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ABSTRACT

SINAE KIM. Partition of unity isogeometric analysis for singularly perturbed
problems and fourth order differential equations containing singularities. (Under the

direction of DR. HAE-SOO OH)

The design basis functions in IGA are refined and enhanced by extra enrichment

functions and various local refinements with the use of partition of unity (PU) func-

tions with flat-top. These reconditioned and modified basis functions are pushed

forward to the physical domain by the original design mapping for analysis. With

this method (PU-IGA), the corresponding stiffness matrix has a smaller bandwidth,

and local refinements become simpler. We apply PU-IGA to various singularly per-

turbed problems incorporating boundary layer enrichment functions developed by

boundary layer analysis. Here, we construct the PU functions on the reference do-

main and push-forward them to a physical domain through geometric mapping for

the construction of enriched global basis functions on a physical domain. Therefore,

we have advantages in calculating stiffness matrices and load vectors with integrals

over rectangular areas. Next, we apply PU-IGA, which is enriched with singular

functions that resemble singularities, to fourth order differential equations containing

singularities. This direct enrichment method yields an accurate numerical solution;

however, it yields large matrix condition numbers and integrals of singular functions.

To alleviate these limitations, we propose a mapping method by constructing a singu-

lar mapping from the reference domain onto the singular zone of the physical domain.

This singular mapping transforms polynomials on the reference domain to singular

basis functions on the physical domain. This mapping method has the same effect



iv

as the directly enriched PU-IGA but yields small condition numbers and no singular

integrals.
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CHAPTER 1: INTRODUCTION

Isogeometric Analysis (IGA) is a new approach that combines Computer Aided De-

sign (CAD) and Finite Element Analysis (FEA), in which the same basis functions

used to represent the geometry are used to approximate the solution of differential

equations. IGA provides advantages in the construction of basis functions with any

order of regularity and the use of the exact geometry for analysis within the frame-

work of the Galerkin method. However, the standard Galerkin method does not give

an accurate numerical solution to such problems as singularly perturbed problems or

elliptic boundary value problems with singularities. Thus, in order to obtain accu-

rate numerical solutions, we enrich the approximate space by adding boundary layer

functions or singular functions using Partition of Unity (PU) with flat-top, referred

to as Partition of Unity Isogeometric Analysis (PU-IGA). Oh et al. in [35] and [36]

use PU with flat-top to solve singularity problems.

Most of the numerical methods used to solve the singularly perturbed problems

are based on domain decomposition or refined meshes near the boundary layer. ([23],

[37], [38], and [50]) In [15], Hong et al. approximated the solution of the singularly

perturbed convection-diffusion problem using piecewise linear finite element space en-

riched with boundary layer correctors in a rectangle and in a circle. In this disserta-

tion, using a similar approach, we derive the boundary layer approximation through

boundary layer analysis, shown in [27], and use that approximation as an enrich-
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ment function into the approximation space. Instead of using mesh refinement, we

can obtain fairly accurate numerical solutions of convection-diffusion equations with

boundary layer on the circular and rectangular domains. We also apply boundary

layer analysis to singularly perturbed problems on a different domain, an ellipse.

Enriched PU-IGA is extended to solve a singularly perturbed parabolic problem. In

[3], [5], [21], [26] , and [51], the authors find numerical solutions of parabolic perturbed

problems in a rectangular domain by using the Finite Difference method. Hong

[17] approximates the singularly perturbed parabolic problem on circular domain

using a quasi-uniform triangulation and piecewise linear finite element approximation

space, which are enriched with boundary layer correctors constructed near the circular

boundary. Mesh refinements around the boundary layer is costly because we need to

solve the linear system at each time step in parabolic problems. Instead of using mesh

refinements on the boundary layer zone, we introduce the boundary layer functions

into approximation spaces with use of PU with flat-top.

Babuska and Oh [29] introduced the mapping technique, called the Method of

Auxiliary Mapping (MAM), to solve second order elliptic PDEs containing corner

singularities in the framework of conventional FEM. Using similar techniques, we

introduce a Mapping Method to solve the fourth order differential equations contain-

ing singularities, which generate singular basis functions on a physical domain by a

singular geometric mapping.

In a similar manner to singular perturbed problems, we can also obtain accurate

numerical solutions for this singularity problem by using enriched PU-IGA, where

singular functions that resemble the singular behavior are directly added into the
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approximation space. However, enriched PU-IGA for fourth order equations yields

large condition numbers and singular integrals. These limitations are overcome by

the Mapping Method.

This dissertation is organized as follows. In Chapter 2, we review definitions, ter-

minologies and properties of Isogeometric Analysis, B-splines and Partition of Unity.

We also briefly review Boundary Layer Analysis. In Chapter 3, we prove error esti-

mates of PU-IGA, with respect to PU with flat-top, and construct basis functions of

enriched PU-IGA in general. In Chapter 4, we apply enriched PU-IGA to perturbed

convection-diffusion problems in circular and in rectangular domains. We define an

enriched approximation space that incorporates the boundary layer functions and

present numerical results. In Chapter 5, we apply enriched PU-IGA to a perturbed

parabolic problem by enriching the approximation space with boundary layer func-

tions. We calculate convergence rates of numerical solutions obtained by enriched

FEM in which the backward Euler method is used for time discretization, and piece-

wise linear basis functions are used for the space approximation. In Chapter 6, we

solve fourth-order equations containing singularities with two approaches: enriched

PU-IGA and PU-IGA with Mapping Method. We present numerical results of these

two approaches, comparing them to those of IGA without enrichment. The conclusion

follows in Chapter 7.



CHAPTER 2: PRELIMINARIES

We introduce definitions and terminologies that are used throughout this disserta-

tion.

