 

 

 

This chapter is organized as follows. Section A provides the problem formulation, 

including a brief description of the switched NCS structure with our MRDC. Section B 

mainly presents the our theorems on the exponential stability condition of non-switched 

NCS with MDRC in B.1, and the exponential stability condition of switched NCS with 

MDRC in B.2.  Section C discusses the optimization problem and methods. Section D 

presents examples to demonstrate the results. 

3.1  Problem Formulation 

This dissertation considers a typical switched NCSs structure with our Model 

Reduction Data Compressor (MRDC) depicted as FIGURE 10. A similar non-switched 

NCS application without MRDC was applied in (Gao et al., 2008). Our MRDC contains 

three parts: (1) Balancing Transform, (2) Truncator, and (3) Balancing Inverse Transform. 

In this closed-loop NCS, sampler is assumed to be clock-driven, while other components 

like quantizer, balancing transform, truncator, balancing inverse transform, controller, 

network and zero-order hold (ZOH) are all event-driven. 

This dissertation considers the remote system:  

 ̇                        

                         (28) 
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where           is the system state vector at the time  ; matrices        ,    

    ,       ,        are the system matrices;         is the control input;      

is the output of this plant;            is switching signal with   {       }. For 

the simplicity of denotation,   is equivalent to      without explanation, and     is the 

delayed switching signal over the downlink. 

 
FIGURE 10: Structure NCS with Model Reduction 

Without loss of generality, the following two assumptions are held for subsystem 

  of (28): 

i. (     ) is controllable,  and 

ii.    has full column rank. 

The switching signal throughout the closed-loop NCS satisfies the switching 

sequence {                                        } with     , which means 

the  -th subsystem is activated when   [        . 
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The sampling period of sampler is denoted by  , which is a positive real constant. 

We assume the  -th sample of the feedback states vector      is                . It 

is assumed that the measured  -th sample       is immediately sent to quantizer for the 

quantization process without delay.  

To digitize the value of the sampled state vector, the quantization process is 

achieved via the quantizer. The quantization function of the sampled state vector is 

characterized by 

     [                ]
 , (29) 

where symmetric function      ,         is the quantizer function for  -th state 

satisfying              .  

Then, for each sampling instant   , we have the quantization output  

 ̂     [  (      )   (      )    (      )]
 

. (30) 

Now denote the quantization levels of       by a set    

   {     
 
 |                 },         (31) 

where      are the upper & lower bounds of quantized levels. 

In this dissertation, we choose the logarithmic quantizer similar to (Elia and 

Mitter, 2001, Fu and Xie, 2005, Gao et al., 2008).  Our logarithmic quantization levels of 

      has the form  

   {     
 
    

 
 |   

 
     

 
              }      

      ,       
 
   (32) 

The associated quantizer       of the  -th state is described as follows: 
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where          , and  

   
    

    
,  

 

    
 

    

 
,   

 

    
 

    

   
. 

Then, every quantized sample  ̂      (     )  can be represented by 

∑     (    (     )) 
    bits binary code, where         returns the next round up integer 

value, e.g.,           returns integer 3.  

Before introducing MRDC, we firstly briefly introduce the balanced-truncation 

method (BTM) (Wang and Wang, 2008, Zhou and Doyle, 1998, Gugercin and Antoulas, 

2004). The brief algorithm of BTM is as follows. 

Consider an  -th order system   {       }. 

i. Compute controllability Gramian    by solving        
        ; 

ii. Compute observability Gramian    by solving                ; 

iii. Decompose     into   
    ; 

iv. Apply singular value decomposition on       
     

   
 , where 

      {     }      
 is a diagonal matrix with      ,     , and  ∑   

 
     ; 

v. The balancing transform matrix          
   

  , and   
        

    ; 

vi. The balanced realization    of the system   is denoted by    

{          }  {     
          

    }. 

vii. Then, the truncated  -th order reduced system is 

    {             }  {{  }            {  }      {  }       }, where     consists of 
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the first   rows and first   columns of    ,     consists of the first   rows of    ,     

consists the first   colmuns of   .  ∑   
 
   ; 

viii. It has been proved that the error    between the   and the reduced 

system     satisfies 

   ‖           ‖   ∑   
 
       (34) 

where      and        are the transfer functions of   and     respectively. 

Remark 2: From the algorithm of BTM, denote the state vector of the original system 

  {       } by     . It can be easily derived that the state vector of the  -th order 

truncated system     is                , where        {                 }. 

Remark 3: The transformation        generally is to transform the state vector of the 

original system based on the “importance”.  The          is to remove the “unimportant” 

information from the vector state in the view of the system structure. The smaller   of    

results larger    in (34). As for    ,     . 

Remark 4: In FIGURE 10, the structure of the original remote plant is not altered by the 

MRDC. The ideas behind MRDC are (i) to calculate the balanced transform matrices 

         for each switching sub-system; (ii) to transform the quantized sample state 

vector  ̂               by balancing transform matrices          based on current 

sub-system; (iii) to truncate the “unimportant” information from the      ̂       

          ; (iv) to transmit the truncated data; (v) to recover the truncated state vector 

before sending to controller by appending     zeros to the truncated state vector and 

pre-multiplying       

  . 

In the switched systems, we can apply the above BTM algorithm to each 
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sub-system   to calculate the balancing transform matrices         . The truncator 

matrix of sub-system     is denoted by          {      
  (     ) (     )}  

    , where    {         } is truncated order of the sub-system  . 

It needs to be noticed that the switching signal has to be transmitted with every 

packet over the downlink & uplink. As for the controlled system with only one sub-system, 

the switching signal does not need to be attached to the packet. 

The truncated data  ̂       is then packed into a packet with time stamp, and   

value, and transmitted via the networks. In the special case that switched systems have only 

one sub-system, then, the   value can be ignored. The packet in network medium might be 

delayed or lost due to connection or congestion issue. Without loss of generality, it is 

assumed that (i) the networks are best-effort delivery, e.g., UDP protocol; (ii) if a packet 

with a larger time stamp than the expected time stamp arrives, we use it and treat the 

expected packet as the lost packet;   and (iii) if a packet with smaller time stamp than the 

received one arrives, we just disregard it because it is a too late (i.e., old) packet.   

Assume there is no delay on the balancing inverse transform and the controller 

computation, or they are so small and can be omitted. Once the data is arrived, both the 

balancing inverse transform and the controller will be triggered. Denote        to be the 

c-th successfully arrived states vector, where              is the updating instance of 

both the balancing inverse transform and the controller. We assume        is automatically 

appended     zeros before the balancing inverse transform. An example of packet 

transmission from the truncator to the balancing inverse transform over the downlink is 

depicted as FIGURE 11.  In this example, there is a packet loss between     and    , 

it can be caused by either  ̂       arrive earlier than   ̂       or the packet contains 
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 ̂       dropouts during the transmission. 

 
FIGURE 11: Data transmission from truncator to the balancing inverse transform over the 

downlink 

Denote the balancing inverse transform and the controller by       

        and 

    
     with       respectively. Then, the output of the controller at the updating 

instant   ,         is calculated by     
      

           . Similarly, this control input 

data is then packed into a packet with a timestamp and sent to ZOH over the uplink. It needs 

to be noticed that there is no treatment on control signal, i.e., the data transmitted on uplink. 

In application, the control signal size l is usually much less than the system size n, 

especially for large-scale systems.  

Assume the uplink (receiver side) will drop the control input data which is not 

same to its current running subsystem. Then, from the input-output point of view, the 

model from the truncator to the ZOH in FIGURE 10 is equivalent to the model depicted in 

FIGURE 12. The rest of this dissertation will be based on this equivalent model without 

explanation. Furthermore, all the components with switching signal can be regarded to 

work in the same switching signal under this assumption. 

𝒙 𝒃𝒓 𝒌𝑻 : 
𝑥𝑏𝑟    𝑥𝑏𝑟 𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟 4𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟 6𝑇  

𝒙  𝒕𝒄 : 𝑐    𝑐    

  

𝑐    𝑐  4 

Network w. 

delay and 

packet loss: 
 

𝑐                          𝑡 
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FIGURE 12: Equivalent model from the truncator to the ZOH from the input-output data 

point of view 

The p-th updating instant of the ZOH in FIGURE 10 is denoted by             

The p-th successful arrived control signal over the downlink & uplink is described by 

  (  )    (  )
    (  ) , where   (  )  mathematically represents the p-th successful 

transmitted states vector over the downlink & uplink (however,   (  )  is not really 

transmitted over the uplink, only the control signal is transmitted).   It needs to be noticed 

here that we consider this denotation from truncator to ZOH over the downlink & uplink. 

Because the ZOH is event-driven, the ZOH will hold the value of   (  )    (  )
    (  ) until 

a new value is updated. In the real application, the time-delay of switched systems is much 

smaller compare to the average dwell time of each sub-system. Meanwhile, we have 

assumed earlier that the receiver side of the uplink will drop the control signal which is not 

same to its current running subsystem. Therefore, the control input      that the value 

ZOH holds satisfies 

           
    (  ),           (35) 

An example of the data transmission from the truncator to the ZOH on network 

medium is depicted as FIGURE 13. This example is related to the example in FIGURE 11. 

