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ABSTRACT 
 
 

ANIKET. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue 
integration (Under the direction of DR. AHMED EL-GHANNAM) 

 
 

Tissue integration between bone and orthopedic implant is essential for implant 

fixation and longevity. An immunological response leads to fibrous encapsulation of 

metallic implants leading to implant instability and failure. Bioactive ceramics have the 

ability to directly bond to bone; however, they have limited mechanical strength for load 

bearing applications. Coating bioactive ceramics on metallic implant offers the exciting 

opportunity to enhance bone formation without compromising the mechanical strength of 

the implant. In the present study, we have developed a novel bioactive silica-calcium 

phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic 

implant using Electrophoretic Deposition (EPD) and evaluated bone tissue response to 

the coated implant at a cellular level.  

The effect of SCPC composition and suspending medium pH on the zeta potential 

of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed.  

The average zeta potential of SCPC50 in pure ethanol was more negative than that of 

SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V 

discs were passivated, coated with SCPC50 (200 nm - 10 μm) and thermally treated at 

600 - 800 ºC to produce a coating thickness in the range of 43.1 ± 5.7 to 30.1 ± 4.6 μm. 

After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V 

interface was 42.6 ± 3.6, 44.7 ± 8.7 and 47.2 ± 4.3 MPa, respectively. XRD analyses of 

SCPC50 before and after EPD coating indicated no change in the crystallinity of the 

material. Fracture surface analyses showed that failure occurred within the ceramic layer 



iv 

or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all 

samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 

2 days (11.7 ± 3.9 MPa) was higher than that measured on commercially available 

hydroxyapatite (HA) coated substrates (5.5 ± 2.7 MPa), although the difference was not 

statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-

immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. 

Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 

0.05) alkaline phosphatase activity (82.4 ± 25.6 nmoles p-NP/mg protein/min) than that 

expressed by cells attached to HA-coated or uncoated implants.  Protein adsorption 

analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) 

serum protein (14.9 ± 1.2 µg) than control uncoated substrates (8.9 ± 0.7 µg). Moreover, 

Western blot analysis showed that the SCPC50 coating has a high affinity for serum 

fibronectin.  Protein conformation analyses by FTIR showed that the ratio of the area 

under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the 

surface of SCPC50-coated substrate (5.0 ± 0.6) than that on the surface of the control 

uncoated substrates (2.2 ± 0.3). Moreover, ICP-OES analyses indicated that SCPC50-

coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue 

culture medium, respectively. In conjunction with the favorable protein adsorption and 

modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to 

SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin 

and had significantly higher production of osteopontin and osteocalcin proteins than cells 

attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to 

the SCPC50-coated substrates produced significantly lower levels of the inflammatory 
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and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to 

uncoated Ti-6A1-4V. Surface topography analyses using AFM suggested that the 

SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the 

grooves on the substrate created during substrate preparation. An increase in the surface 

roughness of the SCPC50-coated substrate from 217.8 ± 54.6 nm to 284.3 ± 37.3 nm was 

accompanied by enhanced material dissolution, reduced cell proliferation and poor actin 

cytoskeleton organization, which are characteristics typical of differentiating bone cells 

on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 

can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell 

response suggests that SCPC50-coating has the potential to enhance bone integration 

with orthopedic and maxillofacial implants while minimizing the induction of 

inflammatory bone cell responses. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1. Background 

Osteoarthritis is a chronic condition of the synovial joint which manifests as joint 

pain and is characterized by tenderness, limitation of movement and inflammation of the 

joint.1 Such a condition develops over many years due to the thinning and loss of the 

cartilage covering of the bone resulting in reduced joint spaces and direct bone-to-bone 

contact. Although osteoarthritis of the knee continues to be the leading cause of joint 

pain, osteoarthritis of the hip joint is an equally serious concern. The continuous use of 

the hip throughout our life causes wear-and-tear of the joint. The body reacts to the 

changes in the joint structure by forming large bone spurs, effusing tissue fluids and 

forming hard underlying bony surfaces and cysts around the joint.2 All of these responses 

gradually compromise the functionality of the hip and causes acute pain that restricts 

daily movements. The common line of treatment is the surgical intervention for total joint 

replacement via total hip arthroplasty (THA) wherein the articulating surfaces of the 

femoral head and the acetabulum of the hip are replaced by a prosthetic implant. The 

technique involves the surgical excision of the head and proximal neck of the femur 

along with removal of the acetabular cartilage and subchondral bone.3 An artificial cavity 

is created in the proximal medullary region of the femur in which the hip prosthesis 

consisting of a metallic femoral shaft and a hemispherical femoral head is partially 

inserted. The most widely used metals are Ti-6Al-4V and Co-Cr alloys. The acetabulum 
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(socket) is debrided and reamed to remove the arthritic tissue and accommodate the 

femoral ball.3 The bearing surface between the femoral ball and the acetabulum can be 

lined with either metal (metal-on-metal), ceramic (metal-on-ceramic) or ultra-high 

molecular weight polyethylene (metal-on-plastic). Recent data from the National Hospital 

Discharge Survey shows that there were 230,000 cases of primary THA surgeries in the 

US in 2007. It was found that 39.5% of all patients were in the age group of 45-64 and 

54.3% were older than 65.4 The average cost of THA was estimated to be in excess of $ 

35,000, depending upon the procedure, hospital and location.5 Moreover, it was estimated 

that the total number of patients undergoing THA would increase to about 600,000 by 

2015, and the annual hospital charges would increase to about $ 17.7 billion by 2015.6 

1.1.1 Failure of THA 

Despite advances in surgical techniques and implant design, failure of the primary 

THA remains a concern. It is estimated that almost 20% of the patients require a revision 

surgery due to the failure of the primary implant.7 The demand for revision hip 

arthroplasty is expected to grow by 137% between 2005 and 2030. The failure of total 

joint replacement is mainly caused due to the mismatch of the physico-chemical 

properties between bone and the synthetic implant material. Loosening of the implant 

may arise due to micro-motion resulting from either insufficient press-fit at the time of 

surgery, excessive cyclic loading during daily activities or bone resorption around the 

implant.8 The micro-motion at the bone-implant interface impedes tissue integration with 

the device and ultimately leads to poor fixation and implant failure.9 Another factor that 

contributes to the poor implant fixation is the fibrous capsule that forms at the 

implant/bone interface. The formation of the fibrous capsule constitutes a chronic 
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immunological response against the synthetic material manifesting as non-mineralized 

encapsulation of the implant. Micro-motion at the bone/implant interface irritates the 

immune system and results in sustained presence or over-development of the fibrous 

capsule.10 If such a condition persists, surgical removal of the implant needs to be carried 

out. Recent data indicates that 71% of the revision surgery cases have been attributed to 

poor bone-implant integration.5 Of these, 22.5% cases were due to implant dislocation 

and 19.7% cases were due to the mechanical loosening of the implant. The other 29% of 

the cases were attributed to infection/inflammation at the site of implant (14.8%), peri-

prosthetic fracture (6.2%) or peri-prosthetic osteolysis (6.6%). The average total cost of 

revision surgery was estimated between $ 45,000 to $ 69,000 depending upon the 

procedure, hospital and location.5,11 These figures impress upon the need to design hip 

implant materials and surgical techniques in a way that is more cost-effective, patient-

friendly and provides a permanent and strong fixation of the implant within the bone. 

Recent attempts have focused on surface engineering of the implant that can promote 

osteo-integration with the device and improve the performance and biocompatibility of 

the synthetic material.  

1.1.2 Stress shielding problem  

 Even in the absence of implant micro-motion or fibrous encapsulation, the 

mismatch in the mechanical properties between bone and implant can weaken the peri-

prosthetic bone and lead to implant failure. Although the high mechanical strength of 

metals is beneficial for load-bearing applications, the high stiffness of the metal is 

counter-productive. Due to its greater modulus of elasticity, the metal component bears a 

greater proportion of the body weight as compared to the surrounding bone.12 
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Consequently, the metal shields the bone from loading, a phenomenon known as stress 

shielding. The stress shielding hinders proper transfer of mechanical stimulus from the 

implant to the bone and interferes with normal bone development and remodeling. Cells 

in the bone matrix called osteocytes sense the mechanical strain and modulate the 

formation or resorption of the bone tissue depending upon the intensity and distribution 

of the mechanical signal.13  However, in stress shielded bone, osteocytes tend to promote 

bone resorption which depreciates the mechanical strength of the bone and makes it 

prone to fracture.  

1.2 Metals for total joint replacement 

 Implants that are designed for fixation and stabilization of load-bearing conditions 

are generally made of metals such as Ti-6Al-4V and Co-Cr alloys that offer high 

mechanical strength and are generally bio-inert. Table 1.1 shows the mechanical 

properties of Ti-6Al-4V and Co-Cr alloys as compared to the adult human cortical bone. 

Ti-6Al-4V is an α+β alloy, which has 6 wt% Al stabilizing the α-phase and 4 wt% V 

stabilizing the β-phase. At room temperature, the alloy is composed predominantly of the 

α-phase as hexagonal closed packed (HCP) lattice with minor amount of β-phase as body 

centered cubic (BCP) lattice. The high fracture toughness, low strength-to-weight ratio, 

superior corrosion resistance and excellent biocompatibility of Ti-6Al-4V makes it one of 

the best alloys for artificial joint replacement.14 Ti is highly reactive and combines 

rapidly with oxygen to form a protective passive layer of TiO2 which resists 

corrosion.14,15 Co-Cr alloys have higher hardness and abrasion resistance than Ti-6Al-4V 

and are widely used in plastic-on-metal type of articulating surface. However, since Co is 

not as reactive as Ti, the formation of passive oxide layer is limited, thus allowing for the 
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release of Co and Cr ions.16 Data in the literature suggests that the toxicity of Co and Cr 

ions is 5 times higher than that of Ti or Al ions.17 Allen et al studied osteoblast response 

to Co, Cr and Co-Cr alloy particles and reported that Co concentration as low as 0.1 

mg/mL inhibited the synthesis of collagen I, osteocalcin and alkaline phosphatase (AP), 

and showed cytotoxic effects on osteoblast-like cells.18 An important difference between 

Ti-6Al-4V and Co-Cr alloy is the lower modulus of elasticity of the former material 

which alleviates the stress shielding effect on peri-prosthetic bone and impedes bone 

resorption.19 In fact, of all the metals used in orthopedics, Ti-6Al-4V possesses 

mechanical properties closest to bone. Moreover, Ti-6Al-4V allows direct bone 

apposition on the surface of the metal unlike Co-Cr alloys.16 Implant retrieval studies 

have shown that bone ingrowth on Ti-6Al-4V implants occurred over the entire surface 

of the implant with direct contact between the metal and the bone.20 On the other hand, 

bone ingrowth was observed on Co-Cr implant with no evidence of direct contact 

between the metal and bone.16 

 
    

Young’s modulus    Yield Strength        Fracture Toughness   
  (GPa)                 (MPa)                (MPa m1/2) 

Ti-6Al-4V             115        795 - 875        60 - 80 
Co-Cr              209        450 - 1000        58 - 62 
Cortical Bone           7 - 30                  140        3.5 - 6.4 

 

Table 1.1: Comparison of mechanical properties of Ti-6Al-4V and Co-Cr alloy with adult 
human cortical bone 

1.2.1 Limitations of metallic implants in joint fixation 
 

Despite the high mechanical strength, the corrosion of metallic implants over their 

lifetime remains a serious challenge to their long-term biocompatibility. In the bulk form, 
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metallic implants are biocompatible and demonstrate minimal immune response; 

however, the particulate form of the material triggers macrophage activity and incites 

immunological responses. The continuous interaction between metallic implants and 

tissue fluids together with material fatigue and friction between the articulating surfaces 

generates wear debris and releases metal ions.21 The release of such particulate matter 

and the ensuing inflammatory responses affects normal bone metabolism by increasing 

the release of osteolytic factors. A consequence of such a reaction is a foreign body 

response and soft-tissue reaction that leads to the fibrous encapsulation of the device.22,23 

Lalor et al examined Ti screws explants and found extensive presence of macrophages 

around the material that contained Ti particles.24 In another study on Ti-6Al-4V and Co-

Cr alloy hip explants, abundant presence of metal particles and T-lymphocytes were 

noticed around the both the implants.25 In vitro studies by Thomson et al showed that the 

ions released from Ti-6Al-4V inhibit the normal differentiation of bone marrow stromal 

cells into mature osteoblasts.26 Recent reports by Cadosch et al suggest that Ti ions 

enhance osteoclast differentiation which encourages bone resorption.27 In support of this 

idea, Saldana et al reported that Al ions, in conjunction with Ti ions, impede osteoblast 

differentiation.28 It has also been reported that the metallic particles may be systemically 

distributed in body tissues other than the implanted regions.21,29 In one study, Case et al 

reported that metal particles accumulated in lymph nodes and caused necrosis and 

fibrosis of the tissue.29 Other reports have suggested that metal ions released from the 

implants bind to proteins, such as those on immunostimulatory dendritic cells and induce 

hypersensitivity reactions.21 Indeed, metallic debris induced hypersensitivity reactions 

have been reported in some individuals.30,31 In addition to the biocompatibility issues of 
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Ti-6Al-4V implants, the stress shielding problem of the periprosthetic bone due to 

improper mechanical stimulation remains unaddressed.  

1.3 Strategies for implant fixation 

1.3.1 Porous-coated metal implants 
 

The fixation of implant with the bone can be enhanced by modifying the surface 

characteristics and/or geometrical design of the implant that allows bone growth into or 

onto the device.32 Coating the surface of Ti-6Al-4V implant with porous metal beads has 

demonstrated some success in enhancing mechanical fixation. Figure 1.1 shows an SEM 

image of the surface of porous-coated Ti-6Al-4V implant. These implants are 

characterized by a three-dimensional interconnected porous structure having pores in the 

range of 100 - 400 µm, which is on the same order as the pore size for cancellous bone 

(400 – 500 µm). The porous geometry provides greater space for bone tissue ingrowth, 

improves mechanical interlocking and enhances the surface area available for implant-

bone contact.33 Moreover, the interconnected porosity encourages tissue ingrowth and 

integration with the device, which enhances the long-term stability of the implant. Thus, 

bone tissue ingrowth into the three-dimensional porous structure provides resistance to 

shear, compressive, and tensile forces at the tissue/implant interface.34 Simmons et al 

evaluated the osteointegration potential of bone-interfacing implants and found that the 

modified geometry of the porous coating provided a large region of low distortional and 

volumetric strains that favor osteogenesis.35,36 Recent clinical studies have shown that 

porous-coated implants show minimal aseptic loosening in ≥ 99% cases even after15 

years of implantation in both, osteoporotic and non-osteoporotic bone.37 However, a 

limitation of the porous coated implant is its low volumetric porosity, suboptimal 

frictional characteristics and reduced fatigue resistance.34,38 Previous studies have shown  
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a coating on orthopedic implant materials.44,45 The bioactive ceramic surface stimulates 

bone growth onto the implant, while the inner metal core provides mechanical strength to 

the device.45 Data in the literature indicates that CaP ceramics have the potential to affect 

bone cell behavior at the gene level and produce pro-osteogenic proteins that encourage 

bone apposition.41,46-48 There are different types of CaP ceramics, such as hydroxyapatite 

(HA), tri-calcium phosphate (TCP), octa-calcium phosphate (OCP), etc. that vary in their 

chemical structure, mechanical properties and osteogenic potential. However, HA having 

the chemical formula Ca10(PO4)6(OH)2 is the most popular CaP ceramic that has found 

extensive applications in medicine and dentistry over the last three decades. An important 

characteristic of HA is that it has a structure similar to the mineral phase of the bone 

which makes it an attractive bone-substitute material.42,49  

Plasma spraying is the most popular commercially used method for coating HA 

on Ti-6Al-4V implants. The coating process involves the deposition of a finely ground 

ceramic powder in a molten or semi-molten state on the Ti-6Al-4V substrate.50 A direct 

current (DC) arc or a radiofrequency (RF) inductively coupled plasma discharge 

generates the plasma; providing temperatures in the range of 8,000 - 30,000 K. HA 

powder is introduced within the plasma (RF) or the plasma jet (DC-arc) where the 

particles undergo partial or complete melting before impinging and rapidly cooling on the 

metal substrate.51 HA-coated Ti-6Al-4V implants have been approved by the US-FDA 

for THA procedures since the 1990’s and have found remarkable commercial success. 

Clinical studies on HA-coated Ti-6Al-4V hip implants have shown reduced bone 

migration and superior osteointegration as compared to uncoated Ti-6Al-4V implants.52,53 

HA-coated implants have been successfully tested in gap-healing models, closing a gap 



10 

of 1 mm between the bone and the implant in both mechanically stable and unstable 

conditions.51 Hermida et al evaluated intramedullary bone response in rabbits to HA-

coated and uncoated Ti implants of similar surface topography and showed that that the 

presence of HA coating maximized the bone-to-implant contact area and resulted in 

superior osteointegration.54 Landor et al compared the osteointegration potential of 

plasma sprayed HA coated Ti-6Al-4V and uncoated Ti-6Al-4V hip implants in 50 human 

subjects and found significantly more bone apposition on the HA-coated implant.55 On 

the other hand, uncoated Ti-6Al-4V implants showed evidence of fibrous encapsulation 

due to micro-motion and/or stress shielding. Similar results were reported by D'Antonio 

et al who evaluated the performance of 380 hip implants in human subjects over 10-13 

years and found that the HA coating enhanced bone ingrowth and improved the 

mechanical fixation of the device.56  

1.3.2.1. Mechanism of bioactivity  
 

The dissolution of CaP ceramics increases the local concentration of Ca and P 

ions in the vicinity of the implant material and provides stimulatory signals to osteoblasts. 

Continued dissolution of the material supersaturates the solution, causing a re-

precipitation of the excess Ca and P ions back onto the material surface in the form of 

carbonated hydroxyapatite (HCA), the mineral phase of the bone. The formation of HCA 

is thought to be a critical step in establishing the mineralization front of the implant 

material with the host tissue.41,42 In silica containing biomaterials, such as bioactive 

glasses (BG), the silanol groups (Si-OH) undergo polymerization to form a silica-rich 

surface.42 Ion-exchange and structural rearrangements at the surface promote Ca and P to 

diffuse through the silica-rich layer and form an amorphous layer of CaP which gradually 
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crystallizes into HCA by recruiting CO3
2- ions from the surroundings. In conjunction with 

the HCA formation, cell attachment proteins, such as fibronectin and vitronectin, attach 

to the material surface and modulate cell adhesion and function. The cells produce 

collagen fibrils that interdigitate with the HCA crystals and trigger a chemotactic 

response that stimulates cell proliferation, differentiation and bone-matrix synthesis.42  

1.4 Drawbacks of plasma sprayed HA-coated Ti-6Al-4V implants  

1.4.1 Low adhesion strength  

The stability of the ceramic coating is determined by the adhesion strength 

between the coating and the metal substrate. Due to the high temperature of the plasma 

spraying process, the mismatch in the thermal expansion coefficient of HA (11.5 - 14.7 x 

10-6 K-1) and Ti-6Al-4V (8.60 x 10-6 K-1) causes differential expansion and contraction at 

the interface between metal and ceramic.57 Thus, the residual stresses at the 

metal/ceramic interface, whether tensile or compressive, lead to cracking and limits the 

adhesion strength of the coating.58 Poor adhesion between the metal and ceramic 

compromises the structural integrity of the HA layer and renders the implant prone to 

micro-motion. 

1.4.2 Thermal decomposition of HA  
 

The high temperature of the plasma spraying process can decompose HA into various 

by-product phases, such as tri-calcium phosphate, tetra-calcium phosphate, oxy-

hydroxyapatite, calcium oxide, and other amorphous phases.51 These phases are 

characterized by altered crystallinity, varied solubility and limited or no biocompatibility, 

all of which is detrimental to the stability and bioactivity of the coating. Moreover, the 

high temperature of the plasma spraying process promotes extensive inter-atomic 
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diffusion between the atoms of HA and Ti-6Al-4V. Although such diffusion at the 

ceramic/metal interface promotes physico-chemical linkages between the two materials, 

at the same time Ti ions have the potential to catalyze the decomposition of HA at 

temperatures in excess of 1050 ˚C.59,60  

1.4.3 Structural changes in Ti-6Al-4V 
 

At temperatures ≥ 882 ˚C, Ti-6Al-4V undergoes α→β transformation with a change 

in its crystal structure from the HCP to the BCC type.59,61 Cooling the metal induces a 

recrystallization of the β–phase (β→α transformation) in the alloy. However, during the 

cooling process, some of the β-phase may be retained within the α-phase that affects the 

mechanical strength of the material. Moreover, Ti-6Al-4V is highly reactive at high 

temperatures and can oxidize easily, leading to oxygen diffusion and metal 

embrittlement.61 

1.5 Low temperature coating techniques 

A major disadvantage of plasma spray coating is the high temperature of plasma 

that is not well tolerated by both, the bioceramic and Ti-6Al-4V. Therefore, other coating 

techniques that use relatively low temperature have been employed for bioactive ceramic 

coating. Some of these methods include sol-gel coating, magnetron sputtering, 

electrophoretic deposition, etc. All of these techniques deposit ceramic coating at room 

temperature which can then be sintered at moderate temperatures, typically less than 

1200 ˚C.44 Moreover, they permit the deposition of a highly pure material with minimal 

changes in the crystalline structure before or after coating.  
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1.5.1 Sol-gel deposition 

Sol-gel is a process capable of producing bioactive ceramic coating from 

solutions. The process is based on the controlled hydrolysis of metal alkoxides to form a 

suspension of colloidal particles, called sol, which upon polycondensation forms an 

interconnected network structure, the gel. Typically, HA sol is prepared using a Ca salt 

such as calcium nitrate tetrahydrate or calcium diethoxide and a P salt such as 

triammonium phosphate trihydrate or triethyl phosphite.62,63 The ratio of Ca/P 

components is maintained between 1.67 - 2.2 at a pH of 6.0 - 7.8 and the mixture is aged 

for 24 hr under continuous stirring. Ti-6Al-4V substrates are dip-coated or spin-coated by 

the sol and fired at a temperature of 400 – 1000 ˚C. The thickness of the coating layer can 

be controlled by the repetition of the dipping process. Sol-gel processing has been very 

successful in producing fine-grained, homogeneous HA coatings at a relatively low 

sintering temperature that minimized HA decomposition.64 Moreover, sol-gel is not a 

line-of-sight process and can be used to coat complex geometrical shapes, such as 

porous-coated Ti-6Al-4V implants. However, sol-gel derived HA has been reported to 

contain small amounts of CaO that has limited biocompatibility.64  

1.5.2 Magnetron sputtering 

The use of magnetron sputtering to deposit thin films for Si-integrated circuits has 

been used in the electronic devices industry for a long time; however its application in the 

field of bioactive ceramic coating has only been recently recognized.65 Magnetrons make 

use of the fact that a magnetic field parallel to the target surface can constrain secondary 

electrons in the vicinity of the target.66 The chamber in which the coating is carried out is 

evacuated, typically to pressures of 2.5 x 10-3 Pa and filled with high purity argon in 
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combination with oxygen.67 The high ionization efficiency of the magnetron densifies the 

plasma in the proximity of the target material, such as bio-ceramics. As a result, the ion 

bombardment increases leading to enhanced deposition rates on the metal substrate. The 

advantages of magnetron sputter-coating over other sputtering processes include the high 

deposition rate, excellent adhesion with the substrate and the ability to coat implants with 

difficult surface geometries.44 Moreover, the Ca/P ratio and the crystallinity of the deposit 

can be tightly controlled.68 A major advantage of magnetron sputtering is that the process 

involves low temperature, typically < 600 ˚C, which conserves the crystalline structure of 

the ceramic and the metal.66 However, being a line-of-sight process, magnetron sputtering 

has limited applications in coating porous-coated or foam mesh orthopedic implants.  

1.5.3 Electrophoretic deposition  

Electrophoretic deposition (EPD) is a wet coating process wherein ceramic 

particles contained in a suspending medium are directly deposited onto a conductive 

metallic substrate using an electrical voltage.69 The simple, inexpensive setup and the 

possibility of coating stochiometric, high purity material without compromising 

crystallinity even on complex geometries and porous substrates in a short time makes 

EPD an attractive method for coating. Figure 1.2 shows a schematic representation of the 

EPD coating process. The implant to be coated is used as one of the electrode, the 

polarity of which depends upon the zeta potential of the ceramic particles suspended in a 

suitable medium. The counter-electrode may be of the same material, or some other inert 

material such as platinum. The direction of particle migration is determined by the zeta 

potential of the particles; negatively charged particles move towards the anode, while the 

positively charged particles move towards the cathode.70 The two electrodes are attached 
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to a source of power supply and immersed in the electrophoretic cell. Upon application of 

electric voltage, the ceramic particles migrate towards the surface of the implant and form 

the deposit which can then be densified by thermal treatment. The various processing 

parameters involved in EPD are:  

(a) Suspension related: ceramic composition, particle size, chemical nature and pH of the 

suspending medium, zeta potential of ceramic particles, and the conductivity of the 

suspension 

(b) Process related: deposition time, voltage, concentration of particles, and electrical 

conductivity of the substrate  

 

 

 

 

 

 

 
 
 
 
 

Figure 1.2: Schematic representation of the EPD coating process 
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1.5.3.1. Origin of zeta potential  
 

Ionic interactions between the ceramic particles and suspending medium such as 

ionization of functional groups, differential loss of ions from crystal lattice, adsorption or 

desorption of charged species, etc., increase the concentration of oppositely charged 

counter-ions in the proximity of the particle.69,71 The counter-ions initially approach the 

particle to neutralize their surface charge; however their thermal motion restricts any 

accumulation on the particle surface.71 Thus, the particle gets surrounded by an ionic 

cloud of counter-ions distributed in the form of an electrical double layer around the 

particle. The electric potential across the double layer is the zeta potential of the particle. 

