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ABSTRACT 

 

 

HERNANDO JOSÉ PACHECO GÓMEZ. Engineering bioceramic microstructure for 

customized drug delivery. (Under the direction of DR. AHMED EL-GHANNAM) 

 

 

One of the most efficient approaches to treat cancer and infection is to use 

biomaterials as a drug delivery system (DDS). The goal is for the material to provide a 

sustained release of therapeutic drug dose locally to target the ill tissue without affecting 

other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery 

platform that successfully demonstrated the ability to bind and release several 

therapeutics including antibiotics, anticancer drugs, and growth factors.  The aim of the 

present work is to analyze the role of SCPC microstructure on drug binding and release 

kinetics. The main crystalline phases of SCPC are α-cristobalite (SiO2, Cris) and β-

rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized 

separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics 

demonstrated a significant influence on the loading capacity and the release kinetics 

profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) 

spectroscopy analyses demonstrated the high affinity between the P-O functional groups, 

in Rhe and SCPC, and the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By 

contrast, a weak chemical interaction between the Si-O functional group in Cris and 

SCPC and the two drugs was observed. Vanc loading per unit surface area increased in 

the order 8.00 µg Vanc/m
2
 for Rhe > 4.49 µg Vanc /m

2
 for SCPC>3.01 µg Vanc /m

2
 for 

Cris (p<0.05).  Cis loading capacity increased in the order 8.59 µg Vanc /m
2
 for Cris, 

17.8 µg Vanc/m
2
 for Rhe and 6.03 µg Vanc /m

2
 for SCPC (p<0.05).  The drug release 

kinetics was dependent on the carrier as well as on the kind of drug. Different burst 
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release and sustained release rates were measured for Vanc and Cis from the same 

carrier. The percentages of the amount of drug amount released from Cris, Rhe and SCPC 

during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 

36.6%, and 30.6 % of Cis, respectively. Burst release correlated with the pore size 

distribution and surface area. Furthermore, the average rates of sustained release in the 

period 8-216h from Cris, Rhe and SCPC were: 9.8, 7.2 and 3.5 µg/h of Vanc and 4.5, 5.3 

and 3.5 µg/h of Cis, respectively.  Nearly inert Cris ceramic showed release kinetics 

controlled by its hierarchical nanoporous structure. On the other hand, the phase 

composition and surface chemistry of bioactive Rhe or SCPC ceramics overruled the 

effect of surface area.  The relatively low rate of drug release from SCPC was due to the 

dissolution-back precipitation reaction taking place on the material surface as confirmed 

by FTIR bands of surface hydroxyapatite layer at 576.5, 596.7 and 620.7 cm
-1

.  

Moreover, the solid solution of crystalline phases of SCPC enhanced the bioactivity of 

the composite.  Nuclear Magnetic Resonance (NMR) and cell culture analyses 

demonstrated that the interactions between the SCPC dissolution products and the 

released drug did not cause measurable negative effects on the bioactivity of the tested 

drugs.  

The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model 

of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin 

injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the 

tumor. Five days after implantation 50-55% of the total cisplatin loaded was released 

from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume 

compared to sCis treatment. Severe side effects were observed in animals treated with 
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sCis including rapid weight loss and decreased liver and kidney function; such effects 

were not observed in SCPC-Cis treated animals. Analysis of cisplatin distribution 

demonstrated drug concentrations in the tumor were 21 and 1.5-times higher in IT and 

ADJ groups, respectively, as compared to sCis treated animals. These data demonstrate 

the SCPC drug delivery system can provide an effective localized treatment for HCC 

with significantly reduced toxicity compared to systemic drug administration. Moreover, 

it is possible to tailor drug release kinetics from SCPC hybrids by controlling the 

crystalline structure of the material and the ratios of Cris and Rhe in the composite.   
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CHAPTER 1: DRUG DELIVERY SYSTEMS 

 

1.1. Overview 

Daily, many laboratories worldwide develop new potent pharmaceutics to combat 

complicated diseases like infections, inflammations and cancer. However, acute side 

effects associated with the administration of such drugs, and/or degradation of some of 

the drug physical and chemical properties (stability or solubility) when in contact with 

physiological tissues, make their use unsuitable in clinical applications.  To provide better 

medical treatments not only the medicine but also the administration method can be 

critical. In this sense, delivery systems have received great interest as an alternative for 

more successful treatments. Ideally, a drug delivery system should be able to provide 

effective controlled doses of therapeutics during enough time to treat diseases without 

modifications in the biological activity of the drug molecule [1]. In addition, the 

therapeutic effects of the drug delivery systems should be associated with minimal acute 

and chronic side effects when compared to traditional systemic administrations.  

The science and technology of controlled release of active agents from delivery 

systems has more than 50 years of development. These studies have allowed remarkable 

advances, evolving from macroscopic devices with constant drug release rates to 

nanoparticles with targeted or site controlled delivery of various therapeutics [2, 3]. 

Nevertheless, the ideal drug delivery system is far to be achieved. Many problems that 
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are not evident in the lab came out when the new technology is applied in a real clinical 

situation [4-8]. 

A better understanding of the physiological processes related to the interactions of 

drugs and drug delivery systems is required. Several parameters such as the 

quantification of the physical and chemical properties of the host material, its interaction 

with the therapeutic agent, the biology of drug metabolism, and distribution of the drug 

agent in tissues deserves a deeper understanding.  Therefore, the research in drug delivery 

systems is a complicated task that requires the contribution of people from diverse 

scientific disciplines. Engineers are more related with the development of new materials 

and the creation of mathematical models to predict the fate of the eluted drug in the drug 

delivery systems. There is no doubt that the convergence of different areas of the 

biomedical sciences and engineering has significantly improved the development of new 

DDS. Besides, new biomaterials have been the fuel for the innovations in the DDS field, 

including polymers [9-13], glasses [14-18], ceramics [19-23], and composites [15, 24-

29]. 

Different strategies have been used for the design of drug delivery methods. One 

of them engages the use of biomaterials able to release therapeutic doses of drug for 

extended durations [30-34]. This release approach helps when drugs are rapidly 

metabolized and eliminated from the body after its administration.  Diffusion controlled 

matrix or reservoir systems, and biodegradable carriers can be classified into this group.  

Another approach involves external or internal energy sources to stimulate the release of 

drug from the delivery system when needed. Among the various energy sources that have 

been tested as stimulatory trigger with promising results in vitro: magnetic field [35-38], 
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redox responsive [39-42], pH [43-45], temperature [46, 47], and others [48-52]. A third 

strategy implies the conduction of therapeutics inside the body to the precise location 

where is needed using targeting systems. The targeting DDS can be either passive or 

active. Passive targeting (PT) occurs when the carrier is transported to the ill tissue by 

convection or passive diffusion [53]. Particle size, hydrophobic nature, and electrical 

charge of the carrier, and tissue properties of the disease pathology are very important for 

PT [54]. Active targeting consists in the attachment of targeting ligands at the surface of 

the carrier for binding specific receptors at the target site [55]. 

DDSs are already a commercially available alternative to help in the treatment of 

diseases from cancer to fungal infections. In the USA, various materials have been 

already approved by the US Food and Drug Administration (FDA) since 1990; including 

liposomes, PEG, PLGA and proteins [56, 57].  Together to the pharmaceutical impact, 

the research and development of new and advanced drug delivery systems has a strong 

economic force, with a global market of $132 billion in 2010 and a projected growing 

rate of 5% during the next decade [58]. In addition, the reformulation of therapeutics in 

control release packages can extent the patent life and reduce the normal costs and time 

involved in the development of a new drug, in about 10-fold and 3-fold respectively [59].  

Biomaterials are natural candidates to serve as drug delivery systems because of their 

biocompatibility. Biomaterials are thought to have the ability to perform with living 

tissue or living systems without producing a toxic, injurious, or immunological response. 

Two main groups of biomaterials can be highlighted for their applications for DDS: 

Biopolymers and Bioceramics. 
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1.1.1. Biopolymers 

Biopolymers are relatively easy to process and can offer tunable biocompatibility 

and biodegradability [112, 113]. The size of the carrier has a significant and varied effect 

in the mechanism of action of the drug delivery. For that reason, a sub-classification 

based on the carrier size has been proposed in this work: nano and molecular size; and 

micro and macro size polymeric carriers. 

1.1.1.1.  Injectable Molecular and Nano Size Biopolymers DDS 

These delivery systems are designed to improve the physical properties that 

influence drug distribution (solubility and stability) by altering the chemical structure of 

the drug molecules. This group includes block copolymers, antibodies, synthetic 

polymers, and natural polymers. 

Amphiphilic molecules, such as phospholipids and block copolymers, have 

become very attractive for researchers because of their chemical flexibility [3]. They can 

be assembled as micelles, lipid bilayers, and liposomes.  The versatility to form stable 

nanoparticles colloidal ensures prolonged circulation in the bloodstream and adequate 

drug release kinetics upon accumulation at the delivery site. This feature is appealing to 

passive targeting via the enhanced permeation and retention effect [60]. Polymer-drug 

conjugates have become a fast-growing field, with nearly a dozen polymeric conjugates 

advancing to the clinical trial stage [61].  Among the polymers that have capture the 

attention of researchers for drug conjugation are: Polyethylene glycol (PEG) [62-65], N-

(2-hydroxypropil) methacrylamide copolymer (HPMA) [66-68], Dextran [69-71], 

polylysine [72-74], poly(divinyl ether-co-maleic anhydride)[75, 76], and other 

polysaccharides [77-79]. The polymer-drug conjugates are commonly formed by the 
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polymer, a linker, the therapeutic agent, and sometimes by cell-specific targeting agents 

[61]. PEG is a particularly attractive polymer for conjugation. PEGylation is a popular 

technique design to increase drugs solubility and stability, and retard its elimination from 

the body [80]. Conjugates of PEG with proteins to treat different diseases including 

genetic abnormalities [81], cancer [82, 83], hepatitis C [80, 84], and HIV/AIDS [85, 86] 

are either in clinical trials or already in the market. Moreover, PEGylation used for steric 

stabilization of colloidal liposomes particles reduces the uptake of the particles by liver 

and spleen macrophages and extends the particles circulation times in the blood [87-89]. 

This facilitates the accumulation of particles at target site [53]. 

One active area that has captivated a significant number of research works is the 

use of conjugates for cancer therapies. Conjugates of HPMA coupled with doxorubicin 

are already in Phase I/II of clinical trials [90]. In vivo experiments in mice by Etrych et 

al., showed that the treatment of EL4 T cell lymphoma using HPMA copolymer 

conjugated containing doxorubicin significantly inhibited the tumor growth and 

prolonged the mean survival time longer than 80 days compared with the 55 days for 

animals treated with free anticancer drug [91]. Nishiyama et al., reported 20-fold higher 

circulation time and enhanced therapeutic efficacy of cisplatin conjugated to PEG-b-PGlu 

block copolymer micelles than that of the free drug administered to treat solid tumors in 

mice [92]. 

Recently natural polymers derived from biological systems including proteins, 

oligonucleotides, and polysaccharides or antibodies to bind selectively to a receptor agent 

[93, 94], emerged as promising drug carriers. They possess low toxicity and potentially 

favorable pharmacokinetics in the circulation.  Several investigators have used nucleic 
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acid ligands or aptamers for therapeutic and diagnostic targeted-delivery applications [95-

97]. In a work by Huang et al., DNA aptamer SGC8C conjugated with doxorubicin (Dox) 

show excellent specificity for killing T-cell acute lymphoblastic leukemia [98]. SGC8C-

Dox conjugates show a 6.7-fold increase in toxicity to their target CCRFCEM cells when 

compared to that of NB-4 cells. Moreover, the possibility of assembly 2D and 3D 

DNA/RNA base pair for the control release of small chemicals is under exploration [99, 

100]. DNA architectures have been tested for several drugs including doxorubicin[101], 

CpG [102], and siRNA [103]. 

1.1.1.2. Effect of Nano Particles Shape and Size of Drug Delivery 

For nanoparticles, the size selection is critical for the success of particulate drug 

delivery system. Particles <20–30 nm are easily cleared through renal excretion [112, 

113]. Particles larger than 200nm can be uptake by phagocytosis and endocytosis in the 

liver, the spleen, and to a lesser extent, in the bone marrow [114-116]. Nanoparticles in 

the size range <150 nm can escape from the circulation through openings in the tissue 

walls called fenestrations. Therefore, most of the data in the literature report particle size 

between 60 and 250 nm for intravenous applications [117]. Alternatively, modifications 

in the surface chemistry of nanoparticles can help to avoid obstacles, lead to target-

specific accumulation, and delay immune clearance [118, 119].  

The particle shape also plays an important role in the effectiveness of the delivery 

of nanoparticles. Variations in the particles shapes may cause significant differences in 

the hydrodynamic forces while flowing in the blood stream. These differences can lead 

for instance to the accumulation of particles at the vessel walls avoiding or favoring the 

drug delivery depending on their final objective [104].  Muro et al., studied the effect of 
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polystyrene particle size and shape on the delivery of intercellular adhesion molecule 1 

(I-CAM1) in mice. I-CAM1 is a transmembrane glycoprotein that is upregulated in many 

types of pathologies and used as a target for intra-endothelial drug delivery. Authors 

found that endocytosis was mainly ruled by carrier shape. Elongated shape particles 

showed a prolonged half-life in the circulation and demonstrated more specific 

endothelial targeting than spherical carriers. Furthermore, the particle size control the 

intracellular trafficking making endothelial targeting more readily as the diameter of the 

spherical particles is reduced  [105].  

1.1.1.3. Limitations of Molecular and Nano Size Biopolymers DDS 

When an in situ sustained release of therapeutic agents for long periods of time is 

required, DDS using drug modifiers are not the best choice [56, 90, 105, 106]. A major 

drawback for the use of block copolymers is their instability in the reticuloendothelial 

system (RES) [56, 106]. Therefore, correlations between in vitro and in vivo studies 

constitute a significant challenge to researchers in the field. Some innovative approaches 

have been done in order to increase the stability of the micelle drug carriers or block 

copolymers. For example, functionalization of block copolymers with cross-linkable 

groups [107, 108] and the substitution of block copolymer micelles with specific ligands 

to allow targeted drug delivery [109, 110]. Though, for many polymeric micelle systems, 

promising in vitro stability and efficacy, do not translate into long-circulating vectors 

when investigated in animal models. Moreover, in the case of natural biopolymers, their 

premature uncontrollable degradation limits their application as DDS in humans [111-

113]. 
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In addition, despite the notable development in the design of nanoparticle-DDS 

for about 30 years, only a few of nano-delivery carriers have reached the market [114-

117]. Poor drug loading, usually less than 5% (w/w), and rapid release became the main 

obstacles to overcome [118].  PEG coating of the liposomes nanoparticles demonstrated 

to improve drug stability and circulation for a longer time; however, it also enhanced 

drug retention, and diminished cellular uptake of the drug from PEGylated carriers 

resulting in reduced therapeutic outcomes compared to unmodified nanoparticles [119-

121].  

1.1.1.4. Implantable Micro and Macro Size Biopolymers DDS 

Implantable scaffolds or microparticles have  higher drug loading capacity, higher 

stability in biological tissues and offer prolonged drug release than nano particles 

delivery systems including liposomes and micelles [122]. Common techniques for drug 

loading include drug dispersion or dissolution within the solid polymeric phase or by 

encapsulation in a polymeric shell [123, 124]. The drug release kinetics for  biopolymers 

can be controlled by their composition and molecular weight which are directly related to 

the polymer degradation rate [125]. Manufacturing techniques allow the fabrication of 

polymeric scaffolds with different forms, porosities, degradation rates, and mechanical 

properties [126, 127].  Mechanical, thermal and biological properties of polymers can be 

modified by altering their stereochemistry [122]. 

Biodegradable synthetic polymers, like PLA, PGA, PLGA and poly-e-

caprolactone (PCL), have the advantage of slowly dissolve following implantation into 

the body. Degradability of PLGA can be tuned by controlling the proportions of PLA and 

PGA in the copolymer [128, 129]. Solid films of PLA were first used for the delivery of 
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contraceptive steroids in rats, inhibiting ovulation for up to six month [130, 131]. PLGA 

have been tested for delivering pharmaceutical agents of a wide variety of types 

including, small molecules like antibiotics, and anticancer drugs, and large molecules like 

proteins in the format of films[132, 133], millirods [134] and implants [135].  

Non-degradable synthetic polymers have also been tested for DDS. Their 

excellent biocompatibility with limited inflammatory response following implantation, 

make them suitable for drug delivery [136]. These polymers are often hydrophobic in 

nature, and suitable for long-term delivery and stabilization of hydrophobic drugs [137]. 

Poly(methyl methacrylate) (PMMA) is a popular non-soluble polymer tested as drug 

delivery carrier for hydrophobic drugs [147-149]. 

Natural polymers like collagen [138, 139], hyaluronic acid [140, 141] , and silk 

fibroin [142, 143] shows high biocompatibility and high biodegradability. Chemical 

modifications by cross linking natural polymers, or combination with synthetic 

biopolymers are normally used to improve their mechanical properties, reduce batch 

variation and control degradation rates. Wenk et al., developed porous Silk fibroin (SF) 

scaffolds with PLGA microparticles loaded with insulin-like growth factor I (IGF-I) 

embedded in it. Interestingly, while the degradation rates of free PLGA and PLGA 

embedded in SF scaffolds were similar, the in vitro IGF-I release kinetics from the 

SF/PLGA scaffold led to more sustained release rates as compared to the free PLGA for 

up to 50 days [143].  

Hydrogels represent yet another approach to making scaffolds.  Hydrogels are 

water soluble, cross-linked polymers (e.g. natural polymers such as hyaluronic acid, 

alginic acid, pectin, chitosan, gelatin, dextran, agarose; or synthetic polymers such as 
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polyesters, PEG-bis-(PLA-acrylate), PEG±CDs, PEG-g-P(AAm-co-Vamine), PAAm, 

P(NIPAAm-co-AAc),others; or combinations ±cross linkers) that swell by osmotic 

forces, but not dissolve in water [144].  The swelling extend of hydrogels and the 

diffusion of therapeutics out of the carrier can be regulated by controlling the chemical 

nature of the cross-linking [145, 146].  The advantage of using hydrogels is that they are 

not as rigid as other scaffold systems. Therefore, they can be injected instead of 

implanted.  For example, Jeyanthi and Rao showed in vitro constant release rate of 5-

fluorouracil from copolymer hydrogels of collagen and poly(hydroxyethyl methacrylate) 

[poly(HEMA)] for a period of 10 days [147].  

1.1.1.5. Limitations of Micro and Macro Size Biopolymers DDS 

Despite the perks that biopolymers micro and macro carriers offer for drug 

delivery there are some concerns that limits their applications in humans. 

The use of hazard solvents like methylene chloride in the manufacturing of 

PLGA, and the acidity of the in situ degradation products of these polyesters are of 

concern [148-150]. Several studies using implants or microparticles of polyesters (such as 

PLGA) for tissue engineering have showed negative cellular interactions, including 

limited cell proliferation, tissue synthesis and inflammatory host response [151, 152]   

Natural polymers show batch to batch variation, low mechanical properties, and 

limited processability which restrict their use for DDS applications [153]. Moreover, 

there are serious concerns about cross-linking of natural polymer matrices. The presence 

of unreacted functional groups during the crosslinking process can result in a cytotoxic 

reaction upon degradation [154, 155]. 
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PMMA is a biocompatible material that has been widely used as bone cement in 

orthopedic surgery for the fixation of prosthetic devices and to remodel lost bone [156]. 

The high risk of introducing bacteria by using PMMA cements motivated the 

incorporation of antibiotics into the polymer intending to decrease the infections after 

surgery [157, 158]. High percentage of drug retention and low degradability are the main 

drawbacks of PMMA DDS.  Moojen et. al., studied the release kinetics of antibiotics 

from three commercial PMMA products, cement spacers and polymer beads loaded with 

high dose of the antibiotics during 6 weeks. Even when all carriers were able to provide 

concentrations of antibiotics above MIC, high drug retention (>90% for the cements, and 

>60%for the beads) were measured for all carriers [159]. In clinical practice, the 

gentamicin loaded PMMA beads are usually removed after 14 days post implantation, 

requiring additional surgical intervention. Several studies have shown that permanent 

antibiotic-PMMA implants can release the residual antibiotic at concentrations below 

MIC for a long time leading to recovery of antibiotic-resistant bacteria [160, 161].  

The low mechanical strength of hydrogels poses significant difficulties in 

handling. Moreover, it is difficult to load drugs and cells then crosslink the construct in 

vitro as a prefabricated matrix, and it is difficult to sterilizes [144]. 

1.1.2. Bioceramics 

Bioceramics offers an interesting alternative for DDS because it is feasible to 

produce ceramic matrices with large specific surfaces and high degrees of porosity. 

Materials in the families of calcium phosphate [162-164] and silica [165, 166] are very 

attractive for DDS applications. For particles in the micro scale, biodegradation and 

porosity are the main variables that control the DDS. Several approaches have been tested 
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for bioceramics in drug delivery applications including: nanoparticles to encapsulate the 

drug in a bioceramic shell such as hollow silica [167, 168] or calcium phosphate [169], or 

mesopores bioceramics with or without metallic-gate keepers [165, 170]. The second 

category includes the incorporation of the drug in the sol during ceramic preparation by 

sol-gel method or mixing the drug with ceramic cement [171, 172]. The third design is 

the incorporation of the drug onto a porous ceramic scaffold matrix by adsorption or 

using a linker [173, 174]. 

1.1.2.1. Nano Size Bioceramics as DDS 

In many cases nano and micro particles are preferred than scaffolds when non-

invasive procedures such as injection or ingestion are desired. The crescent technology in 

the nano and micro fabrication allows the development of new and sophisticated particles 

of different materials, size, surface chemistry, shape and biodegradability [3]. 

Furthermore, particulate DDS can be formed by therapeutics entrapped or mixed with the 

biomaterial carrier with or without the help of ligand agents. The wide spectra opened for 

the use of particles for DDS applications has spurred much funding and research aimed 

toward the use and optimization in the field [111].   

Ca-P nano particles have been tested as delivery vehicles for growth factors, 

antibiotics, anticancer drugs and anti-inflammatory agents [175-177]. Altering Ca-P 

chemistry, surface area, surface charge, and crystallinity significantly affects drug 

bonding and release. Hanifi, et al. [178], showed that doping HAp nanoparticles with 

Mg2
+
 changed the surface charge of the particles and significantly increased the material 

capacity to adsorb DNA.  Dasgupta, et al. [179], incorporated Mg2
+ 

and Zn2
+ 

in HAp nano 

particles increasing the amounts of BSA absorbed when compared with undoped HAp. 
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The enhanced BSA adsorption was attributed to unit cell deformation caused by the 

dopants. However, no significant difference in the drug release profiles from dope or 

undope HAp were observed.  Sustained drug release of BSA was observed during 6 h. 

Stigter, et al., coated Ti6Al4V alloy with a Ca-P-drug layer employing biomimetic co 

precipitation in SBF solution saturated with several antibiotics [180]. The release of the 

antibiotics was related to their chemical nature (acid or basic), molecular size and their 

ability to diffuse in the releasing media. Authors attributed these changes to chemical 

binding between carboxylic groups in the antibiotics with calcium on the ceramic coating 

resulting higher incorporation and slower released kinetics [181]. However, plateau in the 

cumulative release profiles was observed after 7h of incubation in SBF for all antibiotic 

tested. 