From these two figures, it is noticed that the packet     drops on the downlink, and 

Controller: 𝐾𝛽 

Zero Order Hold �̂�𝑏𝑟 𝑘𝑇  

Downlink w. delay and packet loss 

Uplink w. delay and packet loss 

Balancing Inverse Transform: 

𝑇𝑏 𝛽
   

𝐾𝛽𝑇𝑏 𝛽
  𝑥 (𝑡𝑝) 𝑝        
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packet   4 drops on the uplink. 

Since we assume that the time-delays on all the components except networks are 

ignored, the delays on the closed-loop NCS are from the networked induced delays.  

We denote the network induced delay of the  -th successfully arrived packet from 

truncator to ZOH by   . It satisfies 

               (36) 

where      is the minimum delay,      denotes the maximum delay of the  -th packet 

from the quantifier to the ZOH. The truncator order      of each sub-system can be 

different. It might results in different packet size between each sub-system. In most of the 

existing networks, the average packet transfer time is increased by the packet size. It could 

result in different network time delay range among sub-systems due to their different 

packet sizes. 

Therefore, the control input      satisfies 

           
            ( (     )),           (37) 

where    is the p-th updating instant of ZOH,      is the balancing transform matrix of the 

subsystem  ,      is the truncator order of the sub-system  . 

For simplicity, we denote  

          
          . (38) 

Then, the closed-loop system can be represented by 

 ̇                      ( (     )) (39) 

with          . 
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FIGURE 13: Data transmission from the truncator to ZOH over the downlink & uplink 

Remark 5: In the MRDC, if the truncator       , i.e., no data is truncated, then 

          
            . 

Denote the accumulated packet loss at the updating instant      since    by      

satisifying       ̅, where  ̅ is the maximum accumulated packet loss over the downlink 

& uplink from truncator to ZOH. 

Considering the packet loss between the  -th and the      -th packets at ZOH, 

we can easily derive that the updating interval satisfies 

        (      )          (40) 

where   is the sampling interval,    and      are network induced delays of the  -th and 

the      -th successfully arrived packet from the truncator to the ZOH respectively. 

It can be inferred from (39) that 

 ̇                      ( (            )) 
(41) 

where                   , and          ̅       ̅              

according to (39) and (40),   is the sampling interval. 

According to logarithmic quantizer (30)-(33) and (Elia and Mitter, 2001, Gao et 

al., 2008, Fu and Xie, 2005), (41) can be represented by  

 ̇                     (      ) (            ) (42) 

𝑥𝑏𝑟 𝑘𝑇 : 
𝑥𝑏𝑟    𝑥𝑏𝑟 𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟 4𝑇  𝑥𝑏𝑟  𝑇  𝑥𝑏𝑟 6𝑇  

𝐾𝛽𝑇𝑏 𝛽
  𝑥 (𝑡𝑝): 

𝑝    𝑝    

  

𝑝    𝑝  4              𝑡 

  

Network w. 

delay and 

packet loss: 
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where 

         {                   },       [      ]. (43) 

Remark 6: The NCS described in (Gao et al., 2008) is our special case with our number of 

subsystems    , and        . 

The following definitions and Lemmas will be used in the proof of main results. 

Definition 4: (Sun et al., 2006) The equilibrium      of the switched systems (41) is said 

to be exponentially stable under      if the trajectory of the solution      satisfies 

‖    ‖   ‖     ‖  
               (44) 

for    ,    , and ‖    ‖             (      ̅ )    {        ̇     }. 

Definition 5: (Liberzon, 2003, Wu et al., 2011) For any        , let           denote 

the number of switching of       over (      . If                         hold 

for      and     ,    is called the average dwell time. 

As it is commonly used in literatures, we choose      in the Definition 5. 

Lemma 1: (Schur, 1917) Given a symmetric matrix   [
      

      
] , where its 

sub-matrices have respective appropriate dimensions,  and        
 , then the following 

two properties are equivalent: 

    (45) 

     ,           
        (46) 

Lemma 2: (Gao et al., 2008, Sanchez and Perez, 1999) For appropriate dimension matrices 

     and     ,          
            leads to inequality      

        

   . 
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3.2  Stability Analysis 

This section presents the exponential stability condition of the NCSs. 

 Non-Switched System 3.2.1

We firstly discuss our non-switched NCS with the MRDC. 

Non-switched NCS is a special case of switched NCSs in (42) with        or 

  { }.  From (42) we can get the non-switched NCS with the MRDC as follows 

 ̇                (      )   (         ) (47) 

with         ̅      ̅         and                [     ̅  ] ,   is 

omitted because it is a constant value in the non-switched NCS.  

This subsection presents two cases for the non-switched NCS. In the first case, the 

controller is fixed. In applications, the controllers of some systems can be high cost to be 

adjusted or replaced. For this kind of system, our MRDC behaves like a “booster”, i.e., 

other components including controller do not need to do any adjustment at all. The 

adjustment parameter is the   (truncator order) of MRDC. The second case is that the 

controller   is adjustable in the design process, i.e., both    and   can be 

adjusted/searched for the performance optimization. 

The first theorem is the exponential stability condition for the NCS with the 

MRDC and fixed controller  . This theorem has been accepted (Bai and Wang, 2014a, Bai 

and Wang, 2014b) but without the proof.  

Theorem 4: For a given constant    , the closed loop-system (47) with controller   is 

exponentially stable, if there exist positive definite matrices  ,  ,   ,   ,  ,   ,  , and 

any appropriate dimensional matrices  ,  ,  ,  , and satisfying 
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  [

           

      
       

     

]   . (48) 

where 

      
     

[
 
 
 
 
                      

           

      

            ̅   ]
 
 
 
 

 ,  

    [    ], 

    [       ] [      ], 

        {   
       ̅        ̅      (    ̅)

  
  }, 

        {   
       ̅      (    ̅)

  
  }, 

   [             ] , 

   [  
         ] ,    [      ]

     , 

          ,            ̅   ,             ̅   . 

Proof:  

Denote a Lyapunov-Krasovskii functional as 

                       (49) 

where 

                 

      ∫                     
 

    
 ∫                     

 

      ̅
  

      ∫ ∫  ̇              ̇     
 

   
  

 

   
  

 ∫ ∫  ̇              ̇     
 

   
  

   

     ̅
 ∫ ∫  ̇              ̇     

 

   
  

 

     ̅
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The derivative of       

 ̇             ̇   

        [           (      )   (         )] 
(50) 

 ̇                                                

               (      ̅)        ̅    (      ̅) 

(51) 

 ̇              ̇    [      ̅   (    ̅)  ] ̇    

 ∫ [ ̇            ̇   ]  
 

    
 ∫ [ ̇            ̅    ̇   ]  

    

         
  

 ∫ [ ̇            ̅    ̇   ]  
         

      ̅

 ∫ [ ̇            ̅    ̇   ]  
 

      ̅

 
(52) 

For appropriately dimensioned matrices T, U, V, W,               4  via 

Newton-Leibniz formula.   

         (             ∫  ̇     
 

    
)  

         (         (         )  ∫  ̇     
    

         
)  

         ( (         )   (      ̅)  ∫  ̇     
         

      ̅
)  

         (      (      ̅)  ∫  ̇     
 

      ̅
)  

      [               (         )   (      ̅)] (53) 

Then we have 

             4 
(54) 

where 

   ∫   
     

    
 

    
  , where              ̇   , 

   ∫   
     

    
    

         
  , where              ̇   ,    
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   ∫   
     

    
         

      ̅
  , where              ̇   , 

   ∫   
     

    
 

      ̅
  , where              ̇   . 

Our first goal is to prove 

 ̇            (55) 

It is straightforward that 

 ̇           ̇          ∑     ∑      (56) 

By Shur’s complement,  ̇          ∑     ∑       is equivalent to 

   [
   

         
   

     
     

]    (57) 

where 

   
      

     

 

[
 
 
 
 
                      (      )  

           
    

            ̅   ]
 
 
 
 

 

   
    [       (      )  ]

 
[      ], 

   ,     and     are from (48). 

For any matrix    , the following inequality is held. 

       
   

     
    

    
     (58) 

where    [  
    

 ] ,    [     ],    [           ]. 

It can be inferred from (57) and (58) that     leads to      and (55) by 

Schur complement.   

Our next goal is to prove the exponential stability. The inequality (55) can be 
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derived from    . By integrate both side of (55), it can be easily derived that 

                   . (59) 

Then, it gives 

 ‖    ‖                       ‖     ‖  
         (60) 

where 

          (61) 

                     (    ̅)         
  

 

 
         

 (
 ̅ 

 
  ̅  )          

(    ̅)
 

 
         

(62) 

It leads to the following inequality 

‖    ‖  √
 

 
  

 
 
      ‖     ‖           (63) 

where initial time    is usually defined to be 0. 

Therefore, the closed loop system (47) with controller   is exponentially stable.   

The second theorem can be used to find a controller   under the exponential 

stability condition. 

