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ABSTRACT

CHUNLEI YANG. Large-scale image collection cleansing, summarization and
exploration. (Under the direction of DR. JIANPING FAN)

A perennially interesting topic in the research field of large scale image collection

organization is how to effectively and efficiently conduct the tasks of image cleansing,

summarization and exploration. The primary objective of such an image organiza-

tion system is to enhance user exploration experience with redundancy removal and

summarization operations on large-scale image collection. An ideal system is to dis-

cover and utilize the visual correlation among the images, to reduce the redundancy

in large-scale image collection, to organize and visualize the structure of large-scale

image collection, and to facilitate exploration and knowledge discovery.

In this dissertation, a novel system is developed for exploiting and navigating large-

scale image collection. Our system consists of the following key components: (a) junk

image filtering by incorporating bilingual search results; (b) near duplicate image

detection by using a coarse-to-fine framework; (c) concept network generation and

visualization; (d) image collection summarization via dictionary learning for sparse

representation; and (e) a multimedia practice of graffiti image retrieval and explo-

ration.

For junk image filtering, bilingual image search results, which are adopted for the

same keyword-based query, are integrated to automatically identify the clusters for

the junk images and the clusters for the relevant images. Within relevant image

clusters, the results are further refined by removing the duplications under a coarse-
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to-fine structure. The duplicate pairs are detected with both global feature (partition

based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The

duplications are detected and removed from the data collection to facilitate further

exploration and visual correlation analysis. After junk image filtering and duplica-

tion removal, the visual concepts are further organized and visualized by the proposed

concept network. An automatic algorithm is developed to generate such visual con-

cept network which characterize the visual correlation between image concept pairs.

Multiple kernels are combined and a kernel canonical correlation analysis algorithm

is used to characterize the diverse visual similarity contexts between the image con-

cepts. The FishEye visualization technique is implemented to facilitate the navigation

of image concepts through our image concept network. To better assist the explo-

ration of large scale data collection, we design an efficient summarization algorithm

to extract representative examplars. For this collection summarization task, a sparse

dictionary (a small set of the most representative images) is learned to represent all

the images in the given set, e.g., such sparse dictionary is treated as the summary

for the given image set. The simulated annealing algorithm is adopted to learn such

sparse dictionary (image summary) by minimizing an explicit optimization function.

In order to handle large scale image collection, we have evaluated both the accuracy

performance of the proposed algorithms and their computation efficiency. For each of

the above tasks, we have conducted experiments on multiple public available image

collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very

promising results compared to existing frameworks. The computation performance

is also satisfiable for large-scale image collection applications. The original intention
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to design such a large-scale image collection exploration and organization system is

to better service the tasks of information retrieval and knowledge discovery. For

this purpose, we utilize the proposed system to a graffiti retrieval and exploration

application and receive positive feedback.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The new century has witnessed the information explosion, especially for online

and offline digital images and photos. The actual number of images available on the

Internet has became impossible to estimate and the only thing we know for sure is

that this number keeps growing everyday with the contribution from all the Internet

users. Compared to the fast growth of online images, the technique development

for supporting organization and visualization of large-scale image collection has been

lagging behind. From the end users’ point of view, the image search engines such

as Google Image or Bing Image provide as convenient image search tools with both

text queries and example queries, which lead the users into the exploration process

under the specific query category. The images returned would be either based on

its relevancy on textual property or visual property. However, such image search

engines could not provide the users with an overview of the relationship between the

query category and other related categories. The results returned are based solely

on the semantic-level relatedness to the query word. Google has developed Google

Image Swirl [76] which is able to support exploring multiple related categories in a

sequence order. Once the users find the group of interested images, they can visit

the neighboring clusters which will be further “swirled” into view and the clusters
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are linked based on their visual and semantic relevancy. Other online photo-sharing

web sites such as Flickr [63] and Picasa [64] support the exploration of the collection

with the ways beyond query search, e.g. to explore by upload date, by tag, by group,

etc. For online photo-sharing web sites, the more relevant information provided, the

more accurate the exploration and knowledge discovery operation will be done.

Besides the image search engines and commercial social photo sharing web sites,

there are also a number of image collections for research purpose, such as ImageNet

[40], Caltech-256 [55], NUS-WIDE [17], etc. These image collections are organized

by semantic hierarchy of the category names. For example, the image categories

are organized in a top-down tree structure with the most generative terms on the

top and more detailed terms on the branches. For Caltech-256, the first level nodes

are “animated entity” and “non-animated entity”, and the “animated entity” could

be further partitioned into “animal”, “plants”, etc. A hierarchical structure organi-

zation of image categories is straightforward, yet underestimates the complexity of

correlation between the categories and between the images. Briefly, the organization

of large quantities of visual information is identified as an important research topic

and is attracting more and more attention from the researchers in the related fields.

The research work delivered in this thesis is motivated by the fact that, with the

exponential availability of high-quality digital images, there is an urgent need to de-

velop new frameworks for efficient and interactive image collection navigation and

exploration [136, 59], other than plain list of the search results or a tree structure

organization. The image collections should be organized based on the visual concept

ontology, rather than a hierarchical structure. However, as mentioned above, most of
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the current frameworks may not be able to support effective navigation and explo-

ration for visual concept network construction: (a) Current techniques only consider

the hierarchical inter-concept relationships. When large-scale online image collections

come into view, the inter-concept similarity relationship could be more complex than

the hierarchical ones. (b) Only the inter-concept semantic relationships are exploited

for concept ontology construction, thus the concept ontology cannot allow users to

navigate large-scale online image collections according to their visual similarity con-

texts. We determined to develop novel image collection organization frameworks to

deal with the above difficulties.

An efficient and practical organization of the image categories will further service

other research objectives: (a) By incorporating the image search results from mul-

tiple sources, relevant cluster and irrelevant clusters could be detected (junk image

filtering). (b) By investigating the visual correlation among different categories, vi-

sually correlated classes could be associated to support multi-class classifier training

(image classification). (c) By organizing inter-concept and intra-concept groups, the

relationship between image groups could be discovered (image browsing). (d) By

clustering the images within given group or category, find a query image for certain

purpose such as duplicate detection (image retrieval and duplicate detection). (e) By

selecting the most representative images from a given set, the system can recommend

the user with a summary of the collection (image collection summarization). Exten-

sive research work has been done on each of the above research topics, however, these

work has been done independently and we have not seen a complete image collection

organization framework to incorporate all these research components, or evaluate the
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Figure 1: Complete System Work Flow

results of such a navigation system with its associated research tasks. The research

and evaluation on such a system will greatly benefit the applications such as large-

scale image collection exploration, navigation, image retrieval and recommendation.

1.2 Overview

As discussed in the previous section, a series of research tasks will be studied

and presented in this thesis as the key components to construct the image collection

organization system. The overview of the complete system is shown in Figure 1. In

this section, we will introduce each of these components: junk image filtering, near-

duplicate detection, concept network generation and visualization, image collection

summarization and a practical information retrieval application: graffiti retrieval. We

will also present the basic idea of each of these research tasks and discuss how our
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proposed algorithms are able to tackle the challenges that most existing works have

encountered.

1.2.1 Junk Image Filtering

Keyword-based image search engines have achieved great success on exploiting the

associated text terms for indexing large-scale web image collections. Unfortunately,

most existing keyword-based image search engines are still unsatisfactory because of

the appearances of large amounts of junk images [43, 42, 12, 155, 47, 48]. One of the

major reasons for this phenomena is due to the fact that most existing keyword-based

image search engines simplify the image search problem as a purely text-based search

problem, and their fundamental assumption is that the image semantics are directly

related to all these associated text terms (that are extracted from the associated text

documents or file names). However, such oversimplified assumption has ignored that

not all these associated text terms are related exactly with the image semantics (e.g.,

most of these associated text terms are used for web content description and only a

small part of these associated text terms are used for image semantics description)

[41, 158]. If all these associated text terms are loosely used for web image indexing,

most existing keyword-based image search engines may return large amounts of junk

images which may bring huge information overload for users to assess the relevance

between large amounts of returned images and their real query intentions. In addition,

a lot of real world settings, such as photo-sharing web sites, may only be able to

provide biased and noisy text terms for image annotation which may further mislead

the keyword-based image search engines. Figure 2 shows the query result for the
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Figure 2: Junk image observation in Google Image and Flickr query results: (a)
return result from Google Image with query word “golden gate bridge”; (b) return
result from Flickr with query word “golden gate bridge”.

keyword “golden gate bridge” of Google Image and Flickr. We can observe from

the result that there are junk images even in the first page of return results. For

Google Image, the junk images are from the map of golden gate bridge, an award

with the same name, a spiritual village of the same name, and a watch brand with

the same name. For Flickr, same tags are associated to a drink brand, and a different

place with the same name. Therefore, the existence of large quantity of junk images

from text-based return results urge us to develop new algorithms for leveraging other

alternative information sources to filter out the junk images automatically.

There are two alternative information sources that can be leveraged for filtering out

the junk images from the keyword-based image search results: (a) visual properties

of the returned images [43, 42, 12, 155, 47, 48]; (b) visual correlations between the

search results for the same keyword-based query which is simultaneously performed on

multiple keyword-based image search engines in the same language or even different

languages.

The visual properties of the returned images and the visual similarity relationships

between the returned images are very important for users to assess the relevance
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between the returned images and their real query intentions. Unfortunately, most

existing keyword-based image search engines have completely ignored such important

characteristics of the images. Even the low-level visual features may not be able to

carry the image semantics directly, they can definitely be used to filter out the junk

images and enhance users’ abilities on finding some particular images according to

their visual properties [43, 42, 12, 155, 47, 48]. With the increasing computational

power of modern computers, it is possible to incorporate image analysis algorithms

into the keyword-based image search engines without degrading their response speed

significantly. Recent advance in computer vision and multimedia computing can also

allow us to take advantages of the rich visual information (embedded in the web

images) for image semantics interpretation. Some pioneering work have been done by

integrating the visual properties of the returned images to improve the performance

of Google Images [43, 42, 12, 155, 47, 48].

There are many keyword-based image search engines in the same language (such as

Google Images and Bing) or in different languages (such as Google Images in English

and Baidu Images in Chinese). All these keyword-based image search engines crawl

large-scale web images from the same or similar web sources, the relevant images

for the same keyword-based query (which is simultaneously performed on different

keyword-based image search engines in same language or even in different languages)

may have strong correlations on their visual properties. On one hand, the relevant

images (one part of the returned images), which are returned by different keyword-

based image search engines for the same keyword-based query, should share some

common or similar visual properties. On the other hand, the junk images (another
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part of the returned images), which are returned by different keyword-based image

search engines for the same keyword-based query, may have different visual properties.

Such phenomena (the relevant images for the same query from different keyword-based

image search engines may share some common or similar visual properties) can be

treated as an alternative information source for junk image filtering. Besides the

keyword-based image search engines (such as Google Images) in English, there are

many other keyword-based image search engines in different languages such as Baidu

Images in Chinese. Thus it is very attractive to integrate bilingual or multi-lingual

image search results for automatic junk image filtering.

Based on the above observations, an interesting approach is developed in this thesis

for filtering out the junk images automatically by integrating the bilingual image

search results from two keyword-based image search engines, e.g., Google Images in

English and Baidu Images in Chinese. Junk image filtering is conducted on the basis

of effective image clustering which reveals the visual correlation among set members.

1.2.2 Near Duplicate Detection

After junk image filtering, the output data collections are still redundant by that

there exists large amounts of duplicate or near duplicate image pairs, which will cause

big burden for any exploration or query operations, as well as for other tasks such as

image collection summarization.

The existence of duplicate or near duplicate image pairs is universally observed

in text-based image search engine return results (such as Google Image: the return

results for a certain query word) or personal photo collection (such as Flickr or Picasa
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Figure 3: Left-hand subfigure is the Google Image search results for the query word
of “golden gate bridge”; right-hand sub-figure is the Flickr search results for the
query word of “Halloween”. Both return results show a significant amount of near
duplications.

personal photo album: photos that are consecutively taken at the same location with

slightly different shooting angle), as found in Figure 3. Because of the existance of

large quantity of available images, it is very difficult if not impossible to identify

such near duplicate images manually. Thus it is very important to develop robust

methods for detecting the near duplicate images automatically from large-scale image

collections [127, 152, 143].

It would be rather convenient for near duplication detection tasks to utilize het-

erogeneous features like EXIF data from photos [140], or time duration information

in video sequences [164]. In fact, such information is not available for most of the

data collections which forces us to seek for solution from visual content of the images

only. Among content based approaches, many focus on the rapid identification of

duplicate images with global signatures, which are able to handle almost identical

images [69, 139]. However, near duplicates with changes beyond color, lighting and

editing artifacts can only be reliably detected through the use of more reliable local

features [173, 140, 74, 79]. Local point based methods, such as SIFT descriptor, have

demonstrated impressive performance in a wide range of vision-related tasks, and are
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particularly suitable for detecting near-duplicate images having complex variations.

Following the same interest point extraction and SIFT feature descriptor scheme,

Xu et al. [166] have extended single layer matching framework to spatially aligned

pyramid matching framework. The performance will slightly increase by 2-3%, while

computation cost with multi-layer framework is expected to grow dramatically in

response. Besides, like many other work, only using SIFT descriptor is not adequate to

accurately characterize the visual similarity between images. An integration of multi-

modal feature representation will be a boost for accurate image characterization.

Different from local patch extraction framework, Mehta et al. has represented

the visual signature with Gaussian Mixture Model (GMM ) [103]. Each pixel is

characterized with both spatial information and visual information (HSV color). For

each image, a GMM distribution is learnt, and the similarity between two images

are measured by the coherence between the two corresponding GMM distributions.

The problem for this framework is obvious that calculating GMM distribution for each

image will result in unacceptable computation burden for large scale image collections.

The potential for local approaches is unfortunately underscored by matching and

scalability issues as discussed above. Past experience has guided us to seek for bal-

ance between efficiency and accuracy in near duplicate detection tasks. In order to

speed up the duplicate detection process without sacrificing detection accuracy, we

have designed a two-stage detection scheme: the first stage is to partition the image

collection into multiple groups by using computational cheap global features; the sec-

ond stage is to conduct image retrieval with computational expensive local features

to extract the near-duplicate pairs. The output of the first stage is supposed to not
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separate any potential near duplicate pairs and the number of images participated in

the second stage retrieval could be dramatically reduced. The visual presentation of

the image used in the second stage is Bag-of-Word (BoW) model. We have conducted

the interest point extraction operation to all the available images and represent each

interest point with SIFT descriptor. A universal code book is generated with k-means

clustering algorithm from millions of such interest point descriptors. Each code word

is a center of the k-means clustering result. In actually implementation, we have con-

ducted hierarchical k-means to construct the code book. With vector quantization

operation, each interest point in an image is mapped to a certain code word and the

image can be represented by the histogram of the code words. For the purpose of

interest point matching, we only count the matches by the points that fall into the

same bin, thus the actual calculation of the histogram is not required. Besides the

SIFT Bag-of-Word model, we also implement the CPAM (Color Pattern Appearance

Model) feature which is built from Y CbCr color space and quantized in a similar fash-

ion as BoW model. We also built a universal code book for the CPAM feature with

k-means clustering algorithm and each image is encoded with vector quantization

technique. Finally, the detection result from both models will be combined together

with our multi-modal integration design.

Another issue that will affect the detection speed is the nearest neighbor search

scheme. The similarity search methods and indexing schemes on high-dimensional

space includes Locality-Sensitive Hashing (LSH) [67], Inverted File Indexing [165]

and kd-tree [159]. LSH, proposed by Indyk & Motwani, solves the following similarity

search problem, termed (r, ǫ)−NN , in sub-linear time. If, for a point q (query) in d-
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dimensional space, there exists an indexed point p such that d(p, q) ≤ r, then LSH will,

with high probability, return an indexed point p′ such that d(p′, q) ≤ (1+ ǫ)r. This is

accomplished by using a set of special hash functions that satisfy the intuitive notion

that the probability of a hash collision for two points be related to the similarity

(distance) between the points. Inverted File Indexing is originally used in texture

document retrieval applications, and it could be adopted to image retrieval application

if the image feature is represented with bag-of-word model. The visual words are

treated in a similar way as the text terms used in texture document retrieval. In

order to cover large varieties of visual properties, usually a very large dictionary is

constructed, and we will use a hierarchical k-means scheme to construct and store

such dictionary. The similarity search is employed on the hierarchical tree and the

approximate nearest neighbor can be quickly located. The kd-tree, as can be conferred

from its name, is designed for nearest neighbor search on high dimensional space. For

the purpose of image retrieval and duplicate detection, we found the inverted file

indexing scheme most satisfiable.

Considering the complexity of the visual content of the images, using only one

feature for image representation is not appropriate. Our benchmark work has shown

that certain features may serve better for certain types of images, which could be

categorized as object images and scene images based on their visual content. In order

to further improve the accuracy of near duplicate detection, we have determined

to design a system which will incorporate the near duplicate detection results with

both two different visual features, not only the local feature. The output result is a

combination of the two detection results. From the indexing scheme introduced above,
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the output from inverted file indexing operation is a list of similarities ranked from

high to low. Considering the complexity of the image content, it is not appropriate to

use a universal threshold to determine duplicates for all the images. We have observed

that the distance of the query image with the non-duplicate images in the database

follow a linear distribution. From this assumption, we construct a linear regression

model for the retrieval result of the images, and the possible top few similarities value

that does not collide with the predicted line is considered as duplicates.

The near duplicate detection operation will be applied to all the images in the

target data set. For each of the query images, if true positive near duplicate pairs

are detected, then they will be removed from the data collection and the refined data

collection can be further used for concept network generation or summarization.

1.2.3 Concept Network Generation and Visualization

The central component for a complete image navigation and exploration system is

an efficient organization structure. Derived directly from text-based concept ontol-

ogy construction, tree structure concept ontology organizations are widely accepted

for database exploration and navigation [15, 53]. The drawbacks for tree structure

concept ontology on image collection organization are equally obvious: (a) Only the

hierarchical inter-concept relationships are considered for concept ontology construc-

tion, while there could be more complicate relationship between concepts in large

scale image collections; (b) Only the semantic relationships are considered between

concepts, while the the visual correlation are totally ignored which is believed more

important for image category organization. From this observation, we determine to
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exploit the visual correlation between each of the two concepts in the image collec-

tion, and build linkage between visually correlated concept pairs, which will lead to

a network structured organization of concept ontology. The network structure con-

cept ontology has at least the following two advantages compared to hierarchical tree

structure concept ontology.

(a) Supporting collection browsing: The network structure concept ontology is more

general than tree structure which cannot characterize inter-concept visual correlations

directly. Visually related categories may distribute across different branches in the

tree structure, therefore cannot be easily explored or compared. For example, the

concepts of “seagull” and “dock” are visually correlated, while semantically far away

from each other. The semantic distance will be very large for this concept pair, and it

will be very difficult to navigate from one concept to the other through tree structured

concept ontology. On the other hand, through network structured concept ontology,

these two concepts may be easily connected and can be explored interrelatedly. Figure

4 shows a comparison between the tree structured concept ontology from Caltech-256

and the proposed network structure concept ontology of concept network.

(b) Guiding classifier learning: Without a structured organization, for multi-class

classification tasks, SVM assumes the classification of category is made independently,

which means potential structured information is lost in categority relatedness. Such

relatedness means the appearance of one category often implies the existence of an-

other closely related category. Such inter-relatedness of categories can be explicitly

represented with the category correlation network. The neighboring category nodes

are strongly correlated and their training instances may share similar visual proper-
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Figure 4: Tree-structure organization vs network structure organization: (a) Caltech-
256 tree structure concept ontology [55]; (b) proposed network structure concept
ontology of concept network.

ties. Thus isolating these object classes and train their classifiers independently are

not appropriate. A multi-task structured learning scheme [130] can be benefited by

incorporating neighboring category nodes in such concept network. Furthermore, in

multi-label classification tasks [50], if the labels are interdependent, concept network

could be used to estimate category co-occurrences. Therefore, it can be used to assist

the building of multi-label conditional random field (CRF) classification model where

classifiers for the categories are no longer learned independently.

To take full advantage of the network structured concept ontology, we have designed

a concept network for image collection organization, which utilize the multi-modal

kernel integration for similarity determination, and then visualize with MDS tech-

nique for efficient navigation and exploration. The details will be introduced in the

rest of this section.

By using high-dimensional multi-modal visual features introduced in the previous
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subsection for image content representation, it is able for us to characterize the diverse

visual properties of the images more sufficiently. On the other hand, the statistical

properties of the images in such high-dimensional multi-modal feature space may

be heterogeneous because different feature subsets are used to characterize different

visual properties of the images, thus the statistical properties of the images in the high-

dimensional multi-modal feature space may be heterogeneous and sparse. Therefore,

it is impossible for us to use only one single type of kernel to characterize the diverse

visual similarity relationships between the images precisely. Therefore, the high-

dimensional multi-modal visual features are first partitioned into multiple feature

subsets. We have also studied the statistical properties of the images under each

feature subset. The gained knowledge for the statistical property of the images under

each feature subset has bee used to design the basic image kernel for each feature

subset. Because different basic image kernels may play different roles on characterizing

the diverse visual similarity relationships between the images, and the optimal kernel

for diverse image similarity characterization can be approximated more accurately

by using a linear combination of these basis image kernels with different importance.

Kernel canonical correlation analysis (KCCA) is a strong tool to analyze the visual

similarity between concept nodes, we can build and visualize the concept network

which is indicated by the KCCA results. Each concept node together with its first-

order neighbor consist a concept clique. The images in the clique share similar visual

properties and provide a complete view of the given concept. We will conduct other

research topics based on this result, such as efficient data collection exploration,

multi-class classification, image retrieval and image recommendation.
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To allow users to assess the coherence between the visual similarity contexts deter-

mined by our algorithm and their perceptions, it is very important to enable graphi-

cal representation and visualization of the visual concept network, so that users can

obtain a good global overview of the visual similarity contexts between the image

concepts at the first glance. It is also very attractive to enable interactive visual

concept network navigation and exploration according to the inherent inter-concept

visual similarity contexts, so that users can easily assess the coherence with their

perceptions. Based on these observations, our approach for visual concept network

visualization exploited hyperbolic geometry [86]. The hyperbolic geometry is par-

ticularly well suited for achieving graph-based layout of the visual concept network

and supporting interactive exploration. The essence of our approach is to project

the visual concept network onto a hyperbolic plane according to the inter-concept

visual similarity contexts, and layout the visual concept network by mapping the rel-

evant image concept nodes onto a circular display region. Thus our visual concept

network visualization scheme takes the following steps: (a) The image concept nodes

on the visual concept network are projected onto a hyperbolic plane according to

their inter-concept visual similarity contexts by performing multi-dimensional scaling

(MDS) [24] (b) After such similarity-preserving projection of the image concept nodes

is obtained, FishEye model is used to map the image concept nodes on the hyperbolic

plane onto a 2D display coordinate. FishEye model maps the entire hyperbolic space

onto an open unit circle, and produces a non-uniform mapping of the image concept

nodes to the 2D display coordinate.

The concept network provides to the users with an overview of the flat-structure
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Figure 5: Concept Network Overview: the left tree-view list is the category list in
the selected folder; the middle sphere is the concept network with strongly correlated
concept nodes linked together; the light blue box in the middle is the currently selected
category “spaghetti”; the right panel-view list is the expanded images in the selected
category.

of the image collection. The navigation operation could be realized by click action to

each of the category nodes of the concept network as shown in 5. For the purpose of

further reducing the amount of images within each category and most representative

image recommendation, image collection summarization operation can be further

conducted on each category, which is also a very important research topic in many

other exploration systems.

1.2.4 Image Collection Summarization

Large scale online images are becoming widely available along with the develop-

ment of search engines such as Google Image and social networks such as Flickr.

Such availability, sometimes, leads to a contrary effect and makes useful information

“unavailable” or “hidden” from the users that one may easily get lost in the face
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of huge number of return results from image query, product search, web browsing

operations, etc. In such circumstance, automatic image collection summarization,

which attempts to select a small set of the most representative images to highlight

large amounts of images briefly, becomes critical to enable interactive navigation and

efficient exploration of large-scale image collections [75].

Many multimedia applications and business can benefit from automatic image sum-

marization: (a) on-line shopping sites can generate multiple icon images (i.e., image

summary) for each category of products by selecting a limited number of the most

representative pictures from a large set of product pictures; (b) tourism web sites can

generate a small set of the most representative photos from large-scale photo gallery

and display on their front page to attract visitors, which may further result in low

information overload on user navigation; (c) online image recommendation system

learns the user intention at real time and recommends a small amount of most rep-

resentative images out of a large collection [38]. Such interesting applications have

motivated researchers to develop more effective models and mechanisms for achieving

more accurate summarization of large-scale image collections.

How to effectively lessen the exploration burden for the end-users, while maintain-

ing the content variety of the original image collection, is the key issue for automatic

image collection summarization. A majority of the existing methods use clustering

techniques and select the centroids of the clusters as the summaries. The cluster-

ing techniques involved in collection summarization task include but not limited to

normalized-cut [27], k-means [168, 137], hierarchical clustering [68, 15], SOM [26] and
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Figure 6: A soft assignment example: right-hand 4 images (rostrum + pillar) can be
softly assigned to both two summaries (rostrum and pillar respectively) on left-hand.

similarity graph 1 [75]. One major drawback for the clustering method is that one

image is represented by one and only one summary (centroid of the cluster), while

in a lot of other cases, soft assignment is necessary. For example, in Figure 6, when

tourists took pictures of Tiananmen square, they intend to include as many landmarks

in one picture as possible, such as the 4 images on the right-hand of Figure 6. Both

the rostrum of Tiananmen and the marble pillar are taken together in one image.

This type of images will dominate a Tiananmen square related data collection, and

will be selected as a summary by clustering methods. However, it is more straightfor-

ward to select the “rostrum” and “marble pillar” as two separate summaries as shown

on the left-hand of Figure 6 because they each delivers more clear interpretation of

one aspect of the Tiananmen square topic and other images (right-hand 4 images in

Figure 6) can therefore be represented in a soft assignment fashion.

Camargo et al. [14] has replaced the clustering model with NMF (Non-negative

Matrix Factorization) model. After NMF, the clusters are identified by the activation

vector (the column of the coefficient matrix), which means the clusters could overlap

with each other (the result of a soft clustering), the summaries are constructed by

the top n images from each cluster (determined by the activation factor). The final

1Clusters are identified by the connected components in the similarity graph.
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summary constructed in this way may have duplications, and therefore violates the

conciseness requirement of summarization task. Furthermore, the summary learnt

in this method are inclined to present texture patterns, which is more suitable for

medical images rather than general images.

A group of iterative methods are also widely observed in collection summarization

tasks [133, 134, 132]. The judging criteria of image i with regard to set S includes

the quality, the coverage and the diversity of the candidate summary. The summaries

are selected iteratively by maximizing Equation 1. Obviously, the judging criteria

are hand crafted and lack an objective evaluation metric. Furthermore, the iterative

methods only values the absolute number of appearance of the image, rather than

the actual distribution of the images on the visual space. As we have illustrated

in Figure 6, the dominant image do not always have to be the best summary for a

collection. Therefore, a more sophisticated framework is needed to model the actual

reinterpretation relationship of images on visual space.

i = argmax
i
{Quality(i, S) + Coverage(i, S) +Diversity(i, S)} (1)

Considering the drawbacks of the existing methods, we have developed dictionary

learning for sparse representation framework to model the image collection summa-

rization problem. We intend to interprets the summarization problem as a subset

selection problem that a small set of the most representative images can be selected

to highlight all the significant visual properties of the original image set [75]. Under

this interpretation, the task for automatic image summarization can be treated as
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an optimization problem, e.g., selecting a small set of the most representative images

that can best reconstruct the original image set in large size. If we define X ∈ R
d×n

as the original image set in large size and D ∈ R
d×k, k ≪ n as the summary of the

given image set X in small size, automatic image summarization is to determine the

summary D by minimizing the global reconstruction error:

min
D
||X − f(D)||22 (2)

The selection of the reconstruction function f(·) is to determine how each image in the

original image set X can be reconstructed by the most representative images in the

summary D. In this thesis, we have defined the reconstruction function f(·) as a linear

regression model that uses the summary D to sparsely reconstruct each image in the

original set X . The sparsity means that only limited number of bases will actually be

involved in the reconstruction of an image. The idea of “induced sparsity” has already

been introduced in Ma’s work [161], which also learns the sparse coefficients from a

given data set. However, Ma’s work fixes the dictionary as the original training set

of a given category. In our problem, the dictionary and coefficient matrix are jointly

learnt so that the coefficient learning process in [161] can only be considered as an

alternative to the sparse coding stage of our proposed work.