Porous SiO2 structures with small uniform pore sizes (1.5-10 nm), total porosity 

in the order of 80%, and large surface areas (>1500 m
2
/g) are attractive for DDS [182, 

183]. Depending on the porosity characteristics and the surface chemistry 

(functionalization[184]) , the dissolution rate and the drug release kinetics can be 

controlled [185]. The pore size can be manipulated [166, 186, 187], given a wide 

clearance for the type of molecules that can fit into (anti-cancer agents [188-190], 

steroids [191], analgesics [192], and proteins and peptides [193]).   Moreover, 

encapsulation of drugs inside the mesopores (MSP) has been achieved by using metal 

ions (e.g. Cd) or molecules (e.g. CdS) as gatekeeper g to cap the pores and to regulate the 

release of drug molecules. Lai, et al. [194], used CdS
-
 to cap MSP particles for the 

delivery of ATP and Vancomycin. Torney, et al. [195], used Au
+
 caps on MSP particles 

for the delivery of β-oestradiol and DNA. These experiments demonstrated the capacity 
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of the gate keepers to maintain drug molecules entrapped in the nano carriers until reach 

the desired tissues. Afterwards molecules were liberated using chemical or physical 

triggering agents. Both authors showed that after uncapping the gaps chemicals were 

released from the nanoparticles in less than 24h. 

1.1.2.2. Limitations of Nano Size Bioceramics as DDS 

Similar to biopolymer, nano bioceramics particles show limited drug loading 

capacity and rapid release kinetics. A major concern in the use of nanoparticles for drug 

delivery system is the lack of reliable techniques to evaluate the side effect that can be 

connected to them [196-199]. For instance, there are serious concerns about the use of 

porous SiO2 nanoparticles due to its high dissolution rate and the presence of chemical 

species like silane which are chemically reactive and cytotoxic. This opens a big question 

mark about the convenience of using Silica nano carriers for DDS. For example, He Q., 

et al., [200], reported significant cytotoxicity of spherical silica mesoporous nano 

particles (190–420nm in diameter) at concentrations above 25mg/mL, and microparticles 

(1220nm in diameter) at concentration range 10–480 mg/mL. However, as a consequence 

of reducing the concentration of nano particles that can be used as DDS, the amount of 

drug that could be delivered is also reduced.  Lin, et al., [201], and Yu, et al., [202], 

demonstrated that cytotoxicity of amorphous porous and nonporous silica nanoparticles 

against red blood cells and HEL-30 cells respectively can be significantly reduced by 

controlling particle size and porosity. In spite of the attractive properties offered by 

MSPs, more investigation and in vivo studies need to be performed to determine the 

viability of using MSPs for drug delivery applications. 
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1.1.2.3. Cement or Ceramic Sol as DDS 

Calcium phosphate cements CPC are formed by mixing the ceramic powder with 

aqueous solution at room temperature and allow it to set  under physiological conditions 

[171]. After the setting reactions inside the body CPC have only two end products: HAp 

and brushite (DCPD) [203, 204]. CPC form a moldable/injectable paste which represent a 

significant advantage with respect drug delivery [205]. The low temperature at which 

CPC reactions take place together with their intrinsic porosity allows the use of this 

material as a drug carrier. Numerous therapeutic agents have been tested for drug 

delivery from CPC including antibiotics, anticancer, anti-inflammatories, proteins and 

growth factors in vivo and in vitro. Contradictory results can be found in the literature 

about the efficacy of CPC as drug delivery systems. For instance, some studies have 

showed high rates of drug release with low retention within the first 24 h [32, 206-208]; 

while some others have showed just the opposite [209-212]. Moreover, differing reports 

showing either deterioration of drug activity due to the interactions between the drug and 

the carrier, or successful drug deliver preserving drug bioactivity have been also reported. 

Jiang et. al., analyzed the release kinetics of the antibiotic Vancomycin hydrochloride 

(Vanc) from HAp cement and DCPD cement. Equal amount of drug were loaded by 

mixing with the cement reagents. Release kinetics studies showed that Vanc was released 

faster from the brushite cement than from the apatite cement matrix during 5 days. All the 

measurements for both carriers were above the minimum inhibitory concentration (MIC). 

Interestingly, only the drug eluted from brushite cement inhibited bacterial growth during 

the elution period. Authors attributed this effect to the degradation of the drug caused for 

the alkaline pH  of the apatite cement during setting [213]. In a different study by Urabe 
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et al., release kinetics of Vanc from HAp cement was also measured. Authors found drug 

concentrations above the MIC for up to 8 weeks.  Microbiological assay demonstrated the 

bactericidal effect of the aliquot with stretch correlation to the concentration 

measurements [214]. Hence, nonetheless the extent amount of studies, more needs to be 

done in order to optimize the use of CMC as platforms for DDS.  

Similar to CPCs, sol–gel processed porous silica glasses have a considerable 

potential as carriers for controlled drug release [215-217]. Silica xerogels results from the 

hydrolysis of tetraethylorthosilicate (TEOS), followed by gelation, aging, and drying. All 

steps carried out at room temperature. The resulting gels are solid glassy material termed 

xerogels [172, 218]. The low processing temperature allows the incorporation of drugs 

dissolved in water or other solvent during the sol stage before the gelation process. This 

leads to the high drug loading efficiency, and homogeneous distribution of drug in the 

sol-gel [218, 219]. Several authors have published the drugs retained their activity after 

their delivery from silica xerogels, including ibuprofen, antibiotics, growth factor and 

anticancer drugs [6, 216, 218, 220-223].  

Degradability of silica xerogels can be adjusted by modifying processing 

parameters such as the composition of the sol, the type and course of reaction, the drying 

temperature, the pH of the sol and the type and concentration of the catalyst [215, 224-

226]. Currant et. al., significantly affected the porosity of silica xerogels by decreasing 

pH of the TEOS reactions. Acid-catalyzed hydrolysis has been used as a strategy to 

increase the surface area and porosity of the former for drug delivery applications [218, 

227, 228]. Moreover, additional sintering step after the gelation below 900
o
C can 

significantly reduce the degradation of the material and prolong the drug release. In two 
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different works by the group of Kortesuo et. al., increased the release of toremifene 

citrate loaded from silica xerogel by adding a sintering step at 700
o
C after the gelation 

[221, 229] , but eliminate the possibility of drug incorporation during processing, 

decreasing the loading efficiency. It has also showed to be biocompatible in vivo as they 

are degradable inside the body which degradation products (Si(OH)4) can be easily 

eliminated through the kidneys [222].  It has been shown that alkalyne drugs release in a 

sustained manner whereas neutral drugs are released very quickly from silica [217].  

1.1.2.4. Limitations of Cement or Ceramic Sol as DDS 

The use of CPC as drug carriers is not a straight forward task towards the proper 

design of CPC delivery systems. Parameters such as cement microstructure [230], drug 

loading strategy [231], drug concentration [232] , chemistry of the drug [233], and others 

[234, 235], significantly affect the release behavior. Common strategies to incorporate the 

drug in CPC are either by combination with the cement reagents or by impregnation of 

the pre-set CPC solid block or granules. Even when the first strategy can improve the 

drug-carrier homogeneity, it can interfere with mineral precipitation and inhibit 

mineralization of the cement [32, 236]. Therefore, microstructure and mechanical 

properties of the CPC carrier are correlated with the presence and concentrations of drug 

molecules [236-238].  

Release kinetics of drugs from promising xerogels DDS tends to is characterized 

by a very sharp initial burst followed by little release in later stage (for hydrophilic 

molecules), exhibiting a great disadvantage for long term sustained drug delivery [218, 

221, 239]. Alternative methods such as functionalization of the surface walls [240], pore 
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blocking with nanoparticle caps [170], and composite with biodegradable polymers, the 

last with higher success [241, 242].  

1.1.2.5. Bioceramic Micro and Macro Porous Scaffolds as DDS 

Three dimensional micro and macro bioceramic are another very plausible 

alternative to be used as drug delivery platforms. These carriers where first used to serve 

as biological tissue substitutes to restore, maintain, or improve tissue function [243, 244]. 

Positive biological response to micro and macro size bioceramics inside the body makes 

them useful for DDS. As a major advantage these systems stay in the place of 

implantation without further travel into the blood stream, liberating therapeutics in situ.  

Bioceramics used for DDS includes nearly inert ceramics (e.g., alumina and 

zirconia), bioactive ceramics (e.g., hydroxyapatite and bioactive glass-ceramics), and 

resorbables ceramics (e.g., tri-calcium phosphate and bioactive glasses) [245]. Calcium 

phosphates (CaP) and bioactive glasses (BG) are regarded the most attractive bioceramic 

for DDS due their biological reactions with cells and live tissues.  

Amid calcium phosphates, hydroxyapatite (HAp) is very popular since this has a 

similar chemical composition to the inorganic component of bone [246]. Porous HAp 

scaffolds have proven to successfully serve in the bone tissue regeneration in vivo [247, 

248]. Therefore, HAp has been mainly used as an effective carrier of growth factors to 

stimulate bone cells and to accelerate tissue ingrowth [249, 250]. Several works have 

tried to enhance the functionality of HAp scaffolds by controlling its porosity. 

Fabrication techniques including the use of polymeric matrices removed by pyrolysis 

[251], 3D prototyping [252], foaming methods [253], and by forcing gas inclusions [254], 

have been intended. The combination of macro and micro interconnected porosity created 
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by these methods resulted convenient for DDS applications. Uchida et al., showed the 

successful use of porous hydroxyapatite blocks for the  delivery of anticancer drug (Cis-

platinum) in vitro and in vivo during 12 weeks [255].  

Combinations of HAp with more soluble CaP like tri-calcium phosphate (TCP) 

have been tested to improve the degradability of HAp [256]. Guicheux et. al., tested the 

commercial Triositet® macroporous biphasic calcium phosphate consisting of a ceramic 

with a 60/40 HAp/b-TCP for the loading and release of human growth hormone (hGH). 

In vitro results showed burst release within the first 48h followed by slower sustained 

release for 8 days with negligible drug retention. In vivo results showed partial resorption 

of the 60/40 HAp/b-TCP scaffolds [257].  Alternatively, introduction of crystal defects 

such as ionic substitutions have been also tested. Thermodynamic destabilization and 

diminution of the crystallinity of HAp by incorporation of CO3
-2

, Mg
2+

, or Sr
2+

 ions can 

increase the solubility and drug adsorption capability of the apatite [258-260].  

Christoffersen et al., found an increase in the dissolution rate of HAp when calcium ions 

were substituted with strontium ions in molar concentrations from 1 to 10% [261].  

Bioactive glasses are a group of glasses able to bond bone chemically [245].   

Basic compositions of BG are within the molar ranges: 38-65.5% SiO2, 15-30% Na2O, 

10-25% CaO, and 0-8% P2O5 [262]. BGs have showed higher bioactivity and degradation 

than HAp under physiological conditions [263, 264].  The dissolution of the glass can be 

controlled by varying particle size, glass type, and volume fraction of powder in 

physiological solutions [265, 266]. BG porosity can be tuned by similar methods 

mentioned for HAp [267-269]. Commercial available 45S5 Bioglass® have been 

extensively tested for tissue engineering and drug delivery applications [173, 270-272].   
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Nandi et al., studied the antimicrobial activity in vitro and in vivo of antibiotic 

cefuroxime axetil (CFA) from porous BG ceramic blocks bioactive glass (BG) prepared 

by normal glass melting procedures. Concentrations of antibiotic were measured above 

the MIC during the first 6 days of the in vitro experiment. Furthermore, antibiotic 

impregnated BG showed to be effective against osteomyelitis induced in the tibia of New 

Zealand rabbits [272]. Domingues et al., also evaluated the antimicrobial activity in vitro 

and in vivo of BG particles prepared by sol-gel method and loaded with antibiotic 

tetracycline. This time in vitro test showed a drug elution burst of 12% antibiotic from the 

BG within the first 8h, followed by a sustained controlled release for up to 80 days. 

However, the bactericidal effect of the aliquots from the in vitro test or BG-drug DDS 

were not evaluated for the same period of time [173]. None of the authors analyzed either 

the degradation rate of the BG or the drug-BG interactions which can help to explain the 

significant differences found in the release kinetics of antibiotic from BG.  

1.1.2.6. Limitations of Macro and Micro Bioceramics DDS 

Each of these materials system has limitations and special considerations. For 

example, how much drug can be loaded, what types of drug molecules are compatible, 

and what kind of dosing characteristics are desired. 

 Biodegradability of Ca-P micro and macro carriers has been a problem because 

some show an accelerated resorption rate (-TCP, Rhenanite) whiles others hardly 

resorbs (HA). [273, 274]. Moreover, a major challenge in the use of scaffolds DDS is that 

they might be favorable to the growth of bacteria. 

BGs limitations are related to high processing temperatures, narrow range of 

bioactive compositions, low mechanical strength,  and limited textural features [275]. 
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Processing and drug loading procedures can significantly affect the release kinetics of 

therapeutics from BG. 

1.1.3. Composite Biopolymer-Bioceramics  

Composites scaffolds made of ceramics covered or integrated with polymers have 

been develop in order to take advantage of the virtues of both materials for DDS. Tunable 

degradability, alteration of the mechanical properties and drug release kinetics can be 

achieved by the addition of polymers to bioceramics [276-278]. Biphasic calcium 

phosphates (BCP), CPC, HAp, and BG have been already combined with natural and 

synthetic polymers, and tested for the delivery of small and large molecules [24, 279-

286]. Soriano et al., achieved to extend by 4-fold the sustained release of gentamycin 

from blended CaP-PLA scaffolds compared to commercial PMMA beads [287]. In vitro 

study by Schnieders et. al., incorporated PLGA microparticles in CPC scaffold and 

achieved to eliminate burst release showed in the PLGA alone yielding to a sustained 

constant drug release for up to more than three month from the PLGA-CPC composite 

[288]. Itoh et. al., showed that scaffolds of collagen mixed with HAp nanoparticles and 

loaded with growth factor rhBMP2 implanted in rats and dogs showed high 

osteoconductive activity and is induced bone regeneration [289]. However, undesirable 

properties can also result depending on the materials combinations and the way how they 

are incorporated in the ceramic-polymer. Habraken et al., showed that combination of 

CPC with gelatin microparticles can increase the injectability of the cement but at the 

same time inhibit the degradation of the polymer [290]. Same group of researchers found 

that incorporation of PLGA  into a CPC reduced the injectability, compression strength, 
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and increased the cement setting time in manageable ranges [291]. Therefore, careful 

analysis of the composited must be done for their specific applications as DDS. 

1.2. SCPC as Drug Delivery System 

1.2.1. What is SCPC 

Silica calcium phosphate composite (SCPC), US patent No 7,223,414 B1 2007, is 

a bioactive resorbable nano composite ceramic [292]. SCPC ceramic is prepared by 

mixing and sintering an organic or inorganic silica salt (0.3-0.6 molar ratio) with a 

calcium phosphate. The initial molar composition, and the sintering parameters selected 

to process the ceramic composite have a crucial effect in its final microstructure [18, 293-

295]. This fact allows engineering custom made SCPC composites for specific tasks. The 

two main crystalline phases of SCPC are solids solutions of β-rhenanite (β-NaCaPO4) 

and α-cristobalite (SiO2) [18, 293]. In previous works by El-Ghannam et al., SCPC has 

showed superior bone regenerative capacity, resorbability and mechanical properties 

compared with commercial bioactive glass and hydroxyapatite [293, 296]. The superior 

biological response has been associated with the stimulatory effect on osteocytes of the 

dissolutions products of SCPC in physiological conditions [293, 297]. The elemental 

solid solutions, measured in the main crystalline phases of SCPC, and the large surface 

area of the material seems to rule these dissolutions. In addition, the superior mechanical 

properties are attributed to its particular microstructure with high density of grain 

boundaries due to the nanometric size of its crystalline phases, and its homogeneous 

hierarchical pore size distribution, including nano pores in the range 50-100nm and micro 

pores in the range 10-300 µm[293, 294].   
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1.2.2. DDS Applications of SCPC 

SCPC has demonstrated its ability as a potential platform to deliver several 

therapeutics including antibiotics, anticancer drugs, and growth factors.   

El-Ghannam, showed up to doubled adsorption of serum protein loaded on SCPC 

ceramic particles with different chemical compositions and heat treatments than that 

measured on commercial bioactive glass [293]. Moreover, the chemical composition and 

phase distribution of SCPC regulated its capacity to adsorb serum protein. Higher 

amounts of silica-rich phase significantly increased the serum protein adsorption. In 

addition maturation in crystallization of β-rhenanite and α-cristobalite by adjusting heat 

treatment parameters have resulted in enhanced protein adsorption.  The effects of 

porosity and surface area were not addressed in this study. El-Ghannam et. al., showed 

superior sustained release of rhBMP-2 protein from SCPC when compared with porous 

HAp loaded under similar conditions [287]. In this study, bone marrow cells incubated 

with medium released from SCPC-rhBMP-2 expressed 10 times more alkaline 

phosphatase activity and doubled the production of mineralized extracellular matrix than 

those incubated with HA-rhBMP-2 medium in the same time period. Comparable total 

porosity and surface area were measured for both SCPC and HAp. But, SCPC showed a 

wider pore size distribution including pores in the nano and micro range while HA only 

exhibited pores in the micro range. Prolonged release kinetics of SCPC was associated to 

the presence of nano pores that served as pockets for the storages of the protein, and to 

dissolution-precipitation reactions taking place on the surface of the SCPC, controlled by 

its surface chemistry and crystalline structure. 
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In similar studies SCPC has been tested as carrier for the release of antibiotics.  

EL-Ghannam et al., tested different particulate SCPCs ceramic for the delivery of 

antibiotic gentamicin for up to 28 days [298]. It was reported that differences in the 

chemical composition of SCPC significantly altered the porosity, pore size distribution, 

and surface area of SCPC carriers. Authors attributed the major changes with the SiO2 

content in the SCPC, and found that increasing the silica content in the composite, 

surface area and average pore diameter was also increased. Interestingly, it was observed 

that SCPC with the largest surface area loaded fewer amount of drug, but at the same 

time, showed prolonged release of gentamicin above MIC with respect to the other two 

compounds. El-Ghannam et. al., demonstrated that SCPC carrier have superior 

effectiveness for Vancomycin (Vanc) loading and release than low resorbable 

polymethylmethacrylate (PMMA) widely used in the treatment of bone infection over the 

last three decades [299]. The amount of Vanc adsorbed on the surface of SCPC was more 

than 100% superior to that adsorbed on the PMMA particles surface per mass unit under 

the same experimental conditions. Moreover, at all-time points, the concentrations of 

antibiotic released from the SCPC carrier were always superior to those measured from 

the biopolymer. Moreover, drug concentrations eluted from SCPC-Vanc hybrids showed 

to be above the MIC keeping its bactericidal effect for up to 44 days against 

Staphylococcus aurous, while only 14 days for PMMA.   In addition, SCPC showed only 

a 4.5% of drug retention compared to 68% of the PMMA, and superior degradability with 

40-44 % mass in comparison of 0.5-1.5% measured for PMMA. The effect of the 

porosity and surface area were not addressed in this study. 
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Different compositions of SCPC have been also tested for the release kinetics of 

anticancer drugs showing promising results. The loading and release kinetics of 

anticancer drug 5-Fluorouracil (5-FU) from two different formulations of SCPC (19.5% 

SiO2 and 32.9% SiO2) were analyzed [300]. The two samples showed comparable 

loading capacity per unit mass of ceramic, and also showed similar cytotoxicity against 

4T1 mammary tumor cells.  Release kinetic of anticancer drug from discs made of Si-rich 

SCPC-5FU hybrid was tested in vivo and in vitro.  In vitro results showed sustained 

release of therapeutic dose of 5-FU for up to 32 days. Moreover, in vivo study, using a 

breast tumor model in mice, demonstrated that the tumor growth was stopped in those 

animals treated with SCPC-5FU hybrids which did not happened with control animals 

treated with SCPC alone or without any treatment. In fact, 75% tumor reduction indicated 

the bioactivity of the drug eluted from the SCPC carrier. Surface area, porosity and pore 

size distributions were not evaluated this time. Vedantham et al., compared the capacity 

for loading and release Cisplatin (Cis) from the same two formulations of SCPC [301]. 

This time porosity, surface area, and pore size distribution, were reported; and significant 

differences with respect to chemical composition were detected. Silica-rich SCPC 

showed a 20-fold higher surface area and wider pore size distribution (in the nano-range) 

than that measured on the other sample. As expected drug loading capacity of Silica-rich 

SCPC was superior to the other sample, but only by 1.6-fold, which does not correlate 

with the major difference in surface area. Release kinetics profiles were also very 

different between the two samples. Whereas silica rich SCPC showed burst release of 

37% of the initial Cisplatin loaded, followed by a sustained release for up to 1 moth with 

only 15% of drug retention, the other SCPC sample showed 27% of burst release, 
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followed by a sustained release for only 12 days with 50% of drug retention. The 

enhanced drug delivery capacity of the silica-rich SCPC was corroborated by measuring 

the cytotoxicity of solution incubated with the ceramic drug hybrids against rat H4IIE 

hepatocellular carcinoma cells. Table 1.1 is a summary of various materials for the 

delivery tested for drug delivery of different kinds of therapeutics, including SCPCs. 
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1.3. Motivation and Hypothesis 

SCPC has been shown to be a promising material for drug delivery system. 

Although numerous studies were published on the use of silica-calcium-phosphates 

materials, the role of ceramic microstructure on drug binding and release is not fully 

understood. We hypothesize that engineering the microstructure of SCPC bioactive 

ceramic can be used to control drug binding and release kinetics of several drugs. For 

instance, understanding the interactions between the drug functional groups and the 

active sites exposed at the surface of the biomaterial will facilitate the possibility to 

engineer a more effective drug delivery system, and predict in vivo behavior, saving time 

and money involved in the research-development process. In particular, the effect of 

Phosphate/Silicate ratio, crystal defects and porosity on material properties related to 

drug delivery such as surface charge and dissolution kinetics will be analyzed. Once the 

relationship is clear, material properties can be modified by changing microstructure of 

the ceramic composite through modification of the ceramic processing parameters. 

Search in the literature indicated that none of the previous studies have addressed the 

effect of carrier microstructure to establish correlations and predict behavior for drug 

loading and release. This will be the first attempt trying to use systematic approach 

combining microstructure–properties relationship (following the philosophy of materials 

science tetrahedron) to predict release kinetics in vitro and the therapeutic effect in vivo.  
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1.4. Objectives 

The goal of the present research program was to determine from the materials 

science perspective the effects of SCPC bioactive ceramic microstructure on the binding 

and controlled release of several drugs. 

1.4.1. The Specific Objectives: 

1. Synthesis and characterization of SCPC, β-Rhenanite (Rhe) and α-Cristobalite 

(Cris). 

2. Analyze drug binding to and release from these ceramics for Cisplatin (Cis) 

and Vancomycin (Vanc). 

3. Correlate between the physic-chemical characteristics of each ceramic and 

drug binding and release kinetics. 

4. Demonstration of the therapeutic effect of the SCPC-drug hybrid in vivo. 

 



 

 

 

 

 

 

 

CHAPTER 2: SYNTHESIS OF BIOCERAMICS FOR DRUG DELIVERY AND 

CHARACTERIZATION TECHNIQUES 

 

2.1. Introduction 

Crystalline phases β-Rhenanite (Rhe) and α-Cristobalite (Cris) have been reported 

as the primary constituents of resorbable silica calcium phosphate bioceramic (SCPC) 

[18, 292, 293]. It has been also demonstrated that variations in the ratio Cris/Rhe have a 

significant effect on the behavior of SCPC for bioactivity, resorbability, and drug 

delivery properties [293, 298, 301, 320].  Moreover, microstructural properties such as 

porosity and surface area, and mechanical properties such as compressive strength, have 

shown to be affected by the phases distribution as well [18, 294]. Therefore is of our 

major interest to investigate the properties of each phase separately, and the role that they 

represent when combined in SCPC. 