Colloidal suspensions exhibiting high zeta potential demonstrate enhanced inter-particle 

repulsion and are more stable which facilitates their uniform deposition.  

1.6 Literature review on bioactive ceramic coating 

The concerns highlighted above impress upon the need to address the limitations 

of bioactive ceramic coating on orthopedic Ti-6Al-4V implants from a processing 

perspective as well as material considerations. The following section contains a literature 

review highlighting various strategies employed in the last decade to enhance the 

adhesion strength of the coating and improve its long-term stability on the metal.  

1.6.1 Strategies to improve adhesion strength 

Perhaps the most important deterrent to the long-term stability of the bioactive 

ceramic coating is the poor adhesion between the metal and the ceramic. Various 

strategies have been evaluated to improve the adhesion strength of the ceramic 

coating.62,72-80 One of the methods has been the use of HA/Ti composite coatings.72,73 

Zheng et al plasma-sprayed a mixture of HA and Ti powders in a ratio of 0 – 60 wt% on 
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Ti-6Al-4V substrate and evaluated the adhesion strength at the interface between the 

HA/Ti coating layer and the underlying metal substrate according to ASTM C-633 

protocol (Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray 

Coatings) using a polymeric glue.72 It was found that the average adhesion strength of the 

coating increased from 13 MPa to 17 MPa as the Ti concentration in the composite 

increased. However, the bond strength after immersion in physiologic solution was not 

measured. Examination of the fractured surface of the samples showed adhesive failure 

mechanism, most probably due to the decomposition of HA. In a related work, Gu et al 

deposited a mixture of HA and Ti-6Al-4V particles (in a 1:1 ratio) on Ti-6Al-4V 

substrate and evaluated the adhesion strength of the coating according to the ASTM C-

633 protocol.73 They reported that the average adhesion strength at the metal/ceramic 

interface increased from 18.36 MPa for unmodified HA coating to 27.38 MPa for HA/Ti-

6Al-4V composite coating. X-ray diffraction (XRD) analyses of the coating layer showed 

peaks for CaO while those characteristic for HA were largely absent due to HA 

decomposition after plasma spraying, as explained by the authors. Facture surface 

analyses showed a mixed mode of failure; a cohesive fracture within the lamellae of the 

HA/Ti-6Al-4V coating layer and an adhesive fracture at the metal/ceramic interface. The 

cohesive fracture observed was most probably due to the failure within the lamellae of 

the coating layer that forms during plasma spraying.50,51 The adhesion strength of the 

coating layer reduced by 31% after 2 weeks immersion in physiologic solution due to the 

synergistic effects of surface cracking and material dissolution. Chen et al used 

magnetron sputtering to deposit multiple layers of HA/Ti mixtures in ratios of 0, 20, 50, 

90 or 100% to generate a graded Ti concentration in the coating layer, with the 100% Ti 
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being at the interface with the metal substrate.74 The effect of annealing treatment of the 

coated substrate on the adhesion strength was evaluated. In order to obtain a crystalline 

HA coating, the samples coated with HA or HA/Ti mixtures were again thermally treated 

at 600 ˚C for 1 hr under water vapor flow. Adhesion strength tests carried out in 

accordance with ASTM C-633 protocol showed that the second annealing treatment 

resulted in a reduction of the average adhesion strength, most probably due to dissolution 

at the interface between the coating layer and the metal substrate. The addition of Ti to 

HA powder increased the adhesion strength of the coating layer from 25 MPa (HA 

coating) to 40 MPa (HA/Ti coating). It should be noted that the authors did not analyze 

the structure of the ceramic layer after coating; therefore, the data from this study cannot 

be compared to other reports.  

Other efforts to improve adhesion strength include the incorporation of TiO2, 

either within the coating or as an intermediate layer between HA and metal 

substrate.62,75,76 Kim et al used sol-gel processing to prepare HA and TiO2 sols separately 

and mixed them in ratios of 10 - 40% to obtain HA-TiO2 composite sols.62 They coated 

pure HA as well as composite HA/TiO2 sols on commercially pure (cp) Ti substrate and 

heat-treated the samples at 450 - 550 ˚C for 2 hr at a fixed heating and cooling rate of 1 

˚C min-1. Mechanical tests using proprietary epoxy glue showed that the adhesion 

strength of the coating increased due to the addition of TiO2 sols. The average adhesion 

strength increased from 36 MPa for pure HA coating to 56 MPa for HA mixed with 30% 

TiO2 after heat treatment at 500 ˚C. However, XRD analysis showed that the HA formed 

was poorly crystalline even after heat treatment at 550 ˚C. Moreover, the heat treatment 

at 500 ˚C was accompanied by the formation of the anatase and rutile phases of Ti. 
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Previous studies using human dermal fibroblasts and human lung epithelial cells have 

shown that the anatase phase is 100 times more toxic than the rutile phase.81 Fracture 

surface analysis showed a mixed failure mode, with failure taking place at the 

coating/metal interface, within the coating, at the coating/epoxy interface or within the 

epoxy for all samples. It was also found that the area on the fractured surface related to 

failure within the coating or at the coating/metal interface increased with decreasing TiO2 

concentration. However, the authors did not evaluate the effect of material dissolution on 

the adhesion strength of the coated layer. Albayrak et al studied the effect of intermediate 

TiO2 layer between HA and Ti-6Al-4V substrate on enhancing the shear strength of the 

HA coating.75 They passivated Ti-6Al-4V substrates in 25% HNO3 and used EPD to 

deposit an intermediate layer of TiO2 particles before finally coating with HA. The 

voltage used for coating TiO2 was varied between 10 - 50 V and while HA was coated at 

a fixed voltage of 200 V. Mechanical tests using ASTM F1044-99 protocol (Standard 

Test Method for Shear Testing of Calcium Phosphate Coatings and Metallic Coatings) 

using a polymeric glue showed that the shear strength of the HA/TiO2 coating layer 

increased from 11.9 ± 3.3 MPa to 21.0 ± 2.9 MPa as the voltage for TiO2 deposition 

decreased from 50 V to 10 V. On the other hand, HA deposited on Ti-6Al-4V substrate in 

the absence of TiO2 developed an adhesion strength of 13.8 ± 1.8 MPa. It was observed 

that surface cracks on the TiO2 layer increased with increasing deposition voltage. The 

authors also reported that the thermal decomposition of HA was reduced by the 

incorporation of TiO2 layer, most probably since the decomposition of HA induced by Ti 

begins at a lower temperature than that induced by TiO2;
82 hence, it may be possible that 

the TiO2 layer acted as a chemical barrier between Ti-6Al-4V and HA. The authors 
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explained that the enhancement of the shear strength was due to the thermal expansion 

coefficient of TiO2 (9.36 x 10-6 K-1) being intermediate to that of Ti-6Al-4V (8.60 x 10-6 

K-1) and HA (11.5-14.75 x 10-6 K-1) which may have reduced the thermal stresses at the 

metal/ceramic interface. However, the authors ignored the effect of HNO3 passivation on 

Ti-6Al-4V. Previous studies have shown that such passivation treatment produces a 

porous TiO2 layer on the metal’s surface.83 Therefore, the explicit contribution of the 

deposited TiO2 layer on the enhancement of shear strength may not be accurate. 

Moreover, they did not vary the voltage for HA deposition to analyze if this parameter 

could affect shear strength or coating characteristics. In addition, they did not analyze the 

stability of the coating in physiologic solution. The use of TiO2 was also adopted by 

Cannillo et al who developed a multi-layered, functionally graded coating of TiO2 and 

HA on Ti-6Al-4V substrate using plasma spraying.76 The coating comprised 100% TiO2 

at the interface with the metal and progressively decreased in TiO2 concentration towards 

the outer surface of the coating, which contained 100% HA. Moreover, they heat treated 

the coating again at 750 ˚C to further improve its mechanical properties. Vicker’s micro-

indentation tests of the HA rich areas on the sample showed that the hardness of HA layer 

increased from 208.3 ± 38.8 to 302.3 ± 101.2 HV0.1 after heat treatment, thus confirming 

the strengthening effect of TiO2. However, the authors did not measure the adhesion 

strength of the functionally graded coating at the metal/ceramic interface. Nor, did they 

evaluate the dissolution effects of the coating in physiologic solution. 

The use of Ti or TiO2 to enhance the adhesion strength of the coating should be 

treated with caution. Since the adhesion strength between the metal substrate and Ti 

particles is higher than that between the metal and HA particles, the final adhesion 
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strength between Ti/HA mixture and the Ti-6Al-4V substrate will be the average 

contribution from Ti-Ti and HA-Ti adhesion, respectively. Although, improvement in the 

adhesion strength between the metal substrate and a mixture of HA and Ti powder was 

observed, this increase should be looked at as a result of a decrease in the contact area 

between HA and substrate’s surface, and not due to improved adhesion between HA and 

Ti. Moreover, the dissolution of HA in aqueous environment would leave behind metallic 

residual Ti/TiO2 particulate matter that can irritate the immune system. Indeed, one of the 

major reasons for the failure of hip implants is the release of high concentration of Ti 

particles and wear-debris from the implant surface. Therefore, HA dissolution in the 

HA/Ti coating layer would facilitate the release of Ti particles which could significantly 

contribute to implant failure. In addition, none of the above studies reported the nature of 

the interface between HA and Ti-6Al-4V substrate in the coating layer.  

Other approaches to improve the mechanical strength of bio-ceramic coating on 

metal implants include the use of modified CaP ceramics as described by Lin et al. They 

coated OCP on metallic substrates with different surface topographies: grit-blasted, arc-

deposited, chemically textured and Co-Cr beaded surfaces using modulated 

electrochemical deposition (MECD) technique.77 OCP is a CaP ceramic that has 

demonstrated greater resorbability and bone formation ability than pure HA or β-TCP 

ceramics.84,85 Analyses of the OCP-coated substrates using XRD and FTIR methods 

showed characteristic peaks for OCP in both spectra. Adhesion strength measurements 

carried out according to ASTM F1501 protocol (Specifications for calcium phosphate 

coating for implantable materials) using polymeric glue showed that the average adhesion 

strength on grit-blasted substrate (48 MPa) was significantly higher than on the other 
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substrates. The authors explained that the variations in adhesion strength might have been 

due to variability in the surface roughness of the substrate; however, they did not present 

the data on the substrate’s roughness. Moreover, they did not analyze the fractured 

surface of the substrate to determine the mode of failure. It is not clear how the adhesion 

strength measurements were performed on the Co-Cr beaded substrates since the entire 

surface of the spherical bead structure cannot be uniaxially subjected to tensile loading. 

Immersion of the coated substrates in 0.1 M tris buffer solution at pH 7.3 and 3.0 for 4 hr 

showed that the samples released higher concentration of Ca2+ under acidic conditions 

than under neutral conditions. However, they did not analyze the change in the adhesion 

strength of the coating after immersion in physiologic solution.  

Recent studies in the literature have reported on the use of carbon nanotubes 

(CNT) to enhance the mechanical properties of CaP coating.78-80 Balani et al mixed HA 

particles (10 - 50 µm) with 4 wt% CNT (40 - 70 nm dia x 0.5 - 2.0 µm length) for 18 hr 

in a jar mill in an attempt to homogeneously disperse CNT over HA particles.78 

Powdered HA/CNT mixture was coated on Ti-6Al-4V substrate using plasma spraying. 

Microstructural observation of the coated substrates showed that the HA coating without 

CNT demonstrated sub-surface cracks and partially fused particles whereas HA coatings 

containing CNT showed melt-resolidified and nodular HA particles. XRD analyses 

showed an increase in the crystallinity of HA from 53.7% to 80.4% upon addition of 

CNT as per the differential peak degradation calculation. The authors hypothesized that 

the three orders of higher thermal conductivity of CNT (3 x 103 W m-1 K-1) as compared 

to HA (0.7 x 103 W m-1 K-1), may concentrate thermal energy around the CNT surfaces in 

contact with HA. As a result, the time available for HA nucleation at elevated 
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temperature would increase. Vicker’s tests showed that the indentation toughness of the 

coating increased from 0.39 ± 0.09 MPa m1/2 to 0.61 ± 0.09 MPa m1/2 after CNT addition. 

The increase in toughness of the coating was attributed to the CNT distribution and 

anchoring of CNTs to form bridge structures that can withstand high bending 

deformation. However, the authors did not evaluate the stability of the HA/CNT coating 

or its interaction with physiologic solution, nor did they analyze the adhesion strength of 

the coating. Other studies by Kaya et al and Hahn et al have employed nano-size HA 

particles in conjunction with CNT to enhance the coating characteristics.79,80 Kaya et al 

prepared a (0.5 – 2.0 wt%) mixture of acid-treated CNT (20 nm dia) with HA particles 

(20 nm dia) in an aqueous solution and coated the mixture on Ti-6Al-4V substrate using 

EPD at 20 V in a 5 wt% CNT containing HA suspension.80 Acid treatment is thought to 

confer negative charge to the CNT particles which can then electrostatically associate 

with positively charged HA to form a single composite particle. SEM analyses of the 

coated samples after sintering at 600 ˚C for 2 hr under nitrogen showed that an increase 

in the coating duration from 4 min to 10 min increased the coating thickness from 25 to 

40 µm. However, the increase in the coating thickness was accompanied by the 

appearance of surface micro-cracks after sintering. Mechanical tests showed that the 

shear strength of the coating increased from 0.7 ± 0.04 MPa to 1.84 ± 0.1 and 2.76 ± 0.14 

MPa upon the addition of 1 and 2% CNT, respectively. The elastic modulus of the 

coating increased from 15 ± 0.4 GPa to 139 ± 7 and 178 ± 8.5 GPa and the hardness 

increased from 4.88 ± 0.2 GPa to 18.9 ± 1.2 and 36.44 ± 2.3 GPa, respectively. However, 

the authors did not investigate the influence of voltage, sintering temperature or the 

heating/cooling rate on the mechanical properties of the HA/CNT coating.  Neither did 
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they evaluate the stability of the coating in physiologic solution. Hahn et al prepared a (1 

- 3 wt%) mixture of acid-treated CNT (10 - 15 nm dia x 10 - 20 nm length) in an aqueous 

solution containing HA particles (15 nm) and coated the mixture on cp-Ti substrates 

using aerosol deposition at 900 ˚C.79,86 Analysis of adhesion strength according to ISO 

13779-4 protocol showed that the adhesion strength was in the range of 27.3 – 29.0 MPa 

with or without CNT. It was interesting to note that the addition of CNT had minimal 

effect on adhesion strength, most probably because CNT acted as a reinforcement phase 

for HA coating but did not physically or chemically bond to the metal substrate. Nano-

indentation tests showed that the hardness and elastic modulus of the coating increased 

from 6.19 - 6.76 GPa and 122 - 125 GPa for unmodified HA to 9.02 GPa and 137.05 GPa 

for HA containing 3 wt% CNT, respectively. Thus, the increase in hardness and elastic 

modulus of coating serve to reduce the brittle nature of HA. XRD analysis of the 

HA/CNT coated substrate showed weak and broad peaks of HA. The authors 

hypothesized that such peaks may have been due to a reduction in the grain size during 

the coating process. However, the authors prepared HA/CNT mixtures in an aqueous 

solution which may have resulted in partial dissolution of HA even before coating 

fabrication. Moreover, the authors did not evaluate the effect of physiologic solution 

treatment on the adhesion strength and mechanical properties of the coating. 

1.6.2 Evaluation of coating stability 

Although stochiometric HA is quite stable in physiologic solution, the 

decomposition of HA during the plasma spraying process produces byproduct phases 

within the coating that have variable crystallinity and solubility, and can therefore affect 

the stability of the HA coating. Fazan et al studied the stability of plasma sprayed HA 
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coating on cp-Ti substrate for 2 weeks in aqueous (double distilled DI water) and tris-

buffer solution and found that the surface cracks on the HA increased after 2 weeks of 

immersion.87 Moreover, the dissolution of the HA coating was more severe and rapid in 

the physiologic solution than in aqueous solution, most probably due to the high ionic 

content of the latter solution. XRD and ion concentration analyses suggested that the TCP 

phase produced during plasma spraying dissolved faster than the bulk of the HA coating. 

The authors suggested that TCP may react with water and initiate dissolution-

precipitation reactions which can increase the crystallinity of the coating. To ascertain the 

effect of HA crystallinity on coating dissolution behavior, the HA-coated samples were 

heat-treated 600 ˚C for 1 hr. It was found that the increase in the crystallinity of the 

coating decreased the rate of HA dissolution and enhanced its stability. However, the 

authors conducted the study under static fluid conditions which may have increased in the 

concentrations of solutes beyond the physiological limits. Moreover, they did not analyze 

the adhesion strength at the metal/ceramic interface before or after the immersion period. 

Zheng et al coated HA or a mixture of HA/Ti on Ti-6Al-4V substrate by plasma spraying 

and analyzed the stability of the coating in simulated body fluid (SBF) for 2 weeks.72 

XRD analyses of the coating showed that that peaks corresponding to the TCP and CaO 

byproduct phases disappeared after the immersion period. Moreover, they found the 

appearance of TiO and TiO2 peaks in the XRD spectra and concluded that the metal in 

the outer as well as inner coating layers became oxidized during immersion. However, 

the exposure of inner coating layers to SBF may enhance its dissolution and affect the 

overall stability of the ceramic coating. In addition, the authors did not analyze the 
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changes in the mass or the thickness of the coating during immersion, nor did they 

measure the ionic concentrations of the dissolution products.  

Gu et al investigated the stability of HA/Ti-6Al-4V coated Ti-6Al-4V substrate in 

SBF for 8 weeks and found that the average Ca2+ concentration in the immersing solution 

increased by 54% after 1 week of immersion.73 The increase in Ca2+ concentration was 

followed by an exponential decrease resulting from CaP precipitation due to the super-

saturation of the solution. Moreover, XRD analyses of the samples showed that CaO 

phase of the coating started to dissolve as early as 1 day of immersion and was 

completely dissolved within 2 weeks. They found an increase in the crystallinity of the 

coating with increasing periods of immersion, similar to that reported by Fazan et al and 

Zheng et al.72,87 The authors compared the dissolution rate of HA/Ti-6Al-4V composite 

coating to previous studies in the literature that measured dissolution rate of pure HA 

coating and reported that the former substrate exhibited slower dissolution rate. 

According to their explanation, the presence of Ti-6Al-4V in the coating might have 

reduced the porosity of the coating, thereby limiting the access of physiologic solution to 

the interior of the coating. However, it could also be argued that the lower rate of 

dissolution observed in this study was simply due to the lower amount of HA ceramic 

present in the coating. In another study, Dinda et al studied the stability of amorphous 

and crystalline HA coating on Ti-6Al-4V substrate in SBF with and without Ca.88  They 

measured the mass of the sample immersed in both kinds of solution for 5 days and found 

that crystalline HA coating showed negligible mass loss in Ca-containing SBF solution 

and a partial mass loss in Ca-free SBF solution. On the other hand, amorphous HA 

coating showed partial mass loss in Ca-containing SBF solution, while immersion in Ca-
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free SBF solution resulted in complete mass loss as early as 3 days. The authors 

considered the change the mass of the sample as a measure of coating dissolution and 

concluded that amorphous HA is more unstable than crystalline HA and that the 

dissolution of the material was enhanced in Ca-free SBF solution. However, they ignored 

that the synergistic effects of ceramic dissolution and back-precipitation onto the coating 

surface might contaminate the mass loss results. Moreover, they did not evaluate the 

ionic concentrations of Ca and P released from the HA coating which could be correlated 

to the mass-loss from the coating.   

One of the well-known factors associated with implant failure is the release of 

ions from the implant that can irritate the immune system.89,90 Increased presence of 

metal ions has the potential to attract macrophages and phagocytes to the site of the 

implant. The activity of these cells creates an acidic environment around the implant 

which may enhance coating dissolution.91  However, none of the studies on coating 

stability described above measured the concentration of Ti ions released into the 

immersing solution. At the same time, these studies do not discuss the relationship among 

coating stability, material resorption and new bone formation. High rate of ceramic 

dissolution may lead to the depletion of coating layer before new bone formation or tissue 

integration can take place. On the other hand, slow degradation rate may fail to have a 

desired osteogeneic effect on the cells. Moreover, these studies did not evaluate the long-

term stability of the coating and the nature of the metal/ceramic interface after immersion 

in physiological solution. A common observation in these studies was the initial increase 

in the Ca2+ of the medium due to HA dissolution, followed by the precipitation of a CaP 

layer onto the coating. However, it would be interesting if the material could rapidly 
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uptake Ca2+ from the medium and concentrate it onto the coating surface. This would 

serve two purposes; first, it would promote faster nucleation of the biological HA layer 

on the coating surface and second, it would enhance osteoblast activity by providing an 

abundance of Ca2+.  

1.7 Evaluation of bone cell response to bioactive ceramic coated implants  

The ultimate purpose of coating bioactive ceramic on orthopedic implants is to 

provide an osteoconductive and/or osteoinductive surface that stimulates bone cell 

activity, in particular differentiation and bone matrix mineralization. Various research 

groups have adopted different techniques to assess bone cell response to bioactive 

ceramic coated implant including analyses of osteogenic protein markers, phenotypic 

expression or in vivo studies.  

 Kim et al evaluated cell activity of human osteosarcoma HOS (T-85) cells on 

HA/TiO2 composite coatings containing 10 - 30% TiO2 and found comparable cell 

proliferation on HA-coated substrates with or without TiO2 or on uncoated substrates 

throughout 5 days of incubation.62 Analyses of AP activity showed that cells attached to 

substrates containing 20% TiO2/HA coating expressed slightly higher AP activity (0.150 

µmol p-NP/hr/mg protein) than cells attached to unmodified HA-coated substrates (0.225 

µmol p-NP/hr/mg protein), although the difference was not statistically significant. The 

increase in cell response to 20% TiO2/HA substrate were attributed to the physical and 

chemical alterations in substrate’s surface, such as homogeneity, grain size and surface 

chemistry as per the author’s explanation. Thian et al studied the response of human 

osteoblast-like (HOB) cells to Ti substrates coated with nanocrystalline Si-substituted HA 

of different Si concentrations (0.8, 2.2 or 4.9 wt%)92. Their results showed that cell 
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proliferation increased on all substrates up to 14 days except for the substrate coated with 

4.9% Si-HA, which showed decreased cell proliferation after 7 days. Visualization of 

actin cytoskeleton after 1 day in culture showed well-developed actin filaments on cells 

attached to substrates containing 2.2 or 4.9% Si-HA but less distinct on substrate with 

0.8% Si-HA. In contrast, cells attached to the uncoated Ti substrates appeared devoid of 

microfilaments in the cell membrane. Cell morphology analyses showed well-spread cells 

on all Si-containing substrates; however, cells attached to uncoated Ti substrates showed 

less pronounced spreading and under-developed lamellipodia. The authors attributed the 

enhanced cell activity on 4.9% Si-HA coated substrate to the formation of silicate 

network structure which enhanced protein adsorption. Moreover, the decreased cell 

proliferation observed on 4.9% Si-HA coated substrate was attributed to enhanced CaP 

precipitation on the material surface which may stimulate cell differentiation. The authors 

argued that early cell differentiation resulted in a decrease in cell proliferation on this 

substrate, an idea shared by other researchers as well.93,94 However, both these studies by 

Kim et al and Thian et al did not evaluate the effect of coating dissolution and ion release 

on bone cell activity; nor did they analyze the role of protein adsorption on cell 

attachment and differentiation. 

 The role of protein adsorption on bone cell activity was addressed by Zhu et al 

who studied the effect of HA coating on protein adsorption and bone cell response and 

compared it to that on uncoated or porous TiO2-coated Ti substrates.95 Their results 

showed that the HA-coated substrates adsorbed the highest quantity of proteins, 

fibronectin and laminin, followed by the porous TiO2-coated substrates and uncoated Ti 

substrates, respectively. The authors explained that the differences in the protein 
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adsorption behavior were due to the variability in the surface roughness and chemistry of 

the substrates. However, they analyzed protein adsorption on the substrates using single, 

pure protein solution. Under in vivo conditions, physiologic fluids will contain a variety 

of proteins which may compete for binding on the substrate’s surface. Therefore, a more 

accurate representation of protein adsorption is that from the serum, which is a complex 

mixture of many different proteins. Moreover, they did not analyze the conformation of 

the adsorbed protein molecules which is an important factor that dictates cell attachment 

to the implant surface. Previous studies have shown that substrate induced changes in the 

conformation of fibronectin can control the switch between cell proliferation and 

differentiation.96 Analyses of cell response to the substrates showed higher cell 

proliferation and differentiation on cells attached to HA-coated substrates than porous-

coated TiO2 or uncoated substrates. The authors relied on AP activity measurement as an 

indicator of cell differentiation; however late stage cell differentiation markers such, as 

osteocalcin or osteopontin, were not analyzed. Nonetheless, animal studies demonstrated 

the greater stimulatory effect of HA-coating on new bone formation. Hahn et al evaluated 

the stimulatory effect of CNT/HA coated cp-Ti on bone cell activity and found that cell 

spreading on the substrate coated with 3% CNT/HA was higher than that on uncoated or 

HA-coated substrates.79 Moreover, the cytotoxicity of CNT/HA coated substrate was 

lower than that of HA-coated substrate, which was in-turn lower than that of the uncoated 

Ti substrates. They also analyzed the effect of CNT concentration on cell proliferation 

after 5 days and found that an increase in the CNT concentration from 0% to 3% 

enhanced cell proliferation. Similarly, the AP activity of cells increased with increasing 

CNT concentration after 10 days in culture. However, the authors measured the AP 
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activity at 10th day only although AP expression is known to be time dependent.97 

Moreover, they did not analyze the expression of late-stage osteoblast differentiation 

markers, such as osteocalcin. Moreover, the biocompatibility of CNT continues to be an 

ongoing debate. Some researchers have questioned the long-term systemic effects and 

found that if CNT reaches the lungs, they can elicit strong inflammatory and fibrotic 

reactions and increase chances of lung cancer. 98,99  

The earliest signals for stimulatory effect of the material are manifested at the 

mRNA level; therefore it is prudent to evaluate the expression of osteogenic gene 

markers for cell proliferation and differentiation. Wang et al studied the effect of material 

composition, crystal size, crystallinity, solubility and surface topography of three 

different types of CaP coating; carbonate apatite deposited via biomimetic (BCA) or 

electrolytic methods (ECA) and OCP, on the proliferation and differentiation of bone 

cells.100 It was found that cell proliferation and differentiation on the coating increased in 

the order of increasing solubility and decreasing crystallinity, as shown by osteogenic 

proteins assays (AP and collagen) and gene expression analyses (bone sialoprotein and 

octeocalcin). Thus, BCA coating which was characterized by high solubility, small 

crystal size and poorly crystalline structure stimulated bone cell activity more than ECA 

coating which had higher crystal size, higher crystallinity and lower solubility than BCA. 

