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ABSTRACT

ADITI GAUR. Software memory controller design : issues and challenges.
(Under the direction of DR. RON SASS)

As the memory wall becomes an obstacle in the multi-core architecture, many

hardware solutions have been proposed to utilize the available memory bandwidth

more e�ciently. One such implementation uses a B-tree based controller implemented

in hardware to manage a memory subsystem. This thesis investigates various design

factors and design decisions to implement the B-tree controller purely in software

running on a generic soft-core or a hard-core processor. It investigates why software is

slower and what factors if changed, can make it a feasible solution, it at all, and finally

present an environment in which software can become competitive to hardware.
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CHAPTER 1: INTRODUCTION

Understanding the design decisions involves taking into account various factor that

contribute to an optimal design. The decision to implement a certain functionality

in hardware or software is commonly referred to as Hardware-Software Co-Design.

Often common assumptions can be counter intuitive. A motivating example in this

regard is the concept of memory wall.

1.1 Memory Wall

Memory hierarchy as applied to a multi-core environment raises new challenges as

it tries to solve the old ones. The tried and tested approach towards hiding memory

latency imposes severe cost paid by wasted memory bandwidth, extensive data move-

ment and consequent energy considerations. These issues lead us to an important

roadblock in multi-core architecture namely the Memory Wall [1].

Highly parallel architectures have high bandwidth requirements and the illusion of

hiding latency is often not enough. Usage of caches, o↵er disadvantages of excessive

data movement, and increased demands on energy. Extra circuitry used to handle

cache hits and misses as well as replacement becomes too complex in a multi-core

environment. Bandwidth is ine�ciently utilized as atomic unit of transfer in a cache is

only the cache line, which typically is much lesser than memory bandwidth available.

The passivity of caches lies in the fact that it cannot e↵ectively use the available

bandwidth [2], especially when it doesn’t need to. For example in case of a cache

miss, it might make an o↵ chip access. But with all subsequent hits, it will not

do any useful work to maximize the use of available bandwidth. For multi-core

architectures this could mean that o↵ chip accesses could be made in bursts of cycles

where all cores are starving for bandwidth, whereas in other cycles bandwidth remains
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completely unused. Thus the use of memory bandwidth is non uniform. Simple

data caches thus employ a short term strategy, with no long term goal in sight.

For such architectures, the performance hence becomes memory bound [2]. In this

environment, many researchers have consensus for the need of a more flatter hierarchy

that optimizes data movement and use bandwidth more e�ciently, thus employing a

more long term strategy and not making the cores starve for data at any point.

1.2 Memory Controller Design

A novel hardware memory controller design was proposed as part of another study

[3] that satisfies the need of a flatter hierarchy, while achieving low latency in opera-

tions in the backdrop of a multi-core architecture. The controller is fully implemented

in hardware, with a B-tree based controller for managing the pool of data that can

be looked up using keys. The hardware implementation of the B-tree uses on-chip

resources ( BRAM’s, LUT’s) to manage large payloads to various cores. The main

aim is to not only provide low latency flatter hierarchy, but to also manage the ex-

ternal memory channels more e↵ectively. This implementation serves to prove that

the hardware design of the controller is feasible and will not limit the performance of

the multi-core architecture. The hardware B-tree model access times are very close

to theoretical access times, which further increases the scope of this design.

1.3 The Design Space

Hardware/Software co-design involves making choices between implementing spe-

cific functionality in hardware (i.e HDL, or using dedicated hardware support) or

software (C++ or similar) [4]. A common assumption is that hardware is always

faster than software and that the fundamental engineering trade-o↵ is speed versus

resource utilization. While true, in actuality design space is much more complex.

Often with reconfigurable devices such as an FPGA, the maximum clock frequencies

possible for the processor and custom hardware are drastically di↵erent, sometimes

by one or two orders of magnitude di↵erent. There are many other subtle di↵erences
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beyond just clocking speeds. For example some algorithm ( or data structure) may

produce di↵erent memory access patterns, have di↵erent overhead delays, access or

ignore on-chip resources, may or may not use the hardware e�ciently. This ren-

ders navigating the design space as fairly complex and specific to the needs of the

application.

To better understand the nature of what design decisions have the most impact,

we studied the B-tree data structure with the core operations of insert and lookup.

Specifically since the core of the hardware memory controller implemented on an

FPGA described above relies on the B-tree controller for its main set of operations.

The question we asked was, how would a software-only implementation (using an

on-chip soft or hard processor) fare in memory controller design? Can we simply

transfer some or most of the hardware functionality to the software and instead keep

the hardware generic? With a goal of managing 10,000 to 40,000 key-value pairs, this

requires a detailed analysis of the trade-o↵ involved and specifically where exactly we

pay the price.

We anticipated that the software would be slower but by quantifying how slow

exactly and characterizing the root causes would be valuable for future co-designers

for applications that use B-tree or related data structures. We want to know if

improvements are even worth trying for and if yes, then what are the upper limits.

How far can we really push the envelope to deterministically answer this question.

What we learned was that the performance of a conventional (soft)processor-bus-

memory design was far worse than expected and almost no application would benefit

from a software only solution given that a hardware B-tree based solution is readily

available. While we were using much less on-chip resources and the resources that are

used are highly generic and not custom to the application which also leaves a window

for making the software hardware independent. But if the software is extremely slow,

then low resource utilization cannot be the selling point.
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However upon further investigation in identifying what exactly makes the software

slower we could pin-point on many varied performance restricting factors. Analyzing

and optimizing each factor in isolation as well as in combination makes the design de-

cisions more complex than imagined. While optimizing some factors resulted in only

limited improvements, but working on other factors o↵ered a number of improve-

ments that had a significant ability to close the gap between hardware and software

implementations. In certain situations, software was found to be very competitive

with the hardware.

1.4 Thesis Question

The question we want to ask is this- We know that software is expected to be

slower than hardware. We want to know why?. We want to know the root cause and

if it can be eliminated by modern software and hardware solutions. Understanding

the root cause can lead us in various directions such as- is it cache misses? Is a cache

miss too expensive and can that penalty be made better? Is it the clock speed, or the

pipeline throughput? Is the sluggishness dominated by o↵-chip accesses? Do these

factors contribute equally and does improving one factor worsen the other or improve

the other? Namely do factors a↵ect each other?

Which brings us to the main question- Is there any one factor that, if changed,

would yield significantly better results, favoring a software solution instead? If not,

are there any combination of factors if improved can yield a favorable result? This

thesis explores various reasons why software might fail to yield desired results and

whether modifying any factor would significantly impact the result or not

To answer this question we performed a set experiments that follow an elimination

policy. Our end goal here is to get results that are comparable to hardware and analyze

carefully the impact of each design change we go on to make. We first perform a very

basic initial experiment to get the upper bound of how software performs at the very

basic level with no optimizations. We then attempt to isolate certain factors, apply
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a change in those factors in isolation and study the improvement if any. Finally after

carefully studying the impact of each factor in isolation, we combine all the studied

factors into a final evaluation and the impact of the combination of varied factors is

then analyzed.