β-Rhenanite (β-NaCaPO4), is an alkali calcium orthophosphate, with similar 

bioactivity than HAp, but with the advantage of higher dissolution rate in physiological 

conditions [321]. Ramselaar et al., reported in vivo resorption rates β-TCP<Rhe<HAp, 

and found that Rhe transform into apatite containing carbonate, sodium and magnesium, 

when inserted in tooth sockets of beagle dogs for 6 month [322, 323]. The ionic 

dissolution of Rhe might result in a stimulatory effect for cellular response. Knabe et al., 

reported higher proliferation and expression from human bone-derived cells incubated 

with Rhe than those incubated with β-TCP, suggesting Rhe superior potency to enhance 

osteogenesis [324, 325].  
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Various researchers have showed the enhancement effect of silica on the 

biological activity of calcium phosphates in vivo and in vitro [326, 327]. α-Cristobalite 

(SiO2), is a crystalline polymorph of silica, formed by tetrahedrons of four oxygen around 

one silicon atom piled up in layers rotated 45
o
about [100]and [010] axes [328]. As all 

crystalline forms of SiO2, Cris reactivity is very limited. However, several studies testing 

silica-calcium phosphate biocomposites, have showed Cris as one of the phases present in 

the composites, without reporting negative effects due to the presence of the ceramic 

[329-331]. In fact, previous results suggest that increasing the amount of silica phase in 

SCPC higher cells response and degradability can be achieved [293, 298].  

This section describes the procedures used to synthesize Cris, Rhe, and SCPC50, 

the characterization techniques utilized to analyze the microstructure, and the in vitro 

bioactivity of the ceramics under physiological conditions. 

2.2. Materials and Methods 

2.2.1. Ceramics Preparation:  

Resorbable silica-calcium phosphate (SCPC50) containing a molar composition 

36.8% CaO, 18.4% P2O5, 22.3% Na2O, and 22.4% SiO2 was prepared by mixing and 

sintering homogeneous stoichiometric mixtures of sodium silicate and dicalcium 

phosphate (Sigma-Aldrich, St Louis, MO) at 850
o
C for 2h in air. β-Rhenanite, NaCaPO4, 

was prepared by heat treating the mixture Na2CO3/CaHPO4 (reagents from Sigma-

Aldrich, St Louis, MO), with molar ratio fixed at 0.5, at 1100 
o
C for 32h in air [332]. In 

order to prepare α-Cristobalite, SiO2, α-quartz powder (Gelest INC, Mooresville, PA) 

was mixed with deionized water to prepare a paste, molded in 50 mL cylindrical molds 
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and dehydrated at 120 
o
C overnight. Cylindrical bricks of silica quartz were then treated 

at 1500 
o
C for 5h in air. All samples were left to cool down inside the furnace. 

Ceramics were manually ground using agate mortar, and then sifted through stack 

of ASTM of sieves, with decreasing mesh size. The efficiency of the method was 

evaluated by calculating the weight percentage obtained on each size interval. Particle 

sizes in the range 250-425 µm were selected for further drug delivery tests because they 

provide a suitable 3D interconnected porous structure, and high surface. After sifting, 

small particles, weakly attached to the granules, were cleaned by ultrasonication bath in 

deionized (DI) water. SEM analysis of the particles before and after the washing was 

performed. 

2.2.2. Structure Analyses 

The crystalline phases of each bioceramic were identified by X-ray diffraction 

analysis using X’pert PRO diffractometer (PANalytical, Westborough, MA) with CuKα 

(λ=1.54059 Å) radiation at room temperature, 45KV and 40mA. Continuous data were 

collected over the 2-theta range of 15-55
o
, with a step size of 0.02

o
 and 1s time per step. 

The diffraction patterns were compared with standards JCPDs PDF cards. Crystalline 

phase quantification and lattice parameters were calculated by Rietveld refinement 

analysis, using the program X’Pert HighScore Plus. Pseudo-Voigt function was used to 

fit the diffraction peaks. Crystallite size was calculated using the half width of the 

diffraction peaks as a function of 2θ evaluated by the formulation of the Cagliotti model. 

Good quality of the Rietveld refinement was obtained when statistical R factors were 

lower than 10 units [333]. The indices of crystallinity (χc) for each ceramic were 

calculated as the ratio between the crystalline diffraction area (Ac) over the total area (At) 
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of the respective diffraction pattern profile (χc = Ac/At). The morphology of the samples 

was analyzed by Scanning Electron Microscopy (SEM Model JEOL JSM-6480) equipped 

with an Energy Disperse X-ray (EDX) probe, to evaluate micro and macro structure. 

Samples were dehydrated and coated with a fine layer of gold (10nm) for SEM 

observations. The coating was performed in a sputter coater (Denton Desk IV Sputter) 

which uses argon gas and a small electric field. The sample was placed in a small 

chamber under vacuum. Argon gas was then introduced and an electric field was used to 

cause an electron to be removed from the argon atoms making the atoms ions positively 

charged. 

2.2.3. Surface Chemistry 

Ceramics particles were analyzed using Fourier transformed infra-red 

spectroscopy (FTIR) in the smart diffuse reflectance mode, employing Nicolet 6700 

spectrometer (ThermoNicolet, Madison, WI) equipped with triglysine sulfate (DTGS) 

detector. Different samples were diluted at 95% in KBr matrix (Sigma-Aldrich, St Louis, 

MO) previously dehydrated at 100
o
C. Background spectrum was recorded with pure KBr. 

All KBr spectra were acquired in the wavenumber range 400-4000 cm
-1

 at a resolution of 

2 cm
-1

 after 200 scans.   

2.2.4. Materials Dissolution Analysis: 

Three replicates (200.0 mg) of each ceramic (n=3) were immersed separately in 

10 ml of PBS (nominal pH 7.4) on an orbital shaker at 120 rpm and 37 °C. At sequential 

time, 4, 12, 24, and 96 h, aliquot (1 mL) of the sample was withdrawn from the 

immersing solution. At every sampling time, an equal volume of fresh PBS was added to 

maintain a constant (10 mL) total volume of release media. The Na, Ca, P, and Si ionic 
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concentrations of the 10X diluted solutions collected for the measurement of released 

drug were analyzed using ICP-OES at wavelengths of 315.887 nm, 213.62 nm and 

251.611 nm respectively using radial plasma view. A pH meter, model UB10 W/ Deluxe 

Kit Denver Instrument, was used to determine the pH values of solutions at each time 

point. The pH meter electrode was calibrated at each required time point using buffer 

solutions. The buffer solutions were supplied by VWR International with a precision of 

±0.01for pH 4.00 and 7.00 and ±0.02 for pH 10.00.  

2.2.5. Surface Transformation: 

The ability of apatite to form on ceramics surface when immersed in a simulated 

body fluid (SBF), with ion concentrations nearly equal to those of human blood plasma, 

was tested [334, 335]. Ceramic particles were soaked in SBF, at a ceramic to solution 

volume ratio of 33mg/ml for 1 month, at 37°C. Material surface was observed using SEM 

and subjected to FTIR analysis to confirm the presence of apatite layer.  

2.2.6. Porosity and Surface Area 

Pore size distribution and porosity percentage of the particles were determined 

using the mercury intrusion porosimetry technique with an AutoPore IV 9500 V1.07 

scanning mercury porosimeter (Micromiretics, GA). The specific surface area was 

determined by BET single point using a high-speed N2 gas sorption analyzer (TriStar II 

3020 V1.03, Micromiretics, GA).   

2.2.7. Statistical Analyses 

The data were expressed as the mean ± SD. Statistical analyses were performed 

using the software OriginPro 8 SR1 v8.0773 (OriginLab Corporation, Northampton, 

USA). One-way ANOVAwas used to test for variance among more than one independent 
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groups of data. Two-way ANOVA with replication was used when more than two factors 

affected the measurement (e.g., material and sampling time). Differences among 

treatment groups were evaluated using Tukey post-hoc testing. Results were considered 

to have statistical significance difference at the 0.05 level. 

2.3. Results 

Particle size distribution (% w/w) caused by grinding and sifting resulted in 

different distributions for each ceramic. Comparable mass (~30%) were found in the 

particle size ranges from 250-425, 150-250 and 90-150 µm for Cris, with just about 

5.65% of the total mass with size finer than 90 µm. Particle size distribution for Rhe 

resulted in~8.6% of the particles in the size range from 250-425µm, 10.2% in the range 

150-250µm, 21.6 % in the size range 90-150 µm, and about 59.6% < 90 µm. SCPC50 

showed a high fraction of particles in the size range 250-425 µm (38.2 %), comparable 

fractions for the ranges 150-250 and 90-150 µm (~22%), and 16.4% for particles <90 µm. 

Therefore, grounding and sifting efficiency varies from ceramics to ceramic, as well as to 

the desired particle size. The processing efficiency to produce particles in the size range 

250-425µm was measured to be from larger to lower SCPC50> Cris >Rhe (Figure 2.1). 

 
Figure 2.1: shows the particle size distribution obtained for the four ceramics. Bar chart 

showed that manual grounding of ceramic particles allowed recovering 24-39% of 

the total mass in the particle size 250-425 µm. 
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SEM analysis showed porous microstructure of the three ceramics with 

nanoparticles attached on their surface. After ultrasonication bath in DI water weakly 

attached nanoparticles were removed from Rhe and SCPC50, exposing the true porosity 

and surface area of the ceramic granules (Figure 2.2). This resulted significant since the 

nanoparticles weakly attached to the ceramics can significantly affect the porosity and 

surface area measurements.  Cris samples before and after the washing step did not show 

noticeable differences between them.  
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a) 

 
b) 

 
c) 

 
d) 

 
f) 

 
g) 

Figure 2.2: SEM micrographs for the different ceramics before and after the washing step 

by ultrasonication bath in DI water. The micrographs corresponds to a) Cris-before, 

b) Cris-after; c) Rhe-before, d) Rhe-after; e) SCPC50-before and f) SCPC50-after. 

Rhe and SCPC50 samples showed a much cleaner surface after sonication while no 

major changes were observed for Cris sample. 
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Mercury intrusion porosimetry demonstrated total porosity of 64.32% for Cris, 

61.05% for Rhe and 52.40% for SCPC50. Cumulative porosity and pore size distribution 

analysis (Figure 2.3) reveal clear differences in the porous structure for all the samples. 

Cris sample showed 0.98% of pores below 2µm, about 23.6% of their pores in the size 

range between 5.0-0.2 µm, and 75.33 % between 60.0-350.0 µm.  

 
a) 

 
b) 

Figure 2.3: a) Cumulative intrusion volume curve and d) differential porous size 

distribution for Rhe, Cris and SCPC50. 

 

Table 2.1: The pore size distribution as a percentage of total porosity for Rhe, Cris and 

SCPC50. 

Pore Radii 

range(µm ) 

Rhe Cris SCPC50 

Absolute porosity 

(mL/g) 

% of total 

porosity 

Absolute porosity 

(mL/g) 

% of total 

porosity 

Absolute porosity 

(mL/g) 

% of total 

porosity 

below 0.2 0.00 0.34 0.01 0.98 0.01 1.31 

0.2-1 0.02 2.16 0.22 22.51 0.02 4.70 

1-5 0.03 2.24 0.23 1.13 0.07 7.78 

5-60 0.13 19.3 0.06 6.59 0.05 9.09 

60-350 0.53 75.98 0.67 68.74 0.41 77.06 
 

 

Porosity percentages in the same size range for SCPC50 sample were 1.32%, 

12.48% and 86.15% and for Rhe 0.34%, 4.4% and 95.28%, respectively. A more detailed 

pore size distribution is summarized in Table 2.1. Measurements of BET specific surface 

areas agree with the pore size distributions where Cris with higher amount of porous in 
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the nanosize showed the largest surface area (1.2608 m²/g), followed by SCPC50 (0.8926 

m²/g) and then Rhe (0.4000 m²/g). 

a) b) 

c) d) 

e) f) 

Figure 2.4: Typical SEM images of Cris [a) low and b) high magnification], Rhe [c) low 

and b) high magnification], and SCPC50 [e) low and f) high magnification].  Dense 

fused particles can be seen for all ceramics, entrapping 3D hierarchical micro-nano 

porous structure.  
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SEM images (Figure 2.4) revealed well fused particles entrapping through and 

blind pores in a wide range of porous size for all the samples. Pore with size <500nm 

were seen for all the samples. Polycrystalline grains, as confirmed by XRD, were 

observed in the size range 200-1000nm, 100-2000nm and 50-500 nm for Cris, Rhe and 

SCPC50 respectively. Nanopores and nano cracks were observed in the inter-granular 

and triple junctions of the polycrystalline grains for the different ceramic matrices. 

Similar equiaxial growth of the polycrystalline grains was observed in all ceramics.  

Figure 2.5 displays the XRD spectra with the main crystalline phases of the 

different ceramics. The refined XRD patterns for is represented by the blue lines in the 

spectra. The difference between experimental and calculated spectra is depicted below 

each X-ray diffraction pattern. Cris was composed of α-Cristobalite (PDF card #39-1425) 

and α-quartz (PDF card #01-0649). Rhe sample showed 100% of β-Rhenanite (PDF card 

#29-1193). SCPC50 revealed to be composed of β-Rhenanite, α-Cristobalite and α-

quartz. Figure 2.5: (Continued). 

 

Table 2.2 reports the calculated wt% of the phase compositions for all the 

powders after refinement.  Furthermore, differences in the calculated lattice parameters of 

α-Cristobalite, α-quartz and β-Rhenanite in SCPC50 with respect to the α-Cristobalite, α-

quartz and β-Rhenanite in the Cris and Rhe samples were observed, indicating 

deformations in the unitary cell of the crystals most probably due to atomic substitutions 

in the SCPC50 phases. Statistical R factors obtained by Rietveld refinement were 

calculated < 10. This indicates good fitting between the experimental and the calculated 

patterns (Table 2.3). 
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a) 

 
b) 

Figure 2.5: XRD patterns taken from a) Cris, b) Rhe and c) SCPC50 
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c) 

Figure 2.5: (Continued). 

 

Table 2.2: Phase composition and structural parameters of Cris, Rhe and SCPC50 obtained by 

Rietveld refinement on the corresponding XRD diffraction patterns. 
 

Sample 
Crystallinity 

(%) 

Crystalline Phases 

Content (%) 

Crystallite 

Size (Å) 

Space 

Group(ICSD) 

Lattice parameters (Å) Volume 

(Å3) a b c 

Cris 100.00 
96.6% α-Cristobalite 275.6 P41212 4.9644 4.9644 6.9234 170.632 

3.1% α-Quartz 211.6 P3121 4.8748 4.8748 5.3727 110.570 

Rhe 100.00 100% β-Rhenanite 239.7 Pna21 20.3674 9.1515 5.3981 1006.17 

SCPC50 88.63 

15.8% α-Cristobalite 150.7 P41212 4.9903 4.9903 6.8975 171.767 

1.9% α-Quartz 295 P3121 4.9286 4.9286 5.3536 112.622 

82.3% β-Rhenanite 253.6 Pna21 20.3898 9.147 5.3919 1005.63 

 

Table 2.3: Refinement results from Rietveld modeling with a Voigt line profile for the 

diffraction data from Cris, Rhe and SCPC50 samples. 
 

Sample 
Rietveld statistical R factors 

%Rweighed profile %Rprofile %Rexpected Rgoodness of fit 

Cris 8.64 5.93 2.79 9.51 

Rhe 9.56 7.65 3.48 8.49 

SCPC50 9.01 6.62 3.31 7.41 
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ICP measurements of the elemental dissolution of Cris, Rhe and SCPC50 showed 

significant differences in the elution of: Ca from Rhe and SCPC50 during all time points, 

Na from Rhe and SCPC50 at time points 24h and 96h, P from Rhe at time points 4h and 

96h, and SCPC50 at time points 12h and 96h, and Si from SCPC50 for all time points. 

Elemental concentration of P and Na at time point 96h where comparable and between 

1.4-1.6 fold that found in PBS control. On the other hand Si concentration showed a 

continuous increase from SCPC50 sample in comparison with all other groups and 

control. These elements are most probably released in their ionic forms: Na
+
, PO4

-3
 and 

SiO4
-4

. Negative ions are able to interact with protons in the aqueous solution increasing 

the total alkalinity of the solution. This explain the observed in Figure 2.6, where the pH 

of the PBS incubated with SCPC50 increases progressively and significantly higher in 

comparison with the control PBS, PBS incubated with Cris, and PBS incubated with Rhe.   

 

 
a) 

 
b) 

Figure 2.6: dissolution kinetics of a) Ca, b) Na, c) P and d) Si; and pH change of PBS 

incubated separately with Cris, Rhe and SCPC50. Symbols † and * indicates that the 

means different is significant with respect to control PBS (*p<0.05, **p<0.01, 

***p<10
-3

, ****p<10
-4
, †p<10

-5
, †*<10

-6
, and so forth). Control sample corresponds 

to the concentrations of Ca, Na, P or Si measured in the stock PBS. 
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c) 

 
d) 

 
e) 

Figure 2.6: (Continued). 

FTIR analyses of ceramics in the conditions: as sintered, and after immersion in 

SBF for 24 hours, is showed in Figure 2.7. Moreover, Table 2.4 depicts the main 

vibrations found on the Cris, Rhe and SCPC50 samples, and their correspondent 

assignments. 
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OH at 955.9 cm
-1 

and asymmetric stretching (aν) Si-O-Si 1196.3-1073.5cm
-1

. In the 

region between 2500-1400 cm
-1

, some overtones and compositions bands were noticed. 

In addition, hydroxyl band centered at ~3622.1 cm
-1

, molecular water band at 1617.4 cm
-

1
, lonely Si-OH group at 3738.2 cm

-1
 and broad hydroxyl band at 3324.5 cm

-1
 

respectively, were observed. Increased intensity of the bands of the hydrated groups of 

Cris was observed after the immersion in SBF for 24 h, indicating hydration of the 

ceramic surface without the appearance of an apatite layer (Figure 2.7a).  

Rhenanite: fingerprint region of the unloaded Rhe sample showed the following 

peaks: asymmetric bending (aδ) P-O-P 610-520 cm
-1

, sν PO at 962.0 cm
-1

, aν PO 

between 1100-1000 cm
-1

, PO
(-)

 ionic group 1123-1117 cm
-1

 and P=O 1164 cm
-1

. In 

addition, bands at 800.0 cm
-1

 and 2919 and 2849.6 cm
-1

corresponding to P-OH were also 

noticed. Overtones and composition peaks were also seen in the range 1400-2500 cm
-1

. 

Molecular water band was detected at 1613.7 cm
-1

 and a broad hydroxyl band centered at 

~3293.4 cm
-1

. After immersion in SBF characteristics bands of carbonate HAp at 3568 

cm
-1 

(OH), 1567 cm
-1

 (C=O), and  605 cm
-1

(P-O) were observed (Figure 2.7b). 

SCPC50: as expected, SCPC50 sample showed peaks corresponding to its two 

major phases (Rhe and Cris). The location of the peaks in the range between 400-1200 

cm
-1 

was: δ-Si-O-Si at 485.7 cm
-1

, aδ P-O-P at 610-550 cm
-1

, vibration from Cristobalite 

lattice structure at 620.6 cm
-1

, sν Si-O-Si at 800.0 cm
-1

, sν PO at 962.3 cm
-1

, aν PO 

between 1100-1000 cm
-1

, aν Si-O-Si 1200-1100.0 cm
-1

 and P=O at 1200.1 cm
-1

. In 

addition, characteristics bands of immature carbonate hydroxyapatite were observed at:  ν 

OH centered at ~3622.1 cm
-1

, molecular water 1613.2cm
-1

, and surface carbonate ions aν 

C=O at 1671.9 cm
-1

. Lonely Si-OH group at 3737.4 cm
-1

, broad band at 3299.6 cm
-1
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corresponding to the hydroxyl group and P-OH bands at 2920.3 and 2850.4 cm
-1

 were 

also noticed. FTIR analysis suggested the apatite structure on SCPC50 due to the increase 

in the intensity of P-O bands together with the decrease in the intensity of Si-O bands 

after soaking in SBF (Figure 2.7c).Presence of immature apatite layer on the top of the 

ceramic particles was observed by SEM (Figure 2.8). 

 

Table 2.4: Main Vibration Modes of Cris, Rhe and SCPC50 (FTIR Spectroscopy). The 

bands assignments are according to literature data. 
 

Characteristic bands 
Wavelength (cm-1) 

Cristobalite Rhenanite SCPC50 Assignment 

δ-Si-O-Si 496.5 
 

485.7 460 [336] 

aδ P-O-P 
 

520-610 550-610 500-560 [337] 

P-O(H) bending mode 
 

565.9 567.5 565 [338] 

Inter-tetrahedral vibrations for 

low-cristobalite 
621.4 

 
620.6 620 [339] 

sυ Si-O-Si 798.5 
 

797.2 
798.5, 1025, 1050 

[340] 

υ P-OH  800  795 [341] 

υ Si-OH 955.9 
  

950 [336] 

sυ P-O 
 

962.0 961.7 962 [340] 

PO4
-3 ionic group 

 
1013.4 1010.2 1015 [340] 

aυ P-O 
 

1025.1, 1051.7, 
1075.7, 1087.6 

1027, 1050.2, 
1074.5, 1079.5 

1000-1100 [340] 

aυ Si-O-Si 
1073.5, 1115.8, 

1196.3  
1145.3, 1197.2 1120-1162 [295] 

PO- ionic group 
 

1117-1123 1115.8 1122 [340] 

P=O  1164 1201.0 1250-1150 [337] 

In plane δ P-OH  1448.3  1450 [341] 

OH bending 1617.4 1613.4 1613.2 1660-1600 [340] 

C=O stretching  1657.0 1671.9 1650-1680 [342] 

P-O-H stretching 
 

2919, 2849.6 2920.3, 2850.4 2300-3200 [341] 

H bounded Si-OH 3324.5 
  

3438 broad [337] 

free H2O stretching or OH ions 3622.1 3670 3622.1 
3600-3400 very 

broad [340] 

Lone-silanol, stretching Si-OH 3738.2 
 

3737.4 3738 [343] 

 



52 

 

 
a) 

 
b) 

Figure 2.7: FTIR spectra of a) Cris, b) Rhe, and c) SCPC50, before and after soaking in 

simulated body fluid (SBF) for 24 h at 37oC. 
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c) 

Figure 2.7: (Continued) 

To minimize the increase in the pH of the PBS incubated with SCPC50 during 

drug loading or release, SCPC50 granules were soaked in simulated body fluid (SBF) in 

33 mg/ml, ceramic/SBF ratio, for 24 hours at 37°C. Particles were collected and dried at 

37°C for 24 hours and used for drug loading and subsequent release.   
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a) 

 
b) 

 
c) 

Figure 2.8: SCPC50 a) before and b) after immersion in SBF solution for 24h. The bar 

chart (c) shows pH change of PBS incubated with SCPC50 and SCPC50 pre-

immersed in SBF for 24h. 

 

2.4. Discussion 

Desired composition of three different ceramics, Cris, Rhe, and SCPC50 were 

successfully achieved by thermal treatments and corroborated by microstructure 

characterization. The efficiencies of the process to generate particles in the size 250-425 

μm for the three ceramics were 40% for SCPC50, 30% for Cris and 9% for Rhe. 
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in vitro. XRD analyses confirmed the presence of crystalline α-cristobalite and β-

rhenanite in Cris, Rhe and SCPC50 ceramics respectively. BET, mercury intrusion, and 

SEM analyses demonstrated the high hierarchical interconnected porosity for the ceramic 

particles with pores in the nano and micro sizes. Results also showed that the pore size 

distribution has a direct effect on the ceramic surface area. Cris with the highest number 

of nano pores showed significantly higher surface area than Rhe and SCPC50 samples. 