2.1 Weak Solution in Sobolev Space and Galerkin Method

For an integer k ≥ 0, the Sobolev space Hk(Ω) is defined by

Hk(Ω) = {v ∈ L2(Ω) | Dαv ∈ L2(Ω), ∀|α| ≤ k}.

Suppose we are concerned with an elliptic boundary value problem on a domain Ω

with Dirichlet boundary condition g(x, y) along the boundary ∂Ω. Let

W = {w ∈ H1(Ω) : w|∂Ω = g} and V = {w ∈ H1(Ω) : w|∂Ω = 0}.

The variational formulation of the Dirichlet boundary value problem can be written

as: Find u ∈ W such that

B(u, v) = L(v), for all v ∈ V , (1)

where B is a continuous bilinear form that is V-elliptic [39], and L is a continuous

linear functional. The solution to (1) is called a weak solution, which is equivalent to

the strong (classical) solution to an elliptic PDE, whenever u is smooth enough. The
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energy norm of the trial function u is defined by

‖u‖eng =

[
1

2
B(u, u)

]1/2

.

LetWh ⊂ W and Vh ⊂ V be finite dimensional subspaces. We can write the Galerkin

form (a discrete variational equation) of (1) as follows: Given gh, find uh = wh + gh,

where wh ∈ Vh, such that

B(uh, vh) = L(vh), for all vh ∈ Vh,

which can be rewritten as: Find the trial function wh ∈ Vh such that

B(wh, vh) = L(vh)− B(gh, vh), for all test functions vh ∈ Vh. (2)

2.2 Partition of Unity

Let Ω̄ be the closure of Ω ⊂ Rd. We define the vector space C(Ω̄) to consist of all

those functions φ ∈ Cm(Ω) for which Dαφ is bounded and uniformly continuous on

Ω for |α| = α1 + ... + αd ≤ m. A function φ ∈ Cm(Ω) is said to be a Cm-continuous

function. If Ψ is a function defined on Ω, the support of Ψ is defined as

suppΨ = {x ∈ Ω | Ψ(x) 6= 0}

The norm and semi-norm are defined for u ∈ Hk(Ω) as follows:

‖u‖k,Ω = (
∑
|α|≤k

∫
Ω

|∂αu|2dx)1/2, ‖u‖k,∞,Ω = max|α|≤k{ess.sup|∂αu(x)| : x ∈ Ω},

|u|k,Ω = (
∑
|α|=k

∫
Ω

|∂αu|2dx)1/2, |u|k,∞,Ω = max|α|=k{ess.sup|∂αu(x)| : x ∈ Ω}.



6

A family {Uk | k ∈ D} of open subsets of Rd is said to be a point finite open covering

of Ω ⊂ Rd, if there is M such that any x ∈ Ω lies in at most M of the open sets Uk

and Ω ⊆
⋃
k∈D

Uk.

For a point finite open covering {Uk | k ∈ D} of a domain Ω, suppose there is a

family of Lipschitz functions {φk | k ∈ D} on Ω satisfying the following conditions:

1. For k ∈ D, 0 ≤ φk(x) ≤ 1, x ∈ Rd

2. The support of φk is contained in Uk, for each k ∈ D

3.
∑

k∈D φk(x) = 1 for each x ∈ Ω

Then, {φk | k ∈ D} is called a partition of unity (PU) subordinate to the covering

{Uk | k ∈ D}. The covering sets {Uk} are called patches.

A weight function (or window function) is a non-negative continuous function with

compact support and is denoted by w(x). Consider the following conical window

function: For x ∈ R,

w(x) =


(1− x2)l, |x| ≤ 1

0, |x| > 1,

where l is an integer. Then, w(x) is a C l−1-continuous function. In Rd, the weight

function w(x) can be constructed from a one dimensional weight function as w(x) =∏d
i=1w(xi), where x = (x1, ..., xd). We use the normalized window function defined

by

wlδ(x) = Aw(
x

δ
), A =

(2l + 1)!

22l+1(l!)2δ
, (3)
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where A is the constant such that
∫
R
wlδ(x)dx = 1 in [11]. Here a normalizing factor

δ is a positive real number less than 1, which is specified in section 2.6.

2.3 Isogeometric Analysis

Isogeometric Analysis combines Computer-Aided Design (CAD) and Finite Ele-

ment Analysis (FEA), where geometry model for analysis should be modified and

meshed from the original geometry from CAD. Isogeometric Analysis focuses on only

one geometric model(CAD representation), which can be utilized directly for analysis.

We follow notations and definitions in [7], [41] and [42]. There are many computa-

tional geometry basis functions that could serve as a basis for Isogeometric Analysis.

Non-Uniform Rational B-Splines (NURBS) is the most widely used computational

geometry basis function, the industry standard, in engineering design. NURBS can

exactly represent all conic sections; for example, circles, cylinders, spheres, and ellip-

soids. They have useful properties for analysis, such as variation diminishing, convex

hull properties, higher order continuity, and refinements.

Isogeometric Analyis Structure

In Isogeometric Analysis, we consider one mesh on the physical domain, physical

mesh, which is a decomposition of the actual geometry. Physical mesh has two el-

ements: the patch and the knot span. Several geometry mappings might define an

actual geometry. One geometry mapping defines a patch, which might be a whole

geometry or a part of the geometry. Each patch has two representations: one in a

reference domain and one in a physical domain.

Each patch can be decomposed into knot spans, which are bounded by knots. Basis
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functions are smooth within a knot span and Cp−m-continuous across knots, where p

is the degree of the polynomial and m is the multiplicity of the knot. They also have

representations in both reference and physical domains.

2.4 B-splines and NURBS

NURBS are built from B-splines, which are defined by a knot vector.