1.5 Outline

The remaining of this thesis is organized as follows. The chapter 2 provides

some necessary background required to understand the role of a memory controller

in a multi-core architecture as well as how such a memory controller design can

be implemented using B-trees. It introduces B-trees conceptually, and how they are

created, how keys are inserted and how lookups are performed. How height of the tree

impacts the worst case situations is also explained thoroughly. Chapter 3 explains the

basic hardware design that was set up on the FGPA to conduct the experiments. It

introduces various design components such as soft-core and hard-core processors and

latencies in various situations. Also it explains the software implementations and the

algorithms used. Chapter 4 presents step by step each of the experiments performed,

along with its experimental setup and the results obtained from each experiment and

what those results mean in terms of design decisions. Chapter 5 finally provides the

concluding arguments for this thesis.



CHAPTER 2: BACKGROUND

2.1 Memory Hierarchy

Memory hierarchy became important as computing power of processors continued

increasing and consequently the demands of a faster and cheaper memory. For a single

compute core model employing sequential operations, this performance gap between

memory and processing could easily be reduced by employing layers of faster mem-

ory to hide the latency of the slowest memory. This proved to be a viable solution

that could hide the expensive cost of clock cycles needed to fetch data from o↵-chip

memory. The main idea is to keep the cost per byte of the slowest memory and speed

almost as fast as the fastest memory [5]. Thus processor sees a low latency cache

followed by complex circuitry to control the data movement between the lower levels

and maintain consistency in case of writes. Each cache line size is either replaced or

fetched from the internal main memory or the lower level of cache. A similar system

is employed by the main memory to fetch pages of data from the external memory.

This involves a lot of data movement and considerable use of memory bandwidth and

energy consumption [6]. Not only that, it consumes majority of on-chip resources

reaching in worst cases, a utilization of up to 90% [7]. These issues were still ig-

norable compared to the advantages it provided by hiding the memory latency in

single-core computing with focus on compute-bound performance advantage. Recent

advancements in computing architecture have shifted focus towards multi-core highly

parallelized computing, due to increasing performance requirements of modern sys-

tems. However modern multi-core computing systems are not subject to the same

advantages. Factors that were ignorable earlier, are significant now [8].
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2.2 Active Memory Subsystem

The ideas presented in this thesis are in the background of a novel multi-core

computation model, i.e a Green-White core architecture, that takes into account the

problems mentioned above and strives for best optimal use of memory bandwidth

and avoiding unnecessary data movement to save power. It makes use of heteroge-

nous multi-core environment where all cores are not expected to perform equally.

Green cores are simple processors that have access to bytes of addressable multiple

scratchpad memories which departs from the conventional style of hierarchy. These

processors are not complex and are relatively simple with reduced pipeline depth,

lower clock rate, and reduced silicon. Their main selling point is that they are power

e�cient and light on resource utilization. They are especially tailored towards appli-

cations and are designed with the programmers perspective in mind. We also have

complex compute cores, which are the white cores that are capable of complex cal-

culations with full support for resilience. The white cores follow the conventional

style of memory hierarchy and are the workhorse for critical sequential applications.

This provides us a heterogenous computing model, where none of the processors are

required to over-perform while none underperforming either. Each processor handles,

only what it can do best.

Green cores are connected via an on-chip network to an active memory subsystem

that is responsible for supplying the data to them. Active memory management

engine, AMME [3] manages all the o↵-chip accesses ( by having multiple channels

to memory) and makes sure that any of the cores are never starved for data. It

has capability to supply data requested by a core, while the data is being computed

by another. It hides latency while e�ciently managing bandwidth. The processor

views the multiple chunks of scratchpad memory as essentially flat, which is very

similar to how a processor would view a conventional cache. AMME also manages

all data transfers, between scratchpads and memory subsystem directly via DMA
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Scratch-Pad
Memory

Processor

To the Memory Subsystem

DMA Data

Transfers

Byte-Addressable

Memory Transaction

Figure 2.1: High level block diagram of a Green-Core

transfers. The central idea is to fit large number of parallel computations solely in

the scratchpad, and making sure that enough memory transactions are available at

any point to the subsystem such that it can e�ciently use the available bandwidth.

The data movement in green core is shown in the Figure 2.1.

This leads to the most important conclusion, that AMME is in fact, the workhorse

for the green-core. The simplicity of the green core and the advantages it o↵ers us,

are only feasible if AMME can work fast enough to get the operands to GC. Hence

AMME is designed with the perspective of speed and its implementation becomes

important.

AMME is implemented with a B-tree model to store the node pointers and the

metadata associated with each memory segment. The metadata can contain several

useful fields such as key, left child, right child, its length and its status. All these

entries are stored in a on-chip pool of BRAMs that is further managed by a B-tree

controller that contains pointers to various locations in the pool. It has specific
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registers for maintaining the root node. It has features to increase lookups and keep

track of which node is in operation. It is also optimized to further know which node

was most recently added by keeping it at a specific place in the BRAM table ( at the

top).

Each core when request a data from the AMME, it subscribes to that data. The

master controller in the AMME design ( also the controller that controls the on-chip

pool stored in BRAM) keeps track of all data associated with the cores by adding

and searching in the B-tree. If any data becomes redundant ( old data after being

written for example), then AMME can facilitate a delete operation using an epoch

controller. All the reads and writes are done to the BRAM pool. Size of pool is

resource dependent and also accounts for varied payload size that could be requested

by the core. Detailed operation of a B-tree is described in the next section.

2.3 Concept of a B-tree

As described above, we are most concerned about the access time complexity of

the AMME that is capable of handling varied sized payloads. As mentioned above,

this is critical to the feasibility of AMME. The choice of a B-tree is further motivated

by the reasoning because it is optimized for e�cient use of bandwidth.

A B-tree is a generalized multi-way variant of a Binary Search Tree. In a binary

search tree, at every node we make a two-way branching decision based on its key. If

the desired key is lesser, we proceed to inspect the left subtree, or else we inspect the

right subtree. In a B-tree however, instead of making a two way decision, we make a

multiway decision to determine which child node to inspect. Just like a binary search

tree, a B-tree is a sorted data structure. An example of a B-tree containing nodes

and keys is given in Figure 2.2.

Each node of a B-tree can contain at the most a fixed number of keys. While

di↵erent authors use slightly varied terminology to define how many keys a node can

contain, we will use the terminology defined by Cormen [9] which is the Minimum
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Degree. A B-tree has following properties that must be satisfied for it to be considered

valid.

• Minimum degree poses a restriction on the minimum number of keys every node

at any point must absolutely contain. Any node except the root containing less

than minimum degree of keys, is a violation. If the minimum degree of a B-tree

is t, then any node except the root at any point cannot have less than t-1 keys.

Minimum degree is also used to define the upper bound on the number of keys.

For a tree with minimum degree t, any node including the root cannot have

more than 2t-1 keys. Hence what this also implies is a half-full condition. This

means that any node except the root at any time is at least half full. The most

common example is a 2-3-4 tree. In this case t is equal to 2. This means each

node can have at least 2 keys and at most 4 keys (2*t-1 ). The minimum degree

t has a logical condition that it has to be greater than 2. A minimum degree

less than 2, will fail to be a valid B-tree. In practice however, we have much

larger minimum degrees ranging in thousands.

• All the keys in each node are maintained in sorted order of increasing key values.

This maintains the B-tree as a sorted data structure. In AMME, this feature is

provided by a compare-sort module.