Stability of the materials showed to be affected by the microstructure of the ceramics, 

specifically the phase compositions. The high elution rate of negatively charged ions 

from SCPC50, most probably due to the dissolution of Si-rich amorphous phase [18], 

demonstrated significantly increasing the alkalinity of immersing physiological solutions. 

However, in vitro bioactivity tests showed SCPC50 and Rhe ability to form carbonate 

HAp layer on the surface of the ceramics particles after immersion in SBF for 24 h at 

37
o
C. On the contrary, high stability of Cris sample showed few changes when immersed 

in physiological conditions. Immersion of SCPC50 for 24 h in SBF before drug loading 

and release showed to help controlling the pH of PBS incubated with SCPC50 particles 

(Figure 2.8c).   

Morphological analysis by SEM demonstrated that all ceramics are formed by 

small fuse polycrystalline particles. Inter-granular cracks were observed on Cris and Rhe 

samples. SCPC50 showed a fused interphase that serves as a smooth transition between 

two contiguous poly-crystals. Crack observed in Cris and Rhe samples are indicative of 

brittleness and low fracture toughness. XRD-Rietveld analysis showed crystallite size in 

the range between 150-300 Å, confirming the polycrystalline nature of the fused 

particles. These indicate that, besides the porosity, the three ceramics showed high 
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density of grain boundaries. As a consequence, crystal defects increases the free energy 

of the three materials and facilitates additional physical or chemical interactions.  

Moreover, hierarchical porous distribution was found for the three ceramics. Cris showed 

a binomial distribution with 68% of the pores centered on the size 90μm, and 24% on the 

size 500nm. About 77% of the pores of Rhe and SCPC50 was in the range >10μm, and 

2.4% and 6.0% below 1μm. These porosities are suitable for tissue engineering and drug 

delivery applications. 

XRD analyses showed that the total lattice volume of α-cristobalite and β-

rhenanite in SCPC50 vary slightly with respect to those in Cris and Rhe samples, 

indicating cell deformation most probably caused by elemental solid substitutions. 

Substitution of Si for P (or vice versa) is feasible due to the proximity of their ionic radii, 

crystal structure, valence, and electronegativity as established by Hume-Rothery rules. 

These modifications of the lattice parameters decrease the thermodynamic stability of 

SCPC50 crystalline phases enhancing its bioactivity, and degradability [320]. 

Additionally, 11.37% SCPC50 was measured to be amorphous. TEM analysis carried out 

by Liu et. al., demonstrated that the amorphous component of SCPCs is a silica-rich 

phase [18]. Therefore, it is expected that the dissolution of this phase boost the Si 

measured from the immersing media (PBS). As a consequence, increasing in the pH can 

be explained by the accumulation of negatively charged poly-ions released in the 

saturated physiological solution during SCPC50 degradation, leading to the 

thermodynamically favorable reactions [344] described in Equation 2.1and Equation 2.2.  

     
                     Equation 2.1 

                   Equation 2.2 
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FTIR analyses demonstrated the capacity of Rhe and SCPC50 samples to form a 

bioactive layer of carbonated hydroxyapatite-like surface upon immersion in SBF. ON 

the other hand, Cris showed to have negligible interactions under the same conditions. 

ICP analyses demonstrated that Cris dissolution is limited and, therefore, the low 

reactivity of the materials when immersed in body fluids. The rapid exchange of silicon, 

sodium and phosphate ions from Rhe and SCPC50 with the solution promoted the 

hydrations of the ceramics. This allows the back precipitation of Ca
2+

 and PO4
-3

on the 

various ceramic surfaces leading to the formation of an apatite layer as explained 

elsewhere [245]. It is well known that formation and maturation of CaP layer on the top 

of the ceramic surface reduce the leaching of ions. This result might help to control  the 

increasing pH of the immersing solution incubated with SCPC50 [245].  

2.5. Conclusion 

Successful thermal treatments were achieved for the preparation of Cris, Rhe and 

SCPC50. Phase composition and crystallinity of the three ceramics showed to play an 

important role in the materials porosity and reactivity. Cris showed to be the most porous 

ceramic with a large amount of surface area generated by the superior number of 

nanopores compared to Rhe and SCPC50. Degradability properties of Rhe and SCPC50 

facilitated chemical reaction when immersed in SBF that promoted the formation of CaP-

like layer on the surface of the two ceramics. Rapid leaching of Si from SCPC50 showed 

significantly increasing the alkalinity of immersing buffer solution. The high stability of 

Cris was corroborated by the poor ceramic dissolution study and in vitro.  



 

 

 

 

 

 

 

CHAPTER 3: CRISTOBALITE AND RHENANITE AS DRUG DELIVERY 

SYSTEMS FOR VANCOMYCIN AND CISPLATIN 

 

3.1. Introduction 

Drug delivery systems (DDS) have been tested to provide controlled release of 

highly potent drugs in a localized/targeted manner with minimal acute and chronic side 

effects. Biomaterials of all kinds have been tested as drug delivery system platforms.  

Different formats of polymers [307, 345, 346] and bioceramics [347, 348] such as nano-

particles [349, 350], microparticles [351-353], gels [354, 355] and tablets [356, 357], 

have been investigated with various degrees of success. The use of microparticles and 

scaffolds as DDS overcomes the poor loading capacity and rapid release that most of the 

nano size DDSs offer [56, 118].  Most of the research coping with microparticles and 

scaffolds try to explain the ability of these devices for loading and release drugs based on 

their porosity [358-361], surface area[362, 363] and degradation rates [354, 362, 364]. 

However, little has been reported regarding the importance of the physic-chemical 

properties that regulate the adsorption and release of pharmaceutics from these 

biomaterials. Multiple examples can be found in the literature showing significant 

differences in the loading and release capacities of DDS from different drugs and the 

same carrier, or same drug and different biomaterials.  

Shiho et.al., prepared hydroxyapatite nano particles (n-HAp) containing different 

concentrations of mercaptosuccinic acid (Mer) using hydrolysis. It was found that as the 

concentration of Mer increased, the specific surface area of HAp increased, and its 
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crystallinity decreased. Interestingly, the authors reported a decreased in the adsorption 

capacity of the Mer-HAp towards BSA in samples rich in Mer which have high specific 

surface area. The authors speculated that the decrease in the loading capacity was 

attributed to the high negative charges induced by the higher amount of Mer.  However, it 

is also possible that increasing the Mer lowers the amount of surface Ca
2+

 available for 

BSA binding since BSA is a calcium binding protein.  Furthermore, the atomic 

absorption data reported by Ishihara showed minimal changes in the Ca
2+

 content of 

different Mer-HAp samples. Although the surface area was analyzed, the pores size 

distribution was not reported. Considering the big molecular size of BSA (MW=67200) it 

is possible that porosity in the order of magnitude of angstroms and in the nano scale 

could contribute to the reduced loading capacity of the material. On the other hand, same 

Mer-HAp samples showed significantly higher adsorption of positive charged 

Cytochrome C protein as increasing the surface area and the Mer concentration. The 

interaction between the negatively charged carboxylate group of the Mer and the protein 

and the functional groups on the HAp surface was not analyzed.  

Gautier et al., examinated the effect of surface area of different heat treated 

apatites on its capacity for loading and release human growth hormone hGH. As 

expected, the authors found enhanced drug loading capacity on the carrier with the 

highest specific surface area. Interestingly, no differences in the drug adsorption were 

measured among all the other samples, even when the difference between the lowest and 

highest surface area in the group was about 8-fold. The Authors suggested that the 

similarities in loading capacity could be attributed to differences in the porous size 

distribution of the carriers. Influences of different parameters such as the crystallinity, 
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phase composition, and possible drug bonding with the carrier’s surface, were not 

addressed by the authors. Besides, drug release kinetic showed significant differences in 

the drug release half time that did not follow a clear trend with the specific surface area 

of the carriers.   These clearly indicated that the drug release kinetics is not just controlled 

by the surface area but also by the surface chemistry and charge. 

Recent publications by the group of Uskokovic, et al., tested various calcium 

phosphates (CAP) nanoparticles including monocalcium phosphate monohydrate 

(MCPM), dicalcium phosphate anhydrous (DCPA), amorphous calcium phosphate (ACP) 

and hydroxyapatite (HAp), for drug loading and release. Loading efficiency tests on HAp 

showed that the adsorption of BSA was about two orders of magnitude higher than that 

observed for fluorescein on HAp.  This was explained due to the stronger attraction 

between positively charged sites on HAp, Ca
2+

, and BSA protein, which allows more 

affinity between HAp and the protein than on fluorescein. Experimental evidence was not 

provided in this matter, and no further data with respect to the adsorption capacity of the 

other carriers were shown. In addition, authors found a correlation between the sustained 

release of BSA and fluorescein relatable to the degradation rates of the different CAP 

carriers. Moreover, they found a higher release rate of fluorescein at any time point and 

for all CAP phases tested than that found for BSA, explained by its weaker linkage to the 

carriers. The porosity, specific surface area, shapes and size of the nanoparticles were not 

analyzed.  

Vancomycin (Vanc) is a clinically important amphotericgylcopeptide (short chain 

of amino acids that has sugar molecules attached to it) antibiotic [365]. This drug has 

been extensively used against serious infections caused by Gram-positive bacteria [366]. 
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The mechanism of action of gylcopeptide antibiotics, including Vanc, is through the 

inhibition of the bacterial cell-wall synthesis achieved by binding to the C-terminal 

peptide sequence L-lysyl-D-alanyl-D-alanine in muco peptide precursor molecules [367]. 

Vanc exhibits a slow anti-bacterial activity with low minimum inhibitory concentration 

(MIC). Vanc is poorly absorbed from the gastrointestinal tract, requiring intravenous 

systemic administration that has been associated with severe adverse effects [368]. 

Therefore several attempts have been made to deliver Vanc using carrier vehicles to 

locally treat diseases in places with difficult irrigation, such as osteomyelitis [369, 370].  

Cisplatin (Cis) chemotherapeutic agent commonly used for treatment of various 

kinds of cancer [371, 372]. Its antitumor activity is exerted by binding DNA via 

intrastrand cross-links to nucleoside component of DNA interfering with DNA 

replication and transcription, and causes cellular apoptosis [373]. Chronic usage of Cis 

can induces to cellular resistance by several possible mechanisms, including increased 

interactions with metallothionein and glutathione and increased DNA repair, which 

lowers the efficiency of the drug significantly [374]. Therefore, high doses of Cis are 

generally clinically administrated, causing many severe toxic side effects, such as 

gastrointestinal problems, ototoxicity, nephrotoxicity and visual abnormality [375, 376]. 

As such, mechanisms of delivering Cisplatin to the local environment of a tumor are 

under research [377, 378] 

SCPC is a silica calcium phosphate composite mainly constituted by β-Rhenanite 

(NaCaPO4) and α-Cristobalite (SiO2) as dominant phases. This bioactive composite has 

shown enhanced resorption and significantly higher ability to adsorb serum proteins 

when compared with bioactive glasses in vivo [293].  Ning, et al., showed superior 
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sustained release of rhBMP-2 protein from SCPC when compared with porous 

hydroxyapatite [296]. Moreover, SCPC has demonstrated potential for loading and 

release of antibiotics, like Gentamicin [298] and Vancomycin [364] , and anticancer 

drugs, such as 5-FU [379] and Cisplatin [380]. The authors pointed out that the porosity 

distribution of SCPCs together with the chemical interactions taking place on the 

particle’s surface allowed sustained release kinetics.  Although numerous studies have 

been published on the use of silica-calcium-phosphates materials, the role of ceramic 

microstructure on drug binding and release is not fully understood. The goal of the 

present work is to analyze the role of SCPC phase composition on drug binding and 

release kinetics. We report on the synthesis and characterization of Cristobalite and 

Rhenanite, and investigate their ability to bind and release Vancomycin and Cisplatin.  

The effect of surface chemistry on drug binding was evaluated and correlated to the 

release kinetics and ceramic dissolution. 

3.2. Materials and Methods 

3.2.1. Materials Preparation 

SCPC50 immersed in SBF for 24h, Rhe, and Cris ceramic particles, in the size 

range 250-425 µm, were used for drug release studies. Various ceramics were prepared as 

described in section 2.2.1.  

3.2.2. Drug Loading 

Vancomycin (Vanc) solution at a concentration of 8 mg/mL, was prepared by 

dissolving 320 mg Vancomycin hydrochloride (Sigma-Aldrich) in 40 mL of PBS using a 

magnetic stirrer for 24 h.  Loading test was performed by immersing three replicates of 

0.2g of each material (Cristobalite, Rhenanite and SCPC50) in 1.5 mL of Vanc solution. 
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After periods 1, 2, 4, 8, 16 and 24 h a 20 µL of the solution was withdraw, and the 

concentration of the drug was measured by HPLC [381].  Briefly, Vanc was separated on 

a ZORBAX Eclipse XDB-C18 HPLC column (4.6x150mm, 5µm). The mobile phase 

consisting of a mixture of A: 5mM KH2PO4, pH 6.4, and B: acetonitrile (CHROMASOL 

V gradient grade, ≥99.9%, Sigma-Aldrich, US), was delivered at a flow rate of 1.5 

mL/min. The gradient program for the test was as follow: 0 and 1.5 min: 97% A, 3% B; 

10 and 13.5 min: 80% A, 20% B; 14.5 and 16.5 min: 97% A, 3% B. The sample was 

diluted ten times in a solution 97% A, 3% B and the injection volume used was 50µL. 

Chromatograms were obtained using VWM detector at 282 nm wavelength. Standards 

known Vanc solutions over the range 8.0-0.04 mg/mL were used to create the calibration 

curve. Once define the optimum loading time (time at which all samples loaded the 

maximum amount of Vancomycin), 1.5 g of each powder was loaded by immersion in 8 

mg/mL Vancomycin solution during this time. Simultaneously, Setaram Instrumentation, 

Sensys evo TG-DSC analyzer was used to determine the presence and the amount of drug 

loaded on each ceramic. The samples (~70 mg) were placed in an alumina crucible and 

heated in air at 2 
o
C min

-1
 to 800 

o
C. Control samples of Vancomycin or ceramic without 

drug were run in parallel for comparison. TG and DSC of the loaded particles were 

adjusted with respect to the unloaded ceramics. Areas under the peak in the DSC curves 

were calculated by Gaussian peak fitting and integration of the adjusted peaks using 

OriginPro 8.0.  

All ceramic samples were loaded with Cis following the procedure reported 

earlier [300]. Briefly, Cisplatin (Cis, Cis-dichlorodiamineplatinum (II)) solution at a 

concentration 10 mg/ml was prepared by dissolving 500 mg of Cis in 50 mL of Dimethyl 
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sulfoxide (DMSO). 5 g of each ceramic sample was immersed separately in 15mL of Cis 

solution at 37
o
C. After 42 h, loaded particles were separated from the solutions and left to 

dry inside chemical hood for 48 h. Control ceramic samples were treated with DMSO 

without Cis under the same experimental conditions. The total amount of Cisplatin 

loaded onto each ceramic was determined by consecutive washing steps of 80 mg of each 

drug-ceramic hybrids (four repetitions each, n=4) in 70% nitric acid. Aliquots were 

centrifuged at 5000xg for 3-min. The supernatant was collected and the concentration of 

Cis was determined by measuring the concentration of Pt using Inductively Coupled 

Plasma-Optical Emission Spectrometer (ICP-OES; Optima 3000, Perkins Elmer) at a 

wavelength of 265.945 nm in axial plasma view.  

3.2.3. Surface Chemistry:  

Drug loaded and unloaded samples were analyzed using Fourier transformed 

infra-red spectroscopy (FTIR) in the smart diffuse reflectance mode, employing Nicolet 

6700 spectrometer (ThermoNicolet, Madison, WI) equipped with triglysine sulfate 

(DTGS) detector. Vancomycin and Cisplatin alone were also analyzed by FTIR for 

comparison. Spectra were acquired in the wavenumber range 400-4000 cm
-1

 at a 

resolution of 2 cm
-1

 after 200 scans.  

3.2.4. Kinetics of Drug Release 

The drug release kinetics from ceramics loaded with Vanc were analyzed under 

the same experimental conditions. Eight replicates of 0.2 g each of the Vancomycin 

loaded ceramic (n=8), and an equal number of Cis-loaded ceramic (n=8) were immersed 

separately in 10 ml of PBS (pH 7.4) on an orbital shaker at 120 rpm and 37 °C. At 

sequential time points of 2, 4, 8, 12, 24 h; and then every 24 h thereafter up to 144 h; and 
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then each 4 days up to 20 days (480 h) aliquot (1 mL) of the sample was withdrawn from 

the immersing solution. At each sampling time point, an equal volume of fresh PBS was 

added to maintain a constant (10 mL) total volume of release media. The aliquot was then 

centrifuged to 3000 rpm for 3 min at room temperature, and the supernatant was collected 

for drug concentrations measurements. Released Vanc concentrations were measured by 

HPLC, and those of Cis by measuring the Pt concentration using ICP-OES as described 

earlier.  The cumulative percentage release was calculated as the ratio of the drug mass 

released at each time point to the total amount of drug initially loaded in the powders.  

To analyze the in vitro release data, different kinetic models were used to describe 

the release kinetics. 1) Zero Order Release (systems with a constant drug release), 2) First 

Order Release (systems with a concentration dependent release rate), 3) Higuchi (systems 

with insoluble matrix where the release of drugs depends to the square root of time, based 

on Fickian diffusion) and 4) Hixson-Crowell cube root law (systems with surface area 

and diameter of particles or tablets changing during release of drug). The mechanism of 

drug release was calculated using Korsmeyer–Peppas model (also known as power law), 

fitting the first 80% of drug release data.  

3.2.5. Dissolution Analysis: 

The ionic concentrations of Ca, P and Si in the solutions collected for the 

measurement of released drug were analyzed using ICP-OES at wavelengths of 315.887 

nm, 213.62 nm and 251.611 nm respectively using radial plasma view. Parallel 

experiments including PBS incubated with unloaded control ceramic under the same 

experimental conditions were performed. 
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3.2.6. In Vitro Cytotoxicity Tests 

3.2.6.1. Vancomycin 

The therapeutic effect of the released antibiotic was analyzed using the Kirby-

Bauer assay. Briefly, inoculate Luria broth with Staphylococcus aureus were incubated 

overnight in 37
o
C shaker. Incubated culture was centrifuge at 70 rpm for 10 minutes, 

pours off supernatant and re-suspended in 1 ml PBS. The amount of bacteria present was 

quantified using the spectrophotometer. Additional PBS was added to the culture in order 

to standardize the bacterial concentration to 2x10
9
 bacteria/mL.  Luria broth-agar plates 

were coat with 100 µL and let dry for 1h. Filter paper discs were soaked in the PBS 

incubated with drug-ceramic hybrids or unloaded ceramics, place onto the plate, and 

incubated overnight at 37
o
C. Measurements of the inhibition zone were performed on 

digital images of the plates. Control experiments including PBS solutions incubated with 

ceramics without drug or standard drug solutions of known concentrations were tested in 

parallel. 

3.2.6.2. Cisplatin 

Rat H4IIE HCC cells (ATCC, Bethesda, MD) were cultured in αMEM medium 

supplemented with FBS (10% (v/v)) to 75-80% confluence. The cells were then detached 

using trypsin-EDTA and seeded into 24-well plates (cell counts) and grown to 70-80% 

confluence. At this point, cells were made quiescent by replacing culture medium with 

low serum αMEM (LSM; 0.1% (v/v) FBS) for 24 h. Culture medium was then aspirated.  

Cells were washed twice with PBS (37°C), and culture medium supplemented with 1% 

(v/v) FBS containing PBS-Cis collected from drug release kinetics studies at different 

immersion times. To perform these studies, 200 μL aliquots were added to cultured cells 
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(n=3). Preliminary measurements of cell death were performed by total cell counts. 

Briefly, cells were treated with either Cisplatin-DMSO (0-250 μM) or Cisplatin solution 

collected from the Cris-Cis, Rhe-Cis and SCPC50-Cis release studies. 24 or 48 h later 

culture medium was removed, cells detached (trypsin-EDTA), and counted using a 

Countess Automated Cell Counter (Invitrogen, Carlsbad, CA).  

3.2.7. Statistical Analyses 

The data were expressed as the mean ± SD. Statistical analyses were performed 

following the same procedure explained in section 2.2.7. 

3.3. Results 

3.3.1. Drug Loading 

3.3.1.1. Cisplatin Loading  

Three consecutive washing steps in 70% nitric acid were needed to wash out the 

total amount of Cisplatin loaded onto each ceramic.  Measurements of the Pt content in 

the ceramic carriers using ICP indicated that the amount of Cis loaded was equal to 

10.83±0.40, 7.15±0.20, and 5.38±0.44 µg Cis per mg of Cris, Rhe and SCPC50 

respectively, i.e., (Figure 3.1). Statistical analysis showed significant differences among 

all the Pt concentrations measured by ICP (p<0.05). The normalized Cis absorbed with 

respect to the ceramics surface area resulted to be 8.59±0.32 µg Vanc/m
2
 for Cris, 

17.8±0.5 µg Vanc/m
2
 for Rhe and 6.03±0.50 µg Vanc /m

2
 for SCPC50. 
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Figure 3.1: Total amount of Cisplatin loaded on Cris, Rhe and SCPC50. 

 

3.3.1.2. Vancomycin Loading  

HPLC measurements of the concentration of Vanc in PBS showed the 

dependence on the amount of drug adsorbed with respect to soaking time for the three 

samples.  Similar concentrations were measured for all the samples at 16 h of immersion 

corresponding to 3.8±0.6, 3.2±0.4, and 4.0±0.04 µg of drug/mg ceramic on Cris, Rhe and 

SCPC50 respectively. Only the concentrations Vanc loaded on Rhe and SCPC50 showed 

to be significantly different (p<0.05). The normalized Vanc absorbed with respect to the 

surface area measured by HPLC resulted to be 3.01±0.5 µg Vanc /m
2
 for Cris, 8.00±1.0 

µg Vanc/m
2
 for Rhe and 4.49±0.05 µg Vanc /m

2
 for SCPC50. After 16 h of immersion, at 

24 h of incubation, significant increase in the amount of Vanc adsorbed by SCPC50 was 

measured, together with a significant decrease in the amount of drug adsorbed by Cris 

and Rhe samples. At 48 h immersion, comparable amounts of Vanc to those measured at 

16 h were measured, without significant differences among them (Figure 3.2). Therefore, 

16 h was chosen as the loading Vanc loading time.  
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TG measurements of the Vanc loaded on the ceramics after 16 h immersion were 

9.8±2.1, 7.3±0.8 and 6.6±1.8 µg of drug per mg of Cris, Rhe and SCPC50 respectively. 

The normalized Vanc absorbed with respect to the surface area measured by TG resulted 

to be 7.78 µg Vanc/m
2
 for Cris, 18.25 µg Vanc/m

2
 for Rhe and 7.41 µg Vanc /m

2
 for 

SCPC50 (Figure 3.3). The amount of Vanc loaded measured by TG was nearly doubled 

that measured by HPLC. This can be due to the additional Vanc accumulated in the pores 

particles that stay during the drying step.  

 

Figure 3.2: Differences between the initial Vanc solution (8 mg/mL) and the solution 

incubated with particles at different time points, indicating the amount of drug 

adsorbed by every carrier. 