Knot Vectors

A Knot vector is a non-decreasing set of coordinates in the reference domain, writ-

ten as

Ξ = {ξ1, ξ2, ..., ξn+p+1}, ξi ∈ R,

where ξi is ith knot, p is the polynomial degree, and n is the number of basis functions

used to construct a B-spline curve. The knots divide the reference domain into

elements. B-spline functions constructed by a knot vector are piecewise polynomials

joined together along knot lines. The functions are smooth within a knot span.

If the knots are equally spaced, a knot vector is said to be uniform. Otherwise,

the knot vector is said to be non-uniform. The multiplicities of a knot value, or how

many times the knot value is repeated, decides the continuity of the basis function

across the knot.

If a knot vector has the first and the last knot value with multiplicity p + 1, it is

said to be open. Open knot vectors are the standard in the CAD literature. Basis

functions formed from open knot vectors are interpolatory at the ends of the reference

domain.
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B-splines

With a knot vector, the B-spline basis functions are defined recursively starting

with piecewise constants (p = 0):

Ni,1 =


1 if ξi ≤ ξ < ξi+1

0 otherwise.

(4)

For p = 1, 2, 3, ..., they are defined by

Ni,p+1(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p(ξ), (5)

where p is degree of B-spline basis function. This is referred to as the Cox-de Boor

recursion formula.

There are several important features of B-spline basis functions.

1. Partition of unity

n∑
i=1

Ni,p+1(ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1]

2. Nonnegativity

Ni,p+1 ≥ 0, ∀ξ ∈ [ξ1, ξn+p+1]

3. Cp−m-continuous across the knot, where m is the multiplicity of the knot value

and p is the degree of B-spline functions

4. Any given function with degree p has p+ 1 knot span of support.

5. Any given function shares support with 2p+ 1 functions, including itself.
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Figure 1: B-spline functions Ni,4(ξ), i = 1, 2, · · · , 7 of degree p = 3 corresponding to
the knot vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}. The supports of Nk,4(ξ), k =
1, . . . , 7, respectively, are [0, 0.25], [0, 0.5], [0, 0.75], [0, 1], [0.25, 1], [0.5, 1], [0.75, 1].

C2-continuous B-spline functions with degree 3 by an open knot vector are presented

in Figure 1. From the figure, one can see the support of any given function and how

many functions intersect with the given function.

Given n basis functions, Ni,p+1, i = 1, 2, ..., n and corresponding control points

Bi ∈ Rd, i = 1, 2, ..., n (vector-valued coefficients), a piecewise-polynomial B-spline

curve is given by

C(ξ) =
n∑
i=1

Ni,p+1(ξ)Bi.

Given a control net Bi,j, i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial degree p and

q, and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}, and = = {η1, η2, ..., ηm+q+1}, a tensor

product B-spline surface is defined by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p+1(ξ)Mj,q+1(η)Bi,j,

where Ni,p+1(ξ) and Mj,q+1(η) are univariate B-spline basis functions of degree p and

q, corresponding to knot vectors Ξ and =, respectively.
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Given a control lattice {Bi,j,k}, i = 1, 2, ..., n, j = 1, 2, ...,m, k = 1, 2, ..., l, polyno-

mial degree p, q, and r, and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}, = = {η1, η2, ..., ηm+q+1},

and < = {ζ1, ζ2, ..., ζl+r+1}, a B-spline solid is defined by

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni,p+1(ξ)Mj,q+1(η)Lk,r+1(ζ)Bi,j,k.

Non-Uniform Rational B-Splines

NURBS can exactly represent various geometries that cannot be represented by

B-splines, such as conic sections.

Define weighting function

W (ξ) =
n∑
i=1

Ni,p+1(ξ)wi,

where wi is the ith weight. NURBS basis is given by

Rp
i (ξ) =

Ni,p+1(ξ)wi
W (ξ)

=
Ni,p+1(ξ)wi∑n
î=1Nî,p+1(ξ)wî

,

which is clearly a piecewise rational function. A NURBS curve is defined by

C(ξ) =
n∑
i=1

Rp
i (ξ)Bi.

This formulation is similar to that of a B-spline curve.

NURBS surfaces and solids are defined analogously in terms of the rational basis

functions:

Rp,q
i,j (ξ, η) =

Ni,p+1(ξ)Mj,q+1(η)wi,j∑n
î=1

∑m
ĵ=1Nî,p+1(ξ)Mĵ,q+1(η)wî,ĵ

,

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p+1(ξ)Mj,q+1(η)Lk,r+1(ζ)wi,j,k∑n
î=1

∑m
ĵ=1

∑l
k̂=1 Nî,p+1(ξ)Mĵ,q+1(η)Lk̂,r+1(ζ)wî,ĵ,k̂

.
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NURBS, rational basis functions, have many properties in common with piecewise

polynomial B-splines, such as continuity of the functions, support, partition of unity,

nonnegativity, and convex hull property.

2.5 Refinements

The basis functions can be refined in many ways, leaving the geometry unchanged.

We can control element size, degree of the basis, and continuity of the basis for

refinement.

Knot Insertion

We can refine the basis through knot insertion. New knots can be inserted into

the original knot vector without changing the geometry. Given a knot vector Ξ =

{ξi, ξ2, ..., ξn+p+1}, we have an extended knot vector Ξ̄ = {ξ̄1 = ξ1, ξ̄2, ..., ξ̄n+m+p+1 =

ξn+p+1}, such that Ξ ⊂ Ξ̄. With the extended knot vector, new n+m basis functions

are constructed by Cox-de Boor formula, and new n + m control points are defined

from the linear combination of the original control points by
B̄1

...

B̄n+m

 =

 T p




B1

...