OCP-coating demonstrated intermediate stimulatory effect on cell activity as compared to 

BCA and ECA coating, although it had higher crystallinity and crystal size but lower 

solubility than ECA coating. However, no definite relationship between surface 

roughness and cell activity were found; BCA coating with the highest surface roughness 

demonstrated greater stimulatory effect on cell proliferation and differentiation while 
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ECA coating with intermediate surface roughness had lower stimulatory effect on cell 

activity than OCP coating which had the lowest surface roughness. The results of the 

study suggest that the composition, crystallinity and solubility of the CaP coating have 

strong effects on cell proliferation and differentiation. However, the stimulatory or 

inhibitory effects of coating’s surface roughness may be masked by the dissolution 

products of the ceramic as well as other chemical factors in the medium. Knabe et al 

investigated the effect of HA-coated cp-Ti implants on the temporal phenotypic 

expression of human bone derived cells for 21 days.101 They used three different Ti 

substrates; machined Ti (Ti-ma), Ti with deep profile structure (Ti-DPS) and porous Ti 

plasma-sprayed (Ti-TPS) coating having average roughness (Ra) of 0.15 ± 0.04, 2.91 ± 

0.53 and 3.43 ± 0.63 µm, respectively. HA-coated Ti samples had an average surface 

roughness of 2.07 ± 0.36 µm. They found that the bone cells attached to all uncoated Ti 

substrates showed comparable proliferation up to 21 days, indicating that surface 

roughness alone had minimal effect on cell proliferation. On the other hand, bone cells 

attached to the HA-coated substrates showed higher cell proliferation at all time-points. 

Analyses of osteogenic mRNA’s and proteins showed that HA-coated substrates 

demonstrated the highest stimulatory effect on bone cell differentiation. However, it was 

found that at early time point, (day 3) the concentration of proteins expression on 

uncoated Ti substrates was higher than that on HA-coated substrates, most probably due 

to a lag-phase encountered by the bone cells on the latter substrate, as per the author’s 

explanation. Moreover, bone cells attached to the smooth Ti-DPS samples showed 

greater cell differentiation than the cells on rougher Ti-TPS substrates, which may have 

been due to the variability in surface roughness. The authors found no correlation 
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between different levels of osteogeneic mRNA and their translated protein, either due to 

incomplete translation or due to the shorter half-life of mRNA compared to protein that 

might have compromises the sensitivity of the measurement. However, both studies, by 

Wang et al and Knabe et al did not analyze the effect of proteins adsorbed on the implant 

material on cell activity.  

1.8 Motivation 

The discussion presented above highlights two potential shortcomings: first, there 

is a need for the development of a bioactive ceramic material that has superior 

mechanical properties, bioactivity and resorbability than traditional ceramics. Second, the 

use a deposition technique that is simple, economical and can produce a uniform coating 

of homogeneous microstructure without damaging the ceramic or the metal substrate. 

Crystalline HA is characterized by high chemical stability that resists material dissolution 

and therefore has low resorbability. Moreover, the slow release of HA dissolution ions, 

such as Ca and P, limit the osteoconductive and/or osteoinductive effect of the coating on 

bone cell function. On the other hand, biphasic ceramic coating of HA and β-TCP have 

demonstrated enhanced material dissolution; however, the effect of material dissolution 

was not translated to an increased bone cell activity. The high temperature used in plasma 

spraying process causes some decomposition of HA and produces undesired phases of 

variable solubility and biocompatibility. Si containing biomaterials, such as BG, have 

shown enhanced bioactivity and bone bonding ability; however, the material is thermally 

unstable at temperatures ≥ 600 ˚C. Previous studies have shown that moderately low 

coating temperature of 600 – 700 ˚C can cause an uncontrolled precipitation of crystalline 

phases within the glass matrix that can compromise the bioactivity of the material.102 
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Another important factor that has not been adequately addressed is the adhesion strength 

at the interface between the ceramic and metal. Many reports in the literature have 

indicated that adhesion strength between HA and Ti-6Al-4V is often below the ASTM 

(F1147-05) recommended standard of 30 MPa. Inadequate adhesion between the ceramic 

and metal destabilizes the ceramic coating and increases the chance of implant micro-

motion. 

Recently, El-Ghannam et al have proposed a novel silica-calcium phosphate 

nanocomposite (SCPC) as potential bioactive resorbable bone graft material. Previous 

studies have shown that SCPC has superior mechanical strength and bone regenerative 

capability than HA or BG.103 The enhanced bioactivity of the SCPC is attributed to its 

unique phase composition and modified nano-crystalline structure composed of β-

NaCaPO4 (β-rhenanite) and α-SiO2 (α-cristobalite) solid solutions. Transmission electron 

microscopy (TEM) analysis showed that the grain size of SCPC is in the range of 50 – 

300 nm.104 Moreover, SCPC is characterized by a highly porous matrix with pores 

ranging from 2 nm to 650 µm. Such heterogeneous pore distribution enhances the 

resorption of the material by increasing the surface area in contact with tissue fluid. In 

addition, the high surface area of SCPC facilitates enhanced protein adsorption and cell 

adhesion to the material. SCPC has demonstrated its ability as a potential drug-delivery 

vehicle for various synthetic and peptide drugs including bone morphogenic protein 

(BMP)-2, gentamicin, vancomycin and 5-fluorouracil.105-107 Bone marrow mesenchymal 

stem cells attached to SCPC samples loaded with recombinant BMP-2 synthesized 

mineralized extracellular matrix (ECM) as compared to HA-rhBMP-2 samples that 

showed unmineralized ECM.104 Moreover, SCPC up-regulated the expression of genes 
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associated with osteoblast proliferation and differentiation such as collagen-I, 

osteopontin, osteonectin and osteocalcin significantly more than HA or BG.108 In vivo 

studies in rabbits have shown that critical size bone defects implanted with SCPC 

particles demonstrated near-complete bone formation accompanied by graft resorption 

within 3 weeks of implantation.103 On the other hand, similar defects grafted with BG 

particles also showed bone formation, however the defects contained significant amount 

of unresorbed BG particles.  

1.9 Objective 

The objective of this study was to coat bioactive SCPC on medical grade Ti-6Al-

4V implant using electrophoretic deposition (EPD) and maximize the adhesion strength 

at the metal/ceramic interface.  In addition, the bioactivity and stimulatory effect of 

SCPC coated Ti-6Al-4V implant on bone cell function was evaluated at a molecular level 

and correlated to SCPC’s surface chemistry, protein adsorption and material dissolution 

characteristics. The specific aims are: 

 Systematically vary the chemical composition of SCPC, suspending medium and 

medium pH to create a stable suspension wherein the SCPC particles will exhibit 

maximum zeta potential. 

 Optimize the EPD coating parameters to obtain a homogeneous coating of SCPC 

particles on Ti-6Al-4V substrate  

 Maximize the adhesion strength at the interface between SCPC coating and Ti-6Al-

4V substrate by optimizing the thermal treatment protocol. 

 Evaluate bone cell response to SCPC-coated Ti-6Al-4V substrate at the molecular 

level by analyzing mRNA expression and protein synthesis. Moreover, the bone cell 
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response would be correlated to the quantity, nature and conformation of proteins 

adsorbed onto the SCPC-coated substrate.  

 Investigate the mechanism of SCPC coating development on Ti-6Al-4V and evaluate 

the relationship between implant surface roughness and bone cell activity.  
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CHAPTER 2: ELECTROPHORETIC DEPOSITION OF BIOACTIVE SILICA-
CALCIUM PHOSPHATE NANOCOMPOSITE ON TI-6AL-4V ORTHOPEDIC 

IMPLANT 
 
 
2.1 IntroductionTissue integration between bone and orthopedic biomaterials is essential 

for implant fixation and long-term stability. An adverse response to metallic implants is 

the formation of a non-adherent fibrous capsule.109-112 Fibrous encapsulation of the 

implant is a non-ideal interface for two reasons: first, the fibrous capsule does not 

properly transfer the mechanical signal from metal to bone. Second, it allows micro-

motion, the range of which would increase by time causing implant loosening. To 

enhance tissue integration, metal implants are coated with bioactive ceramics such as 

calcium phosphates.62,77,113 Hydroxyapatite (HA) coating provides an osteoconductive 

surface that promotes rapid and direct bone bonding with the Ti-6Al-4V implants. 

Despite the commercial success, there are many shortcomings associated with the HA 

coated metals due to plasma spraying technique. The high temperature involved in the 

coating process results in the decomposition of HA into various undesirable phases 

including tri-calcium phosphate, tetra-calcium phosphate, calcium oxide and oxy-

hydroxyapatite.51,114,115 Moreover, several studies have shown that Ti-6Al-4V catalyzes 

the decomposition of HA at high temperature.59,60 

Silica-calcium phosphate nanocomposite (SCPC) is a novel bioactive resorbable 

ceramic that has the ability to bond to bone and expedite bone formation. Previous 

reports have demonstrated the superior bone regenerative capability, mechanical 
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properties and resorbability of SCPC as compared to hydroxyapatite or bioactive 

glass.104,108 The enhanced bioactivity of the SCPC has been attributed to its unique phase 

composition, modified nano-crystalline structure, and high porosity.103,104,108,116 SCPC 

demonstrated the formation of a surface apatite layer within 2 hr of immersion in 

simulated body fluid.108 Moreover, SCPC developed the apatite surface layer in the 

presence of serum proteins.103,104 Real-time polymerase chain reaction analyses 

demonstrated that SCPC up-regulated osteoblastic gene expression significantly higher 

than HA.108 In vivo studies have shown rapid bone formation and graft material 

resorption in critical size bone defects implanted with SCPC. In contrast, similar defects 

implanted with bioactive glass granules showed bone formation but minimal graft 

resorption.103 Moreover, SCPC has demonstrated its ability as a potential drug-delivery 

vehicle for rh-BMP2, gentamicin, vancomycin, and 5-fluorouracil.104-107 The objective in 

this study is to investigate the possibility of coating bioactive SCPC on medical grade Ti-

6Al-4V implant using electrophoretic deposition (EPD). The relationship among the 

chemical compositions of SCPC, zeta potential and conductivity has been reported. The 

adhesion strength at the interface between SCPC and Ti-6Al-4V implant before and after 

immersion in physiological solution has been measured.  Moreover, the bioactivity of the 

SCPC-coated Ti-6Al-4V implant was analyzed in-vitro. 

2.2 Materials and Methods 

2.2.1 Ceramic preparation  

Three different formulas of SCPC ceramic: SCPC25 (in mol %: 52.53% CaO, 

26.27% P2O5, 10.6% Na2O and 10.6% SiO2), SCPC50 (in mol %: 40.68% CaO, 20.34% 

P2O5, 19.49% Na2O and 19.49% SiO2) and SCPC75 (in mol %: 22.8% CaO, 11.4% P2O5, 

32.9% Na2O and 32.9% SiO2) were prepared by sintering at 850 ºC for 2 hr in air.103,108 
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Chemicals for SCPC preparation were purchased from Sigma Aldrich, St. Louis, MO. 

The samples were ground in a roller jar mill for 12 hr and separated mechanically on 

stainless steel set of sieves. SCPC particles less than 600 µm were further ground in a 

PM-100 planetary ball mill (Retsch Technology, Newtown, PA) at 500 rpm for 24 hr. 

2.2.2 Particle size distribution analysis 

A 0.5 wt% suspension of SCPC50 particles was prepared in pure ethanol and 

subjected to ultra-sonic agitation for 45 min. 100 µL of the ceramic suspension was 

pipetted onto a stainless steel stub, dried, coated with gold and analyzed by scanning 

electron microscope equipped with energy - dispersive X-ray spectroscope (SEM-EDX, 

JSM-6480, JEOL USA Inc, Waterford, VA) at 10 kV. Multiple images (n = 20) of the 

ceramic particles (4288 SCPC50 particles) were obtained at a magnification of 7,500X or 

10,000X and the size of each individual particle was determined using an image analysis 

program (Scandium, Soft Imaging Solutions, Center Valley, PA). The data were 

presented in the form of a histogram showing particle size distribution. 

2.2.3 Zeta potential and conductivity measurements 

The zeta potential and conductance of SCPC particles suspended in various 

dilutions of ethanol (100%, 50% and DI water) were measured using ZetaPALS 

(Brookhaven Instruments Corporation, Holtsville, NY). Moreover, to study the effect of 

pH on the surface charge, the zeta potential and conductance of SCPC particles were 

measured in 50% ethanol at pH values of 2 to 9 at 24 ºC. The pH of the suspension was 

varied using 0.01N NH4OH or 0.01N HNO3. Zeta potential (ζ) was determined by the 

Smoluchowski equation: 

ζ = 4π η μ/ ε 
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where μ (V s cm-2), η (cm2 s-1) and ε are the electrophoretic mobility, viscosity and the 

dielectric constant of the medium, respectively. The conductance values were used to 

calculate the conductivity of the SCPC particles using the relationship:  

Conductivity = Cell constant x Conductance 

A cell constant of 0.36 cm-1 was used based on experimental measurement of the 

conductance of 1mM KCl standard of known conductivity (137 μS cm-1 at 24 ºC).  Each 

individual sample was subjected to 10 measurements to ensure repeatability. The 

experiment was carried out in triplicate (n = 3).  

2.2.4 Surface preparation of Ti-6Al-4V for coating 

Ti-6Al-4V ELI discs (ASTM F136-08e1) of dimensions 1.3 cm dia x 0.5 cm thick 

(supplied by DePuy Inc., Warsaw, IN) were ground on a 400 grit silicon carbide abrasive 

pad (Leco Corporation, St. Joseph, MI), washed and cleaned according to the ASTM 

standard protocol F86-04 (Standard Practice for Surface Preparation and Marking of 

Metallic Surgical Implants) using DI water, phosphate-free detergent and acetone. 

Passivation of the Ti-6Al-4V discs was carried out in 34% HNO3 at 65 ºC for 40 min 

followed by rinsing with DI water. Previous studies have shown that such surface 

modification would create a thin homogenous TiO2 layer on the material surface.83 

2.2.5 Coating Ti-6Al-4V discs using EPD  

As SCPC50 particles exhibited maximum zeta potential and lowest conductivity 

in pure ethanol (see results for this chapter), the latter was selected as the suspending 

medium for EPD. To study the effect of SCPC50 concentration on the efficacy of 

substrate’s surface coverage, suspensions with 2, 3 or 5 wt% SCPC50 particles were used 

for EPD.  The SCPC50-ethanol suspension was stirred for 15 min on a magnetic stirrer 
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and subjected to ultra-sonic agitation for 45 minutes. Intermittent stirring of the ceramic 

suspension was carried out every 15 minutes during the course of sonication. EPD was 

carried out in a 250 mL glass container with the two electrodes placed 4.5 cm apart. The 

Ti-6Al-4V disc to be coated served as anode while the cathode consisted of a larger Ti-

6Al-4V disc (3.8 cm dia x 0.5 cm thick). Both the electrodes were secured by means of 

stainless steel tweezers and connected to E3612A DC power supply (Agilent 

Technologies, Santa Clara, CA). A voltage of 30 - 120 V was applied allowing a current 

density in the range 1.5 - 3.0 mA/cm2. The coating duration was varied from 1 – 10 min 

with intermediate air drying of the disc for 1 min after every 1 min of EPD coating.  At 

the end of the coating process, the samples were removed and dried in a desiccator for 24 

hr before thermal treatment. Samples coated in 5 wt% SCPC50-ethanol suspension were 

thermally treated and analyzed for adhesion strength and bioactivity.  

2.2.6 Thermal treatment of SCPC50-coated Ti-6Al-4V discs 

SCPC50-coated Ti-6Al-4V discs were thermally treated in a muffle furnace at 

600 ºC for 3 hr. As the prolonged thermal treatment at 600 ºC did not adequately sinter 

the SCPC50 particles (see results for this chapter), higher temperatures of 700 and 800 ºC 

for 1 hr were tested.  All thermal treatments were performed under continuous flow of 

99.998% pure argon (14 L min-1) to prevent metal oxidation. Controlled rate of heating 

and cooling (2 ºC min-1) was employed in all cases. 

2.2.7 Characterization of SCPC50-coated Ti-6Al-4V discs 

2.2.7.1 SEM analyses 

The surface morphology and elemental composition of the SCPC50-coated 

samples were characterized using SEM – EDX as described earlier. To measure the 
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coating thickness, SCPC50-coated Ti-6Al-4V samples were embedded in an epoxy 

solution (Buehler, Lake Bluff, IL) and cured as per the manufacturer’s instructions. The 

samples were sectioned using a diamond wheel at 100 rpm, ground on 1200 grit silicon 

carbide pad and polished on a micro cloth using 0.05 µm alumina particles. Multiple 

measurements (n = 5) of the thickness of SCPC50 coating were made throughout seven 

(n = 7) different zones along the SCPC50/Ti-6Al-4V interface using SEM at 5 kV. For 

comparison, parallel experiments were performed using hydroxyapatite (HA) coated Ti-

6Al-4V discs manufactured by plasma-spraying process. The samples were provided by 

DePuy Inc. and coated by Orchid Biocoat (Southfield, MI). 

2.2.7.2  XRD analysis 

The crystalline structure of the SCPC50 before and after coating on Ti-6Al-4V  

discs as well as HA-coating on Ti-6Al-4V  discs were analyzed by X-ray diffraction 

(XRD) analysis using X’Pert PRO diffractometer (PANalytical, Westborough, MA). Data 

was collected between 10º and 60º 2θ with 0.02º step size using nickel-filtered Cu Kα 

radiation at 45 KeV and 40 mA.  

2.2.8 Measurement of adhesion strength 

To test the mechanical stability at the interface between SCPC50 and Ti-6Al-4V  

substrate, the SCPC50-coated Ti-6Al-4V  discs (n = 5) were glued to a Ti-6Al-4V  

cylinder of similar diameter using FM 1000 adhesive polymer (generous gift from DePuy 

Inc.) as per ASTM standard F1147-05 (Standard Test Method for Tension Testing of 

Calcium Phosphate and Metallic Coatings). FM 1000 was cured for 1.5 hr at 175 ºC and 

25 psi pressure applied by means of a calibrated temperature-resistant spring.  Adhesion 

strength was measured using an Instron 5582 testing machine (Instron, Norwood, MA) at 
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a crosshead rate of 2.54 mm min-1 until complete separation occurred and the maximum 

load to fracture was determined. The fractured surface was analyzed using SEM - EDX 

as described earlier. 

2.2.9 Dissolution analyses of SCPC50-coated Ti-6Al-4V discs 

SCPC50-coated Ti-6Al-4V  discs (n = 6) were immersed in 75 mL phosphate 

buffer saline (PBS) solution (Cellgro, Manassas, VA) and placed on an orbital shaker at 

30 rpm for 7 days. 5 mL of the immersing solution was exchanged with fresh PBS 

solution every 24 hr. The dissolution of the SCPC50 layer was analyzed by measuring the 

ionic concentration of Ca, Si, P and Ti in the immersing solution at every time point 

using Optima 2100 DV inductively coupled plasma-optical emission spectrometer (ICP-

OES; Perkin Elmer, Waltham, MA) as described under conditions previously reported.108 

At the end of the immersion period, the samples were dried at 37 ºC for 12 hr and the 

surface was analyzed using SEM - EDX. The weight of the discs before and after 

immersion was measured. The adhesion strength between the ceramic coating and the Ti-

6Al-4V disc was determined and the fractured surface was analyzed as described earlier. 

In addition, the adhesion strength of SCPC50-coated substrate was compared with that of 

HA-coated substrate after 2 days of immersion.  

2.2.10 Cell culture and measurement of alkaline phosphatase (AP) activity  

Bone marrow mesenchymal stem cells were extracted from 16 week old rat and 

sub-cultured following the same procedures previously published.104 Upon 70 - 80% 

confluency, the cells were trypsinized, centrifuged, and re-suspended in 2 mL of tissue 

culture media (TCM). Aliquots of the cell suspension containing 6 x 104 cells were 

seeded on SCPC50-coated, HA-coated and uncoated Ti-6Al-4V samples (n = 5) in a 100 
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mm culture dish containing 25 mL TCM. After 2 days, the TCM was exchanged with 

fresh media supplemented with 3 mM β-glycerol phosphate, 10-8 M dexamethasone and 

50 μg/mL ascorbic acid. The media was exchanged every 2 days until the end of 14 days. 

Thereafter, the media was removed, the substrates were washed in PBS and the attached 

cells were lysed in 1 mL of 1% TritonX-100. The cell extract was centrifuged at 2000 

rpm for 5 min at 4 ºC and the supernatant was used for total protein and alkaline 

phosphatase activity measurements.  The AP activity was determined based on the 

hydrolysis of p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) as previously 

published.104 Briefly, 100 μL of the cell extract was added to 900 μL of 5 mM p-

nitrophenyl phosphate in glycine buffer (pH 10.4) and incubated at room temperature for 

5 min. The release of p-nitrophenol was monitored by measuring the absorbance of the 

solution at 402 nm using a UV - Vis spectrophotometer (Becknam Coulter Inc, Fullerton, 

CA). Total protein concentration in the supernatant was quantified using the Micro BCA 

protein assay kit (Thermo Scientific, Rockford, IL) as per the manufacturer’s instructions. 

The AP activity was expressed as nmoles p-NP/mg protein/min. 

2.2.11 Statistical analyses 

The data was expressed as means ± standard deviation for all experiments and 

analyzed using student’s t-test. A p-value < 0.05 was considered statistically significant. 

2.3 Results 

2.3.1 Particle size distribution 

Figure 2.1 shows the size distribution of SCPC50 particles used for coating Ti-

6Al-4V by EPD. It was found that 74% of the ceramic particles were <1 µm in size; out 

of which 36% were in the size range of 0 to 0.5 µm and 38% in the size range of 0.5 to 1 
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µm. Out of the remaining 26% of the ceramic particles, 80% were in the size range 1 to 2 

µm and 20% in the size range 2 to 10 µm.   

 

 

 

 

 

 

 

Figure 2.1: Size distribution of SCPC50 particles obtained after ball-milling for 24 hr. 
SCPC50 particles were in the size range of 200 nm – 10 µm with 74% of the particles 
being < 1 µm in size. 

2.3.2 Evaluation of zeta potential and conductivity  

2.3.2.1 Effect of medium pH and SCPC composition  

Figure 2.2a illustrates the variation of zeta potential of SCPC particles of different 

compositions with the pH of the suspending medium (50% ethanol). At pH 2, all SCPC 

samples acquired comparable positive zeta potential in the range of 21.7 to 25.3 mV. 

However, at pH 3 the surface charge of all the samples was reversed from positive to 

negative values indicating that the suspension passed through the iso-electric point in the 

pH range 2 - 3. Moreover, SCPC25 samples exhibited zeta potentials that were 
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significantly more negative (p < 0.01) than SCPC50 or SCPC75 samples. The zeta 

potential of SCPC50 significantly changed (p < 0.01) from -26.4 ± 1.7 mV at pH 4 to -

34.7 ± 1.4 mV at pH 5. For SCPC25 and SCPC75, the average change in the zeta 

potential was not statistically significant at the same pH range. In the pH range of 6 - 8, 

all the three SCPC compositions acquired the most negative zeta potential value of -43.6 

± 0.5 mV. It is noteworthy that while SCPC25 acquired the most negative zeta potential 

at pH 6, SCPC50 reached its most negative value at pH 7. SCPC75 acquired its most 

negative zeta potential at pH 6 and continued to have similar potential until pH 8.  

Beyond pH 8, the zeta potential of all the three SCPC compositions became less negative. 
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Figure 2.2: (a) Variation of zeta potential of SCPC25, SCPC50 and SCPC75 with pH 
measured in 50% ethanol. All the SCPC’s showed maximum zeta potential between pH 6 
– 8 (**p < 0.01); (b) Variation of conductivity of SCPC25, SCPC50 and SCPC75 with 
pH measured in 50% ethanol. The conductivity dropped sharply after the iso-electric 
point and remained consistent in the pH range 6 – 8 (*p < 0.05). 

 
 

On the other hand, the conductivity of SCPC’s of all compositions decreased 

sharply from (1768 - 1961 μS cm-1) at pH 2 to (12 - 30 μS cm-1) at pH 4 (Fig. 2.2b). At 

pH > 4, minimal changes in the conductivity of the samples was measured, however the 
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conductivity of SCPC75 was significantly higher (p < 0.05) than that of SCPC50 or 

SCPC25. Comparable values of conductivity were measured for SCPC25 and SCPC50 in 

the pH range 4 - 9. 