• Each node containing n keys with n greater or equal to t , must have n+1

children. This point is more logical than a property by itself. Since every key in

a node can result in a branching decisions, for n keys in a node, we can have n+1

branching decisions. In addition to that, each node also maintains pointers to

its children in the form of an array or a linked list, which are useful in recursing

downwards.

• Unlike Binary Search Trees, all leaf nodes of a B-tree are at the same depth. This

can also be referred to as the height of the tree. Height of the tree determines its
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Table 2.1: Time complexity of various operations in a B-tree
Operation Average Case Worst Case
Space O(n) O(n)

Searching O(log n) O(n)
Insertion O(log n) O(n)
Deletion O(log n) O(n)

worst case running time, since height is essentially the number of levels we will

have to recurse to get to the leaf node which may contain the desired object.

• A B-tree grows upwards, which again departs from the Binary Search Trees

which grows downwards. If an insertion to the tree results in a full node, then

the B-tree results in splitting of a node and a middle key value is selected as a

parent node with its child pointers updated to reflect new children.

A search procedure in a B-tree recurses down the nodes from the root to the leaf.

The theoretical time best case and worst case complexities of the B-tree structure are

summarized in Table 2.1.

The number of memory accesses required by a B-tree in order to retrieve its keys

are directly proportional to the height of the tree. To analyze the worst case height of

a tree, we consider a tree with each node other than the root containing the minimum

number of keys, and the root containing at least one key. This gives a relation between

the number of keys in the tree and the worst case height of the tree. The worst case

height h of the tree is given by Equation 2.1

h = logt
n+ 1

2
(2.1)

The best case height of a B-tree is calculated when we consider the case where all

the nodes have the maximum number of keys possible. For a B-tree of degree t, the

maximum number of keys it can contain is 2t-1. Let m be the maximum number of

children each node can contain. Therefore, the relation between m and t is given by



12

Figure 2.2: An example of insertions in a 2-3-4 B-tree with preemptive splits
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Table 2.2: Best case heights of a B-tree with the given number of keys
Degree 500 5000 10,000 40,000

5 3 4 4 5
9 3 3 4 4
13 2 3 3 4
19 2 3 3 3
24 2 3 3 3

Table 2.3: Worst case heights of a B-tree with given number of keys
Degree 500 5000 10000 40000

5 5 7 7 8
9 3 5 5 6
13 3 4 4 5
19 3 3 4 4
24 2 3 3 4

Equation 2.2.

m = 2*t (2.2)

The best case height h of a B-tree containing n keys is given by Equation 2.3.

h = logm (n+ 1) (2.3)

To give the reader an idea of how B-trees can maintain large number of keys and

still maintain faster lookups, a table containing best case and worst case heights of

a B-tree is given. The degrees chosen are the ones that are used throughout the

experimental work done in this thesis. The size of the B-tree is determined by the

number of keys chosen, which is taken from the datasets we have used, introduced in

the next chapter.

Similarly, worst case heights are shown below in Table 2.3.



CHAPTER 3: DESIGN

The goal of this chapter is to describe the software process that was designed to

test the memory controller implementation as a purely software dependent process.

All the memory segment creation, reads and writes will be initiated by software

itself. The idea is to test if software can in fact be comparable to the hardware

implementation, if not better. Algorithms to do operations on the software B-tree

such as create, insert, search and delete will be thoroughly discussed. Software B-tree

uses various datasets, collected from real sources. Various other factors of the design

such as the standalone processor, clock frequency, resource usage and various choices

available at software level will be presented.

3.1 Hardware

Software based memory controller design setup is developed on a Ml-605 and

Ml706 evaluation board. The tool chain used to synthesize various components of the

design is Xilinx ISE version 14.5 for Virtex 6 and version 14.7 for Virtex 7. A basic

Microblaze processor based system is chosen with external memory as DDR-SDRAM,

BRAMS serving as caches as well as local memory to the processor, a memory mapped

UART port set up to monitor the access times of the memory controller, and lastly

a timer to count the clock cycles between various points of the search function of the

B-tree.To understand the evaluation, its necessary to understand the data path that

each instruction might take in all possible situations. The various components and

how they come in the data path, are thoroughly explained.

3.1.1 MicroBlaze

MicroBlaze is a highly configurable, 32 bit, RISC based soft-core processor that

can be optimized depending on requirement. It is frequently used for benchmarking as
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well as testing various software prototypes. It can either be optimized for throughput

or for area. The key di↵erence between both the configurations are factors like- depth

of pipeline i.e the pipeline latency and the way branches are handled. For throughput

or speed based optimization, MicroBlaze can be configured as a 5 stage pipeline and

for an area based optimization, MicroBlaze is configured as a 3 stage pipeline. Area

optimization is typically most useful in situations where space constraints are too

strict, and the system is low on resource. Various techniques used for speeding up

the software such as advanced branch prediction, cache pre-fetching and the use of

branch delay slots are avoided in area based optimization. Since speed is critical to

our software prototype, we have used throughput based optimization. Micro blaze

being a RISC machine, executes each instruction in at most two clock cycles. This

means a processor running at a 100 Mhz, can almost execute 50 million instructions

i.e 50 MIPS. Theoretically, performance of micro blaze is guaranteed at 100 MIPS

[10]. All the data words are stored in Big Endian format. It uses memory mapped

IO and hence does not di↵erentiate between data access towards memory or IO.

3.1.2 Zynq Processing System

Zynq board contains the dual core ARM processing system and programmable

logic fabric on a single board. The full fledged processing system is a system on a

chip with its own L1 and L2 caches as well as its own memory management unit. It

further has 256 Kilobytes of on chip memory as well as a memory interconnect to

connect the application processing unit to the DDR memory controller. The on chip

memory implemented on SRAM cells is at the same level as that of L2 cache and is

hence not cacheable [11]. This memory has the lowest latency from the processor.

The ARM cortex A9 processor can be clocked at various frequencies. It has

a flexible clock divider circuitry, that provides clocking to IO peripherals and the

programmable fabric. This gives flexible clocking to not only the processor but also all

the other functional blocks enabled in the system. For example for a base frequency of
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33.33 Mhz, the frequency generated for ARM core ( generated through PLL circuits)

is referred to as ARM PLL and could be at a maximum of 800 Mhz. However DDR

controller providing interface to DDR3-SDRAM is usually clocked with DDR PLL

and runs at a frequency of 533Mhz. Similarly all IO peripherals use the IO PLL

clocks that are clocked di↵erently. The significance of understanding the clocking

is important because if the instruction is fetched from the cache of the application

processing unit, then its clocked at ARM PLL clock rate, and hence is fetched at a

higher rate. However if an instruction takes a di↵erent data path and is clocked from

DDR3-SDRAM then it will be fetched at a lower rate, which is added to the intrinsic

latency associated with o↵ chip access.

Zynq PS contains high performance AXI interconnects. The OCM interconnects

connects to the central interconnect as well as 256 kilobytes of on chip SRAM. The

central interconnect is 64 bits and connects to the DDR controller.

3.1.3 On-Chip Memory

MicroBlaze has on chip memory in the form of local memory RAM blocks con-

nected directly via a bus. There are two LMB blocks, one for data (DLMB) and one

for instruction (ILMB). This memory has zero data access latency from MicroBlaze.