Bn


where

T 0
ij =


1 ξ̄i ∈ [ξj, ξj+1)

0 otherwise

T q+1
ij =

ξ̄i+q − ξj
ξj+q − ξj

T qij +
ξj+q+1 − ξ̄i+q
ξj+q+1 − ξj+1

T qij+1 for q = 0, 1, 2, ..., p− 1
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The solution space is refined by adding more basis functions through knot insertion.

Knot insertion is similar to the h-version of classical FEM because it divides the

original element into new elements. However, they are different in the continuity

of basis functions. If we insert new knot value p times and the functions are C0-

continuous, then this knot insertion is exactly same as the h-version in FEM.

Order Elevation

Next, we can refine the basis by order elevation in which the degree of basis func-

tions are increased without changing the original geometry. When the degree p is

increased, multiplicities of each knot is also increased, but a new knot is not added.

The process is as follows:

1. Repeat every knot in the original knot vector up to p, which is the degree of

basis functions.

2. Increase the degree of the basis functions on each element.

3. Remove unnecessary knots to combine the segments into one B-spline curve.

Order elevation is similar to the p-version in classical FEM as it increases the degree of

the basis functions. However, they are different in continuity of basis functions; FEM

p-version always starts with C0-continuous basis functions, while order elevation can

start with the basis functions with any regularity.

k-Refinements

We increase the degree of the original basis function up to q degree and then insert

a new knot value ξ̄. The new basis functions are Cq−1-continuous at ξ̄. This is called
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k-refinement. There is no analogue in classical FEM. In summary, pure k-refinement

keeps the element size h fixed but increases the continuity at newly inserted knots

along with the polynomial order. Pure p-refinement increases the polynomial order

while the basis remains C0. Pure h-refinement inserts new knot values p times so the

basis functions are C0-continuous.

By knot insertion and order elevation, one can refine the basis functions in various

ways beyond simple h, p, and k-refinements.

2.6 Partition of Unity Functions with Flat-top

We briefly review one-dimensional PU with flat-top. For details of this construction,

we refer to [30], in which Oh et al. showed that PU functions with flat-top lead to

a small matrix condition number. Throughout this dissertation, we choose the small

real number δ, usually, 0.01 ≤ δ ≤ 0.1, for the width of non flat-top part of the

PU functions. However, δ can be as small as 0.001 if there is a patch containing

singularities.

For any positive integer n, Cn−1-continuous piecewise polynomial basic PU func-

tions are constructed as follows: For integers n ≥ 1, we define a piecewise polynomial

function φ
(pp)
gn by

φ(pp)
gn (x) =



φLgn(x) = (1 + x)ngn(x), x ∈ [−1, 0]

φRgn(x) = (1− x)ngn(−x), x ∈ [0, 1]

0, |x| ≥ 1,

(6)

where gn(x) = a
(n)
0 + a

(n)
1 (−x) + a

(n)
2 (−x)2 + ...,+a

(n)
n−1(−x)n−1, whose coefficients are
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Figure 2: Reference PU functions φ
(pp)
gn with respect to various regularities

inductively constructed by the following recursion formula:

a
(n)
k =



1, k = 0

∑k
j=0 a

(n−1)
j , 0 < k ≤ n− 2

2(a
(n)
n−2), k = n− 1.

The φ
(pp)
gn is depicted in Figure 2 for various regularities.

The φ
(pp)
gn has the following properties [11]:

• φ(pp)
gn (x) + φ

(pp)
gn (x− 1) = 1, ∀x ∈ [0, 1]. Hence, {φ(pp)

gn (x− j) | j ∈ Z} is PU on

R.

• The φ
(pp)
gn is a Cn−1-continuous piecewise polynomial of degree 2n− 1.

We can construct Cn−1-continuous PU function with flat-top whose support is [a −
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a��
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gn

flat-top
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Figure 3: PU with flat-top ψ
(δ,n−1)
[a,b] (x)

δ, b+ δ] with a+ δ < b− δ by the basic PU function φ
(pp)
gn .

ψ
(δ,n−1)
[a,b] (x) =



φLgn(
x− (a+ δ)

2δ
), x ∈ [a− δ, a+ δ]

1, x ∈ [a+ δ, b− δ]

φRgn(
x− (b− δ)

2δ
), x ∈ [b− δ, b+ δ]

0, x /∈ [a− δ, b+ δ].

(7)

In order to make a PU function a flat-top, we assume δ ≤ b− a
3

. The ψ
(δ,n−1)
[a,b] is

depicted in Figure 3. If ϕ : [−δ, δ]→ [0, 1] is defined by

ϕ(x) =
x+ δ

2δ
,

then we have

φRgn(ϕ(x)) + φLgn(ϕ(x)− 1) = 1, ξ ∈ [−δ, δ]

by the first property of PU function φ
(pp)
gn , φRgn(ξ) + φLgn(ξ − 1) = 1, ξ ∈ [0, 1].

Therefore, the collection of ψ
(δ,n−1)
[a,b] is PU.

The gradient of the PU function with flat-top ψ
(δ,n−1)
[a,b] is bounded as follows:

∣∣∣ d
dx

[
ψ

(δ,n−1)
[a,b] (x)

] ∣∣∣ ≤ C1

2δ
, (8)
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Table 1: The upper bound of the gradient of reference PU function φ
(pp)
gn of (6) for

various degrees

degree n = 2 n = 3 n = 5 n = 7 n = 10 n = 15 n = 20 n = 30
upper bound 1.5 1.88 2.46 2.93 3.52 4.33 5.01 6.15

where C1 is an upper bound of the gradient of φ
(pp)
gn defined by (6). The upper bounds

of the gradient of φ
(pp)
gn for various degree are shown in Table 1 [30].