2.3.2.2 Effect of medium’s ethanol concentration and SCPC composition 

Figure 2.3a and Figure 2.3b show the respective zeta potential and conductivity 

values of various SCPC compositions measured in DI water and 50% ethanol at pH 7 as 

well as in 100% ethanol. Minimal effect of the suspension medium’s ethanol 

concentration was measured on the zeta potential of the SCPC particles. On the other 

hand, the conductivity of all SCPC suspensions increased significantly (p < 0.05) with 

increasing ethanol concentration; the maximum conductivity value was measured in DI 

water and the minimum in 100% ethanol. Moreover, in all suspension media, the 

conductivity of SCPC75 was significantly higher (p < 0.01) than SCPC50 or SCPC25. 

Although, the average conductivity of SCPC50 was higher than that of SCPC25, the 

difference was not statistically significant.  
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Figure 2.3: (a) Variation of zeta potential of SCPC25, SCPC50 and SCPC75 measured in 
100% ethanol, 50% ethanol and DI water. Negative zeta potential values increased with 
increasing alcohol concentration for all the three SCPC compositions. (b) Variation of 
conductivity of SCPC25, SCPC50 and SCPC75 with change in alcohol concentration. 
The conductivity of the SCPC75 suspension was significantly higher than that of 
SCPC50 or SCPC25 in all solutions. (**p < 0.01) 
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2.3.3 EPD coating and SEM - EDX analyses 

 Among the various parameters tested, it was found that EPD carried out in 5 wt% 

SCPC50-ethanol suspension using 50 V for 2 min yielded a homogeneous and dense 

deposit on the Ti-6Al-4V samples. A greater uniformity of the SCPC50 coating was 

observed on the passivated Ti-6Al-4V samples as compared to that on the unmodified Ti-

6Al-4V. SEM analyses of the SCPC50 coating treated at 600 ºC showed initial particles 

fusion (Figure 2.4a).  As the treatment temperature increased to 700 ºC (Figure 2.4b) and 

800 ºC (Figure 2.4c) the fusion between the particles significantly resulting in 

densification of the coating layer. Cross-sectional analysis of the SCPC50 layer coated on 

the Ti-6Al-4V decreased in the order 43.1 ± 5.7 μm > 35.6 ± 2.6 μm >  30.1 ± 4.6 μm  

after thermal treatment at 600, 700 and 800 ºC, respectively (Figure 2.4d-f). SEM 

analysis of the HA-coated Ti-6Al-4V disc showed a dense layer of HA marked by 

smooth splats along with round melted- and fused particles (Figure 2.5a). Various cracks 

(arrows) typical for HA-coated by plasma spraying could be seen traversing the surface. 

Cross-sectional analyses of the HA-coated samples showed densely packed HA layer; 

however considerable variation in coating thickness was observed; the average coating 

thickness was 29.7 ± 8.1 μm (Figure 2.5b).  
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Figure 2.4: SEM images of SCPC50-coated Ti-alloy disc thermally treated at (a) 600 ºC 
for 3 hr (b) 700 ºC for 1 hr and (c) 800 ºC for 1 hr. Extensive necking and densification 
among the SCPC50 particles was seen at 800 ºC; SEM images of the cross-section 
showing a coating thickness of (d) 43.1 ± 5.7 μm, (e) 35.6 ± 2.6  μm and (f) 30.1 ± 4.6μm 
after thermal treatment at 600 ºC for 3 hr, 700 ºC for 1 hr and 800 ºC for 1 hr, 
respectively. 
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Figure 2.5: (a) SEM image showing the surface of HA-coated Ti-6Al-4V samples. 
Surface cracks were evident throughout the coating layer; (b) Cross-sectional image of 
the sample showing a dense HA layer of 29.7 ± 8.1 μm coating thickness. 

 

2.3.4 XRD analysis 

XRD analysis of the SCPC50 particles prepared by sintering at 850 ºC showed 

that SCPC50 was composed of β-rhenanite (β-NaCaPO4) and α-cristobalite (α-SiO2) solid 

solutions (Figure 2.6a). Moreover, no change in the crystallinity of SCPC50 was 

observed after EPD coating and thermal treatment at 800 ºC for 1 hr (Figure 2.6b). On the 

other hand, plasma-sprayed HA coating was composed of crystalline HA with trace 

amount of tri-calcium phosphate (Fig. 5c). A slight amorphous hump in the 2θ range of 

(27º – 35º) was observed indicating the presence of small amount of amorphous HA. 
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Figure 2.6: XRD analysis of SCPC50 (a) before coating and (b) after coating on Ti-6Al-
4V and thermal treatment at 800 ºC for 1 hr. After coating process SCPC50 maintained 
its crystalline structure of (β-rhenanite and α-cristobalite); (c) HA-coated Ti-6Al-4V was 
composed of crystalline hydroxyapatite with traces of tri-calcium phosphate.   

2.3.5 Adhesion strength at the ceramic-metal interface 

SCPC50-coated Ti-6Al-4V samples prepared in 5 wt% SCPC50-ethanol 

suspension and thermally treated at 600, 700 and 800 ºC developed adhesion strength of 

42.6 ± 3.6, 44.7 ± 8.7 and 47.2 ± 4.3 MPa, respectively, all of which exceeded the ASTM 

(F1147-05) requirement of 30 MPa. SEM analyses of the fractured surface indicated that 

the samples treated at 800 ºC for 1 hr fractured either within the ceramic layer or at the 

interface of the ceramic with the polymer (Figure 2.7a and 2.7b). EDX analyses of the 

fractured surface confirmed the presence of SCPC50 particles embedded within the 

polymer matrix (Figure 2.7c).  
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Figure 2.7: (a) SEM images of the fractured surface of SCPC50-coated Ti-6Al-4V after 
adhesion test showing extensive residual polymer on the surface of sample. (b) Higher 
magnification of the fractured surface showing SCPC50 particles embedded within the 
polymer matrix indicating that the fracture occurred either within the ceramic layer or at 
the ceramic/polymer interface. (c) EDX analysis of the fractured surface showed 
characteristic signals of Si, Ca, P and Na of SCPC50.  

 
 
2.3.6 Interaction with physiological solution 

2.3.6.1 Surface morphology analyses 

SEM - EDX analyses of the SCPC50-coated Ti-6Al-4V discs after immersion in 

PBS at 37 ºC for 7 days showed the precipitation of a Ca-deficient hydroxyapatite 

(CDHA) layer on the samples (Figure 2.8a) with an average Ca/P ratio of 1.4. Moreover, 

the SCPC50 (*) layer was intact underneath the CDHA (■) layer (Figure 2.8b). Higher 
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magnification of the precipitated layer showed the presence of characteristic needle-like 

crystals of HA (Figure 2.8c). Weight analysis of the SCPC50-coated Ti-6Al-4V samples 

before and after immersion in PBS showed no significant weight loss at the end of the 

immersion period.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: SEM images of SCPC50-coated Ti-6Al-4V disc pre-immersed in PBS for 7 
days at 37 ºC showing (a) the presence of a uniform calcium-deficient HA (CDHA) layer 
over  the SCPC50 coating; (b) SCPC50 coating (*) could be seen underneath the CDHA 
layer (■); (c) higher magnification showing the crystals of CDHA. 
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2.3.6.2 Dissolution analyses  

ICP - OES analyses of the immersing solution showed a significant reduction (p < 

0.01) in Ca concentration from 35.4 ± 1.7 ppm  at day 1 to 9.8 ± 1.6 ppm at day 5 (Figure 

2.9). However, no significant change in the Ca concentration was observed thereafter. 

Contrary to the reduction in Ca concentration, an increase in Si concentration in the 

immersing solution was observed in the first 4 days. The Si concentration in the medium 

increased from 3.3 ± 0.9 ppm at day 1 to 5.0 ± 1.2 ppm at day 4 with minimal changes in 

its concentration thereafter. The average P concentration (320.6 ± 6.4 ppm) in the 

immersing solution showed no significant difference after all immersion periods. 

Moreover, Ti ions were not detected in the immersing solution.  

 

 

 

 

 

 

 

 

Figure 2.9: ICP-OES analyses of the immersing solution indicated initial rapid 
dissolution of Ca followed by a significant decrease due to the CDHA precipitation on 
the material surface. Minimal Si dissolution was observed indicating the stability of the 
coating layer. (**p < 0.01) 
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2.3.6.3 Measurement of adhesion strength after immersion 

Mechanical tests showed that the adhesion strength acquired by the SCPC50-

coated substrates after 2 days of immersion in PBS was 11.7 ± 3.9 MPa which was higher 

than the adhesion strength of 5.5 ± 2.7 MPa acquired by the HA-coated substrates, 

although the difference was not statistically significant. Further immersion of SCPC50-

coated substrates in PBS for 7 days reduced the adhesion strength 6.4 ± 1.8 MPa. SEM – 

EDX analysis of the fractured surface showed that the fracture occurred at the interface of 

SCPC50 coating and the CDHA layer as indicated by the extensive presence of SCPC50 

and residual CDHA on the fractured surface (Figure 2.10).  

 

 

 

 

 

 

 

 

Figure 2.10: SEM image of the fractured surface of SCPC50-coated Ti-6Al-4V disc after 
PBS immersion showing the presence of CDHA crystals indicating that the failure 
occurred within the CDHA layer. 
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2.3.7 Bone cell response 

Figure 2.11 shows the AP activity of the bone marrow mesenchymal stem cells 

measured on uncoated, HA-coated and SCPC50-coated Ti-6Al-4V discs after 14 days in 

culture. The alkaline phosphatase activity expressed by cells attached to the SCPC50-

coated Ti-6Al-4V samples was (82.4 ± 25.6 nmoles p-NP/mg protein/min) which is 

significantly higher (p < 0.05) than that expressed by cells attached to the HA-coated Ti-

6Al-4V (39.7 ± 7.1 nmoles p-NP/mg protein/min) or control uncoated Ti-6Al-4V 

samples (7.0 ± 3.4 nmoles p-NP/mg protein/min).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Bone marrow mesenchymal stem cells attached to SCPC50-coated Ti-6Al-
4V substrate expressed significantly higher alkaline phosphatase activity than expressed 
by the cells attached to control (uncoated) or HA-coated substrates. (*p < 0.05; **p <  
0.01) 
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2.4 Discussion 

The broad objectives of this work were to develop a protocol to coat SCPC 

bioactive ceramic on Ti-6Al-4V orthopedic implant and to optimize the adhesion strength 

between the ceramic and metal. Moreover, the bioactivity of the SCPC-coated Ti-6Al-4V 

implant was evaluated in vitro. Zeta potential measurements indicated that SCPC50 

particles suspended in pure ethanol acquired the most negative surface charge compared 

to other SCPC formulations. Moreover, the use of ethanol as a suspension medium 

demonstrated minimal conductivity allowing the SCPC50 particles to be the primary 

carrier for the electric charge. SCPC50-coated Ti-6Al-4V samples thermally treated at 

800 ºC for 1 hr developed the highest adhesion strength of (47.2 ± 4.3 MPa) compared to 

the samples treated at lower temperatures. Fracture surface analyses showed that the 

failure occurred either at the interface between the ceramic coating and polymer or within 

the ceramic layer indicating the stability of the ceramic-metal interface. Bone marrow 

mesenchymal stem cells attached to SCPC50-coated Ti-6Al-4V samples expressed higher 

alkaline phosphatase activity than the cells attached to HA-coated or control uncoated Ti-

6Al-4V samples.  The strong stimulatory effect of SCPC50-coated Ti-6Al-4V implants 

indicates the superior bioactivity of the device compared to commercially available HA-

coated or uncoated Ti-6Al-4V implant.  

 The key to successful coating by electrophoretic deposition was the creation of a 

stable SCPC suspension that maximized particle mobility under electric potential. A 

stable solution would be created when the particles carry maximum charge on their 

surface, such that the inter-particle repulsion is maximized. Measurement of zeta 

potential (Figure 2.2a) showed a switch in the charge of the SCPC particles between pH 2 
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and 3. The change in the sign of the charge indicates that the suspended particles passed 

through the iso-electric point (pHIEP) at this pH range.  The low iso-electric point of 

SCPC can be attributed to the presence of silica in the material. Previous reports have 

shown that the incorporation of Si in HA resulted in a shift of the iso-electric point from 

(pHIEP = 5.5) for un-substituted HA to (pHIEP = 3.8) for Si substituted HA.117 Other 

studies on bioactive glass and pure silica118,119 have reported the iso-electric point of the 

material to be at pHIEP < 3, which was consistent with our findings. The high conductivity 

of the SCPC suspension at pH 2 can be attributed to the dominating role of H+ (from 

HNO3) that was added to adjust the pH. As the pH increased the conductivity of the 

solution decreased sharply. SCPC suspension with minimal conductivity is desirable 

because it enhances the current carrying capacity of the SCPC particles.   

 A strong correlation between the surface charge and the calcium phosphate 

content in SCPC material was observed. The surface charge at pH 3 increased in the 

order SCPC25 > SCPC50 > SCPC75 (Figure 2.2a). The highly polarized P-O- +Na bond 

in β-rhenanite solid solution facilitates the release of Na+ ions exposing the negatively 

charged PO4
3- groups on the material surface. The increase in the solution pH resulted in 

a further negative shift of the zeta potential of all samples due to the disruption of the 

silicate network and the ionization of SiO4
4- groups. In the pH range 6 - 8, the zeta 

potential curve plateaus, attaining the most negative zeta potential value for all SCPC 

samples. Such a plateau can be attributed to the complete ionization of the surface SiO4
4- 

groups in this pH range. Data in the literature showed that the negative zeta potential of 

quartz (SiO2) increased in the pH range 4.5 - 6 and plateaued at pH > 6, attaining a 

maximum zeta potential of -35 to -45 mV in the pH range 6 – 10.120 An increase in the 
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pH above 8 resulted in the decrease of the negative zeta potential of all SCPC samples. 

This was because of the increased ionic strength at pH 8 that compresses the electrical 

double layer resulting in a decrease of the zeta potential.121 The magnitude of the zeta 

potential of SCPC50 particles (-43.5 ± 0.1 mV) suspended in ethanol was higher than the 

corresponding values reported for other bioactive materials such di-calcium phosphate 

anhydride (-4.8 ± 1.1 mV)122 in similar suspending medium. In our study, the decrease in 

the suspension’s conductivity correlated well with the decrease in the dielectric constant 

(ε) of the suspending medium. Dielectric constant represents the ability of a material to 

polarize in an electric field. The low polarization of pure ethanol (ε = 24) minimized its 

role in conductivity as compared to 50% ethanol (ε = 38) or DI water (ε = 80). Moreover, 

the lower polarizability of ethanol would further enhance the electric field strength and 

facilitate particle mobility during EPD coating. Therefore, among the different SCPC 

formulations and media tested, SCPC50 particles suspended in 100% ethanol was 

selected for the EPD coating process. Under these conditions the SCPC50 particles 

carried the most negative surface charge and the suspension had minimal conductivity 

thereby promoting maximum mobility of the particles and hence efficient EPD coating.  

 In addition to optimizing the SCPC suspension for EPD coating we also modified 

the surface chemistry of the Ti-6Al-4V substrate to enhance homogenous coating. 

Previous studies have shown that the passivation of Ti-6Al-4V in HNO3 leads to the 

formation of a thick, homogeneous TiO2 sub-surface layer characterized by high surface 

energy.83 Moreover, the higher dielectric constant (ε) of the TiO2 (ε = 110) as compared 

to its lower oxides, such as TiO (ε = 40 - 50), permits greater charge accumulation on the 

passivated Ti-6Al-4V substrate. A consequence of such high polarization of the TiO2 
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surface is a stronger interaction with the charged SCPC50 particles and superior coating 

homogeneity. On the other hand, the mixture of oxides including TiO2, TiO and Ti metal 

present on the unmodified Ti-6Al-4V contributes to non-uniform surface charge 

distribution on the material surface. During EPD coating, the variations in the surface 

charge distribution on Ti-6Al-4V surface due to the variation in the oxidation states of Ti 

result in a non-homogenous coating.  Moreover, the formation of a thick film of TiO2 on 

Ti-6Al-4V minimizes metal corrosion.123,124 Previous studies on Ti-6Al-4V implants have 

reported the inhibitory role of the constituent metal ions on bone cell differentiation and 

debris induced osteolysis.26 Based on these results, all Ti-6Al-4V samples were subjected 

to passivation treatment before EPD coating.  

EPD coating of SCPC50 particles on Ti-6Al-4V substrate led to a uniform 

deposition of a densely packed SCPC50 coating layer. During EPD, particles from the 

bulk of the suspension migrate to the surface of Ti-6Al-4V anode and deposit to form the 

surface coating. Various theories have been proposed to explain the mechanism of 

particle deposition on the metal electrode.125,126 Sarkar et al studied the EPD coating of 

positively charged alumina particles exhibiting zeta potential (ζ) of 80 mV when 

suspended in ethanol at pH 4.0.126 They suggested that the cations (H+) that co-migrate 

with the alumina particles react with the electrical double layer of alumina and reduce its 

thickness, thereby resulting in the coagulation of alumina on the metal. However, no 

experimental evidence for such a mechanism was offered. De et al later postulated a 

theoretical model to investigate the experimental data of Sarkar et al. Their model 

predicted that the concentration of H+ in the vicinity of the metal electrode depletes due to 

charge neutralization, resulting in a local increase of pH from 4.0 to 7.2, the iso-electric 
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point (pHiep) of alumina.125 This facilitates the coagulation of alumina particles on the 

surface of the metal. It is interesting to note that the fate of cations described in these two 

studies is contradictory; while the former study suggests that the cations interact with 

alumina particles, the latter suggests that the cations discharge at the metal electrode. In a 

related work, Besra et al experimentally measured the pH of freshly deposited alumina 

obtained from the EPD coating of stainless steel using alumina particles suspended in 

water.127 Their results showed that the pH of the alumina deposit increased from 4.5 in 

bulk suspension to 8.4 on the metal electrode, passing through the iso-electric point at 

7.9. In any event, a common conclusion from these studies is that the reduction of the 

zeta potential of colloidal particles coagulates them onto the surface of the metal 

electrode. During EPD, the electric current is distributed between the negatively charged 

SCPC50 particles and the charged ions of the suspending medium. The applied electric 

field that motivates electrophoretic migration is much greater than the repulsive force 

between the negatively charged entities; therefore these species are attracted towards the 

positively charged Ti-6Al-4V electrode (anode). The coagulation of SCPC50 particles at 

the anode surface is caused due to the reduction of the zeta potential, most probably due 

to the discharge of electrons by anionic species (R-O-) that reduce the pH towards the 

pHiep of SCPC50 (pHiep = 2 - 3).  

 Mechanical tests showed that the SCPC50-coated Ti-6Al-4V samples thermally 

treated at 800 ºC/1 hr developed adhesion strength of 47.2 ± 4.3 MPa which exceeded the 

ASTM standard requirement of 30 MPa (ASTM F1147-05). The high adhesion strength 

between the SCPC50 coating and the Ti-6Al-4V can be attributed to efficient sintering 

between the ceramic and the metal. For EPD coating, we used SCPC50 particles in the 
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size range (200 nm –10 µm). Due to their small size and greater electrophoretic mobility, 

the nano-size particles were deposited faster than the micro size particles onto the surface 

of Ti-6Al-4V substrate. The SCPC50 nano-particles provided a homogenous dense layer 

on the metal surface. Nano-particles are known to have a lower softening temperature 

than micro particles.128 Therefore, upon thermal treatment the layer of nano-particles on 

Ti-6Al-4V served as an initiator for the strong bonding between the SCPC50 and the 

metal as well as among the SCPC50 particles. The enhanced softening of the SCPC50 

layer resulted in a strong integration between the SCPC50 and metal as shown in the 

cross sectional analysis of the coated implants (Figure 2.4f). The atomic diffusion 

between the ceramic particles allowed for greater ceramic densification at the relatively 

low sintering temperature of 800 ºC. Moreover, during the sintering process, the TiO2 

may react with SiO2 and P2O5 of SCPC50 which would further enhance the bonding 

between the metal and the ceramic. Previous studies have reported the formation of Ti5Si3 

and Ti4P3 compounds upon sintering silicate glass and Ti-6Al-4V.129,130 It is also possible 

that the Ca of SCPC50 forms a covalent bond with the TiO2 on the metal substrate. Such 

a hypothesis is based on previous studies that have shown that sintering powdered cp-Ti 

with HA at a temperature higher than 500 ºC resulted in the formation of CaTiO3 

compound.131,132 From a processing prospective, the use of lower temperature and/or 

slower rate of heating and cooling reduced the thermal stress at the ceramic-metal 

interface; thus contributing to the stability of the interface. It was interesting to note that 

the interface between Ti-6Al-4V and SCPC50 coating was intact for samples treated at 

various temperatures (600 - 800 ºC). Analysis of the fractured surface, following the 

mechanical test, indicated that the fracture occurred within the SCPC50 coating layer or 
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at the polymer glue/ceramic interface. Moreover,  adhesion strength between the SCPC50 

layer and the Ti-6Al-4V substrate after 7 days of PBS immersion showed that the fracture 

occurred at the interface between the CDHA layer deposited on the ceramic surface and 

the underlying SCPC50 coating (Figure 2.10). The bioactivity of the coated implant was 

enhanced as evidenced by the formation of a HA layer similar to the mineral phase of 

bone after immersion in physiological solution. Moreover, cell culture studies 

demonstrated higher stimulatory effect on bone cell differentiation of the SCPC50-coated 

substrates compared to HA-coated or uncoated substrates. The AP activity is an essential 

initial marker for differentiation.133 Figure 2.11 demonstrates that the AP activity on 

SCPC50-coated substrates was 2-fold higher than that expressed on the HA-coated 

substrates and 11-fold higher than that expressed on the uncoated substrates. The 

stimulatory effect of SCPC50 on osteoblastic gene expression has previously been 

reported.104,108 These results indicate that the EPD coating process did not affect the 

superior bioactivity properties of SCPC50 previously reported in the literature.103,104,108,116  

2.5 Conclusion 

Successful coating of a uniform layer of bioactive SCPC50 on the surface of Ti-

6Al-4V orthopedic implant was achieved using electrophoretic deposition. SCPC 

particles exhibited maximum zeta potential and minimal conductivity in pure ethanol. 

Moreover, the conductivity of the SCPC particles increased with the increasing silica 

content in the material. Mechanical tests showed that the interface between the SCPC50 

coating and Ti-6Al-4V developed strong adhesion strength of 47.2 ± 4.3 MPa after 

thermal treatment at 800 ºC/1 hr. The strong adhesion between the SCPC50 coating and 

the Ti-alloy substrate persisted after 7 days of immersion in physiological solution. 
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Moreover, the SCPC50 layer enhanced the bioactivity properties of the implant as 

indicated by the formation of a biological hydroxyapatite layer and the strong stimulatory 

effect on the expression of alkaline phosphatase activity. Therefore, SCPC50 coating has 

the potential to expedite bone bonding to Ti-6Al-4V and enhance longevity of the 

implant. Future work to assess the effect of the SCPC50 coating on osteoblast activity 

would include gene expression and protein synthesis analyses.   
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CHAPTER 3: PRO-OSTEOGENIC RESPONSES BY A BIOACTIVE CERAMIC 
COATING 

 
 
3.1 Introduction 

Coating orthopedic Ti-6Al-4V implants with bioactive calcium phosphate ceramics 

provides an osteoconductive surface that stimulates direct bone bonding and minimizes 

the loosening of the implant.52,134,135 Moreover, the bioactive ceramic coating facilitates 

proper transmission of a mechanical stimulus from the implant to the bone; an important 

phenomenon that alleviates stress shielding of the peri-prosthetic bone and impedes its 

resorption.136,137 Plasma-sprayed hydroxyapatite (HA) coated Ti-6Al-4V has been widely 

used; however, the high temperature of the plasma during coating results in a partial 

decomposition of HA into undesirable phases of altered solubility and 

biocompatibility.51,114 Moreover, the difference in the thermal expansion coefficient 

between ceramic and the metal substrate creates interfacial thermal stresses that result in 

poor adhesion.57 Other studies have shown that the HA coating layer is often cracked and 

non-homogenous in both thickness and crystallinity which renders the coating prone to 

delamination.57,138,139 The increase in the thickness of the HA layer decreases the shear 

strength of the implant making it more susceptible to failure at the metal-ceramic 

interface.  

Recent approaches to improve the stability of the coated layer include the use of 

TiO2, either as an intermediary layer between HA and the metal75,76,140 or as a mixture 

with HA.141 The incorporation of TiO2 was found to reduce the decomposition of the HA 
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and enhance the Young’s modulus, fracture toughness and shear strength of the HA 

coating layer.75,140 The incorporation of carbon nano-tubes (CNT) within the HA layer 

has been proposed as a means of improving its mechanical strength.78,80 CNT aided 

reinforcement of HA is reported to have produced a homogeneous coating with 

significant improvement in the crystallinity and toughness of HA coating.78 However, the 

toxicity and long-term effects of CNT remains an on-going debate.142 Coating techniques 

such as ion-beam-assisted deposition and magnetron sputtering have been employed to 

deposit thin ceramic coating of 0.1 – 10 µm thickness,44 however these processes are 

neither simple nor cost-effective. Electrophoretic Deposition (EPD) of bioactive ceramics 

on metal substrates favor low sintering temperature and slow heating and cooling cycles 

that minimize interfacial stresses between metal and ceramic and enhance adhesion 

strength.143,144 Coating bioactive silica-calcium phosphate nanocomposite (SCPC50) on 

Ti-6Al-4V orthopedic implant using EPD showed the adhesion strength at the interface 

between the metal substrate and the bioactive ceramic to be 47 ± 4 MPa which exceeded 

the ASTM (F1147-05) requirement of 30 MPa as described in Chapter 2.  