Any data residing on LMB will be accessed through the DLMB and ILMB ports

directly connected to Mircoblaze and will take not more than 1 clock cycle (except

for branches, floating point operations, division or pipeline hazards). This memory is

configurable depending on application and is closest to the processor.

MicroBlaze core also have data and instruction caches implemented in the core

itself which are used to cache the external memory. The caches use AXI4 interconnect

to connect to the DDR-SDRAM. Although caches will reduce our latency and a 100

percent cache hit would be equivalent to storing data in the local memory block. How-

ever, because caching control circuitry is complex, overall performance with caches

included in the system is usually no better than performance with the instructions
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and data fetched from the local memory blocks. This is usually because some cycles

get wasted in fetching cache lines when cache is empty, or evicting blocks on writes.

Both caches and local memory blocks are however implemented in BRAMs. This

aspect is studied in more detail in chapter 4.

While local memory blocks (DLMB and ILMB) are essentially BRAM blocks, it

is not same as having additional BRAM added to the system. The DLMB and ILMB

ports are separate that connect to the local memory blocks. If additional BRAM

is added to the system, the memory accesses go through the AXI4 interconnect (

explained below) and su↵er a latency of 6-8 clock cycles. Thus contrary to intuition,

simply adding more BRAM to the system does not improve the memory latency. The

number of clock cycles expended will depend on where the memory is situated and

how it is connected to the processor.

The buses used to connect the various components of the system also contribute

to the latencies. AXI4Lite bus is typically used to connect to just peripherals which

do not involve any time critical data movements. Its latency can be in the range of 6-8

clock cycles. AXI4 on the other hand is used to interface with the external memory,

and can be used e�ciently for memory transfers. The key di↵erence is that AXI4

can support wider width data buses ( up to 1024 bits wide) while AXI4Lite can only

support at max 32 bits wide data. For single word line requests however, there is not

much di↵erence in latencies between AXI4 and AXI4Lite. Furthermore MicroBlaze

uses two ports for AXI data access. The AXIDP ports is connected to the AXI4Lite

interconnect which is used for peripherals (like UART) and AXIDC port which is

connected to the AXI4 interconnect connecting the data cache inside the processor

to the external memory. Micro blaze can do bursts requests on AXIDC port because

thats the port used for fetching cache line requests. Increasing the width of AXIDC

port to fetch more words on the cache line hence becomes a valid possibility to reduce

latencies ( evaluated in chapter 4).
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Figure 3.1: Hardware data path

3.1.4 External (O↵-chip) Memory

External Memory is connected to the processor core via AXI4 interconnect and

is cached in the local micro blaze memory, depending on the cache size initialized.

In Ml-605 FPGA, we use DDR3-SDRAM as the external o↵ chip memory initialized

along with MIG controller. MIG can be configured to 64 bit data width. DDR3

operates at a frequency of 400 Mhz. DDR stands for double data rate meaning it can

transfer data twice in a clock cycle, once on the rising edge and once on the falling

edge. O↵ chip memory access, quite obviously is the slowest in terms of clock cycles.

Internal structure of DDR3 is organized as a two dimensional grid of rows contain-

ing word lines and columns containing bit lines. These grid like structures are called

banks, which when associated in groups of 8, form the next logical unit called as a

rank. External memory can have a latency ranging from 40 clock cycles mentioned

in the data sheet to over a hundred clock cycles, based on the data access pattern.

Controller can access the data on row-bank-column or bank-row-column addressing
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scheme. The external memory controller typically tries to open channels to di↵erent

banks to keep getting the data out continuously. Hence if rows in di↵erent banks are

accessed then, controller can hide the latency. However, if the data access pattern

is such that di↵erent rows are being accessed but in the same banks, then controller

will fail to hide the latency and refresh cycles will only add to the total read time.

3.1.5 Peripherals

There are two peripherals included in the design. A UART peripheral connected

over the AXI4 Lite bus is used to transfer the measurement data over the serial

terminal. No interrupt operation is necessary for this peripheral, as any movement

on this bus is independent of the data movement to the memory.

Similarly, a timer peripheral is connected to the AXI4Lite interconnect. AXI timer

is used as the timer peripheral, and again its used without any interrupt operation.

Timer is used to measure the execution times of the code running from various parts

of the memory. Since the reference clock is generated by the Microblaze core, the

timer ticks with a frequency of 100 Mhz. To calculate the execution time of specific

sections of the code, the timer is started at the start point of the section and its value

is saved in a temporary register. At the end point of the section, the value of the

timer is again noted. The di↵erence in the two values, gives number of ticks during

the execution of the code section. Since time interval for every tick is known, total

time spent in that section can be found out.

Start Timer;

One Tick Start= Get Timer Value;

One Tick Stop=Get Timer Value;

Stop Timer;

Calibration=One Tick Stop - One Tick Start;

Start Timer;

BeginTime= Get Timer Value;
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// section of the code to be measured

EndTime= Get Timer Value;

Stop Timer;

total ticks=Endtime-BeginTime-Calibration;

3.2 Software Setup

B-tree software is designed as to specifically emulate the memory controller im-

plementation. To design the data structure, a more object oriented approach was

chosen. As described by the properties of the B-tree in chapter 2. To create a B-tree

we create a root node that is capable of handling child pointers. In the AMME model

[3], atomic unit of transfer between the controller and the BRAM pool is a node

instead of just a key. Each nodes capabilities is defined with the minimum degree of

the B-tree, which is configurable in software. Software maintains the pointer to the

root node of the tree for traversal, which is similar to maintaining the root pointer in

a specific location in the BRAM pool. The root node can also be cached in BRAM,

for quicker access. For simplicity however, it is assumed that any satellite information

is kept in the same node as the key itself [9].

Since creation of the tree (insertion of the keys) is done during the life of the

program, the data structure is maintained on the heap. The placement of the heap

can be done through the linker script generated. Implications of this will be discussed

in the next section. For configuring the B-tree for di↵erent possible node sizes, the B-

tree simply needs to be instantiated with the degree variable. This cannot however be

done on the fly. To create a B-tree, we first instantiate a root node. Some important

mnemonics are-

• Allocate-Node(x) : Every time a key needs to be added to the B-tree, the

software performs a malloc to add the key to the data structure. Often existing

node may be able to contain the key without needing additional space. But



21

because each node has a restriction on maximum keys, this step will allocate

the new node and place it in the data structure.

• Memory-Read (x): Software would do a memory access to retrieve a particular

key from the B-tree structure, and puts this value on the bus for the processor.

• Memory-Write(x) : Software would update the keys of the B-tree in case there

is an addition to the node, or if the node is full and needs to be split. Memory-

Write can also be performed on the root node. Due to insertions, often the

root node will get changed. This is also because B-tree grows upwards and

not downwards. Hence subsequent additions will change the root node. Since

software only maintains the memory location of the root node, this does not

make much di↵erence.

3.2.1 Implementation

For adding keys into the B-tree T, we call a B-Tree-Insert procedure. This will

require O(h) memory reads to recurse down the tree, to find the node where the new

key can be added [9]. The insert procedure algorithm is defined in Algorithm 1.