Theorem 5: For a given constant    , the closed loop system (47) with      is 

exponentially stable, if there exist positive definite matrices  ̃, ̃ ,  ̃ ,  ̃ ,  ̃ ,  ̃ ,  ̃, and 

any appropriate dimensional matrices  ̃,  ̃,  ̃,  ̃,  ̃, and satisfying 

   

[
 
 
 
    

   
   

   
   

   
  

   

    
     

     
     

   

     ̃ ]
 
 
 
 

  , (64) 

where controller   is solved to be    ̃ ̃  , and 
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[
 
 
 
 
  ̃   ̃    ̃   ̃    ̃    ̃  

        ̃   

     ̃  

            ̅  ̃ ]
 
 
 
 

  ̃ 
   ̃ , 

 ̃  [ ̃   ̃  ̃   ̃  ̃   ̃   ̃   ̃] , 

   
         {  

       ( ̃    ̃)  ̅           ̅ ( ̃    ̃)    

  ̅           ̅ ( ̃    ̃)  (    ̅)
  

        ̅ ( ̃    ̃)}, 

   
        {   

   ̃    ̅   ̃   (    ̅)
  

 ̃ },  

   
    [ ̃  ̃  ̃  ̃],    

    [  ̃    ̃  ]
 [   ], 

  
    [ ̃      ]

 ,   
    [   ]   ̃. 

Similarly to Theorem 4, denote  

 ̃          (65) 

 ̃                     (    ̅)         

 
  

 

 
         (

 ̅ 

 
  ̅  )          

(    ̅)
 

 
         

(66) 

where    ̃  ,      ̃        ,     ̃ 
          . 

Then, the following inequality holds 

‖    ‖  √
 ̃

 ̃
  

 

 
      ‖     ‖          . (67) 

Proof: 

For the full-order system     , it has      
        . 

Pre and post multiply     {           }  to (48), where 

          {               },         {  
     

     
  },       .  

Denote  ̃     ;  ̃        
        ;  ̃    

          ;  ̃         ; 
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 ̃    ̃; [ ̃  ̃  ̃  ̃]    [    ]  . 

Then, inequality (48) is equivalent to 

   

[
 
 
 
    

   
   

   
   

   
  

   

    
     

     
     

   

     ̃ ]
 
 
 
 

   (68) 

where 

   
    

    {   
        ̃ ̃ 

  ̃   ̅           ̅  ̃ ̃ 
   ̃   ̅           ̅  ̃ ̃ 

   ̃  (   

 ̅)
  

        ̅  ̃ ̃ 
   ̃}. 

By Lemma 2,   ̃ ̃ 
  ̃  ( ̃    ̃),        , then    

       
   

, and    

  .  

After the   is designed by Theorem 5, the Theorem 4 can be applied to design the 

truncator order  . 

 Switched Systems 3.2.2

We now consider the switched NCS. Similarly to the non-switched NCS, we 

firstly give the switched system with fixed controller    in Theorem 6.  

In the following Theorems 6 and 7 we firstly denote the minimum delay and 

maximum delay of the switched NCSs by 

      
   

(    ) (69) 

 ̅     
   

(      ̅ )     (70) 

Then, the delay of each subsystem is between    and  ̅. 

Theorem 6: For the given constants     ,    , the switched NCS (42) with controller 
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   is exponentially stable, if (i) there exist positive definite matrices   ,    ,     ,     ,     , 

    ,   , and any appropriate dimensional matrices   ,   ,   ,   , and satisfying 

     

[
 
 
 
 
      

        
        

       
   

      
     

       
       

   

      ]
 
 
 
 
 

  ,    , (71) 

and (ii) average dwell time of switching signal satisfying  

   
   

 
,    ,          , and (72) 

      ,           ,           ,           ,                      ,  

      . 
(73) 

where 

     
        

       

 

[
 
 
 
 
       

                              

              

    
    

             ̅     ]
 
 
 
 

,  

     
    [        ],      

    [            ] [            ],  

   
        {   

         ̅        (    ̅)
  

    }, 

     [                     ]
 , 

      
   

     {   
               ̅           ̅        ̅ 

           ̅      

 (    ̅)
  

         ̅     },      
    [    

   
   

      ]
 

,  

    
    [            ]         . 

Proof:  

Define a piecewise Lyapunov-Krasovskii functional candidate as 
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                                          (74) 

where  

                       

           ∫                       
 

    
 ∫                       

 

      ̅
  

           ∫ ∫  ̇                ̇     
 

   
  

 

   
  

 ∫ ∫  ̇                ̇     
 

   
  

   

     ̅
 ∫ ∫  ̇                ̇     

 

   
  

 

     ̅
  

Also we define another piecewise Lyapunov-Krasovskii functional candidate as 

 ̃                    ̃           ̃          (75) 

where 

 ̃          ∫                         
 

    
 ∫                         

 

      ̅
  

 ̃          ∫ ∫  ̇                  ̇     
 

   
  

 

   
  

 ∫ ∫  ̇                  ̇     
 

   
  

   

     ̅
 ∫ ∫  ̇                  ̇     

 

   
  

 

     ̅
  

During the time range   [        , it is obvious that           ̃         . 

Furthermore, similar to (49) - (52), we can easily derive  ̇                  
  ̃       

  
 

   ̃       . The satisfaction of LMIs (71) can guarantee 
  ̃       

  
       ̃         , 

which results in  

 ̇                   ,    [         (76) 

According to (59), (71), (72) and (76), during the time range   [         

                        
     (77) 

For any switching instance   , we have  
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        (  

 )   
  ,         (78) 

and  

                     (  
 )   

                   (    
 )     

   

                    
      

 (  
     
  

)            
     (79) 

with                      . 

Denote  

      
    

         (80) 

      
    

              
    

    (    )  (    ̅)   
    

    (    ) 

 
  

 

 
   
    

    (    )  (
 ̅ 

 
  ̅  )   

    
    (    )

 
 

 
(    ̅)

 
   
    

    (    ) 

(81) 

We can derive: 

           ‖    ‖
  (82) 

      
       ‖     ‖ 

  (83) 

From (79)-(83) we have 

‖    ‖  
 

  
         

 

  
 
 (  

   
  

)            
    

 
  
  

 
 (  

   
  

)      ‖     ‖ 
  

(84) 

  

Remark 7: From (84), it is obvious that the state trajectory decay satisfying 

‖    ‖  √
  
  

 
 
 
 
(  

   
  

)      ‖     ‖  
(85) 

Remark 8: For switched systems satisfying Theorem 6, the Lyapunov-Krasovskii 

functional hold the following inequality. 
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 ̇             ,    . (86) 

The following theorem is to solve the controller    for the switched NCSs (42) in 

the case that the controller is adjustable. 

Theorem 7: For the given constants     ,    , the switched NCS (42) with      is 

exponentially stable, if (i) there exist positive definite matrices  ̃ , ̃   ,  ̃   ,  ̃   ,  ̃   ,  ̃   , 

 ̃ , and any appropriate dimensional matrices  ̃ ,  ̃ ,  ̃ ,  ̃ , ̃  and satisfying 

     

[
 
 
 
 
      

        
        

       
   

      
     

       
       

   

      ]
 
 
 
 
 

  ,    , (87) 

and (ii) average dwell time of switching signal satisfying  

   
   

 
,     ,          , and (88) 

 ̃    ̃ ,   ̃      ̃   ,  ̃      ̃   ,  ̃      ̃   ,  ̃      ̃   ,  ̃      ̃   ,  

      . (89) 

where 

   
   

 

[
 
 
 
 
   ̃   ̃   

     ̃     ̃       ̃     ̃  

         ̃     

     ̃  

             ̅  ̃   ]
 
 
 
 

 

 ̃   
   ̃   ,  ̃  [ ̃   ̃  ̃   ̃  ̃   ̃   ̃   ̃ ]

 , 

   
    

     {  
        ( ̃      ̃ )  ̅

           ̅ ( ̃      ̃ )  ̅           ̅ ( ̃      ̃ ) 

(    ̅)
  

         ̅ ( ̃      ̃ )}, 

   
        {   

   ̃      ̅   ̃     (    ̅)
  

 ̃   }, 
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    [ ̃  ̃  ̃  ̃ ],     

    [   ̃ 
     ̃  ] [   ],    

    
   

    ,   
    [ ̃ 

   
    ]  ,   

    [   ]    ̃ . 

Then, the controllers of switched NCS is designed to be     ̃  ̃ 
  . 

Proof: The proof is similar with the proofs of theorems 5 and 6.    

3.3  Performance Optimization Analysis 

It is obviously that truncating more order will result in less data transmission. In 

the network, a shorter data needs less time to transmit. Meanwhile, in the shared network, 

this saved network bandwidth can be utilized for more tasks. For some packet based 

networks, especially TCP/IP, the longer packets will usually result in larger packet loss rate 

(Korhonen and Wang, 2005).  

Our objective is to maximize   of the switched NCSs with the right truncator 

order vector for each subsystem, or maximize   of non-switched NCS with the right 

truncator order. 

In our general system depicted in FIGURE 10, the system state vector      is 

converted by matrix     , then the unimportant system states are removed by the truncator. 