From the above description, we now successfully reformulate the task of automatic

image summarization into the problem of dictionary learning for sparse representation

as shown in Equation 2. Therefore, two research issues, automatic image summariza-

tion and dictionary learning for sparse representation, are linked together according

to their intrinsic coherence: both of them try to select a small set of the most rep-
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resentative images that can effectively and sufficiently reconstruct large amounts of

images in the original image set.

We have discovered that the image collection summarization problem can be inter-

preted straightforwardly with the dictionary learning for sparse representation model

under the SIFT BoW framework. Therefore, the summarization performance can

be directly evaluated by the corresponding value of the reconstruction function. Al-

though automatic image summarization and dictionary learning for sparse represen-

tation have intrinsic coherence, we need to clarify that they have significant differ-

ences as well, e.g., the optimization function for automatic image summarization has

some unique constraints such as the fixed basis selection range, nonnegative and L0-

norm sparsity of the coefficients. The constraints are critical and differ the proposed

framework from most of the existing works. For the basis learning stage, traditional

methods such as MOD [34], K-SVD [2], Discriminative K-SVD [101], online dictio-

nary learning [100], all “learn” or “update” the basis analytically, which does not

restrict the search range. The sparse modeling pipelines introduced in Sapiro’s work

[125] propose similar sparse coefficients model, but do not have a restriction on the

bases learned either. On the other hand, the summarization problem requires the

bases to be chosen from a pool of given candidates, which results in a “selecting” ac-

tion, rather than “learning”. This observation implies the use of simulated annealing

algorithm for discrete bases search, which is the most important difference between

the proposed work to other works [125, 34, 2, 101, 100].

Most existing research work for automatic image summarization evaluate their sum-

marization results subjectively by using user satisfaction and relevancy score. There
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Figure 7: Summarization result comparison with 6 baseline methods in terms of both
MSE performance and computation cost. The closer an algorithm is to the origin
point, the better the algorithm is.

lacks an objective and quantitative evaluation metric for assessing the performance

of various algorithms for automatic image summarization. By reformulating the is-

sue of assessing the quality of summarization results as a reconstruction optimization

task, we can objectively evaluate the performance of various algorithms for automatic

image summarization in terms of their global reconstruction ability. In addition to

the subjective evaluation, the global Mean Square Error (MSE) is defined as the ob-

jective evaluation metric to measure the performance of our proposed algorithm for

automatic image summarization and compare its performance with that of other 6

baseline methods. Experiment results prove that the proposed framework achieves

the best MSE performance with decent computation cost, as shown in Figure 7
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1.2.5 An Information Retrieval Practice: Graffiti Retrieval

The proposed image collection exploration and navigation system can be also used

to serve the information retrieval tasks. In this thesis, a graffiti image retrieval appli-

cation is introduced and implemented with the proposed navigation system. Graffiti

recognition and retrieval, as an application in public safety, has drawn more and more

attention of researchers in the broad field of information retrieval [78]. Graffiti may

appear in the form of written words, symbols, or figures, and it has sprung up in most

metropolitan areas around the world. Gang-related graffiti is typically composed of

mostly characters, conveys lots of information, and often identifies a specific gang

territory or threatens law enforcement. The retrieval and interpretation of such in-

formation has become increasingly important to law enforcement agencies. With the

prevalence of hand-held devices, digital photos of graffiti are easily acquired and enor-

mous data collections of graffiti images are rapidly growing in size. Sifting through

and understanding each image in a collection are very difficult, if not impossible, for

humans to do. Thus, there is an urgent need to build a visual analytic system that

can be used for automatic graffiti image recognition and retrieval from large-scale

data collections.

It may seem that simply applying traditional optical character recognition (OCR)

on graffiti characters would address the problem. However, because of the artistic

appearance of many graffiti characters and the various types of surfaces that graffiti

can be painted on, understanding graffiti characters presents many more challenges

than traditional OCR can solve. As a compromise, researchers take a shortcut by
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Figure 8: Sample graffiti images: Three of the four images contain text, while the
bottom right image contains no textual information but only the “playboy” symbol

not utilizing any particular treatment to localize the graffiti objects in the image.

Instead, traditional object localization methods are applied, for example, to extract

the so-called “interesting” objects [80] or conduct the retrieval task with local feature

matching on the whole image without object localization [70]. There are two primary

flaws of such treatment: 1) Graffiti objects may not be “interesting” under the view of

traditional object localization and 2) Textual information within the image is missing,

making semantic-level understanding of the graffiti impossible. While investigating

an actual graffiti image collection as shown in Figure 8, we observed that most of the

collected images have textual information (people’s names or locations), while some

have figures or symbols that are also meaningful, such as the “playboy” and “crown”

symbol (in bottom left image in Figure 8; the crown image is a well-known symbol
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of a gang member). These observations led us to integrate the research work of both

semantic and visual understanding of the data, similar to the idea of fusing visual

and textual information [13].

To best describe the research tasks of graffiti recognition and retrieval, we need

to inspect the challenges and differences between graffiti recognition and traditional

OCR as shown in Figure 9. The images (a) to (f) illustrate different aspects of the

challenges in character detection, recognition, and image retrieval of graffiti images.

Image (a) suggests that graffiti may appear on any type of surface, including walls,

wooden fences, door frames, light poles, windows, or even tree trunks. The roughness

and complexity of the background may bring in a lot of noise, making the task of char-

acter detection very challenging. Image (b) illustrates that graffiti usually appears

outdoors and is exposed to various lighting conditions. Shadows and sunlight may

dramatically affect the ability to correctly detect characters. Graffiti “words” often

appear to be nonsensical because they are formed from acronyms or specially created

combinations of letters as shown in image (c). In traditional OCR, the recognition

result for certain letters could be used to predict the unrecognized letters by forming

potential meaningful words. In graffiti recognition, we do not have such a predic-

tion. Given that we have the ability to detect strokes of painting, we still need to

further differentiate texture strokes and non-textures, such as the “playboy” symbols

as shown in image (d). As illustrated in images in (e) and (f), the font and artistic

writing style of characters make the same words have a very different appearance.

This marked variation would impede the technique of template matching or local

feature matching.
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Figure 9: Example challenging graffiti images

In this application, we focus on the research task of graffiti image retrieval. After

deep investigation of the challenges of the graffiti recognition task compared to OCR,

we design a series of techniques for effective character detection. Next, we conduct

semantic-wise and image-wise retrieval on the detected character components rather

than the entire image to avoid the influence of the background noise. The visual and

semantic matching scores are combined to give the final matching result.

1.3 Contribution

Our system works specially on large-scale image collections and we have made a

series of contribution to fulfill large-scale image collection exploration and analysis.

The contributions of this paper reside in the following aspects:

For junk image filtering:

i. A bilingual inter-cluster correlation analysis algorithm is developed for integrat-

ing bilingual image search results for automatic junk image filtering.
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ii. To achieve more accurate partition of the returned images, multiple kernels

are seamlessly integrated for diverse image similarity characterization and a K-way

min-max cut algorithm is developed for achieving more precise image clustering.

iii. To filter out the junk images, the returned images for the same keyword-based

query (which are obtained from two different keyword-based image search engines)

are integrated and inter-cluster visual correlation analysis is further performed to

automatically identify the clusters for the relevant images and the cluster for the

junk images.

For concept network generation and image collection summarization:

i. A visual concept network structure is constructed to allow user to navigate

large-scale online image collections according to their visual similarity contexts at the

semantic level. Specifically, multiple kernels and kernel canonical correlation analysis

are combined to characterize the diverse inter-concept visual similarity relationships

more precisely in a high-dimensional multi-modal feature space.

ii. The problem of automatic image summarization is reformulated as an issue of

dictionary learning for sparse representation. As a result, we can utilize the theo-

retical methods for sparse representation to solve the problem of automatic image

summarization.

iii. A global optimization algorithm is developed to find the solution of the op-

timization function for automatic image summarization, which can avoid the local

optimum and maintain sufficient computation efficiency.

For graffiti image retrieval:

i. A bounding box framework is designed to localize the graffiti components, which
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speed-up interest point matching operation and reduce false-positive matches.

1.4 Outline

The remainder of this dissertation begins with Chapter 2, which reviews the related

work of the various aspects covered by this dissertation. Chapter 3 introduces a

novel junk image filtering in incorporating bilingual image search results. Chapter 4

discusses about our coarse-to-fine framework to speed up near duplicate image pair

detection. In Chapter 5, We proposes the design of our visual concept network and

the corresponding visualization result and we will present a novel understanding of

image collection summarization via dictionary learning for sparse representation in

Chapter 6. In Chapter 7, we will introduce an information retrieval application of

graffiti image retrieval. The evaluation and discussion of the results will be listed as

the last section in each chapter. Lastly ,we will conclude the work of this thesis in

Chapter 8 and also list the future research plans.



CHAPTER 2: RELATED WORK

2.1 Junk Image Filtering

Some pioneering work has been done for improving Google Images [43, 42, 12, 155,

47, 48]. To filter out the junk images from Google Images, Fergus et al. have applied

constellation model to re-rank the returned images according to the appearances of

the object classes and some promising results are achieved [43, 42], where both the

appearance models for the distinct object parts and the geometry model for all the

possible locations of the object parts are incorporated to learn the object models

explicitly from a set of images. Unfortunately, this approach may seriously suffer

from at least two key problems: (a) Because both the appearance models of the

object parts and their spatial configuration models should be learned simultaneously,

the number of model parameters are quite large and thus a fairly large amount of

high-quality training images are needed to learn the complex object models reliably;

(b) Image search results (returned by Google Images), on the other hand, are usually

very noisy and cannot be used as a reliable source for training such complex object

models precisely.

To incorporate multi-modal information for junk image filtering, the research team

from Microsoft Research Asia have developed several approaches to achieve more

effective clustering of web image search results by using visual, textual and linkage
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information [12, 155, 47]. Instead of treating the associated text terms as the single

source for web image indexing and retrieval, they have incorporated multi-modal

information sources to explore the mutual reinforcement between the images and

their associated text terms. In addition, a tri-parties graph is generated to model the

linkage relationships among the low-level visual features, images and their associated

text terms. Thus automatic image clustering is achieved by supporting tri-parties

graph partition. Incorporating multi-modal information sources for image indexing

and retrieval may improve the performance of web image search engines significantly,

but such approach may seriously suffer from the following problems: (a) Because

only the global visual features are extracted for characterizing the visual properties

of the images, the accuracy of the underlying image clustering algorithms may be

low, especially when the image objects are salient for image semantics interpretation;

(b) The tri-parties linkage graph may be very complex, and thus it may be very hard

to achieve junk image filtering in real time.

Because the interpretations of the relevance between the returned images and the

users’ real query intentions are largely user-dependent, it is very important to in-

tegrate human experience and their powerful capabilities on pattern recognition for

enhancing image semantics interpretation and web image retrieval. Thus one poten-

tial solution for junk image filtering is to involve users in the loop of image retrieval

via relevance feedback, and many relevance feedback techniques have been proposed

in the past [60, 144, 123, 142, 141, 177]. Another shortcoming for Google Images

search engine is that the underlying techniques for query result display (i.e., page-by-

page ranked list of the returned images) cannot allow users to assess the relevance
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between the returned images and their real query intentions effectively. Many pages

are needed for displaying large amounts of returned images, thus it is very tedious for

users to look for some particular images of interest through page-by-page browsing.

Things may become worse when the ambiguous keywords with many potential word

senses are used for query formulation. Because the visual properties of the returned

images are completely ignored for image ranking, the returned images with similar

visual properties may be separated into different pages. Ideally, users would like to

have a good global overview of the returned images in a way that can reflect their

principal visual properties effectively and allow them to navigate large amounts of

returned images interactively according to their nonlinear visual similarity contexts,

so that they can assess the relevance between the returned images and their real query

intentions interactively. Based on this observation, Gao et al. have developed an in-

teractive approach for junk image filtering [48], where users’ feedbacks are seamlessly

integrated for hypotheses assessment and junk image filtering. Unfortunately, naive

users may not be willing to spend too much time in such an interactive approach for

junk image filtering.

Feng et al. [41] and Weston et al. [158] have proposed new text-based approaches

for web image representation by using the associated text terms rather than only

the captions. Such text-based web image representation approaches may significantly

improve the performance of image search engines. However, the text information is

not always available and the above techniques have their limitation in the scope of

application.

Using template matching techniques can easily detect and remove a special type of



34

images, such as fabricated images or generated images. Wang [157] and Nhung[109]

compare the incoming images with the spam image database. The database stores all

feature vectors extracted from all known spam images labeled by traditional anti-spam

filter. The problem is that such a database may not be sufficient for spam detection

because the number of templates cannot be matched to the number of spam images

that exist.

2.2 Near Duplicate Detection

Many automatic techniques have been developed for near duplicate image detection

[69, 173] and discussed in review works [93, 122, 151]. These existing techniques

can be categorized into two representative groups according to their focus of the

visual features to be used for near duplicate image detection: global approach and

local approach. Nonetheless, if available, heterogeneous features like EXIF data, is

also helpful [140] in early stage of partitioning the data set. For most of the other

circumstances, such meta data is not available. Therefore, we will only discuss about

the visual features that are extracted solely from the content of the image. The

global approach focuses on the rapid identification of similar images by using the

global visual features, which can effectively handle the images with visually-close

objects or background. Global features include color histogram, texture feature,

and varieties such as Colored Pattern Appearance Model (CPAM) [139]. The local

approach focuses on extracting more reliable local visual features and performing

pair-wise image matching via interest point matching, which can effectively detect the

near-duplicate images containing similar objects of interest with various backgrounds.
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After detecting the local interest points or regions, various features and descriptors can

be used such as Ordinal Spatial Intensity Distribution (OSID) descriptor [140], SIFT

[74, 173] descriptor, GLOH, and PCA-SIFT [79]. Recent surveys [104] have conducted

an extensive comparison between the global approach and the local approach. Local

feature is proved to be more accurate on duplicate pair matching tasks although also

found to be more computational expensive than global feature.

For global approaches, a straightforward comparison of two images is to calcu-

late the similarity between two feature vectors. Specifically, if two images are near-

duplicates, their feature vectors would be very close to each other in the feature vector

space [157] . For local approaches, the local interest point descriptors could be used in

different ways to service the design of similarity measurement. For simple key point

matching, the matching between bags of features is usually done via naive bipartite

graph matching [140, 79, 95] to get the initial candidate set of matches.

In [103], Gaussian Mixture Model is used to represent the visual signature of the

image. Using JS-divergence as a similarity measurement of two distributions, Mehta

et al. performed Labeled Agglomerative Clustering: the idea is to find images which

are similar enough in the training set, and to replace them with one signature. Query

image from the test set can now be compared to the already identified signatures and

if there is a close match, then a positive detection can be made.

Zhang [173] use a parts-based representation of each scene image by building At-

tributed Relational Graphs (ARG) between interest points. They then compare the

similarity of two images by using Stochastic Attributed Relational Graph Match-

ing, to give impressive matching results. Unfortunately, they only demonstrate their
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method on a few hundred images and do not discuss any way to scale their system

to larger data sets of images.

In [166], a new framework, termed spatially aligned pyramid matching, is proposed

for near duplicate image detection. Images are divided into both overlapped and non-

overlapped blocks over multiple levels. In the first matching stage, pair-wise distances

between blocks from the examined image pair are computed using SIFT features and

Earth Movers Distance (EMD). In the second stage, multiple alignment hypotheses

that consider piecewise spatial shifts and scale variation are postulated and resolved

using integer-flow EMD. As shown in many pyramid matching works [54, 87, 91, 167],

the best results can be achieved by combining the result from multiple resolutions.

The fusion formulation is often found as below or in a similar formation:

SFuse(x→ y) = h0S(x
0 → y0) +

L−1
∑

l=1

hlS(x
2l−1 → y2l) (3)

where hl is the weight for the level-l. There could be two different weighting schemes:

a) equal weights, and b) unequal weights. Unequal weighting scheme is often prefer-

able, with the weight proportional to the scale of the block.

Another representation model is the visual bag-of-word model [18, 116, 110, 135].

The idea is borrowed from text retrieval system, and has achieved great success

in image retrieval community. Images are scanned for “salient” regions or interest

points and a high-dimensional descriptor is computed for the specified region. These

descriptors are then clustered into a vocabulary of visual words, and each region or

interest point is mapped to the visual word closest to it in the vocabulary. An image

is then represented as a bag of visual words, and these are entered into an index for
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later querying and retrieval. Typically, no spatial information of the visual words

is considered in the retrieval task. To overcome the limitation of the bag-of-word

model which ignore spatial relationships among visual words, spatial constraints are

frequently applied afterwards which will dramatically improve the matching accuracy.

Such as in [165], Wu et al. proposed bundled feature where image features are bundled

into local groups. Each group of bundled features becomes much more discriminative

than a single feature, and within each group simple and robust spatial constraints can

be enforced. Other techniques such as RANSAC [44] and its variation LO-RANSAC

used in [116] are also widely acknowledged, although it is computationally expensive

and would not be suitable for large-scale applications.

By seamlessly integrating content and context, Wu et al. have recently developed an

interesting approach for near-duplicate video detection [164]. The proposed approach

considers the time duration information to avoid comparison between videos with

considerably different length; then compare the local points extracted from thumbnail

images. In the case of image duplicate detection, there is no such information as time

duration, which implies us to use some computationally cheap image information.

Min-Hash is another straightforward choice for large-scale duplicate detection. It

is a method originally developed for text near-duplicate detection, and is adopted

to near-duplicate detection of images. Chum et al. [18] proposed method uses a

visual vocabulary of vector quantized local feature descriptors (SIFT) and for retrieval

exploits enhanced min-Hash techniques. The method represents the image by a sparse

set of visual words. Similarity is measured by the set overlap (the ratio of sizes between

the intersection and the union).
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To support more effective detection of the near duplicate images from large-scale

image collections, Locality Sensitive Hashing(LSH) is widely used for image database

indexing and achieving fast approximate search [79, 171, 67, 145, 71, 45]. In [145]

Torralba et al. proposed to learn short descriptors to retrieve similar images from a

huge database. The method is based on a dense 128D global image descriptor, which

limits the approach to no geometric / viewpoint invariance. Foo et al. [45] use LSH

index scheme to index a set of 36-dimensional PCA-SIFT descriptors. Jain et al [71]

introduced a method for efficient extension of LSH scheme, and with Mahalanobis

distance used in [66] and L1 distance used in [171]. All aforementioned approaches use

bit strings as a fingerprint of the image. In such a representation, direct collision of

similar images in a single bin of the hashing table is unlikely and a search over multiple

bins has to be performed. This is feasible for approximate nearest neighbor or range

search when the query example is given. However, for clustering tasks (such as finding

all groups of near duplicated images in the database) the bit string representation is

less suitable.

Another type of high dimensional indexing scheme is the tree-structured indexing

scheme which include: kd-tree, priority kd-tree [159] and R-tree [57] dimension re-

duction. Nister and Stewenius [110] propose generating a “vocabulary tree” using a

hierarchical k-means clustering scheme (also called tree structured vector quantiza-

tion [49]). The hierarchical k-means clustering scheme is used in [116] and also in our

work, for its ability to handle large scale of data and quick response to retrieve approx-

imate nearest neighbor. In [174], Zhang and Zhong proposed using self-organization

map (SOM) neural nets as the tool for constructing the tree indexing structure in
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image retrieval. The advantages of using SOM were its unsupervised learning abil-

ity, dynamic clustering nature, and the potential of supporting arbitrary similarity

measures.

When large-scale web images come into view, the tremendous volume of web im-

ages may pose new challenges to the scalability of all these existing algorithms for

automatic near duplicate image detection, e.g., the significant changes on the volume

of web images may dramatically affect the performance of all these existing tech-

niques for automatic near duplicate image detection. To deal with large-scale image

collection, one straightforward idea is to roughly partition the data set without sepa-

rating the possible duplicate pairs. If such meta data is not available, the images will

be organized in categories by their query keywords, and the scale of images under

each category will be reduced to several thousands. If we seek to further down scale

the category with visual features, we have to make sure the computationally cheap

features are used in the initial stages, and relatively expensive features used in later

stages [140, 178]. Based on this idea, Tang proposed a computation-sensitive cascade

framework in [140] to combine stage classifiers trained on different feature spaces

with different computation cost. This method can quickly accept easily identified

duplicates using only cheap features, such as simple global feature, without the need

to extract more sophisticate but expensive ones. Specifically, Tang bootstraps the

training data and the stage classifiers are trained on progressively more expensive,

yet more powerful feature spaces. Zhu et al. [178] suggest an effective multi-level

ranking scheme that filters out the irrelevant results in a coarse-to-fine manner. The

first two ranking levels (Nearest Neighbor Ranking, Semi-Supervised Ranking) are
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based on global features (Grid Color Moment, Local Binary Pattern, Gabor Wavelet

Texture and Edge) for efficiently filtering out the irrelevant results, and the last level

(Nonrigid Image Matching) provides a fine re-ranking based on the local features

(SURF [8]).

2.3 Concept Network Visualization

For large-scale image collection organized in concepts, an essential issue is to build

a concept network, which visualize the relationship between concepts. The organi-

zation and visualization of such concept network includes the following operations:

multi-modal feature extraction, concept network generation and interactive naviga-

tion system design.

For multi-modal feature extraction issues, different frameworks have been proposed

for image content representation [154, 176, 90, 97, 147, 35] and multiple types of vi-

sual features [98, 112, 118, 175, 95] (such as colors, textures and interest points)

are extracted for image representation. Because many image content representation

frameworks and many different visual features exist, there is an urgent need to pro-

vide a benchmark of their discrimination power for object and concept detection (i.e.,

image classification) [149, 56]. Snoek and his team have done a wonderful benchmark

work for color features [149], but they did not consider other types of visual features

which are widely used for image classifier training. When multiple types of visual

features are used for image classifier training, it is also very important to benchmark

the relative importance between different types of visual features for the same im-

age classification task, which may further provide good solution for feature subset
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selection.

When multiple types of visual features (with high dimensions) are used for SVM im-

age classifier training, the statistical properties of the images in such high-dimensional

multi-modal feature space could be heterogeneous, which should be seriously consid-

ered in the procedure for kernel design and selection [36]. Multiple types of kernel

functions, such as linear kernel and RBF kernel, are available for image similarity

characterization. It is worth noting that different kernels may be suitable for dif-

ferent image categories (i.e., images with different statistical properties in the high-

dimensional multi-modal feature space). Unfortunately, most existing SVM classifier

training tools use only one kernel for diverse image similarity characterization and

fully ignore the heterogeneity of the statistical properties of the images in the high-

dimensional multi-modal feature space [36]. Obviously, it is very attractive to design

different kernels for characterizing the diverse similarity relationships between the

images under different feature spaces and combine multiple types of kernels for SVM

image classifier training. When multiple types of kernels are used for diverse image

similarity characterization, it is also very important to provide a benchmark of mul-

tiple approaches for kernel combination for the same image classifier task. Based on

these observations, we have developed a novel benchmark framework to evaluate the

performance of multiple types of visual features and kernels for SVM image classifier

training.

Many work has been done to construct frameworks for image summarization and

interactive image navigation and exploration [136, 59]. The project of Large-Scale

Concept Ontology for Multimedia (LSCOM) is the first one of such kind of efforts to
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facilitate more effective end-user access of large-scale image/video collections in a large

semantic space [11, 107]. By exploiting large amounts of image/video concepts and

their inter-concept similarity relationships for image/video knowledge representation

and summarization, concept ontology can be used to navigate and explore large-scale

image/video collections at the concept level according to the hierarchical inter-concept

relationships such as “IS-A” and “part-of” [107].

Concept ontology may also play an important role in learning more reliable classi-

fiers for bridging the semantic gap [37, 65, 150, 88, 40, 5, 108]. By exploiting only the

hierarchical inter-concept or inter-object similarity contexts, some pioneer work have

been done recently to integrate the concept ontology and multi-task learning for im-

proving image classifier training, and the concept ontology can be used to determine

the inter-related learning tasks more precisely [37, 146].

Chen et al. [15] use hierarchical tree-structures to both speed-up search-by-query

and organize databases for effective browsing. Chen presents a method for designing a

hierarchical browsing environment which is called similarity pyramid. The similarity

pyramid groups similar images together while allowing users to view the database

at varying levels of resolution. Graham et al [53] developed two browsers: Calendar

browser and Hierarchy browser, which takes advantage of photo time stamps and

meta data information respectively. The photos in Hierarchy browser are organized

in a cluster tree.

Because of the following issues, most existing techniques for concept ontology con-

struction may not be able to support effective navigation and exploration of large-scale

image collections: (a) Only the hierarchical inter-concept relationships are exploited
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for concept ontology construction [19, 138]. When large-scale online image collections

come into view, the inter-concept similarity relationships could be more complex than

the hierarchical ones (i.e., concept network) [162]. (b) Only the inter-concept seman-

tic relationships are exploited for concept ontology construction [19, 138], thus the

concept ontology cannot allow users to navigate large-scale online image collections

according to their visual similarity contexts at the semantic level. It is well-accepted

that the visual properties of the images are very important for users to search for

images [136, 59, 11, 107, 162]. Thus it is very attractive to develop new algorithm for

visual concept network generation, which is able to exploit more precise inter-concept

visual similarity contexts for image summarization and exploration.

For concept network visualization, the relationship of the concept nodes is char-

acterized by a similarity matrix and Multi-Dimensional Scaling [82] can be used to

project data from high dimensional space onto lower dimensional space, such as 2D

space. The distance on the original space is kept as much as possible on the projected

2D space. Recently, several researches have applied multidimensional scaling (MDS)

to database browsing by mapping images onto a two dimensional plane. MacCuish et

al. [99] used MDS to organize images returned by queries while Rubner et al. [121]

used MDS for direct organization of a database. Stan et al. [137] buld the eID sys-

tem which utilized MDS to display the image for image collection exploration. After

MDS projection, the user may be able to view the relationship between concept nodes

on 2D plane. Considering we are dealing with large-scale image collection, the pro-

duced concept network may have thousands of nodes and are still cluttered for clear

exploration, therefore, we employ the traditional visualization technique of FishEye
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[46, 114] to highlight the center parts and overlook the unfocused parts. Specifically,

the 2D concept network is further plotted to 3D a revolving sphere so that the center

part is always enlarged and displayed with a high resolution, while the nodes on the

border of the sphere is contracted and displays less in detail. FishEye technique is

believed to be suitable for network topologies and extremely large structures. The

focus+context [7] technique is an extension to FishEye which displays a selected re-

gion with high resolution in separate window. A display in separate windows is not

necessary for concept network visualization, which has evenly distribution of concept

node and doesn’t provide much detail information for display.

2.4 Image Collection Summarization

We want to emphasis once again the definition of “summarization” used in this

thesis that it is the outcome from the down sampling action. There is another type

of work also tagged as image summarization, known as “digital tapestry” or “picture

collage”. For such problems, the set of images has already been decided , and the

visual layout to be determined. The collection summarization problem, on the other

hand, focus on the summarization selection issue only.