Cell responses to implants are known to be mediated by material-related 

parameters including: surface chemistry, surface charge, crystallinity and ion release. An 

increase in the negative surface charge of the HA coating by electric polarization 

enhances bone cell adhesion, and mineralization.145 The enhancement of cell activity was 

attributed to the accumulation of Ca ions on the negatively charged HA surface after 

polarization treatment. Moura et al coated amorphous CaP onto rough Ti-6Al-4V 

surfaces and reported that a thin CaP coating with a thickness of 0.3-0.5 µm was 

insufficient to stimulate in vitro osteogenesis.146 However, other studies reported 
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contradictory results and showed that 0.2 – 1.1 µm thick CaP coating stimulated cell 

proliferation and differentiation.147,148 Gomes et al showed that coating Ti-6Al-4V with 

Si containing HA enhanced osteoblast proliferation, differentiation and matrix 

mineralization.149 The stimulatory effect of the coating was attributed to the release of Si 

that resulted in a concentration of Si in the surrounding medium of 0.05 – 0.12 mM. In 

addition, none of the above studies addressed the effect of calcium phosphate coating on 

protein adsorption. Cell attachment to an implant is strongly governed by the amount, 

kind and conformation of proteins that adsorb onto the material’s surface.150-152 

Protein adsorption is determined by the physico-chemical characteristics of the 

implant material including zeta potential, surface chemistry, material crystallinity and 

surface area.102,150,153,154 Previous studies of albumin adsorption to various bioactive and 

non-bioactive ceramics showed that materials exhibiting a higher negative zeta potential 

enhanced protein adsorption.155 The selective adsorption of bioactive ceramics to certain 

proteins in serum has been reported.156-158 . HA inhibits the adsorption of serum proteins 

less than 23.1 kD in size156 while promoting the adsorption of attachment proteins such as 

fibronectin and vitronectin.158 El-Ghannam et al showed that the formation of a CaP layer 

on bioactive glass enhanced the selective adsorption of fibronectin. On the other hand, 

porous HA adsorbed all kinds of serum proteins without any preference to fibronectin.157 

The reasons for the specificity of serum fibronectin to the HA surface layer that form on 

bioactive glass are not fully understood. Garcia et al investigated the effect of CaP 

crystallinity on protein adsorption and reported that the mere presence or crystallinity of 

the CaP layer does not affect the amount of adsorbed proteins.159 Rather, it has been 

postulated that the substrate-induced fibronectin conformation can enhance cell adhesion. 
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In support of this idea, one study has shown that Si substitution in HA does not affect the 

amount of serum proteins adsorbed, suggesting that the enhanced cell response to Si-HA 

is most probably due to changes in the protein conformation.160 Furthermore, Buchanan 

et al have demonstrated that attachment proteins such as fibronectin express a higher 

ratio of amide I/amide II FTIR bands after adsorption onto bioactive glass.154 On the 

other hand, non-attachment proteins such as albumin showed higher amide II/amide I 

after adsorption on the same bioactive material.   

The mechanism of action of bioactive ceramics includes up-regulation of the 

expression of osteoblastic genes such as collagen I, osteocalcin and osteopontin, and the 

increased product of such bone-associated proteins.161,162 In particular, non-collagenous 

proteins such as osteopontin and osteocalcin are known to play important role in bone 

mineralization.161,163 The literature suggests that the surface of implant materials can 

induce the expression of cytokines by osteoblasts that can promote potentially damaging 

inflammation and ostoclastogenesis.164,165 Cytokines such as interleukin (IL)-6 and 

receptor activator for nuclear factor κ B ligand (RANKL) are well known to be expressed 

by activated osteoblasts and both promote osteoclast formation and/or activity.  In 

contrast, IL-12 has been suggested to exert an inhibitory effect on osteoclast 

differentiation by blocking RANKL activity.166 The objective of the present study is to 

investigate the responses of osteoblasts to SCPC50-coated Ti-6Al-4V implant material. 

The effect of SCPC50 coating on bone cell differentiation, mineralization and synthesis 

of pro-inflammatory/osteoclastogenic cytokines has been measured and correlated to the 

surface chemistry, protein adsorption and the dissolution of the material.  
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3.2 Materials and Methods 

3.2.1  SCPC50 preparation and coating on Ti-6Al-4V implant 

Bioactive SCPC50 containing 40.68% CaO, 20.34% P2O5, 19.49% Na2O and 

19.49% SiO2 (in mol%) was prepared using a previously described powder metallurgy 

technique.103,108 SCPC50 nano-particles were produced by grinding the ceramic powder 

in a PM-100 planetary ball mill (Retsch Technology, Newtown, PA) at 500 rpm for 24 hr. 

Medical grade Ti-6Al-4V ELI (ASTM F136-08e1) discs (1.3 cm dia x 0.5 cm thick) were 

coated with SCPC50 particles using EPD as described in Chapter 2. Briefly, the Ti-6Al-

4V disc was immersed in a 10 wt% SCPC50 suspension in ethanol and coated using a 

voltage of 50 V for 30 sec (n = 25). The SCPC50-coated substrates were thermally 

treated at 800 ºC for 1 hr under argon. 

3.2.2  Surface morphology and coating thickness analysis 

The surface morphology of SCPC50-coated Ti-6Al-4V substrates was analyzed 

using a scanning electron microscope (SEM; JEOL USA Inc, Waterford, VA) equipped 

with an energy dispersive X-ray spectroscope (EDX; Oxford Instruments, Concord, MA) 

used under secondary electron imaging mode. To analyze the coating thickness, the 

samples were embedded in an epoxy solution and sectioned using a diamond saw. The 

fractured surface was ground on 1200 grit silicon carbide pad and polished on a micro-

cloth using 50 nm alumina particles. Five measurements of the coating thickness were 

performed in seven (n = 7) different areas along the cross-section of the fractured surface 

using SEM. The data are presented as mean ± standard deviation of all measurements. 
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3.2.3     Protein adsorption analyses 

3.2.3.1  Total protein adsorption  
 

SCPC50-coated and uncoated Ti-6Al-4V samples (n = 5) were immersed in 6 mL 

of tissue culture medium (TCM) containing 10% FBS for 4 hr at 37 ºC. The samples were 

briefly rinsed and the total proteins adsorbed onto the samples were extracted in 3% 

Triton X-100 in PBS for 15 min. The concentration of the extracted protein was 

determined using Micro BCA protein assay kit (Thermo Scientific, Rockford, IL) as per 

the manufacturer’s instructions. SCPC-coated and uncoated samples immersed in serum-

free media served as control.  

3.2.3.2  Protein conformation analyses  
 

The secondary structure of the proteins adsorbed on SCPC50-coated and uncoated 

Ti-6Al-4V samples (n = 5) were analyzed by Fourier transform infrared spectroscopy 

(FTIR) using a Thermo Nicolet 6700 FTIR spectrometer (ThermoNicolet, Madison, WI) 

in the diffuse reflectance mode. Gold was used as the background for collecting the 

spectra. The baseline of the spectra was adjusted from 1460 to 1720 cm-1 to 

accommodate the amide I and amide II functional groups. The peak location and the ratio 

of the area under the peak for amide I and amide II functional groups in each spectra 

were determined. 

3.2.3.3  Western blot analysis 
 

SCPC50-coated and uncoated Ti-6Al-4V samples (n = 5) were immersed in 1 mL 

FBS for 4 hr at 37 ºC. The samples were rinsed briefly and the proteins adsorbed were 

extracted in a SDS-PAGE denaturing buffer, pooled, and boiled for 15 min. The volume 

of sample to be loaded for electrophoresis was determined based on the total amount of 
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protein absorbed by each sample. Equal amounts of protein were loaded onto an 8% 

polyacrylamide gel and separated by SDS-PAGE electrophoresis. The contents on the gel 

were electro-transferred onto a polyvinylidene difluoride membrane, blocked in 5% non-

fat milk and incubated overnight with a mouse monoclonal antibody directed against 

fibronectin (Santa Cruz Biotech; 1:500 dilution) at 4 ºC. Immunoblots were then 

incubated with a horseradish peroxidase conjugated goat anti-mouse secondary antibody 

(Santa Cruz Biotech; 1:5000 dilution) for 2 hr at room temperature to visualize 

fibronectin bands as described elsewhere.167  

3.2.4     Osteoblast cell line responses to SCPC50-coated Ti-6Al-4V 

3.2.4.1  Cell culture system 
 

MC3T3-E1 mouse osteoblast-like cells (ATCC; Manassas, VA) were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), 0.05% gentamycin and 0.1% amphotericin-B and incubated at 37 ºC and 

5% humidified CO2. Ti-6Al-4V discs with and without SCPC50 coating (n = 5) were 

sterilized by immersion in pure ethanol for 30 min and dried under UV-irradiation. Upon 

70-80% confluency, cells were trypsinized and seeded on the SCPC50-coated and 

uncoated Ti-6Al-4V samples at a density of 6 x 105 cells/sample in 6-well tissue culture 

polystyrene plates and incubated in a sufficient volume of cell culture media to cover the 

top surface of the implant disc (6 mL). After 2 days, the media was exchanged and 

supplemented with dexamethasone (10-8 M) and ascorbic acid (50 µg/mL), and the 

samples were incubated for another 2 days. 
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3.2.4.2  Gene expression analyses  
 

After 4 days, total mRNA from each sample was extracted, pooled, and reverse 

transcribed to cDNA. Osteoblast phenotypic genes, collagen-I (Col-I), osteonectin 

(OSN), osteopontin (OPN) and osteocalcin (OCN) as well as the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used to amplify the cDNA 

fragments by semi-quantitative polymerase chain reaction (PCR) using specific primer 

pairs as previously described.167-170 The PCR products were resolved by agarose gel 

electrophoresis (1.5 wt% gel containing trace amount of ethidium bromide) and 

visualized under UV-illumination.  Quantitative real-time–PCR (qRT-PCR) analysis was 

also performed on each of the cDNA fragments using a SYBR green approach in a 

LightCycler (Roche, Indianapolis, IN) as previously described by our laboratory.171 Gene 

amplification data analysis was performed with LightCycler software version 4.0 and 

normalized to the expression of GAPDH determined in parallel qRT-PCR analyses.   

3.2.4.3  Osteogenic protein synthesis  
 

The release of osteogenic proteins in the cell culture media (n = 6) was analyzed 

over 20 days using commercially available ELISA kits for osteopontin (R&D Systems, 

Minneapolis, MN) and osteocalcin (Biomedical Technologies, Stoughton, MA) according 

to the manufacturer’s instructions. The media was exchanged every 2 days and stored at -

80 ºC until further analysis. Cell culture media collected at every time point in the 

absence of cells served as control. After 20 days, the samples were immersed in 1% 

Triton X-100 for 15 min. The supernatant was collected, centrifuged briefly and analyzed 

for total protein using the micro BCA assay. The data are presented as ng/mL (OCN or 

OPN)/mg protein. Finally, the stability of the residual SCPC coating was evaluated by 
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immersion in 2 mL PBS for another 7 weeks (10 week total incubation period) at the end 

of which samples were embedded in an epoxy resin and residual coating layer thickness 

determined by SEM. 

3.2.4.4  Immunological response  
 

The production of the pro-inflammatory and/or osteoclastogenic cytokines, IL-6, 

IL-12p40 and RANKL, by MC3T3-E1 osteoblast-like cells was analyzed at 4 days of 

incubation (n = 5) using commercially available ELISA kits (R&D Systems, 

Minneapolis, MN) performed according to the directions provided by the manufacturer. 

3.2.5     Spectroscopic and Imaging analyses 

3.2.5.1  FTIR analyses of the osteoblast-like cell layer 
 

The surface chemistry of SCPC50-coated and uncoated Ti-6Al-4V samples 

immersed for 4 days in TCM in the presence or absence of osteoblast-like cells was 

analyzed using FTIR as described above. Un-immersed SCPC50-coated and uncoated Ti-

6Al-4V samples served as controls. 

3.2.5.2  SEM - EDX analyses 
 

The morphology of cells attached to one sample of SCPC50-coated and uncoated 

Ti-6Al-4V substrate was analyzed using SEM - EDX after 4 and 20 days of incubation. 

Moreover, EDX analyses of ten different regions on the substrate were carried out. 

Briefly, the samples were removed from the cell culture media, rinsed in PBS and fixed 

overnight in Karvonsky’s fixative (Electron Microscopy Sciences, Hatfield, PA) at 4 ºC. 

The samples were subjected to serial ethanol dehydration followed by dehydration in 

hexamethyldisilazane for 15 min. After drying in a dessicator for 2 hr, the samples were 

coated with a 5 nm gold film. 
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3.2.6   Dissolution analyses  
 

The dissolution of SCPC50-coated and uncoated Ti-6Al-4V samples were 

analyzed by measuring the ionic concentration of Ca, Si, P and Ti in the cell culture 

media using inductively coupled plasma – optical emission spectroscopy (ICP-OES; 

Perkin Elmer, Waltham, MA). The machine was operated under the conditions previously 

reported.108  

3.2.7   Statistical analyses 
 

The data are expressed as the means ± standard deviation and analyzed by one-way 

ANOVA using Fisher’s LSD post-hoc test. A p-value of < 0.05 was considered 

statistically significant. 

3.3     Results 

3.3.1  Surface morphology and coating thickness 
 

SEM imaging of the SCPC50-coated Ti-6Al-4V substrate showed that the surface 

was uniformly coated with SCPC50 nano-particles (Figure 3.1a). SCPC50 nano-particles 

appeared well sintered without any sign of surface cracking and demonstrated an average 

pore size of 50 ± 14 nm (inset; Figure 3.1a). Cross-section analyses showed that the 

thickness of the SCPC50 layer was 5.1 ± 0.08 μm (Figure 3.1b) (n = 7). Importantly, the 

interface between SCPC50 and Ti-6Al-4V was intact indicating strong adhesion.  
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Figure 3.1: SEM images of the SCPC50-coated Ti-6Al-4V implant material showing (a) 
SCPC50 nano-particles on the surface of the metal substrate. The particles appeared well-
sintered and showed the presence of nano-pores at high magnification (inset); (b) cross-
section image showing a uniform thickness (5.1 ± 0.08 μm) of SCPC50 layer. The arrows 
point to the lower and upper interfaces of the SCPC50 coating layer with Ti-6Al-4V and 
epoxy resin, respectively.  

3.3.2     Protein adsorption characteristics 

3.3.2.1  Total protein and fibronectin adsorption  

Measurement of total protein adsorption showed that SCPC50-coated Ti-6Al-4V 

substrates adsorbed 14.9 ± 1.2 μg of protein (n = 5) which was significantly higher (p < 

0.01) than that adsorbed by uncoated Ti-6Al-4V substrates (8.9 ± 0.7 μg) (Figure 3.2a). 

Western blot analysis revealed extensive fibronectin adsorption by SCPC50-coated 

substrates (Figure 3.2b left lane) while uncoated Ti-6Al-4V substrates demonstrated only 

minimal adsorption (Figure 3.2b middle lane). 
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Figure 3.2: (a) Total protein analysis showed that SCPC50-coated Ti-6Al-4V samples 
adsorbed significantly higher (**p < 0.01) amount of serum proteins than uncoated Ti-
6Al-4V samples. (b) Western blot analysis of the protein desorbed from SCPC50-coated 
(left lane) and uncoated (middle lane) Ti-6Al-4V samples showing evidence of 
fibronectin adsorption on the former substrate. Minimal fibronectin adsorption was 
observed on uncoated Ti-6Al-4V samples. The rightmost lane indicates a dark band at 
205 kDa (arrow) resulting from fibronectin in FBS. 

 

3.3.2.2  Protein conformation analysis 
 

FTIR spectra of the proteins adsorbed on SCPC50-coated (Figure 3.3a) and 

uncoated (Figure 3.3b) Ti-6Al-4V substrates showed that the ratio of the area under the 

peak for the amide I and amide II spectra bands was significantly higher (p < 0.05) for 

SCPC50-coated substrate (5.0 ± 0.6) than uncoated substrate (2.2 ± 0.3). The center of 

the amide I band occurred at 1656 cm-1 on both substrates while the center of the amide II 

band appeared at 1542 and 1536 cm-1 on SCPC50-coated and uncoated Ti-6Al-4V 

samples, respectively. A distinct shoulder can be seen in the representative spectrum at 

1600 cm-1 in the amide I region for samples from uncoated Ti-6Al-4V representing 

protein side chains (arrow; Figure 3.3b). In addition, it was found that the absorption 

intensity of the amide I and amide II bands on SCPC50-coated samples were 10- and 3-
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fold higher, respectively, than the corresponding band intensities on the uncoated Ti-6Al-

4V samples. 

Figure 3.3: FTIR spectra of proteins adsorbed on (a) SCPC50-coated and (b) uncoated Ti-
6Al-4V substrates after immersion in tissue culture medium for 4 h. Higher expression of 
amide I band was observed on SCPC50-coated substrate as compared to uncoated Ti-
6Al-4V substrates. The high expression of amide I has been associated with enhanced 
cell activity. The arrow points to the shoulder representing protein side chains. 

 

 

3.3.3  Bone cell phenotypic expression 

3.3.3.1  Osteogenic protein synthesis  
 

Cells attached to SCPC50-coated samples released significantly higher amounts 

of osteopontin (Figure 3.4a) and osteocalcin (Figure 3.4b) (p < 0.05) as compared to cells 

attached to uncoated Ti-6Al-4V samples throughout the experimental period. A 

significant increase (p < 0.05) in the synthesis of osteopontin was observed on both, 

SCPC50-coated and uncoated Ti-6Al-4V samples from day 16 to day 20. Minimal 

synthesis of osteocalcin was observed on either sample after 4 days of incubation, either 

due to the limitations of the detection limit of ELISA protocol or due to a delayed 
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osteocalcin secretion. Moderate levels of osteocalcin were synthesized by cells attached 

to SCPC50-coated or uncoated substrates until day 12; however significant (p < 0.01) 

changes in the osteocalcin levels were measured thereafter. Between day 16 and 20, a 3-

fold increase in osteocalcin production was observed by cells attached to SCPC50-coated 

samples as compared to cells attached to uncoated Ti-6Al-4V samples.  

Figure 3.4: Concentrations of (a) osteopontin and (b) osteocalcin released by cells 
attached to SCPC50-coated and uncoated Ti-6Al-4V substrates after 4 - 20 days in 
culture. Cells attached to the SCPC50-coated substrates released significantly higher 
levels of osteopontin and osteocalcin throughout the experimental period. (*p < 0.05; **p 
< 0.01)  

 

3.3.3.2  Measurement of gene expression 
 

To determine whether enhanced levels of osteogenic protein production were due 

to changes in mRNA transcription, osteoblastic cells were attached to SCPC50-coated 

and uncoated Ti-6Al-4V for 4 days prior to isolation of total mRNA and analysis by 

quantitative real-time PCR.  As shown in Figure 3.5d, cells attached to SCPC50-coated 

samples demonstrated 10.7-fold higher levels of mRNA encoding OCN than that 
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expressed by cells attached to uncoated Ti-6Al-4V.  In contrast, cells attached to 

SCPC50-coated samples expressed significantly lower levels of mRNA encoding Col-I, 

OSN and OPN (Figure. 3.5a-c) suggesting that the increases in protein production of 

these products shown in Figure 3.4 are not due to increased transcription but may instead 

be due to changes in translation. 

 

Figure 3.5: qRT-PCR analyses showing the levels of (a) Col-I; (b) OSN; (c) OPN and (d) 
OCN mRNA expressed by MC3T3-E1 cells after 4 days of incubation. Cells attached to 
uncoated Ti-6Al-4V substrates expressed higher levels of Col-I, OSN and OPN mRNA 
than that expressed by cells attached to the SCPC50-coated substrates. However, cells on 
SCPC50-coated substrate expressed higher level of OCN mRNA than the cells on 
uncoated Ti-6Al-4V substrate. The higher expression of OCN mRNA indicates the 
greater stimulatory effect of SCPC50 on cell differentiation.  
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3.3.3.2  Immunological response 
 

Cells attached to SCPC50-coated Ti-6Al-4V substrates released significantly 

lower amount of the inflammatory and osteoclastogenic cytokines IL-6 (p < 0.01) and 

RANKL (p < 0.05) into the culture medium than that produced by cells attached to 

uncoated substrates (Figure 3.6). While the amount of IL-12p40 released by cells 

attached to SCPC50-coated samples tended to be lower than that released by cells 

attached to the uncoated Ti-6Al-4V, this decreased production was not statistically 

significant.  

Figure 3.6: Measurements of the concentration of pro-inflammatory and osteoclastogenic 
cytokines showed that cells attached to SCPC50-coated Ti-6Al-4V released lower levels 
of IL-6, IL-12p40 and RANKL than those attached to the uncoated Ti-6Al-4V control. 
Lower expression of cytokines indicates low level immune response. (*p < 0.05; **p < 
0.01) 
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3.3.4  Imaging and spectroscopic analyses 

3.3.4.1  SEM - EDX analyses  
 

SEM analyses of MC3T3-E1 cells after attached to SCPC50-coated or uncoated 

Ti-6Al-4V substrates showed complete surface coverage with a dense layer of cells on 

both samples after 4 days of incubation. Cells attached to the SCPC50-coated substrate 

showed early synthesis of calcified nodules (Figure 3.7a) while the cells attached to 

uncoated Ti-6Al-4V did not synthesize such nodules (Figure 3.7b). After 20 days of 

incubation, cells attached to the SCPC50-coated substrates produced a mineralized 

extracellular matrix populated with mature calcified nodules of 471.39 ± 96.08 nm 

diameter (Figure 3.7c). EDX analyses of the cell layer on the material surface showed a 

Ca/P ratio of 1.02 ± 0.23 with the presence of sulfur signal indicating biological 

mineralization. On the other hand, cells attached to uncoated Ti-6Al-4V substrates did 

not synthesize calcified nodules; however, spherical projections were observed on the cell 

layer (arrows; Figure 3.7d). The remarkable difference in the extent of mineralization 

between SCPC50-coated and uncoated Ti-6Al-4V substrate is noteworthy. Long-term 

immersion of SCPC50-coated samples in a physiologic solution showed that the 

thickness of the coating layer reduced from 5.1 ± 0.08 μm to 2.12 ± 0.38 µm after 10 

weeks of immersion. 
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Figure 3.7: SEM images of MC3T3-E1 cells showed (a) the formation of calcified 
nodules on cells attached to SCPC50-coated substrates after 4 days of incubation. (b) Cell 
layer on the surface of control uncoated Ti-6Al-4V substrates did not show signs of 
calcification; (c) Cells attached to SCPC50-coated substrates produced mineralized 
extracellular matrix densely populated with calcified nodules after 20 days in culture. (d) 
Cells attached to the uncoated Ti-6Al-4V substrates did not show comparable 
mineralization under the same experimental conditions; however, a few spherical 
projections (arrow) were observed on the cell membrane. 

3.3.4.2  FTIR analyses  
 

Figure 3.8 shows the FTIR spectra of SCPC50-coated Ti-6Al-4V samples before 

and after immersion in TCM for 4 days in the presence or absence of cells. Unmodified 

(control) SCPC50-coated Ti-6Al-4V samples showed characteristic Si-O-Si stretching 

bands at 1075, 1160 and 1220cm-1 (Figure 3.8a). In addition, peaks representing P-O 

bending mode at 453 and 538 cm-1 and P-O stretching mode at 860 and 986 cm-1 were 
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observed. SCPC50-coated samples immersed in TCM in the absence of cells showed a 

diminished P-O stretching band at 860 cm-1. New peaks at 850 and 1411 cm-1 

corresponding to the symmetric stretching of O-C-O were noted (Figure 3.8b). On the 

other hand, SCPC50-coated samples immersed in TCM in the presence of cells showed 

evidence of HA formation.  A characteristic triplet of peaks at 570 and 590 cm-1 

corresponding to orthophosphate groups, along with a shoulder at 620 cm-1 corresponding 

to non-bridging O-H were observed (Figure 3.8c). Moreover, a sharp peak at 960 cm-1 

corresponding to the PO4
3- group of HA was also observed. The presence of these bands 

indicates the formation of HA layer on SCPC-coated samples in the presence of cells. 

Uncoated Ti-6Al-4V samples immersed in TCM under similar experimental conditions 

did not show any HA formation (data not shown). 
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Figure 3.8: FTIR spectra of (a) unmodified SCPC50 coating layer on Ti-6Al-4V showing 
prominent peaks at 453, 538 and 978 cm-1 corresponding to the P-O groups and at 1075, 
1160 and 1220 cm-1 corresponding to (Si-O-Si) structure; (b) After immersion in TCM 
for 4 days, the broad peak at 978 cm-1 representing P-O stretching band was diminished 
and new peaks at 850 and 1441 cm-1 corresponding to the O-C-O symmetric vibrations 
appeared. (c) SCPC50-coated samples with attached cells showed a characteristic triplet 
of peaks at 570, 590 and 620 cm-1 typical for hydroxyapatite.  