Without loss of generality, we assume that the network delay is a function of packet size. 

The packet size of each system is a function of   ,    , which is the remaining order of 

the states. Then the network delay is the function of reduced order   . 

Notation       is the minimum delay, and  ̅    is the upper bound of network 

delay. Our optimization problem becomes how to find the optimized truncator order 

sequence   ,     to maximize the decay rate   for stability. 

We use   to evaluate the performance of the NCS, because larger   usually means 

larger decay rate of      and      in view of (44).  
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We consider two kinds of cases in this dissertation. In the first case, the controller 

       is fixed. It might be because of the high cost of adjusting/changing. In this case, 

our MRDC is “booster” to this kind of system. It can boost the performance without 

changing any devices. In the second case, the controller        can be altered. The 

following algorithms are all offline search algorithm. 

The algorithm to find the optimized    for the fixed controllers        is as 

follows: 

PROC find_the_optimized_   

Denote the order of all the sub-systems by vector [          ] 

 Permute all the possible order sequence and save to set ORDERS  

      = -1 

 FOR EACH sequence [          ] in ORDERS 

  Evaluate   ,  ̅ for switched NCSs in vector [          ] by Eqs. (69) and (70) 

  Initialize a vector [          ] for switched NCSs 

FOR EACH       /*For each system   */ 

   = Calculate_the_largest_ ( ,   ,   ,  ̅)   /* time efficiency can be greatly improved by caching the 

previous results */ 

  END FOR 

  Store the pair {[          ] [          ]} into set S 

END FOR 

       = -1  /*temp variable*/ 

 FOR EACH pair  {[          ] [          ]} in set S 

        =min([          ]) /*Calculate the minimum   */ 

  IF       <       

         =        

   Cache the order sequence to [          ]        

  END IF 

 END FOR 

 IF          -1 

  RETURN       and  [          ]       /*return the best orders sequence*/  

 ELSE 

  RETURN -1 /*instable switched NCSs*/ 

 END IF 

END PROC 
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The function Calculate_the_largest_  is defined as 

/*system_index   ; order: order to be tested;   : minimal delay;  ̅: maximum delay range; K: controller*/ 

FUNCTION Calculate_the_largest_  (system_index, order,   ,  ̅, K)   

 /*Initialize*/ 

 lower_bound = 0 /*lower bound to search   */ 

 upper_bound = 10e5  /*upper_bound to search   */ 

 DO 

  mid = (lower_bound + upper_bound)/2  /*Bisection Search*/ 

  IF “ =mid” satisfies the Theorem 6 for system[system_index]   

   lower_bound = mid 

  ELSE 

   upper_bound = mid 

  END IF 

 WHILE upper_bound - lower_bound > 1e-4 /*stop criteria*/ 

If “ =lower_bound” satisfies the Theorem 6 for system[system_index]   

RETURN lower_bound 

ELSE 

RETURN -1  /*instable system return -1*/ 

END IF 

END PROC 

 

For the second case with adjustable controller in the design process, the algorithm 

to find the optimized    sequence is as follows: 

PROC find_the_optimized_  _with_adjustable_Controller 

Denote the order of all the sub-systems by vector [          ] 

 Permute all the possible order sequence and save to set ORDERS 

      = -1 

 FOR EACH sequence [          ] in ORDERS 

  Evaluate   ,  ̅ for switched NCSs in vector [          ] by Eqs. (69) and (70) 

  Initialize a vector [          ] for switched NCSs 

FOR EACH       /*For each system   */ 

      = find_  ( ,   ,  ̅) 

   = Calculate_the_largest_ ( ,   ,   ,  ̅,   )   /* time efficiency can be greatly improved by caching the 

previous results */ 

  END FOR 

  Store triplet {[          ] [          ] [          ]} into set S 

END FOR 

       = -1  /*temp variable*/ 

 FOR EACH triplet {[          ] [          ] [          ]} in set S 
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        =min([          ]) /*Calculate the minimum   */ 

  IF       <       

         =        

   Cache the pair to {[          ] [          ]}        

  END IF 

 END FOR 

 IF          -1 

  RETURN       and  {[          ] [          ]}       /*return the best orders sequence & controllers */  

 ELSE 

  RETURN -1 /*instable switched NCSs*/ 

 END IF 

END PROC 

The function find_   is defined as 

PROC find_  ( ,   ,  ̅) 

/*Initialize*/ 

lower_bound = 0   /* lower bound of    */ 

upper_bound = 10e5  /* upper_bound of    */ 

DO 

mid = (lower_bound + upper_bound) / 2 /*Bisection Search*/ 

IF “ =mid” satisfies the Theorem 7 for system[i] /*Theorem 2 for non-switched NCS*/ 

   Get    for system   by Theorem 7 

   lower_bound = mid 

  ELSE 

   upper_bound = mid 

  END IF 

WHILE upper_bound - lower_bound <1e-4 /*stop criteria*/ 

RETURN     

END PROC 

3.4  Examples 

To illustrate the theorems of this dissertation, we choose two examples. The first 

example is non-switched NCS. It can be regarded as switched NCS with only one 

subsystem. The second example is switched NCSs with two subsystems. 

 Example 1 3.4.1

We firstly consider non-switching case. In applications, the concerned systems are 

usually of very high order, e.g., there are hundreds of orders in aircraft. The benefit of 
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truncated data can be very significant. Due to the page limit, we choose a part from an 

aircraft to be controlled. The remote control plant transfer function considered in this 

example is a 6th order representation of the C5A aircraft wing referred from a NASA 

report (Harvey and Pope, 1978). 

  

[
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   44      44 4       4    4    4 4     6  
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            6       6        4 4      4       64 ]

 
 
 
 
 

 

    

[             6        4      

            4               
                              

                       6      ] , 

    ,        ,    [
               
                

], 

       [          4      ]   [     ̅  ] 

The data link and physic layer of the downlink & uplink we assume are based on 

long range RF media. The upper level protocol is best-effort packet delivery. We assume 

the max total packet loss on both the downlink & uplink is  ̅   . As it is described earlier, 

either the packet loss on the downlink & uplink will be considered to be total packet loss. 

For the similarity of comparison, we do not consider the relationship between packet size 

and drop rate, although the reduced packet size can usually improve the drop rate. On the 

downlink, we assume (1) the head of the packet, including packet counter, time stamp, and 

switching signal, takes 36 bits; (2) every state takes 16 bits; (3) the bit rate is   

  6      ; (4) the propagation delay (include the time like queue waiting time) of a 

successful packet is between 5ms and 8ms; (5) sampling interval is      . Then, the 

packet size on the uplink of the above full-order system is     6   6  6       . 
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Because the packet size on the uplink is fixed, we assume the packet transmit time on the 

uplink is between 23ms and 30ms. The total transmission time over the downlink & uplink 

is calculated as follows. 

Assume the transmission delay of the  -th successful transmitted packet    

satisfies  

            
 

 
                    

 

 
 (90) 

By considering the drop loss and (41), the ZOH updating interval         

satisfies 

               ̅ (91) 

where  ̅          . 

3.4.1.1 Fixed Controller 

We firstly consider a fixed controller 

       [
   44        6     4        66
       6              4    6 

] (92) 

For the better comparison, the time-delay variation and packet drop rate are 

pre-generated and are the same in each simulation. Moreover, the parameters of quantizer 

     are chosen to be        . 

Firstly, calculate the    and   
   by BTM method introduced in Section A. The 

next step is to apply PROC find_the_optimized_   in section C. The result shows the 

maximum         can be achieved at   4, the data transmitted saved by 24.24% on 

the downlink. The      settling time is reduced from 3.19s to 3.06s. The system vector 

trajectories      are depicted in Figures 14 & 15. 
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FIGURE 14: The      trajectory of the original 6th order system 

 
FIGURE 15: The      trajectory of with MRDC 

In this example, we can find that the introduction of MRDC can significantly save 

data transmitted without changing any other parameters in other parts. 

3.4.1.2 Adjustable Controller 

Here we consider the case with adjustable controller. From the offline calculation, 

the maximum         can be achieved at     with data reduced by 36.4% on the 

downlink. The settling time of      is further reduced to 2.23s. The   is solved to be 

       [
   6        64              4
         4   6    44          

] (93) 

The system vector trajectories      are depicted in FIGURE 16. 

 

FIGURE 16: The      trajectory of the adjustable controller with MRDC at     
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 Example 2 3.4.2

   We consider the switched NCS example with two sub-systems from (Safonov 

and Chiang, 1989).  

In the first sub-system, 

   

[
 
 
 
 
 
 
 
 
 
 6           
           
            
           
             
           
           
         4    
           
           ]

 
 
 
 
 
 
 
 
 

 

  
  [             

             ],     ,          

The second sub-system {           }  is same as the first sub-system 

{           } except the element           .  