There is one category of image collections utilizes tag information, rather than

visual information: Clough et al.[21] construct a hierarchy of images using only textual

caption data, and the concept of subsumption. A tag ti subsumes another tag tj if the

set of images tagged with ti is a superset of the set of images tagged with tj . Schmitz

[126] uses a similar approach but relies on Flickr tags, which are typically noisier

and less informative than the captions. Jaffe et al. [68] summarize a set of images
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using only tags and geotags. By detecting correlations between tags and geotags,

they are able to produce “tag maps”, where tags and related images are overlaid on a

geographic map at a scale corresponding to the range over which the tag commonly

appears. For a larger range of general images, the tag information is sometimes

unavailable, thus the summarization is extracted based on visual information of the

images in the collection.

Most existing algorithms for automatic image collection summarization can be

classified into two categories: (a) simultaneous summarization approach; and (b)

iterative summarization approach.

For the simultaneous summarization approach, the global distribution of an im-

age set is investigated and image clustering techniques are usually involved [27, 68].

In particular, Jaffe et al. [68] have developed a Hungarian clustering method by

generating a hierarchical cluster structure and ranking the candidates according to

their relevance scores. Denton et al.[27] have introduced the Bounded Canonical Set

(BCS) by using a semidefinite programming relaxation to select the candidates, where

a normalized-cut method is used for minimizing the similarity within BCS while max-

imizing the similarity from BCS to the rest of the image set. Other clustering tech-

niques such as k-medoids [168], affinity propagation [3] and SOM [26] are also widely

acknowledged. The global distribution of an image set can also be characterized by

using a graphical model. Jing et al. [75] have expressed the image similarity contexts

with a graph structure, where the nodes represent the images and the edges indicate

their similarity contexts, finally, the nodes (images) with the most connected edges

are selected as the summary of a given image set. Chen et al.’s work [15] focuses on
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the use of hierarchical tree-structures to both speed-up search-by-query and organize

databases for effective browsing. The hierarchical structure is built with agglomerate

(bottom-up) clustering. The specific icon image (or summary of the cluster) is chosen

to minimize the distance to the corresponding cluster centroid. Stan et al.’s summa-

rization work [137] also use hierarchical structure with k-means algorithm and select

the centroid (center of the cluster) as the most representative image. Camargo et

al. [14] develop the clustering framework with NMF and selects the most important

image in each cluster based on the text terms.

For the iterative summarization approach, some greedy-fashion algorithms are ap-

plied to select the best summary sequentially until a pre-set number of the most

representative images are picked out [133]. Simon et al. [133] have used a greedy

method to select the best candidates by investigating the weighted combinations of

some important summarization metrics such as likelihood, coverage and orthogonal-

ity. Sinha [134] proposed a similar algorithm with the metrics of quality, diversity

and coverage. Shroff et al.’s work [132] introduce an optimization function linearly

composed by the coverage term and diversity term. The basis is updated by selecting

randomly from the rest of the set and only those bases which strictly decrease the

objective will be remained. Fan et al. [38] proposed “ JustClick” system for image rec-

ommendation and summarization which incorporates both visual distribution of the

images and user intention discovered during exploration. Wong et al. [153] integrated

the dynamic absorbing random walk method to find diversified representatives. The

idea is to use the absorbing states to drag down the stationary probabilities of the

nearby items to encourage the diversity, where the item with the highest stationary
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probability in the current iteration is selected. The above greedy methods focus on

selecting the current most representative images at each iteration while penalizing the

co-occurrence of the similar candidates (images). Our proposed model for automatic

image summarization takes the benefit of both two types of approaches, e.g., we use

the explicit measurements in the iterative approaches to characterize the property of

a summary and we learn the bases (candidates) simultaneously to avoid the possible

local optimum solution. He et al. [61] developed a unified framework for structural

analysis of image database using spectral techniques, which follows similar idea as

Wong’s work [153] by using random walk and seek for stable distribution.

Recently, Krause et al. [81] proposed the submodular dictionary selection method

for sparse representation and have proved that the dictionary (which is selected greed-

ily) is close to the global optimum solution in the case that the original data set

satisfies the submodular condition. However, most of the real-world image sets do

not satisfy the submodular condition which makes Krause’s algorithm less convinc-

ing for automatic image summarization application and corresponding results do not

guarantee to be global optimum.

Most existing techniques for dictionary learning and sparse coding use machine

learning techniques to obtain more compact representations, such as PCA [160], the

Method of Optimal Direction (MOD) [33] and K-SVD [1]. The MOD algorithm is

derived directly from Generalized Lloyd Algorithm (GLA) [49], which iteratively up-

dates the codebook and the code words are updated as the centroids from a nearest

neighbor clustering result. The K-SVD algorithm follows the same style by updating

the bases iteratively and the new basis is generated directly from the SVD calculation
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result. The K-SVD method is not applicable to our proposed approach for automatic

image summarization because our model only takes discrete bases rather than nu-

merical outputs from SVD. The methods of Matching Pursuit (MP) [102] and Lasso

(forward stepwise regression and least angle regression) [32] are widely accepted for

sparse coding. These methods could provide us with some ideas on the design of an

appropriate sparse coding algorithm.

The sparse representation of images is not rarely seen [170, 161, 125]. Wright et

al. [161] proposed a sparse representation model used in face recognition application.

The representation of images is similar to the model used in this thesis, however,

Wright’s work does not serves specifically for the summarization task, therefore, the

bases do not process a practical meaning as the coefficients do not have to be non-

negative. The non-negativity constraint is necessary for the summarization task and

makes the problem more challenging. The sparse representation-based classification

(SRC) algorithm proposed in [161] is barely the sparse coding step and it is targeted

on dictionary learning tasks. The sparse representation of images is also used in

classification applications such as in Sapiro’s work [125]. The dictionary learning and

sparse coding are implemented in a similar way as K-SVD. Our previous work [170]

also proposed a L0-norm sparse representation of the images. The major difference is

that optimal solution is searched in a greedy fashion and cannot avoid local optimum.

In this thesis, a simulated annealing algorithm is adopted as the proposed approach

to achieve global optimum with a high probability when enough search steps are

performed. A summarization of the frameworks and algorithms discussed in this

subsection can be found in Table 1 and 2
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2.5 Graffiti Retrieval

Graffiti image retrieval research lies in the intersection of OCR and image retrieval.

The techniques from both fields may benefit the graffiti retrieval work.

Graffiti image retrieval is closely related to the handwriting recognition and re-

trieval work in OCR. The graffiti characters are essentially handwritten characters,

although they often have an artistic appearance and are usually found in more chal-

lenging environments. OCR techniques recognize and match characters based on their

shape and structure information, such as skeleton feature [148, 115], shape context [9],

and order structure invariance [20]. There are also a bunch of unsupervised feature

learning architectures, such as the deep learning architectures of Multi-Layer Percep-

tions (MLP) and Stacked Denoising Auto-encoder (SDA) which achieves multi-level

of representation [10, 22]. After all, the foundation for the effectiveness of these tech-

niques is the correct separation of the characters from strings or words detected. The

encoding of the word is not an easy task, and the methods available are often trivial

and may not apply to the graffiti data. Another issue is that simply measuring the

similarity between two individual characters as designed in [148] is inadequate. We

intend to evaluate the similarity between two strings or words to derive semantic-level

understanding. The proposed evaluation metric, longest common subsequence (LCS),

is designed to overcome this flaw by considering the sequence of the characters in the

string [172].

The visual difficulties introduced in Chapter 1 and the artistic appearance of graf-

fiti images have motivated researchers to try routes other than OCR. Jain et al. [70]
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have proposed a system named Graffiti-ID and treats the graffiti purely as images

on the retrieval task. The Graffiti-ID system does not specifically locate the char-

acter components in the images, and thus some false-positive matches may occur.

Furthermore, the potential semantic relationship between the graffiti characters is

completely ignored; thus, Graffiti-ID does not distinguish itself from general image

retrieval frameworks.

Our proposed system works on the graffiti character components that are detected

in the image. Our proposed framework may have the potential to not only achieve

better retrieval accuracy by eliminating as much background noise as possible, but

also significantly reduce the computation burden by eliminating unrelated interest

points.



CHAPTER 3: JUNK IMAGE FILTERING WITH BILINGUAL SEARCH RESULT

In this Chapter, we will introduce the junk image filtering framework, which utilize

the bilingual search results from Google Image and Baidu Image. The efficient elim-

ination of junk images or irrelevant images of a given data collection is an essential

step for further operation of image collection organization and exploration.

3.1 Data Collection and Feature Extraction

The images used in this research task and the corresponding experiment are partly

from Caltech-256 [55], LabelMe [124], NUS-WIDE [17], Event Dataset [89] and partly

crawled from the Internet. To determine the meaningful text terms for crawling

images from the internet like Google or Flickr, many people use the keywords which

are sampled from WordNet. Unfortunately, most of the keywords on WordNet may

not be meaningful for image concept interpretation. Based on this understanding,

we have developed a taxonomy for nature objects and scenes interpretation. Thus

we follow this pre-defined taxonomy to determine the meaningful keywords for image

crawling as shown in Figure 10.

For feature extraction, to avoid the issue of image segmentation while allow the

visual features to provide the object information at certain accuracy level, four grid

resolutions are used for image partition and feature extraction which is to partition

the image into a 4 by 4 mesh. In order to characterize various visual properties of the
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Figure 10: The taxonomy for text term determination for image crawling.

images more sufficiently, three types of visual features are extracted for image content

representation: (a) grid-based color histograms [92]; (b) Gabor texture features; and

(c) SURF (Speeded Up Robust Feature) features [73, 118, 96, 8].

For the color features, one color histogram is extracted from each image grid, thus

there are
∑3

r=0 2
r × 2r = 85 grid-based color histograms. Each grid-based color

histogram consists of 72 HSV bins to represent the color distributions in the corre-

sponding image grid.

To extract Gabor texture features, a Gabor filter bank, with 3 scales and 4 orienta-

tions, is used. The Gabor filter is generated by using a Gabor function class. To apply

Gabor filters on an image, we need to calculate the convolutions of the filters and the

image. We transform both the filters and the image into the frequency domain to get

the products and then transform them back to the space domain. This process can

calculate Gabor filtered image more efficiently. Finally, the mean values and standard

deviations are calculated from 12 filtered images, making up to 24-dimensional Gabor

texture features.

SURF algorithm is used to reduce the computational cost for traditional SIFT
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feature extraction [96]. For each image, a number of interest points are detected and

their corresponding 64-dimensional descriptors are extracted.

One major advantage of our fast feature extraction approach is that it can achieve

a good trade-off between the effectiveness for image content representation (i.e., char-

acterizing both the global visual properties of the entire images and the local visual

properties of the image objects) and the significant reduction of the computational

cost for feature extraction, thus it can be performed in real time. It is also important

to note that our color histograms focus on extracting the regional visual properties of

the image objects for achieving more accurate image clustering by reducing the mis-

leading effects of the background on image similarity characterization at the object

level.

By using high-dimensional multi-modal visual features (color histogram, Gabor

wavelet textures, SURF features) for image content representation, it is able for us

to characterize the diverse visual properties of the images more sufficiently. Because

each type of visual features is used to characterize one certain type of the visual

properties of the images, the visual similarity contexts between the images are more

homogeneous and can be approximated more precisely by using one particular type of

the base kernels. Thus one specific base kernel is constructed for each type of visual

features (i.e., one certain feature subset).

For two images u and v, their color similarity relationship can be defined as:

κc(u, v) = e−dc(u,v)/σc , dc(u, v) =
R−1
∑

r=0

1

2r × 2r
Dr(u, v) (4)
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where σc is the mean value of dc(u, v), R = 4 is the total number of grid resolutions

for image partition, Dr(u, v) is the color similarity relationship between two images

u and v according to their grid-based color histograms at the rth resolution.

Dr(u, v) =
2r×2r
∑

t=1

72
∑

i=1

D(H t
i (u), H

t
i (v)) (5)

where Hr
i (u) and H

r
i (v) are the ith component of the grid-based color histograms for

the images u and v at the rth image partition resolution.

For two images u and v, their local similarity relationship can be defined as:

κs(u, v) = e−ds(u,v)/σs (6)

ds(u, v) =

∑

i

∑

j ωi(u)ωj(v)ED(si(u), sj(v))
∑

i

∑

j ωi(u)ωj(v)
(7)

where σs is the mean value of ds(u, v) in our test images, ωi and ωj are the Hessian

values of the ith and jth interesting points for the images u and v (i.e., the impor-

tance of the ith and jth interesting points, ED(si(u), sj(v)) is the Euclidean distance

between two SURF descriptors.

For two images u and v, their textural similarity relationship can be defined as:

κt(u, v) = e−dt(u,v)/σt , dt(u, v) =
R−1
∑

r=0

1

2r × 2r

2r×2r
∑

t=1

ED(gti(u), g
t
j(v)) (8)

where σt is the mean value of dt(u, v) in our test, ED(gi(u), gj(v)) is the Euclidean

distance between two Gabor textural descriptors.

The diverse similarity contexts between the images can be characterized more pre-
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Figure 11: Image clusters and their inter-cluster correlations for the returned images
of the keyword-based query “beach” from Google Images.

Figure 12: Image clusters and their inter-cluster correlations for the returned images
of the keyword-based query “beach” from Baidu Images.
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cisely by using a mixture of these three base image kernels (i.e., mixture-of-kernels)

[175, 39].

κ(u, v) =

3
∑

i=1

βiκi(u, v),

3
∑

i=1

βi = 1 (9)

where u and v are two images, βi ≥ 0 is the importance factor for the ith base kernel

κi(u, v).

Combining multiple base kernels can allow us to achieve more precise characteriza-

tion of the diverse visual similarity contexts between the images. However, estimating

the kernel weights in unsupervised learning (clustering) scenarios is a hard problem,

due to the absence of class labels that would guide the search for the relevant infor-

mation.

3.2 Image Clustering

The relevant images for the same keyword-based query, which are returned by

different keyword-based image search engines, may have strong correlations on their

visual properties. The image search results from one search engine may also has such

properties as can be grouped into several related partitions. Thus image clustering

is very attractive for improving the performance of the image retrieval systems [4,

74, 94, 119, 16]. The objective of image clustering is to provide clusters of images

within each query set and the result clusters will be further evaluated with other

clusters for their visual correlation. To achieve more effective image clustering and

automatic kernel weight determination, a K-way min-max cut algorithm is developed,

where the cumulative inter-cluster visual similarity contexts are minimized while the

cumulative intra-cluster visual similarity contexts (summation of pair wise image
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Figure 13: Image clusters and their inter-cluster correlations for the returned images
of the keyword-based query “garden” from Google Images.

similarity contexts within a cluster) are maximized. These two criteria can be satisfied

simultaneously with a simple K-way min-max cut function.

Our K-way min-max cut algorithm takes the following steps iteratively for image

clustering and kernel weight determination:

(a) For a given keyword-based query C, a graph is first constructed to organize all

its return images (which are obtained from one certain keyword-based image search

engine) according to their visual similarity contexts [131, 28], where each node on

the graph is one return image for the given keyword-based query C (from the same

keyword-based image search engine) and an edge between two nodes is used to char-

acterize the visual similarity contexts between two return images, κ(·, ·). An initial

value for the number of image cluster is given as K = 120 and the kernel weights for

three base kernels are set to be equal, e.g., β1 = β2 = β3 = 0.33.

(b) All these returned images for the given keyword-based query C (from the same
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Figure 14: Image clusters and their inter-cluster correlations for the returned images
of the keyword-based query “garden” from Baidu Images.

keyword-based image search engine) are partitioned into K clusters automatically by

minimizing the following objective function:

min

{

Ψ(C,K, β̂) =

K
∑

i=1

s(Gi, G/Gi)

s(Gi, Gi)

}

(10)

where G = {Gi|i = 1, · · · , K} is used to represent K image clusters for the given

keyword-based query C (from the same keyword-based image search engine), G/Gi is

used to represent other K−1 image clusters in G except Gi, K is the total number of

image clusters, β̂ is the set of the optimal kernel weights. The cumulative inter-cluster

visual similarity context s(Gi, G/Gi) is defined as:

s(Gi, G/Gi) =
∑

u∈Gi

∑

v∈G/Gi

κ(u, v) (11)
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The cumulative intra-cluster visual similarity context s(Gi, Gi) is defined as:

s(Gi, Gi) =
∑

u∈Gi

∑

v∈Gi

κ(u, v) (12)

We further define X = [X1, · · · , Xl, · · · , Xk] ∈ R
n×k as the cluster indicators, and

its component Xl ∈ R
n×1 is a binary indicator for the appearance of the lth cluster

Gl,

Xl(u) =































1, u ∈ Gl

0, otherwise

(13)

W is defined as an n× n symmetrical matrix (i.e., n is the total number of return

images for the given keyword-based query C), and its component is defined as:

Wu,v = κ(u, v)

D is defined as an n×n diagonal matrix, and its diagonal components are defined as:

Du,u =
n
∑

v=1

Wu,v (14)

Thus an optimal partition of large amounts of return images (i.e., image clustering)

is achieved by:

min

{

Ψ(C,K, β̂) =
K
∑

l=1

XT
l (D −W )Xl

XT
l WXl

}

(15)

Let
−→
W = D− 1

2WD− 1
2 , and

−→
Xl =

D
1
2 Xl

‖D
1
2 Xl‖

, the objective function for our K-way min-

max cut algorithm can further be refined as:

min

{

Ψ(C,K, β̂) =

K
∑

l=1

XT
l DXl

XT
l WXl

−K =

K
∑

l=1

1
−→
Xl

T ·
−→
W ·
−→
Xl

−K

}

(16)
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subject to:
−→
Xl

T ·
−→
Xl = I,

−→
Xl

T ·
−→
W ·
−→
Xl > 0, l ∈ [1, · · · , K]

The optimal solution for Eq. (7) is finally achieved by solving multiple eigenvalue

equations:

−→
W ·
−→
Xl = λl

−→
Xl, l ∈ [1, · · · , K] (17)

(c) When an initial partition of the returned images (which are obtained from

the same keyword-based image search engine for the given query C) is achieved, a

post-process is further performed to estimate the optimal number of image clusters

by either splitting the diverse image clusters or merging the similar image clusters.

For a diverse image cluster Gl, it can be split into two homogeneous image clusters

when its cumulative intra-cluster visual similarity context s(Gl, Gl) is smaller than

its cumulative inter-cluster visual similarity context s(Gl, Gh) with any other image

cluster Gh.

s(Gl, Gl) < s(Gl, Gh), h ∈ [1, · · · , K], h 6= l

The splitting operation is conducted by performing another k-way min-max cut oper-

ation, with k equals to 2. k(k − 1) cluster pairs need to be evaluated for performing

such splitting operation.

For two image clusters Gm and Gn, they can be merged as one single image cluster

when their cumulative inter-cluster visual similarity contexts s(Gm, Gn) is close to

their average intra-cluster visual similarity context.

s(Gm, Gn) ≈
s(Gm, Gm) + s(Gn, Gn)

2

The closeness is defined by a threshold value which is determined heuristically from
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the experiment results. K(K−1)
2

cluster pairs need to be evaluated for performing such

merging operation.

(d) The objective function for kernel weight determination is to maximize the inter-

cluster separability and the intra-cluster compactness. For one certain cluster Gl, its

inter-cluster separability µ(Gl) and its intra-cluster compactness σ(Gl) are defined

as:

µ(Gl) = XT
l (D −W )Xl, σ(Gl) = XT

l WXl (18)

For one certain cluster Gl, we can refine its cumulative intra-cluster pair-wise image

similarity contexts s(Gl, Gl) as W (Gl):

W (Gl)i =
∑

u∈Gl

∑

v∈Gl

κi(u, v) = βTω(Gl) (19)

D(Gl)i −W (Gl)i = βT (ǫ(Gl)− ω(Gl)) (20)

where ω(Gl) and ǫ(Gl) are defined as:

ωi(Gl) =
∑

u∈Gl

∑

v∈Gl

κi(u, v), ǫi(Gl) =

nl
∑

v=1

ωi(Gv) (21)

where i ∈ [1, 2, 3], nl is the total number of clusters.

The optimal weights ~β = [β̂1, · · · , β̂3] for kernel combination are determined auto-

matically by maximizing the inter-cluster separability and the intra-cluster compact-

ness:

argmax
β

{

1

K

K
∑

l=1

σ(Gl)

µ(Gl)

}

(22)

subject to:
∑3

i=1 βi = 1, βi ≥ 0

The optimal kernel weights ~β = [β̂1, · · · , β̂3] are determined automatically by
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solving the following quadratic programming problem:

argmin
β

{

1

2
~βT

(

K
∑

l=1

Ω(Gl)Ω(Gl)
T

)

~β

}

(23)

subject to:
∑3

i=1 βi = 1, βi ≥ 0

Ω(Gl) is defined as:

Ω(Gl) =
ω(Gl)

ǫ(Gl)− ω(Gl)
(24)

In summary, our K-way min-max cut algorithm takes the following steps iteratively

for image clustering: (1) K is set as one large number and β is set equally for all

these three feature subsets at the first run of iterations. It is worth noting that the

optimal number of the image clusters K is determined automatically via splitting and

merging operations and it does not depend on its initial value. Obviously, the setting

of the initial value of K may affect the convergence rate of our K-way min-max cut

algorithm. (2) Given the initial values of kernel weights and cluster number, our

K-way min-max cut algorithm is performed to partition the images into K clusters

according to their pair-wise visual similarity contexts. (3) Splitting and merging

operations are performed on the image clusters for determining the optimal number

of the image clusters (i.e., optimal K). (4) Given an initial partition of the images,

our kernel weight determination algorithm is performed to estimate more suitable

kernel weights, so that more precise characterization of the diverse visual similarity

contexts can be achieved. (5) Go to step (b) and continue the loop iteratively until

β and K are convergent or a maximum number of such iterations is reached.

Our image clustering results for two given keyword-based queries “beach” and “gar-
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Figure 15: Major steps for junk image filtering through inter-cluster correlation anal-
ysis

den”, which are obtained from two image search engines (Google Images in English

and Baidu Images in Chinese), are given in Figure 11, Figure 12, Figure 13, Figure

14. For each image cluster, one most representative image is selected for visualiza-

tion. The visual correlations between the image clusters are represented as the edges

among these most representative images. Even our image clustering algorithm can

allow us to obtain more precise partitions of large amounts of returned images, it may

fall short of additional information for automatically identifying the clusters of the

junk images and the clusters of the relevant images.

3.3 Junk Image Filtering

Because the relevant images for the same keyword-based query (which is simulta-

neously performed on different keyword-based image search engines) may share some

common or similar visual properties, it is very attractive to integrate the search results

from multiple keyword-based image search engines in different languages to automati-
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Figure 16: Inter-cluster correlation analysis for junk image filtering of the keyword-
based query “mountain”: (a) bilingual image clusters for the relevant images; (b)
bilingual image clusters for the junk images

cally identify the clusters for the junk images and the clusters for the relevant images.

In this paper, we focus on integrating bilingual keyword-based image search results

(Google Images in English and Baidu Images in Chinese) to automatically identify

the clusters for the junk images and the clusters for the relevant images.

Because the query terms for image search could be short (i.e., keywords or short

phrases), a dictionary-based approach is used for automatic bilingual query transla-

tion. In our current experiments, we focus on English to Chinese query translation

by using an online English-Chinese bilingual dictionary. We are using the trans-

late.google.com for English to Chinese translation. We had compare the translation

results of several online dictionaries such as: Google Translate, Yahoo Babel Fish and

Babylon Translate. The translation results are mostly the same because the query

terms are mostly clearly-defined nouns. Even for those with different translation

results, the image search results are similar.

To integrate bilingual image search results for junk image filtering, the Hungarian

method [83] (as shown in Figure 15) is used to determine inter-cluster visual correla-
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tions between the image clusters for two keyword-based image search engines, Google

Images in English and Baidu Images in Chinese. For two given image clusters Gi

and Gj from Google Images and Baidu Images, their inter-cluster visual association

γ(Gi, Gj) is determined by using the Hungarian method [83] to optimize their bilin-

gual pair-wise visual similarity contexts. First, one given image x for the image cluster

Gi in Google Images is connected with one and only one image y for another image

cluster Gj in Baidu Images, and their bilingual visual similarity context is defined as:

δ(x, y) =
1

2
(κ̂(x, y) + κ̄(x, y)) (25)

where κ̂(x, y) is the visual similarity context between two images x and y by using

the kernel weights for the image cluster Gi, and κ̄(x, y) is the visual similarity context

between two images x and y by using the kernel weights for the image cluster Gj .

Second, the bilingual visual similarity context γ(Gi, Gj) between the image clusters Gi

and Gj is then determined by finding a maximum value of the sum of these bilingual

pair-wise visual similarity contexts δ(·, ·):

γ(Gi, Gj) = max
δ

1

N

∑

x∈Gi

∑

y∈Gj

δ(x, y) (26)

where N is the total number of such bilingual pairwise similarity contexts δ(·, ·). The

bilingual inter-cluster visual similarity contexts γ(·, ·) are further normalized to [0, 1].

For a given keyword-based query C, all its image clusters from Google Images and

Baidu Images can further be partitioned into two groups according to their bilingual

inter-cluster visual similarity contexts γ(·, ·): positive group versus negative group.

The returned images in the positive group have strong correlations on their visual
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Figure 17: Inter-cluster correlation analysis for junk image filtering of the keyword-
based query “great wall”: (a) bilingual image clusters for the relevant images; (b)
bilingual image clusters for the junk images

properties (i.e., with larger values of the bilingual inter-cluster visual similarity con-

texts), thus they are strongly correlated on their visual properties and can be treated

as the relevant images for the given keyword-based query C. On the other hand, the

returned images in the negative group, which are weakly correlated on their visual

properties and differ significantly from the images in the positive group on their vi-

sual properties (i.e., with small values of the bilingual inter-cluster visual similarity

contexts), can be treated as the junk images for the given keyword-based query C

and be filtered out automatically. There is a threshold value that determines whether

or not two clusters are strongly correlated on their visual properties. The threshold

value is gained from experiment results heuristically.

The negative clusters for the junk images may have small sizes because the junk

images from different keyword-based image search engines in different languages may

not have strong correlations on their visual properties, but there may have a large

number of such small-size clusters for the junk images. Some experimental results for

junk image filtering are shown in Figure 16,Figure 17 and Figure 18, one can observe
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Figure 18: Inter-cluster correlation analysis for junk image filtering of the keyword-
based query “beach”: (a) Image cluster and their inter-cluster correlations for the
returned images from Google Images; (b) bilingual image clusters for the junk images.

that our bilingual inter-cluster correlation analysis algorithm can filter out the junk

images effectively.

3.4 Evaluation and Discussion

Our experiments on algorithm evaluation are performed on 5000 keyword-based

bilingual queries which are simultaneously performed on Google Images and Baidu

Images. The query terms are collected from multiple sources, including public image

collection, dictionary and image sharing web sites. More than 4000 images are crawled

for each query. To assess the effectiveness of our proposed algorithms, our algorithm

evaluation work focuses on: (1) comparing the performance (i.e, the query accuracy

rates) of the keyword-based image search engines before and after performing junk

image filtering; (2) comparing the performance differences between various approaches

for image clustering (i.e., our K-way min-max cut algorithm versus normalized cuts

approach [131]) (because image clustering play an important role in search result

partition and bilingual inter-cluster correlation determination).