Algorithm 1 Insert operation in a B-tree
B-Tree-Insert(T, key)
if root is empty then

root= Allocate-Node (key);
end if

if root is full then
node=Allocate-Node(key);
select the middle key as new root;
split the root node;
insert key in one of the new child;

else

if root is non-full then
insert key in root;

end if

end if

For inserting the key in the B-tree, we call many helper procedures like split-node
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which would split a node if its full. Split node will take the median key of the current

and split the remaining into two children and move it up, as the parent and all the

child pointers of the parents would be updated to reflect the new children and the

number of keys in parent would increase by one. However if the parent node is also

full, then the splits go all the way till the time it finds a node with space to hold the

key. Split node routine explained in Algorithm 2 dominates the time taken for inserts

in the B-tree data structure.

Algorithm 2 Algorithm showing splitting of a full child of a node
SplitChild(Node,y) . Splitting the child y of node Node
Allocate-Node(x) . Holds the new child
Copy t-1 keys of y to x
Copy t children of y to x
Update no. of keys in y
Create Space in Node to hold new child x
Add a child pointer in Node pointing to x
Move median key of y to Node
Increment number of keys in Node

The search function of the B-tree recursively traverses the tree until it finds the

requested key. Since all the keys in the node are kept in the sorted order, it simply

checks each key if its greater than the requested key, and if yes, then it traverses down

the child pointers. The Search algorithm is defined in Algorithm 3.

Algorithm 3 Search operation in a B-tree
B-Tree-Search(node, key)
for all keys in the node
if node.key== key then

return the node.key;
end if

if node is a leaf then
return not found;

else

Memory-Read( node.child)
B-Tree-Search(child, key);

end if
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3.2.2 Compiler and Linker

Xilinx Software Development Kit is used for all software simulations. The C++

implementation is cross compiled with GCC compiler for MicroBlaze and finally linked

into an ELF file to be loaded on the board. The compiler with no optimization pro-

duces a direct translation of the written code which often contains more instructions

than it absolutely needs consuming lot more space and clock cycles than necessary.

For this reason, its necessary to pay attention to optimization. Our fundamental

goal here is to produce a lightweight, highly optimized code that can fit into di↵erent

sections of the memory. Speed of the code is also essential to our application. Since

we are running a 5-stage pipeline with full features of micro blaze such as branch

prediction and instruction prefetching, the code needs to e�ciently take advantage of

the full hardware support o↵ered my MicroBlaze.

Some important hardware features that speed up the code are use of barrel shifters,

and hardware multipliers for quick computations. Since there is special hardware for

these instructions or instructions that translate to shifting and multiplication ( in

loop counters etc), these instructions can execute in exactly one clock cycle and do

not stall the pipeline. To enable the support for such instructions, the code needs

to be compiled with special flags that tell the compiler that the available hardware

support will be used.

Various other compiler level techniques that help to speed up the code, such as

loop unrolling for long loops containing a set of non-branch instructions, register

renaming etc can be used with GCC optimization. We have used -Os optimization

for size which apart from reducing the size of the code, also unrolls loops and reorders

instructions that can lead to more e�cient code.

The linker script for the application controls where each of the code sections are

going to be placed. Since the code uses a lot of malloc and free calls, the structure

resides on the heap memory of the system and cached in the BRAM memory. The
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stack and heap grow in opposite directions and as such cannot be assigned to di↵erent

memories. If the application is run on DDR3- SDRAM, then heap and stack both

need to be assigned to DDR3. For measuring the latencies from BRAMs, the heap

and stack can be assigned to BRAM. Since really large datasets are used, the size of

heap grows and this can be a limiting factor especially if BRAMs are limited. The

code also uses a lot of recursive calls, and hence stack usage can be high especially in

the search function.

3.2.3 Datasets

Datasets used for the software implementation are used from real life data to

understand and design the system with real life patterns that frequently occur in the

data. The first data set contains encrypted hashed outputs of Amazon food reviews

[12] taken from a hashing setup implemented using SHA-3 core [13]. It contains up

to 11111 hashed keys that are stored on the software simulated B-tree structure.

The second data set considered is taken form the server data containing absolute file

pathnames to over a million files and directories. This data set contains hashed keys

for the file pathname data and contains over a 40,000 keys.



CHAPTER 4: EVALUATION

Performance of any application be a tricky thing to quantify. For a software mem-

ory controller, the two most important things that can characterize its performance

are memory latency and resource utilization. For an ideal memory controller resource

utilization and latency should be as low as possible. In our application, resource

utilization on an FPGA can be characterized by number of LUT’s used as well as a

number BRAM blocks utilized. To measure the latency, we measure the access times

that represent the time it takes for the controller to search any given key in the B-tree

starting from the root node. We also measure the time it takes to do insert operations

in a B-tree. These access times are critical to the operation of the memory controller

since it provides the upper limit as to how fast the controller can retrieve keys.

This chapter is organized as follows. The Section 4.1 deals with the base system

set up, and shows the results obtained in case of lookups and inserts for two datasets,

to show any co-dependeny between the nature of dataset.There is a subsection 4.1.1

that deals with the results di↵ering as the result of the size of the dataset. In sec-

tion 4.2 deals with some modifications applied to the results of Section 4.1. Section 4.3

deals with the more modifications applied to results of Section 4.1 and improvements

studied. Finally we present a final evaluation summarised in Section 4.4 that com-

bines the factors studied in both the prior sections. There was no necessity observed

for a dataset variation study for this set of results.

4.1 Initial Evaluation

For the initial experiment, a base system containing a Microblaze processor was

setup as described in chapter 3. The goal of this experiment is to measure the

access times of the B-tree based controller when implemented purely in software. The
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Table 4.1: Lookup access times using the Amazon data set
Degree Average case Worst case Best case Median

5 3.34 6.57 0.05 3.36
9 3.47 7.73 0.05 3.44
13 4.50 9.89 0.05 4.48
19 4.20 11.87 0.05 5.13
24 5.43 12.65 0.05 5.40

application executes from o↵ chip DDR3 memory. The latency of external memory

is the highest, but this experiment was setup to get a rough estimate of exactly

how much clock cycles are we spending in accessing this memory. The system is

designed with some on chip internal memory of the Microblaze, implemented through

BRAM blocks. Microblaze also has additional on chip cache memory set up. Since

both the on-chip memory as well as cache memory is implemented in BRAM, it is

tricky to think of obtaining a speedup using both on chip-memories. This fact is

counterintuitive since both the memories are at an equal distance from the processor,

the caching overheads actually increase the latency of cache memory. Even though

in most cases caches are simply assumed to provide a speedup but cache circuitry is

still complex. There are cycles expended in cold cache misses, flushing cache lines,

evicting victim blocks and conflict misses. However such complexity is still tolerable

when we are trying to hide the latency of the main memory which uses hundreds of

clock cycles for each access. But in the case of local on chip memory of the Microblaze

processor, the caching does not provide any further reduction in clock cycles. On the

contrary, caching may become costly. In this experiment we enable 64 Kb data and

instruction caches to hide as much o↵ chip latency as possible.

The results of the amazon data set are presented in the Table 4.1 showing the

various access times when the B-tree Controller runs from the external memory. The

Axi Timer core is clocked at 100 Mhz which yields a time period of 10 ns. A plot

showing average, worst-case and best case access times are presented in Figure 4.1.