The initial states of switched NCS is assumed to be 

      [    6    6   4                  ] 

  [     ̅  ] 

The downlink & uplink are via a controller area network (CAN) with 1,000 meters 

long in the interference. The upper level protocol is best-effort packet delivery. The 

maximum total packet loss on both downlink & uplink is  ̅   . On the downlink, we 

assume (1) the packet head size is same as in the example 1; (2) the bit rate to be 

         ;(3) the propagation delay (include queue waiting time) of a successful 

packet is between 5ms and 7ms; (4) sampling interval      . The packet size on the 

downlink of the above full-order system is     6   6           . On the uplink we 
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assume the time needed is between 10ms and 14ms. The parameters of quantizer      are 

       . The simulation time is from 0s to 30s. 

3.4.2.1 Fixed Controllers 

We first consider the fixed controller. Controllers of the two sub-systems    and 

   are assumed to be 

   [         6           4           6
    6          6              6              

                       6          4      

             6                        ] (94) 

   [                     4           6
    6                       6 6             

                                       

             4            4            ] (95) 

Calculate the      and     
  ,      . Then, apply the optimization algorithm for the 

fixed controller in the Section C. The maximum                  4  can be 

achieved at truncator order sequence (    ,     ) of this switched NCSs.  

In the simulation, we choose the switch signal as 

     {
  
 
     

                           
                           

 (96) 

By comparing with the original systems, the simulation result shows that the 

settling time is reduced to 0.845s from 0.940s while the transmitted data are reduced by 

73.5% as depicted in Figures 17& 18. 

It needs to be noticed that the simulation time is from 0s to 30s, however, the   

axle of the following figures are from 0s to 2.5s because the      trajectory converge 

before 1.5s. 
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FIGURE 17: The      trajectory of the fixed controller without the MRDC 

 

FIGURE 18: The      trajectory of the fixed controller w. the MRDC at      and      

3.4.2.2 Adjustable Controllers 

We then illustrate the switched NCS with adjustable controllers in the design 

process. 

The largest                  6  can be achieved at the truncator order 

combination (    ,     ) of this switched NCS. 

   [      6    4     4       4            
  66                  4      6       

  

       6                     

                         4     ] (97) 

   [    4       6                      
                                                  

        6             4               

          4 4      6                  4   
] (98) 

The convergence time to 0.02 is sharply reduced to 0.635s from 9.940s by 

FIGURE 19. 
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FIGURE 19: The      trajectory of the flexible controller of switched NCS with the 

MRDC 

 



 

 

 

 

 

 

 

 ROBUST SLIDING MODE CONTROL OF GENERAL TIME-VARYING CHAPTER 4: 

DELAY   STOCHASTIC SYSTEMS WITH STRUCTURAL UNCERTAINTIES 

 

 

This chapter is about the robust sliding mode control of general time-varying delay 

stochastic systems with structural uncertainties. This chapter is organized as follows. 

Section A provides the problem formulation, including a brief description of the 

considered general uncertain stochastic system and the robustly stochastic stability. The 

Section B presents the SVD method for system structural uncertainties in B.1, the sliding 

mode controller design in B.2, the theorems on the robust stability condition in B.3. The 

reachability analysis of the switching surface in Section C. Comparisons between the 

proposed methods and the existing methods are provided in Section D. Section E presents 

examples for the results. 

4.1  Problem Formulation 

In this section, we present the problem formulation of general uncertain stochastic 

systems that we are treating. It is a kind of general stochastic systems with time-varying 

delay and structural uncertainties established on the probability space          as 

described in (Niu et al., 2005) with the Itô form as  

      [(       )     (         ) (      )   (              )]   

  [(       )     (         ) (      )]      

                        [    ], (99) 

where           is the system state vector;           is the control input;      is a 
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one-dimensional Brownian motion with  {     }    and  {[     ] }    ; matrices 

      ,        ,       ,        , and        are known constant 

matrices; matrix B is a full column rank matrix; matrices           ,            , 

          , and             are unknown time-varying uncertain matrices; 

             represents unknown state-dependent uncertain non-linear function vector; 

and      is the time-varying delay. 

Without loss of generality, the following four assumptions are held for system (1): 

1)  ‖         ‖   ‖    ‖, with constant      

2)          ̅        ̇        ;  

3)       is controllable                                                                                      (100) 

The above-mentioned structural uncertainties of system (99) are represented in 

practical and flexible forms as follows: 

      ∑        
  
   ,                    (101) 

       ∑           

   

   
,   |       |    (102) 

      ∑        
  
   ,                                                   (103) 

       ∑           

   
   ,    |       |                                   (104) 

where   ,    ,   , and     are constant matrices representing the uncertainty structures; 

     ,        ,       and         are time-varying uncertain parameters. Without loss of 

generality, the absolute values of the time-varying uncertain parameters are bounded by  . 

The goal is to design a controller with SMC to robustly stabilize the uncertain time-delay 

stochastic system (99). The stability of stochastic systems is defined below, where 

Definition 6 can be found in (Xu and Chen, 2002), but we modify it by ‖    ‖ to replace  
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      . The operator ‖ ‖ denotes ‖ ‖  in the rest of the dissertation. 

Definition 6: The nominal system of the uncertain system (99) with        is said to be 

mean-square stable if for any     there is a        such that  [‖    ‖ ]    for all 

   when           [‖    ‖]      . If, in addition,        [‖    ‖ ]    for all 

initial conditions, then the nominal time-delay stochastic system is said to be mean-square 

asymptotically stable. 

Definition 7: The uncertain stochastic system in (99) is said to be robustly stochastically 

stable if the system is mean-square asymptotically stable for all admissible uncertainties. 

The following two Lemmas will be used in the proof of main results. 

Lemma 3. (Utkin, 1993) Let    and    be matrices with approximate dimensions, and    

be a symmetric matrix satisfying         and    .  Then the following inequality 

exists: 

  
        

        
        

          
          

                     (105) 

4.2   Stability Analysis for Uncertain Stochastic Systems 

This section presents new less-conservative control method for system (99). At 

first, we apply the SVD to structural uncertainties in section B.1, and introduce a design of 

sliding mode control in B.2. Then, several new less-conservative conditions are derived to 

find robust controller for system (99) in section B.3. We prove the switching surface 

       reachable with probability 1 in B.4.  

 Efficient Structural Uncertainties Decomposition 4.2.1

We apply the SVD method to the structural uncertainties in (101)-(104) as in 

(Wang et al., 1993, Wang et al., 2001, Wang, 2003).  Then, the structural uncertainty 

      in (101) can be decomposed and represented as follows: 
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                (106) 

where    [              ] ,    [    
     

       
 ]

 
,            , 

        , from the SVD method,           {                    
     }, and the 

identity matrix   has its appropriate dimension.  

Similarly to (106), other uncertainty structural matrices       ,       and 

       can also be decomposed and represented as: 

          
   

      
                       

 (107) 

                                   (108) 

          
   

      
                       

 (109) 

where 

   
     {                          

    }  

       {                       }, 

   
     {                          

    }. 

Remark 9.The uncertainty treatment in (106)–(108) is more flexible and less conservative 

than the normal treatment as pointed out by Wang et al. (1998) in the literature, and that 

leads to less conservative result. 

It should be noticed that the description of structural uncertainties in (101)-(104) 

or (106)–(108) (e.g.,       ∑        
  
   )  may seem to have relation with  the        

form as commonly used in    control (de Souza and Li, 1999, Zhou et al., 1995, Xie et al., 

1992). However, as shown in (Wang and Bai, 2012, Wang et al., 1998), they are not 

equivalent because the common EFH form binds different structural uncertainties, e.g., 

  ,    ,    and/or so on, that leads to conservatism and large size matrices. Furthermore, 
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their matrices E and H are not from the SVD.  Thus, our treatment makes difference and 

leads to less conservative results.  

 Sliding Mode Controller Design 4.2.2

As the first step of the SMC design, its switching surface function is defined as the 

following form, similar to (Niu et al., 2005, Chang and Wang, 1999), 

           ∫              
 

 
                              (110) 

where      [                ]      ;      is the system state vector; A 

and B are the matrices in (99); G is chosen to make    as non-singular as specified in 

(111) below; and   is the control feedback matrix to be determined. The value of      

depends not only on the current states but also on the historical states from time 0 to the 

current time t. 

The following stochastic integral equation is derived by substituting       in (1a) 

into (110) 

           ∫ [
 

 

                  (         ) (      ) 

   (              )]   ∫   [
 

 

(       )    

 (         ) (      )]      (111) 

The Browne motion part of (111) can be eliminated by choosing         

 . Then we have  

 ̇                      (         ) (      )    (              ) (112) 

Similar to (Niu et al., 2005), matrix   is chosen to be the following form to 

guarantee the non-singularity of    as 
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     ,         (113) 

Once the system state vector reaches to the predefined switching surface  

      , the system will enter the sliding mode with  ̇     . Hence, by calculating 

    from  ̇     , the equivalent control law        is  

               [          

 (         ) (      )]                                  (114) 

By substituting      in system (99) by        in (114), the system dynamic equation 

is 

      [                (      )]   

  [(       )     (         ) (      )]   

               (115) 

where  

                               

                        (         ) 

                              

      (       )                                

      [           ] 

In view of (114), we select the control in (116) for the sliding mode controller as 

follows 

                    (116) 

                   (      )         (117) 

              (    )   (118) 

where         is derived from the equivalent control rule in (114) for the nominal system 
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of (1) without all uncertainties,      is the switching gain,       is the switching control 

part, that is able to overcome the system uncertainties in sliding mode control, and         

is the sign function. 