It is worth noting that our junk image filtering system directly crawl the images
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which are returned by the keyword-based image search engines (Google Images and

Baidu Images), thus our junk image filtering system will have same recall rates as

that of Google Images and Baidu Images. By filtering out the junk images, our junk

image filtering system can significantly improve the precision rates as compared with

Google Images and Baidu Images. Based on these observations, the accuracy rate η

is used to measure the performance of our junk image filtering system. The accuracy

rate η is defined as:

η =

∑N
i=1 δ

N
(27)

where N is the total number of returned images, δ is a delta function,

δ =































1, relevant images,

0, junk images

(28)

It is hard to manually annotate large-scale benchmark image set for our algorithm

evaluation task and the interpretations of the junk images are largely user-dependent.

Thus an image navigation system is designed to allow users to interactively provide

their assessments of the relevance between the returned images and their real query

intentions. The user labeling process start by receiving a query word from the user

and return the result images organized in a graph structure as shown in Figure 16 and

Figure 17. The user may open each individual image and label yes or no to indicate

whether or not the image is relevant to the user’s query intention. Multiple users are

involved to assess the performance of our junk image filtering system for the same

keyword-based query and their accuracy rates η are averaged as the final performance.
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As shown in Figure 20, one can observe that our algorithm can improve the accuracy

rates significantly, thus our algorithm can filter out the junk images effectively.

The accuracy rate ρ is used to measure the performance of our image clustering

algorithm. The accuracy rate ρ is defined as:

ρ =

∑n
i=1 δ(Li, Ri)

n
(29)

where n is the total number of images, Li is the cluster label for the ith image which

is obtained by our K-way min-max cut algorithm, Ri is the label for the ith image

which is given by a benchmark image set. δ(x, y) is a delta function,

δ(x, y) =































1, x = y,

0, otherwise

(30)

By using the same set of feature subsets for image content representation, we have

compared the performance differences between two approaches for image clustering:

(a) our K-way min-max cut algorithm; (b) normalized cuts [131]. As shown in Figure

20, one can observe that our K-way min-max cut algorithm can achieve higher ac-

curacy rates for image clustering. The improvement on the clustering accuracy rate

benefits from our better definitions of the inter-cluster similarity contexts and the

intra-cluster similarity contexts. It is important to note that the objective function

for the K-way normalized cut algorithm can be refined as:

Ncut(C,K) =

K
∑

l=1

s(Gl, G/Gl)

dl
=

K
∑

l=1

s(Gl, G/Gl)

s(Gl) + s(Gl, G/Gl)
(31)

Where dl is the total connection from node l to all other nodes in the graph or
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Figure 19: The comparison results on accuracy rates η for 5000 keyword-based queries
before and after performing junk image filtering.

Figure 20: The comparison results on the accuracy rates ρ between our algorithm
and the normalized cuts approach.



73

collection. Gl is defined similar as in Section 4. Because s(Gl, G/Gl) may dominate

to produce a smaller value of Ncut(C,K), the normalized cuts algorithm may always

cut out a subgraph (cluster) with a very small weight, e.g., a skewed cut. On the

other hand, our K-way min-max cut algorithm has shown to be able to lead to more

balanced cuts than the normalized cut [28].



CHAPTER 4: SPEED UP NEAR DUPLICATE IMAGE DETECTION

The search result should be further refined by eliminating near duplications within

the relevant image clusters (such as the image pairs shown in Figure 18). We will

introduce a coarse-to-fine structure near duplicate detection framework for general

image collection in this Chapter and discuss its advantage in maintaining the balance

between detection accuracy and computation efficiency.

4.1 Near Duplicate Detection and Removing

The task of collection refinement primarily requires efficient and accurate near

duplicate detection before eliminating the redundancies. Traditional methods often

require O(n2) pair-wise comparisons to detect duplicate image pairs in a group of n

images. When we are dealing with large scale image set, often with n at a minimum

of several hundreds, the traditional methods could be very time consuming. An intu-

itive idea is to use computationally cheap image features to conduct the comparison,

meanwhile, we do not want to sacrifice the statistical correctness to gain computation

speed up. As a trade-off, we conducted image clustering algorithm based on cheap vi-

sual features, such as global features, which can roughly partition the group of images

without separating the duplicate pairs. Then the relatively expensive local features

can be used for near duplicate detection on a pair-wise fashion within each cluster.

An illustration of the proposed coarse-to-fine structure is shown in Figure 21.
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Figure 21: Coarse to fine cluster-base near duplicate detection framework.

Figure 22: Example near-duplicate image pairs.

We first clarify the difference between the “duplicate” and “near duplicate” images.

• Duplicate: duplicate images are defined as image pairs that are only different

on scale, color scheme or storage format.

• Near Duplicate: By relaxing the above restriction, we can define near dupli-

cate images as duplicate pairs further varied by contrast, luminance, rotation,

translation, a slight change of the layout or background.

Some examples for near-duplicate images are shown in Figure 22. From the definition

above, we can learn that duplicate images are specialized near duplicate images, so

that the duplicate image pairs should be within the detection results of near dupli-

cate image pairs. The relaxation of the restriction of the near duplicate definition
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made the traditional Hash based method, which has been successfully applied for

copy detection, inapplicable. Considering both computation efficiency and detection

accuracy, a coarse-to-fine model was designed by integrating image clustering with

pair-wise image matching.

As we have mentioned above, the proposed similarity detection model is sequen-

tially partitioned into two steps: the first step is to cluster the images based on coarse

features, which are usually cheap features in terms of computation cost; the second

step is to conduct more complex features so as to more accurately detect duplicate

image pairs within the clusters. The purpose for the first step is to roughly partition

the image group while maintaining their duplication bonds within the clusters. In

the second step, comparisons are conducted between image pairs in each cluster for

near duplicate detection. We need more accurate object-oriented features, or in other

words the local features, for the accurate detection step.

The global features of HSV color space is used in a similar way as introduced in

the previous Chapter for the clustering step. Then we can partition the target image

set into clusters with any computation efficient clustering algorithms, such as affinity

propagation. After image set clustering, we conduct intra-cluster pair-wise image

matching with local feature such as SIFT BoW model and CPAM BoW model. We

design integration algorithm to combine the near-duplicate detection result from both

models and propose some criterion to identify the duplicate image pairs and all the

detected near duplications will be removed.
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4.2 Global Approach

Object localization is very important for near duplicate detection. To utilize the

global feature in near duplicate detection, the object has to be localized as accurate

as possible. Meanwhile, to avoid the time consuming operation of accurate object

localization, we just roughly partition the image into 5 segments and extract global

color histogram feature from each of them and then concatenate the features to form

our global feature.

Specifically, the features are extracted on a partition-based framework, rather than

image-based or segment-based framework, as shown in Figure 23 (from left to right:

image-based, partition-based, segment-based frameworks). We choose the partition-

based framework based on the following consideration: a) image-based framework is

not accurate enough for representing object images; b) segment-based framework is

too computationally expensive and may sometimes fall into the over segmentation

trouble; c) partition-based framework is a trade-off between accuracy and speed. The

images are partitioned into 5 equal-sized parts, with 4 parts on the corner and 1 part

at the center. We had the assumption that the object should either fill up the whole

image or should lie in either one of the 5 partitions. The similarity measurement of

two images will be represented as follows:

Similaritycolor(X, Y ) = max
xi∈X,yj∈Y

(−||xi − yj||
2) (32)

||αi||0 = 1 (33)
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Figure 23: Global feature extraction framework: from left to right: image-based,
partition-based and segment-based frameworks.

where i, j are from the partition set ofX , which is composed by 5 regional partitions

and one entire image. By calculating the similarity score for each of the partition

pairs, the maximum score is taken as the similarity score between the two images.

Color histogram: A color histogram was used as the global feature in this model

and performed on the partition-based framework. We performed on the HSV color

space to extract the histogram vectors. HSV color space outperforms the RGB color

space by its invariance to the change of illumination. We conducted the histogram

extraction on the Hue component and formed a bin of 10 dimensions.

The data set is then clustered with Affinity Propagation algorithm into several

clusters. Affinity propagation treats the data points equally as the ”exemplar”, then

the exemplars will merge through the message-passing procedure. The merging pro-

cedure is realized by iteratively updating the responsibility and availability of the

image node i to a exemplar k. The maximization of the following objective function

determines the positioning of image node i:

c(i) = max
k∈X

a(i, k) + r(i, k) (34)

where r(i, k) is the responsibility of the image node i to the exemplar k, which reflects
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the accumulated evidence for how well-suited point k is to serve as the exemplar for

point i. a(i, k) is the availability of the exemplar k to image node i, which reflects

the accumulated evidence for how appropriate it would be for point i to choose point

k as its exemplar.

r(i, k)← s(i, k)− max
k′s.t.k′ 6=k

{a(i, k′) + s(i, k′)} (35)

a(i, k)← min 0, r(k, k) +
∑

i′s.t.i′ 6∈{i,k}

max{0, r(i′, k)} (36)

The availabilities are initialized to zeros: a(i, k) = 0, then the r(i, k) and a(i, k) are

updated in turn until the termination criteria is satisfied. The number of final existing

clusters are determined by the preference number which is could be related to the

input similarities.

Affinity propagation has the advantages that it can automatically determine the

number of clusters, treats each image node equally and has a relatively fast merging

speed. For the next step, a more accurate pair-wise comparison of near-duplicates

will be conducted within each of the clusters with local features.

4.3 Local Approach

We will use the Bag-of-Word model to represent the local visual features. The

images are fine partitioned into blocks or represented by interest points; then CPAM

descriptor and SIFT descriptor are applied respectively to represent each block or the

neighborhood of an interest point. We will introduce these two models in detail as

shown below:

There is evidence to prove the existence of different visual pathways to process color
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and pattern in the human visual system. Qiu et. al. [117] proposed the CPAM feature

to represent color and pattern visual representations on Y CbCr color space which gives

state-of-the-art performance on content-based image retrieval applications. CPAM

feature captures statistically representative chromatic and achromatic spatial image

patterns and use the distributions of these patterns within an image to characterize

the image’s visual content. The two channels of pattern and color representation can

be characterized as follows:

Let Y = {y(i, j), i, j = 0, 1, 2, 3} be the 4×4 Y image block. The stimulus strength

of the block is calculated as

S =
1

16

3
∑

i=0

3
∑

j=0

y(i, j) (37)

Then the pattern vector, P = {p(i, j), i, j = 0, 1, 2, 3} of the block, is formed as

p(i, j) =
y(i, j)

S
(38)

A 16-dimensional vector quantizer, Qp, is then designed for P channel using many

training samples.

The color component of the model is formed by sub-sampling the two chromatic

channels, Cb and Cr to form a single vector, which is also normalized by S. Let Cb =

{Cb(i, j), i, j = 0, 1, 2, 3} and Cr = {Cr(i, j), i, j = 0, 1, 2, 3} be the two corresponding

chromatic blocks of the Cb and Cr channels, then the sub-sampled Cb signal, SCb =

{SCb(m,n), m, n = 0, 1} is obtained as follows

SCb(m,n) =
1

4S

1
∑

i=0

1
∑

j=0

Cb(2m+ i, 2n+ j) (39)
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SCr is obtained similarly. The color vector, C = {c(k), k = 0, 1, ..., 7} is formed by

concatenating SCb and SCr to form a 8-dimensional vector quantizer Qc. With the

above two types of vector quantizer, we build a 256-dimensional codebook for each of

the two channels from large collection of training data. Each image is encoded with

vector quantization technique into a 256-dimensional feature vector. The two types of

codebook is concatenated into one 512-dimensional codebook, so the corresponding

combined feature vector is a 512-dimension vector, with 256-dimension for pattern

channel (P) and 256-dimension for color channel (C).

We also consider another well know local feature descriptor, the Bag-of-Words

model with SIFT descriptor, to represent the local visual patterns of the image.

For each image, the interest points are extracted with difference of Gaussian and

represented with a 128-dimensional SIFT descriptor. Specifically, the descriptor is

formed from a vector containing the values of all the orientation histogram entries.

We have followed David Lowes’s implementation [95] with a 4 by 4 array of histogram

with 8 orientations in each bin. Therefore, the dimension of the feature vector for

each interest point is 4 × 4 × 8 = 128. A universal code book is then constructed

by collecting all the available interest points from the data set. One critical issue for

code book construction is to determine the size of the code book. A size too large

or too small may both defect the content representation ability for the images. We

have used the grid search method to browse through different size of code book and

choose the best code book size in terms of the near duplicate detection performance.

In our experiment, we choose a codebook size of 3000 and use the vector quantization

technique to encode the images into a 3000-dimensional feature vector.
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4.3.1 Indexing Scheme

Considering the size of the codebook (3000 code words for SIFT BoW model)

and the scale of available images in the database (from several hundreds to several

thousands), it is usually infeasible to realize real time response to query with direct

indexing scheme. The inverted file indexing scheme is suitable for large scale data

indexing. An inverted file table contains all the code words and an inverted list that

stores a list of pointers to all occurrance of that codeword in the database images.

When investigating an interest point in the query image, we will find its nearest

neighbor in the dictionary table and add this point into the corresponding bin. The

occurrence of all the retrieved database images in the corresponding linked list will

be added by one. After we counted all the interest points in the query image, the

index table will filled only with the database images which share identical interest

points with the query image.

Considering the size of the codebook could be as large as several thousands (3000 in

this implementation), we have designed the hierarchical k-means inverted file indexing

table, as illustrated in Figure 24, which can tremendously reduce the operation time of

nearest neighbor search in vector quantization step. The nearest neighbor searched

is an approximate nearest neighbor, however, it is accurate enough to satisfy the

requirement of our application. The out degree of each node in the hierarchical

tree is 10, which means a k-means clustering with k equals to 10 is operated at each

level. Specifically, the original codebook is clustered into 10 groups, and each group is

further partitioned into 10 groups until the result partition is smaller than a threshold



83

size. The code words are located on the leaf nodes only. The number of steps used for

nearest neighbor search will be reduced to the logarithmic of the size of the dictionary.

We need to notice that the hierarchical tree may not necessarily be balanced.

For interest point matching similarity measurement, we purely count the number of

matches that falls into the same bin. The similarity between two images is measured

by the number of matches between these two images. This similarity score need to

be normalized by dividing the number of interest points in both participating images

as in Equation 40. However, only the number of the images in the database images

will count, because the number of interest points in the query image will always be

the same for all the database images. The similarity between two images with SIFT

BoW model is defined as follows:

Similaritysift(i, j) =
Mij

Nj

(40)

where Mij is the number of matched interest points in query image i and database

image j; Nj is the number of interest points in database image j.

For CPAM feature matching similarity measurement, we will use Euclidean distance

to measure the similarity of two 512-dimension CPAM BoW feature vector directly,

and retrieve with direct pair-wise comparison scheme. The similarity between two

images with CPAM BoW feature is defined as follows:

Similaritycpam(i, j) = −||xi − xj ||
2 (41)

where xi, xj are the corresponding feature vector for the two images. We will use
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Figure 24: Hierarchical k-means indexing table and inverted file indexing scheme. ci
is the ith codeword; bij is the jth database image falling into the ith bin; nij is the
number of occurrence of the key points from query image in the ith bin. The actual
hierarchical tree does not have to be balanced as shown in this illustration figure.
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direct indexing scheme to index the query for CPAM BoW model.

4.3.2 Multimodal Detection Integration

The CPAM feature and SIFT feature map the input images into different high-

dimensional feature spaces respectively. The similarity for the feature points in these

two different feature spaces are characterized by different visual aspects of the images,

such as color visual pattern and texture visual pattern. As a result, each feature could

be used as a strong supplement to the other in nearest neighbor search step, or the

near-duplicate detection task. Before we could fusing the detection results from two

different perspective, we need to firstly separate the correct matches from the entire

return ranking list.

The near-duplicate detection task is intrinsically an image reranking task. The

database images are ranked based on their similarity to the query image. The result

ranking list will show all the similarities to the query image no matter the near

duplicate matches exist or not in the database. Therefore, another research issue

would be to determine if there are true matches and which returned images are

true matches. Traditionally, the thresholding methods are used in this scenario for

duplicates extraction where similarity value smaller than a threshold are determined

as a positive match. However, it is not necessarily true since a universal threshold

value could not fit for all the similarity measurements. For example, the similarity is

measured by the normalized number of matched interest point pairs in the SIFT BoW

model. The truth is the number of interest points in an image may vary in a large

range in regard to the complexity of the visual content. Thus, for simple images, even



86

matched image pairs does not share a large number of match interest points which

means a universal threshold value would not fit for local descriptor models. In this

case, we design a general method to distinguish the true matches and false matches

from the top ranked return images. We will discuss the similarity distribution of these

two types of features respectively as follows.

For CPAM feature, given the existence of a large number of negative matches,

the similarity between the query image and the negative matches are distributed

uniformly in a certain range. If there exist positive matches, the similarity between

query image and the matched images should be out of the bound of the above range.

For a true positive near-duplicate match, the query image and the matched image

should be very close to each other on the feature space, while all the negative images

are significantly far away from the matched pairs and uniformly distributed in the

feature space. If we draw the distance diagram with respect to the returned ranking

list, then the negative distances will form a linear function in the larger range, and

the top few true matches, if exist, are outliers of this linear function. This assumption

ignites us to use linear regression to reconstruct a linear function to reproduce the

distribution of the distances for all the images to the query image, and the top

few outlier, if exist, of this reconstructed linear function should be the true positive

matches. As shown in Figure 25, there is one true positive match in the database for

the given query image (the first indexed point). The majority of the non-matched

distance score can be perfectly modeled by a linear regression function, and the first

indexed distance score is left as an outlier to this regression function, which results in a

true positive detection of near-duplicate. In actual implementation, we will randomly
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Figure 25: True positive match determination by linear regression on the CPAM
feature. x-axis represents the returned ranking index for the query image in Figure
26 ; y-axis represents the corresponding distance values to the query image.

sample the retrieval results from large range for linear regression and repeat the

linear regression operation for several times, to make sure the correct distribution of

false matches is discovered and the true matches are left as outliers. The normalized

number of matched interest points with SIFT feature as shown in Figure 26 (b) reveals

similar pattern as the CPAM feature as shown in Figure 25.

The above linear regression framework models the distribution of the distances to

the query image and detect the outliers with respect to the generated linear function

with a predefined threshold. The duplicates are extracted as the outliers discovered

with the above regression model.
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For SIFT BoW model, even true matches does not distinguish itself from all the

others by having a significant larger normalized number of matched interest points.

We can observe from Figure 27 that there exists some images which are visually

complex and tend to hamper the matching results. The given two example noisy

images in Figure 27 are usually found as negative matches in many near duplicate

detection queries. The number of interest points in these two images are very large

and the images also show versatile visual properties. The reason for this is due to the

limited representation ability of the Bag-of-Word model: non-matched points may

also fall into the same bin of the codebook. A successful example with SIFT BoW

model can be found in Figure 26. In order to strictly detect true duplicate pairs, we

have calculate the similarity value of the query image with itself, and compared this

value with the returned values from the ranking list. We set a threshold heuristically

to strictly enforce that only the true duplicates are detected. Specifically, only the

similarity values that is close enough to the similarity value of the query image to

itself will be accepted as duplication, which can be defined below:

ratio =
Similaritysift(i, j)

Nj × Similaritysift(i, i)
> threshold, i 6= j (42)

where i is the query image and j is the database image.

Finally, the duplicate extraction results with CPAM BoWmodel is merged with the

SIFT BoW model to form the final result, which realizes the multimodal integration

of the two different features. Specifically, for each query, we will retrieve with both

CPAM and SIFT BoW models; afterwards, we extract the duplicates from the CPAM
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Figure 26: Near duplicate detection result with SIFT feature. (a) shows the detection
results and the corresponding similarity score for a query image: the top-left image is
the query image, the top-right image is the top 1 returned detection result and also
true positive match; the bottom 3 images are the following 3 returned images. (b)
shows the actual similarity score, in terms of normalized number of matched interest
points.

Figure 27: Two example noisy images with the SIFT BoW model.
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BoW model results with linear regression model, and from SIFT BoW model results

with self comparison, and then combine the two extraction results to get the final

duplications. All the detected duplications will be eliminated from the data collection.

4.4 Evaluation and Discussion

We have evaluated near duplicate detection performance with two similar evalu-

ation metrics, which are precision/recall and average precision. For precision/recall

evaluation, we only investigate the first return image from the ranking list, which is

the top one detection result. If it is a true positive match, then we say the match for

the query image is successfully found; if not, then the match is not detected for this

query image. As a result, the precision and recall can be defined as follows:

precision =
|{positive matches}| ∩ |{retrieved images}|

|{retrieved images}|
(43)

recall =
|{positive matches}| ∩ |{retrieved images}|

|{positive matches}|
(44)

For a ranked list of return results, we can also use the mean average precision

(mean AP) to evaluate the performance, which is more accurate than only evaluating

the first returned result. For each query, we consider the average precision up to the

top 10 return results, which has the discrete form of definition as follows:

average precision =

10
∑

i=1

p(i)∆r(i) (45)

where p(i) is the probability for true positive detection in the first i return results,

∆r(i) is the change in the recall from i − 1 to i. Mean AP equals to the mean of
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Figure 28: Precision performance comparison for the proposed and baseline detection
frameworks

the average precision values from all the queries. We will evaluate the near duplicate

detection results with both types of evaluation metrics.

For the near duplicate detection and elimination, we evaluate our proposed frame-

work with other two baseline algorithms by comparing their performance on both

detection accuracy (precision/recall) and computation cost. The first baseline algo-

rithm, Hash-based algorithm, proposed in [152], partitioned the image into blocks,

applied a hash function, took the binary string as the feature vector and then grouped

the matches based on their Hamming distance. The second baseline algorithm, pair

wise-based algorithm, used the CPAM and SIFT BoW model matching algorithms

directly without applying the clustering step. We manually labeled 20 clusters from

20 different categories for duplicate pair detection as shown in Figure 17 and Figure

18. We have the following observations: a) The three models have comparable de-

tection precision. The cluster-based model and hash-based model perform similarly

and they both outperform the pair wise-based model as shown in Figure 28. b) The
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Figure 29: Recall performance comparison for the proposed and baseline detection
frameworks (the line for cluster-based and hash-base framework coincide with each
other)

hash-based model has a low recall score compared to the other two which means a

large false positive rate. The reason is that hash-based method can successfully detect

all the duplicate image pairs but miss most of the near-duplicate pairs which varies

slightly on the background. On the other hand, the cluster-based model successfully

detect most of the near-duplicate pairs. For example in the “outdoor commercial”

set, cluster-based model successfully detected all the 7 near duplicate pairs while

hash-based model missed 5 of them. So the cluster-based model has exactly the same

recall performance as the pair-wised model as shown in Figure 29. The average perfor-

mance for the 20 categories can be found in Table 3 and we have the conclusion that

cluster-based model achieved the best average performance among the three models.

In order to evaluate the computation efficiency of the proposed framework, we

counted the number of comparisons and recorded the actual runtime for each of the

models on “outdoor commercial” set as appeared in Table 4. Experiment ran on

a Intel Duo3.0G PC. We observed that, without considering the detection power,
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Cluster-based Hash-based Pair-wised
average (20 categories) 0.72/0.71 0.68/0.50 0.64/0.71

Table 3: Evaluation of the average duplicate detection ability among three frameworks
(precision/recall)

# of Comparisons Actual Runtime(min)
Cluster-based 22136 22
Hash-based 400 1
Pair-wised 79600 69

Table 4: Evaluation of the computation efficiency among three frameworks for cate-
gory “outdoor-comm”

hash-based algorithm ran much faster than the algorithms based on local features.

If the detection of near-duplicate was a must, the cluster-based model outperformed

the pair wise-based model dramatically by saving more than 2/3 of the computation

cost. Specifically, the evaluation data set was partitioned into 7 clusters with each

clustering containing 56, 66, 26, 80, 174, 4, 16 images respectively (with a total of

422 images). The computation burden for global feature clustering was insignificant,

which ran at almost real time (2 sec) compared to local feature step. Furthermore, the

cost saving was even remarkable as the scale of the data set increased. As shown in

Figure 30, The growth pattern under the pair-wise based model satisfies the quadratic

curve. The cluster based model will reduce the number of comparisons to less than

1/3 as a result.

In the following parts of this section, we will evaluate the performance of CPAM

and SIFT BoW model on near duplicate detection task; our design of using linear

regression to extract true positive near duplicates; and whether or not the multimodal

integration structure will improve the performance when compared with using single

feature model only. The near duplicate detection techniques are designed for general
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Figure 30: Computation cost with the growth of evaluation set of “outdoor-comm”

image collections. In order to make more clear comparison, we will evaluate the pro-

posed techniques and frameworks on a more challenging data set, which is composed

by 15000 images with both scene and object images. We manually extracted 190

query images. For each image, there is at least one near duplicate can be found in

the data set. Some example near duplicate image pairs in this data set can be found

in Figure 31.

We have compared the effectiveness of our proposed true positive detection extrac-

tion framework. The evaluation results are reported in Table 5: The false removal

rate equals to 0.1537, which means the percentage of true positive detections that are

falsely removed by the proposed extraction framework. We can observe that a very

small percentage of true positives are removed by the proposed framework. Moreover,

the removed true positive detection will be recovered by the SIFT BoW model, which

is major benefit of our multimodal integration framework. The Recall value equals
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Figure 31: Example Near Duplicate Pairs: 6 example near duplicate image pairs,
taken same object or scene from variant angle and with significant appearance differ-
ence.
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mean AP Precision Recall False removal rate
True positive extraction 0.7694 0.7751 0.9007 0.1537

Table 5: Performance evaluation of the true positive detection extraction with CPAM
BoW model. The method use linear regression to detect outliers from the returned
ranking list.

to 0.9007, which means a very little percentage of false positive detections will be

retained in the final detection result. The mean AP and Precision measurement are

defined similarly as before. From the recall value and false removal rate, we have

the conclusion that the proposed near duplicate detection framework is effective in

terms of maintaining the true positive detections, as well as eliminating false positive

detections.

For accurate detection with local features, we have evaluate the performance of

the CPAM and SIFT BoW model in comparison with the “simply-designed” feature,

such as global color histogram. The detection result can be found in Table 6. We

can see from the result that the proposed “CPAM + SIFT” model performs the best,

especially when compared with using single model of CPAM or SIFT. If using only

single feature model, CPAM model performs better than SIFT model on average,

however, we have observed both cases that, some queries work better with CPAM

models, while some others work better with SIFT model, such as the examples shown

in Figure 32. The top image pair in Figure 32 can be successfully detected with CPAM

model while not be able to detected by SIFT model; the bottom image pair in Figure

32, on the other hand, works with SIFT model rather than CPAM model. As a result,

successful combination of the detection ability of both models will inevitably increase

the detection performance. Some more detection result with the proposed “CPAM
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RGB Color SIFT CPAM CPAM + SIFT
mean AP 0.3540 0.5650 0.8424 0.8836

Table 6: Near duplicate detection model evaluation: global feature model, single local
feature model and integrated feature model.

+ SIFT” design can be found in Figure 33. The top 3 rows in Figure 33 (a) show

successful detection, with the near-duplicate images bounded by a red box; the 4th

row in Figure 33 (b) shows a negative detection result, where the near-duplicate pair

is not detected. The evaluation result of multimodal integration framework compared

with single feature model and global feature model can be found in Table 6. From

this table, we can observed that local feature models perform significantly better

than global features on near duplicate detection task, by at least 50% of performance

improvement in terms of mean AP. The proposed the CPAM and SIFT integration

model performs the best, followed by using CPAM model alone.

For near duplicate image elimination, we will take all the images in the given image

set as the query image; then conduct the near duplicate detection with the above

introduced “CPAM + SIFT” framework. The detected duplicates are considered as

redundancy and will be removed from the data collection.