3.3.5  Dissolution analyses 
 

ICP - OES analyses of the cell culture media incubated with SCPC50-coated Ti-

6Al-4V samples in the presence of cells showed that the Ca concentration in the media 

decreased significantly (p < 0.01) from 68.9 ± 6.9 ppm on day 2 to 38.2 ± 3.3 ppm on day 

4 (Figure 3.9a). However, the Ca concentration in the medium increased thereafter and 

continued to increase to 74.2 ± 5.0 ppm on day 12 after which no significant change was 

measured. SCPC50-coated samples released 72.2 ± 6.1 ppm and 59.7 ± 2.4 ppm P after 
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incubation in media for 2 and 4 days, respectively which was significantly higher (p < 

0.05) than the corresponding values measured in media incubated with uncoated Ti-6Al-

4V or media without substrate (control) (Figure 3.9b). However, a comparable P 

concentration among all substrates was measured thereafter. The release of Si was 

observed only in media incubated with the SCPC50-coated samples (Figure 3.9c). The Si 

concentration in the media increased marginally from 1.3 ± 0.2 ppm on day 2 to 1.9 ± 0.3 

ppm on day 4, after which a sustained release in the range of 1.3 - 1.7 ppm was measured 

until day 12. A significant reduction (p < 0.05) in the Si concentration in the medium was 

measured after day 12, after which the SCPC50-coated samples continued to release Si in 

the range of 0.6 – 0.7 ppm until day 20. The media of cells attached to uncoated Ti-6Al-

4V or media without substrate showed comparable levels of Ca and P throughout the 

experimental period. Release of Ti from SCPC50-coated samples was not detected. 

However, uncoated Ti-6Al-4V samples released 4.3 ± 0.7 and 1.3 ± 0.5 ppb Ti after 2 

and 4 days of incubation, respectively, after which no further release was detected.   
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Figure 3.9: ICP-OES analyses of the tissue culture medium incubated with SCPC50-
coated and uncoated Ti-6Al-4V samples in the presence of cells. (a) The concentration of 
Ca in the media incubated with SCPC50-coated samples decreased significantly after 4 
days indicating Ca uptake by the SCPC50 surface. (b) On the other hand, the dissolution 
of SCPC50 coating significantly elevated the concentration of P in the tissue culture 
medium during the first 4 days of incubation. Minimal changes in the concentration of Ca 
and P were measured after 8 and 6 days, respectively. (c) The release of Si was observed 
only in TCM incubated with SCPC50-coated samples. A near-constant release of Si, in 
the concentration range of 1.3 – 1.8 ppm was measured up to 12 days of incubation, 
followed by a decrease in Si release thereafter. (**p < 0.01) 

3.4    Discussion 

Ti-6Al-4V coated with bioactive SCPC50 promoted osteoblast differentiation and 

deposition of mineralized bone matrix. MC3T3-E1 cells attached to SCPC50-coated Ti-

6Al-4V showed up-regulated OCN mRNA after 4 days in culture and synthesized higher 
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amounts of osteocalcin and osteopontin proteins at all-time points as compared to 

uncoated Ti-6Al-4V substrates. Moreover, cells attached to the SCPC50-coated Ti-6Al-

4V synthesized mineralized extracellular matrix after 4 days in culture as shown by FTIR 

and SEM analyses. The stimulatory effects of SCPC50 coating on cell differentiation and 

bone formation were accompanied by a decreased production of the inflammatory and 

osteoclastogenic cytokines, IL-6 and RANKL, indicating that such a coating minimizes 

the immune pro-resorptive functions of bone cells.  On the other hand, cells attached to 

control uncoated Ti-6Al-4V implant material synthesized high levels of these soluble 

mediators and showed delayed osteoblast differentiation as indicated by a low expression 

of osteocalcin mRNA and a failure to produce mineralized bone matrix under the same 

experimental conditions. The strong stimulatory effect of SCPC50 coating on osteogenic 

functions correlates well with the selective adsorption of high quantities of serum 

proteins, in particular fibronectin, and the favorable conformation of the adsorbed protein 

onto the surface of the implant material.  Another important factor that facilitated 

osteoblast differentiation was the dynamic changes in surface chemistry of SCPC50 

coating as indicated by the uptake of Ca and release of P and Si. As such, the stimulatory 

effect on osteoblast differentiation and deposition of mineralized bone matrix of 

SCPC50-coated Ti-6Al-4V has the potential to enhance tissue integration and fixation of 

orthopedic implants.  

The majority of serum proteins have low isoelectric point, such as albumin (pHiep 

= 4.6), and are negatively charged at a physiological pH.172  Previous studies have shown 

that the surface charge of SCPC50 is (-40.3 ± 1.76 mV), which is significantly higher 

than that reported for TiO2 (15.0 - 30.2 mV) in water.173,174 Ti-6Al-4V has a high 
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tendency to adsorb oxygen from the surrounding and form a TiO2 surface layer.175 

Therefore, it is expected that negatively charged protein molecules are bound to the 

surface by electrostatic attraction. It is also possible that protein binding is mediated by 

Ca2+ ions adsorbed onto the surface of the material.176 Therefore, based on the 

electrostatic adsorption mechanism, a lower serum protein adsorption onto SCPC50 

surface is expected. However, our results showed a higher adsorption of serum proteins 

onto the SCPC50-coated substrates indicating that chemisorption is the primary 

mechanism of protein binding. The adsorbed protein was quantified using the detergent 

extraction which, based on previous work in our lab (not published), removes almost (95 

- 98%) of the adsorbed proteins. The SCPC50 is composed of a solid solution of β–

rhenanite (β-NaCaPO4) and α-cristobalite (α-SiO2).
103 Ca2+ present in the β-rhenanite 

phase of the SCPC50 serve as a bridge between the negatively charged substrate and 

serum proteins. The role of Ca2+ as a chelator and stabilizer for many different serum 

proteins, including albumin and fibronectin, is well established.177,178 Previous reports 

from our lab have shown the ability of SCPC50 to up-take Ca2+ from physiologic solution 

and concentrate it onto the ceramic surface within 2 hr of immersion.108 Therefore, the 

increase in Ca2+ concentration on the material surface could increase the number of 

binding sites for protein adsorption. Klinger et al incorporated Ca2+ on the surface of cp-

Ti and studied the adsorption of human serum albumin (HSA) to the material.179 It was 

found that the presence of Ca2+ on the surface of cp-Ti enhanced HSA adsorption more 

than two fold as compared to Ca2+ free surface. The presence of the α-cristobalite solid 

solution103 as well as the amorphous silica-rich phase at the grain boundaries of 

SCPC50180 can also play an important role in enhancing serum protein adsorption. In 
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aqueous solution, the deprotonation of silanol (Si-OH) groups into Si-O- results in a 

highly polar bond. The electronegative oxygen atom in Si-O- can interact with the basic 

amino acid residues in proteins such as guanidinium or NH3
+, resulting in hydrogen 

bonding (-N-H---O-) between the substrate and the protein.181,182 Another material related 

parameter that could contribute to the enhanced protein adsorption to SCPC50 is the high 

surface area provided by the porosity of the surface. SEM analyses (Figure 3.1 inset) 

showed that the surface of the SCPC50 coating is highly porous with an average pore size 

of 50 ± 14 nm which provided a high surface area for protein binding.  

Proteins adsorbed onto SCPC50-coated Ti-6Al-4V samples expressed a 

significantly higher ratio of amide I/amide II bands as compared to that expressed by 

proteins adsorbed onto the uncoated Ti-6Al-4V samples. Previous reports from our lab 

have shown a correlation between the high expression of amide I and osteoblast 

activity.154 In contrast, high expression of amide II was associated with limited osteoblast 

activity.154 The amide I and amide II FTIR bands are primarily due to the stretching 

vibrations of the C=O and bending vibrations of the N-H functional groups of the peptide 

bond, respectively.183,184 Both the C=O and the N-H bonds can interact with the Si-OH 

groups and Ca-containing β-rhenanite in SCPC50 as shown in reactions 3.1 and 3.2: 

             O=C-N-H + Si-OH           (Si-O-H---N-C=O)                                      (3.1) 

  H-N-C=O + Ca2+             (-Ca-O-C-N-H)                                            (3.2) 

Protein adsorption according to equation (3.1) would results in the exposure of 

C=O groups (amide I) on the material surface. Alternatively, protein adsorption 

according to equation (3.2) would enhance the surface exposure of the -N-H groups and 

hence the expression of amide II band. The enhanced expression of amide I band on 
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SCPC50-coated samples (Figure 3.3) indicates that the former binding mechanism 

dominates over the latter. On the other hand, the limited presence of negatively charged 

groups on uncoated Ti-6Al-4V substrates limits the expression of amide I band. Our 

results also showed that the intensity of the amide bands on SCPC50-coated Ti-6Al-4V 

substrates was higher than that of the amide bands on uncoated Ti-6Al-4V substrates. The 

difference in intensity is likely due to the significantly higher amount of protein adsorbed 

onto the former substrate. 

ICP - OES analyses showed that SCPC50-coated Ti-6Al-4V substrates modified 

the chemical composition of the TCM by the uptake of Ca and the release of P and Si. 

SCPC50-coated samples seeded with cells absorbed Ca2+ from the TCM during the first 4 

days of incubation (Figure 3.9a). The uptake of Ca2+ by SCPC50 can be attributed to the 

high surface area of SCPC50 rich in Si-OH groups.108 A consequence of the Ca2+ uptake 

by the SCPC50 coating is an increase in the availability of Ca2+ for osteoblast activity. 

Ca2+ has been shown to change osteoblasts from a proliferative state to one that favors 

differentiation into mature bone forming cells.185,186 Moreover, Ca2+ dependent proteins 

and gap-junctions are believed to participate in the signal transduction mechanisms that 

regulate osteoblast gene expression.187 The dissolution of SCPC50 elevated the level of P 

during the first 4 days of incubation (Figure 3.9b). P plays an important role in cell 

differentiation by coordinating the expression and regulation of multiple factors 

necessary for bone mineralization, both at a transcriptional and at a post-translational 

stage.188 Therefore, most studies in the literature use an exogenous P source, usually in 

the form of β–glycerophosphate, a component that does not exist in natural tissue.189,190 

In our study, we deliberately excluded β–glycerophosphate from the osteogenic media 
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and relied on SCPC50 to serve as a source for free P needed for bone formation. Recent 

reports from our lab have shown that the dissolution of SCPC50 elevates P level 

sufficiently enough to induce cell differentiation and mineralization of the extracellular 

matrix.191 SCPC50-coated samples incubated with TCM also released Si in the 

concentration range of 1.3 – 1.9 ppm during the first 12 days of incubation (Figure 3.9c). 

Previous studies have shown that Si concentration in the range of 1 – 100 ppm range can 

stimulate osteoblast proliferation and differentiation.149,192,193 Other reports have shown 

that Si is involved in the synthesis and stabilization of collagen and its presence is noted 

in the active growing front of new bone.194 We have previously demonstrated the role of 

the α-cristobalite solid solution of SCPC50 in promoting guided cell adhesion and tissue 

regeneration by providing a preferential site for the deposition of extracellular matrix.116 

In the present study, cells attached to SCPC50-coated samples synthesized higher levels 

of OPN and OCN proteins as compared to the cells attached to uncoated Ti-6Al-4V 

samples. These proteins have critical roles in the mineralization of the extracellular 

matrix.161,163 Indeed, a Ca/P ratio of 1.02 ± 0.23, the presence of sulfur, and the 

morphology of the calcified nodules observed on the extracellular matrix produced by 

cells attached to SCPC50-coated samples after 20 days, together with the enhanced 

synthesis of OCN protein indicate mineralized extracellular matrix. It is interesting to 

note that mineral formation occurred on SCPC50-coated samples only in the presence of 

cells, indicating that mineralization is cell-mediated. On the other hand, cells attached to 

uncoated Ti-6Al-4V samples demonstrated delayed onset of osteoblast differentiation. 

qRT-PCR results also showed that the expression levels of Col-I, OSN and OPN mRNA 

on uncoated Ti-6Al-4V  substrates were significantly higher than the corresponding 
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levels on SCPC50 coated samples. Col-I and OSN genes are associated with cell-

proliferation and pre-osseous matrix synthesis that precede cell differentiation and matrix 

mineralization.97 The low expression of OPN mRNA on SCPC50-coated substrates may 

have been due to temporal variations in OPN gene which is known to decrease briefly 

post-proliferatively and then increase at the onset of matrix mineralization.97 Taken 

together, the enhanced osteoblast differentiation and mineralization on the SCPC50-

coated substrates can be attributed to the synergistic role of Ca uptake and SCPC50 ionic 

dissolution products. It is interesting to note that the stimulatory effect of SCPC50 on 

osteoblast activities was accompanied by minimal immune activation (Figure 3.6). This is 

in agreement with previous studies that have reported lower level immune response in 

actively differentiating osteoblasts.195 

3.5  Conclusion 

Bone cells attached to the SCPC50-coated Ti-6Al-4V substrates rapidly 

differentiated and produced mineralized bone matrix. Molecular biology assays 

demonstrated the SCPC50 surface up-regulated OCN mRNA expression and increased 

the production of OCN and OPN proteins. In contrast, cells attached to the uncoated Ti-

6Al-4V substrates showed delayed differentiation and minimal bone-mineral formation. 

The enhanced osteogenic activity on SCPC50-coated Ti-6Al-4V substrates may be 

attributable to the enhanced protein adsorption and the dynamic changes in the surface 

chemistry of SCPC50 marked by Ca uptake and P and Si release, which would 

synergistically stimulate osteoblast differentiation and bone mineralization. Moreover, 

the enhanced osteogenic effects of SCPC50 layer were associated with decreases in the 

inflammatory and/or osteoclastogenic activities of osteoblast-like cells. Results of these 
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studies suggest that SCPC50 coating of Ti-6Al-4V implants has the potential to enhance 

bone tissue integration and improve the fixation and longevity of the device. 
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CHAPTER 4: EFFECT OF SURFACE TOPOGRAPHY OF BIOACTIVE CERAMIC 
COATING ON BONE CELL ACTIVITY 

 

4.1  Introduction 

Coating bioactive ceramics on Ti-6Al-4V orthopedic implants is a well-

established method to enhance tissue integration and implant fixation.77,101,114,145 

Bioactive ceramic coating modifies both, the surface chemistry and the topography of the 

implant material. The enhancement effect of the calcium phosphate (CaP) surface 

chemistry on bone cell differentiation and tissue formation is well established.108,116 

Important material related bioactivity factors include: a CaP surface that is similar to the 

mineral phase of bone, enhanced protein adsorption, in particular cell attachment 

proteins, and the release of ions, such as Ca and Si, known to stimulate the metabolic 

activity of bone cells. The dynamic nature of bioactive ceramic surfaces, characterized by 

dissolution-precipitation reactions to and from the solution as well as cell-mediated 

resorption, can continuously alter the topography of the implant material. It is well 

established that the topography or surface patterning affects osteoblast activity, such as, 

adhesion, proliferation and differentiation; however, the exact effect on each function is 

debated.196,197 It has been suggested that osteoblasts prefer smooth surface for 

proliferation and a rougher surface for differentiation related activities.197-201 Li et al 

evaluated bone cell response to Ti substrates of varying roughness and showed that cell 

proliferation was highest on substrates with an average roughness (Ra) < 0.5 µm but 

decreased as the Ra value increased to 2.5 µm.198 In contrast, the alkaline phosphatase 
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(AP) activity increased with increasing Ra values. Similar results were reported by Links 

et al who showed that an increase in the Ra of cp-Ti or Ti-6Al-4V substrates from 0.22 to 

4.24 µm or from 0.23 to 3.20 µm, respectively, decreased cell proliferation while 

enhancing cell differentiation as measured by AP activity and osteocalcin synthesis.199 

Schneider et al analyzed osteoblast activity on grooved and roughened sand-blasted cp-Ti 

substrates and showed that after 3 days, cells attached to the rougher sandblasted 

substrate enhanced mineralization and up-regulated Cbfa1gene expression.197 In a similar 

study, Balloni et al showed that cells on rough acid-etched Ti substrate expressed higher 

levels of differentiation associated genes including BMP-2, Runx2, collagen type I, bone 

sialoprotein, AP, osterix and osteocalcin after 15 days of culture than that expressed by 

cells on smother machined Ti substrate.200 Other studies have found variable effects of 

surface roughness on cell proliferation and differentiation.196,202,203 It was reported that an 

increase in the Ra value of cp-Ti substrates from 0.20 to 1.38 µm enhanced cell 

proliferation as well as osteocalcin synthesis, although AP activity decreased with 

increasing roughness.196 Degasne et al showed that an increase in the Ra value of cp-Ti 

substrate from 0.30 to 0.94 µm was associated with an increase in cell proliferation.202 

Ramaglia et al reported that an increase in the roughness of cp-Ti discs from 318 to 762 

nm had minimal effect on cell proliferation, although cell adhesion, collagen-I and 

integrin expression increased on substrates with higher roughness values.203 Recent 

studies by Gittens et al have showed that nano-scale structures in combination with 

micro-scale roughness improve osteoblast differentiation and local factor production.204  

The modifications in surface topography have been shown to control cell activity. 

Kim et al showed that an increase in the crystallinity and Ra of hydroxyapatite (HA) 
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coated cp-Ti substrates from 0.22 to 0.84 µm enhanced bone cell attachment to the 

substrate; however, AP activity and osteocalcin synthesis were not affected.205 Moreover, 

they showed that HA coating layer prepared by sol-gel method and heat treated at 400 – 

600 ˚C had undesirable higher dissolution rate that down-regulated cell proliferation and 

differentiation. The limited cell activity has been attributed to the instability of the 

implant surface. The dynamic surface instability of bioactive ceramics is difficult to 

measure and most studies have mainly focused on either the chemistry of the surface or 

the concentration of ions released from the substrate into physiological solutions. In case 

of bioactive materials characterized by a near chemically stable surface, such as 

stochiometric HA, data in the literature indicated that  an increase in the Ra from 0.733 to 

4.680 µm enhanced cell adhesion and proliferation.206 Moreover, the AP activity of HA 

with Ra of 0.73 µm was almost double that on substrates with Ra of 2.86 or 4.68 µm after 

8 days; however, at day 16, comparable AP activity was measured. It was speculated that 

the greater cell adhesion on rough HA was due to its higher surface area that enhances 

protein adsorption. In a separate study, it was shown that bone marrow cell proliferation 

on Ti-6Al-4V was higher than that on stochiometric HA discs of similar Ra.
207 However, 

comparable AP activity on both substrates was reported which might indicate higher AP 

activity per cell on the HA substrate. Other studies on various bioactive and non-

bioactive materials have reported conflicting effects of surface topography and chemistry 

on cell behavior.208,209 Dulgar-Tulloch et al evaluated cell response to nanophase 

alumina, titania and HA ceramic discs and showed that cell adhesion was dependent on 

the chemical composition and grain size of the material but  not on surface roughness.208 

In addition, it was found that cells attached to ceramics of grain size of 200 nm 
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demonstrated greater proliferation than cells attached to ceramics of grain size 50 or 1500 

nm, irrespective of the ceramic composition. The significant effect of surface chemistry 

on protein adsorption and cell response has prompted implanting the metal surface with 

ions such as Ca, Si, P to stimulate osteoblast activity.201,210,211 Ca implantation on Ti 

substrates induced formation of integrin-rich adhesion plaques and changes in the cell 

shape from circular to elongated within 4 hr.210 Park et al reported that the incorporation 

of Ca on machined and grit-blasted cp-Ti substrates enhanced cell proliferation 

irrespective of the substrate’s roughness.201 Moreover, cells attached to the Ca 

incorporated grit-blasted Ti substrates showed enhanced differentiation as indicated by 

higher levels of AP, osteopontin, and osteocalcin mRNA than cells attached to the other 

substrates. Bone cells attached to SCPC50-coated Ti-6Al-4V substrates have 

demonstrated enhanced osteoblast differentiation and low level immunogenic response as 

compared to the cells attached to uncoated Ti-6Al-4V substrates (described in Chapters 2 

and 3). The objective of this study is to investigate the effect of substrate roughness on 

the characteristics of SCPC50 coating using atomic force microscopy (AFM). Moreover, 

bone cell morphology, cytoskeletal organization and proliferation have been correlated to 

the surface topography and ions released from the SCPC50-coated Ti-6Al-4V substrate. 

4.2     Materials and Methods 

4.2.1  Sample preparation  
 

Bioactive SCPC50, in the size range of 100 – 500 nm, containing 40.68 % CaO, 

20.34 % P2O5, 19.49 % Na2O and 19.49 % SiO2 (in mol %) was prepared following the 

methods described in the literature.103,108 Ti-6Al-4V ELI (ASTM F136-08e1) discs of two 

different surface roughnesses were prepared by grinding the discs on 400 or 1200 grit 

silicon carbide (SiC) abrasive pad. The discs ground on the 1200 grit SiC were further 
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polished on a micro-cloth using 50 nm alumina particles until a mirror-finish was 

obtained. The samples were cleaned according to ASTM standard protocol F86-04 

(Standard Practice for Surface Preparation and Marking of Metallic Surgical Implants) 

and passivated in 34% HNO3 at 65 ºC for 40 min. SCPC50 nano-particles were coated on 

Ti-6Al-4V samples using EPD as previously described in chapter 3. Briefly, Ti-6Al-4V 

samples were immersed in a 10 wt% SCPC50 suspension in ethanol and coated using a 

voltage of 50 V for 10, 30, 60 or 90 s, with intermediate drying every 30 s. The coated 

samples were dried in a dessicator and thermally treated at 800 ºC for 1 hr under argon at 

a fixed heating and cooling rate of 2 ºC min-1.  

4.2.2  Surface topography analyses 
 

The surface topography of the SCPC50-coated and uncoated Ti-6Al-4V samples 

was analyzed using Nanoscope IIIm Multimode atomic force microscope (AFM; Veeco 

Instruments, Plainview, NY). Ti-6Al-4V samples without SCPC50 coating but heat 

treated at 800 ºC for 1 hr were also analyzed. Images were obtained at two different 

resolutions, 5 µm x 5 µm and 40 µm x 40 µm, to characterize the nano- and the micro-

roughness of the substrate, respectively. Data was acquired from 12 regions on 3 discs (4 

regions/ disc) for every sample type in tapping mode using an integral cantilever attached 

with an uncoated silicon tip (n = 12). The force constant of the tip was 42 N m-1, the 

resonant frequency was 320 kHz, the height was 10 - 15 µm and the radius of curvature 

was 8.0 nm. The Ra of the substrate was determined by image analysis using the inbuilt 

software (Nanoscope; Veeco Instruments, Plainview, NY). Dimensional analyses on 100 

random regions of each sample type (n = 100) were performed using the ‘linescan’ 
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feature of the software to determine the peak diameter and peak-to-peak (PTP) distance 

as shown in Figure 4.1. 

 

Figure 4.1: Schematic representation of peak diameter and peak-to-peak distance on 
SCPC50-coated and uncoated Ti-6Al-4V substrate. 

4.2.3     Evaluation of bone cell response 

4.2.3.1  Cell culture 
 

MC3T3-E1 mouse osteoblast-like cells (ATCC; Manassas, VA) were cultured in 

Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum and 

0.1% penicillin-streptomycin, and incubated at 37 ºC and 5% humidified CO2. As Ti-6Al-

4V (400 grit group) discs coated with SCPC50 for 30 and 60 s exhibited statistically 

significant differences in Ra, both, at the nano and at the micro level (see results), they 

were selected for cell culture studies. The samples were sterilized in pure ethanol for 20 

min and dried under UV-irradiation. Upon 70 - 80% confluency, cells were trypsinized 

and seeded on the samples at a density of 5 x 104 cells/disc for 4, 8 or 24 hr. Uncoated Ti-

6Al-4V (400 grit group) samples served as control. 
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4.2.3.2  Cell viability analysis 
 

The viability of cells attached to 30 s and 60 s SCPC50 coated and uncoated Ti-

6Al-4V substrates was determined using LIVE/DEAD cell viability assay (Invitrogen, 

Grand Island, NY) after 24 hr of incubation (n = 3). The samples were rinsed in 

phosphate buffer saline (PBS) and stained with 2 μM calcein AM and 4 μM ethidium 

homodimer-1 in PBS and incubated for 20 min at 37 ºC in dark. Excess dye was removed 

by washing 3 times in PBS. 5 random fields on every sample were imaged using a 

confocal microscope. The percentage viability was calculated as the number of live cells 

divided by the total number of cells attached to the substrate.  