Due to                for the uncertain system (un-nominal system), the states 

cannot retain on the switching surface. However,       can force the state vector toward 

      . Therefore, the total control input (116) can hold the states within a certain range 

around the switching surface. 

Remark 10. Here, without loss of generality, we assume that  (      ) is known by the 

controller, either for the case of known time delay      as a time trigger signal, or for the 

case of unknown time delay but as an event trigger signal. The latter means that the value 

of      may not need to be exactly known, while the value  (      ) is known or 

received. 

Remark 11. In (111), the condition of         nonsigular needs matrix B to be a 

full-column rank matrix. It is because   is a non-singular matrix. The condition    

       implies that D is not a full rank matrix. In practical applications, we may 

release this constraint by choosing the trace of    to be a much small value. 

The SMC design needs to achieve two goals: (i) the system states trajectory should 

globally reach the switching surface       , i.e.,      ̇     , and(ii) the system 

dynamics (19) on the switching surface is robustly stochastically stable. We address these 

two goals in the following sections. 

 Robust Sliding Mode Control via LMI Approach 4.2.3

Based on the above SVD on uncertainty structures in B.1, we derive the following 

stability theorems. First, we treat a case with  ̇        in Theorem 8, and then we treat 
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a general case with  ̇         in Theorems 9-11 

Theorem 8. The system (99)-(100) with control (114) and  ̇        is robustly 

stochastically stable, if there exist positive definite matrices   and  , and positive 

adjustable scalars    ,    ,   ,    ,     (         and          
) satisfying 

   

[
 
 
 
 
             
       
         

       
       ]

 
 
 
 

  , and                       (119) 

where matrix    is a symmetric matrix with symbol  as its symmetric part for simplicity,  

    [
     

   
]      {∑         

      
  
       ∑          

       
   

   
}, 

    [ ̅     ̅     [     ]], 

    [
  √   
   

   
],     [

       

  
],     [

     
     

 

   

], 

        {      },         {            },  

        {                                
 },  

        {                               
 }, 

                    ∑ (       
     )

  
          

   

    ∑ (        
      )

   

   
             

    


       [     ]
     [     ] ̅  [   ]

Proof:  Choose a Lyapunov function candidate for system (1) as 

                                 (120) 

where 
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           ∫             
 

      

 

According to Itô’s formula, the following stochastic differential equation can be derived: 

                                                             (121) 

where 

                         
 

 
      

  
 
     

  
  

        [                (      )]  

      [  ̅     ̅]  [  ̅     ̅]      

         [(       )     (         ) (      )]      

                       (   ̇   )  (      )  (      )  

     [       (      )]
 

,   ̅  [        ]  [               
      

] , 

and                         
       

 are in  (106) –(109). 

Denote: 

                                         (      )             

      [  ̅     ̅]  [  ̅     ̅]     (   ̇   )  (      )  (      ) (122) 

For any                and                 
, the following matrix 

inequalities (123)– (126) hold in view of  (101)– (109) and (113), similar to (Niu et al., 

2005): 

                                                                  (123) 
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                (         ) (      )                         

   (      )  (         )
 
 (         ) (      ) (124) 

                 ∑(   
                

      )

  

   

 ∑(    
        

         )

  

   

 
(125) 

              (      )

 ∑(   
                  

      )

   

   

 ∑(    
 (      )     

       (      ))

   

   

 
(126) 

In (119), let     . By selecting a suitable     , we have the following 

inequality from Lemma 3. 

[  ̅     ̅]  [  ̅     ̅]     ̅      ̅ 

  ̅     [     ]  
  [     ]

      ̅    [
   
    

]
 

[
   
    

] (127) 

Substituting (123)–(127) into              and applying Schur complement, we 

have  

                      (128) 

where 

  [
     

   
]    [

  
    

    

    

]   ̅      ̅

  ̅      [     ]  
  [     ]

      ̅ 

                                         

 ∑(   
           

  )

  

   

 ∑(       
     )

  

   

 ∑(   
             

  )
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   ∑ (        
      )

   

   
        (         )

 
 (         ). 

Since     , by applying Schur complement, inequality     is equivalent to 

the following LMI: 

   

[
 
 
 
 
    

      
      

      
   

    
     

     
    

      
   

]
 
 
 
 
 

   (129) 

where 

   
   

 [
     

   
], 

   
        [ ̅     ̅     [     ]], 

   
    [

     √   

 (  
     

    )  
], 

   
   

     [
       

  
], 

   
            {      }, 

   
            {            }, 

   
            {                                

 }. 

The uncertain part of matrix    satisfies 

∑      (         (        )
 
)

  

   

 ∑        (           (          )
 
)

   

   
 

   ∑(           
      

      
     )

  

   

 ∑(              
      

       
      )

   

   

 
(130) 
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where 

     [    {U     }    ]
 
,      [      {    

      }  ] 

      [    {       }    ]
 

,      [      {       
    }  ]. 

Therefore, we have inequality (131) from (129) –(130): 

      

[
 
 
 
 
    

      
      

      
   

    
     

     
    

      
   

]
 
 
 
 
 

                   (131) 

where 

   
       

         {∑        
     

  
    ∑         

      
   

   
}, 

   
            {∑    

           
  

  
    ∑    

             
  

   

   
  }, 

   
       ,   

       
   

,   
       ,   

       . 

Then, LMI      is equivalent to      by Schur complement in Lemma 1. 

Therefore, when (119) holds, the control (114) guarantees the selected Lyapunov function 

(120) to have its derivative (121) negative along the state trajectory for all admissive 

uncertainties and time varying delay, i.e., system (99) is robustly stable. It completes the 

proof.    

Now, we consider the general case with  ̇        , where     is allowed.  

When    , it makes the term (   ̇   )  (      )  (      )  in (121) as a 

positive definite or semi-positive definite term in    , which is related to the time delay 

from the Lyapunov functional.  Thus, we develop a new Lyapunov-type functional for this 

general case.  First, we derive Theorem 9 below. 

Theorem 9. (Wang, 2013) Consider system (99)-(100) with  ̇         and      
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 ̅. If we choose a Lyapunov-type functional 

           ∫ ∫             
 

   

 

  ̅

 (132) 

then the following inequality holds 

             ̅                    (      (      ))    

  ̅                                               

(133) 

where matrix    ,matrix   [  
   

 ]  is any appropriate size matrix, and  

 ̅              ̅     [  ̅     ̅]  [  ̅     ̅]       , 

     [       (      )]
 
,   ̅  [   ],    ̅  [        ] 

Proof: For general system in (99)-(100), we take a new Lyapunov-type functional 

           in (132).  For any appropriate size matrix   [  
   

 ] , it is true to have  

    as 

           [      (      )  ∫      
 

      
]                   (134) 

Then, let  

                  (135) 

By applying Itô’s integral rule and (134)– (135), we have  

             ̅               ∫       
 

      

 

          ∫      
 

      

  ̅                     

  ̅                    (      (      ))   

  ̅                     (136) 

where 

 ̅              ̅     [  ̅     ̅]  [  ̅     ̅]        
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if we drop higher order infinitesimal items. It completes the proof.   

Now we present a new result for the general case of time-varying delay with any 

finite change rate, i.e.,  ̇          

Theorem 10. The system (99)-(100) with control (114) and  ̇         is robustly 

stochastically stable, if there exist matrices    ,    , and    , any appropriate size 

matrix   [  
   

 ] , and positive adjustable scalars    ,    ,   ,    ,    ,    

(         and          
) satisfying 

   [

   
   

   
   

   
   

    
   

 

     
   

]   , and            (137) 

where 

   
   

     [
  

          
 

    
    

]      { ̅    
        ̅     

    
}, 

   
    [          ],    

    √ ̅[ ̅      ̅     [     ]], 

   
    [

      
        

      
      

],    
   

     {         }, 

       [     ]
     [     ].  

   ,    ,    ,    ,    ,    ,    ,    , and     are the same as in Theorem 8. 

Proof: Choose a Lyapunov-type functional candidate for system (99)-(100) as 

                                                                (138) 

where             and            are in (120), and            in (132).  

Thus, from (136) in Theorem 9 and (138), the following inequality holds: 
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         [(       )     (         ) (      )]                 

(139) 

where 

                              (      (      )) 

   ̅                    ̅     [  ̅     ̅]  [  ̅     ̅]      

Let      in (134). By selecting a suitable adjustable scalar     , we have a 

similar result to (127) as 

[  ̅     ̅]  [  ̅     ̅]   ̅      ̅ 

  ̅      [     ]  
  [     ]

      ̅     [
   
    

]
 

[
   
    

] 
(140) 

Substitute (140) into (139) and apply Schur complement to it. Then we have  

                        (141) 

and want to prove     , where 

     [
     

       
 

       
 ]   ̅ ̅      ̅    ̅  [

  
    

    

    

] 

   ̅           ̅ ̅      [     ]  
  [     ]

      ̅, 

  is in (128). 