 

DSC analysis of the control Vancomycin showed a two steps process for the 

decomposition of the Vanc molecule. The first step was measured to occur around 

327.82
o
C and the second one at 474.32

o
C. Vanc loaded on the different carriers also 

exhibit the two steps process, but the decomposition of the drug was measured at lower 

temperatures than the reference drug (Figure 3.3 a). Moreover, differences in the amount 

of energy needed to decompose Vanc control and that loaded on the ceramics were 

found. DSC showed that higher amount of energy is needed to burn out the Vanc loaded 
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on Cris and SCPC50 ceramics.  Conversely, the amount of energy required to decompose 

the Vanc loaded on Rhe was significantly lower (Table 3.1). 

a) b) 

c) d) 

Figure 3.3: Thermal analysis (TG-DSC) of a) Vancomycin and Vancomycin loaded on b) 

Cristobalite, c) Rhenanite and d) SCPC50. 

 

Table 3.1: Decomposition temperature and heat per Vanc unit mass measured by DSC. 

The temperatures T1 and T2 are the center of the exothermic peaks from the thermal 

decomposition of Vanc control and Vanc loaded on various ceramics. T1<T2.  

Sample ID 
Decomposition Temperature (

o
C) 

Decomposition energy 

(mW/mg of Vanc) 

T1 T2 Peak 1 Peak 2 Total 

Vanc 327.82 474.32 79.18 322.43 401.61 

Vanc on Cris 307.92 422.54 167.45 288.57 456.02 

Vanc on Rhe 293.97 390.92 121.5 116.16 237.66 

Vanc on SCPC50 300.2 421.8 405.45 77.7 483.15 
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3.3.2. Release Kinetics 

Vancomycin: In vitro release kinetics Figure 3.4 a) shows the percentage of the 

mean cumulative concentration of Vanc released from Cris, Rhe and SCPC50 samples. 

About 50% of the Vanc loaded on Cris and SCPC50 samples, and 46% from the Rhe 

sample, were released during the first two hours of incubation. In order to analyze the 

drug release data from the different carriers, cumulative percentage of Vanc release vs. 

time (h) in logarithm scale was plotted (Figure 3.4 b). A linear region between 4 to 120 

hours was observed in the three curves, indicating controlled release of drug within this 

period. After 120h, 100% of Vanc loaded on Cris and Rhe, and about 90% on SCPC50 

was measured to be released from the different carriers. Therefore, plateau of Vanc 

release was observed after 120 h, and not further Vanc release was measured from the 

SCPC50 sample. Table 3.2 shows the correlation between the Vanc release kinetics data 

and release kinetic models over the period between 4 to 120 hours. Good correlation 

between the release profiles and the First order release model was seen as indicated by 

the R
2
 values close to 1.0. This model describes the drug release rate relationship with the 

concentration of drug involved in the process. Likewise, good linear fittings were found 

using both Higuchi’s and Hixson Crowell cube root models (similar R
2 

between the two 

models). Higuchi model indicates the release of drug from the matrix as a square root of 

time dependent process based on Fickian diffusion. Hixson Crowell model indicates a 

change in surface area and geometry of the particles with the progressive dissolution of 

matrices as a function of time. The three models suggest variable release rate from the 

carrier with respect to time, and this variation can be calculated at each time point using 

the K values reported in Table 3.2. It is clear for all the models that the highest release 
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rate were obtained for Cris, followed by Rhe and then SCPC50. Using data from the zero 

release fitting, the average rate of release in terms of the amount of Vanc dissolved or 

released per unit time obtained for Cris, Rhe and SCPC50 are 26.2µg/h, 15.8 µg/h, and 

14.5 µg/h respectively. Analysis of the mechanism of release kinetics, the values of the 

release exponent “n” in Vanc sustained release from Cris, Rhe and SCPC50 corresponded 

to 0.223, 0.210 and 0.180 which are beyond the limits of the Korsmeyer-Peppas model. 

Limitation of the power law to give discern into the exact kinetics mechanism of the drug 

release, lead to suggest a complex synergic between diffusion and erosion release control. 

 

a) 
 

b) 

Figure 3.4: a) Cumulative percentage Vancomycin release profiles from Cristobalite, 

Rhenanite and SCPC50 vs time, b) when data is plotted against squared root of time, 

it shows linear correlation, indicating diffusional drug release. 

 

Table 3.2: Release kinetics constants and R
2
 calculated from Vanc released from Cris, 

Rhe and SCPC50. 

Matrix 
Zero order First Order Higuchi Hixson-Crowell Korsmeyer-Peppas 

R2 Ko(h
-1) R2 K1(h

-1) R2 KH(h-1/2) R2 KHC(h-1/3) R2 n value KH(h-n) 

Cris 0.96 1.35 0.99 0.04 0.99 38.35 0.98 0.38 0.94 0.22 43.53 

Rhe 0.76 1.06 0.79 0.03 0.79 31.94 0.82 0.34 0.96 0.21 37.14 

SCPC50 0.72 0.49 0.82 0.02 0.95 31.12 0.85 0.43 0.94 0.18 37.20 
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Cisplatin: Release kinetics profiles of Cisplatin from Cris, Rhe and SCPC50 is 

presented in Figure 3.5, as the percentage of the mean cumulative concentration of Pt vs. 

time. The percentage of drug released from the carriers during the first 2h was 

respectively 53.4, 36.6 and 30.6 % for Cris, Rhe and SCPC50.  Plot of the cumulative 

release vs. time in logarithm scale, showed continuous linear correlations in the region 

between 2-168 hours for Cris, 2-120 for Rhe and 2-216 h for SCPC50, was seen in the 

three curves, indicating controlled release of drug within these periods. After these time 

frames, no significant increase in drug release was measured with about 100% of the 

initial loaded Cisplatin released from each carrier. Good linear fittings were found using 

both Higuchi’s and Hixson Crowell cube root models (similar R
2 

between the two 

models). First Order release also showed good correlation in the case of Cris and 

SCPC50. Contrary to the Vanc release, it is clear for all the models that the highest 

Cisplatin release rate were obtained for Cris followed by Rhe and SCPC50. The average 

release rate of Cisplatin per unit time, calculated using data from zero order model, for 

Cris, Rhe and SCPC50 were 14.2µg/h, 8.01 and 4.66 µg/h respectively (Table 3.3). 

 

 
a) b) 

Figure 3.5: Percentage cumulative release profiles of Cisplatin from SCPC50, 

Cristobalite and Rhenanite. 
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Table 3.3: Correlation coefficients (R
2
) and release kinetics constants obtained by fitting 

release kinetic profiles of Cis from Cris, Rhe and SCPC50 data to different models 

of drug release. 

Matrix 
Zero order First Order Higuchi Hixson-Crowell Korsmeyer-Peppas 

R2 Ko(h
-1) R2 K1(h

-1) R2 KH(h1/2) R2 KHC(h-1/3) R2 n value KH(h-n) 

Cris 0.92 1.01 0.97 0.03 0.98 6.97 0.96 0.08 0.99 0.15 48.58 

Rhe 0.76 0.86 0.89 0.02 0.87 6.83 0.86 0.05 0.95 0.26 32.38 

SCPC50 0.95 0.70 0.96 0.02 0.97 7.23 0.90 0.04 0.96 0.28 22.94 
 

 

3.3.3. Surface Chemistry 

3.3.3.1. Vancomycin and Cisplatin loaded carriers 

Cristobalite: after loading with Vanc bands at 1661.6, 1605.9, 1514.0 and 1485.0 

cm
-1

 corresponding to ν C=O, δ N-H2, δ N-H and aδ CH3 from Vancomycin were 

observed. Lonely silanol group band at 3738 cm
-1

, corresponding to those Si-OH bonds 

without H bridges among them [343], was significantly reduced (Figure 3.6a). After Cis 

loading FTIR analysis showed bands characteristic for the ammonium ions and secondary 

amine of Cisplatin can be seen (Figure 3.6a). No appreciable changes in location or 

intensity of the silica bands were observed including the Si-OH functional group signal at 

953 cm
-1

. 

Rhenanite: a broadband at 1654.3-1695.2cm
-1

 corresponding to ν C=O, δ N-H2, δ 

N-H and aδ CH3 bonds at 1586.5, 1505.0 and 1487.5 cm
-1

 respectively, were detected.  

Intensity of the band close to 800cm
-1

 corresponding to P-OH significantly decrease after 

Vanc loading. Interactions between drug and P-OH group were confirmed by the 

disappearance of the bands at 2854-2962 cm
-1

 corresponding to ν P-OH and the 

broadening of bands at 1213 -1190 cm
-1

 corresponding to the stretching vibration and 

plane bending of the ν P=O respectively (Figure 3.6 b). FTIR analyses of the Cis loaded 

ceramic showed bands at 2913-3275 cm
-1

 corresponding to ammonium ions and 
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secondary amine [382]. The presence of theses amine bands indicates the expression of 

these NH2 functional groups on the ceramic surface. The area of the FTIR band in the 

wave number range 566-595 cm
-1

 corresponding to O-P-O(H) [341] on the surface of 

Rhe decreased from 47.743 to 35.376 after Cisplatin binding, and then goes back to 

46.783 after the drug release period. The decrease in the area can be taken as evidence of 

chemical bonding between the Cisplatin molecule and the ν P=O functional group on the 

material surface. Moreover, broadening of bands at 1213 -1190 cm
-1

 were observed 

(Figure 3.6b). 

SCPC50: A broad band centered at 1666.3 cm
-1

, corresponding to ν C=O, and 

another at δ N-H2 at 1611.9 cm
-1

 confirmed the presence of Vanc on the SCPC50 surface. 

P-OH bands were not seen in the SCPC50-vanc loaded sample (Figure 3.6c). The 

presence of Cisplatin on the surface of SCPC50 was confirmed by identification of bands 

centered at 788.9, 1436.7, 1486.4 and 1645.5 cm
-1

 on the SCPC50-cis loaded spectra 

(Figure 3.6c). The area under the peaks at 1153.6-1214.6 cm
-1

 and 1084 cm
-1

 

corresponding to ν-P=O and ν-P-O increased. On the other hand, FTIR did not measure 

any changes in the energy or area under the peak for the Si-OH group after drug loading 

on SCPC50 (Figure 3.6c). 
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a) b) 

c) 

Figure 3.6: FTIR spectra of  a) Cristobalite, b) Rhenanite and c) SCPC50, as starting 

materials, after soaking SCPC50 for 24 hours in SBF, after drug loading.  
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3.3.4. Dissolution Analysis 

3.3.4.1. Ca Dissolution 

ICP measurements of the Ca concentration from the PBS incubated with 

SCPC50-Cis, SCPC50-Vanc and SCPC50 Control showed no significantly difference 

between the amount of Ca released from the SCPC50–drug hybrids (drug could be either 

Cis or Vanc) and the control SCPC50 (p<0.05). Amount of Ca released from SCPC50-

drugs and SCPC50 control oscillated between a maximum of 1.226±0.528 µg/ml and 

zero indicating absorption and desorption at different periods of time (Figure 3.7a). On 

the other hand, Ca dissolution kinetic in the PBS incubated with Rhe-Cis, Rhe-Vanc and 

Rhe Control showed three different stages. The first stage, between 2 to 24h, did not 

show significant increment in the Ca release rate for Rhe-Cis and Rhe-Vanc. During the 

second stage from 24 to 120 h, an increase in the rate of calcium dissolution of about 

0.124±0.011 µg/ml/h, 0.039±0.004 µg/ml/h and 0.127±0.051 µg/ml/h for Rhe-Cis, Rhe-

Vanc and Rhe Control respectively. At 120h the concentrations of Ca measured from 

Rhe-Cis, Rhe-Vanc, and Rhe control were 12.817±0.610 µg/ml, 6.039±0.090 µg/ml and 

15.541±0.223 µg/ml respectively. During the third stage from 120 to 520 h (when both 

drugs have been released almost completely from the Rhe), the Ca concentration in the 

PBS incubated with Rhe-Cis hybrid gradually decline at a rate of -0.020±0.008 µg/ml/h 

until the last time point, while for the Rhe-Vanc sample it is maintained almost constant. 

Interestingly, a further increase of Ca concentration was measured in the PBS incubated 

with Rhe control at a rate of 0.024±0.001 µg/ml/h during the same period of time (Figure 

3.7b).  
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a) b) 

Figure 3.7: ICP measurements of the amount of Ca released in PBS incubated with a) 

SCPC50-Cis hybrid and SCPC control and b) Rhe-Cis hybrid and Rhe control. 

 

3.3.4.2. P Dissolution 

No significant differences were measured in the dissolution kinetics profiles for P 

from the PBS incubated with neither SCPC50-drugs and Rhe-drugs nor SCPC50 and Rhe 

control samples. Difficulties in the phosphorous detection could be due to the relatively 

high amount of P in the PBS (Figure 3.8). 

 
a) 

 
b) 

Figure 3.8: ICP measurements of the amount of P found in PBS incubated with a) 

SCPC50-Cis hybrid and SCPC control and b) Rhe-Cis hybrid and Rhe control. 
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3.3.4.3. Si Dissolution 

No significant difference in the dissolution kinetic profiles for the silica released 

from SCPC50-drug hybrids and SCPC50 control was found throughout the entire period 

of the experiment. Between 2 and 24 hours no significant increase in the Si content was 

measured for any carrier. After that, from 24 to 168 h, the concentration of Si in the 

solution increased at a rate of 0.719±0.010, 0.582±0.049 and 0.612±0.056 µg/ml/h for 

SCPC50-Cis, SCPC50-Vanc and SCPC50 control respectively. Then, for the period 

between 168 to 520 h, the Si release rate is reduced to 0.173 ±0.087, 0.180±0.053and 

0.202±0.091 µg/ml/h for SCPC50-Cis, SCPC50-Vanc and SCPC50 control (Figure 3.9a). 

In contrast, minimal changes in the concentration of silica during the release time period 

were measured for Cris-drug hybrids and Cris control (Figure 3.9b). 

a) b) 

Figure 3.9: ICP measurements of the amount of Si released in PBS incubated with a) 

SCPC50-Cis hybrid and SCPC control and b) Cris-Cis hybrid and Cris control. 
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deterioration followed by Rhe and then SCPC50 (Figure 3.10). The lower deterioration of 

the SCPC50 particles can be attributed to the high sinterability of the SCPC50 particles. 

Partially melted Si-rich glassy phase, form during sintering, enhance the adhesion among 

Rhe and Cris grains of the SCPC50 particles [18, 383]. Presence of small particles (< 

250-425 µm) indicates the breakdown of SCPC50 (Figure 3.10c). The highest 

deterioration of the Cris particles indicates low sintering between the small cristobalite 

grains forming the micro particles (Figure 3.10a). The highest dissolution rate of Rhe 

yielded to a notorious increase in the pore size of Rhe particles, and an intermediate 

breakdown between Cris and SCPC50 (Figure 3.10b).  
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a) 

 
b) 

 
c) d) 

 
d) 

 
e) 

Figure 3.10: a) Cristobalite, c) Rhenanite and d) SCPC50 drug loaded particles, and b) 

Cristobalite, d) Rhenanite and e) SCPC50 after 20 days in vitro release kinetics 

experiment; Cristobalite particles undergo significant degradation and most of the 

particles are completely eroded; Rhenanite showed less severe particle deterioration 

with significant increase in its pore size; and SCPC50 showed to be the least eroded 

particles most probably due to the calcium phosphate layer form on the surface of 

the particles. 
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3.3.5. Cytotoxicity Tests 

The bacterial inhibition assay revealed the retained biological activity of Vanc 

eluted from the ceramics (Cris, Rhe and SCPC50) at different time points. The average 

diameter of the inhibition zone as a function of the release time is represented in Figure 

3.11. During the first day, the diameters of the inhibition zones due to Vancomycin 

release from Cris were significantly higher than those due to Vanc release from Rhe and 

SCPC50. After one day, no significant differences were measured among the Vanc 

eluded from all the carriers. Besides, aliquot of PBS incubated with Cris, Rhe or SCPC50 

without antibiotic did not show any inhibitory effect. This indicates that the bactericide 

effect is mainly due to the antibiotic released from the ceramic-drug hybrids into the 

solution.  

Experiments of aliquots of PBS incubated with Cris, Rhe, and SCPC50 + Cis 

hybrids, collected at different time points, showed retained cytotoxicity of the drug eluted 

from the ceramic-Cis formulations against H4IIE HCC cells (Figure 3.12).  Significant 

reduction (p<0.05) of about ~25% in the number of cells counted was observed compared 

with untreated cells and control aliquots of PBS incubated with unloaded ceramics.  
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a) 

 
b) 

Figure 3.11: a) Dose response curve for the cytotoxicity of Vanc in S. aureus is also 

showed. b) Inhibition zone measured for S. aureus treated with aliquots taken from 

the PBS incubated Cris, Rhe, and SCPC50 loaded with Vanc. No zone of inhibition 

was observed for the control samples (PBS incubated with Cris, Rhe and SCPC50 

without any drug). 

 

 
Figure 3.12: Cytotoxicity effect of Cisplatin released from Cris, Rhe and SCPC5 in 

H4IIE cells in vitro 24h. Cris, Rhe and SCPC50 alone (no Cisplatin) do not affect 

cell viability, control Media with 0.1% Bovine Serum Albumin (BSA) is also 

depicted. Dose response Cisplatin toxicity has been reported already for our group 

[380]. 
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3.4. Discussion 

The ceramic composition and microstructure controlled drug binding and release 

kinetics. Furthermore, per each ceramic, the ability of drug binding and release was 

dependent on the type of drug.  These observations suggest that a custom made delivery 

system is necessary for each drug. With respect to cristobalite, binding was mainly 

dependent on the surface area. FTIR analyses did not show a detectable change in the 

absorption bands of the Si-O functional group suggesting physisorption. On the other 

hand, for Rhe and SCPC50 FTIR analyses suggested that the P-O functional groups are 

the active site for drug binding. Although, Cris has three times higher surface area than 

Rhe, yet comparable amounts of Vanc were bond to the two materials. These results 

emphasize the significant role of surface chemistry and functional groups in drug binding 

to bioactive materials. The nature of bonding at the interface between drug and ceramic 

contributed to significant variations in release kinetics. Cris showed the fastest release 

rate compared to Rhe and SCPC50. In contrary, SCPC50 showed the lowest rate of 

release due to the high bioactivity of the material surface and the continuous deposition 

of hydroxyapatite in physiological solution. Therefore, it is possible to tailor custom 

made SCPC-drug release kinetics hybrids by controlling the crystalline structure of the 

material, and the ratios of Cris and Rhe in the composite. 

3.4.1. Role of Porosity and Surface Area: 

Porosity and surface area are usually the key factors correlated with a biomaterial 

capacity for drug loading and release kinetics [362, 363, 384, 385].  Indeed, TG and ICP 

analyses showed that the drug binding per unit mass of Cris was significantly higher than 

that per unit mass of Rhe or SCPC50. This is attributed to the high surface area of Cris 
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strongly related to the pore size distribution. About ~22.5% of Cris porosity was found in 

the pore size range 0.2-1 µm while 4.7% and 2.2% of SCPC50 and Rhe porosity was 

found in the same size range, respectively. On the other hand, although SCPC50 had two 

fold higher BET surface area than rhenanite, yet the amounts of Cisplatin and 

Vancomycin adsorbed per unit mass of rhenanite was significantly higher than that 

adsorbed per unit mass of SCPC50. These results suggest that the effect of phase 

composition and surface chemistry on drug binding to bioactive ceramics overrule the 

effect of surface area. Rhe doubled the amount of Cis or Van adsorbed per surface area 

compared to those adsorbed onto Cris or SCPC50. Similar amounts of drug adsorbed per 

unit surface area of Cris and SCPC50 were measured. These results were obtained even 

when Cris has significantly higher surface area and nano-porosity than SCPC50.  

Rhenanite is a bioactive ceramic known to have high chemical reactivity that leads to 

material dissolution [386]. Therefore, the surface of Rhenanite is dominated by the active 

functional groups PO4
3-

 that induces high surface charge and chemical reactivity which 

enhances both physical adsorption and chemisorption of drug molecules.  

3.4.2. Role of Surface Chemistry 

FTIR analyses suggested that the drug binds Rhe is through the non-bridging 

Oxygen in the P-O-P network. The involvement of the P-O functional groups in drug 

binding is supported by the consistent broadening of the P=O signal at 1213-1190 cm
-1 

Figure 3.6b) after adsorption of Vancomycin adsorption. Moreover, the disappearance of 

the P-OH band at 2854-2962 cm
-1

 is an additional confirmation to the role of the 

phosphate group in enhancing drug binding to Rhe. On the other hand, FTIR results did 

not show a strong evidence for the alteration of the Si-O functional groups in cristobalite. 
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FTIR analyses (Figure 3.6a) showed the disappearance of the small signal characteristic 

of lonely silanol group after drug adsorption indicating that this is the active site for the 

drug adsorption on Cris. The weakness of the lonely silanol group suggests that most of 

the drug loaded on the Cris is bound by physisorption forces. For SCPC50, 73 % of the 

material is rhenanite (Table 2.2). Therefore, similar interaction between the P-O 

functional groups and the drug molecules is expected. Indeed, FTIR showed an increase 

in the area under the peaks for the bands at 1153.6-1214.6 cm
-1

, 1408 cm
-1

 and 1084 cm
-1

 

corresponding to P-O (H) bending mode suggesting a chemical interaction between drug 

molecules and the P-O groups on the material surface. On the other hand, the persistence 

of the Si-OH band after drug loading (Figure 3.6c) suggests a minimal role of this 

functional group in drug binding to SCPC50. 

3.4.3. Comparison of TG with HPLC 

Measurements of the Vanc loaded on the ceramics were carried out using two 

different methods: HPLC and TG. The amounts of Vanc determined using TG were 

higher than those measured using HPLC. The difference in the amount of Vancomycin is 

understood in view of the method of determination of the adsorbed drug. For the HPLC, 

the Vancomycin bound to the ceramic was calculated as the difference in the drug 

concentrations of the immersing solution before and after immersion. On the other hand, 

for the TG method, the particles were removed from the immersing Vancomycin 

solution, dried then thermally analyzed without washing.  The drying of the remnant 

Vancomycin solution inside the porous particles after immersion contributed to the 

increased amount of drug loaded per each ceramic. The amount of dried drug on the 

porous ceramic particles was proportional to the surface area of each material and 
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increased in the order Cristobalite > Rhenanite > SCPC50. For release kinetics studies we 

used ceramic particles loaded with the drug without washing. After complete release of 

the drug from the ceramics, calculation of the cumulative drug released matched the 

initial amount of drug loaded on each material as determined by TG or ICP-EOS 

methods. The dried drug on the material surface contributed to the burst release stage 

seen in the release kinetics profiles (Figure 3.4a, and Figure 3.5a). Considering that the 

HPLC difference in Vancomycin concentrations, before and after ceramic immersion, 

represents the absorbed drug on the material surface, the Vanc absorbed on each material 

per surface area, confirm the high affinity of Vanc to the surface of Rhe, and also reveal 

that SCPC50 has higher drug loading capacity per surface area when compared to Cris. 

Therefore, the drug loading capacity of bioactive ceramics is significantly dependent on 

the phase composition, surface area, and surface chemistry.  

3.4.4. Thermal Analyses 

DSC analyses demonstrated a reduction in the thermal decomposition energy of 

Vancomycin after adsorption onto Rhenanite surface. This decrease is expected in view 

of the separation of the drug molecules on the material surface during adsorption as 

compared to the presence of these molecules in crystalline form in the control drug. On 

the other hand, the thermal decomposition energy of Vancomycin adsorbed onto Cris was 

significantly higher than that of control Vancomycin. The increase in the thermal 

decomposition energy of Vancomycin can be understood in view of the pore size 

distribution of Cris as well as the nature of the interaction between the drug molecules 

and the substrate. Although Cris has a comparable porosity percent to Rhe, however, 22.5 

% of the pores in the former material were (< 1 µm) compared to 2.2 % of the same pore 
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size for the later material (Table 2.1). Therefore, Vancomycin molecules entrapped in 

Cris nano pores require higher amounts of energy to break down (Table 3.1). 