4.2.3.3  Cell morphology analyses 

At each time point (4, 8 or 24 hr), the morphology of cells attached to the 30 s and 

60 s SCPC50 coated substrates as well as uncoated Ti-6Al-4V substrates were analyzed 

in duplicate using scanning electron microscopy (SEM). The samples were washed 3 

times in pre-warmed PBS and fixed overnight in Karvonsky’s fixative (Electron 

Microscopy Sciences, Hatfield, PA) at 4 ºC. Cells were subjected to ethanol series 

dehydration followed by a final dehydration in hexamethyldisilazane. The samples were 

dried in a dessicator for 2 hr, coated with 5 nm gold film and analyzed using SEM. 10 

images were obtained (5 images/disc) for every sample type. Cell spreading was 

quantified by measuring the area of 100 random cells (n = 100; 10 cells/image) using the 

Scandium platform image analysis software (Olympus Soft Imaging Solutions, Münster, 

Germany). Moreover, the shape of the cells was determined by a dimensionless shape 

factor value for circularity (area x 4P / perimeter2). A shape factor value approaching 1 
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represents circular shape (round cells) while values approaching 0 represents straight line 

(elongated cells).212 

4.2.3.4  Cytoskeletal organization and cell proliferation analyses 
 

The cytoskeletal organization of cells attached to 30 s and 60 s SCPC50 coated as 

well as the uncoated Ti-6Al-4V substrates were visualized in duplicate by staining the F-

actin filaments with a fluorescent rhodamine phalloidin probe. Briefly, cells were washed 

3 times in pre-warmed PBS and fixed in freshly prepared 4% paraformaldehyde for 15 

min, permeabilized in 0.1% Triton X-100 for 1 min and blocked in 3% BSA (blocking 

buffer) for 30 min at room temperature. Cells were stained with TRITC conjugated 

phalloidin and Hoechst dye (Invitrogen, Grand Island, NY) in dilution ratios of 1:200 and 

1:500, respectively, in blocking buffer for 20 min at room temperature under dark. At the 

end of the immersion period, the samples were washed 3 times in PBS and imaged using 

confocal microscope. The organization of actin filaments was scored as type I, II or III 

following the same method as suggested by Sinha et al.212 Type I cells displayed faint 

staining with no discernible actin filaments; type II cells showed cortical filaments below 

the cell membrane with some radially oriented filaments; and type III cells had distinct 

well-formed filaments that oriented parallel to each other and along the long axis of the 

cell. The distribution of each cell type was determined by examining 100 cells (50 

cells/disc) attached to every sample type (n = 100). To determine cell proliferation, 10 

random fields on every sample type were imaged at 15X magnification (5 images/disc) 

and the number of cells (stained blue by Hoechst dye) was counted. The percentage 

increase in the number of cells was calculated by normalizing the average cell number at 

any given time to the average cell number on that sample type at the 4 hr time point.  
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4.2.4  Dissolution analyses 
 

The release of ionic products from the dissolution of SCPC50 coated and 

uncoated Ti-6Al-4V substrate was analyzed by measuring the ionic concentration of Ca, 

Si, P, and Ti in TCM at every time point using Optima 2100 DV inductively coupled 

plasma-optical emission spectrometer (ICP – OES; Perkin Elmer, Waltham, MA). The 

machine was operated under conditions previously reported.116 

4.2.5  Statistical analysis 

One-way ANOVA was used to assess the statistical difference among the various 

treatment groups. Fisher’s LSD post hoc test was conducted to ascertain the difference 

between individual groups. A p-value < 0.05 was considered statistically significant. 

4.3   Results 

4.3.1  Surface topography 

The AFM images of the 1200-grit group Ti-6Al-4V substrates before and after 

coating are shown in Figure 4.2. The unmodified control surface ground on 1200 grit SiC 

and polished using 50 nm alumina particles appeared flat with minimal grooves or 

surface irregularities (Figure 4.2a). Thermal treatment of the sample at 800 ˚C for 1 hr 

increased the roughness of the substrate (Figure 4.2b), most probably due to the 

formation of TiO2 at elevated temperatures. EDX analyses of the substrates indicated an 

O/Ti ratio of 3.92 ± 0.13 (n = 5) suggesting the presence of TiO2 (data not shown). The 

surface topography of substrate coated with SCPC50 for 10 s (Figure 4.2c) appeared 

similar to uncoated heat-treated substrate; however, an increase in the coating duration to 

30 s (Figure 4.2d) reduced the surface roughness of the substrate. An increase in the 

coating duration to 60 s (Figure 4.2e) or 90 s (Figure 4.2f) appeared to increase the 
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roughness of the substrate, and created pockets containing surface pits. Ti-6Al-4V 

substrates prepared on the 400-grit substrates prominently showed grooves created from 

grinding during surface finishing. (Figure 4.3a) Heat treatment of the substrate promoted 

the formation of fine TiO2 grains (Figure 4.3b). The deposition of SCPC50 for 10 s 

(Figure 4.3c) or 30 s (Figure 4.3d) appeared to reduce surface roughness by filling in the 

grooves of the substrate. An increase in the coating duration to 60 s (Figure 4.3e) or 90 s 

(Figure 4.3f) appeared to deposit coarser particles and create regions of non-uniform 

distribution on the surface. 
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Figure 4.2: AFM images of the 1200-grit group SCPC50-coated and uncoated Ti-6Al-4V 
substrates (a) before and (b) after thermal treatment at 800 ˚C for 1 hr. The roughness of 
the substrate increased upon thermal treatment. Surface topography of SCPC50 on Ti-
6Al-4V substrate after coating for (c) 10 s, (d) 30 s, (e), 60 s and (f) 90 s. The roughness 
appeared to decrease after 30 s of coating and increase at higher coating duration. The 
images were acquired at a resolution of 5 µm x 5 µm. 
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Figure 4.3: AFM images of the 400-grit group SCPC50-coated and uncoated Ti-6Al-4V 
substrates (a) before and (b) after thermal treatment at 800 ˚C/1 hr. The roughness of the 
substrate increased upon thermal treatment. Surface topography of SCPC50 on Ti-6Al-
4V substrate after coating for (c) 10 s, (d) 30 s, (e), 60 s and, (f) 90 s. The roughness 
appeared to decrease after 30 s of coating and increase at higher coating duration. The 
images were acquired at a resolution of 5 µm x 5 µm 

4.3.2  Surface roughness 

4.3.2.1  Nano-roughness analyses (5 µm x 5 µm scans) 
 

Surface topography analyses of uncoated Ti-6Al-4V substrates showed that the Ra 

of the samples ground on 1200 grit SiC (3.51 ± 0.70 nm) was significantly lower (p < 
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0.01) than those ground on 400 grit SiC (27.24 ± 6.68 nm) (Figure 4.4). Comparable Ra 

values were measured before and after passivation treatment on each substrate. The Ra of 

the 1200 grit group Ti-6Al-4V samples decreased slightly from (54.68 ± 11.81 nm) after 

thermal treatment at 800 ˚C for 1 hr (control) to (52.96 ± 5.34 nm) and (46.43 ± 11.98 

nm) after EPD coating for 10 s and 30 s, respectively (Figure 4.3). A significant increase 

(p < 0.01) in Ra was measured upon increasing the coating duration to 60 s (74.13 ± 

18.43 nm), followed by a slight decrease after 90 s of coating (62.44 ± 24.58 nm). On the 

other hand, SCPC50 coating on the 400 grit polished Ti-6Al-4V substrates resulted in a 

gradual increase of Ra with coating duration: 10 s (60.97 ± 7.42 nm) < 30 s (68.15 ± 

18.74 nm) < 60 s (76.84 ± 15.99 nm) < 90 s (82.38 ± 21.23 nm).  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Nano-scale roughness analyses of uncoated and SCPC50-coated Ti-6Al-4V 
substrates at a resolution of 5 µm x 5 µm. The Ra of 400- and 1200-group Ti-6Al-4V 
substrates decreased with an increase in the coating duration up to 30 s to achieve 
minimal values. An increase in the coating duration from 30 to 60 s resulted in a 
significant increase in the Ra of the substrate.  
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 4.3.2.2  Micro-roughness analyses (40 µm x 40 µm scans) 
 

AFM analyses showed that the Ra of the Ti-6Al-4V substrates ground on 1200 

grit SiC (8.01 ± 1.83 nm) was significantly lower (p < 0.01) than the substrates ground on 

the 400 grit SiC (82.89 ± 25.3 nm) (Figure 4.5). Comparable Ra values were measured 

before and after passivation treatment on each substrate. The Ra of the uncoated 1200 grit 

group Ti-6Al-4V substrate increased from (94.71 ± 14.46 nm) after heat treatment at 800 

˚C for 1 hr  (control) to (159.68 ± 38.29 nm) and (132.55 ± 32.15 nm) after coating for 10 

s and 30 s, respectively. An increase in the coating duration to 60 s increased the Ra 

significantly (p < 0.01) to (239.08 ± 54.73 nm); however, coating for 90 s decreased Ra 

significantly (p < 0.01) to (107.72 ± 11.14 nm). Similarly, the Ra on the (400 grit group) 

Ti-6Al-4V substrates increased significantly (p < 0.01) from (160.09 ± 21.02 nm) after 

heat treatment to (300.92 ± 32.75 nm) after coating with SCPC50 for 10 s. An increase in 

the coating duration to 30 s reduced Ra value significantly (p < 0.01) to (217.86 ± 54.57 

nm); however, further increase in the coating duration to 60 or 90 s increased the Ra to 

(284.30 ± 37.33 nm) and (335.57 ± 47.64 nm), respectively.  
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Figure 4.5: Micro-scale roughness analyses of uncoated and SCPC50-coated Ti-6Al-4V 
substrates at a resolution of 40 µm x 40 µm. The Ra of 400- and 1200-group Ti-6Al-4V 
substrates decreased with an increase in the coating duration to 30 s to achieve minimal 
values. An increase in the coating duration from 30 to 60 s resulted in a significant 
increase in the Ra of the substrate.  

4.3.3  Peak diameter 
 

The peak diameter of SCPC50 coated on (1200 grit group) Ti-6Al-4V substrates 

decreased with increasing coating duration: 10 s (452.06 ± 122.10 nm) > 30 s (403.78 ± 

93.79 nm) > 60 s (387.44 ± 118.17) > 90 s (355.70 ± 107.34 nm) (Figure 4.6). The peak 

diameter of SCPC50 on all coated substrates was significantly smaller (p < 0.05) than 

that of heat treated uncoated Ti-6Al-4V substrates (498.89 ± 158.64 nm) obtained after 

thermal treatment (control). In contrast, the peak diameter of the 400 grit group SCPC50-

coated substrates was significantly higher (p < 0.01) than that of heat-treated uncoated Ti-

6Al-4V samples (277.04 ± 81.63 nm). The peak diameter of SCPC50 decreased with 

coating duration up to 60 s in the order: 10 s (538.51 ± 82.57 nm) > 30 s (519.71 ± 
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146.96 nm) > 60 s (420.04 ± 129.98 nm). Increase in the coating duration from 60 s to 90 

s resulted in a significant increase (p < 0.05) of peak diameter (510.99 ± 154.18 nm). 

Comparable peak diameter was measured on uncoated Ti-6Al-4V (without heat 

treatment), for both 1200 and 400 grit group samples, before and after passivation 

treatment. 

Figure 4.6: Peak diameter of uncoated and SCPC50-coated Ti-6Al-4V substrates as a 
function of coating duration. Higher peak diameter values at lower coating duration 
suggest that SCPC50 at the metal/ceramic interface experienced greater residual stresses 
leading to expansion of the material.   

 

4.3.4  Peak-to-peak distance 
 

Comparable PTP distance were measured on  the 1200-grit group Ti-6Al-4V 

substrates that had been heat-treated (330.19 ± 61.88 nm) or coated with SCPC50 for 10 s 

(310.94 ± 76.33 nm) (Figure 4.7). An increase in the coating duration to 30 s resulted in a 
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significant decrease (p < 0.05) in the PTP distance (211.23 ± 55.04 nm), followed by a 

significant increase (p < 0.05) upon increase to (274.22 ± 62.62 nm) and (277.40 ± 65.98 

nm) after coating for 60 s and 90 s, respectively. PTP distance on the 400-grit group Ti-

6Al-4V substrates decreased with increasing coating duration in the order: 10 s (464.84 ± 

67.38 nm) > 30 s (449.25 ± 100.00 nm) > 60 s (419.92 ± 77.01 nm) > 90 s (374.43 ± 

72.53 nm). Moreover, the PTP distance on the control heat-treated substrate (220.94 ± 

42.60 nm) was significantly lower (p < 0.01) than that on the SCPC50-coated substrates. 

Comparable values of PTP distances were measured on both, 1200 and 400-grit group Ti-

6Al-4V substrates before and after passivation treatment. 

 

 

 

 

 

 

 

 

 

Figure 4.7: Peak-to-peak distance of uncoated and SCPC50-coated Ti-6Al-4V substrates 
as a function of coating duration. The PTP distances decreased with increasing coating 
duration on the 400-grit group substrates. On the other hand, the PTP distance on the 
1200-grit group samples acquired minimal values after 30 s coating and increased at 
higher coating duration.    
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4.3.5.2  Cell morphology  
 

After 4 hr of incubation, cells attached to the uncoated Ti-6Al-4V substrates 

showed fully flattened and rounded morphology with limited cell-to-cell contact (Figure 

4.9a). In contrast, cells attached to the Ti-6Al-4V substrates coated with SCPC50 for 30 s 

(Figure 4.9b) or 60 s (Figure 4.9c) showed less spreading and appeared polygonal in 

shape. Moreover, they formed multiple pseudopodia-like plasma-protrusions to adhere 

onto the SCPC50 coating and demonstrated extensive cell-to-cell contact. After 8 hr, cells 

attached to the uncoated Ti-6Al-4V substrates showed greater surface coverage with an 

increase in cell number (Figure 4.9d). In addition, the cells appeared to acquire a 

polygonal shape and developed greater cell-to-cell contacts. However, a distinct 

difference in cell morphology was noted between cells on the uncoated and SCPC50-

coated substrates. Clusters of cells attached to the 30 s (Figure 4.9e) or 60 s (Figure 4.9f) 

coated SCPC50 substrates merged together in multiple regions. On the other hand, cells 

attached to the uncoated Ti-6Al-4V substrates appeared to resist such contact even when 

the cells were in close proximity. After 24 hr, cells attached to the uncoated Ti-6Al-4V 

substrates (Figure 4.9g) and 30 s coated SCPC50 substrate (Figure 4.9h) showed more 

cell-to-cell contact and surface coverage, with cells on the former substrate showing near-

complete surface coverage. However, cells attached to 60 s coated SCPC50 substrate 

decreased in number and surface coverage, although they appeared more elongated than 

cells on other substrates (Figure 4.9i). 
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Figure 4.9: SEM images showing the morphology of bone cells attached to (a) uncoated, 
(b) 30 s SCPC50 coated and (c) 60 s SCPC50 coated substrates after 4 hr. More cells 
were attached to the SCPC50-coated substrates than to the uncoated substrates. After 8 
hr, cells attached to the uncoated substrates showed higher proliferation rate than the cells 
attached to the (e) 30 s SCPC50 coated or (f) 60 s SCPC50 coated substrates. At the end 
of 24 hr, cells attached to the (g) uncoated substrates showed greater surface coverage 
than the cells attached to the (h) 30 s SCPC50 coated substrate. (i) In contrast, cells 
attached to the 60 s SCPC50 coated substrate reduced in number. 

4.3.5.3  Cell spreading  
 

Cells attached to the uncoated Ti-6Al-4V substrate showed significantly more 

spreading (p < 0.05) than cells attached to the 30 s and 60 s SCPC50-coated substrates 

throughout the experimental period (Figure 4.10). The area of cells attached to uncoated 

and 30 s coated SCPC50 substrates decreased slightly with culture time; however, the 

difference was not statistically significant. In contrast, cells attached to the 60 s-SCPC50 
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coated substrate showed a significant (p < 0.05) two-fold decrease in area as the culture 

time increased from 4 to 24 hr.  

 

 

 

 

 

 

 

 

Figure 4.10: Quantitative estimation of cell spreading on the uncoated, 30 s SCPC50 
coated and 60 s SCPC50 coated substrates. Cells attached to the uncoated Ti-6Al-4V 
substrates demonstrated greater spreading throughout the incubation period. (*p < 0.05; 
**p < 0.01)   

4.3.5.4  Cell shape 
 

Analyses of cell shape showed that cells attached to uncoated substrates were 

significantly more (p < 0.05) round than the cells attached to the SCPC50-coated 

substrates up to 8 hr of incubation (Figure 4.11). However, a comparable shape factor 

value was measured for cells attached to 30 s or 60 s SCPC50 coated substrates during 

the same time period. After 24 hr, cells attached to the uncoated and 60 s coated SCPC50 
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substrates became significantly (p < 0.05) more elongated while negligible change was 

observed in cells attached to the 30 s coated SCPC50 substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Shape factor analyses of bone cells attached to uncoated, 30 s SCPC50 
coated and 60 s SCPC50 coated substrates. Cells attached to the uncoated Ti-6Al-4V 
substrate showed greater circularity than the cells attached to the SCPC50-coated 
substrates. After 24 hr of incubation, cells attached to the 60 s SCPC50 coated substrate 
exhibited lower shape factor value than cells attached to uncoated or 30 s SCPC50 coated 
substrates. 

4.3.5.5  Cell proliferation 
 

After 4 hr of incubation, the number of bone cells attached to the SCPC50-coated 

substrates were significantly higher (p < 0.01) than that attached to the uncoated Ti-6Al-

4V substrates (Table 4.1). However, cells attached to the uncoated Ti-6Al-4V substrates 
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proliferated rapidly, increasing by 3.24- and 7.24-fold after 8 and 24 hr, respectively. 

Cells attached to the 30 s SCPC50 coated substrate showed slower proliferation rate than 

cells on uncoated Ti-6Al-4V substrates, increasing by 1.21- and 1.90-fold after 8 and 24 

hr, respectively. Cells attached to the 60 s SCPC50 coated substrate increased in number 

by 1.38-fold after 8 hr; however, the proliferation rate decreased to 1.12-fold after 24 hr 

of incubation. 

 

 Substrate          4 hr     8 hr      24 hr 

Cells/mm2    Fold            Cells/mm2     Fold               Cells/mm2   Fold    
         increase                   increase                increase      
 

 Uncoated   10 ± 1    -      33 ± 7    3.30            76 ± 12        7.60 

 30 s SCPC50   65 ± 12             -      79 ± 24    1.21            124 ± 25      1.91 

 60 s SCPC50   49 ± 4    -      68 ± 11    1.38                55 ± 12       1.12  

Table 4.1: Table showing the number of cells attached per unit area on uncoated, 30 s 
SCPC50 coated and 60 s SCPC50 coated substrate after 4, 8 and 24 hr of incubation. 

 

4.3.5.6  Actin cytoskeletal organization  
 

Cytoskeletal organization of cells attached to the uncoated Ti-6Al-4V substrates 

after 4 hr of incubation showed distinct actin filaments that were concentrated along the 

cell periphery in the form of lamellipodia (Figure 4.12a). In contrast, cells attached to 30 

s (Figure 4.12b) or 60 s (Figure 4.12c) SCPC50-coated substrates showed diffused and 

less organized actin filaments; however, multiple points of focal contacts were noted on 

both surfaces. In addition, the cells also produced filopodia (arrows; Figure 4.12b) that 
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were intimately connected with the lamellipodia. After 8 hr of incubation, cells attached 

to the uncoated Ti-6Al-4V substrates showed a combination of parallel as well as radially 

oriented actin fibers (Figure 4.11d). Cells attached to 30 s (Figure 4.12e) and 60 s (Figure 

4.12f) SCPC50-coated substrates showed improved cytoskeletal organization than that at 

4 hr and demonstrated limited parallel actin organization. After 24 hr of incubation, cells 

attached to uncoated Ti-6Al-4V substrates exhibited robust and parallel actin fibers with 

well-defined polarization along the long axis of the cell (Figure 4.12g). In contrast, cells 

attached to the 30 s (Figure 4.12h) and 60 s (Figure 4.12i) SCPC50-coated substrates 

continued to exhibit under-developed cytoskeleton; however, cells on the former 

substrate showed more parallel actin organization than cells on the latter. The quality of 

actin filament organization was scored as I, II or III, with III being most organized and I 

being least organized. After 4 hr of incubation, 51% of the cells on uncoated Ti-6Al-4V 

substrates exhibited type II organization; however by 24 hr, 88% of the cells had 

progressed to type I organization (Table 4.2). On the SCPC50-coated substrates, 

approximately 60% cells exhibited type II organization after 4 hr. By 24 hr, only 32% of 

cells on the 30 s, and 14% cells on the 60 s SCPC50-coated substrate, exhibited type III 

organization. Cells attached to the 60 s SCPC50-coated substrate showed the most 

amount of type I actin fibers (31%) among all substrates after 24 hr of incubation. 
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Actin distribution (%) 

Substrate   4 hr           8 hr                 24 hr 

     I  II        III        I         II         III                  I          II           III 
 

Uncoated  25.8     51.7     22.4      10.4     47.7     41.7   0   11.1       88.9 

30 s SCPC50   41.2     58.8     0      28.7     43.6     27.7   13.5     54.1      32.4  

60 s SCPC50   39.4     60.6  0      24.8     56.4   18.8             31.4     54.3      14.3 

Table 4.2: Scoring of actin microfilaments as type I, II, or III on uncoated, 30 s SCPC50 
coated and 60 s SCPC50 coated substrates after 4, 8 and 24 hr of incubation. The 
organization of actin improved in the order type I< II< III.  

4.3.6  Dissolution analyses 
 

ICP - OES analyses of the tissue culture medium incubated with cells for 24 hr 

showed Ca uptake by the SCPC50 coated substrates, with the 60 s SCPC50 coated 

substrate adsorbing significantly more Ca than the 30 s SCPC50 coated substrate (Figure 

4.13a). In contrast to Ca adsorption, a release of P (Figure 4.13b) and Si (Figure 4.13c) 

from the SCPC50-coated substrates was observed. The 60 s SCPC50 coated substrate 

released significantly more P (p < 0.05) and Si (p < 0.05) than the 30 s-SCPC50 coated 

substrate. No dissolution of Ti ions was observed. 
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Figure 4.13: ICP - OES analyses of the tissue culture medium showed significantly 
greater Ca adsorption by the 60 s SCPC50 coated substrate than by the 30 s SCPC50 
coated substrate. On the other hand, the 60 s SCPC50 coated substrate released 
significantly higher amount of P and Si than the 30 s SCPC50 coated substrate. (*p < 
0.05; **p < 0.01) 

4.4  Discussion 

The objective of this study was to investigate the development of bioactive 

SCPC50 coating on Ti-6Al-4V substrates and analyze the effect of ceramic surface 

topography on bone cell attachment and proliferation. AFM analyses of the bioactive 

ceramic coating on the 400- as well as the 1200-grit polished Ti-6Al-4V substrates 

showed that the average roughness of the substrate increased initially after coating for 10 

s but decreased after 30 s of coating. Increasing the coating duration in excess of 30 s 
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continued to enhance the average roughness of the substrate. Moreover, it was found that 

the peak diameter of sintered SCPC50 decreased with increasing coating duration. An 

increase in the surface roughness of the SCPC50-coated substrates was accompanied by a 

decrease in cell spreading, proliferation and poor actin cytoskeleton organization, 

although cell attachment was not affected. On the other hand, cells attached to the 

uncoated Ti-6Al-4V substrates showed significantly greater spreading, proliferation and 

developed well-defined actin cytoskeleton than the cells attached to the SCPC50-coated 

substrates. The decrease in cell proliferation with increasing surface roughness correlated 

well with the enhanced Ca-uptake and greater release of P and Si from and into the tissue 

culture medium, respectively, which indicates early onset of cell differentiation. The 

reduced cell proliferation of bone cells with increasing surface roughness of the SCPC50 

coated substrates indicates the synergistic role of surface roughness and material 

dissolution on bone cell differentiation.      

The topographical features of SCPC50 coated on the smooth 1200-grit polished 

Ti-6Al-4V substrates serve as a model to understand the mechanism of coating 

development when the inherent roughness of the metal substrate has minimal 

contribution. AFM analyses showed that after thermal treatment at 800 ˚C, the Ra of Ti-

6Al-4V substrates increased significantly (p < 0.01) for both, 400- and 1200-grit polished 

substrates. EDX analyses showed that O:Ti ratio was 3.92 ± 0.13 after thermal treatment 

indicating the formation of TiO2. Previous studies have shown that nanocrystalline TiO2 

undergoes densification and grain growth at temperatures ≥ 550 ˚C.213 Therefore, the 

increase in the Ra of the Ti-6Al-4V substrates is attributed to the sintering and growth of 

TiO2 nanocrystals layer on the metal surface. After SCPC50 coating for 10 s, the Ra of 
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the 1200-group Ti-6Al-4V substrate increased but decreased thereafter to achieve 

minimal values after 30 s coating, both at the nano- and at the micro-scale level. The 

decrease in Ra suggests that the deposition and sintering of SCPC50 particles after 

coating for 30 s coating is in a way such that they mitigate the changes in the surface 

topography of the substrate caused due to the grain growth of TiO2. On the other hand, 

coating for 10 s does not deposit enough SCPC50 particles that could sufficiently fill in 

the valleys on the substrate surface. The deposition of ceramic layers on the metal 

substrate progressively reduces the electric field strength due to the interference by the 

ceramic particles which have lower electrical conductivity than metal.69 The reduced 

electric field strength reduces the electrophoretic mobility of the SCPC50 particles during 

EPD and allows the deposition of larger particles on the substrate than what were 

deposited at lower coating duration. Consequently, the Ra of the surface increased 

significantly with an increase in the coating duration beyond 30 s. Analyses of coating 

topography also showed that the peak diameter of SCPC50 on the 400- or the 1200-grit 

polished Ti-6Al-4V substrate decreased with an increase in the coating duration. The 

greater peak diameter of SCPC50 in close proximity with the metal surface suggests that 

these particles underwent greater degree of expansion and/or melting during sintering as 

compared to the layers away from the metal surface. The high thermal expansion 

coefficient of Ti-6Al-4V causes greater expansion in the metal as compared to the 

ceramic upon heating. As a result, SCPC50 particles at the interface with the metal 

experiences enhanced thermal stresses which cause an increase in the peak diameter. It 

may also be possible that the slow rate of heating and cooling (2 ˚C min-1) along with the 

relatively low softening temperature of SCPC50 (590 ˚C) 103 would cause some degree of 
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melting of the ceramic particles closest to the metal surface, since metals have higher 

thermal conductivity than ceramics. Higher peak diameter values were measured on the 

400-grit substrates than the 1200-grit group substrates, most probably due to the higher 

roughness and higher hence surface area of the former substrate which enhanced melting 

of the ceramic particles. 