Since      , and     , the inequality      is equivalent to      by 

Schur complement. It completes the proof.    

In view of Theorem 9 that can deal with general time-varying delay, the 

Lyapunov-type functional can also be chosen as                                 , 

i.e., without above           .Then we can derive the following theorem. 

Theorem 11. The system (99)-(100) with control (114) and  ̇         is robustly 
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stochastically stable, if there exist matrices    ,    , any appropriate size matrix 

  [  
   

 ] , and positive adjustable scalars    ,    ,   ,    ,    ,    (         

and          
) satisfying 

   [

   
   

   
   

   
   

    
   

 

     
   

]   , and                              (142) 

where 

   
   

 [
     

   
]  [

  
          

 

    
    

]      { ̅    
        ̅     

    
} 

      {∑         
      

  
       ∑          

       
   

   
}, 

                    ∑ (       
     )

  
        

   

    ∑ (        
      )
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,   
       

   
,   

   
    

   
 

   
   

,    
   

,    
   

 and    
   

 are in Theorem 10. 

Proof: Because the Lyapunov-type functional is selected as                      , it 

leads to setting     in Theorem 10.  Thus, the remaining proof is straightforward. 

Matrices    and    are equivalent to    and    with     in    
   

, i.e., in     (24), 

respectively. And, the all remaining block-matrices in    are the same as those 

corresponding ones in    of Theorem 10.   

4.3  Controller and Reachability Analysis 

The above sub-section discusses the robustly stochastic stability of the system (99) 

on the switching surface       . Here we design the controller to globally drive the 

system states trajectory to the switching surface.  
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Theorem 12. The reachability in probability 1 to the switching surface        for the 

states of system (99)-(100) can be guaranteed by controller (116) with      as: 

       ‖         ‖  ‖      ‖   ‖          
‖ 

 ‖   
 (      )‖   ‖    ‖,       (143) 

Proof: Define a Lyapunov functional candidate        
 

 
               . The       is 

nonnegative from its definition. It is straightforward to derive: 

 ̇                 [                      ] 

      (        (    )           ) 

 ‖    ‖  [‖         ‖  ‖      ‖  ‖          
‖ 

 ‖   
 (      )‖]      ‖    ‖   ‖    ‖  ‖    ‖  (144) 

because of ‖    ‖  ‖    ‖ . By substituting      in (143) into (144), it leads to 

 ̇     ‖    ‖    , if       , because       Thus, the control in (116)-(118) with 

     in (143) guarantees the system states toward the switching surface       . It 

completes the proof.     

Theorem 12 states that the state vector of system (99)-(100) will globally be driven 

to the pre-determined switching surface        by the control in (116)-(118) and (144).  

In this dissertation, we choose two kinds of  . One is positive constant    

       , e.g., 0.5. In this choice, the obvious high frequency chatter in      with a main 

amplitude   may be observed in the face of time varying uncertainties. The chattering 

depends on the system uncertainties and their time varying behavior. To reduce the chatter, 

we choose another form of   as 

    ‖    ‖
       (145) 

where      is the switching surface function, and    and    are positive constants. This 
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choice makes      as the state vector is not on the switching surface       . As the 

state vector is close to          is also reduced in (145), and not as constant, that leads 

to small chatter amplitudes. Therefore, the chatter of      can also be reduced. 

4.4  Comparison 

In the above sections, we have described the structural uncertainties in a practical 

and flexible form, and introduced a group of adjustable parameters in Theorem 8 and 

Theorems 9-10 to easily find the available matrix X in Theorems by the LMI for the 

controller design. To show the advantage of the method, we compare our method with the 

previous methods by a theoretical analysis as follows. 

In the existing methods, the uncertainties are usually described in a binding format 

as usually noticed in H∞ control and robust control (Niu et al., 2005, Yu and Chu, 1999, de 

Souza and Li, 1999, Xie et al., 1992), e.g.,  

[       ]         [     ], (146) 

[       ]         [     ]                                      (147) 

  
                 .                                               (148) 

Because this treatment lets the uncertainties    and     share a same   , and    

and     share a same   , therefore it has less flexibility than our proposed method. When 

the uncertainties have a practical format as (101)-(104), similar to (Wang et al., 2001), the 

previous methods need to treat structural matrices                 and     in larger 

sizes in their format than our SVD decomposed matrices     ,     ,       ,       ,      ,     , 

     ,      , and even   ,   ,    
,     

,    ,   ,    
,    

in (106)-(109).  For example, we 

can have the followings 
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   [     ]   [     ] (149) 

   [
  

 
]    [

 
   

]   [
  

 
]      [

 
   

] (150) 

where   is appropriate dimensional zero matrix, and the above (149)-(150) clearly show 

that the proposed method reduces the matrices sizes for the treatment. 

To avoid the confliction of variable names, the variable names in the previous 

methods are marked with “~” on the head.   

Proposition 1: The method in (Niu et al., 2005) with (149)-(150) may be observed as a 

special case of the proposed method in view of new Theorem 8 as 

  ̃        ̃        ̃    ,     ̃         ,        ,                     (151) 

Proof:  The proof is straightforward in (119) by substituting  scalars    ,   ,  ,   ,     

(          and          
) with    ,    ,    , and    , in (145).  It is observed by 

comparing  (119) with the equation (13) in (Niu et al., 2005).   

Remark 12.  Proposition 1 clearly shows that the previous method has restrictions on the 

adjustable parameters, i.e., it forces to use the same one adjustable parameter   ̃ for all 

various uncertainty structural matrices in     and one same   ̃ for all various uncertainty 

structural matrices in    , and even one   ̃ for all different uncertainty structural matrices 

in both    and    . However, our method treats them by various adjustable parameters (i) 

   ,         , instead of one         ̃), (ii)    ,          , instead of one          ̃ , 

and (iii)             , and                instead of one    (or   ̃). Even for a very 

special situation, e.g.,      and      , the proposed method is still more flexible in 

view of    and    for    and    , respectively, to replace one    for both    and    .  

Remark 13. The new proposed method further deletes one additional LMI condition (14) of 
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(Niu et al., 2005) to search solution matrix   in Theorem 8. It makes the method further 

effective.  That additional condition (14) is to check matrices       and    . 

Corollary 1. The proposed method Theorem 8 also improves the previous methods in (Yu 

and Chu, 1999, de Souza and Li, 1999) by reducing the conservatism and the matrix sizes 

of structural uncertainties, when the problems can be treated by these methods and models.  

Proof:  The proof is similar to the proof in Proposition 1. In view of (149)-(150), it is 

observed that the matrix size of structural uncertainties will be reduced.    

Remark 14. For Theorem 10 in (Yu and Chu, 1999), our Theorem 8 can release the 

combination of    and          in (Yu and Chu, 1999), and further provide flexibility by 

various adjustable parameters             , and                instead of one   (or 

 ̃). 

Remark 15.  For Theorem 3.2 in (de Souza and Li, 1999), our Theorem 8 may provide 

flexibility by various adjustable parameters             , instead of one          

   ), and                 instead of one                in (de Souza and Li, 1999). 

After we have derived Theorem 9, we notice that Chen et al. (2008) Chen et al. 

(2008) also considered general case of  ̇     . However, the approach to solve this 

problem is different. The following Remark 16 states the difference as a brief highlight.  In 

Section 4.5  Examples, a performance comparison on their example is presented.  

Remark 16. It is noticed that the Lyapunov functional            and           in this 

dissertation and (Chen et al., 2008), as well as many other papers (which usually consider 

the case of  ̇     ) in the literature, are respectively same as common. However, in order 

to deal with the general case of  ̇     , our Theorem 9 (with Theorems 10–11) 

introduces a new Lyapunov-type functional for stochastic time-delay systems as   
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           ∫ ∫             
 

   

 

  ̅

 (152) 

that considers whole       during the period with Brownian motion part. In (Chen et al., 

2008), their corresponding            is as  

             ̅ ∫ ∫               
 

   

 

  ̅

 (153) 

where      is in (115), that considers only the part without Brownian motion.  

It is better to consider the whole              than only the partial            

in (115) because the considered system is a stochastic system which is also driven and 

affected by the Brownian motion part, and the goal of selecting Lyapunov-type functional 

is to check the stability and/or the speed toward the stable state. Thus, to consider 

             is physically meaningful for dynamic systems and stochastic systems, 

where   is a positive-definite matrix,      is the system state vector, and       represents 

the state-vector change rate. So, the development of new Lyapunov-type functional (152) 

is practical and suitable, especially for the analysis and synthesis of general stochastic 

systems with time-varying delay and uncertainties.  

4.5  Examples 

In this section, we present examples to show the proposed method and to compare 

it with other methods.  

First, consider a system (99)-(100) with its parameters as follows: 

  [
           
           6
         6

],   [
          
      4
          

],  [
    
    
6   6

], 

  [
          
           4

],    [
        
         

],  [
       
  4    
       

], 
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               [
       

        
       

]            [
     
      
   

] 

                [
         
       
       

], 

         4       [
       
           
   

]            [
       
      
          

] 

                [
            
   
   

], 

               [
         4      
         4      

]    4        [
             6
            6

] 

                [
         6
          6

], 

                      [
        

       
]            

 [
             

        
]    4      [

             
        

] 

          [          ],   ̅   , 

The matrix      needs to be Hurwitz stable, so we choose   as   

  [
      4
       

]. 