Additionally, the significantly low thermal conductivity of Cris [387] can contribute to 

the increased decomposition energy for Vancomycin. Although, SCPC50 has 6.0 % of its 

pores<1 µm, yet the Vanc adsorbed onto its surface demonstrated higher decomposition 

energy than that adsorbed onto Cris. The increase in the decomposition energy of 

Vancomycin adsorbed on SCPC50 can be attributed to the nature of bonding between the 

drug molecules and the substrate, and the presence of nanopores. Therefore, more heat 

energy is required to achieve the critical value for the decomposition of Vanc. 

Furthermore, the surface hydroxyapatite layer represents an additional obstacle to the 

thermal decomposition of the Vancomycin adsorbed in the inner pores of SCPC50.  Vanc 

loaded on all carriers showed lower decomposition temperature compared to the control 

Vanc (100% Vanc powder). The reduction in the decomposition temperature can be 

attributed to the resolution of the crystalline structure of Vancomycin and separation of 

the individual drug molecules adsorbed onto the material surface. It is also possible that 

the denaturation of the adsorbed molecules contributes to the decrease in the thermal 

stability.   

3.4.5. Drug Release and Ceramic Dissolution Kinetics 

Results of drug release kinetics demonstrated the ability of all carriers to bind and 

provide a sustained release of Vancomycin and Cisplatin.  The low affinity between the 

drugs and Si-O-Si network; as demonstrated by FTIR (Figure 3.6a) and DSC analyses 

(Figure 3.3b), suggests that the drug release kinetics from Cris is mainly diffusion 

dependent; controlled by the large number of pores in the size range <1 µm (22.3%). In 
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addition, SEM analysis showed evidences of particles disintegration during immersion in 

PBS, thus increasing the surface area in contact with the immersing solution and 

enhanced the drug release (Figure 3.10). In contrast, the transport of drug out of the Rhe 

particles is controlled by its surface chemistry rather than its pores size distribution. The 

non-bridging P-O functional groups, including P-O(H), P-O(Ca), and P-O(Na), which 

dominate the surface of Rhe, has been demonstrated to chemically bind Vancomycin and 

Cisplatin (Figure 3.6). Hence, the drug release kinetics correlated well with the Rhe 

dissolution rate (Figure 3.7). It is interesting to note that, while a significant reduction in 

Ca dissolution from Rhe-drug hybrids was measured after 120 hours of immersion in 

PBS; the Ca dissolution rate of control Rhe without drug continued to increase.  The 

decreased Ca concentration in the PBS incubated with Rhe after this period could be 

attributed to the enhanced precipitation of a calcium phosphate layer on the material 

surface. In the case of SCPC50 a more complex drug release mechanism is expected due 

to its hierarchical porous structure and its phase composition that comprise both Cris and 

Rhe and a silica rich glassy phase. It is also important to note that SCPC50 has a dynamic 

surface with a continuous dissolution-precipitation reactions taking place in PBS. 

SCPC50, SCPC50-Van and SCPC50-Cis samples showed comparable calcium and 

phosphorous dissolution rates. This is due to the domination of dissolution precipitation 

reactions continuously happening on the surface of the material during the incubation 

period in PBS as confirmed by FTIR. Ning, et al., and Liu, et al., demonstrated that the 

amorphous phase in SCPC50 is Silica-rich [18, 383]. Therefore, it is expected that Si 

from the amorphous phase dissolves faster than any other phase in the SCPC50. 

Dissolution of the Si from SCPC50 glassy phase seems to have no further effect in the 
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drug release other than its contribution in the material degradation and CaP layer 

formation. The bacterial inhibition assay (Figure 3.11) revealed that released 

Vancomycin maintained their biological cytotoxicity against S. Aureus in vitro. 

Moreover, quantitatively, the average diameter of the inhibition zone as a function of 

time correlates well with the concentration of Vancomycin eluted at each time point and 

measured by HPLC. 

3.5. Conclusion 

Results of this study demonstrate the ability of Cris, Rhe and SCPC50 particles to 

bind and release in a controlled fashion Vancomycin and Cisplatin.  The chemical 

composition of the carrier dramatically affected the loading capacity and the release 

kinetics of therapeutics, besides its structural features. Physical structural characteristics 

of Cris demonstrated to exert a high impact on its ability to serve as DDS. Presence of 

nano pores and superior surface area suitable for drug loading allowed more drug loading 

capacity compared to Rhe and SCPC50.Sustained release showed to be controlled mainly 

by the tortuosity of constricted porous matrix due to the stability of the ceramic. Rhe 

demonstrated to be more chemical reactive and form more stable bonds with drug 

molecules, contributing to prolonged release of therapeutics. SCPC50 has the advantage 

to have both physical and chemical mechanisms for loading and release molecules. 

Therefore, microstructure and DDS ability of SCPC50 (which has more active Cris and 

Rhe phases) can be tailored depending on the ratio Silicate/Phosphate used to make the 

ceramic compound. Additional considerations should be taken into account when 

selecting the composition of SCPC composite for drug delivery. Final format of the 

ceramic matrix can represent additional obstacles. For example, particles compacted to 
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discs significantly limits the contact between the inner nanopores surface and 

surrounding fluids, complicating the diffusion of drug molecules entrapped inside the 

discs. Therefore, Si-rich SCPC (SCPC75) should be selected to overcome the increased 

tortuosity in the discs. As a result, reduced affinity between the bioceramic and drugs 

molecules would be obtained, yielding to faster release rates and reducing the possibility 

of drug retention, plus significantly increase drug loading capacity per unit of mass.  



 

 

 

 

 

 

 

CHAPTER 4: EVALUATION OF THE EFFECT OF SCPC DISSOLUTION ON THE 

BIOACTIVITY OF THE ANTI-CANCER DRUG DOXORUBICIN 

 

4.1. Introduction 

Silicon calcium phosphate (SCPC) has been tested as a drug delivery platform to 

treat infection and cancer. The bioactivity reactions at the interface of bioactive ceramics 

and tissue fluids include a partial dissolution of the surface followed by a back-

precipitation.  These reactions have been shown to regulate the drug release kinetics. 

While most of studies have focused on the release kinetics and the bioactivity of released 

drug, little is known about the effects of dissolution products of the ceramic on drug 

bioactivity. SCPC has shown to cause minimum effect on the bioactivity of Cisplatin 

[388] and 5-FU [300] anticancer drugs, as well as on antibiotics Vancomycin and 

Gentamycin [299]. However the deterioration of drug agents caused by its interaction 

with ionic degradation products from SCPC deserves more attention. Doxorubicin (Dox) 

is a powerful anthracycline antibiotic that interacts with DNA by intercalation inhibiting 

its replication, transcription, and translation. Dox is commonly used in the treatment of a 

wide range of cancers, many human neoplasms, including acute leukemias, lymphomas, 

stomach, breast and ovarian cancer, and bone tumors. The high availability of functional 

groups (-C=O, -COOROH, -OH, -OR, -NH3) within Dox molecule can lead to 

tautomerize from one functional group to other [389, 390]. The objective of this work is 

to analyze the interactions between drug molecules and the ionic degradation products of 

bioactive ceramics. Nuclear magnetic resonance (NMR) was proposed to analyze 



93 

 

possible chemical bonding between Dox with common elemental dissolution products 

from the dissolution of SCPC (Si, P, Ca and Na). Additionally, the effect of individual 

ion Doxorubicin toxicity for cancer cells is presented.  

4.2. Materials and Methods 

4.2.1. Reagents 

Doxorubicin Hydrochloride, Reddish-orange Powder ≥95% (by HPLC), was 

purchase from Fisher Bioreagent (Fairlawn, NJ). Ions were obtained from H2SiF6 

ICP/DCP standard solution at 10042µg/mL concentration in water, NaCl (≥99% ASC), 

and CaCl2 2H2O (99+% ACS) purchased from Sigma-Aldrich (St. Louis, MO). 

Orthophosphoric acid (H3PO4), 85% aqueous Solution, was purchased from Alfa Aesar 

(Ward Hill, MA). Ions solutions were prepared in D2O (D, 99.9%) purchased from 

Cambridge Isotope Laboratories Inc (Andover, MA). The pH was adjusted using 

Ammonium hydroxide (NH4OH), volumetric standard, 4.98N solution in water purchased 

from Sigma-Aldrich., dissolved in D2O at 1:10 volume ratio. 

4.2.2. Sample Preparation 

Stock solution of Doxorubicin (Dox) in D2O at 1 mg/mL was prepared. 

Homogeneous drug solutions containing Silicon, Phosphorous, Sodium and Calcium in 

ion:drug molar ratios of 0:1, 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 0.25:1, and 0.05:1 were 

prepared.  Final Dox concentration equals to 500 µg/mLwas maintained in all sample 

solutions. The samples were adjusted at pH 5.0±0.2 using NH4OH solution dissolved in 

D2O diluted at 1:10 volume ratio. A total of 1ml of each sample was prepared, from this 

600 µL of each drug-ion solution was analyzed by NMR and left 400 µL used for 

cytotoxicity studies.  
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4.2.3. In Vitro Cytotoxicity of Ion:Dox Solutions 

Aqueous solutions of Dox mixed with Ca, Na, P or Si at ion:Dox molar ratios 0:0 

(control without Dox and ion) 0:1 (control “only Dox”), 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 

0.25:1, and 0.05:1, 1:0 (control “only ion” at low concentration) and 32:0 (control “only 

ion” at high concentration) were sterilized through 0.2 µm filters.  These samples were 

diluted to reach Dox final concentrations of 20, 2, 0.8 and 0.4 μM. Serum-free MCF7 

breast cancer cells in a growing phase, confluence ~75-85 %, were seeded with all 

ions:Dox solutions in 96 well plates (n=6) and incubated at 37°C, 5% CO2, and 100% 

humidity for 96 hrs.  Cell cytotoxicity was tested using MTT assays, which are 

commonly used in cytotoxic studies and measure the mitochondrial activity [391], which 

is proportional to the live cell number. MTT assays were read using a plate reader (color 

change), and the results expressed as % cell survival compared to control conditions (i.e., 

no treatment). Control “only ion” samples (32:0 and 1:0) without Dox were calculated to 

match the Ca, Na, P or Si concentrations of 32:1 and 1:1 ion:Dox solutions but without 

Dox. These samples were thought to measure the cytotoxicity of Ca, Na, P and Si 

solutions without drug. 

4.2.4. Nuclear Magnetic Resonance (NMR) 

Proton NMR spectra were recorded on Bruker Avance at 700 or 500 MHz 

spectrometers with gradient shimming, auto sampler, and auto tuning at 298 K. 

Assignment of proton NMR signals was achieved using 2D COSY and NOESY spectra. 

The interactions of different ions with Dox were evaluated based on the changes of the 

chemical shifts of Dox. Chemical shifts of Dox were monitored by 1D proton spectra of 

Dox acquired at the constant concentration of the drug (500 µg/mL) in the presence of 
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increasing concentrations of Ca, Si, P, and Na (ion:drug molar ratios: 0:1, 1:1, 8:1 and 

32:1). One dimensional 1H spectra were acquired into 32768 data points, spectral width 

of 12 ppm, 5 ppm offset, and relaxation delay 0.1s. No weighting functions were applied 

prior to Fourier transformation.  

4.2.5. Treatment of NMR Data 

Benesi-Hildebrand (B-H) linearization treatment was applied to calculate the 

association constant (Ka) of the drug with the various ions [392, 393]. 

 
  ⁄   

              ⁄   
     

⁄  Equation 4.1 

Where Δδ=(δDox-δobs), Δ 𝑚𝑎𝑥=( 𝐷 𝑥− 𝑠𝑎𝑡 ), Ka Dox-ion association constant, [Ho] 

is the known total concentration of ions, δobs is the observed chemical shift in the Dox-ion 

solutions, δDox is the observed chemical shift in the Dox solution without any ion.  

4.2.6. Statistical Analysis 

The data were expressed as the mean ± SD. One-way ANOVA was used to test 

for variance among two or more independent groups of data. Differences among 

treatment groups were evaluated using Tukey post-hoc testing. Results were considered 

to have statistical significance difference at the 0.05 level. 

4.3. Results 

MTT assays showed no significant influence on the MCF7 cell survival at Dox 

final concentrations of 20 and 2μM regardless the molar ratio between ions (Ca, Na, P or 

Si) and Dox (Figure 4.1, 4.2, 4.3 and 4.4).  In contrast, solutions at Dox final 

concentrations of 0.8 and 0.4 μM showed a significant decreased (p<0.05) in the MCF7 

cell survival when the molar ratio between Na or Ca ions and Dox were ≥ 0.5:1 (Figure 

4.3 ). Moreover, in the case of P:Dox mixtures, only the solution with final Dox 
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concentration of 0.8μM and P:Dox molar ratio 8:1 showed significant decreases (p<0.01) 

in the survival of MCF7 cell with respect to the control “only Dox” (Figure 4.3). 

Solutions of Dox mixed with Si regardless of the molar ratio of Si to Dox did not alter the 

MCF7 cell Dox cytotoxicity at any of the Dox final concentrations tested (20, 2, 0.8 and 

0.4 μM, Figure 4.4).  Control “only ion” for Ca and P did not show cytotoxicity at any 

concentration tested. Conversely, control “only ion” Si and Na showed significant 

toxicity (**p<0.01 and *p<0.05). Si and Na samples labeled 32:0 and 1:0 showed a 

decrease in the viability of MCF7 cells when matched the Si or Na concentration of 32:1 

and 1:1 with final Dox concentrations at 20 and 2μM (Figure 4.3 and Figure 4.4).  
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a) b) 

c) d) 

Figure 4.1: MTT assays showing the MCF7 Cell survival (%) against molar Ca:Dox 

solutions at molar ratios 0:0 (control media without drug or Ca), 0:1 (control “only 

Dox”), 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 0.25:1, and 0.05:1, 1:0 (control “only Ca” at 

low concentration) and 32:0 (control “only Ca” at high concentration). Results 

between were considered to have statistical significance difference at *P<0.05 and 

***P<0.01. Statistical significance was evaluated between samples containing Dox 

and samples without Dox samples separately. 
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a) b) 

c) d) 

Figure 4.2: MTT assays showing the MCF7 Cell survival (%) against molar Na:Dox 

solutions at molar ratios 0:0 (control media without drug or Na), 0:1 (control “only 

Dox”), 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 0.25:1, and 0.05:1, 1:0 (control “only Na” at 

low concentration) and 32:0 (control “only Na” at high concentration). Results 

between were considered to have statistical significance difference at *P<0.05 and 

***P<0.01. Statistical significance was evaluated between samples containing Dox 

and samples without Dox samples separately. 

 



99 

 

a) b)  

c) 

d) 

Figure 4.3: MTT assays showing the MCF7 Cell survival (%) against molar P:Dox 

solutions at molar ratios 0:0 (control media without drug or P), 0:1 (control “only 

Dox”), 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 0.25:1, and 0.05:1, 1:0 (control “only P” at 

low concentration) and 32:0 (control “only P” at high concentration). Results 

between were considered to have statistical significance difference at *P<0.05 and 

***P<0.01. Statistical significance was evaluated between samples containing Dox 

and samples without Dox samples separately.’ 
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a)  b)  

c) d) 

Figure 4.4: MTT assays showing the MCF7 Cell survival (%) against molar Si:Dox 

solutions at molar ratios 0:0 (control media without drug or Si), 0:1 (control “only 

Dox”), 32:1, 16:1, 8:1, 4:1, 1:1, 0.5:1, 0.25:1, and 0.05:1, 1:0 (control “only Si” at 

low concentration) and 32:0 (control “only Si” at high concentration). Results 

between were considered to have statistical significance difference at *P<0.05 and 

***P<0.01. Statistical significance was evaluated between samples containing Dox 

and samples without Dox samples separately. 

 

Assignments of the proton NMR chemical shifts of Dox performed using 2D 

COSY are showed in Figure 4.5. The three most downfield signals, one triplet and two 

doublets, were assigned to non-exchangeable protons of ring A. The triplet signal was 

assigned to proton 2H. The upfield doublet at 7.39 ppm was assigned to 3H proton, and 

the downfield doublet at 7.44 ppm was assigned to 1H proton. A strong single peak 
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appearing at 3.90 ppm had integral intensity due to three protons. These protons provided 

a strong NOE cross-peak to 3H proton and weak NOE cross-peak to 2H proton, and were 

assigned to 5H protons of the O-CH3 group of ring D. Two pairs of strongly coupled 

protons were observed as doublets at 2.95 and 2.63 ppm; and at 2.26 and 2.06 ppm. The 

two protons that provided a cross-peak to a singlet at 4.88 ppm were assigned to 8axH 

(2.26 ppm) and 8eqH (2.06 ppm) of ring D. Consequently, the peak at 4.88 ppm was 

assigned to 7H proton. The other two protons were assigned to 10axH and 10eqH of ring 

D, respectively. The peak appearing at 5.46 ppm was assigned to 1'H of the sugar moiety. 

This proton is strongly coupled to the resonance peak at 1.99 ppm, assigned to 2'axH and 

2'eqH protons. The 2'H protons are further coupled to the resonance peak at 3.69 ppm, 

assigned to 3'H proton. The other two strongly coupled resonances appearing at 4.24 ppm 

and 1.31 ppm were assigned to 5'H and 6'H protons of the CH3 group of the sugar moiety. 

No signal could be definitively assigned to 4’H proton due to signal overlap. The peak at 

3.86 ppm was due to two protons and was assigned to 14H protons. These protons did not 

give cross-peaks to any other protons in COSY spectrum as expected. All assignments 

are in a good agreement with those published previously [394, 395]. 

NMR 1D proton spectra analyses (Figure 4.6) showed that the addition of Ca, Na 

and P to Dox solution resulted in proton NMR isotropic shifts of the peaks characteristic 

for 1H, 2H and 3H protons of ring A, the 5H proton of the O-CH3 group linked to the 

same ring, and the 10H and 8H linked to the ring D. It was observed that the shift of these 

peaks increases as P and Na concentration increases (Figure 4.6 b and c). In the case of 

Ca plateau was observed for Ca:Dox ratio higher than 8:1 (Figure 4.6 a). On the other 
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hand, no significant shift was observed when Si was added to Dox solution. (Figure 4.6 

d) 

 

 
Figure 4.5: Doxorubicin molecule; protons assignment using NMR COESY 
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a) b) 

c) 
d) 

 

Figure 4.6: Chemical shifts detected by NMR for different complex: a) Ca:Dox, b) 

P:Dox, c) Na:Dox, and d) Si:Dox, at different ion:Dox molar ratios. Dashed lines (in 

red), in the figures, represent the trend of the average chemical shift of different 

protons calculated at each ion:Dox concentration. Changes in the protons chemical 

shift were considered significant when their values were above the red dashed line. 

 

Table 4.1 shows the “association constants” (Ka) were calculated using NMR data 

and B-H linearization method for the formation of complexes Dox-Ca, Dox-Na and Dox-

P.  
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Table 4.1: Association constants calculated using NMR data and Benesi-Hildebrand 

linearization method for the formation of complex Dox-Ca, Dox-Na and Dox-P. No 

data is presented for Si since not significant association Dox-Si was detected. 

Proton 2H 1H 3H 5H 10H 8H average stdv 

 
Ca 

Ka (M
-1

) 281.2 331.44 315.75 290.98 301.73 291.5 302.1 16.93 

 
Na 

Ka (M
-1

) 139.85 76.19 156.09 137.03 144.22 106.23 126.6 27.14 

 
P 

Ka (M
-1

) 18.65 33.52 15.38 17.43 16.05 34.47 22.58 8.14 

 

4.4. Discussion 

Results of the study indicate that the kind and concentration of ions released from 

bioactive ceramics can alter the therapeutic effect of the released Dox. Positively charged 

ions of Ca
+2

 and Na
+
 showed to have the highest affinity with Dox molecules as 

demonstrated by the association constants obtained by NMR analyses. In contrast, 

negatively charged ions PO4
-3

 and SiO4
-4

 showed either low affinity or no significant 

association with Dox respectively. Cytotoxicity test on MCF7 breast cancer cells showed 

enhanced cytotoxicity of Dox when mixed with Ca and Na at molar ratios ion:Dox 

greater than 0.5:1. Furthermore, no measurable detriment of the drug bioactivity was seen 

by the incorporation of Ca, Na, P or Si in Dox solutions.  

The high availability of functional groups (-C=O, -COOROH, -OH, -OR, -NH3) 

within Dox molecule can lead to tautomerize from one functional group to other by 

changing the pH of the immersing solution [389] [390]. As such, changes in the ionic 

concentration of the immersing solution should be able to cause tautomerization of Dox 

molecules facilitating drug ion binding. NMR results of Dox mixed with Ca and Na 

showed isotropic shifts of the protons signals corresponding to the assigned ring A and D 

(Figure 4.5). This suggested that the metal ions interact with the beta-ketophenolate site 
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of the Dox molecule as indicated in Figure 4.7. Wei et. al., reported the binding of Dox 

with positively charged Yb
3+

 ions on the same site on the Dox molecule [396].  

Moreover, the same protons, those assigned to the ring A and D, in Dox molecule are 

affected by the presence of negative ions. Therefore, further hydrolysis reactions are 

required to make possible the interaction of negatively charged molecules with the same 

molecular site, which is in agreement with the lower affinity between negative ions and 

the drug.  

In vitro cytotoxicity tests against MCF7 cell line demonstrated that the presence 

of ionic dissolution products of SCPC does not affect the bioactivity of the anticancer 

molecule. Solutions tested at final Dox concentration greater than 2 µM were highly toxic 

and did not show significant variations in the % of cell survival regardless the presence of 

Ca, Na, P or Si. At lower final Dox concentration 0.8 and 0.4 µM, only Ca and Na 

improved the mortality of the MCF7 cells at ion:drug molar ratios higher than 0.5:1. In 

fact, control samples with Ca or Na without Dox did not affect the % of cells survival, 

confirming that the increase in the mortality of MCF7 cell should be by the Dox-ion 

interactions.  Rose et. al., reviewed the effect of Ca
2+

 concentration [Ca
2+

] on the 

permeability of in Chironomus salivary gland cell junction. Authors reviewed high 

permeability of the cell membranes was observed for Ca concentration [Ca
2+

]<10
-7

M, 

allowing the permeability of large peptide molecules of about 1,200–1,900 molecular 

weight. Moreover, they also reported that at [Ca
2+

]>5x10
-5

 M permeability falls 

drastically restringing the permeation for all molecular species including the small 

inorganic ions  [397]. These suggest that rather than an ion-cell membrane mechanism, 

an ion-drug interaction is enhancing the bioactivity of Dox. 
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NMR and cytotoxicity tests allowed estimate interactions of Dox with SCPC 

dissolution products. The association constant “Ka” calculated for Ca was more than 

double that of Na and 15 times higher than that of P indicating that Ca is the most active 

ion interacting with Dox. However, dissolution-back precipitation reactions on SCPC 

surface limit the amounts of Ca in solution due to the continuous formation of apatite 

layer. Therefore, interactions between Dox and Ca
+2

 eluted from SCPC are not expected. 

On the other hand, due to the high elution of Na
+
 and the back precipitation of Ca

+2
, Dox-

Na bonding is expected to be more feasible than Dox-Ca bonding. Besides, dissolution of 

Si and P should not be a concern because of their low affinity with the Dox molecule.   

 

 

Figure 4.7 Schematic showing Doxorubicin molecule based on its crystal structure. NMR 

results suggested that positive (green) and negative (yellow) ions interact with the 

beta-ketophenolate site of the drug.  
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4.5. Conclusion 

NMR results showed the binding between Dox and SCPC dissolution products. 