A second data set containing hashed values representing absolute paths of over



27

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

A
cc

es
s 

tim
es

 in
 m

ic
ro

 S
ec

on
ds

Degree of Btree

Access times vs minimum degree of Btree

Average case
Worst Case

Best Case

Figure 4.1: Lookup access times of the B-tree using Amazon data

Table 4.2: Lookup access times using server data set
Degree Average case Worst case Best case Median

5 4.51 9.21 0.05 4.58
13 5.34 11.57 0.14 5.31
19 6.93 15.66 0.05 5.32
24 7.79 18.24 0.05 7.74
27 7.67 18.10 0.05 7.59

a million filenames collected from a server is stored in the o↵-chip memory. Access

times from this data sets are shown in the Table 4.2below and plotted in Figure 4.2.

We also measure the time it takes to insert a key in the B-tree. This metric is

useful to understand the best case and worst case estimates. Some inserts in the best

case, will simply be in the root node. Average case inserts will be in a middle node

or even in a leaf node but will just require some traversal down the tree. However

worst case inserts happen when a key needs to be added to a node that is already

full and needs to be split. Since the median key of the node moves to the parent, if
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Figure 4.2: Lookup access times using server data set

Table 4.3: Time to insert a key from Amazon dataset
Degree Average Case Best Case Worst Case Median

5 5.71 0.80 35.08 3.82
9 5.14 0.48 32.81 4.01
13 5.46 0.49 35.44 4.60
19 5.95 0.64 36.21 5.32
24 6.49 0.71 34.75 5.90

the parent is also full, the nodes above keep on splitting until the root node. This

constitutes the absolute worst-case.

The results in Table 4.3 show the access times to insert 10,000 keys in a B-tree of

di↵erent orders.

We are most interested in the average case and the median access times in lookups

and inserts, since those access times will dominate the overall latency of the applica-

tion. These access times are quite high compared to the hardware based controller. A

quick comparison shows, that this performance is intolerable for any controller to be
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implemented in software since speed is critical. This leaves us with two fundamental

questions namely- What factors contribute to such high access time ( latency) and

secondly, what factor ( or combination of factors) if changed, can result in better

performance?

To answer the first question, we examine the data path explained in chapter 3.

As Figure 3.1 shows, o↵ chip memory is cached in the on chip Bram cache blocks

of Microblaze. Due to architectural limitations of Microblaze cache size can only

be increased up till 64 Kb for both data cache and instruction cache. The distance

of the o↵ chip memory from the processor plays a major role in the latency since

for every instruction fetch to an address in the DDR3-SDRAM, we spend at least

70-100 clock cycles also taking into account the latency of the AXI interconnect

that accounts for 2-3 clock cycles. After an instruction is fetched, the data fetches

especially when the cache is cold, account for another 70-90 clock cycles. For a B-tree

based controller, the root node only needs to be fetched once when the cache is cold.

For all subsequent accesses, since root node is in the cache, we spend less cycles in

the data fetch. Depending on the nature of accesses, there might be some thrashing

of cache involved. However all accesses are made completely random to mimic a

worst-case scenario. The software function to search and access the keys of the B-tree

comprises of 30 instructions out of which one thirds are load word instructions and

another third being branches. With each load we pay the o↵-chip penalty mentioned

above and with each branch we flush the pipeline resulting in additional clock cycles

spent in cache accesses or in worst case another o↵ chip access.

We are specifically more interested in knowing the percentage of execution time

spent in various pieces of the function. Out of these, we are most concerned about the

loads and branches, since we pay highest penalty here. Software intrusive profiling

is a good way to find out the time spent in various functions. However it is not as

specific as to tell us percentage time per instruction. To measure percentage time
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Table 4.4: Percentage of execution time
Type of instruction Percentage of execution time

Loads 68.1%
Branches(Approximate) 23.3%

Arithmatic operations, data movement 8.6%

Table 4.5: Resource utilization
Slice Registers 5%
Slice LUT’s 8%

No. of Occupied Slices 10%

per instruction we can simply write a simple assembly code to analyze loads and

time it using the hardware timer. Since timing of each instruction alone cannot be

deterministic because of pipelining and instructions before and after it, therefore the

instruction is executed 100 times for loading di↵erent values from o↵-chip memory (

array like accesses), and then an average time is taken. Similarly average time taken

for arithmetic instructions can be found out. This method however cannot be used to

deterministically understand branch behavior because branch behavior is dependent

on the current state of the program and the cache which cannot be simulated outside.

To understand branch penalty we can only make an approximate guess.

In our search function, we already know the access times for finding a key in the

B-tree, and we also know that one third instructions are loads and another third are

branches, we can easily calculate the percentage time spent in loads and branches.

This does take into account the time saving we get through caches because the assem-

bly code also runs with cache enabled. The results of these calculations are presented

in Table 4.4.

We are also concerned with resource utilization of the application on FPGA. This

application is developed on ML-605 (XC6VLX240T) which contains 301,440 slice

registers and 150,720 LUT’s[10]. Since we are running the whole application from

the DDR3-SDRAM, our BRAM utilization is low. The resource utilization for this

application is shown in Table 4.5.
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These results show that maximum penalty is attributed to o↵-chip latency. This

leads us to our second question- What factors or combination of factors can help us

improve the performance of software memory controller? In short, can we do better?

To address this, we will first try reducing the latency by keeping most accesses ( if

not all) on chip. This is explained in detail in Section 4.2.

4.1.1 Dataset Variation

As seen above, there is some variation between di↵erent sizes of datasets. The

results shown with two di↵erent datasets which are obtained from widely di↵erent

sources, show that variation in nature of dataset has less or no impact on the access

time patterns. However size of the dataset has a role to play, which is also intuitively

correct. The size of the data set determines the number of keys the B-tree will contain

and hence the depth of the tree for various orders. Since depth of the tree will decide

the number of hops required to access any particular node ( especially a leaf node).

Hence as quite expected, as the size of the B-tree grows, the average and worst case

access times increase. The best case however remains more or less the same ( with

very minor di↵erence).

To clearly understand the variation in average access times corresponding to the

size of the datasets w.r.t Amazon dataset containing 10,000 keys is presented in the

Table 4.6. All values are taken for di↵erent orders of the B-tree given in column 1.

Column 2 gives the average case access times for the data set containing 500 keys,

and column 3 provides by how much percentage it varies from the Amazon Data set.

Similarly column 3 and 4 provide average access times for dataset containing 5000

keys and the variation with amazon dataset respectively. Similarly to understand

data set variation in case of inserts, the Table 4.7 shows the variation observed across

various dataset sizes. Since the size of the data set would govern the height of the

tree, we do see the di↵erence in the worst case height of the tree.
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Table 4.6: Variation in average lookup time (microseconds) with dataset size
Degree 500 keys %Variation 5000 Keys %Variation

5 1.90 37.36% 3.17 0.05%
9 2.28 34.29% 3.58 3%
13 2.62 41.77% 3.94 12.4 %
19 3.17 24.5% 4.38 4.2%
24 3.33 38.67% 5.45 0.003%

Table 4.7: Variation in average time to insert 500 and 5000 keys
Degree 500 Keys % Variation 5000 Keys % Variation

5 4.43 22.41% 5.18 9.2%
9 3.74 27,23% 4.58 10.89%
13 3.85 29.48% 4.71 13.7%
19 4.04 32.10% 5.25 11.7%
24 4.33 33.38% 5.59 13.86%