The second derivative of the PU function with flat-top ψ
(δ,n−1)
[a,b] is bounded as follows:

∣∣∣ d2

dx2

[
ψ

(δ,n−1)
[a,b] (x)

] ∣∣∣ ≤ C2

4δ2
. (9)

Here, C2 is an upper bound of the second derivative of φ
(pp)
gn defined by (6).

2.7 Boundary Layer Analysis

We follow the definitions and terminologies of [27]. Usually, we cannot solve the

equations from mathematical models analytically. Then, we approximate the solution

of the equation through approximation and/or numerical methods. The perturbation

method is one of approximation techniques used for the equations that have small

terms.

Consider a differential equation

F (x, y, y′, y′′, ε) = 0, (10)

where x is the independent variable and y is the dependent variable. In the equation,

the parameter ε is shown explicitly, ε � 1. (10) is called the perturbed problem. A
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perturbation series is a power series in ε of the form

y0(x) + εy1(x) + ε2y2(x).... (11)

Regular perturbation method is as follows:

• Assume the perturbation series (11) as a solution of the differential equation

(10).

• Substitute the series (11) into the differential equation (10).

• Find y0, y1, y2...

Usually, the first two or three terms of the series form an approximate solution,

called perturbation solution. If the approximation is uniform, the regular perturbation

method is generally successful. The term y0 is called the leading order term; the terms

εy1, ε
2y2, ... are called higher-order correction terms that are expected to be small. If

the method is successful, y0 will be the solution of the unperturbed problem

F (x, y, y′, y′′, 0) = 0,

in which ε is set to zero. However, There are many situations where a regular per-

turbation method does not give an approximate solution.

• When the small parameter multiplies the highest derivative in the problem.

• When setting the small parameter equal to zero changes the character of the

problem, as in the case of a partial differential equation changing type or an

algebraic equation changing degree. In other words, the solution for ε = 0 is

fundamentally different in character from the solutions for ε close to zero.
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• When problems occur on infinite domains, giving secular terms (correction term

that is not small).

• When singular points are present in the interval of interest.

• When the equations that model physical processes have multiple time or spatial

scales.

These problems are called singular perturbation problems. The singular perturbation

method applied to the problems that have boundary layers is called the boundary layer

theory or matched asymptotic expansions. The boundary layer theory is as follows.

• Determine whether there is a boundary layer, where the solution is changing

very rapidly in a narrow interval

• Determine where the boundary layer is located.

• Find the leading-order perturbation term by setting ε = 0. This is a valid

approximation in a large outer region (outer layer) away from the boundary

layer.

• Rescale the independent variable x in the boundary layer by selecting a small

spatial scale that will reflect rapid and abrupt changes and will force each term

in the equation into its proper form in the rescaled variables. The inner ap-

proximation in the boundary layer is found by rescaling.

• The inner and outer approximations can be matched to obtain a uniformly

valid approximation over the entire interval of interest.
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To illustrate the boundary layer theory, we approximate a solution of a singularly

perturbed problem, following the example in [27]. Consider a model boundary value

problem

εy′′ + (1 + ε)y′ + y = 0, 0 < x < 1,

y(0) = 0, y(1) = 1,

where 0 < ε� 1. We present the numerical result of this problem in Chapter 4.

Outer Approximation

In the region where x = O(1), the solution could be approximated by setting ε = 0

in the equation to obtain

y′ + y = 0

and selecting the boundary condition y(1) = 1. This gives the outer approximation

yo(x) = e1−x.

Inner Approximation

In the boundary layer, there are significant changes in y that take place on a very

short interval, which suggests a length scale on the order of a function of ε, say δ(ε).

If we change the variable via

ξ =
x

δ(ε)
, y(x) = y(δ(ε)ξ) ≡ Y (ξ) (12)

and use the chain rule, the differential equation (12) becomes

ε

δ(ε)2
Y ′′(ξ) +

(1 + ε)

δ(ε)
Y ′(ξ) + Y (ξ) = 0,
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Table 2: Three cases to consider for dominant balancing

Same Order Small in comparison
i. ε/δ(ε)2 ∼ 1/δ(ε) ε/δ(ε), 1

ii. ε/δ(ε)2 ∼ 1 1/δ(ε), ε/δ(ε)

iii. ε/δ(ε)2 ∼ ε/δ(ε) 1/δ(ε), 1

where prime denotes derivatives with respect to ξ. By this scale transformation, we

examine the boundary layer close up.

The coefficients of the four terms in the differential equation are:

ε

δ(ε)2
,

1

δ(ε)
,

ε

δ(ε)
, 1. (13)

If the scaling is correct, each will reflect the order of magnitude of the term in which

it appears. To determine the scale factor δ(ε), we estimate the magnitudes by con-

sidering all possible dominant balances between pairs of terms in (13) (dominant

balancing). In the pairs, we include the first term because it was ignored in the outer

layer, and it is known that it plays a significant role in the boundary layer. Because

the goal is to make a simplification in the problem we do not consider dominant bal-

ancing of three terms. If all four terms are equally important, no simplification can

be made. Therefore, there are three cases to consider in Table 2.

In case i of Table 2, ε/δ(ε)2 ∼ 1/δ(ε) forces δ(ε) = O(ε), then ε/δ(ε)2 and 1/δ(ε)

are both order 1/ε, which is large compared to ε/δ(ε) and 1. Therefore, a consistent

scaling is possible if we select δ(ε) = O(ε); hence, we take

δ(ε) = ε.
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Therefore, the scaled differential equation (12) becomes

Y ′′ + Y ′ + εY ′ + εY = 0. (14)

Now, we can apply the regular perturbation method to (14). Because we are

interested only in the leading-order approximation, which we denote by Yi, we set

ε = 0 in (14) to obtain

Y ′′i + Y ′i = 0.