Positive ions Ca, Na showed the major affinity with the drug, while negative ions P and 

Si showed low or negligible affinity with Dox. Cell culture tests demonstrated that the 

interactions between the SCPC dissolution products and the released drug did not cause 

measurable adverse effects on the bioactivity of the tested drug. Therefore, it opens the 

possibility of use SCPCs with different composition for the delivery of the anticancer 

drug. 

 



 

 

 

 

 

 

 

CHAPTER 5: A SILICA-RICH SCPC FOR DRUG DELIVERY SYSTEM FOR THE 

TREATMENT OF HEPATOCELULLAR CARCINOMA (HCC): IN VIVO STUDY. 

 

5.1. Introduction 

Hepatocellular carcinoma (HCC) ranks as the fifth most common cancer 

diagnosed in the world and the third leading cause of cancer-related mortality [398]. 

Current treatment for those diagnosed with HCC most commonly relies on surgical 

intervention (resection, transplant, or ablation). While potentially curative, these 

approaches are often compromised by late detection, the underlying liver disease 

associated with tumor development (cirrhosis), tumor location within the liver, intra- or 

extra-hepatic metastasis, and a lack of transplantable organs [399]. Chemotherapy for 

HCC, including localized transarterial chemoembolization (TACE), is similarly limited 

by late detection, advanced disease stage, and the etiology of the hepatic tumor [399, 

400]. Chemotherapeutic approaches can also be further compromised by the presence of 

hepatic cirrhosis and diminished liver function, the liver being the primary site of drug 

metabolism [399, 400].  

The failure to develop effective HCC treatment strategies has led to increased 

interest in the development of drug delivery systems (DDS) to provide increased, site-

specific concentrations of cytotoxic agents. Nanoparticles of various biomaterials, 

including polymers[401], ceramics [379, 402], metals [403], and composites [404], have 

been tested as a means of effecting localized drug release while decreasing acute side 

effects. While these approaches have promise there are also potential problems to be 
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considered. For example, intravenous nanoparticle injection carries the risk of 

unfavorable interactions with the reticuloendothelial system [405]. Similarly, nano-size 

particles have the potential to cause harmful interactions with biological tissue(s) and 

trigger responses that affect cell metabolism and phenotype, including the potential to act 

as mutagens [406]. For example, Hussain et al., reported the use of metal/metal oxide 

nanoparticles led to changes in cell morphology and decreased mitochondrial function, 

membrane leakage, glutathione, and mitochondrial membrane potential in BRL3A (liver) 

cells [407]. Similarly, Lin, et al. report concentration dependent toxicity, including lipid 

peroxidation and membrane damage, for crystalline silica nanoparticles in lung cancer 

cells [408].  

In addition to nanoparticles, calcium phosphate [409]and polymethyl 

methacrylate (PMMA) [410]have been tested as DDSs in the treatment of cancer. Unlike 

nanoparticles these agents are typically loaded with drug and implanted inside the tumor, 

or placed adjacent to it. While such approaches avoid many of the non-specific effects 

associated with nanoparticles, drug release kinetics are often limited by the rate of DDS 

degradation. As such, increased drug retention by the DDS can occur due to the inherent 

chemical stability of the material per se [409, 410]. 

Previous studies by our group reported the release kinetics of Cisplatin from 

SCPC75 in vitro.  Results showed that diffusion and interfacial dissolution-back 

precipitation reactions controlled the release of the drug.  Furthermore, following the 

release from the SCPC75, Cisplatin remained cytotoxic in hepatoma cells in culture 

[380]. The aim of the current study was to analyze bonding between Cisplatin molecules 
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and SCPC75 and determine the effect of SCPC75-Cis hybrids on HCC progression in 

vivo. 

5.2. Materials and Methods. 

5.2.1. Assurances 

Male ACI rats (175-225g; Harlan Inc., Indianapolis, IN) were used for these 

studies. All experiments were approved by the Institutional Animal Care and Use 

Committee and conformed to The Guide for the Care and Use of Laboratory Animals.  

5.2.2. SCPC75–Cis Hybrid Preparation 

The SCPC75 (with chemical composition in molar percentage: 32.9% SiO2, 

11.4% P2O5, 22.8% CaO, and 32.9% Na2O) was prepared by sintering, at 800
o
C for 1 

hour. The ceramic was ground and sifted to a final particle size range 250-425μm, and 

particles were immersed in simulated body fluid (SBF) at a ceramic/solution ratio of 

33mg/mL (24-Hrs, 37
o
C). The SCPC75 was collected, dried, and loaded with Cisplatin 

by immersion in 10mg/mL Cisplatin (cis-dichlorodiamineplatinum II, Sigma-Aldrich, St. 

Louis, MO)-DMSO solution under continuous shaking (120rpm, 37
o
C, 48 h), and 80mg 

of SCPC75-Cisplatin hybrid (SCPC75-Cis) were pressed into discs (5x3mm) at 360MPa. 

Control SCPC75 discs in the absence of Cisplatin were prepared in parallel [380]. 

The amount of Cisplatin loaded onto discs was determined by submerging 

SCPC75-Cis hybrids in 70% nitric acid (24-Hrs, room temperature [RT]) and then 

centrifugation (5000xg, 3 min, RT). The supernatant was collected and analyzed for 

platinum (Pt) concentration by Inductively Coupled Plasma-Optical Emission 

Spectrometer (ICP-OES; Optima 3000, Perkins Elmer). The remaining pellet was placed 
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in 70% nitric acid, and the process repeated three times, or until no more Pt was detected. 

Total Cis-loading to SCPC75 was calculated as cumulative Pt measured by ICP-OES. 

5.2.3. Surface Chemistry 

SCPC75-Cis hybrids or control SCPC75 (pre-immersed in DMSO without 

Cisplatin) were analyzed using FTIR in the diffuse reflectance mode. The spectra were 

collected after 200 scans at 2cm
-1

 resolution employing a Nicolet 6700, 

spectrophotometer equipped with a deuterium triglycine sulfate (DTGS) detector 

(ThermoNicolet, Madison, WI). The peak’s position and area were measured for three 

different samples of each group using OMNIC software, and the results expressed as 

mean ± SD. Second derivative criterion and deconvolution of the spectra in the ranges 

from 800-1200cm
-1

 and 1300-1600 cm
-1

 were used to resolve hidden peaks and a 

Gaussian model was used to fit the resolved peaks within these ranges. 

5.2.4. Ceramic Morphology and Crystalline Structure 

The morphology of the SCPC75 particles was analyzed using a scanning electron 

microscope (SEM; JEOL USA Inc, Waterford, VA) in the secondary electron mode. 

Porosity and pore size distribution of the SCPC75 particles were analyzed by mercury 

intrusion porosimetry using an AutoPore 9500 penetrometer (Micromeritics, Norcoss, 

GA). The specific surface area was determined by Brunauer, Emmett and Teller (BET) 

single point using a high-speed N2 gas sorption analyzer (TriStar II 3020 V1.03, 

Micromiretics, GA) [411]. SCPC75-Cis hybrids and unloaded controls were also 

analyzed by SEM using back scattering electron detection (BSE). Energy dispersive X-

ray (EDX) analysis was performed to determine the presence of Pt on SCPC75-Cis 

hybrids. The crystalline phases were identified by X-ray diffraction (XRD) analysis using 
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X’pert PRO diffractometer (PANalytical, Westborough, MA) with Copper radiation 

(λ=1.54059 Å) at room temperature (45KV and 40mA). The XRD patterns were taken 

over the 2-theta range of 15-55
o
, with a step size of 0.02

o
 and 1-sec/step. Diffraction data 

was analyzed by the Rietveld refinement method using X’Pert HighScore Plus. Error 

indices (statistical R factors) lower than 10 were considered acceptable Rietveld criteria. 

5.2.5. Cell Culture and Animal Model of HCC 

Rat H4IIE cells were purchased from ATCC (Bethesda, MD) and maintained in 

culture as previously reported [412]. Bilateral sub-cutaneous (s.q.) H4IIE cell 

inoculations (2x10
6
 cells) were performed into the left and right flanks of animals under 

isofluorane anesthesia. Animals were allowed to recover, and tumor size was measured 

daily. This method results in a reproducible tumor mass that is readily visible to the 

naked eye (7-8 days post-inoculation) and grows to 10-12mm in diameter within 14-d of 

inoculation [413]. 

5.2.6. Tumor Treatment with Cisplatin 

Animals were randomized to one of 5 groups; control (untreated; C), systemic 

Cisplatin (sCis), blank (no drug) SCPC75 disc (SCPC75), SCPC75-cisplatin hybrid 

placed adjacent to the tumor mass (ADJ-SCPC75-Cis), or SCPC75-cisplatin hybrid 

placed within the tumor mass (IT-SCPC75-Cis). Control animals (C) were injected (i.p.) 

with DMSO (0.1mls) twice daily, 7-d after H4IIE cell inoculation. Systemic Cisplatin 

(sCis) treated animals were injected (i.p.) with Cisplatin dissolved in DMSO (0.1ml total 

volume; 3mg/ml) twice daily beginning 7-d after H4IIE cell inoculation. For ADJ-

SCPC75-Cis placement, animals were placed under surgical anesthesia and a skin 

incision made approximately 10-12mm from the tumor mass. Blunt dissection was 
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performed to separate the skin from the fascia; SCPC75 tablets were immersed briefly in 

PBS, and placed under the skin immediately adjacent to the tumor. Tumors were 

randomized to receive either SCPC75 or SCPC75-cisplatin hybrids.  

For animals randomized to IT-SCPC75-Cis discs, rats were placed under surgical 

anesthesia and a skin incision made approximately 10-12mm from the tumor. Blunt 

dissection was performed up to the tumor site and a sterile scalpel blade used to make a 

3-4mm incision across the surface of the tumor. SCPC75 tablets were immersed briefly in 

PBS, and gently pushed into the incision. Gentle pressure was applied to the site, and the 

skin closed using 4-0-vicryl suture.  

5.2.7. Measurement of Physiological Function and Systemic Toxicity 

As an indicator of health animals were monitored daily for behavior (alert, 

grooming, feeding) and weight change. In accordance with veterinary advice, weight loss 

≥15% was considered a humane endpoint. At experimental conclusion blood was 

collected by cardiac puncture under surgical anesthesia and aspartate aminotransferase 

(AST; liver function), creatinine and blood urea nitrogen (BUN) (renal function), and 

base excess and bicarbonate levels (metabolic function) were measured (Diagnostic 

Laboratory, Carolinas Medical Center, Charlotte, NC). 

5.2.8. Tumor Resection and Processing 

At euthanasia tumor masses were resected, photographed, measured, and tumor 

volume calculated. The SCPC75 disc was removed, wiped clean of surface blood-debris, 

and stored in a sterile 1.5mL tube. Hepatic, renal, and tumor tissues were divided into 

≈100mg pieces and placed in either neutral buffered formalin (histology), or snap-frozen 

in liquid nitrogen (Cisplatin-platinum content).  
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5.2.9. Histological Analysis 

Formalin-fixed, paraffin-embedded tissue was cut into 5μm sections, dried onto 

glass slides, deparafinized with xylene, and hydrated through graded alcohol into water. 

Sections were stained with hematoxylin and eosin (H&E), necrotic area identified in 5 

random fields, and necrotic area calculated as a percentage of the section surface area 

(ImageJ software, NIH, Bethesda, MD). To determine apoptotic cell death, a terminal 

deoxynucleotidyl transferase UTP nick end labeling (TUNEL) assay was performed and 

slides counterstained with 4', 6-diamidino-2-phenylindole (DAPI) for nuclear localization 

[414].  

5.2.10. Measurement of Platinum Content 

Platinum concentration was measured using ICP-OES (Optima 3000, Perkins 

Elmer). For each sample, ~75mg of tissue was digested in 750µl 70% nitric acid (1-Hr, 

RT), and centrifuged (20,000×g, 20 min, RT). The supernatant was collected, diluted 

1:20 in deionized water and analyzed by ICP-OES. Platinum content on SCPC75-Cis 

hybrids after treatment was determined using the same methods and ICP-OES analysis as 

used to determine initial loading, and data were expressed as the percentage change 

compared to initial loading. 

5.2.11. Statistical Analysis 

The data were expressed as the mean ± SD. Statistical analyses were performed 

following the procedure indicated in section 2.2.7. 
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5.3. Results 

5.3.1. Microstructural Analysis of SCPC75 Particles 

SEM analyses of the SCPC75-Vanc-rhBMP2 hybrid particles (Figure 5.1 a) 

demonstrated a uniform distribution of nanopores throughout the surface of the particle 

(inset). The porosity and surface area of the SCPC75 particles as determined by mercury 

intrusion porosimetry were found to be 64.28% and 13.53 m
2
/g, respectively. BET 

analysis, another complimentary method, indicated that the surface area was 7.21m
2
/g. A 

bimodal pore size distribution with sharp maxima in the pore size range of 10-650 μm, 

and a broad band corresponding to pores in the size range of 4 nm-5 μm were observed 

(Figure 5.1b). 

 
a) 

 
b) 

Figure 5.1: a) SEM micrograph of SCPC75 particle taken at 200X and 10000X (Inset) 

showing interconnected micro and nano pores. b) Pore size distribution profile for 

SCPC75 showing bimodal pattern including a sharp peak centered around 100 μm 

and a broad peak for nanometer pores 

 

XRD analysis demonstrated the crystal size of the SCPC75 ceramic was 10-30nm. 

This is in agreement with previously reported TEM data that showed the crystal size to be 

≈50nm [415]. The Rietveld R-factor were: “profile” (Rp) = 9.95, ‘‘expected” (Rexp) = 
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9.6, and ‘‘weighted profile” (Rwp) = 10.15.Table 5.1 reports the calculated phase 

composition for SCPC75 after refinement. 

Table 5.1: Phase composition and structural parameters of SCPC75 obtained by the 

Rietveld refinement on the corresponding XRD diffraction patterns. 

Sample Crystalline Phases Content (%) 

Space Crystallite 

Group 

(ICSD) 
Size (Å) 

SCPC75 

with 

78.44% of 

crystallinity 

55.0% β Rhenanite Pna21 251.5 

11.8% alpha-quartz P 31 21 202 

1.1% SiP2O7 P121/c1 254 

27.9% CaNa2SiO4 P213 117.3 

4.2% α-Cristobalite P12/c1 187.9 
 

 

5.3.2. SCPC75-Cisplatin Loading and FTIR Analyses of Cisplatin-SCPC75 

Functional Group Interaction 

ICP-OES analysis demonstrated that, prior to implantation; Cisplatin was bound 

to the SCPC75 at 14.2 ± 0.2mg Cisplatin/g SCPC75. FTIR analysis of SCPC75 was 

measured prior to and after Cisplatin binding (Figure 5.2) and signal assignments on the 

spectra were identified (Table 5.2). Second derivative criterion and deconvolution of the 

spectra in the ranges 800-1200 cm
-1

 and 1300-1600 cm
-1

, together with the Gaussian-

fitted resolved hidden peaks were recorded (Fig 2a-d). The presence of Cisplatin on the 

surface of SCPC75 was confirmed by identification of bands at 1486 cm
-1

 and 789 cm
-1

, 

corresponding to bending and rocking modes of the N-H group (Fig 2a and c). In 

association with drug binding to the SCPC75 ceramic four main changes in the FTIR 

spectra were documented including: (1) the disappearance of the bands at 517.1, 642.4, 

674.8, 944.6, 1462.6 cm
-1 

corresponding to O-P-O(H) bending, OH stretching of 

hydroxyapatite (HA), Si-O of the six-member ring of hydroxyapatite stretching and CO3
-2

 

vibrational modes respectively (2). The appearance of Cisplatin bands centered at 788.9, 
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1436.7, 1486.4 and 1645.5 cm
-1 

on the SCPC75-cis loaded spectra (Figure 5.3) (3). The 

increase in the area under the peaks at 1153.6-1214.6, 1408 cm
-1

, and 1084 cm
-1 

corresponding to P-O (H) bending mode. (4) The decrease in the area under the peaks at 

871.2, 961.9 and 1060.4 cm
-1 

corresponding to C-O carbonate vibrational mode, Si-O 

stretching and Si-O-Si stretching.  

 

 

Figure 5.2: Representative FTIR spectra of SCPC75 loaded with Cisplatin (SCPC75-Cis), 

SCPC75 without Cisplatin (SCPC75) and Cisplatin (Cis). 
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Table 5.2: FTIR Peak Assignment forSCPC75 prior to and after Cisplatin loading. 

Characteristic bands 

Wavenumber (cm-1) 

Assignment 
SCPC75 control SCPC75-cisplatin hybrid 

Peak position Peak Area Peak position Peak Area 

Rocking mode Si-

O-Si 
460 [336] 460.7 17.4 462 17.6 

O(H) bending mode 528 [341] 517.1 6.6 
 

0 

O-P-O bending 

mode 
567, 603 [416] 577.4, 597.8 11.8, 5.2 575.6, 596.3 11.9, 6.2 

OH stretching for 

Hydroxyapatite 
631 [416] 642.4 1.1 

 
0 

Silica six-member 

rings 
~ 700 [417] 674.8 1.4 

 
0 

P-O-P bending ~780 [340] 758.9 0.5 759.8 0.6 

N-H rocking mode ~810 [418] 
 

0 788.9 1.8 

C-O carbonate 

vibrational mode 
~860 [295] 871.4 3.1 871.2 1.4 

P-O(H)stretching 891 [341] 895.6 1.4 
 

0 

Si-O-H stretching ~950 [336] 944.6 2.5 
 

0 

PO4
-3 stretching 

vibrations 

980, 1040, 1100 

[340] 

964.9,1005.6, 

1041.5, 1084.6 

11.1, 23.0, 

33.6, 33.7 

961.9, 1008.4, 

1044.8, 1081.9 

7.3, 21.2, 

21.0, 38.7 

Si-O-Si stretching 
1025, 1050 

[340] 
1058.6 0.6 1060.4 0.3 

Asymmetric Si-O-

Si stretching 

1120-1162 

[295] 
1123.7 3.9 1122.6 0.9 

P-O(H) bending 

mode (shoulder) 

1190-1213 

[341] 
1152, 1193 5.4, 2.3 1153.6, 1214.6 14.2, 3.3 

P=O stretching 
1300-1450 

(broad) [341] 
1375.4 1.3 1376.6 1.4 

P-O-H bending 1406 [338] 1411.7 1.2 1408 5.3 

CO3
-2 asymmetric 

stretching 

1413- 1470 

[416] 
1462.6 19.9 

 
0 

N-H vibrations 
1472, 1460 and 

1445 [419]  
0 1436.7, 1486.4 2.6, 14.5 

H2O bending 
1660-1600 

[340] 
1642.5 1.2 1646.7 0.6 

NH3 asymmetric 

bending 

1657 , 1627 

[418]  
0 1644 3.4 
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a)
 

c)
 



 

 

5.3.3. SEM-EDX Surface Analyses and Cisplatin Loading 

Using SEM in SE mode the SCPC75 was analyzed prior to, and following, 

immersion in SBF (24-Hrs, 37
o
C). This approach revealed an interconnected porous 

structure, pores being in the range of 1µm-100µm (Figure 5.4a). Noticeable changes in 

the SCPC75 were seen after its immersion in SBF. These changes were attributed to the 

precipitation of the Ca-P layer due to the bioactivity of the material and confirmed by 

FTIR spectra (Figure 5.4 b). Nevertheless, interconnected pore structures in the μm-nm 

range were maintained following SBF immersion (Figure 3 b). Analysis of SCPC75-Cis 

hybrids by SEM in BSE mode demonstrated approximately even drug distribution on the 

disc surface (Figure 5.4 c-d), the brighter spots detected representing the presence of 

Pt/Cisplatin, an effect confirmed by EDX analysis (Figure 5.4 e-f, Figure 5.3). 

 

Table 5.3: EDX analysis of presence or absence of Pt on the surface of unloaded and 

Cisplatin-loaded SCPC75 discs 

Element 
Weight (%) 

Spectrum 1 Spectrum 3 

O 32.35 14.67 

Na 18.47 25.09 

Si 15.16 2.62 

P 10.45 1.75 

S 5.05 6.73 

Cl 11.67 5.75 

Pt 6.85 43.39 

Total 100 100 
 



 

 

a) b) 

c) d) 

e) f) 

Figure 5.4: (a and b) Representative SEM images illustrating SCPC75 microstructure 

prior to (-SBF) and after (+SBF) immersion in simulated body fluid (SBF). (c and d) 

Representative SEM images in back scattering mode of unloaded, blank SCPC75 

discs and Cisplatin-loaded SCPC75 discs (+Cis). (e) Representative EDS illustrating 

the presence of platinum on the disc surface through analysis of highlighted spectra. 

  

-SBF +SBF 

Blk +Cis 

+Cis 



 

 

5.3.4. Tumor Formation and SCPC75 Implantation 

Subcutaneous inoculation of H4IIE hepatoma cells (~2x10
6
) leads to reproducible 

focal tumor mass formation in ACI rats. Using a bilateral inoculation approach tumor 

masses grew to ≈10-12mm in diameter 14-d post-inoculation (Figure 5.5a). To determine 

the viability of IT- and ADJ-SCPC75-Cis placement, and tolerance to the SCPC75 disc 

per se, preliminary experiments were performed in which “blank” SCPC75 discs were 

used. Tumor masses and SCPC75 discs were readily visible by X-ray (Figure 5.5b), and 

upon completion of the research (14-d) tumor dissection and disc recovery was 

performed (Figure 5.5 d). 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.5: a) Example of a subcutaneous tumor mass forming 14-d post-subcutaneous 

(s.q.) inoculation of H4IIE hepatoma cells. b) Image showing a cross section of the 

tumor mass. c) X-ray image illustrating successful implantation of SCPC75 discs 

(s.q.) in rat model of tumor formation. d) Image illustrating SCPC75 disc following 

7-d implantation. 

  



 

 

5.3.5. Effect of Route of Cisplatin Administration on Tumor Progression 

Animals in which H4IIE cells had been inoculated were randomized to control 

(untreated; C), blank SCPC75 disc (SCPC75), systemic Cisplatin (sCis), ADJ-SCPC75-

Cis), or IT-SCPC75-Cis (n=5 per group). In control animals, normal tumor growth 

occurred over the 5-d experimental period (Figure 5.6a). Animals treated with sCis 

(3mg/Kg, i.p. twice daily) did not demonstrate significant differences in tumor size as 

compared to control counterparts (Figure 5.6 a). In contrast animals treated with 

SCPC75-Cis hybrid discs, placed either adjacent to or within the forming tumor mass 

demonstrated significantly slower tumor growth as compared to both control and sCis 

treated animals (Figure 5.6b, n=5 per group, *p<0.05 versus C and sCis). No significant 

difference in tumor size was detected between tumors treated with SCPC75-Cis hybrid 

discs when placed adjacent compared to within the tumor mass (Figure 5.6b, n=5 per 

group). Tumors treated with blank SCPC75 discs without drug were not significantly 

different compared to untreated tumor growth (Figure 5.6 b, n=5 per group). 

Analysis of tissue necrosis demonstrated little or no detectable tissue necrosis in 

untreated, control tumors (C; Figure 5.7a). Small areas of necrotic cell death (≤5% of the 

total area) were detected in animals receiving sCis, levels that were not significantly 

different to those seen in tumors in which blank SCPC75 discs were placed adjacent to 

the tumor mass (~4-6% necrotic area, Figure 5.7a). In contrast, highly significant areas of 

tissue necrosis were observed in tumors receiving ADJ-SCPC75-Cis or IT-SCPC75- Cis 

treatment (n=5 independent fields/sample, n=5 per group, p<0.01 ADJ-SCPC75-Cis and 

IT-SCPC75-Cis versus all other groups). No significant difference was measured 



 

 

between necrotic area in animals treated with ADJ-SCPC75-Cis and IT-SCPC75- Cis 

(Figure 5.7c). 