LIVE/DEAD assay of bone cells attached to the SCPC50-coated and uncoated 

substrates (Figure 4.8) showed near 100 % viability indicating absence of measurable 

cytotoxicity of the material that could influence cell behavior. Therefore, the variations in 

cell attachment, cytoskeletal organization and proliferation are attributed mainly to the 

differences in roughness and surface chemistry of the substrates. However, it is prudent 

to mention that these two material related parameters are not constant due to the dynamic 

nature of the bioactive surface. The immediate dissolution-precipitation reactions at the 

SCPC50/biological fluid interface within 2 hr of immersion have resulted in the 

deposition of a hydroxyapatite surface layer.108 Coating Ti-6Al-4V with SCPC50 resulted 

in an increase of the surface roughness (Figure 4.4 and 4.5) and enhancement of cell 

attachment compared to uncoated metal substrates (Table 4.1). As the amount of SCPC50 

coating increased after longer coating time, the roughness of the surface significantly 

increased leading to an increase in the surface area of the substrate, however comparable 

numbers of cells were measured on both substrates. The latter observation strongly 

suggests that effect of SCPC50 surface chemistry on cell attachment override the effect 

of surface roughness. Therefore, the 8-fold increase in cell attachment on the SCPC50-

coated substrates compared to uncoated substrate after 4 hr in culture emphasizes the 

synergistic effect of both surface chemistry and roughness. An increase in the surface 
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roughness modifies the topography of the substrate which increases the contact area and 

binding sites available for cell anchorage.214 Moreover, the surface chemistry of the 

implant also influences cell attachment since it controls the type, amount, and 

conformation of proteins that adsorb onto the material.153,154 SCPC50 coating is 

characterized by ionic and polar groups, such as Ca2+ and Si-OH, which facilitate the 

adsorption of serum proteins including fibronectin and induce a conformation that favors 

cell attachment (Figure 3.3a). Fibronectin is an important attachment protein that exhibits 

chemotactic and adhesive properties and facilitates integrin-mediated cell adhesion and 

spreading.214,215 Other studies in the literature have reported enhanced cell attachment on 

HA as compared to carbonate apatite or uncoated Ti due to an increase in the surface 

polarity216 as well as high adsorption of attachment proteins such as fibronectin and 

vitronectin.158,217 Therefore, the enhanced cell attachment on the SCPC50-coated 

substrates is a combined effect of the high surface roughness and the modified surface 

chemistry of the material.  

Cell morphology analyses showed comparable cell spreading and cell shape factor 

on the 30 s and the 60 s SCPC50-coated substrates up to 8 hr of incubation (Figure 4.10 

and 4.11). However, after 24 hr, cells attached to the 60 s SCPC50-coated substrate 

showed less spreading and appeared more elongated than the cells attached to the 30 s 

SCPC50-coated substrate. In addition, cells attached to the 60 s SCPC50-coated substrate 

appeared to quit proliferation after 8 hr while cells attached to the 30 s SCPC50-coated 

substrate continued proliferating up to 24 hr (Table 4.1). The limited cell proliferation on 

the 60 s SCPC50-coated substrate could be attributed to two possible reasons; first, the 

increased micro- and/or the nano-roughness which provides physical barriers against 
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spreading and second, the early induction of cell differentiation by the chemical cues 

provided by the coating layer. The fact that there were no differences in cell spreading on 

the 30 s and 60 s SCPC50-coated substrates during the first 8 hr of incubation 

undermines the effect of surface roughness on cell spreading under the current 

experimental setup. Therefore, it is most likely that the exposure of attached cells to the 

60 s SCPC50-coated substrates to the dissolution products of the bioactive coating 

enhanced the switch of cell function from spreading and proliferation to differentiation. 

ICP - OES analyses showed significantly higher adsorption of Ca and release of P and Si 

from and into the cell culture medium, respectively, by the 60 s SCPC50-coated 

substrates as compared to the 30 s SCPC50-coated substrates (Figure 4.13). The role of 

these ions on osteoblast function is well established in the literature.93,188,193,218-223 Ca 

influx stimulates voltage-gated Ca channels which play an important role in osteoblast 

proliferation by accelerating the rate of entry of cells into the cell cycle.220 Ca also 

regulates the signaling mechanism of bone morphogenetic protein-2 (BMP-2) and 

transforming growth factor-β (TGF-β) which are important growth factors associated 

with osteoblast differentiation.218,222 Moreover, Ca plays a role in promoting the entry of 

P into the cell via type III sodium dependent phosphate transporters.223 P plays an 

important role in cell differentiation by coordinating the expression and regulation of 

multiple factors necessary for bone mineralization, both at a transcriptional and at a post-

translational stage.188 In addition to stimulating differentiation, P can also induce 

apoptosis in osteoblasts by interfering with mitochondrial function.93,221 Si plays a critical 

role in the synthesis and stabilization of collagen, particularly with the transcription of 

collagen type I gene and as a co-factor for prolyl hydroxylase, an enzyme involved with 
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collagen synthesis.219 Moreover, Si, in the form of orthosilicic acid, has been reported to 

promote osteoblast differentiation by increasing osteocalcin synthesis.193 Therefore, the 

enhanced solution-mediated ionic effects on cells attached to the 60 s-SCPC50 coated 

substrate resulted in the limited spreading and decreased proliferation.  

The selective adsorption of fibronectin on the SCPC50 coating (Figure 3.2b) can 

contribute to the early and firm specific adhesion through integrin-RGD interaction 

known to trigger intracellular cascade reactions leading to cell differentiation. Data in the 

literature demonstrates that the nature of stimuli from the substrate and its 

microenvironment imposes morphological changes in the cell cytoskeleton that affects a 

multitude of processes including cell division, cell shape and cell migration.224,225 In our 

study, visualization of the actin filaments (Figure 4.12) showed that after 4 hr, cells 

attached to the SCPC50-coated substrates formed multiple focal contacts (FC) with the 

substrate irrespective of the surface roughness. On the other hand, cells attached to the 

uncoated Ti-6Al-4V substrates showed minimal FC formation. FC are integrin-rich 

regions on the cell membrane that facilitate cell adhesion via attachment proteins.  By the 

end of 24 hr, cells attached to the uncoated Ti-6Al-4V substrates developed well-

organized cytoskeleton while those attached to the SCPC50-coated substrates showed 

poorly organized and diffused cytoskeleton. Similar results have been reported by 

Okumura et al who showed that cells attached to HA formed poor fiber bundles but those 

attached to cp-Ti developed well defined fibers with distinct polarity.217 The variability in 

the degree of cell adhesion and cytoskeletal organization will impact the signal 

transduction and cell nucleus organization and ultimately modulate the gene expression 

characteristics. In contrast, cells attached to the uncoated Ti-6Al-4V substrates showed 
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enhanced spreading greater shape circularity due to the lower roughness and the absence 

of surface- or solution-related osteogenic stimulation. It is interesting to note that cell 

spreading on uncoated Ti-6Al-4V substrate was higher despite the lack of fibronectin 

adsorption. It has been suggested that osteoblast spreading on uncoated Ti metal is 

cooperatively, but not independently, mediated by interactions between the RGD domain 

of adhesive proteins other than fibronectin and vitronectin, and sialic acid residues.226  

The inhibition of cell spreading and changes in the cell shape (from circular to 

elongated) may also be associated with apoptosis.227 Previous studies have shown that 

HA suppresses osteoblast proliferation and enhances the expression of cell differentiation 

markers such as AP and osteocalcin.94 Xie et al reported that osteoblasts attached to HA 

discs undergo transcriptional changes and up-regulate genes associated with cell 

differentiation within 24 hr of contact with material surface.47 Therefore, the reduction in 

the cell number on the 60 s SCPC50-coated substrate after 24 hr of attachment may have 

been due to apoptosis-related initiation of cell differentiation. The lower concentration of 

P and Si ions available to cells attached to the 30 s SCPC50-coated substrate contributed 

to the delayed cell differentiation on this substrate. However, our results are contradictory 

to reports by Deligianni et al who showed that an increase in the roughness of 

stoichiometric HA enhanced cell proliferation.206 Nonetheless, it should be pointed out 

that the high stability of stoichiometric HA in physiological solution resists material 

dissolution and therefore has a minimal stimulatory effect on osteoblast differentiation.  

4.5  Conclusion 

AFM analyses of SCPC50-coated substrates showed that the average roughness of 

the coating depended upon the duration of EPD coating as well as the surface topography 
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of the metallic substrate. The average roughness of the SCPC50 coating layer was 

minimal after EPD coating for 30 s, indicating that the deposition mechanism of the 

SCPC50 particles is in a way such that they preferentially deposit within the grooves of 

the metallic substrate and mitigate the irregularities of the metal’s topography. It was also 

found that the SCPC50 diameter reduced with increasing coating duration which 

indicates that the thermal stresses on SCPC50 particles decreased with increasing coating 

layers. Bone cell attachment to the SCPC50-coated substrates was independent of the 

average roughness of the coating but depended on the surface chemistry of the substrate. 

On the other hand, an increase in the average roughness of the SCPC50-coated substrates 

was accompanied by a reduction in cell spreading, cell proliferation and poor actin 

cytoskeleton organization. Results of the study suggest that an increase in roughness of 

the SCPC50 coating in conjunction with enhanced material dissolution stimulates early 

cell differentiation.  
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CHAPTER 5: SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 
 
 
5.1 Summary of findings 

The development of a novel bioactive silica-calcium phosphate nanocomposite 

(SCPC) coating on Ti-6Al-4V orthopedic implants using electrophoretic deposition 

(EPD) has been described. In vitro studies have demonstrated the strong stimulatory 

effect of SCPC coating on, bone cell differentiation, mineralization and bone bonding 

ability of the orthopedic implant. The SCPC-coated Ti-6Al-4V implant has the potential 

to enhance bone-implant integration and improve the longevity of the device. 

The attainment of a stable colloidal suspension is of prime importance to achieve 

efficient coating using EPD. Zeta potential and conductivity studies provided the basis 

for the selection of the optimum SCPC composition and suspension conditions for EPD 

coating. Maximum surface charge on SCPC particles and minimal conductivity of the 

suspension were achieved for SCPC50 particles containing 1:1 weight ratio of silica and 

calcium phosphate components suspended in pure ethanol. Under these conditions, 

SCPC50 particles acquired a zeta potential of -43 ± 0.2 mV which stabilized the colloidal 

suspension by enhancing the electrostatic repulsion between colloidal particles. Although 

the electrical conductivity of SCPC25 was slightly lower than that of SCPC50, the latter 

acquired significantly higher zeta potential in ethanol. On the other hand, SCPC75 

demonstrated significantly greater conductivity than SCPC25 or SCPC50 in any 

suspending medium, which is attributed to the rapid disruption and ionization of the 
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silicate network in the material. The low conductivity of SCPC50 in ethanol (2 µS/cm) 

maximized the electric field strength and enhanced the electrophoretic mobility of the 

SCPC50 particles during EPD. A uniform SCPC50 coating on Ti-6Al-4V was achieved 

via EPD using a voltage of 50 V applied for 2 min in a 5 wt% SCPC50 suspension in 

pure ethanol. SEM analyses of the SCPC50 coated samples thermally treated at 600 - 800 

ºC showed that the sintering between the particles increased as the thermal temperature 

was increased. XRD analyses of SCPC50 showed that the material was composed of β- 

rhenanite and α-cristobalite solid solutions and that the crystalline structure of the 

material did not change before or after coating. Mechanical tests carried out according to 

the ASTM F1147-05 protocol to measure the adhesion strength between the SCPC50 

coating and Ti-6Al-4V substrate showed that ceramic coated substrates thermally treated 

at 800 ºC for 1 hr resulted in adhesion strength of 47 ± 4 MPa, a value higher than the 

ASTM requirement. Moreover, SEM - EDX analyses of the fractured surface indicated 

that the failure occurred at the interface of either the metal and polymer or the polymer 

and SCPC50 coating layer. However, the interface of SCPC50 coating with the Ti-6Al-

4V substrate was always intact. Immersion of the SCPC50-coated Ti-6Al-4V samples in 

physiologic solution confirmed the bioactivity of the coated samples. The surface of the 

SCPC50-coated Ti-6Al-4V was covered with a Ca-deficient hydroxyapatite layer after 

immersion in phosphate buffer saline for 7 days. SCPC50-coated Ti-6Al-4V discs 

immersed in PBS for 2 days acquired higher adhesion strength (11.7 ± 3.9 MPa) than that 

acquired by commercially available hydroxyapatite coated Ti-6Al-4V samples (5.5 ± 2.7 

MPa) treated under similar experimental conditions.  
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In vitro studies showed that bone cells attached to the SCPC50-coated Ti-6Al-4V 

substrates expressed significantly higher alkaline phosphatase activity (82.4 ± 25.6 

nmoles p-NP/mg protein/min) than that expressed by the cells attached to the 

hydroxyapatite-coated (39.7 6 7.1 nmoles p-NP/mg protein/min) or uncoated Ti-6Al-4V 

substrates (7.0 6 3.4 nmoles p-NP/mg protein/min). SEM analyses of the bone cells 

attached to SCPC50-coated and uncoated Ti-6Al-4V substrates showed the synthesis of 

mineralized extracellular matrix by the cells attached to the ceramic coated substrates. 

Gene expression analyses using qRT-PCR revealed higher mRNA levels of osteonectin, 

osteopontin and collagen-I expressed by cells attached to the uncoated Ti-6Al-4V 

substrates after 4 days of incubation as compared to that expressed by cells attached to 

the SCPC50-coated substrates.  However, cells attached to the SCPC50-coated substrate 

expressed 10-fold higher osteocalcin mRNA level than that expressed by cells attached to 

the uncoated Ti-6Al-4V substrate. The high expression of osteocalcin mRNA indicates 

that the cells attached to the SCPC50-coated substrate were in an advanced stage of 

differentiation since osteocalcin is expressed only post-proliferatively at the onset of bone 

matrix mineralization. In addition, bone cells attached to the SCPC50-coated substrates 

synthesized significantly higher amount of osteopontin and osteocalcin proteins which 

have important roles in bone matrix formation and remodeling. The enhancement of bone 

cell differentiation was accompanied by a low level immunological response as indicated 

by the lower release of pro-inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 

and RANKL by bone cells attached to the SCPC50-coated substrates as compared to the 

uncoated Ti-6Al-4V substrates. The favorable pro-osteogenic responses of bone cells 

attached to the SCPC50-coated substrates were correlated to the high adsorption of serum 
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proteins, including fibronectin, by the SCPC50-coated substrates. However, it is not only 

the amount and nature of proteins adsorbed onto the implant that dictate cell response, the 

conformation acquired by these proteins plays an equally significant role. FTIR analyses 

of adsorbed protein layer showed that proteins adsorbed onto the SCPC50-coated 

substrates expressed higher ratio of amide I/amide II functional groups (5.0 ± 0.6) than 

that expressed by the proteins adsorbed onto the uncoated substrates (2.2 ± 0.3). The 

higher expression of amide I is associated with an active protein conformation that 

enhances cell activity. In addition to the proteins that enhanced cell activity on the 

SCPC50-coated substrates, the release of ionic dissolution products from the material 

modified the chemical composition of the medium and stimulated bone cell 

differentiation. ICP - OES analyses of the tissue culture medium showed that SCPC50-

coated substrates withdrew Ca and released P and Si from and into the medium. These 

ions have the potential to stimulate bone cell differentiation by influencing cell signaling 

mechanisms and directly affecting cell activity at a transcriptional as well as post-

translational stage. Moreover, FTIR and SEM - EDX analyses of the extracellular matrix 

produced by cells attached to the SCPC50-coated substrates demonstrated bone mineral 

formation as indicated by the Ca/P ratio of 1.02 ± 0.23 and the presence of sulfur in the 

matrix. On the other hand, bone matrix mineralization did not occur on uncoated Ti-6Al-

4V substrates during the same time period. These results demonstrate the greater 

stimulatory activity of SCPC50 coating on bone cell differentiation bone matrix 

mineralization than uncoated Ti-6Al-4V substrate. 

The surface roughness of the implant is known to affect cell response to the 

material. AFM analyses of the topographical characteristics of SCPC50-coated substrates 
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showed that the average roughness of the ceramic coating depends upon the surface 

topography of the metal substrate and can be controlled by the varying the duration of the 

EPD coating process. It was found that EPD coating carried out for 30 s produced a 

ceramic layer that exhibited minimum average roughness. An increase in the coating 

duration to 60 s resulted in a significant increase in the average roughness of the 

substrate, both at the nano- and at the micro-scale resolution. The variability in average 

roughness and the changes in SCPC50 peak diameter indicated that the SCPC50 particles 

are deposited preferentially in a manner that fills the grooves on the surface created 

during substrate preparation. In vitro analyses of bone cells attached to SCPC50-coated 

substrates of varying average roughness showed comparable number of cells attached to 

either substrate which suggests that cell attachment was dependent on the surface 

chemistry of the material rather than the average roughness. However, an increase in the 

roughness of the SCPC50-coated implant was accompanied by a decrease in cell 

proliferation and poor actin cytoskeleton development. Moreover, the increase in surface 

roughness caused greater release of P and Si and higher adsorption of Ca by the material. 

Thus, it is most likely that the decrease in cell proliferation with increasing surface 

roughness was a result of apoptosis which has been associated with the early onset of cell 

differentiation. These results suggest that variations in the surface roughness and 

dissolution profile of the SCPC50-coated substrate dominate over the effect of its surface 

chemistry in regulating bone cell activity. 
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5.2 Recommendations for future work 

5.2.1 TEM analyses of SCPC50/Ti-6Al-4V interface 
 

Mechanical tests carried out to determine the adhesion strength of SCPC50 

coating with Ti-6Al-4V substrate showed that the coating developed adhesion strength of 

> 47 ± 4 MPa and that the fracture occurred away from the metal/ceramic interface. 

Therefore, there is a strong motivation to study the chemical bonding mechanism at the 

metal/ceramic interface to clearly delineate the reasons for the high adhesion strength. 

Thermal treatment at high temperature, such as 800 ºC, promotes atomic diffusion 

between the atoms of the metal and ceramic which strengthens the interface. TEM 

analysis of the SCPC50/Ti-6Al-4V interface can be carried out to ascertain the atomic 

interactions between SCPC50 and Ti-6Al-4V.    

5.2.2 In vivo studies with SCPC50-coated Ti-6Al-4V implant 
 

The results presented in this study strongly demonstrate the stimulatory effect of 

SCPC coating on bone cell differentiation and mineralization under in vitro conditions. 

The natural environment of the body is much more complicated, marked by the presence 

of many different types of cells, tissue fluids and proteins. As a continuation of this work, 

the osteo-integration of SCPC50-coated Ti-6Al-4V implant with living bone tissue 

should be evaluated under in vivo conditions. It is expected that the osteogenic 

stimulation provided by the SCPC50 coating would promote bone cell activity and foster 

bone bonding with the implant. In addition, pull-out tests should be carried out to 

ascertain the strength of bone-tissue integration.  
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5.2.3 Comparison of bone cell response between SCPC50 and other bioactive ceramic 
coatings 

 
In the present study, the stimulatory effect of SCPC50-coated Ti-6Al-4V implant 

was evaluated at a molecular level and compared to that of control Ti-6Al-4V substrate 

without coating. The results showed that SCPC50 coating enhanced the cell 

differentiation of bone cells, as shown by elevated osteocalcin mRNA levels and higher 

synthesis of osteopontin and osteocalcin proteins. Comparison of alkaline phosphatase 

(AP) activity showed that bone cells attached to SCPC50-coated implants exhibited 2-

fold higher AP activity than hydroxyapatite-coated implants. Therefore, there is merit in 

evaluating gene expression and protein syntheses by cells attached to SCPC50-coated 

implants and compare it to other commercially available bioactive ceramic coated 

implants, such as those coated with hydroxyapatite or biphasic ceramics. Moreover, in 

this study, gene expression was evaluated at one time point only, i.e. 4 days. Temporal 

variations in gene expression pattern can be evaluated at longer time points. 
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Enhancement of Bone-Implant Integration Using a Novel Bioactive Ceramic Coating 

 
Aniket, Amy Young, Ian Marriott and Ahmed El-Ghannam 
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Tissue integration between bone and orthopedic implant is essential for implant fixation and 
longevity. Host tissue response against metallic implants results in the formation of a non-
adherent fibrous capsule that can lead to micro-motion resulting in implant failure. Bioactive 
ceramics have the ability to directly bond to bone and expedite bone formation; however they 
have inappropriate mechanical properties for load bearing applications. Silica-calcium 
phosphate nanocomposite (SCPC) is a novel ceramic that has demonstrated superior 
bioactivity, mechanical properties and resorbability than traditional ceramics, such as 
hydroxyapatite or bioactive glass. The objective of this study is to coat medical grade Ti-
6Al-4V implant  with  SCPC and  evaluate  the effect  of  ceramic  composition  and  coating 
parameters  on the adhesion strength between the bioactive ceramic and the metal substrate. 
Moreover, protein adsorption onto the coated substrate has been correlated to osteogenic gene 
expression of bone cells. 

SCPC was prepared using powder metallurgy technique and ground into nano-particles (50 – 200 
nm) using a planetary ball mill. The structure of SCPC was analyzed using XRD, FTIR, SEM and 
EDX techniques. Ti-6Al-4V was coated with SCPC nano-particles using electrophoretic 
deposition. Efficient and stable coating was achieved by optimizing SCPC concentration, coating 
duration, voltage and thermal treatment process. Adhesion strength at the interface of SCPC and 
Ti-6Al-4V was measured according to ASTM standard protocol (F1147-05) and the fractured 
surface was analyzed using SEM-EDX. Moreover, the protein binding capability of SCPC-
coating was assessed using western blot analysis. In-vitro bioactivity of bone cells on SCPC-
coated Ti-6Al-4V was analyzed by measuring gene expression and protein synthesis using RT-
PCR and spectrophotometric techniques respectively. In addition, the immunological response of 
bone cells on SCPC-coated Ti-6Al-4V was evaluated using ELISA. 

XRD,  FTIR  and  EDX  analyses  showed  that  SCPC  coating  was  composed  of  β-rhenanite  
and  α- cristobalite nano-crystals. Mechanical tests showed that the adhesion strength between the 
SCPC coating and Ti-6Al-4V increased with increasing thermal treatment temperature and 
reached a maximum strength of 47 ± 4 MPa after treatment at 800 ºC; a strength value that 
exceeded the ASTM requirement of 30 MPa. Moreover, the interface between the ceramic and 
metal was intact even after the fracture which speaks volumes for the strong adhesion between the 
SCPC and Ti-6Al-4V. Western blot analysis showed selective adsorption of fibronectin by SCPC 
coating which would enhance cell attachment and proliferation. Importantly, it was found that 
the bone cells attached to SCPC-coated Ti-6Al-4V implant up-regulated the synthesis of vital 
genes responsible for de novo bone formation. Moreover, a favorable minimal immunological 
response of the cells towards SCPC coating was observed which would further enhance the 
fixation of the implant inside the bone. 

In conclusion, a successful coating of a uniform and stable layer of bioactive SCPC on Ti-6Al-4V 
implant was achieved using electrophoretic deposition. In-vitro analyses showed that SCPC 
coating promoted bone formation through up-regulation of osteoblastic gene expression and 
protein adsorption. Hence, SCPC coating has the potential to expedite bone bonding to the 
implant and improve longevity. 
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Coating orthopedic implants with bioactive ceramics facilitates bone tissue integration, 
implant fixation and hence longevity. Various bioactive ceramics have been used for 
coating with limited success due to instability of the ceramic/metal interface. Silica 
calcium phosphate nano-composite (SCPC) is a novel bioactive resorbable ceramic that 
has the ability to bond to bone and expedite bone formation. In the present study, we coat 
medical grade Ti-6Al-4V implants with SCPC using electrophoretic deposition (EPD) 
and demonstrate the stability, uniformity and bioactivity of the ceramic coating. 

Flat Ti alloy discs were passivated in 34% HNO3. EPD was carried out in 2-7.5% (w/v) 
SCPC suspension in ethanol for 60-600 sec at 30-120V. The coated discs were treated at 
600-800 ºC under argon. Adhesion strength was measured and the fractured surface was 
analyzed using SEM-EDX. The coated discs were immersed in phosphate buffer for 7 
days and the adhesion strength was evaluated thereafter. Foam Ti alloy discs were coated 
with SCPC using optimized EPD parameters, cold-mounted in epoxy and sectioned using 
diamond wheel. The thickness of the SCPC coating on the surface of the inner and outer 
pores was measured.   

A uniform 30 - 40 μm SCPC layer was detected on passivated Ti alloy surface after 3 min 
EPD coating in 5% (w/v) SCPC suspension using 50 V. Tensile tests showed that the 
adhesion strength between SCPC and passivated Ti alloy after thermal treatment at 800ºC 
was 47 ± 4 MPa. Although the adhesion strength was higher for samples treated at 800ºC 
than those treated at 700ºC or 600ºC, the difference was not statistically significant. 
Fracture surface analyses revealed that the failure was largely at the ceramic/polymer 
interface or within the ceramic layer, suggesting a strong ceramic/metal interface. SEM 
analyses of the cross section of Ti alloy foam showed that after 30 sec coating, the entire 
thickness of the porous structure was coated with a uniform 4 μm thick SCPC layer. The 
interface between the ceramic and metal appeared to be very intact. After 7 days 
immersion in physiological solution, SCPC enhanced the deposition of a biological 
hydroxyapatite layer on its surface. Mechanical testing showed that the fracture occurred 
at the interface between the precipitated hydroxyapatite and the SCPC layer at 6.4 ± 1.8 
MPa. 

 In conclusion, successful coating of a thin and uniform layer of bioactive SCPC on the 
surface of Ti alloy implant material was achieved using EPD. The SCPC layer was 
strongly adhered to the metal surface even after immersion in physiological solution. 
Moreover, the SCPC coating enhanced the bioactivity properties of the implant as 
indicated by the formation of a biological hydroxyapatite layer on the material surface. 
Therefore, SCPC coating has the potential to expedite bone bonding to the metallic 
implant, improve fixation and longevity. Currently we are evaluating the interaction 
between bone cells and the SCPC coated Ti alloy implant.  
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