The general solution is

Yi(ξ) = C1 + C2e
−ξ.

Because the boundary layer is located near x = 0, we apply the boundary condition

y(0) = 0, or Yi(0) = 0. This yields C2 = −C1, and so

Yi(ξ) = C1(1− e−ξ).

In terms of y and x,

yi(x) = C1(1− e−x/ε). (15)

This is the inner approximation for x = O(ε).

In summary, we have the approximate solution

yo(x) = e1−x, x = O(1)

yi(x) = C1(1− e−x/ε), x = O(ε),

each valid for an appropriate rage of x. There remains to determine the constant

C1, which is accomplished by the process of matching. We are mainly interested in
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the inner approximation in the boundary layer analysis to approximate the boundary

layer behavior.



CHAPTER 3: PARTITION OF UNITY ISOGEOMETRIC ANALYSIS

In the framework of Isogeometric Galerkin method, we partition the domain into

patches using Partition of Unity (PU) with flat-top to place the necessary basis func-

tions on each patch, which is referred to as Partition of Unity Isogeometric Analysis

(PU-IGA).

3.1 Construction of Partition of Unity Functions with Flat-top

First, we show how to construct partition of unity with flat-top.

• PU functions constructed by convolutions: The PU function with flat-top

(7) can be constructed by the convolution,

ψ
(δ,n−1)
[a,b] (x) = χ[a,b](x) ∗ wnδ (x), (16)

where the scaled window function wnδ is defined by (3), and the characteristic

function is defined by

χ[a,b](x) =


1 if x ∈ [a, b],

0 if x /∈ [a, b].

• PU functions constructed by B-splines: Using the PU property of the

B-splines, the PU function with flat-top (7) can also be constructed by B-spline

functions.

1. For C1-continuous piecewise polynomial PU functions with flat-top, let
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Ni,4(x), i = 1, . . . , 12 be B-splines of degree 3 that correspond to the open

knot vector:

{
0, .., 0︸ ︷︷ ︸

4

, a− δ, a− δ︸ ︷︷ ︸
2

, a+ δ, a+ δ︸ ︷︷ ︸
2

, b− δ, b− δ︸ ︷︷ ︸
2

, b+ δ, b+ δ︸ ︷︷ ︸
2

, 1, .., 1︸ ︷︷ ︸
4

}

A polynomial P3(x) of degree 3 defined on [a− δ, a+ δ] is uniquely deter-

mined by four constraints:

P3(a− δ) = 0, P3(a+ δ) = 1

d

dx
P3(a− δ) =

d

dx
P3(a+ δ) = 0

φLg2(
x− (a+ δ)

2δ
) satisfies the four constraints, and N5,4(x) +N6,4(x) satis-

fies the four constraints. Therefore, we have

φLg2(
x− (a+ δ)

2δ
) = N5,4(x) +N6,4(x), for x ∈ [a− δ, a+ δ].

Similarly, we have

φRg2(
x− (b− δ)

2δ
) = N7,4(x) +N8,4(x), for x ∈ [b− δ, b+ δ].

Using the partition of unity property of B-splines, we have

N5,4(x) +N6,4(x) +N7,4(x) +N8,4(x) = 1, for x ∈ [a+ δ, b− δ].

2. For C2-continuous piecewise polynomial PU functions with flat-top, let

Ni,6(x), i = 1, . . . , 18, be B-splines of degree 5 corresponding to the open
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knot vector,

{
0, .., 0︸ ︷︷ ︸

6

, a− δ, .., a− δ︸ ︷︷ ︸
3

, a+ δ, .., a+ δ︸ ︷︷ ︸
3

, b− δ, .., b− δ︸ ︷︷ ︸
3

, b+ δ, .., b+ δ︸ ︷︷ ︸
3

, 1, .., 1︸ ︷︷ ︸
6

}
.

A polynomial P5(x) of degree 5 defined on [a− δ, a+ δ] is uniquely deter-

mined by six constraints: three at a− δ and three at a+ δ,

P5(a− δ) = 0, P5(a+ δ) = 1

d

dx
P5(a− δ) =

d

dx
P5(a+ δ) = 0

d2

dx2
P5(a− δ) =

d2

dx2
P5(a+ δ) = 0

φLg3(
x− (a+ δ)

2δ
) satisfies the six constraints, and N7,6(x)+N8,6(x)+N9,6(x)

satisfies the six constraints. Therefore, we have

φLg3(
x− (a+ δ)

2δ
) = N7,6(x) +N8,6(x) +N9,6(x), for x ∈ [a− δ, a+ δ].

Similarly, we have

φRg3(
x− (b− δ)

2δ
) = N10,6(x) +N11,6(x) +N12,6, for x ∈ [b− δ, b+ δ].

Moreover, we have

N7,6(x)+N8,6(x)+N9,6(x)+N10,6(x)+N11,6(x)+N12,6 = 1, for x ∈ [a+δ, b−δ].

3. In general, for each n, the Cn−1-continuous piecewise polynomial PU func-

tion with flat-top can be constructed by the B-splines of degree 2n − 1,
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Ni,2n(x), i = 1, . . . , 6n, corresponding to the open knot vector:

{
0, .., 0︸ ︷︷ ︸

2n

, a− δ, .., a− δ︸ ︷︷ ︸
n

, a+ δ, .., a+ δ︸ ︷︷ ︸
n

, b− δ, .., b− δ︸ ︷︷ ︸
n

, b+ δ, .., b+ δ︸ ︷︷ ︸
n

, 1, .., 1︸ ︷︷ ︸
2n

}
.

We have

ψ
(δ,n−1)
[a,b] (x) =



∑n
k=1 N2n+k,2n(x) if x ∈ [a− δ, a+ δ]∑2n
k=1 N2n+k,2n(x) = 1 if x ∈ [a+ δ, b− δ]∑n
k=1 N3n+k,2n(x) if x ∈ [b− δ, b+ δ]

0 if x /∈ [a− δ, b+ δ].