98

(a)

(b)

Figure 32: Comparison between CPAM model and SIFT model: (a) CPAM model
works for near duplicate detection on given image pair while SIFT model do not work;
(b) SIFT model works for near duplicate detection on given image pair while CPAM
model do not work.
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(a)

(b)

Figure 33: Example near duplicate detection result with the “CPAM + SIFT” design.
The left most image is the query image, the image with a red bounding box is a
positive near duplicate pair. (a) shows the result with successful detection, (b) shows
unsuccessful detection



CHAPTER 5: INTERACTIVE IMAGE VISUALIZATION & EXPLORATION

After efficient refinement of the image data collection, e.g. junk image filtering and

near duplicate elimination, we have achieved a more accurate category based data

collection. In this Chapter, we will discuss about a novel organization of the category

based image data collection: concept network.

5.1 Feature Extraction and Image Similarity Characterization

We will start this chapter with the introduction of feature extraction and similarity

characterization. For image retrieval application, the underlying framework for image

content representation and feature extraction should be able to: (a) characterize

the image contents effectively and efficiently; (b) reduce the computational cost for

feature extraction and image similarity characterization significantly. Based on these

observations, we have incorporated two frameworks for image content representation

and feature extraction: (a) image-based as shown in left-hand sub-figure of Figure

23; and (b) grid-based as shown in center sub-figure of Figure 23. In the image-based

approach, we have extracted both the global visual features and the local visual

features from whole images [95]. In the grid-based approach, we have extracted the

grid-based local visual features from a set of image grids [163].

The global visual features such as color histogram can provide the global image

statistics and the perceptual properties of entire images, but they may not be able to
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Figure 34: Image feature extraction for similarity characterization: (a) original images; (b)
RGB color histograms; (c) wavelet transformation; (d) interest points and SIFT features.

capture the object information within the images [95, 8]. On the other hand, the local

visual features such as SIFT (scale invariant feature transform) features and the grid-

based visual features can allow object recognition against the cluttered backgrounds

[95, 8]. In our current implementations, the global visual features consist of 72-bin

RGB color histograms and 48-dimensional texture features from Gabor filter banks.

The local visual features consist of a number of interest points and their SIFT features

and a location-preserving union of grid-based visual features. As shown in Figure 34,

one can observe that our feature extraction operators can effectively characterize the

principal visual properties for the images.

5.2 Kernel Design and Combination

By using multi-modal visual features for image content representation, it is able for

us to characterize the diverse visual properties of the images more sufficiently. On the

other hand, the statistical properties of the images in such high-dimensional multi-
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Figure 35: Major components for inter-concept visual similarity determination

modal feature space may be heterogeneous, thus it is impossible for us to use only

one type of kernel to characterize the diverse visual similarity relationships between

the images precisely.

Based on these observations, the high-dimensional multi-modal visual features are

first partitioned into multiple feature subsets and each feature subset is used to char-

acterize one certain type of visual properties of the images, and the underlying visual

similarity relationships between the images are more homogeneous and can be ap-

proximated more precisely by using one particular type of kernel. In our experiments,

the high-dimensional multi-modal visual features are partitioned into three feature

subsets: (a) color histograms; (b) wavelet textural features; and (c) SIFT features.

We have also studied the statistical property of the images under each feature
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subset, and the gained knowledge has been used to design the basic image kernel

for each feature subset. Finally, multiple types of basic image kernels are integrated

to characterize the diverse visual similarity relationships between the images more

precisely.

5.2.1 Color Histogram Kernel

Given the histogram-based color representation, a kernel function is designed to

construct the kernel matrix for characterizing the image similarity according to their

color principles. We adopt the χ2 kernel function and it is a Mercer kernel. Given

two color histograms with equal length (72 bins), their statistical similarity is defined

as:

χ2(u, v) =
1

2

72
∑

i=1

(ui − vi)
2

ui + vi
(46)

where ui and vi are the corresponding color bins from two color histogram u and v.

The color histogram kernel function Kc(u,v) is defined as:

Kc(u, v) = e−χ2(u,v)/σc (47)

where σc is set to be the mean value of the χ2 distances between all the image pairs

in our experiments.

5.2.2 Gabor Wavelet Kernel

To capture the image texture, we apply a bank of wavelet filters on each images,

where the image textures are represented by histogramming the outputs of the filtered

channels. Consider two images u and v, and let u and v represent the corresponding

feature vectors. Then the distance between the two patterns in the feature space is
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defined to be

d(u, v) =
∑

m

∑

n

dmn(u, v) (48)

where
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where α(µmn) and α(σmn) are the standard deviation of the respective features over

the entire data set, and are used to normalize the individual feature components. The

Gabor texture kernel function Kt(u,v) is defined as

Kt(u, v) = e−d(u,v)/σt (50)

where σt is set to be the mean value of the distances between all the image pairs in

our experiments.

5.2.3 Points Matching Kernel

By matching the distance of the interesting points between images, we got the

similarity value between each image pairs. For two images, their interest point set

Q and P may have different numbers of interest points: MQ and NP . Base on this

observation, the Earth mover’s distance (EMD) between these two interest point sets

is then defined as

D(Q,P ) =

∑MQ

i=1

∑NP

j=1 ωijd(qi, pj)
∑MQ

i=1

∑NP

j=1 ωij

(51)

where wij is an importance factor that can be determined automatically by solving a

linear programming problem, and d(qi,pj) is the ground distance function between two

random interesting pints qi and pj from Q and P. To incorporate the EMD distance

into our kernel-based image similarity characterization framework, our interesting
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point matching kernel Ks is defined as

Ks(u, v) = e−D(Q,P )/σs (52)

where σs is set to be the mean value of the distances between all the image pairs in

our experiments.

5.2.4 Multiple Kernel Combination

Because different basic image kernels may play different roles on characterizing the

diverse visual similarity relationships between the images, and the optimal kernel for

diverse image similarity characterization can be approximated more accurately by

using a linear combination of these basic image kernels with different importance.

Based on these observation, we have developed a multiple kernel learning algorithm

for SVM image classifier training. For a give atomic image concept Cj, its SVM

classifier can be learned by using a mixture of these basic image kernels (i.e., mixture-

of-kernels).

K̂(u, v) =
τ
∑

i=1

αiKi(u, v),
τ
∑

i=1

αi = 1 (53)

where τ is the number of feature subsets(i.e., the number of basic image kernels),

αi ≥ 0 is the importance factor for the ith basic image kernel Ki(u,v).

Obviously, combining different kernels can allow us to obtain better performance

for image classification. On the other hand, the weights for all these three kernels

may be different for different image classification tasks and could be essential to the

final performance of the image classifiers. Ideally, for different image concepts, we

should be able to identify different sets of these weights for kernel combination. Given
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Figure 36: Visual concept network for our 600 image concepts and objects.

a set of labeled training images, the weights for these three kernels are determined

automatically by searching from a given set of all the potential weights and their

combinations.

5.3 Inter-Concept Visual Similarity Determination

After the image concepts and their most relevant images are available, we can

use these images to determine the inter-concept visual similarity contexts for auto-

matic visual concept network generation as shown in Figure 36. The inter-concept

visual similarity context γ(Ci, Cj) between the image concepts Ci and Cj (the linkage

between two concept nodes in Figure 36) can be determined by performing kernel
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canonical correlation analysis (KCCA) [58] on their image sets Si and Sj :

γ(Ci, Cj) =
max

θ, ϑ

θTκ(Si)κ(Sj)ϑ
√

θTκ2(Si)θ · ϑTκ2(Sj)ϑ
(54)

where θ and ϑ are the parameters for determining the optimal projection directions

to maximize the correlations between two image sets Si and Sj for the image concepts

Ci and Cj, κ(Si) and κ(Sj) are the cumulative kernel functions for characterizing the

visual correlations between the images in the same image sets Si and Sj.

κ(Si) =
∑

xl,xm∈Si

κ(xl, xm), κ(Sj) =
∑

xh,xk∈Sj

κ(xh, xk) (55)

where the visual correlation between the images is defined as their kernel-based visual

similarity κ(·, ·) in Equation 53.

The parameters θ and ϑ for determining the optimal projection directions are

obtained automatically by solving the following eigenvalue equations:

κ(Si)κ(Si)θ − λ
2
θκ(Si)κ(Si)θ = 0 (56)

κ(Sj)κ(Sj)ϑ− λ
2
ϑκ(Sj)κ(Sj)ϑ = 0 (57)

where the eigen values λθ and λϑ follow the additional constraint λθ = λϑ.

When large numbers of image concepts and their inter-concepts visual similarity

contexts are available, they are used to construct a visual concept network. How-

ever, the strength of the inter-concept visual similarity contexts between some image

concepts may be very weak, thus it is not necessary for each image concept to be

linked with all the other image concepts on the visual concept network. Eliminat-
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ing the weak inter-concept links can increase the visibility of the image concepts of

interest dramatically, but also allow our visual concept network to concentrate on

the most significant inter-concept visual similarity contexts. Based on this under-

standing, each image concept is automatically linked with the most relevant image

concepts with larger values of the inter-concept visual similarity contexts γ(·, ·) (i.e.,

their values of γ(·, ·) are above a threshold δ = 0.65 in a scale from 0 to 1).

Compared with Flickr distance [162], our algorithm for inter-concept visual simi-

larity context determination have several advantages: (a) It can deal with the sparse

distribution problem more effectively by using a mixture-of-kernels to achieve more

precise characterization of diverse image similarity contexts in the high-dimensional

multi-modal feature space; (b) By projecting the image sets for the image concepts

into the same kernel space, our KCCA and Hungarian technique can achieve more

precise characterization of the inter-concept visual similarity contexts.

5.4 Concept Network Visualization

For inter-concept exploration, to allow users to assess the coherence between the

visual similarity contexts determined by our algorithm and their perceptions, it is very

important to enable graphical representation and visualization of the visual concept

network, so that users can obtain a good global overview of the visual similarity

contexts between the image concepts at the first glance. It is also very attractive to

enable interactive visual concept network navigation and exploration according to the

inherent inter-concept visual similarity contexts, so that users can easily assess the

coherence with their perceptions.
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Based on these observations, our approach for visual concept network visualiza-

tion exploited hyperbolic geometry [85]. The hyperbolic geometry is particularly well

suited for achieving graph-based layout of the visual concept network and supporting

interactive exploration. The essence of our approach is to project the visual concept

network onto a hyperbolic plane according to the inter-concept visual similarity con-

texts, and layout the visual concept network by mapping the relevant image concept

nodes onto a circular display region. Thus our visual concept network visualization

scheme takes the following steps: (a) The image concept nodes on the visual concept

network are projected onto a hyperbolic plane according to their inter-concept visual

similarity contexts by performing multi-dimensional scaling (MDS) [24] (b) After such

similarity-preserving projection of the image concept nodes is obtained, Poincare disk

model [85] is used to map the image concept nodes on the hyperbolic plane onto a

2D display coordinate. Poincare disk model maps the entire hyperbolic space onto an

open unit circle, and produces a non-uniform mapping of the image concept nodes to

the 2D display coordinate.

The visualization results of our visual concept network are shown in Figure 39,

where each image concept is linked with multiple relevant image concepts with larger

values of γ(·, ·). By visualizing large numbers of image concepts according to their

inter-concept visual similarity contexts, our visual concept network can allow users

to navigate large amounts of image concepts interactively according to their visual

similarity contexts.
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5.5 System Evaluation

5.5.1 Feature Extraction Framework Evaluation

We will firstly evaluate the effectiveness of the proposed partition-based feature

extraction framework and the kernel-combination scheme from the perspective of an

image classification task. Specifically, our benchmark experiment focuses on three

issues: (a) which image content representation approach (i.e., image-based approach

and partition-based approach) has better performance; (b) which feature subset has

higher discrimination power; and (c) what kind of kernel combination can have better

performance.

In order to reveal the advantage in characterizing visual properties of image col-

lection, we will compare the performance of classifier under proposed design with

classifiers under baseline designs. The benchmark metric for classifier evaluation in-

cludes precision φ and recall ϕ. They are defined as:

φ =
ζ

ζ + ψ
, ϕ =

ζ

ζ + ξ
(58)

where ζ is the set of true positive images that are related to the corresponding image

concept and are classified correctly, ψ is the set of true negative images that are

irrelevant to the corresponding image concept or object and are classified incorrectly,

and ξ is the set of false positive images that are related to the corresponding image

concept or object but are misclassified.

The images used in our benchmark experiment are partly selected from Caltech-

256 [55] and LabelMe [124] (20%) and partly collected by crawling from the Internet
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Figure 37: Sample images from 12 categories: (a) object-oriented images; (b) scene-
oriented images.

(80%). The junk images from the internet are filtered with the previously introduced

method. Then we generated a benchmark image set which consists of 12,000 images

of 40 different image categories. The keywords for interpreting the image categories

are extracted from the previously introduced concept taxonomy which have good

match with human common sense and the visual properties of the images. Some of

these image categories belong to scenery images (i.e., their semantics are interpreted

according to their global visual properties of whole images), and some of these image

categories belong to object images such as bottles and vase (i.e., their semantics are

interpreted according to the underlying image objects) as in Figure 37;

Partitioning our image collections into scenery images and object images is very

important for us to assess the discrimination power of various visual features and the

effectiveness of various image content representation frameworks for different image
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Category Color Texture SIFT
airplane 0.72 0.57 0.50
bathtub 0.36 0.16 0.42

bus 0.41 0.43 0.16
building 0.31 0.20 0.69

elephant 0.53 0.43 0.69

face 0.87 0.74 0.70
firework 0.82 0.68 0.34
highway 0.93 0.87 0.27
horse 0.28 0.21 0.86

moon 0.84 0.78 0.33
penguin 0.27 0.23 0.18
shark 0.52 0.25 0.50

waterfall 0.63 0.36 0.22
desert 0.62 0.21 0.66

cloud 0.55 0.18 0.31
snow view 0.55 0.21 0.13
farmland 0.48 0.22 0.6
coast 0.63 0.24 0.77

forest 0.56 0.47 0.24
mountain 0.25 0.14 0.36

Category Color Texture SIFT
backpack 0.57 0.42 0.41
baseballbat 0.70 0.71 0.49
baseballcap 0.34 0.30 0.52

boxingglove 0.42 0.39 0.22
calculator 0.43 0.28 0.36

coat 0.45 0.46 0.21
corridor 0.41 0.28 0.25
goblet 0.53 0.46 0.41
ladder 0.11 0.17 0.13

pictureframe 0.39 0.32 0.52

remocontroll 0.44 0.35 0.45
sailboat 0.50 0.44 0.47
saucer 0.66 0.69 0.51
starfish 0.37 0.31 0.36
sunflower 0.81 0.26 0.82

toaster 0.25 0.19 0.31
treadmill 0.86 0.87 0.14
umbrella 0.45 0.43 0.25
vase 0.19 0.13 0.74

wreath 0.45 0.24 0.17

Table 7: Classification performance in terms of precision: the features that outperform
the other features are highlighted in bold.

classification tasks. Although the 40 categories are assigned into two groups named

as scenery categories and object categories, the partition is not strictly done. Because

there are much more object images than scenery images. 8000 images are selected

randomly as training images and with each category consists of 200 images. The

residue 4000 images are treated as test set.

Our experiment is done by using two PCs 2.0GHz Dual Core, 2GB RAM, and it

takes 72 hours for learning the classifiers for all 40 image categories and comparing the

differences of their performance under different feature subsets and different feature

extraction frameworks.

From our benchmark experiments, we have observed the following interesting issues:
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1. Scenes versus Objects: Under this given benchmark goal, we have compared

the discrimination power of the global visual features and the local visual features

for the scenery images and the object images. We have found that the global visual

features such as color histograms and wavelet features are more effective for scenery

image classification, on the other hand, the local visual features are more effective for

object image classification as shown in Table 7. The feature subset in bold performs

better than the other feature subsets with approximately 50% higher in precision

rate. From these experimental results, one can observe that the SIFT feature sub-

set tends to have better classification performance on the object categories, such as

bathtub, elephant, horse, baseball cap and etc; the global visual features such as color

and texture tend to have better classification performance for the scenery categories,

such as highway, waterfall, snow view, cloud, etc.

2. Image-based versus Partition-based: Under this given benchmark goal, we have

compared the classification performance for both the scenery images and the ob-

ject images by using the image-based approach and the partition-based approach for

feature extraction. As shown in Table 8, one can observe that the partition-based

approach can outperform the image-based approach for most image categories which

are used in our benchmark experiments. The reason for this is that the partition-

based approach can characterize both the global and local visual properties of the

images effectively. This observation has also told us that simple image partition may

provide good performance on image classification.

3. Multiple Kernels versus Single Kernel: For the space limitation, we just list the

partition-based approach for feature extraction to benchmark the performance of im-



114

Dataset Type Color(%) Texture(%)
image-based 39.675 34.15
partition-based 47.475 36.475

Table 8: Classification accuracy for the object categories.

age classifiers by using multiple kernels and single kernel. As shown in Figure 38, com-

bining multiple kernels for diverse image similarity characterization can significantly

outperform using single kernel for image classifier training. The reason behind this

phenomenon is that the statistical properties of the images in the high-dimensional

multi-modal feature space is heterogeneous and the diverse similarity relationships

between the images cannot be approximated effectively by using one single kernel.

On the other hand, our mixture-of-kernels algorithm can combine multiple kernels to

approximate the diverse similarity relationships between the images more sufficiently

and each basic image kernel can achieve more accurate approximation for the relevant

feature subspace.

Through matching the interest points and their SIFT features, it is able to detect

the objects from the images and determine the similarity between the images ac-

cording to the similarity between the underlying image objects. Unfortunately, SIFT

features may not have good performance for two types of images:

(a) Object images with cluttered background: This kind of images may have too

many uninteresting points which come from the cluttered background. Sometimes,

uninteresting points outnumber the interesting points which come from the objects.

For example, the classification accuracy (precision) for the category of “treadmill” is

lower than 20% if we use the SIFT features for image classifier training. On the other
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Figure 38: Classification accuracy (above/below: scenery categories/object cate-
gories; left/right: precision/recall)
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hand, the accuracy (precision) for the same category “treadmill” is much higher if

using the global features.

(b) Scenery images with uniform structure: For the scenery images with uniform

structures like “desert”, their interesting points concentrate on the skyline with rela-

tively similar orientation. As a result, image classification by using the SIFT features

compared with using the global features may obtain very similar performance. On

the other hand, for the scenery image category “forest”, image classification by using

the global visual features such as color histograms may have better performance (i.e.,

higher precision) than using the local visual features.

From Table 7 and Table 8, one can observe that the global visual features such as

color and textures are more effective for the scenery images, on the other hand, the

local visual features such as SIFT are more effective for the object images. However,

such correlation between the types of the visual features and the types of images is

not coincidence because such correlation largely depends on the statistical properties

of the images under the given feature subsets. Based on this observation, we can

seamlessly integrate feature subset selection with our image use kernel combination

scheme to integrate interpretation ability of multi-modal feature subset in character-

izing different types of image categories.

5.5.2 Concept Network Evaluation

For algorithm evaluation used in concept network generation, we focus on assess-

ing whether our visual similarity characterization techniques (i.e., mixture-of-kernels

and KCCA) have good coherence with human perception. We have conducted both
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subjective and objective evaluations. For subjective evaluation, we have conducted

a user study to evaluate the coherence between the inter-concept visual similarity

contexts and their perceptions. For objective evaluation, we have integrated our vi-

sual concept network for exploring large-scale image collections and evaluating the

benefits on using the visual concept network.

For subjective evaluation, users are involved to explore our visual concept network

and assess the visual similarity contexts between the concept pairs. In such an inter-

active visual concept network exploration procedure, as shown in Figure 39, users can

score the coherence between the inter-topic visual similarity contexts provided by our

visual concept network and their perceptions. By clicking the node for each image

concept, our hyperbolic concept network visualization technique can change the view

into a star-schema view (as shown in Figure 39 right sub-figure), which can allow

users to easily assess the coherence between their perceptions and the inter-concept

visual similarity contexts determined by our algorithm. For the user study listed in

Table 9, 21 sample concept pairs are selected equidistantly from the indexed sequence

of concept pairs. The first one is sampled from the top and the following samples

are derived every 20,000th in a sequence of 179,700 concept pairs. By averaging the

scores from all these users, we get the final scores as shown in Table 9, one can observe

that our visual concept network has a good coherence with human perception on the

underlying inter-concept visual similarity contexts.

As shown in Table 9, we have also compared our KCCA-based approach with Flickr

distance approach [162] on inter-concept visual similarity context determination. The

normalized distance to human perception is 0.92 and 1.42 respectively in terms of
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Figure 39: System User Interface: left: global visual concept network; right: cluster
of the selected concept node

Euclidean distance, which means KCCA-base approach performs 54% better than

Flickr distance on the random selected sample data.

We incorporate our inter-concept visual similarity contexts for concept clustering

to reduce the size of the image knowledge. Because the image concepts and their

inter-concept similarity contexts are indexed coherently by the visual concept net-

work, a constraint-driven clustering algorithm is developed to achieve more accurate

concept clustering. For two image concepts Ci and Cj on the visual concept network,

their constrained inter-concept similarity context ϕ(Ci, Cj) depends on two issues: (1)

inter-concept similarity context γ(Ci, Cj) (e.g., similar image concepts should have

larger values of γ(·, ·)); and (2) constraint and linkage relatedness on the visual con-

cept network (e.g., similar image concepts should be closer on the visual concept

network). The constrained inter-concept similarity context ϕ(Ci, Cj) between two

image concept Ci and Cj is defined as:

ϕ(Ci, Cj) = γ(Ci, Cj)×































e−
l2(Ci,Cj )

σ2 , if l(Ci, Cj) ≤ ∆

0, otherwise

(59)



119

concept pair user score γ Flickr Distance
urbanroad-streetview 0.76 0.99 0.0

cat-dog 0.78 0.81 1.0
frisbee-pizza 0.56 0.80 0.26
moped-bus 0.50 0.75 0.37

dolphin-cruiser 0.34 0.73 0.47
habor-outview 0.42 0.71 0.09

monkey-humanface 0.52 0.71 0.32
guitar-violin 0.72 0.71 0.54

lightbulb-firework 0.48 0.69 0.14
mango-broccoli 0.48 0.69 0.34
porcupine-lion 0.58 0.68 0.22
statue-building 0.72 0.68 0.32
sailboat-cruiser 0.70 0.66 0.23
doorway-street 0.54 0.65 0.58
windmill-bigben 0.40 0.63 0.85
helicopter-city 0.30 0.63 0.34
pylon-highway 0.34 0.61 0.06
tombstone-crab 0.22 0.42 0.40
stick-cupboard 0.28 0.29 0.51
fridge-vest 0.20 0.29 0.43

journal-grape 0.22 0.19 0.02

Table 9: Evaluation results of perception coherence for inter-concept visual similarity
context determination: KCCA and Flickr distances.
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where the first part γ(Ci, Cj) denotes the inter-topic visual similarity context between

Ci and Cj, the second part indicates the constraint and linkage relatedness between Ci

and Cj on the visual concept network, l(Ci, Cj) is the distance between the physical

locations for the image concepts Ci and Cj on the visual concept network, σ is the

variance of their physical location distances, and ∆ is a pre-defined threshold which

largely depends on the size of the nearest neighbors to be considered. In this paper,

the first-order nearest neighbors is considered, ∆ = 1.

Our concept clustering results are given in Table 10. Because our KCCA-based

measurement can characterize the inter-concept visual similarity contexts more pre-

cisely, our constraint-driven concept clustering algorithm can effectively generate the

concept clusters, which may significantly reduce the cognitive load for human co-

herence assessment on the underlying inter-concept visual similarity contexts. By

clustering the similar image concepts into the same concept cluster, it is able for us

to deal with the issue of synonymous concepts effectively, e.g., multiple image concepts

may share the same meaning for object and scene interpretation. Because only the

inter-concept visual similarity contexts are used for concept clustering, one can ob-

serve that some of them may not semantic to human beings, thus it is very attractive

to integrate both the inter-concept visual similarity contexts and their inter-concept

semantic similarity contexts for concept clustering.
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group 1 urban-road, street-view, city-building,
fire-engine, moped, brandenberg-gate, buildings

group 2 knife, humming-bird, cruiser,
spaghetti, sushi, grapes, escalator, chimpanzee

group 3 electric-guitar, suv-car, fresco, crocodile,
horse, billboard, waterfall, golf-cart

group 4 bus, earing, t-shirt, school-bus, screwdriver,
hammock, abacus, light-bulb, mosquito

Table 10: Image concept clustering results



CHAPTER 6: LARGE-SCALE IMAGE COLLECTION SUMMARIZATION

Image collection summarization is another important research issue for image col-

lection exploration and image recommendation. The summarization process can be

seen as an extreme form of collection refinement, which extracts a small group of

most representative images from the given data set. The size of the summary is

usually much smaller than the size of the original set. We have proposed a novel

understanding of this problem from the perspective of dictionary learning and sparse

coding.

6.1 Automatic Image Summarization

In this Chapter, we first define the criterion for assessing the quality of an image

summary (i.e., whether the most representative images (image summary) are good

enough to effectively reconstruct all the images in the original image set), where the

problem of automatic image summarization is reformulated as the issue of dictionary

learning under sparsity and diversity constraints, e.g., finding a small set of the most

representative images to reconstruct all the images in the original image set in large

size. We then point out the significant differences between our reformulation of dic-

tionary learning for automatic image summarization with traditional formulation of

dictionary learning for sparse coding.
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6.1.1 Problem Reformulation

The BoW (Bag-of-Word) model serves as a basic tool for visual analytic tasks,

such as object categorization. The summarization problem, which tries to generalize

the major visual components that appear in a collection, will therefore, utilize the

BoW model very well. The choice of local descriptor in BoW model is application

dependent: the use of both texton descriptors [120, 6] and SIFT (Scale Invariant

Feature Transform) [95] descriptors [135, 25] are widely observed. Considering the

fact that texton descriptors are suitable for scene image categorization, and SIFT

descriptor has a much wider range of usage, we have chosen the SIFT descriptor as

the feature to construct BoW model.

Each image, in a given set, is represented with BoW model. The “visual words”

in BoW model are iconic image patches or fragments which are learned by clustering

methods, and therefore represents prominent visual perspectives of the entire collec-

tion. The feature vector is represented in a histogram fashion, with each bin value

represents the frequency of the corresponding visual word occurrence. We can pre-

sume that the major visual contents of an image will be reflected by a large value

on the corresponding bins of the feature vector; while other bins will have close-to

zero values, which implies non-existence of the corresponding “visual words” in the

image. Therefore, the BoW vector of an image can be understood as the distribution

of the occurrence probability of the visual words or visual patterns. If we assume the

visual patterns appear independently in the images and we will observe the additivity

property of the BoW model, which is, one feature vector and be represented by the
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weighted summation of several other vectors; or the accumulated probability of the

appearance of visual patterns. One visual pattern should either present or not present

in an image, which implies positive and zero weights respectively. A negative weight

for a vector does not have practical meaning in illustrating the additivity property of

the BoW model. Therefore, sparse coefficients applied on the dictionary should be

nonnegative. Such restriction is unique for summarization problem and BoW model.

We also observe similar design in face recognition applications [161], which allows

negative coefficients but without providing a practical explanation.

By treating the problem of automatic image summarization as the issue of dic-

tionary learning, each image in the original image set can be approximately recon-

structed by a nonnegative weighted linear combination of the summary images,or in

other words, represented by accumulated probability of the appearances of various

visual words (visual patterns) as shown in Figure 40. The summary images “beach”

and “palmtree” will jointly reconstruct the image which has both two visual objects,

and such linear correlation is reflected by the corresponding feature histograms. The

above linear reconstruction model illustrates the foundation of how each image can

be reconstructed by the exemplars or bases. Also from Figure 40, one can observe

that the richness of the visual content in an image is limited, thus one image can only

be “sparsely” represented by the bases of a dictionary. The definition of sparsity in

this work is different from the dictionary selection model such as in [23], our proposed

approach for automatic image summarization considers the dictionary to “sparsely”

represent the images in the original image set. Based on our new definition of the

reconstruction function, automatic image summarization is achieved by minimizing
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Figure 40: Demonstration for the additivity property of Bag-of-Visual-Words feature.

the overall reconstruction error in L2-norm:

min
n
∑

i=1

||xi −
k
∑

j=1

djαji||
2
2 (60)

where xi, dj ∈ R
d, αij ∈ R

+
0 . xi and dj are data items from the original collection; αij

is the nonnegative weight for the corresponding dj .