 

a) 

b) 

Figure 5.6: a) Representative images of resected tumors from control (C; untreated) and 

animals treated with systemic Cisplatin (sCis), ADJ-SCPC75, or IT-SCPC75. +Cis 

= tumors forming in loaded SCPC75 discs. –Cis = tumors forming in unloaded 

SCPC75 discs placed in opposite flanks. b) Sequential measurement of tumor 

volume in untreated (C), sCis treated, or SCPC75-Cis treated animals. *p<0.05 

versus C, n=5 per group. 

 

 



 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.7: a) Representative H & E images of sectioned tumor masses from untreated 

control (C), systemic Cisplatin treated (sCis), or animals treated with SCPC75-Cis 

hybrids placed adjacent (ADJ) or within (IT) the tumor mass (upper panels). b) 

Percentage necrotic area/field; ADJ-SCPC75 and IT-SCPC75 are unloaded SCPC75 

discs. *p<0.05 versus C, n=5 per group. c) Representative TUNEL images 

(apoptotic bodies appear green and cell nuclei blue) of sectioned tumor masses from 

C, Cis, ADJ-SCPC75-Cis or IT-SCPC75-Cis animals (upper panels). d) Cumulative 

analysis of apoptotic bodies/field. *p<0.05 versus C, #p<0.05 IT-SCPC75-Cis 

versus ADJ-SCPC75-Cis, n=5 per group. 

 

To define apoptotic cell death, a TUNEL assay was performed. This approach 

demonstrated no significant difference in apoptotic bodies measured between C, sCis, 

ADJ-SCPC75, or IT-SCPC75 groups (Figure 5.7b). In contrast, significantly increased 

apoptotic bodies were measured in ADJ-SCPC75-Cis and IT-SCPC75-Cis treated 

animals compared to all other groups (Figure 5.7b, n=5 independent fields/sample, n=5 

individual experiments, p<0.05 ADJ-SCPC75-Cis and IT-SCPC75-Cis versus all other 



 

 

groups). Finally, significantly increased apoptotic bodies were detected in IT-SCPC75-

Cis compared to ADJ-SCPC75-Cis treated animals (Figure 5.7 d, n=5 independent 

fields/sample, n=5 individual experiments, p<0.05 ADJ-SCPC75-Cis versus IT-SCPC75-

Cis). 

5.3.6. Route of Cisplatin Administration and Effect on Systemic Physiology 

Sequential animal body weight measurement demonstrated no significant changes 

during the experimental course between untreated control animals (C) and animals 

receiving either blank SCPC75 discs (data not shown) and animals receiving ADJ-

SCPC75-Cis or IT-SCPC75-Cis treatment (Figure 5.8a). In contrast, animals treated with 

systemic Cisplatin (sCis; 3mg/Kg, i.p. twice daily) exhibited rapid, significant decreases 

in body weight (Figure 5.8 a, n=5 per group, p<0.01 sCis versus all other groups).  

To determine toxicity associated with Cisplatin administration we measured 

markers of liver (AST), kidney (creatinine and BUN), and metabolic function (base 

excess and bicarbonate levels). Animals treated with SCPC75-cisplatin hybrids, either 

ADJ-SCPC75-Cis or IT-SCPC75-Cis, exhibited AST levels not significantly different to 

control (C; untreated) animals (Figure 5.8 b, n=5). In contrast, animals treated with 

systemic Cisplatin (sCis) exhibited significantly higher AST levels compared to all other 

groups (Figure 5.8 b, p<0.05 sCis versus all other groups, n=5 independent experiments). 

Markers of renal function (creatinine and BUN) also demonstrated significantly elevated 

levels in sCis treated animals compared to all other groups (Figure 5.8 c-d, p<0.05 sCis 

versus all other groups, n=5 independent experiments). Conversely, markers of normal 

metabolic function (base excess and bicarbonate) demonstrated significantly decreased 



 

 

levels, demonstrating diminished metabolic function, in sCis treated animals compared to 

all other groups (Figure 5.8 e-f, p<0.05 sCis vs. all other groups, n=5 per group).  

5.3.7. Effect of Route of Cisplatin Administration on Drug Distribution 

At experiment conclusion SCPC75-Cis hybrids were recovered from the site of 

placement. Gross observation revealed discs were approximately equal in size compared 

to pre-placement, and dry weight analysis demonstrated a net 18 ± 4% reduction in 

SCPC75-Cis weight compared to pre-placement weight. Analysis of platinum (Cisplatin) 

content demonstrated in vivo SCPC75-Cis placement led to approximately 55% of the 

loaded Cisplatin to be released (Figure 5.9a). Placement of the disc adjacent to or within 

the tumor mass did not significantly affect total Cisplatin released (Figure 5.9 a).  

Serum and tissues from control animals (C), and animals treated with systemic 

(sCis) or SCPC75-Cis hybrids (ADJ-SCPC75-Cis or IT-SCPC75-Cis), were analyzed for 

platinum/Cisplatin content. These data demonstrated no differences in serum platinum 

concentration in animals treated with ADJ-SCPC75-Cis or IT-SCPC75-Cis hybrid discs 

as compared to control (Figure 5.9b, n=5 independent samples assayed in duplicate). In 

contrast, we detected significantly increased levels of platinum in sCis treated animals 

compared to all other groups (Figure 5.9b, n=5 independent samples assayed in duplicate, 

p<0.05). We next analyzed platinum content in tumor tissue. These data demonstrated, as 

expected, no detectable levels of platinum in serum of untreated animals. In contrast 

animals treated with both sCis and ADJ-SCPC75-Cis hybrid exhibited significant, 

detectable levels of platinum compared to control (Figure 5.9 c, n=5 independent samples 

assayed in duplicate, p<0.05). We did not detect significantly different amounts of 

platinum between tumors treated with either sCis versus ADJ-SCPC75-Cis hybrid 



 

 

(Figure 5.9c). Conversely, IT-SCPC75-Cis treatment led to significantly increased 

intratumoral platinum of an order of magnitude greater than other treatment groups 

(Figure 5.9c, p<0.05 IT-SCPC75-Cis versus sCis and ADJ-SCPC75-Cis hybrid).  

Analysis of hepatic and renal platinum levels demonstrated significantly higher 

levels of platinum in both liver and kidney tissue from animals receiving sCis compared 

to other treatment groups (Figure 5.9d, and Figure 5.9 e and D, p<0.05 sCis versus ADJ-

SCPC75-Cis and IT-SCPC75-Cis). While not significantly different, we also noted that 

animals treated with IT-SCPC75-Cis trended toward higher hepatic and renal platinum 

levels than the ADJ-SCPC75-Cis (Figure 5.9d, and Figure 5.9e). 

  



 

 

 
a) 

 
b) 

 
c) 
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Figure 5.8: a) Change in body weight during tumor formation for untreated (C), systemic 

Cisplatin treated (sCis), or animals treated with SCPC75-Cis hybrids placed 

adjacent (ADJ) or within (IT) the tumor mass. *p<0.05 versus C, **p<0.001 versus 

C, n=5 per group. b) Aspartate aminotransferase (AST) levels in C and sCis, ADJ-

SCPC75-Cis, and IT-SCPC75-Cis treated tumor-bearing animals. *p<0.05 versus C, 

n=5 per group. c). Creatinine and d) blood urea nitrogen (BUN) levels in C and 

sCis, ADJ-SCPC75-Cis, and IT-SCPC75-Cis treated tumor bearing animals. 

*p<0.05 versus C, n=5 per group. e). Base excess and bicarbonate levels in C and 

sCis, ADJ-SCPC75-Cis, f) and IT-SCPC75-Cis treated tumor bearing animals. 

*p<0.05 versus C, n=5 per group. 
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Figure 5.9: a) Percentage change inSCPC75 platinum (Pt) content prior to (C) and after 

implantation adjacent to (ADJ) or within (IT) a tumor mass.*p<0.05 versus C, n=5 

per group. Relative Pt content measured in b) serum, c) resected tumor tissue, d) 

liver, and e) kidneys of untreated tumor-bearing animals (C), or animals treated with 

systemic Cisplatin (sCis), or SCPC75-Cis hybrids placed adjacent (ADJ) or within 

(IT) tumor masses. *p<0.05 versus C. 

  



 

 

5.4. Discussion 

In the present study, we have shown that engineered Si-rich SCPC75 has the 

potential to serve as a vehicle for the sustained release of therapeutic doses of Cisplatin.  

FTIR analyses demonstrated that P-O functional groups of SCPC75 chemically bind 

Cisplatin to the highly porous surface of the ceramic scaffold. We are conscious that 

compacting particles to discs at 360 MPa significantly limits the contact between the 

inner nanopores surface and surrounding fluids, complicating the diffusion of drug 

molecules entrapped inside the discs. Therefore, the hierarchic porosity and the 

controlled dissolution of the Si-rich SCPC (SCPC75) assisted the release kinetics, plus 

significantly increased drug loading capacity per unit of ceramic mass. The chemical 

bonding of Cisplatin to the SCPC75 surface regulated the release of ≈55% of total drug 

loaded drug within 5-days. Analysis of the drug-release from the scaffold 5-days post-

implantation indicated that drug release occurred predominantly via diffusion. 

FTIR analyses revealed a consistent shift in the peaks characteristic of the N-H of 

Cisplatin to the lower wavenumber values indicating an increase in the conjugated 

momentum of the bond vibration modes and suggesting chemical bonding with the 

functional groups on the SCPC75 ceramic surface (Figure 5.2). The chemisorption of the 

drug molecules was associated with the disappearance of bands corresponding to O-H 

functional groups of the ceramic including O-P-O(H) bending mode, OH stretching for 

hydroxyapatite, P-O(H) stretching and Si-O-H stretching (Figure 5.2, and Figure 5.3). 

The disappearance of these bands indicates that the hydrated phosphate and silicate 

functional groups are the SCPC75 active sites that link Cisplatin to the SCPC75 scaffold 

according to the following steps. Dissolving Cisplatin in DMSO results in a solvolysis 



 

 

reaction [420] where Cl
-
 ions are replaced by DMSO molecules forming positively 

charged species:  

Pt(NH3)2Cl2 + DMSO → Pt-(NH3)2 Cl(DMSO)
+1

 + Cl
-
 Equation 5.1 

The positively charged drug species are attracted to the ionized SiO4
-4

 and PO4
-3 

ionic groups on the SCPC75 ceramic surface according to the following Equation 5.2 and 

Equation 5.3: 

Pt-(NH3)2
+2

 + 2O-P-O(H) → (O-P-O)2 -Pt-(NH3)2 Equation 5.2 

Pt-(NH3)2
+2

 + 2O-Si-O(H) → (O-Si-O)2 -Pt-(NH3)2 Equation 5.3 

Wallin, et al., demonstrated that the interaction of the ammonia to silanol groups 

is significantly weaker than that to the Pt [421]. These Cisplatin interactions with active 

sites on the surface of SCPC75 are illustrated in Figure 5.10. 

 
Figure 5.10: Possible linkages of Cisplatin on the surface of SCPC75, based on FTIR 

data. 

 

The data presented herein demonstrate SCPC75-Cis hybrid scaffolds significantly 

reduced rate of tumor progression in an animal model of HCC in the absence of adverse 

systemic effects. Overall, treatment with SCPC75-Cis hybrids reduced tumor volume by 

~65-70% compared to animals treated with systemic Cisplatin. However, animals treated 

with systemic Cisplatin exhibited marked signs of systemic toxicity, effects not observed 

in SCPC75-Cis hybrid treated groups. These data correspond to higher Cisplatin levels in 

the serum, kidneys, and liver of animals treated with systemic Cisplatin compared to 



 

 

those treated with SCPC75-Cis. Conversely animals treated with SCPC75-Cis hybrids 

were characterized by significantly higher intratumoral Cisplatin than those treated with 

systemic Cisplatin.  

In a previous work by Horcada, et al., the adsorption and release of ibuprofen 

loaded on mesoporous silicate MCM-41 (Mobile Crystalline Material) was regulated by 

modifying the silanol terminal groups on the carrier surface with different organic 

groups. As a result, the carriers in which surfaces were modified using the most polar 

organic groups almost doubled the drug absorbed as compared to those modified with 

less polar groups, due to the chemisorption of the carboxylic acid of ibuprofen via 

hydrogen bond formation. Besides, electrostatic interactions between the carboxylic acid 

of ibuprofen and the most polar samples contributed to reduce significantly the drug 

release rate [422]. Other studies also report that chemically binding of the drug to the 

scaffold alters the drug release kinetics in the initial stage [423]. A continuing challenge 

for drug-carrier scaffolds as DDS relates to the amount of drug retained on the scaffold. 

For example, analysis of a calcium phosphate cement matrix reports ~40% Cisplatin 

elution after 7 d in vitro, a level that increase to only 62% after 4 weeks [409]. Using the 

SCPC75 we reported ~60% Cisplatin release after 5-d, data that correlate well with the 

55% drug elution measured 5-d post-placement in vivo. Of note, the low mass loss of 

SCPC75-cis discs (<20%) compared to amount of drug eluted, indicates drug release 

kinetics is mainly diffusion controlled [380].  

Cisplatin eluted from SCPC75-Cis hybrids retained cytotoxic properties and 

induced cell death in tumor cells in vivo, the net effect of which was to reduce 

significantly the tumor progression. In comparison, animals treated with systemic 



 

 

Cisplatin received significantly higher total Cisplatin treatment over the same 5 d 

protocol (3mg/Kg/day, twice daily equating to ~6mg total Cisplatin [~0.6mg/injection 

based on a 200g rat]) compared with the total amount of Cisplatin eluted from the 

SCPC75-Cis hybrid (0.62mg ± 0.03mg). However, while systemic Cisplatin produced 

severe systemic toxicity, it failed to alter significantly the tumor progression. This 

outcome is of relevance in the treatment of HCC due to the role of the liver in xenobiotic 

metabolism. Therefore, in order to increase intratumoral drug levels to an effective dose, 

either hepatic or systemic toxicity precludes the use of such doses. In an attempt to 

overcome this transarterial chemoembolization (TACE) has been developed in which 

chemotherapeutics are delivered directly into the tumor mass via the hepatic artery. To 

increase tumor retention TACE (usually) employs an oil-based excipient (e.g. Lipidiol), 

and relies on the normal pathology of HCC in which the majority of the tumor 

vasculature derives from the hepatic artery. Thus, while a TACE or direct intratumoral 

injection approach might provide a more accurate comparison for the SCPC75-Cis 

hybrid, this approach is not viable in the rat model of HCC employed.  

Localized intratumoral Cisplatin delivery was confirmed by analysis of tumor-

platinum content. Of interest, placement of the SCPC75-Cis hybrids adjacent to or within 

the tumor led to equivalent total Cisplatin release and inhibition of tumor growth, yet 

tumor-platinum content was significantly higher in the intratumoral placement model 

than in the adjacent placement model. One possible explanation for this may relate to 

differences in the environments in which the SCPC75-Cis discs are placed. Therefore, the 

model of HCC used leads to the formation of an encapsulated tumor. Placing the 

SCPC75-Cis disc within this capsule may lead to more drug retention within the necrotic 



 

 

tissue than placing the disc adjacent to the tumor. Alternatively, the placement of the disc 

adjacent to the tumor mass may be more effective at decreasing tumor progression at the 

early stages of tumor growth when the tumor is relatively small, and drug concentrations 

are high. In this setting, we would anticipate that as the tumor progresses it is more 

difficult for the drug to enter the tumor from the SCPC75-Cis disc when placed adjacent 

and prolonged inhibition of tumor growth would be observed in only intratumorally 

placed discs. Conversely, in the adjacent placement model, as the tumor grows an 

increasing pressure exists between the tumor, the SCPC75-Cis disc, and the underlying 

tissue. In this instance, it is possible that more amount of the drug may be released into 

the underlying muscle tissue resulting in lower tumor drug concentration.  

Detailed analysis of tumor pathology revealed significant levels of cellular 

necrosis and apoptosis in tumors treated with SCPC75-Cis hybrids. This was somewhat 

unexpected, as we predicted the majority of cell death would be via apoptosis due to 

Cisplatin irreversibly cross-linking DNA within the tumor cells [424]. An explanation for 

the degree of necrosis that we observed may relate directly to events following apoptosis 

in vivo. Under normal circumstances, a key component of the apoptotic process is the 

ordered removal of cell components by immune cells to prevent damage to neighboring 

cells [400]. However, in our model we have created a localized region of high Cisplatin 

content. As such, immune cells entering this environment, to remove cell debris, are 

equally exposed to cytotoxic levels of Cisplatin. Thus, the result of not being able to 

remove cell debris may be the increased necrosis we measure using the SCPC75-Cis 

hybrids. Similarly, this may be of further significance at a translational level in that HCC 



 

 

most commonly presents in a cirrhotic liver [399]. As such elevated necrosis may directly 

impact already compromised hepatic function.  

In addition to the ability to slow tumor progression using the SCPC75-Cis 

hybrids, the other striking observation we made was the lack of systemic toxicity 

associated with Cisplatin delivery using the SCPC75-Cis hybrids. These data, coupled 

with Cisplatin distribution clearly demonstrate Cisplatin is not only released within the 

tumor site, but remains localized within the tumor to the extent that systemic distribution 

or effects were not measurable. Other studies using scaffold systems for Cisplatin have 

been performed. For example, Tahara et al., employed 10%, and 5% (w/w) Cisplatin-

calcium phosphate cement implants to treat bone cancer. Using this approach, lower Pt 

concentrations were reported in kidney and liver tissue from animals treated using 

Cisplatin-scaffolds than that reported from the systemic Cisplatin treatment (3mg 

Cisplatin/kg animal) after 4 weeks [409]. Similarly, hyaluronan–Cisplatin conjugates 

have been employed in models of breast cancer to slow tumor progression with reduced 

systemic toxicity compared to systemic administration [425, 426].  

5.5. Conclusion 

The results presented in this study demonstrate the use of an engineered porous 

resorbable SCPC75 scaffold as a platform for the sustained delivery of Cisplatin.  We 

have shown that the surface chemistry of SCPC75 dictates the binding and release of Cis. 

Furthermore, drug adsorption modified the bond energy of the functional groups of the 

ceramic and enhanced a selective ionic dissolution. Moreover, our data confirm that 

systemic Cisplatin administration is not an effective therapeutic approach for the 

treatment of HCC and is associated with severe systemic side effects. However, focal 



 

 

Cisplatin delivery to the tumor mass using a SCPC75 nano scaffold drug delivery system 

overcome the systemic toxicity associated with daily injection, and significantly 

increased intratumoral drug delivery to inhibit tumor growth. These data provide 

encouraging evidence that SCPC75 scaffolds provide a means to re-evaluate the use of 

chemotherapeutic agents that are not currently used to treat HCC due to hepatic, renal, or 

systemic toxicity. 



 

 

 

 

 

 

 

CHAPTER 6: SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 

 

6.1. Summary of Findings 

The microstructure of SCPC can be manipulated to tailor custom made drug 

delivery systems. It was demonstrated that not only the porosity but also the active 

surface of SCPC can significantly modify the performance of the bioceramic as carrier 

for DDS. Physical and chemical properties of SCPC bioceramic can significantly be 

altered by its chemical composition. Physical structural characteristics of Cris 

demonstrated to provide high density of nano pores and superior surface area enhancing 

material drug loading capacity. Low chemical interaction between different drug 

molecules and Cris was also observed which can lead to a rapid release kinetic rate.  

Furthermore, the sustained release observed from Cris sample showed to be controlled 

mainly by the tortuosity of constricted porous matrix due to the stability of the ceramic. 

On the other hand, Rhe demonstrated to be chemically bioactive, and to form stable 

bonds with drug molecules, contributing to prolonged release of therapeutics. In vitro 

bioactivity tests showed SCPC50 and Rhe ability to form carbonate HAp layer on the 

surface of the ceramics particles after immersion in SBF for 24 h at 37
o
C. SCPC has the 

advantage to have both physical and chemical mechanisms for loading and release 

molecules. Plus solid solution of crystalline phases of SCPC enhances the bioactivity of 

the composite even for the α-cristobalite phase. These found were used to design a 



 

 

controlled delivery system that provided a promising treatment against HCC without 

acute side effects. 

Composition of SCPC also affected the material dissolution kinetics under 

physiological conditions. The high elution rate of negatively charged ions from SCPC50, 

most probably due to the dissolution of Si-rich amorphous phase demonstrated to 

significantly increase the alkalinity of the immersing physiological solutions. Increases in 

the alkalinity of solutions incubated with SCPC could be a limiting for its use as DDS, 

yet it could cause undesirable effects on the bioactivity of some medicaments or induce to 

cytotoxicity. This can be avoided by immersing SCPC in SBF per 24 hours. NMR 

analysis and in vitro biological assays confirmed that the concentration of dissolution 

products from SCPC is not high enough to cause significant changes in the bioactivity of 

the released drugs. Moreover, control SCPC without drug in both in vivo and in vitro 

toxicity assays demonstrated minimum cytotoxicity or inflammatory response caused by 

the dissolution products of the SCPC.   

Analysis of the ceramic surface to detect carrier-drug interactions showed to be 

valuable to understand the performance of the drug delivery systems. It was demonstrated 

that, for the same carrier, the ability of drug binding and release also depends on the kind 

of drug.  These observations suggest that a custom made delivery system is necessary for 

each drug. With respect to Cris binding was mainly by physisorption, depending on the 

surface area and porosity as confirmed by FTIR analysis. On the other hand, for Rhe P-O 

functional groups demonstrated to be the active site for drug binding. Although, Cris has 

three times higher surface area than Rhe, yet comparable amounts of Vanc were bond to 

the two materials. These results emphasize the significant role of surface chemistry and 



 

 

functional groups in drug binding to bioactive materials. The nature of bonding at the 

interface between drug and ceramic contributed to significant variations in release 

kinetics. 

Finally, Si-rich SCPC-Cis hybrid scaffolds demonstrated to reduce the rate of 

tumor progression in an animal model of HCC significantly, in the absence of adverse 

systemic effects. Analysis showed similarities in the release kinetics in vitro and in vivo 

with similar amounts of drug release (55%) within 5d. Overall, treatment with SCPC-Cis 

hybrids reduced tumor volume by ~65-70% compared to animals treated with systemic 

Cisplatin without showing signs of systemic toxicity. 

6.1. Recommendations for Future Work 

Microstructure of SCPC demonstrated to affect the ability of the bioceramic for 

drug loading and release significantly. Results presented in this study strongly 

demonstrate how SCPC can be easily manipulated for customized drug delivery system. 

Alternatively, SCPC-Cis scaffolds showed promising and encouraging results to 

treat HCC with minimum side effects. Therefore, results are encouraging to do more in 

vivo studies that corroborate the efficacy of SCPC-Cis to treat different cancers.  

Insertion of ceramic discs in an environment closer to the real disease conditions is 

required. To do this more complex animal model might be needed, e.g., using bigger 

animals to treat HCC directly in the liver. Furthermore, the need of a surgery procedure 

to introduce the scaffold can be a drawback for SCPC-Cis discs DDS. Therefore, 

evaluation of injectable SCPC-Cis DDS is suggested. Organic hydrogels like Alginic acid 

or Gelatin, which have demonstrated high degradation rates, and excellent 

biocompatibility with live tissue. Therefore, they are proposed as vehicles to facilitate the 



 

 

injection of the ceramic-drug particles. Moreover, injectable SCPC delivery system can 

be tested for other drugs due to the versatility of SCPC to load different kind of drugs 

including other cancer drugs, antibiotics, antiviral and the possibility to tailor custom 

made SCPC-drug release kinetics hybrids by controlling the crystalline structure of the 

material.  
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