4.2 Improving Latency

The goal of this experiment is as stated above- keep all accesses close to the

processor, i.e. on chip only. To do this, we will attempt to keep the B-tree structure

containing all the keys mainly in the local on chip memory. Since the data structure

will have most accesses, this achieves our goal. For this section we modify the linking

of the software application. The linker script controls how the various sections are

arranged in memory. Since size of on chip memory is limited, we can only make

limited improvements here. But this answers the question, of whether improving

latency alone can be beneficial enough? The B-tree is created dynamically in the

software, so it resides in the heap area. To control the placement of heap, we are

forced to move the stack too ( Heap and stack can only be put together). Maximum

on-chip memory possible is 128 Kilobytes. This is not enough to hold larger data

set such as the Amazon’s data set used earlier. For this we use a smaller subset of

Amazon data that can conveniently reside on the 128 Kb memory. Since B-tree search

function is recursive, we require a heavy stack usage. The stack also limits the size

of b-tree we can maintain on-chip. For this application, at least 10 kilobytes worth
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Table 4.8: Lookup access times using(500 keys) on-chip memory
Degree Average case Worst case Best case Median Average case improvement

5 1.19 4.74 0.07 1.28 37.36%
9 1.52 4.22 0.07 1.30 33.33%
13 2.00 5.11 0.07 1.69 23.6%
19 2.48 6.35 0.07 2.08 27.82%
24 2.43 6.35 0.07 2.86 27.02%

of stack is necessary (-O3 optimization further increases stack usage). As already

mentioned, for on-chip accesses, caches dont play much important role, as our data

is already as close to the processor as it possibly can be. In fact, caching overheads

( cold cache, misses, flushing) can only worsen the situation. Even though we dont

need cache, but since other sections of our applications, such as text section, data

section etc are still residing on DDR3 ( resource limitation), we are forced to include

caches.

To reduce further dependence on external memory, another BRAM block was

added. However, this memory is not technically on-chip. The additional BRAM

block is still connected through AXI interconnect. This implies it will still su↵er a

latency of 8-10 clock cycles ( All data accesses over AXI su↵er a latency of at least 2-3

clock cycles). However this is still better than DDR3-SDRAM. A 128 Kb additional

BRAM block is included to move all other sections of code ( except the .text) away

from external memory. The data set used contains 500 keys. The dataset variation

was already mentioned in Table 4.6. The average case improvement is calculated as

the improvement seen in the average case access time when the B-tree is maintained

o↵-chip completely with the 500 keys dataset ( as shown in Table 4.6 versus the B-tree

maintained on-chip, as well as some pieces of the code kept closer to the processor.

The results are shown in Table 4.8.

For this experiment resource utilization numbers are given in Table 4.9. Our

BRAM utilization is higher than before as major sections of the code are maintained

on chip.
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Table 4.9: Resource utilization with most accesses restrained to on-chip
Slice registers 7%
Slice LUT’s 10 %

No. of Occupied Slices 20%
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Table 4.10: Time(microseconds) to insert keys in on-chip B-tree
Degree Average Case Best Case Worst Case Median Average case improvement

5 4.11 0.55 27.95 1.75 7.2%
9 3.13 0.42 28.31 1.51 16.31%
13 3.84 0.41 31.69 3.26 0.002%
19 3.54 0.41 29.76 2.89 12.3%
24 3.72 0.41 31.71 2.74 14.08%

For B-tree maintained o↵-chip, times for inserts in a B-tree of dataset 500 is

also given in Table 4.10. Average Case improvement is considered from access times

obtained in Table 4.7. The speedup o↵ered over the previous implementation is shown

in Figure 4.3. Even after this, the performance of the memory controller is still not

comparable to hardware based design. The latency of the o↵-chip memory is not

completely hidden due to some parts of application still residing on it. That means not

all memory accesses are restrained to on-chip because of not enough on-chip memory

is available. Since improving memory latency has resulted in an improvement of over

25%, the important question is, if the speed of the processor is improved can that

make things better? Since we are right now still not dealing with branch penalties,

slow clocking speeds, and overall slower architecture and the delays resulting in the

system because of that. To make sure the delays are not compute bound, the question

answered by the next set experiments is, can we still do better?

4.3 Improving Speed

The main goal of this set of experiments is to increase the overall speed of execution

and to see how it impacts the performance. The idea is to eliminate any compute

bound delays, and determine whether the performance obtained can actually make

software based design a viable solution or not. For this purpose, we turn towards

ARM cores. We use the Zynq board which contains a dual-core ARM based full

fledged processing system. It has a complete System on a Chip which has certain

customizable features, as explained in detail in chapter 3. We use the programmable

logic fabric as well to synthesize an AXI timer core, for measuring the execution times.
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Table 4.11: Lookup times(nanoseconds) on ARM with o↵-chip B-tree
Degree Average case Worst case Best case Median Average case improvement

5 449.1 1020 7.5 442.5 86.5%
9 487.5 907.5 15 480 85.97%
13 451.87 937.5 7.5 457.5 89.95%
19 443.25 1072.5 7.5 442.5 91.47%
24 456.31 952.5 7.5 457.5 91.59%

Table 4.12: Time (ns) to insert in o↵-chip B-tree on Zynq PS
Degree Average Case Best Case Worst Case Median Average Case Improvement

5 491.25 7.5 2460 420 91.3%
9 414.79 20 3540 340 91.93%
13 396 20 3320 340 92.7%
19 363.6 20 3540 340 93.89%
24 370 20 3380 360 94.20%

For the first set of results, the application is executed from DDR3-SDRAM. It

has one gigabyte of memory. Application executing from this memory will su↵er

from memory latency delays that we saw in the first set of experiments. However to

measure the performance gain from using a faster processor in isolation, we will use

the o↵-chip memory. The results from the ARM core are presented in Table 4.11.

Average case improvement is considered as the improvement obtained in average case

access time from Table 4.1 versus running it on ARM SoC from DDR3 memory.The

ARM core is clocked at 667 Mhz and the timer connected to arm clocks and clock

divider circuits, is clocked at 133.33 MHz resulting in a time period of each tick

equivalent to 7.5 ns.

The times to insert 10,000 keys in the B-tree is shown in Table 4.12. Average case

improvement is considered the percentage improvement gained from Table 4.3.

Results on ARM core show significant improvement over results on Microblaze.

Since ARM is clocked at more than 6 times the frequency, we can naturally expect at

least thrice as much speedup, which is evident from Figure 4.4. ARM cores also have

32 kilobytes of data and instruction L1 caches and 512 KiloBytes of L2 cache. With

these figures we are clearly very close to the hardware equivalent B-tree based con-
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Figure 4.4: Lookup times on ARM with o↵-chip B-tree

troller. The on-chip resource utilization is not as high in the case of Zynq processing

system. Any compute bound factors that result in slow access times are eliminated

in the Zynq PS. However we still face memory bound delays.

The Zynq board is a -2 speed grade which means it can be clocked at a maximum

of 800Mhz. The next set of results show if clocking at 800Mhz provides any significant

speedup.The goal of increasing the clock speed is to make sure all compute bound

factors are taken care of and we are absolutely sure that any remaining factors are

not due to processing capabilities. The timer is clocked at 200 Mhz which results in

a time period of 5 ns. The dataset used is Amazon dataset containing 10,000 keys.