For the problem of automatic image summarization, {dj} is the set of the most

representative images that we want to learn, and {dj} should come from the original

image set. The size of {dj} (summary) is a trade-off between concise summarization

of the original image set and accurate reinterpretation of the original image set: a

small size of {dj} means more concise summarization of the original image set but its

reinterpretation power for the original image set may reduce; on the other hand, a

large size of {dj} guarantees a better reinterpretation power but the summarization

could be verbose.

The idea of this proposed reconstruction model (for automatic image summariza-

tion) is similar to nonnegative matrix factorization which learns the prominent objects
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or major components of an image set. In our problem for automatic image summa-

rization, the summary (which is learned in this manner) is inclined to be composed by

the salient visual components of the original image set. If we heavily penalize on the

sparsity term α (such as ||α||0 = 1) which is used for determining the number of bases

for reinterpretation, our proposed model for automatic image summarization can be

reduced to k-medoids (the discrete form of k-means). The k-medoids algorithm is

well known as one of the effective methods for collection summarization [168]. Thus,

our proposed approach for automatic image summarization via dictionary learning for

sparse representation can be treated as an extension of the k-medoids. Consequently,

considering that the richness of the visual content of an image is limited, it is nec-

essary to bring in the sparsity constraint to the objective function for guaranteeing

that only a limited number of bases may take effect in the reconstruction. Hence,

only the bases with non-zero coefficients are used to reconstruct the images in the

original image set. Meanwhile, the bases should be diverse; each basis represents one

type of principal visual patterns and all these bases should be different from each

other. Thus the diversity constraint should be included in the objective function for

dictionary learning. We rewrite Equation 60 as follows by adding both the sparsity

constraint and the diversity constraint.

min
D,A

∑

i

||xi −Dαi||
2
2 + λ

∑

i

||αi||0 + βmax
j 6=k

corr(dj, dk) (61)

The problem of automatic image summarization is reformulated as the optimization

problem in Equation 61, which can be jointly optimized with respect to the dictionary
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D (a small set of most representative images) and the nonnegative coefficient matrix

A = [aT1 , ..., a
T
n ]

T , ai ∈ R
1×k. The diversity constraint is determined by the maximized

correlation score rather than the average correlation, or the mean distance to the

centroids [132]. Because the diversity (quality of the bases set) is determined by the

least different bases pairs; while the mean value measurements do not guarantee the

member of any pair differs from each other to some degree.

There are two different aspects between our formulation of sparse coding for au-

tomatic image summarization and traditional formulations of dictionary learning for

sparse representation: 1) the coefficients {αji} have to be non-negative; 2) the dic-

tionary D is selected from a group of given candidates (original images) X rather

than their combinations. This can be explained briefly: Firstly, from our description

of the accumulated appearance probability of various visual patterns, we know that

each image may contain certain types of visual patterns (positive coefficients) or do

not contain these visual patterns (zero coefficients). It does not make sense that any

type of visual patterns contributes negatively (negative coefficients) to an image in

the original image set. Thus Equation 61 has to satisfy the constraint that α has

non-negative elements. Secondly, the purpose for automatic image summarization

via dictionary learning is to get a small set of the most representative images from

the original image set, thus the dictionary for automatic image summarization should

be selected from the original image set rather than learning analytically (such as the

combination or variation of the original images).
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6.1.2 Dictionary Learning and Sparse Coding

The optimization problem defined in Equation 61 is NP-hard [77](i.e. the search

space is discrete and can be transformed to k-medoids problem which is know NP-

hard), and most existing algorithms are inevitable to fall into the traps of the local

optimums. In contrast, the simulated annealing algorithm is suitable for solving the

global optimization problem, which can locate a good approximation of the global

optimum of a given function in a large search space.

The basic idea of exploiting the simulated annealing algorithm for dictionary learn-

ing is to avoid the local optimum by efficiently searching the solution space to obtain

the global optimum solution. It is well known that the greedy algorithms seek for

the local optimal solution and the final results of the AP and k-medoids algorithms

largely depend on the initial inputs. During each iteration, the simulated annealing

algorithm searches the neighborhood space for all the possible candidates, which is

based on the Metropolis criterion and can effectively avoid the local traps, e.g., the

candidate that does not decrease the objective function still has a chance to be ac-

cepted for the next iteration. The current global best solution will be recorded for

future reference. When enough search iterations are performed, the region for the

global minimum can be found with a high probability. We follow the idea of sim-

ulated annealing to design our algorithm by introducing the major components as

below:

Cooling schedule: The cooling schedule is used to decide when the searching process

will stop. Traditional cooling schedule is set in a simple way as Tk+1 = αTk with
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α ∈ (0, 1). The canonical annealing schedules is defined as below:

Tk =
T0

log(k0 + k)
(62)

where k is the iteration index. The temperature Tk decreases faster during the initial

steps and slower during the later steps. This can reduce the computation cost because

the search space and the number of candidates are much larger in the initial steps.

The temperature can be used to determine the search range and the acceptance

probability, the temperature decreases monotonically to make sure that the search

will terminate in a limited number of iterations.

Acceptance probability density function: The improvement of reconstruction abil-

ity is measured by the difference of the objective function, as defined in Equation

61, between two consecutive selections of the bases of the dictionary (i.e., the most

representative images in the summary). The scale of the measurement decreases with

the temperature and it is compared with a random threshold as below:

exp(−
R(Dk+1)−R(Dk)

αTk
) > U (63)

where R(·) is the reconstruction function as defined in Equation 61. Tk is the current

temperature in the kth iteration. U ∈ [0, 1) is randomly chosen as the acceptance

threshold at each test, and new selection is accepted when the above inequity holds.

The candidates, that decrease the objective function, are definitely accepted while

the other candidates are accepted with a probability proportional to the current

temperature.

Basis update stage: We iteratively update each basis by searching from its neigh-
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borhood in the similarity matrix S. The similarity is defined as

sij = exp (−
||xi − xj ||

2

2σ2
) (64)

Then we sort the columns of the similarity matrix in decreasing order. For each

new basis, we randomly search in its neighborhood in terms of similarity as defined

above. The search range is restricted by exp(Tk−T0

T0
) · |X| which defines the maximum

index that can be searched in the sorted column. During the basis update stage,

each of these K bases is updated in parallel according to the above criterion. A total

number of MaxTries dictionaries are selected in this stage and can be filtered by the

acceptance function as defined in Equation 63. The accepted dictionaries can form a

candidate set and be used as the input for next iteration.

Sparse coding stage: Every time we have found a set of candidate dictionaries with

the above operation, we will need to calculate a set of coefficients that can minimize

the optimization function. As we have discussed before, the coefficient matrix satisfies

L0-norm constraint. Given the tractability of L1-norm problem (P1) and the general

intractability of the L0-norm problem (P0), it has been proved that the solutions

for P1 dictionaries are the same as the solutions for P0 dictionaries when they are

sufficiently sparse [30]. As discussed above about the highly sparsity of our proposed

model for automatic image summarization, we can replace the L0-norm by L1-norm

and seek for analytical solution. Furthermore, during the sparse coding stage, the

dictionary is fixed, hence, we can reduce the objective function to the following form
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which overlooks the diversity constraint βmax
j 6=k

corr(dj, dk).

f : min
A

∑

i

||xi −Dαi||
2
2 + λ

∑

i

||αi||1 + C

∀i ∈ [1..N ], αi ≥ 0

The above formulation is similar to the nonnegative matrix factorization and nonneg-

ative sparse coding, so we can make use of the multiplicative algorithm [62] to solve

the above convex optimization problem. The objective function is non-increasing

under the update rule:

At+1 = At. ∗ (DTX)./(DTDAt + λ1) (65)

where .∗ and ./ denote element-wise multiplication and division (respectively). A is

updated by simply multiplying nonnegative factors during the update stage, so that

the elements of A are guaranteed to be nonnegative under this update rule. As long

as the initial values of A are chosen strictly positive (1/k in our case), the iteration

is guaranteed to reach the global minimum.

Diversity function: The diversity metric is measured by the correlation between

two distributions rather than their Euclidean distance or cosine distance. Because

the correlation of two variables is known to be both scale invariant and shift invariant

when compared to Euclidean distance and cosine distance. Thus, it is more appro-

priate for the additive appearance property of the bag-of-visual-words model. The

correlation between two images is calculated as follows:

corr(di, dj) =
(di − d̄i)(dj − d̄j)

σiσj
(66)
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where d̄ is the mean value of the vector and σ is the standard deviation.

The dictionary and the coefficients are updated in turns. In practical implemen-

tation, the current optimal combination is always saved as (Aopti, Dopti) which keeps

R(Aopti, Dopti) in the current minimum. The annealing process stops when the tem-

perature reaches Tstop or the Ropti is not being updated for MaxConseRej2 times of

iterations. Then, we go to the iterative basis selection stage, which strictly decreases

the reconstruction function until convergence.

Iterative basis selection stage: In this stage, the basis is updated iteratively and

the reconstruction function is strictly decreased during each iteration. Suppose we

are updating the basis bj for those i whose corresponding coefficient αij is not zero,

we fix all the other k − 1 bases and calculate the residue as:

Ei =
∑

||xi −
∑

p 6=j

dpαip||
2 (67)

Then a new d∗j , which can maximally approximate the current residue
∑

Eid
∗
j , is

found and it is equivalent to

d∗j = argmin <
∑

Ei, d
∗
j > (68)

which means d∗j is the closest point to the center of all the nonzero Ei. Then we

check whether d∗j decreases the objective function or not. After all the K bases are

updated, we calculate the coefficient matrix by using the method which is introduced

in the sparse coding stage and repeat the updating process until convergence. The

algorithm stops when no basis is being updated. The purpose for this stage is to make

2MaxConseRej stands for maximum consecutive rejection
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sure that our the proposed algorithm can converge to some points. The algorithm is

summarized as Algorithm 1.

6.2 Evaluation and Discussion

In this section, we report our experimental setup and algorithm evaluation results.

The experiments are designed to acquire both the objective performance and the

subjective performance of our proposed algorithm as compared with other 6 baseline

algorithms such as SDS (sparsifying dictionary selection) [81], K-medoids [168], AP

(Affinity Propagation) [3], Greedy (Canonical View) [133], ARW (Absorbing Random

Walk) [153] and K-SVD [1].

6.2.1 Experiment Setup

Image Sets: The image sets used in this work are collected from ImageNet [40],

NUS-WIDE-SCENE [17] and Event image set [89]. ImageNet is an image collection

which is organized according to the WordNet hierarchy. The majority of the mean-

ingful concepts in WordNet are nouns (80,000+) which are called “synset”. There are

more than 20,000 such synsets/subcategories in ImageNet and we have downloaded

only partial of this large-scale image set and reported our summarization results on 13

object categories of bakery, banana, bridge, church, cinema, garage, library, monitor,

mug, pajama, school bus, skyscraper, and mix.

The algorithms for automatic image summarization should work on image collec-

tions with various sizes and visual variety, so we have integrated the images from

ImageNet to construct a new image category called mix by mixing the images from

multiple object categories to strengthen the visual diversity and enlarge the size of
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Algorithm 1 Proposed Dictionary Learning

Input: Original image set X ∈ R
d×n.

Output: Optimized dictionary Dopti ∈ R
d×k, k ≪ n,Dopti ∈ X.

Initialization: Initial dictionary is appointed by random selection of k bases from
X .

Basis Update:

while T k > Tstop and Rej < MaxConseRej do

T k+1 = Update T (T k)
for each d in Dk do

d′ = Update D(d)
if accept(d′, T k) then

Dk+1 = Dk+1 ∪ d′

end if

end for

A = Sparse Coding(X,Dk, T k)
if R(X,A,Dk) < Ropti then

Ropti = R(X,A,DK)
Dopti = Dk

else

Rej = Rej + 1
end if

end while

Iterative Selection:
while not converge do

for i = 1 to k do

Update(di)
end for

A = Sparse Coding(X,Dk, T k)
Ropti = R(X,A,DK)
Dopti = Dk

end while
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bakery banan bridge church cinema garag libra
number of images 1214 1409 1598 1329 1392 1291 1305
size of summary 10 26 33 34 25 20 16

monitor mug pajama schoolbus skyscraper mix
number of images 1399 1573 900 1303 1546 1759
size of summary 31 27 18 22 37 31

Table 11: ImageNet Data Collection Statistics: 13 object categories with different
size of summary.

image category. For each of these 13 categories used in our experiments, the num-

ber of images ranges from 900 to 1800 and the predefined size of image summary is

reported in Table 11.

The NUS-WIDE database consists of 269,648 images which are collected from

Flickr. We focused on a subset called NUS-WIDE-SCENE which covers 33 scene

concepts with 34,926 images in total. We have collected 11 scene concepts which are

beach (449 images), building (451), clouds (317 images), hillside (466 images), lakes

(383 images), plaza (425 images), running (302 images), skyline (147 images), sunrise

(111 images), weather (225 images) and zoos (448 images).

The Event image set contains 8 sport event categories: rowing (250 images), bad-

minton (200 images), polo (182 images), bocce (137 images), snowboarding (190 im-

ages), croquet (236 images), sailing (190 images) and rock climbing (194 images). The

images in the Event image set are closer to personal photo album which focuses on

the presence of people or ongoing activities.

Each of these three image sets covers different visual aspects: ImageNet focuses on

object categories, NUS-WIDE-SCENE focuses on natural scene categories, and Event

image set focuses on event categories.
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Experimental Specification: We extract interest points and calculate their SIFT

descriptors for image representation. A universal codebook with 1000 visual words is

constructed, where the k-means algorithm is performed on 10 million interest points as

introduced in Chapter 6.1.2 for codebook (dictionary) learning. We have investigated

how the size of dictionaries will affect the reconstruction performance. The affection

of the dictionary size is evaluated on the reconstruction performance on the mixture

data set and we observed that too small size (less than 500) or too large size (larger

than 100000) dictionary will all reduce the reconstruction performance, as shown in

Figure 41, so that we choose size 1000 for the purpose of computation efficiency.

The image representation (1000-dimensional histogram of code words) is obtained by

quantifying all the interest points in the images into the codeword dictionary. In our

experiments, we have found that our 1000-dimensional codebook can produce good

representations of the images. In the following, without special indication, we denote

the number of images in the given category by N and the number of code words by

K.

Baseline algorithms: We have selected 6 baseline algorithms for comparison.

The k-medoids algorithm [168] is a typical clustering-based image summarization

algorithm, k is the number of clusters or the size of the dictionary and the medoid of

each cluster is selected as one basis. The clustering algorithm aims to partition the

original image set into k clusters which can minimize the within-cluster sum of the

square errors:

min
S

K
∑

i=1

∑

xj∈Si

||xj − di||
2
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Figure 41: MSE performance in terms of different dictionary size on a mixture data
set with summary size equals to 9.

The SDS algorithm [81] represents a series of greedy algorithms which iteratively

select the current best basis. Krause et al. suggested in [81] that the local optimal

derived by the greedy algorithm is a near-optimal solution when the data collec-

tion satisfy the submodular condition. The greedy algorithm starts with an empty

dictionary D, and at every iteration i adds a new element (basis) via

di = arg min
d∈X\D

F (Di−1 ∪ d)

where F is the evaluation function. The SDS algorithm is modified to satisfy our

positive coefficient constraint.

The Affinity Propagation algorithm [3] updates the availability function and the

responsibility function in turns. For any data point i, during affinity propagation,

the value of k, which maximizes a(i, k) + r(i, k), indicates that the data point i can

be selected as an exemplar (basis) when k = i. The responsibility and availability are



138

defined as

r(i, k)← s(i, k)− max
k′s.t.k′ 6=k

{a(i, k′) + s(i, k′)}

a(i, k)← min{0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max{0, r(i′, k)}}

where s(i, k) is the similarity between two data points. The number of exemplars is

determined by the value of the preference which is usually set to be median of the data

similarities. The algorithms like AP and Greedy does not require a preset number

of bases (number of clusters). If this number is required, we can obtain it by tuning

the value of the preference. Instead, we can also fix the value of the preference to

generate a set of bases with AP, and then we can make sure other algorithms generate

the same number of bases for the same image category as shown in Table 11.

The Greedy algorithm [133] follows Simon’s definition of the quality function as

written below. The image, which maximally increases the quality function at each

iteration, is added to the basis set D. The algorithm terminates when the quality

function reduces below zero or the preset number of bases is reached. We tune the

penalty weight α to ensure the required number of bases can be selected automatically.

Q(D) =
∑

xi∈X

(xi ·Dd(i))− α|D| − β
∑

di∈D

∑

dj>i∈D

(di · dj)

The ARW algorithm [153] turns the selected items to the absorbing state by

setting the transition probability into 0 (from the current item to other items), and

the transition probability is set to 1 when it transits to itself. The selected items are
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arranged and the transition matrix is rewritten as

TD =









ID 0

R Q









The item, which has the largest expected number of visits in the current iteration,

is selected. The average expected number v is calculated as follows, and N is the

so-called fundamental matrix

v =
NT e

n− |D|

N = (I −Q)−1

The K-SVD algorithm [1] is flexible, and works in conjugation with any sparse

coding algorithms. In order to incorporate the K-SVD algorithm into the proposed

framework, we learn the sparse coefficient matrix under the non-negative constraint.

In the dictionary update stage, we follow the same SVD decomposition operation and

update the basis iteratively. After the dictionary learned from K-SVD, we will assign

each basis in the dictionary to its nearest neighbor in the original set and construct

the final summarization.

For automatic image summarization, our proposed algorithm is compared with

all these 6 baseline algorithms objectively and subjectively. We compare all these

algorithms (our proposed algorithms and 6 baseline algorithms) on their reconstruc-

tion abilities under the sparsity and diversity constraints as defined in Equation 61,

specifically, in terms of mean square error (MSE). Smaller MSE value indicates better

reconstruction ability.
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6.2.2 Experimental Results and Observations

MSE performance on ImageNet: The MSE value is calculated for all these six al-

gorithms (our proposed algorithm and 6 baseline algorithms) on 13 object categories

where the size of image summary is predefined as shown in Table 11. We have observed

that: (a) Our proposed algorithm has the best performance in terms of the recon-

struction ability on all these 13 object categories. The results are reported in Table

12 and Figure 42. For our proposed algorithm, its improvement on the reconstruction

ability is insignificant when compared with K-SVD, but is significant as compared

with other 6 baseline algorithms. (b) The simultaneous summarization algorithms

like AP and k-medoids performed slightly better than the iterative summarization

algorithms like Greedy, SDS and ARW. (c) The performance improvement on the

mix category is especially significant, which implies that the proposed algorithm has

better summarization ability on more visually diverse data collections.

The improvement comes from two aspect: (1) our proposed algorithm considers

both the sparsity constraint and the diversity constraint while other baseline algo-

rithms do not have such complete consideration of a good summary; (2) the simulated

annealing algorithm is adopted to seek for the global optimum solution while all the

other five algorithms seek the local optimum solutions. When the same size of image

summary is used, we have also compared their performance in terms of MSE values

as shown in Table 13 and Figure 43. The performance is similar to the predefined

size of summary experiment.

MSE performance on NUS-WIDE-SCENE: The MSE value is calculated for all
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bakery banana bridge church cinema garage library
SDS 0.13 0.179 0.180 0.171 0.176 0.187 0.163

K-med 0.162 0.169 0.181 0.160 0.162 0.171 0.144
AP 0.100 0.170 0.162 0.165 0.168 0.174 0.143

Greedy 0.167 0.172 0.180 0.175 0.176 0.178 0.173
ARW 0.128 0.175 0.185 0.176 0.175 0.186 0.162

Proposed 0.083 0.112 0.125 0.118 0.11 0.113 0.103

K-SVD 0.117 0.123 0.125 0.119 0.123 0.128 0.112
Size 10 26 33 34 25 20 16

monitor mug pajama sch-bus skyscrap mix Avg.
SDS 0.192 0.181 0.184 0.134 0.191 0.182 0.173

K-med 0.175 0.169 0.174 0.158 0.173 0.169 0.167
AP 0.175 0.168 0.175 0.162 0.177 0.168 0.162

Greedy 0.179 0.171 0.184 0.180 0.193 0.172 0.177
ARW 0.191 0.181 0.184 0.158 0.189 0.178 0.174

Proposed 0.125 0.108 0.106 0.105 0.15 0.118 0.114

K-SVD 0.129 0.122 0.127 0.106 0.131 0.121 0.121
Size 31 27 18 22 37 31 N/A

Table 12: Performance comparison of the proposed algorithm with 6 other baseline
algorithms in terms of reconstruction error; 13 object categories selected from Ima-
geNet with different summary sizes.
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Figure 42: MSE comparison among all these 6 algorithms on ImageNet with different
summary sizes.
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bakery banana bridge church cinema garage library
SDS 0.13 0.185 0.177 0.180 0.180 0.186 0.163

K-med 0.115 0.129 0.110 0.109 0.125 0.129 0.096
AP 0.083 0.128 0.116 0.105 0.121 0.129 0.107

Greedy 0.096 0.128 0.136 0.127 0.127 0.130 0.117
ARW 0.097 0.133 0.142 0.133 0.134 0.137 0.117

Proposed 0.0.077 0.088 0.102 0.094 0.091 0.092 0.086

K-SVD 0.118 0.130 0.137 0.121 0.130 0.133 0.108

monitor mug pajama sch-bus skyscrap mix Avg.
SDS 0.192 0.181 0.184 0.134 0.191 0.182 0.173

K-med 0.132 0.125 0.127 0.113 0.136 0.123 0.121
AP 0.134 0.125 0.129 0.114 0.128 0.123 0.119

Greedy 0.142 0.127 0.132 0.104 0.149 0.126 0.126
ARW 0.142 0.131 0.134 0.120 0.153 0.132 0.131

Proposed 0.099 0.086 0.089 0.085 0.121 0.087 0.092

K-SVD 0.137 0.129 0.131 0.124 0.153 0.123 0.129

Table 13: Performance comparison of the proposed algorithm with 6 other baseline
algorithms in terms of reconstruction error; 13 object categories selected from Ima-
geNet image set with equal summary size of 9.

these 6 algorithms on 11 scene categories in NUS-WIDE-SCENE image set when the

size of image summary is fixed. Similar performance is obtained as what we have

got in ImageNet, however, the performance improvement for the proposed algorithm,

and also among all these 6 algorithms is not as significant as we have observed in

ImageNet data set, and the proposed algorithm is outperformed by other algorithms

on two categories as shown in Table 14 and Figure 44. The absolute MSE value and

the difference among the baseline algorithms are also smaller as compared with the

object categories in ImageNet. The result demonstrates that the images in the scene

categories are more evenly distributed and our proposed algorithm does not have as

distinguish performance as we have obtained in the object categories.

MSE performance on Event image set: The MSE value is calculated for all these

six algorithms on 8 categories in the Event image set with equal summary size of
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Figure 43: MSE comparison among the algorithms on ImageNet with equal summary
size of 9.

9. We have observed that the MSE curves are more consistent as compared with

the MSE curves for ImageNet and NUS-WIDE-SCENE and the difference is very

consistent and relatively small as shown in Table 15 and Figure 45. The reason is

that the images for the Event image set is organized much better and more consistent

on visual content as compared with ImageNet and NUS-WIDE-SCENE.

Discussion: We will discuss how the major components and parameters will affect

the performance of the proposed algorithm.

The spatial information is believed to be discarded with the proposed SIFT BoW

model, which is one of the major drawbacks for BoW model. However, for the im-

age collection summarization applications, the spatial distribution or organization of

objects within a certain image is not critical. The critical property is the existence

of an object or visual component in an image, and the distribution of the occur-

rence probability of the visual words within an image. Under such interpretation,

the MSE measure should be enough to serve for image collection summarization task
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beach building clouds hillside lakes plaza
SDS 0.134 0.127 0.125 0.124 0.123 0.114

K-med 0.124 0.121 0.105 0.135 0.116 0.111
AP 0.125 0.116 0.115 0.109 0.119 0.103

Greedy 0.123 0.117 0.122 0.121 0.123 0.110
ARW 0.140 0.123 0.121 0.135 0.127 0.120

Proposed 0.119 0.106 0.106 0.107 0.108 0.097

K-SVD 0.131 0.122 0.107 0.135 0.109 0.112

running skyline sunrise weather zoos Avg.
SDS 0.125 0.125 0.130 0.148 0.107 0.127

K-med 0.121 0.110 0.126 0.131 0.097 0.120
AP 0.113 0.108 0.118 0.130 0.099 0.116

Greedy 0.118 0.110 0.109 0.130 0.110 0.119
ARW 0.130 0.123 0.127 0.137 0.116 0.128

Proposed 0.104 0.102 0.110 0.127 0.090 0.109

K-SVD 0.123 0.107 0.119 0.124 0.108 0.118

Table 14: Performance comparison of the proposed algorithm with 6 other baseline
algorithms in terms of reconstruction error; 11 scene categories selected from NUS-
WIDE-SCENE with equal summary size of 9.

Figure 44: MSE comparison among the algorithms on NUS-WIDE-SCENE with equal
summary size of 9.
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rockclimb badminton bocce croquet polo
SDS 0.088 0.119 0.099 0.102 0.103

K-med 0.086 0.108 0.103 0.097 0.092
AP 0.086 0.115 0.103 0.096 0.098

Greedy 0.084 0.106 0.088 0.099 0.092
ARW 0.093 0.121 0.104 0.101 0.102

Proposed 0.074 0.102 0.08 0.09 0.086

K-SVD 0.085 0.112 0.102 0.096 0.099

rowing sailing snowboard Avg.
SDS 0.111 0.133 0.129 0.111

K-med 0.11 0.117 0.118 0.104
AP 0.109 0.124 0.117 0.106

Greedy 0.104 0.129 0.126 0.104
ARW 0.110 0.133 0.132 0.112

Proposed 0.095 0.109 0.109 0.093

K-SVD 0.115 0.129 0.126 0.108

Table 15: Performance comparison of the proposed algorithm with 6 other baseline
algorithms in terms of reconstruction error; 8 event categories selected from Event
image set with equal summary size of 9.

Figure 45: MSE comparison among the algorithms on Event image set with equal
summary size of 9.
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Figure 46: MSE comparison among all the 6 algorithms on the Torralba-8 dataset
with GIST feature.

evaluation, compared to measuring metric such as SSIM [156].

As for the choice of the feature and the size of the image, we further conduct

another experiment on the 8 scene categories of Torralba dataset [111], whose im-

ages have the same size (256 by 256). Although GIST feature [111] does not have a

straightforward interpretation ability as SIFT BoW feature, we still consider it ap-

propriate for scene image representation and use this feature for summarization task.

The complete result is reported in Figure 46, and can be briefly concluded as: the

average MSE value for the proposed algorithm is 0.3833, with K-SVD followed closely

by 0.3871. The other 5 algorithms performs relatively poor in the range between 0.4

to 0.44. Similar to NUS-WIDE-SCENE and Event image data set, the Torralba 8

scene category data set is also consistent on visual content, the performance improve-

ment of the proposed algorithm is not as significant as with object data sets. For

this data collection, both K-SVD and the proposed algorithm can achieve close to

optimal results. In conclusion, the consistency of visual content is the critical factor

for summarization task, rather than the spatial layout or size of the image.