Matrices   ,    ,   ,    
,   ,    

,    and    
 are calculated by the SVD method 

(106)-(109). 

In Example 1.A, we apply Theorem 8 to a case with a time-varying delay 

                  , i.e.,  ̇           . 

 Example 1.A 4.5.1

Consider the above described uncertain time-varying delay stochastic system and 

check the stability by Theorem 8. To solve controller in (116), we convert the linear 
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equation        in (119) into an LMI form. It is equivalent to   [           ]  

 . Then, it is to find the minimum   of the matrix inequality               , which 

can be solved by “mincx” solver in the Matlab LMI toolbox (Gahinet et al., 2011). 

In order to compare it with the previous methods, we select the matrices according 

to (149)-(150) in Section D. The “mincx” solver in Matlab cannot find   and   for a 

solution by the previous methods (Niu et al., 2005, de Souza and Li, 1999). However, the 

new method in Theorem 8 is able to find the result as: 

  [
        4    6 
    4 4      4 6
   6    4 6      

]         [
                
                
             4 4

]      ,  

and all adjustable scalars    ,    ,   ,    ,     (         and          
) are positive. 

Also,             , so the constraint       approximately holds. 

Take the control of (116)-(118) and (143) with the calculated    and       

from Theorems 8 and 12, and      6.  

In simulation, we take the initial value      [  6      ] ,   [    ], and 

the simulation time as  [   ] sec.  The simulation results are shown in the following 

figures. Three different      are randomly generated by random seeds 1, 2, and 3.  Two 

kinds of   are chosen as above described in section C. Firstly, let      . The trajectories 

of the state vector      are shown in FIGURE 20. 

Figures 21 and 22 show     and      , respectively. The high frequency chatter of 

    with amplitude 0.5 can be observed after     in FIGURE 20. To reduce the chatter, 

we choose     ‖    ‖    , i.e.,     ,    4 in (145). Its simulation results are shown 

in Figures 23-25. They show that the time-varying delay stochastic system with structural 

uncertainties is robustly stable. The chatter of      is significantly reduced, however, it 
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takes a little bit more time to reach to the switching surface        than a constant 

     . 

Further simulation in the above example without       and           has been 

done for the methods in (Yu and Chu, 1999, de Souza and Li, 1999) without    such that 

the simplified example fits all these methods in view of differences. The simulation results 

show that (i) No LMI solution in Theorem 3.2 of (de Souza and Li, 1999); and (ii) Our 

method has some improvement in the performance compared with the result from (Yu and 

Chu, 1999) (e.g., the convergence speed is increased, the settling time is reduced by 4%, 

and the overshot is reduced by 11%), that is from our flexible solution space and different 

control rule (Yu and Chu, 1999, de Souza and Li, 1999). 

 
FIGURE 20:      with       and     in random seeds 1, 2, 3 and without chattering 

reduction 

 
FIGURE 21:      with       and       in random seed 3 and without chattering 

reduction 
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FIGURE 22:      with       and       in random seed 3 and without chattering 

reduction 

 
FIGURE 23: Trajectory      with various      in random seeds 1, 2, 3 and chattering 

reduction 

 
FIGURE 24:     with a flexible   and     in random seed 3 and chattering reduction 

 

FIGURE 25:      with a flexible   and       in random seed 3 and chattering reduction 

 Example 1.B 4.5.2

Consider the same system in Example 1.A, and apply Theorem 10 to the problem. 

We can get               with    6        , so the constraint       
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approximately holds. 

The solutions of  ,  ,  , and  are: 

  [
           
    6       
              

]             [
      4     
   4   4     
            

]      . 

  [
  4        4 
    6       
   4        4 

]     ,   [
    4         4
             
   4         4

]     ,  

   [
   4         4
            
    4         4

]     ,  

and all adjustable scalars    ,    ,   ,    ,    ,    (          and          
) are 

positive. The Trajectory      with      in random seed 3 is shown in FIGURE 26. 

 

FIGURE 26: Trajectory      with     in random seed 3 and chattering reduction 

 

FIGURE 27:      with a flexible   and      in random seed 3 and chattering reduction 

Remark 17. It is noticed that the overshoot of trajectory      by Theorem 10 in this case is 

reduced by comparing with Theorem 8. 

 Example 2 4.5.3

Consider a system with the same parameters as in Example 1, except      
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       4      , which leads  ̇      and      .Now, we apply Theorem 10 to 

this example. In this case, we have                with               , so the 

constraint        approximately holds. 

The solutions of  ,  ,  , and  are: 

  [
      4    6
   4 4 6    46
   6    4     

]             [
            4
             
   4          

]      . 

  [
  4        4 
    6       
   4        4 

]     ,    [
    4         4
             
   4         4

]     ,  

   [
   4         4
            
    4         4

]     ,   

and all adjustable scalars    ,    ,   ,    ,    ,    (          and          
) are 

positive. 

The simulation parameters, including random seed 3 and chatter reduction 

treatment, are chosen as same as in Example 1, except      as mentioned above. Figures 28 

and 29 show the simulation results by Theorem 10.  

 

FIGURE 28: Trajectory      with      in random seed 3 and chattering reduction 
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FIGURE 29:      with a flexible   and       in random seed 3 and chattering reduction 

The above simulation results in Figures 28 and 29 demonstrate that the proposed 

theoretical results of Theorems 9 and 10 work very well on stability of the uncertain 

stochastic systems with general time varying delay. 

 Example 3 (Chen et al., 2008) 4.5.4

Consider a system from (99)-(100) without control      and nonlinear uncertain 

item          , i.e., as same as in example 1 of (Chen et al., 2008): 

      [(       )     (         ) (      )] 

 [(       )     (         ) (      )]     ,                  [  ̅  ] 

  [
   
     

],        [
   
        

], 

[          ]       [                ],    ,            . 

In this example, the goal is to find the admissible upper bound  ̅ of time-varying 

delay for two cases: 

Case I: time-varying delay      is differentiable with an upper bound h of the 

delay derivative, i.e.,   ̇       ,  and 

Case II: time-varying delay      is continuous and uniformly bounded by  ̅ as in 

(100).  

We apply our Theorem 9 to the above problem, i.e., to use our            in (152) 
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instead of their             in (153) as stated in Remark 16. It may also be seen as 

applying a simplified Theorem 10 to the system (99)-(100) with       ,            , 

   , and simple uncertainties for this example (no SVD is needed).  The comparison of 

the maximal admissible bound  ̅ of time-varying delay is listed in TABLE 2. 

TABLE 2:  The maximal admissible bound  ̅ of time-varying delay 

 ̅                  0   0.5   0.9     Any   

 ̅ via Theorem 9,  

Case I 

9.7249 6.9185 4.9631 4.6548 __ 

 ̅  via Theorem 9, 

Case II  

__ __ __ __ 4.6548 

 ̅, Case I (Chen et al., 

2008) 

1.7075 1.1398 0.7678 0.6769 __ 

  ̅Case II (Chen et al., 

2008) 

__ __ __ __ 0.6769 

 ̅,Case I  

(Gao et al., 2003, Yue 

and Han, 2005) 

No 

conclusion 

No  

conclusion 

No  

conclusion 

  

 

Remark 18. It is noticed that our new results from Theorem 9 (and Theorem 10) are better 

than those in (Chen et al., 2008),  and those only to treat the case with  ̇        in 

(Gao et al., 2003, Yue and Han, 2005) where no conclusion can be made as cited in (Chen 

et al., 2008). Our new method also leads to better and larger admissible bounds  ̅ for other 

examples in (Chen et al., 2008) than the existing methods in the literature.  

 



 

 

 

 

 

 CONCLUSION CHAPTER 5: 

 

 

In this dissertation, the brief survey of NCSs is presented in chapter 2.  

In chapter 3, a BTM based data compressor is proposed.  The sufficient condition 

of the exponential stability has been derived for both the switched NCSs and non-switched 

NCS with the MRDC in fixed controller and/or flexible controller cases. Furthermore, we 

show that the introduction of the MRDC with the reduced order search is no worse than the 

original NCSs.  Furthermore, an optimization of exponential decay   is discussed. The 

example shows that the introduction of MRDC can not only save the bandwidth, but also 

boost the performance of NCS.  

The chapter 4 discusses a flexible robust SMC method for general uncertain 

stochastic systems with time-varying delay and structural uncertainties is developed to 

reduce conservatism. By the SVD decomposition on the structural uncertainties, a 

less-conservative condition in LMI for the robust control design has been derived. The 

robust control in the proposed method can globally drive the state trajectories toward the 

preselected switching surface.  Furthermore, a new Lyapunov-type functional for general 

stochastic systems with general time-varying delay is proposed, and based on that new 

robust stability results are derived via Itô’s integral rule. It is proved that the new methods 

have more flexibility and less conservatism. 
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