The results for this are summarized in Table 4.13. The average case improvement

factor in these results is taken as the improvement obtained from running the ARM

core at 667 Mhz versus running the ARM core at 800 Mhz.

As seen from the results, we do not see a high performance improvement from

increasing just the clock rate of the ARM processor. The results obtained for inserts
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Table 4.13: Lookup times (ns) on ARM running at 800Mhz with o↵-chip B-tree
Degree Average case Worst case Best case Median Average case improvement

5 410 780 20 415 8.7%
9 344.5 680 10 345 29.3%
13 413 805 5 435 8.6%
19 436.75 875 15 440 1.4%
24 452.51 940 5 450 0.9%
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Figure 4.5: Improvement due to hiding latency and increasing speed

do not show a drastic improvement either. This means we are facing memory bound

delays. Since the application is run from the DDR3 memory, we are still far from the

processor in terms of the data path and the latency to access DDR3. All latencies

over AXI interconnect have at least a latency of 10-20 clock cycles. This also implies

that we have achieved the limit when it comes to processing related speedup.

To summarize the various results seen so far, the graph in Figure 4.5 shows the

comparison of lookup access times and the speedup obtained for an order-5 B-tree.
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Table 4.14: Lookup times (ns) on ARM at 800Mhz and on-chip B-tree
Degree Average Case Worst Case Best Case Median Average case improvement

5 140.95 285 30 145 68%
9 132.05 320 25 130 72.81%
13 147.8 320 15 140 67.2%
19 165.9 365 25 160 62.5%
24 216 310 30 210 52.6%

Table 4.15: Time to insert in on-chip B-tree on ARM core at 800 Mhz
Degree Average Case Best Case Worst Case Median Average Case Improvement

5 290.7 25 2050 200 40.90%
9 247.3 25 1935 200 40.37%
13 251 50 2045 200 36.6%
19 232.5 25 2080 200 36.05%
24 236.9 25 2035 200 35.97%

4.4 Final Evaluation

Finally we have seen that increasing speed of the processor significantly impacts

the performance, o↵ering improvements over 85%. Increasing clock speed from 667

Mhz to 800Mhz o↵ers only minor improvements. We have also seen that latency can

be improved by over 25% by keeping most accesses close to the processor. The purpose

of this set of experiments is to determine the combined impact of the performance of

the system with both the factors taken together. The Average case improvement is

calculated by taking the average access time when ARM core is running at 667 Mhz

with o↵-chip accesses (DDR3-SDRAM accesses) shown in Table 4.11 versus average

access time obtained with ARM running on 800 Mhz but most data accesses to the

B-tree structure kept on-chip ( with the size of the B-tree in terms of number of keys

kept constant).

Similarly insert access times are given in Table 4.15. The number of keys inserted

is 10,000 ( commensurate with the size of the B-tree that the on-chip memory can

hold). Average Case improvement is considered as the percentage reduction obtained

compared to results from Table 4.12

These results finally tell us that overall improvement in average case as a com-
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Figure 4.6: Comparing lookup times in Table 4.11 and Table 4.14
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Figure 4.7: Comparing insert times in Table 4.12 and Table 4.15
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Figure 4.8: Comparison of B-tree access times on hardware vs software

Table 4.16: Resource utilization on Zynq-PS
Slice Register 1%
Slice LUT’s 8%

No. Of occupied slices 1%

bination of two factors is more than 50% which is significant considering that this

measurement is taken from ARM experiments from DDR3-SDRAM. Since improving

speed itself o↵ered an improvement of over 85%, we can assume that the speedup

obtained from the Microblaze processor is over 200%. This gives us hope that a

fast processor combined with low latency memory can speedup the operation of the

memory controller.

Finally, the resource utilization on Zynq-PS is shown below. A comparison with

results obtained from the hardware implementation of a B-tree is shown in the Fig-

ure 4.8. Also the resource utilization numbers are presented for the Zynq PS in

Table 4.16. Some of the key observations from this experiment are-
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• The best case access time, is actually much lesser than the best case access time

obtained in hardware. This is a positive result. To understand the best case

better, its necessary to know when it occurs exactly. The best case for a lookup

occurs when the desired key is either in the root node itself, or at the least, one

hop away from the root node. Not only that, a cold cache miss will result in

the root node ( and subsequently the child nodes depending on the cache line

size) to be fetched in the cache. Therefore all subsequent accesses to either a

key in the same node or nearby node will result in the best case scenario. On

a generic level, all cases of cache hits will result in a best case scenario. The

degree of the B-tree will also a↵ect the best case condition.

• To understand this, we recall the definition of minimum degree of a B-tree.

The minimum degree puts a restriction on the minimum and maximum number

of keys a node can contain. While the search time in a B-tree is logarithmic

w.r.t height of the tree, the search time within a node is linear. Since each

node is essentially sorted with increasing order of keys this time can be made

logarithmic as well. However the key thing is, as the degree increases, the time

to search within a node will only increase.

• The worst case condition will happen, when the key requested is within a leaf

node. This will require more hops from the root node and traversals of all nodes

in between. Moreover, if this leaf node or any other node preceding it is in the

external o↵-chip memory then it will only become worse. Thus a key residing

in the leaf node which is uncached and requires one or more o↵-chip accesses

contributes to the absolute worst case

• From analyzing the results of the final evaluation, we see two key observations.

Firstly, the median value is close to the mean. This implies that the average

case is also the most recurrent case. Secondly, the upper quartile is close to
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the mean. Upper quartile divides the top 25% values, and refers to the 75th

percentile. What this means is that 75% values are actually close to the mean

value and top 25% are spread between the average and the worst case access

time. Since the distribution is skewed, we can conclude that average case is

dominant.



CHAPTER 5: CONCLUSION

Understanding the design space involves taking into account various factors that

can impact the performance of the system. Its important to understand which deci-

sions have the most impact and how changing one decision can impact the others.

We started with an intuitive assumption that for a given hardware implementation

of a B-tree Controller, a similar software implementation is guaranteed to be slower

and much less ine�cient, rendering it as unfeasible. The core motive then was to

understand why, it is and what factors contribute. We then went on to isolate some

factors and study the improvement they o↵ered when applied to our software setup.

similarly we finally implemented a complete setup containing modifications to improve

various factors, and eventually arrived at results that are much more comparable to

hardware implementation. Thus to answer the thesis question, yes we can in fact

change more than one factor such as o↵-chip latency, clock speeds, faster application

processing unit. Combining and modifying these can in fact close the gap between

hardware and software implementation between the B-tree Controller.

The results we have obtained show us that software can be very comptetive in a

stronger but generic hardware background. The question this thesis raises however is-

can a software solution be implemented in a real multi-core environment? To answer

this question we have to understand the environment in which the software solutiom

can perform. For our final evaluation we have considered a processing system, thats

a full fledged system on a chip. This is equipped with considerable on-chip generic

resources ( advanced caching mechanisms) which are quite cheap and inexpensive

in modern chip solutions. More processing power continues to be integrated on to

the modern chips with more expendable resources closer to each core. Application
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specific co-processors are very frequently used to speedup applications and provide

them with dedicated compute power. The question is in the future, can we o↵er a

memory controller a dedicated processor and with some inexpensive resources? If the

answer in modern as well as future solutions is yes, then the results discussed here

show that we can in fact think of a feasible and highly customizable software solution.
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