(17)

3.2 Two Dimensional PU with Flat-top

Let Ω̂ = [0, 1]× [0, 1] be the parameter space. Partition Ω̂ into rectangular subdo-

mains Ω̂ij as follows:

• [0, 1] is a disjoint union of subintervals [ξi, ξi+1), i = 1, 2, . . . , N−1 and [ξN , ξN+1].

δξ = min{ξi+1 − ξi : i = 1, . . . , N}.

• [0, 1] is a disjoint union of subintervals [ηj, ηj+1), i = 1, 2, . . . ,M−1 and [ηM , ηM+1].

δη = min{ηj+1 − ηj : j = 1, . . . ,M}.

• Ω̂ij = [ξi, ξi+1)× [ηj, ηj+1). Assume 0 < δ ≤ min{δξ/3, δη/3}.

Let wnδ be the scaled window function defined by (3). Since the sum of charac-

teristic functions of partitioned subintervals is one on [0, 1] (
∑N

i=1 χ[ξi,ξi+1) = 1), the
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convolutions of wnδ with the characteristic functions become a PU.

( N∑
i=1

χ[ξi,ξi+1)

)
∗ wnδ =

N∑
i=1

(χ[ξi,ξi+1) ∗ wnδ ) =
N∑
i=1

Ψ̂i(ξ) = 1, for each ξ ∈ [0, 1],

( M∑
j=1

χ[ηj ,ηj+1)

)
∗ wnδ =

M∑
j=1

(χ[ηj ,ηj+1) ∗ wnδ ) =
N∑
i=1

Ψ̂j(η) = 1, for each η ∈ [0, 1].

Let two dimensional PU with flat-top be a tensor product of one dimensional PUs as

follows:

Ψ̂i,j(ξ, η) =
(
χ[ξi,ξi+1) ∗ wnδ

)
×
(
χ[ηj ,ηj+1) ∗ wnδ

)
, for i = 1, . . . , N ; j = 1, . . . ,M. (18)

Then, we have the following:

1.
∑N

i=1

∑M
j=1 Ψ̂i,j(ξ, η) = 1, for each (ξ, η) ∈ Ω̂.

2. suppΨ̂i,j =
(

[ξi − δ, ξi+1 + δ] ∩ [0, 1]
)
×
(

[ηj − δ, ηj+1 + δ] ∩ [0, 1]
)
.

3. Ψ̂i,j(ξ, η) are Cn−1-continuous PU functions with flat-top.

4. χ[ξi,ξi+1) ∗ wnδ and χ[ηj ,ηj+1) ∗ wnδ are given by (16). Hence, for example, if 1 ≤

i, j ≤ 3, Ω̂ij, suppΨ̂i,j, and Ψ̂i,j(ξ, η) are as follows:

Ω̂11 = [0, a]× [0, c], Ω̂21 = [a, b]× [0, c], Ω̂31 = [b, 1]× [0, c],

Ω̂12 = [0, a]× [c, d], Ω̂22 = [a, b]× [c, d], Ω̂32 = [b, 1]× [c, d],

supp(Ψ̂11) = [0, a+ δ]× [0, c+ δ], supp(Ψ̂21) = [a− δ, b+ δ]× [0, c+ δ],

supp(Ψ̂31) = [b− δ, 1]× [0, c+ δ], supp(Ψ̂12) = [0, a+ δ]× [c− δ, d+ δ],

supp(Ψ̂22) = [a− δ, b+ δ]× [c− δ, d+ δ], supp(Ψ̂32) = [b− δ, 1]× [c− δ, d+ δ],
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Ψ̂11(ξ, η) = ψδ[0,a](ξ) · ψδ[0,c](η), Ψ̂21(ξ, η) = ψδ[a,b](ξ) · ψδ[0,c](η), Ψ̂31(ξ, η) = ψδ[b,1](ξ) · ψδ[0,c](η),

Ψ̂12(ξ, η) = ψδ[0,a](ξ) · ψδ[c,d](η), Ψ̂22(ξ, η) = ψδ[a,b](ξ) · ψδ[c,d](η), Ψ̂32(ξ, η) = ψδ[b,1](ξ) · ψδ[c,d](η),

where ψ
(δ,n−1)
[α,β] is defined by (7), and Ω̂ij, 1 ≤ i, j ≤ 3, are the rectangles, shown

in Figure 4.

Ω̂12 Ω̂32Ω̂22

Ω̂21Ω̂11 Ω̂31

Ω̂33Ω̂13 Ω̂23

a− δ a+ δ b− δ b+ δ

c− δ
c+ δ

d− δ
d+ δ

Figure 4: Supports of 2D PU with Flat-top Ψ̂ij and subdomains Ω̂ij, 1 ≤ i, j ≤ 3

3.3 Error Analysis for PU-IGA

We estimate the error bound of the PU-Galerkin method with respect to PU with

flat-top, modifying the proofs [1, 30]. The proof of the higher dimensional case is

similar to that of the one-dimensional case. First, we prove one-dimensional error

bound.