The initial choice of k random bases does not affect the final reconstruction per-
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formance. Our proposed algorithm has consistent reconstruction value with different

inputs. We have used the clustering results from AP or k-medoids as the initial inputs

and no significant difference is observed as compared with random initial inputs.

We also observed that the L1-norm sparse coding scheme can be used to replace

the L0-norm sparse coding scheme. The coefficients are very sparse, and the majority

of the weights concentrate on a few number of bases (2 or 3 bases in general; ex-

tremely small as compared with the size of the dictionary), which coincide with our

assumption.

The sparsity penalty weight α and the diversity weight β may also affect the

reconstruction value. We have tuned these two parameters, so that two constraint

terms can contribute equally to the reconstruction function. We have tuned these two

parameters under the following rules: a) the sparsity penalty weight α is determined

first to make sure that each image is represented sparsely enough by the dictionary; b)

we tune the diversity weight of β, so that the MSE curve decreases when the summary

size is increased. The MSE curves under different β values are shown in Figure 48.

The value of β = 0.05 (the middle curve in Figure 48) produces a balanced diversity

term while other β values lead to unbalanced diversity terms. We also observed that

the MSE curve (y-axis in Figure 48) decreases when the summary size increases (x-

axis in Figure 48). This observation coincides with our assumption in Chapter 6.1.2

that the reconstruction ability will increase as the size of the summary increases. We

also observed that most of the results strictly decrease the objective as the size of the

dictionary increases, but there are still some outliers that do not fit the curve well.

The reason is that the simulated annealing algorithm does not guarantee that the
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Number of iteration 40
Diversity weight β 0.05

Number of different initials 3
MaxConseRej 20
MaxTries 40

Temperature decrease rate 0.9

global optimum is found every time (although it is close to the global optimum). If

we can sacrifice the efficiency and repeat the learning process with more iterations, we

can have a much higher probability to achieve the global optimum. In other words,

the curve in Figure 48 can prove that our proposed algorithm finds the close-to-global

optimum solution with high probability.

We will discuss about the convergence of the simulated annealing algorithm in

this task. The use of annealing schedule is to make it possible to avoid local optima,

and terminates the basis update stage in a limited number of steps. The newly

accepted updates do not critically decrease the reconstruction error; the solution,

which does not decrease the optimization function, still has a chance to be accepted,

which makes it possible to jump out of a local minimum neighborhood. We have

compared the proposed algorithm with greedy algorithm in terms of reconstruction

error on a given data set with GIST feature. The result can be found in Figure 47.

We observed that after the greedy algorithm converges at a local optimum position

(blue dot), the SA algorithm (green dot) could still jump out of the local optimal

neighborhood and find a better optimal solution. The reconstruction error curve

is not smooth because the solution space is not continuous. Some important factors

such as iteration number, number of attempts with different initials, cooling schedule,

would all affect the convergence result. The optimal parameters are given as below:
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Figure 47: Optimization comparison in terms of reconstruction error: the blue dot is
the greedy algorithm; the red dot is the SA algorithm. Only the updated steps are
shown in this figure, thus the curve is not smooth.

We further tested how the number of iterations may affect our proposed algorithm

and reported the summarization result for the category of “clouds” as in Figure 49.

We have repeated the algorithm for 90 times and each time with different number of

iterations. We have observed that the optimization function can find close to optimum

solution when a certain amount of iteration is guaranteed.

Our proposed approach treated each image in the image collection equally for get-

ting the summary, so there does not exist so-called “outliers” (a group of similar

images that are far different from the rest of the data set). As a result, the summa-

rization result may not coincide with the human perception of that image categories.

For example, the “bakery” category in ImageNet contains a bunch of blank images

which maybe the result of a broken download link. So the summarization results for

our proposed approach can always include a blank image which are usually eliminated

by some other algorithms.
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Figure 48: The MSE curve under different β value; x-axis represents the size of the
summary, y-axis represents the MSE value.

Figure 49: The MSE curve under different number of iterations; x-axis is the number
of iterations of the proposed algorithm, y-axis represents the MSE value.
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Computation efficiency: The computation cost of our proposed algorithm is largely

affected by the annealing schedule which is used to determine the number of iterations.

During each iteration, the most time consuming operation is to learn the non-negative

sparse coefficients. In practical implementation, the simulated annealing stage ter-

minates after 30 to 40 iterations and the overall computation time is around 2 to 3

minutes for each image set (with around 1400 images). By contrast, the simultaneous

summarization learning algorithms such as AP and k-medoids take around 30 to 40

seconds. The ARW, K-SVD and Greedy algorithms has similar computation cost as

compared with our proposed algorithm. The SDS algorithm runs slowest because it

needs to examine the reconstruction performance for every image in the image set

during each iteration. All these experiments are carried out in a 2.6G CPU and 4G

memory computation environment.

Subjective evaluation: Image summarization is often task-specific, so the subjective

results from user study are meaningful and also inevitable. We have performed user

study to evaluate the effectiveness of our proposed approach and compared with other

baseline approaches. The evaluation metric is measured by the users’ feedback on how

well the summarization results can recover the overall visual aspects for the original

image set3. Our survey consists the following components : (1) 30 users (graduate

students) are involved in this survey to investigate the summarization results for 3

image sets. (b) The system interface is shown in Figure 50. The users should be able

to explore the image category list (left: treeview), the image set (right: panel), and

3The score ranges from 0 to 10, with 10 represents that all the visual aspects can be discovered
by the summarization result. Visual aspects usually means salient objects or major scenes that are
reflected in the original image set.
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Figure 50: Screen shot of the system interface of category “clouds”; the algorithm
and category names are not hidden in this case.

summarization results as given in the middle blob (summary size may vary according

to user’s demand) for all six algorithms (our proposed algorithm and other 6 baseline

algorithms). (c) In actual survey, the category names are hidden from users because

we do not want to distract users’ judgment by involving their semantic understanding

of that image category. The judgment should rely only on the visual aspects of the

images. The algorithm names are also hidden from users to avoid biased opinion. (d)

The average scores are reported in Table 16 − table 19. The results indicate that

our proposed approach (via dictionary learning) has higher average appropriateness

score as compared with other baseline algorithms, which coincides with the objective

evaluation results.
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Figure 51: Summarization results for category “clouds” for the proposed algorithm
and 6 other baseline algorithms (without K-SVD); A tile-view illustration of Figure
50.

bakery banana bridge church cinema garage library
SDS 6 6.9 7.5 7.3 7 6.9 6.3

K-med 6.2 7.6 7.4 7.2 7.4 7.5 6.9
AP 6.7 7.5 7.8 7.1 7.6 7.5 7.1

Greedy 5.8 6.3 6.9 6.6 6.7 7.1 5.9
ARW 5.7 6.3 7.3 6.9 7.4 7.8 6

Proposed 6.6 7.8 8.1 7.9 8 8.2 7.7

K-SVD 6.6 6.7 7.1 7.1 7.2 7.5 6.9
Size 10 26 33 34 25 20 16

monitor mug pajama schoolbus skyscraper mix Avg.
SDS 7.1 6.7 6.4 7.7 7.9 7 7

K-med 6.9 6.6 7.3 7.1 8.4 7.2 7.2
AP 7.2 7.2 7.2 6.9 8.4 7.2 7.3

Greedy 6.8 6.5 6.8 7 8 7 6.7
ARW 6.1 7.1 6.6 6.6 7.7 6.9 6.8

Proposed 7.4 7.7 7.8 7.5 8.5 7.3 7.7

K-SVD 6.5 6.6 7.2 7.3 7.2 7 7
Size 31 27 18 22 37 31 N/A

Table 16: Subjective evaluation of the proposed algorithm with 6 other baseline
algorithms in terms of user grading on ImageNet with different summary size
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bakery banana bridge church cinema garage library
SDS 6.4 5.8 5.9 6.7 6 5.8 5.3

K-med 7.2 5.9 6.7 8.9 6 6.2 5.1
AP 7.3 5.7 8.6 5.4 7.8 7 7.9

Greedy 8.7 6.2 5.6 5.7 6.6 5.4 6
ARW 8.5 6.8 5.9 8.6 7.3 6.1 8.2

Proposed 7.4 8.3 6.2 6.7 7.4 7.6 8.7

K-SVD 7.3 7.7 5.9 6.1 6.6 6.7 7.2

monitor mug pajama schoolbus skyscraper mix Avg.
SDS 6.9 7 6.4 5.3 5.4 8.5 6.0

K-med 6.8 7.4 8.5 7.7 8.1 5.7 7.0
AP 7.1 6.5 8.1 7.8 8.6 7.9 7.3

Greedy 7.3 5.9 8.9 6 7.6 6.3 6.6
ARW 5.9 6.9 5.1 6.3 6.9 7.7 6.8

Proposed 8.8 7.7 8.6 5.5 7.8 5.1 7.5

K-SVD 8.2 7.2 5.9 6.3 6.2 6.1 6.7

Table 17: Subjective evaluation of the proposed algorithm with 6 other baseline
algorithms in terms of user grading on ImageNet with equal summary size of 9.

beach building clouds hillside lakes plaza
SDS 7 8.2 6.9 5.2 8.2 7.8

K-med 6.9 7.3 5.6 7.7 8.2 7.5
AP 7.4 8.5 7 7 7.6 6.7

Greedy 8.6 5.7 8.9 5.1 7.8 8.2
ARW 7.4 5.9 7.8 5.2 5.5 6.8

Proposed 8.4 8.6 6.8 5.3 7 8.3

K-SVD 7.4 8.2 7.1 7.5 6.7 7.7

running skyline sunrise weather zoos Avg.
SDS 5.3 5.2 6.1 6.4 5.2 6.5

K-med 5.5 6.5 6.7 5.7 7.9 6.8
AP 8.3 7.6 5.6 7.8 7.1 7.3

Greedy 5.6 7.1 5 6.9 6 6.8
ARW 6.5 6.6 6.9 6.3 6.6 6.5

Proposed 8.2 8.5 7.4 8.6 8.7 7.8

K-SVD 5.2 5.9 6.8 6.6 6.4 6.8

Table 18: Subjective evaluation of the proposed algorithm with 6 other baseline
algorithms in terms of user grading on NUS-WIDE-SCENE with equal summary size
of 9.
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rockc badm bocce croq polo rowi saili snowb Avg.
SDS 6.2 5.7 8.5 5.6 6.9 6 7.9 8.2 6.8

K-med 7.8 5.5 7.6 8.4 5.4 6.1 6.3 6 6.6
AP 6.6 7.7 5.1 6.8 5.7 6.5 8.2 8.6 6.9

Greedy 7.6 8.9 5.7 7.5 7.3 7.4 7.3 7.3 7.3
ARW 7.1 5.6 6.4 6.5 5.9 6 5.4 5 5.9

Proposed 8.9 7.6 7.2 8.9 6.7 7.3 8.5 8.5 7.9

K-SVD 8.4 7.7 5.6 6.7 7.2 6.9 8.1 6.8 7.2

Table 19: Subjective evaluation of the proposed algorithm with 6 other baseline
algorithms in terms of user grading on Event image set with equal summary size of
9.



CHAPTER 7: A PRACTICE: GRAFFITI IMAGE RETRIEVAL

In this Chapter, we will introduce a novel information retrieval system of graffiti im-

age retrieval. The proposed graffiti retrieval system comprises two major components:

character detection, and string recognition/retrieval. The string recognition/retrieval

component is further broken down by the image-wise retrieval and semantic-wise re-

trieval. The work-flow of the entire system is shown in Figure 52. In this section, we

will describe the design detail of the steps, as shown in the framework diagram. We

will use the top left image in Figure 8 as an example input throughout this Chapter.

7.0.1 Image Preprocessing

We have some basic requirement for the quality of the images. The character

components should be contrasting from the background and the background is not

extremely cluttered or colorful. Otherwise, the graffiti lost its meaning to pass on

messages. For preprocessing of the images, we conduct a series of sequential opera-

tions, including image resizing, grayscaling, and smoothing. The sizes of the collected

graffiti images are usually large (larger than 2000 by 1500), which is difficult to dis-

play and inefficient to process. Therefore, we keep the aspect ratio and resize the

image to make sure its largest dimension is smaller than 800 pixels. An image of this

size shows clear graffiti characters and is small enough for efficient processing. The
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Figure 52: Graffiti retrieval framework
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Figure 53: Image preprocessing. Left: original image; right: image after preprocessing

resized image is then changed to gray-scale4 and smoothed with a 5 by 5 Gaussian

filter. The smoothing operation dramatically reduces large amounts of unnecessary

background noise. The image after pre-processing is shown as in Figure 53.

7.0.2 Image Binarization

The grayscale image has pixel values ranging from 0 to 255. For the purpose of

character detection, we need to partition the image into the potential object area

(the character area) and the background area, which is a binarization process. Image

binarization is realized by the global thresholding algorithms such as Niblack [179].

The intensity of the pixel of the input image is compared with a threshold of T ; the

value above the threshold is set to white (1; the potential object area pixel), otherwise

4We have also tested using the H component from the HSV color space, which is known to be
a more robust visual attribute to pixel intensity variation, hence the lighting variation; and we
observed very similar results compared to grayscale framework on RGB color space.
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black (0; the obvious background pixel). The Niblack’s algorithm calculates a pixel-

wise threshold by sliding a square window on the grayscale image. The size of the

window is determined by the size of the image, which is based on the fact that the

character components are visible and thus occupy a certain proportion of the image

area. The threshold T is calculated with the meanm and standard deviation s on each

of the sliding windows. The pixel intensity is compared with threshold T , calculated

as:

T = m+ k ∗ s (69)

where k is a positive number between 0 and 1, if we are detecting white characters

on black background or k is a negative number between -1 and 0, if we are detecting

black characters on white background. In the scenario of graffiti detection, we have

observed cases of dark ink characters on a light colored surface and vice versa, so we

are actually conducting pixel-wise comparisons with both thresholds:

T1,2 = m+ k1,2 ∗ s (70)

where k1 ∈ [0, 1] and k2 ∈ [−1, 0]. The parameters, such as the size of the sliding

window and the value of two k, will affect the binarization results. Because of the

various visual representations of the large number of images in the data set, we may

predict that there is no global configuration that can fit all the data. As a result, we

determine the parameters by specific input images; for example, the size of the sliding

window is based on the size of the input image and the value of k is based on the

entropy of the image, specifically, linearly correlated with the entropy value. We can
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Figure 54: Image binarization: Left: image after preprocessing; right: image after
binarization

see from Figure 54 that the Niblack algorithm will delete a large area of background

patches that have a smooth visual appearance and keep the object areas that always

appear with a high standard deviation of intensity.

7.0.3 Character Detection

The binary image is organized by the connected components that are recognized

as candidate objects. These candidates could be either the actual graffiti characters

or the noisy background patches that cannot be deleted from the previous steps. The

goal of the object detection task is to delete all these distracters and retain as many

positive candidates as possible. We find that several visual attributes of character

objects differ from the background objects, and the most important attribute is the

edge contrast, with the idea derived from [179]. Edge contrast is defined as follows:

Tedge contrast =
{border pixels} ∩ {edge detection}

{border pixels}
(71)

The above threshold is defined based on the observation that character objects’ border

pixels have a large portion of overlapping with the edge detection result from the

original image, while the borders of background objects do not overlap much with
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Figure 55: Edge contrast. (a) edge detection; (b) border detection; (c) noisy patches
(in yellow circle) before comparing edge contrast; (d) after elimination.

the edge detection result. We can easily observe this property in Figure 55. Figure 55,

(a) and (b) show the edge detection result and border detection result respectively.

We can also see that the character components coincide with each other in (a) and (b)

while the background components do not. Therefore, we will delete all the connected

components whose edge contrast value is smaller than this threshold Tedge contrast and

the image is further refined as shown in Figure 55 (d).

Other attributes, such as the aspect ratio, length ratio, size ratio, border ratio,

number of holes, smooth ratio, skeleton distance, and component position may also

differentiate the positive objects from the noisy objects. Below we briefly introduce

the functionality of the above criteria:

1) Aspect ratio: The printed characters usually have the aspect ratio of 7:5 or
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other ratios close to this value, which relies on the font or style of the character. The

graffiti characters, with no exception, will follow this approximate aspect ratio. So we

can exclude those connected components with much larger or smaller aspect ratios,

because they are very unlikely to be characters.

2) Length ratio, size ratio, and position: Several background objects in the graffiti

images can be deleted based on their extreme length or size. The character compo-

nents in the graffiti images usually appear in formal shape and will locate as the focus

of the photo. Extremely large or long components and components on the border of

the images are usually noisy components. These noisy components often are windows

or door frames.

3) Number of holes: Image patches from the background may have very rough

textures or crude surfaces. The components derived from these areas have an irregular

pattern with lots of holes or loops. The components derived from characters, on the

other hand, have a more stable and consistent pattern with a limited number of holes.

We will empirically define a threshold Tholes to exclude components with too many

inner loops.

4) Smooth ratio: Graffiti characters are painted with oil or ink, and the oil paint

itself is rough regardless of what kind of surface it is painted on. On the other

hand, the background patches could be part of a very smooth surface. We define the

smoothness of a connected component by its standard deviation value. The graffiti

components show a moderate level of smoothness as indicated by a modest standard

deviation; while some background components show perfect smoothness indicated

by a near-zero standard deviation, which means the intensity values throughout the
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components are almost the same. We thus can exclude those components with a

very small standard deviation value, because they are very unlikely to be a graffiti

component.

5) Border ratio: The refinement criteria of border ratio are derived directly from

the field of traditional character recognition. The characters, whether they are hand-

writing or graffiti, are composed of strikes, and the shape of the strikes is different

from random patches. If the border ratio is defined as the proportion of border pixel

to the total pixel, the components of strikes should have a much larger border ratio

than random patches. Therefore, we will exclude the components with a small value

of border ratio because they are very likely to be background components.

6) Skeleton distance: The notion of skeleton distance is also derived from the tradi-

tional character recognition field. We first conduct the inside loop filling operation as

introduced in the following subsection, then extract the skeleton of the components,

and further calculate the distance for each of the skeleton pixels. The distance of a

skeleton pixel is defined as the minimum distance of the skeleton pixel to a pixel that

is not in this component. Next, we gather the mean and deviation statistics of all the

skeleton distances. If the component is a character, then the mean and deviation of

the skeleton distance should both be small because of the consistent thickness of the

strikes. Otherwise, it is more likely to be a noisy component.

The above background exclusion criteria are used sequentially and lead to a joint

result that excludes all of the background components and retains as many character

components as possible. For the threshold value used in each detection criteria, we

conservatively select the one that keeps all the positive components and eliminates
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Figure 56: Unnecessary branch cut

as many negative components as possible for all the images.

7.0.4 Image Refinement

The extracted character components need to be further refined to better serve

the future steps of recognition or matching. A series of techniques is designed and

introduced as follows:

1) Inside loop filling: Even though we have excluded the background components

that have large numbers of inner loops, the remaining character components will

inevitably have holes due to the rough quality of the painting. The oil paint or ink

is not thick so small spots will be left unpainted within the strokes of the character.

We apply the filling algorithm that detects the small holes inside the strokes and fill

the holes. This step is essential for the later step of skeleton extraction, because the

small holes inside the stroke may cause unnecessary branches of the skeleton.

2) Skeleton extraction: We use the thinning algorithm [84] to extract the skeleton

structure of the character. We set the number of iterations to infinite so that the

iteration repeats until the image stops changing and results in a single-pixel-width
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skeleton. If we define the degree of a pixel as the number of non-zero pixels from

its 8 neighbors, then we can further define pixels in the components as endpoints if

their degree equals 1, inline points if their degree equals 2, or junction points if their

degree is more than 3.

3) Unnecessary branch cut: For certain printed uppercase English letters, there

are at most 4 endpoints, such as the letters “H” and “K”. On the other hand, the

skeleton extraction results usually have a much larger number of endpoints. The large

number of unnecessary branches is usually caused by the skeleton extraction results

from raw edges of the original character. The branches are defined as the edges linked

by an endpoint and a junction point, so we examine all the branches and compare

their length with the neighboring edges and longest edge. We then cut the branches

shorter than a threshold because they are very likely to be unnecessary branches. A

sample branch cut result of letter “B” is shown in Figure 56.

4) Background stripe elimination: Background stripes (as shown in Figure 57 (a))

have a very similar pattern to the character strokes, so they usually cannot be elimi-

nated during the initial character extraction stages (as shown in Figure 57 (b)). These

background stripes usually come from some solid background structure such as the

edges and frames of the architecture. We choose to use Hough transform because

it is a good detector of straight lines. The Hough transform line detection results

are shown in Figure 57 (c) in green. We then apply algorithms to eliminate the four

detected horizontal lines without breaking the vertical character strokes, as shown

in Figure 57 (d). Specifically, we delete all the pixels connected along the detected

hough lines, then reconnect the components which are originally connected, such as
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Figure 57: Background stripe elimination example

the separated vertical stroke.

7.0.5 Graffiti Retrieval

The key operation that links the character detection process to graffiti retrieval is to

effectively bound each of the individual connected components (candidate characters)

into meaningful strings with a larger bounding box.

The left image in Figure 59 is the bounding box result for each of the individual

connected components. We can see that each character is bounded by a single box;

however, the retrieval result of each character doesn’t help the retrieval of all the graf-

fiti images. Similar to OCR, we are seeking meaningful character sets, or a string of

characters, that can be considered as a proper retrieval unit. We have proposed rules

to combine multiple geographically aggregated components into a larger component,
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such as components close enough to each other in horizontal direction. Specifically,

we merge two individual components together into a larger bounding box if the y

coordinate value of the center of one component falls into the range of the other

component in y direction. Then we repeat this operation until no more components

are added in. The combination results are shown as the right image in Figure 59.

We can see the proposed combining rule results in two strings, which are “vBPLx3”

and ”Snoopy”. The proposed rule does not apply to characters that are written in a

vertical or diagonal direction.

After this step, any traditional OCR techniques, such as handwriting recognition

techniques, can be applied to recognize the characters in the extracted strings. The

characters are recognized based on the individual connected components extracted

as in Figure 59: left. Then the recognition results of each character are organized

together based on the string extracted in Figure 59: right in horizontal order. We are

using the template matching method that matches the character patch with each of

the templates (0-9, A-Z and a-z, created as universal template [113, 106]) and find the

best match. Sample character matching templates can be found in Figure 58. The

matching score, or the semantic-wise retrieval score, between two strings is defined

as the length of the Longest Common Subsequence (LCS),

Ds(s, t) = |LCS(s, t)| (72)

where s and t are two strings. The LCS does not merely count the frequency of

appearance of the character; it also requires the sequence of the appearance of the

corresponding character to be the same. The proposed metric is more reasonable for
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Figure 58: templates for character matching: A-Z and 0-9.

the semantic-level matching of graffiti words. Other types of recognition techniques

can also be applied here; however, these are not the focus of this work.

For image-level matching of the two string components, we count the number of

matches of interest points in the two string patches as the retrieval score. We have

found that this matching metric performs better than having the score normalized

with the total number of interest points detected. For one interest point k in string

patch Si, we will calculate the Euclidean distance of the SIFT descriptor 5 [96] from

k to all the interest points in the other string patch Sj, and find the closest distance

d1 and the second closest distance d2. A match is considered to be found if the ratio

d1/d2 is smaller than a threshold (0.7 in this work). We count the total number of

5SIFT descriptor is known to be scale and rotation invariant, thus a suitable descriptor for local
texture matching. A 128-dimensional feature vector is used in this experiment.
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Figure 59: Semantic string construction with bounding box

matchings between the interest points of two string patches.

Di(s, t) = |Match(s, t)| (73)

There are two major benefits for the proposed interest point matching scheme com-

pared to the traditional interest point matching scheme that is conducted on the

entire image. First, the interest points in the proposed framework are only extracted

from the neighborhood of the character components as discovered in Figure 59. Such

design will dramatically decrease the influence of the interest points from the back-

ground as shown in Figure 60. The matching score for the top image is 113 and

reduced to 71 for the bottom image. We have observed false-positive matches from

the top image in Figure 60, such as matches on date tags from the camera, matches

from background trees, and false matches of the object. Such matches are eliminated

with the proposed framework as shown in the bottom image. Second, the number of

interest points in the bounding box is much smaller than in the entire image; thus,

the number of comparisons and computation time are dramatically reduced.

The matching score R(i, j) between two images therefore can be represented by the



170

Figure 60: Top: Interest point matching on the entire image with matching score
113; Bottom: interest point matching on the string patch (bounding box area) with
matching score 71.

maximum matching score between the string pairs from the two images. Specifically,

R(i, j) = max
s∈Ii,t∈Ij

(αDi(s, t) + (1− α)Ds(s, t)) (74)

where R(i, j) is defined as the maximum matching score of the string pairs from

two images. Di and Ds are normalized image-wise retrieval score and semantic-wise

retrieval score across all the available images in the database. I is the string set for

a specific image. α ∈ [0, 1] is the weight for image-wise retrieval score. α is learned

by maximizing the accumulated matching score across all the correct matches; while

minimizing the accumulated matching score across all the false matches.
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7.1 Experiment and evaluation

The graffiti database used in the paper was provided by the law enforcement com-

munity of the Pacific Northwest. 62% (120/194) of the images in the database have

clear character component detection; 38% (74/194) do not have clear detection of the

character components, which means either the characters are eliminated with the pro-

posed image refining methods or they cannot be distinguished from the background.

Specifically, 4%(8/194) of the images do not have any textual parts, or the textual

area is not visible.

We have built an interactive interface to conduct the retrieval operation as shown

in Figure 62. The user may upload a query image; the system then performs character

detection and shows the binary result in the left column. Next, the user may start

the retrieval operation on the given database and get the top 15 retrieval results on

the main panel. There are currently 194 graffiti images in the database and more

are expected to come. The ground truth is constructed by human labor to find all

the matching pairs or groups. The ground truth includes 14 extracted queries, with

each query image having 1 to 4 matches in the database. The cumulative matching

accuracy [105] curve is used as the evaluation metric with each value in the graph

representing the average accumulated accuracy on a certain rank. The cumulative

matching accuracy on a specific rank is calculated as the number of correctly retrieved

matches on and before this rank divided by the total number of ground truth. There-

fore, this curve is monotonically increasing along the axis of rank. The experiment

results are shown in Figure 63. The proposed bounding box framework achieves an
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average of 88% on cumulative accuracy on rank top 8, while the image-wise frame-

work achieves an average of 75% on cumulative accuracy on rank top 8. These results

show the advantage of the proposed framework on cumulative retrieval accuracy. Both

frameworks achieve similar performance on rank top 1. More results of the proposed

framework can be found in Table 20.

It is easy to understand why matching on bounding box framework outperforms the

matching on the entire image. The query image may share some similar background

patches with an unrelated graffiti image in the database; thus, there could be a

large number of false-positive matches coming from the background to overwhelm

the matching of the actual character area. Similar background patterns can be easily

found in graffiti images. It is therefore essential to extract the meaningful character

components from the background. Figure 61 shows the comparison result between

the two framework on the example image.

On the other hand, the improvement in computation efficiency for the proposed

bounding box framework is also noticeable. Consider the query image in Figure 62.

The number of interest points of the query image and top 1 retrieval result are 1425

and 2425 respectively; after bounding box extraction, the number of interest points in

the best matched bounding boxes are 75 and 87 respectively. As a result, the number

of actual key comparisons is reduced to less than 1/400 of the original scale under the

new framework. Such improvement is significant in large-scale image retrieval tasks.

The semantic retrieval score contributes less than the image retrieval score. This

is because of the inherent difficulty of the semantic-level understanding of the graffiti

characters. The character recognition results for the two strings in the example image
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Figure 61: Top 6 retrieval results under two frameworks for the query image in
Figure 53: Top row (a) is derived with the bounding box framework; bottom row (b)
is derived with the image-based framework. The correct matches are circled with red
boxes and corresponding matching score is indicated below each image.

Figure 62: Interactive system screen shot. Top: upload menu; Left: query image
processing result; Main: top 15 retrieval results
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Figure 63: Comparison between cumulative accuracy curve (CAC) with bounding
box framework and CAC without bounding box framework.

are “vKPLX?” and “VXVJAR” . The maximum semantic retrieval score is 3 in this

case (between “vKPLX?” and “?PLx3” from the top 1 retrieval result). The symbol

“?” indicates a failed detection; in other words, there is not enough confidence to

assign any value. This value is not as convincing as the image-wise retrieval score

based on the current result. Correspondingly, the image-retrieval score will dominate

the final matching function of Equation 74 For example, we got a semantic-level score

of 3 and image-level score of 36 for the top 1 score in Figure 62. The improvement

achieved by integrating the semantic-wise retrieval score can be found in Figure 64.

Strengths and weaknesses: The proposed system achieves better retrieval perfor-

mance compared to solely applying either image-base retrieval or OCR-related re-

trieval. The bounding box framework not only improves the accuracy of the local

feature matching but also reduces the computation burden by eliminating unneces-

sary interest points. Reducing the number of false matches by applying geometric

constraints is another well known technique to improve matching and retrieval results.
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Figure 64: Comparison between cumulative accuracy curve with semantic retrieval
score and cumulative accuracy curve without semantic retrieval score

However, based on current scale of database, we didn’t observed prominent improve-

ment by applying the geometric constraints. The semantic-level understanding of

graffiti images, on the other hand, is not equally satisfactory, as shown in Figure 64.

It requires us to bring in better semantic understanding techniques without sacrific-

ing the computation efficiency. This weakness suggests a path for future work on the

graffiti retrieval task as described in the next section.
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query 1 76 35 33 27

character extraction 26 26 26 26

query 2 76 73 48 46

character extraction 44 42 42 38

Table 20: Two query examples under the proposed framework: The left 2 images
in each case are the query image and character detection result; the other 8 images
are the top 8 retrieval results, listed in decreasing order with regard to the matching
score. The correct matches are bounded with red boxes.



CHAPTER 8: CONCLUSION

In this thesis, we have developed novel frameworks and algorithms for the research

tasks of junk image filtering, near duplicate detection, concept network generation and

organization, image collection summarization and graffiti image retrieval. The listed

components sequentially built up an interactive large-scale image collection system,

which enables efficient exploration, recommendation and information retrieval tasks.

Firstly, for junk image filtering, a novel bilingual inter-cluster correlation analy-

sis algorithm is developed for integrating bilingual image search results for automatic

junk image filtering. To achieve more accurate partition of the returned images, multi-

ple kernels are seamlessly integrated for diverse image similarity characterization and

a K-way min-max cut algorithm is developed for achieving more precise image clus-

tering. To filter out the junk images, the returned images for the same keyword-based

query (which are obtained from two different keyword-based image search engines)

are integrated and inter-cluster visual correlation analysis is further performed to au-

tomatically identify the clusters for the relevant images and the cluster for the junk

images. Experiments on diverse keyword-based queries (5000 bilingual queries in our

current experiments) from bilingual image search engines (Google Images in English

and Baidu Images in Chinese) have obtained very promising results.

Secondly, we proposed a cascading coarse-to-fine model for near duplicate detec-
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tion on large scale data set. We applied clustering method to roughly partition the

data set based on global features (color histogram); then conducted pair-wise image

comparison within the clusters with more complex local features (SIFT and CPAM

BoW model) for the accurate detection. For the proposed model, experiment results

have shown the correctness of the design, as well as the efficiency of the computation.

Thirdly, we benchmarked multiple approaches for feature extraction and image sim-

ilarity characterization for the first step, which are very important for image/video

retrieval community. We obtained multiple impressive results:(a) simple image seg-

mentation via partition-based partition may significantly enhance the discrimination

power of visual features; (b) different visual features may play different roles for differ-

ent image classification tasks and thus integrating feature subset selection with image

classifier training may significantly improve the performance of the image classifiers;

(c) combining multiple feature subsets and their kernels may improve the discrimi-

nation power of the image classifiers as well. With partition-based feature extraction

framework and multi-kernel similarity characterization, we generate the concept net-

work based on their inter-concept visual correlations. Specifically, multiple kernels

and kernel canonical correlation analysis are combined to characterize the diverse

inter-concept visual similarity relationships in a high-dimensional multi-modal fea-

ture space. MDS projection and Fisheye visualization technique are used to build the

interactive user interface for concept network exploration. Our experimental results

on large-scale image collections have observed very good results in terms of charac-

terizing inter-concept correlations. For the next step, we will evaluate the advantage

of the proposed concept network on multi-task multi-label image classification tasks.
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Fourthly, due to the fact that most existing algorithms for image summarization

lack either explicit formulation or quantitative evaluation metric, we determine to

design novel framework for image collection summarization task. We had discovered

that there is an intrinsic coherence between the problem of image collection sum-

marization and the issue of dictionary learning for sparse representation, which both

focus on selecting a small set of the most representative images to sparsely reinter-

pret the original image set in large size. We have explicitly reformulated the problem

of automatic image summarization by using an sparse representation model and the

simulated annealing algorithm is adopted to solve the optimization function more

effectively. The reconstruction ability in terms of the MSE are used to objectively

evaluate various algorithms for automatic image summarization. Our proposed al-

gorithm outperformed 6 baseline algorithms both objectively and subjectively on 3

different image sets. As can be seen, the computation speed bottleneck of the system

lies on addressing the optimization function. Due to the complexity of the proposed

model, the current simulated annealing is far from producing reliable real-time solu-

tions. For the next step, we will seek for better optimizers in terms of both reliability

and computation speed.

Lastly, we have developed an efficient graffiti image retrieval system that uses

the character detection results and integrates both image-level understanding and

semantic-level understanding of the graffiti characters. The experiment result has

shown the bounding box framework is both efficient and effective in the graffiti re-

trieval task, especially when compared with the traditional image retrieval framework.

Our proposed system makes 4 primary contributions: a) Effective character extraction
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and noise elimination techniques to detect the character components in graffiti images;

b) semantic-level bounding of meaningful character strings to facilitate semantic-level

retrieval of graffiti images; c) fusing image-wise and semantic-wise scores for integral

retrieval results; d) an interactive interface for graffiti exploration and retrieval.

The proposed system potentially can be used on, for example, mobile platforms

that take photos as inputs and retrieve related information by connecting to a remote

database. It could also be used for off-line tasks like large-scale graffiti image orga-

nization or classification. Future work includes developing a more efficient retrieval

schema in order to extend the database to a much larger scale. We also want to apply

more robust techniques to improve the semantic-level retrieval performance.
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Combining visual features and text data for medical image retrieval using latent
semantic kernels. In Multimedia Information Retrieval (2010), pp. 359–366.

[14] Camargo, J., and Gonzalez, F. Multimodal image collection summariza-
tion using non-negative matrix factorization. In Computing Congress (CCC),
2011 6th Colombian (2011), IEEE, pp. 1–6.

[15] Chen, J., Bouman, C., and Dalton, J. Hierarchical browsing and search
of large image databases. Image Processing, IEEE Transactions on 9, 3 (2000),
442–455.

[16] Chen, Y., Wang, J., and Krovetz, R. Clue: Cluster-based retrieval of
images by unsupervised learning. Image Processing, IEEE Transactions on 14,
8 (2005), 1187–1201.

[17] Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y. Nus-
wide: A real-world web image database from national university of singapore. In
Proceedings of the ACM International Conference on Image and Video Retrieval
(2009), ACM, p. 48.

[18] Chum, O., Philbin, J., and Zisserman, A. Near duplicate image detection:
min-hash and tf-idf weighting. In Proceedings of the British Machine Vision
Conference (2008), vol. 3, p. 4.

[19] Cilibrasi, R., and Vitanyi, P. The google similarity distance. Knowledge
and Data Engineering, IEEE Transactions on 19, 3 (2007), 370–383.

[20] Clocksin, W. Handwritten syriac character recognition using order structure
invariance. In Proceedings on Pattern Recognition (Aug 2004), pp. 562 – 565
vol 2.

[21] Clough, P., Joho, H., and Sanderson, M. Automatically organising
images using concept hierarchies. In proceedings of the Multimedia Workshop
running at ACM SIGIR conference (2005).

[22] Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B.,
Wang, T., Wu, D., and Ng, A. Text detection and character recogni-
tion in scene images with unsupervised feature learning. In Document Analysis
and Recognition (ICDAR), 2011 International Conference on (2011), IEEE,
pp. 440–445.



183

[23] Cong, Y., Yuan, J., and Luo, J. Towards scalable summarization of con-
sumer videos ia sparse dictionary selection. Multimedia, IEEE Transactions on,
99 (2012), 1–1.

[24] Cox, T., and Cox, M. Multidimensional scaling, vol. 1. CRC Press, 2001.

[25] Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C.
Visual categorization with bags of keypoints. InWorkshop on statistical learning
in computer vision, ECCV (2004), vol. 1, p. 22.

[26] Deng, D. Content-based image collection summarization and comparison using
self-organizing maps. Pattern recognition 40, 2 (2007), 718–727.

[27] Denton, T., Demirci, M., Abrahamson, J., Shokoufandeh, A., and
Dickinson, S. Selecting canonical views for view-based 3-d object recognition.
ICPR (2004).

[28] Ding, C., He, X., Zha, H., Gu, M., and Simon, H. A min-max cut algo-
rithm for graph partitioning and data clustering. In Data Mining, 2001. ICDM
2001, Proceedings IEEE International Conference on (2001), IEEE, pp. 107–
114.

[29] Dollár, P., Rabaud, V., Cottrell, G., and Belongie, S. Behavior
recognition via sparse spatio-temporal features. In Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, 2005. 2nd Joint IEEE
International Workshop on (2005), IEEE, pp. 65–72.

[30] Donoho, D. L., and Elad, M. Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. In Proc. Natl Acad. Sci. USA
100 2197-202 (2003).

[31] Duda, R., and Hart, P. Pattern classification and scene analysis. Wiley,
1996.

[32] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least angle
regression. The Annals of statistics 32, 2 (2004), 407–499.

[33] Engan, K., Aase, S., and Hakon Husoy, J. Method of optimal directions
for frame design. In Acoustics, Speech, and Signal Processing, 1999. ICASSP’99.
Proceedings., 1999 IEEE International Conference on (1999), vol. 5, IEEE,
pp. 2443–2446.

[34] Engan, K., Aase, S., and Husoy, J. Frame based signal compression using
method of optimal directions (mod). In Circuits and Systems, 1999. ISCAS’99.
Proceedings of the 1999 IEEE International Symposium on (1999), vol. 4, IEEE,
pp. 1–4.



184

[35] Fan, J., Gao, Y., and Luo, H. Multi-level annotation of natural scenes
using dominant image components and semantic concepts. In Proceedings of
the 12th annual ACM international conference on Multimedia (New York, NY,
USA, 2004), MULTIMEDIA ’04, ACM, pp. 540–547.

[36] Fan, J., Gao, Y., and Luo, H. Integrating concept ontology and multi-
task learning to achieve more effective classifier training for multilevel image
annotation. Image Processing, IEEE Transactions on 17, 3 (2008), 407–426.

[37] Fan, J., Gao, Y., and Luo, H. Integrating concept ontology and multi-
task learning to achieve more effective classifier training for multilevel image
annotation. Image Processing, IEEE Transactions on 17, 3 (2008), 407–426.

[38] Fan, J., Keim, D., Gao, Y., Luo, H., and Li, Z. Justclick: Personalized
image recommendation via exploratory search from large-scale flickr images.
Circuits and Systems for Video Technology, IEEE Transactions on 19, 2 (2009),
273–288.

[39] Fan, J., Yang, C., Shen, Y., Babaguchi, N., and Luo, H. Leveraging
large-scale weakly-tagged images to train inter-related classifiers for multi-label
annotation. In Proceedings of the First ACM workshop on Large-scale multime-
dia retrieval and mining (2009), ACM, pp. 27–34.

[40] Fei-Fei, L., and Perona, P. A bayesian hierarchical model for learning natu-
ral scene categories. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on (2005), vol. 2, Ieee, pp. 524–531.

[41] Feng, S., Manmatha, R., and Lavrenko, V. Multiple bernoulli rele-
vance models for image and video annotation. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Soci-
ety Conference on (2004), vol. 2, IEEE, pp. II–1002.

[42] Fergus, R., Fei-Fei, L., Perona, P., and Zisserman, A. Learning object
categories from google’s image search. In Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on (2005), vol. 2, IEEE, pp. 1816–1823.

[43] Fergus, R., Perona, P., and Zisserman, A. A visual category filter for
google images. Computer Vision-ECCV 2004 (2004), 242–256.

[44] Fischler, M., and Bolles, R. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24, 6 (1981), 381–395.

[45] Foo, J., and Sinha, R. Pruning sift for scalable near-duplicate image
matching. In Proceedings of the eighteenth conference on Australasian database-
Volume 63 (2007), Australian Computer Society, Inc., pp. 63–71.

[46] Furnas, G. Generalized fisheye views, vol. 17. ACM, 1986.



185

[47] Gao, B., Liu, T., Qin, T., Zheng, X., Cheng, Q., and Ma, W. Web im-
age clustering by consistent utilization of visual features and surrounding texts.
In Proceedings of the 13th annual ACM international conference on Multimedia
(2005), ACM, pp. 112–121.

[48] Gao, Y., Fan, J., Luo, H., and Satoh, S. A novel approach for filter-
ing junk images from google search results. Advances in Multimedia Modeling
(2008), 1–12.

[49] Gersho, A., and Gray, R. Vector quantization and signal compression,
vol. 159. Springer, 1992.

[50] Ghamrawi, N., and McCallum, A. Collective multi-label classification.
In Proceedings of the 14th ACM international conference on Information and
knowledge management (2005), ACM, pp. 195–200.

[51] Goemans, M., and Williamson, D. . 879-approximation algorithms for max
cut and max 2sat. In Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing (1994), ACM, pp. 422–431.

[52] Goldberger, J., and Tassa, T. The hungarian clustering method.

[53] Graham, A., Garcia-Molina, H., Paepcke, A., and Winograd, T.
Time as essence for photo browsing through personal digital libraries. In Pro-
ceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries (2002),
ACM, pp. 326–335.

[54] Grauman, K., and Darrell, T. The pyramid match kernel: Discriminative
classification with sets of image features. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on (2005), vol. 2, Ieee, pp. 1458–
1465.

[55] Griffin, G., Holub, A., and Perona, P. Caltech-256 object category
dataset.

[56] Gunther, N., and Beretta, G. A benchmark for image retrieval using dis-
tributed systems over the internet: Birds-i. Arxiv preprint cs/0012021 (2000).

[57] Guttman, A. R-trees: a dynamic index structure for spatial searching, vol. 14.
ACM, 1984.

[58] Hardoon, D., Szedmak, S., and Shawe-Taylor, J. Canonical correlation
analysis: An overview with application to learning methods. Neural Computa-
tion 16, 12 (2004), 2639–2664.

[59] Hauptmann, A., Yan, R., Lin, W., Christel, M., and Wactlar, H.
Can high-level concepts fill the semantic gap in video retrieval? a case study
with broadcast news. Multimedia, IEEE Transactions on 9, 5 (2007), 958–966.



186

[60] He, X., King, O., Ma, W., Li, M., and Zhang, H. Learning a semantic
space from user’s relevance feedback for image retrieval. Circuits and Systems
for Video Technology, IEEE Transactions on 13, 1 (2003), 39–48.

[61] He, X., Ma, W., and Zhang, H. Imagerank: spectral techniques for struc-
tural analysis of image database. In Multimedia and Expo, 2003. ICME’03.
Proceedings. 2003 International Conference on (2003), vol. 1, Ieee, pp. I–25.

[62] Hoyer, P. Non-negatie sprase coding. In Neural Networks for Signal Pro-
cessing, 2002. Proceedings of the 2002 12th IEEE Workshop on (2002), IEEE,
pp. 557–565.

[63] http://www.flickr.com.

[64] http://www.picasa.com.

[65] Huang, J., Kumar, S., and Zabih, R. An automatic hierarchical image
classification scheme. In Proceedings of the sixth ACM international conference
on Multimedia (1998), ACM, pp. 219–228.

[66] Indyk, P. Stable distributions, pseudorandom generators, embeddings and
data stream computation. In Foundations of Computer Science, 2000. Proceed-
ings. 41st Annual Symposium on (2000), IEEE, pp. 189–197.

[67] Indyk, P., and Motwani, R. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing (1998), ACM, pp. 604–613.

[68] Jaffe, A., Naaman, M., Tassa, T., and Davis, M. Generating sum-
maries and visualization for large collections of geo-referenced photographs. In
Proceedings of the 8th ACM international workshop on Multimedia information
retrieval (2006), ACM, pp. 89–98.

[69] Jaimes, A., Chang, S., and Loui, A. Detection of non-identical duplicate
consumer photographs. In Information, Communications and Signal Process-
ing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings
of the 2003 Joint Conference of the Fourth International Conference on (2003),
vol. 1, Ieee, pp. 16–20.

[70] Jain, A. K., eun Lee, J., and Jin, R. Graffiti-id: Matching and retrieval
of graffiti images. Proceeding on MiFor (2009).

[71] Jain, P., Kulis, B., and Grauman, K. Fast image search for learned
metrics. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on (2008), Ieee, pp. 1–8.

[72] Jiang, J., and Conrath, D. Semantic similarity based on corpus statistics
and lexical taxonomy. Arxiv preprint cmp-lg/9709008 (1997).



187

[73] Jiang, Y., Ngo, C., and Yang, J. Towards optimal bag-of-features for ob-
ject categorization and semantic video retrieval. In Proceedings of the 6th ACM
international conference on Image and video retrieval (2007), ACM, pp. 494–
501.

[74] Jing, Y., and Baluja, S. Pagerank for product image search. In Proceeding
of the 17th international conference on World Wide Web (2008), ACM, pp. 307–
316.

[75] Jing, Y., Baluja, S., and Rowley, H. Canonical image selection from the
web. In Proceedings of the 6th ACM international Conference on Image and
Video Retrieval (2007), ACM, pp. 280–287.

[76] Jing, Y., Wang, H., and Covell, D. Google image swirl.

[77] Johnson, D., and Garey, M. Computers and intractability: A guide to the
theory of np-completeness. Freeman&Co, San Francisco (1979).

[78] Kankanhalli, M., and Rui, Y. Application potential of multimedia infor-
mation retrieval. Proceedings of the IEEE 96, 4 (april 2008), 712 –720.

[79] Ke, Y., Sukthankar, R., and Huston, L. Efficient near-duplicate detec-
tion and sub-image retrieval. In ACM Multimedia (2004), vol. 4, p. 5.

[80] Kim, S., Park, S., and Kim, M. Central object extraction for object-based
image retrieval. CIVR’03, Springer-Verlag, pp. 39–49.

[81] Krause, A., and Cevher, V. Submodular dictionary selection for sparse
representation. In Proc. ICML (2010).

[82] Kruskal, J. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.

[83] Kuhn, H. The hungarian method for the assignment problem. Naval research
logistics quarterly 2, 1-2 (1955), 83–97.

[84] Lam, L., Lee, S.-W., and Suen, C. Thinning methodologies-a comprehen-
sive survey. IEEE Transactions on PAMI 14, 9 (sep 1992), 869 –885.

[85] Lamping, J., and Rao, R. The hyperbolic browser: A focus+ context tech-
nique for visualizing large hierarchies. Card, Stuart K., Mackinley, Jock D.,
Shneiderman: Readings in Information Visualisation Using Vision to Think
(1999), 381–408.

[86] Lamping, J., Rao, R., and Pirolli, P. A focus+ context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proceedings of
the SIGCHI conference on Human factors in computing systems (1995), ACM
Press/Addison-Wesley Publishing Co., pp. 401–408.



188

[87] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on (2006),
vol. 2, Ieee, pp. 2169–2178.

[88] Li, J., and Wang, J. Automatic linguistic indexing of pictures by a sta-
tistical modeling approach. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 25, 9 (2003), 1075–1088.

[89] Li, L., and Fei-Fei, L. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on (2007), IEEE, pp. 1–8.

[90] Li, Y., Shapiro, L., and Bilmes, J. A generative/discriminative learning
algorithm for image classification. In Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on (2005), vol. 2, IEEE, pp. 1605–1612.

[91] Ling, H., and Soatto, S. Proximity distribution kernels for geometric con-
text in category recognition. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on (2007), IEEE, pp. 1–8.

[92] Lipson, P., Grimson, E., and Sinha, P. Configuration based scene clas-
sification and image indexing. In Computer Vision and Pattern Recognition,
1997. Proceedings., 1997 IEEE Computer Society Conference on (1997), IEEE,
pp. 1007–1013.

[93] Liu, Y., Zhang, D., Lu, G., and Ma, W. A survey of content-based image
retrieval with high-level semantics. Pattern Recognition 40, 1 (2007), 262–282.

[94] Loeff, N., Alm, C., and Forsyth, D. Discriminating image senses by clus-
tering with multimodal features. In Proceedings of the COLING/ACL on Main
conference poster sessions (2006), Association for Computational Linguistics,
pp. 547–554.

[95] Lowe, D. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60, 2 (2004), 91–110.

[96] Lowe, D. G. Distinctive image features from scale-invariant keypoints. IJCV,
60, pp. 91-110 (2003).

[97] Luo, J., Savakis, A., and Singhal, A. A bayesian network-based frame-
work for semantic image understanding. Pattern Recognition 38, 6 (2005), 919–
934.

[98] Ma, W., and Manjunath, B. Texture features and learning similarity. In
Computer Vision and Pattern Recognition, 1996. Proceedings CVPR’96, 1996
IEEE Computer Society Conference on (1996), IEEE, pp. 425–430.



189

[99] MacCuish, J., McPherson, A., Barros, J., and Kelly, P. Interactive
layout mechanisms for image database retrieval. In Proceedings of SPIE (1996),
vol. 2656, p. 104.

[100] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary
learning for sparse coding. In Proceedings of the 26th Annual International
Conference on Machine Learning (2009), ACM, pp. 689–696.

[101] Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A.
Discriminative learned dictionaries for local image analysis. In Computer Vi-
sion and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on (2008),
IEEE, pp. 1–8.

[102] Mallat, S., and Zhang, Z. Matching pursuits with time-frequency dictio-
naries. Signal Processing, IEEE Transactions on 41, 12 (1993), 3397–3415.

[103] Mehta, B., Nangia, S., Gupta, M., and Nejdl, W. Detecting image
spam using visual features and near duplicate detection. In Proceedings of the
17th international conference on World Wide Web (2008), ACM, pp. 497–506.

[104] Meng, Y., Chang, E., and Li, B. Enhancing dpf for near-replica image
recognition. In Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on (2003), vol. 2, IEEE, pp. II–416.

[105] Moon, H., and Phillips, P. Computational and performance aspects of
pca-based face recognition algorithms. Perception, Vol 30 (2001), 302–321.

[106] Nadira, M., Nik Kamariah, N. I., Jasni, M. Z., and Siti Azami, A. B.
Optical character recognition by using template matching (alphabet). In Na-
tional Conference on Software Engineering and Computer Systems (2007).

[107] Naphade, M., Smith, J., Tesic, J., Chang, S., Hsu, W., Kennedy, L.,
Hauptmann, A., and Curtis, J. Large-scale concept ontology for multime-
dia. Multimedia, IEEE 13, 3 (2006), 86–91.

[108] Naphide, H., and Huang, T. A probabilistic framework for semantic video
indexing, filtering, and retrieval. Multimedia, IEEE Transactions on 3, 1 (2001),
141–151.

[109] Nhung, N., and Phuong, T. An efficient method for filtering image-based
spam. In Research, Innovation and Vision for the Future, 2007 IEEE Interna-
tional Conference on (2007), IEEE, pp. 96–102.

[110] Nister, D., and Stewenius, H. Scalable recognition with a vocabulary tree.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on (2006), vol. 2, Ieee, pp. 2161–2168.



190

[111] Oliva, A., and Torralba, A. Modeling the shape of the scene: A holis-
tic representation of the spatial envelope. International Journal of Computer
Vision 42, 3 (2001), 145–175.

[112] Oliva, A., and Torralba, A. Building the gist of a scene: The role of global
image features in recognition. Progress in brain research 155 (2006), 23–36.

[113] Pandey, A., Sawant, S., Eric, D., and Schwartz, M. Handwritten
character recognition using template matching, 2010.

[114] Pei, G., Gerla, M., and Chen, T. Fisheye state routing: A routing scheme
for ad hoc wireless networks. In Communications, 2000. ICC 2000. 2000 IEEE
International Conference on (2000), vol. 1, Ieee, pp. 70–74.

[115] Pervouchine, V., and Leedham, G. Document examiner feature extrac-
tion: Thinned vs. skeletonised handwriting images. In TENCON IEEE Region
10 (Nov 2005), pp. 1–6.

[116] Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. Object
retrieval with large vocabularies and fast spatial matching. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on (2007), Ieee,
pp. 1–8.

[117] Qiu, G. Image coding using a coloured pattern appearance model. In Visual
Communication and Image Processing (2001).

[118] Quelhas, P., Monay, F., Odobez, J., Gatica-Perez, D., Tuytelaars,
T., and Van Gool, L. Modeling scenes with local descriptors and latent
aspects. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on (2005), vol. 1, Ieee, pp. 883–890.

[119] Rege, M., Dong, M., and Hua, J. Graph theoretical framework for si-
multaneously integrating visual and textual features for efficient web image
clustering. In Proceeding of the 17th international conference on World Wide
Web (2008), ACM, pp. 317–326.

[120] Renninger, L., and Malik, J. When is scene identification just texture
recognition? Vision research 44, 19 (2004), 2301–2311.

[121] Rubner, Y., Guibas, L., and Tomasi, C. The earth movers distance,
multi-dimensional scaling, and color-based image retrieval. In Proceedings of
the ARPA Image Understanding Workshop (1997), pp. 661–668.

[122] Rui, Y., Huang, T., and Chang, S. Image retrieval: Current techniques,
promising directions, and open issues. Journal of visual communication and
image representation 10, 1 (1999), 39–62.



191

[123] Rui, Y., Huang, T., Ortega, M., and Mehrotra, S. Relevance feedback:
A power tool for interactive content-based image retrieval. Circuits and Systems
for Video Technology, IEEE Transactions on 8, 5 (1998), 644–655.

[124] Russell, B., Torralba, A., Murphy, K., and Freeman, W. Labelme:
a database and web-based tool for image annotation. International journal of
computer vision 77, 1 (2008), 157–173.

[125] Sapiro, G., and Castrodad, A. Sparse modeling of human actions from
motion imagery, 2011.

[126] Schmitz, P. Inducing ontology from flickr tags. In Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland (2006), pp. 210–214.

[127] Sebe, N., Lew, M., and Huijsmans, D. Multi-scale sub-image search. In
Proceedings of the seventh ACM international conference on Multimedia (Part
2) (1999), ACM, pp. 79–82.

[128] Sethi, I., Coman, I., Day, B., Jiang, F., Li, D., Segovia-Juarez, J.,
Wei, G., and You, B. Color-wise: A system for image similarity retrieval
using color. In Proceedings of SPIE (1997), vol. 3312, p. 140.

[129] Seung, D., and Lee, L. Algorithms for non-negative matrix factorization.
Advances in neural information processing systems 13 (2001), 556–562.

[130] Shen, Y., and Fan, J. Leveraging loosely-tagged images and inter-object cor-
relations for tag recommendation. In Proceedings of the international conference
on Multimedia (2010), ACM, pp. 5–14.

[131] Shi, J., and Malik, J. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22, 8 (2000), 888–
905.

[132] Shroff, N., Turaga, P., and Chellappa, R. Video précis: Highlighting
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