Let Ω = [α, β] and x0 = α < x1 <, . . . , xN = β be a partition of Ω. Let {ψδi }Ni=1 be

PU with flat-top and 2δ be the size of a non flat-top zone. For each i = 1, . . . , N , let

Qi = [xi−1 − δ, xi + δ], supp(ψδi ) = Qi and
∑N

i=1 ψ
δ
i (x) = 1 for all x ∈ Ω. Let

Vi = span{f ik(x), k = 1, . . . , ni} be the local approximation space on patch Qi,

and V = span{ψδi (x)f ik(x) : k = 1, . . . , ni, i = 1, . . . , N} be the global approxima-
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tion space on Ω. Let U i be a local approximation of u on the patch Qi. Then,

Galerkin approximation of the true solution u(x) on the patch Qi can be expressed as∑ni
k=1 ξ

i
kf

i
k(x), ξik ∈ R. The PU Galerkin approximation with respect to PU functions

with flat-top ψδi (x) for the true solution u(x) on the whole domain can be expressed

as

u(x) ≈ U(x) =
N∑
i=1

ψδi (x)
( ni∑
k=1

ξikf
i
k(x)

)
,

for some constants ξik, k = 1, . . . , ni, i = 1, . . . , N. The total number of global basis

functions is
∑N

i=1 ni.

Suppose for each i, there is U i ∈ Vi such that

‖u− U i‖L2(Qi∩Ω) ≤ ε0(i), ‖ d
dx

(u− U i)‖L2(Qi∩Ω) ≤ ε1(i)

‖ d
2

dx2
(u− U i)‖L2(Qi∩Ω) ≤ ε2(i), ‖u− U i‖L2(Qδi∩Ω) ≤ εδ0(i)

‖ d
dx

(u− U i)‖L2(Qδi∩Ω) ≤ εδ1(i), ‖ d
2

dx2
(u− U i)‖L2(Qδi∩Ω) ≤ εδ2(i) (19)

where Qδ
i = [xi−1 − δ, xi−1 + δ] ∪ [xi − δ, xi + δ] ⊂ Qi = [xi−1 − δ, xi + δ] and

meas(Qδ
i ∩ Ω) ≤ 4δ. The first three are local errors on the patch Qi. The last three

are local errors on the non flat-top zone, Qδ
i .

Theorem 1. Under the assumptions (19), we have the following error estimates:

(i) ‖u− U‖L2(Ω) ≤
√

2
{ N∑

i=1

[ε0(i)]2
}1/2

(ii) ‖ d
dx

(u− U)‖L2(Ω) ≤ 2
{ N∑

i=1

[
[
C1

2δ
]2[εδ0(i)]2 + [ε1(i)]2

]}1/2

(iii) ‖ d
2

dx2
(u− U)‖L2(Ω) ≤

{
6

N∑
i=1

(
[
C2

4δ2
]2[εδ0(i)]2 + 4[

C1

2δ
]2[εδ1(i)]2 + [ε2(i)]2

)}1/2

,
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where C1 = ‖dφ
(pp)
gn (x)

dx
‖∞ and C2 = ‖d

2φ
(pp)
gn (x)

dx2
‖∞, and φ

(pp)
gn (x) is the unscaled

reference PU function defined by (6), and the size of δ is

min{0.05, 0.05 · (h/3)} ≤ δ ≤ min{0.1, h/3} in [30].

Proof. (i) Consider the following new partition of Ω:

x∗1 = x0, x∗k = (xk−1 + xk)/2, for k = 2, . . . , N − 1, x∗N = xN .

Then, these two PU functions ψδk, ψ
δ
k+1 are non zero on the subinterval [x∗k, x

∗
k+1], for

k = 1, . . . , N − 1. Thus, we have

∫
Ω

(u− U)2 =

∫
Ω

[
(
N∑
i=1

ψδi )u−
N∑
i=1

(ψδi

ni∑
k=1

ξikf
i
k)
]2

, by
N∑
i=1

ψδi = 1

=
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

[ N∑
i=1

ψδi

(
u− U i

)]2

, by U i(x) =

ni∑
k=1

ξikf
i
k(x)

=
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

[
ψδk

(
u− Uk

)
+ ψδk+1

(
u− Uk+1

)]2

≤
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

2
[
[ψδk

(
u− Uk

)
]2 + [ψδk+1

(
u− Uk+1

)
]2
]

= 2
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

N∑
i=1

[
ψδi

(
u− U i

)]2
= 2

∫
Ω

N∑
i=1

[
ψδi

(
u− U i

)]2
≤ 2

N∑
i=1

∫
Qi∩Ω

[
u− U i

]2

, by 0 ≤ ψδi ≤ 1

= 2
N∑
i=1

[ε0(i)]2, by ‖u− U i‖L2(Qi∩Ω) = ε0(i)

Proof. (ii) Using a similar argument adopted in (i), we have



32

∫
Ω

[
d

dx
(u− U)]2 =

∫
Ω

[ d
dx

{
(
N∑
i=1

ψδi )u−
N∑
i=1

(ψδi

ni∑
k=1

ξikf
i
k)
}]2

=

∫
Ω

[ N∑
i=1

d

dx

[
ψδi

(
u− U i

)]]2

, by U i =

ni∑
k=1

ξikf
i
k

=

∫
Ω

[ N∑
i=1

[
d

dx
ψδi ](u− U i) +

N∑
i=1

ψδi [
d

dx
(u− U i)]

]2

≤ 2

∫
Ω

( N∑
i=1

[
d

dx
ψδi ](u− U i)

)2

+ 2

∫
Ω

( N∑
i=1

ψδi [
d

dx
(u− U i)]

)2

≤ 4

∫
Ω

N∑
i=1

(
[
d

dx
ψδi ](u− U i)

)2

+ 4

∫
Ω

N∑
i=1

(
ψδi [

d

dx
(u− U i)]

)2

≤ 4
N∑
i=1

∫
Qi∩Ω

(
[
d

dx
ψδi ]

2(u− U i)2 + [ψδi ]
2[
d

dx
(u− U i)]2

)
≤ 4

N∑
i=1

(∫
Qi∩Ω

[
d

dx
ψδi ]

2(u− U i)2 +

∫
Qi∩Ω

[
d

dx
(u− U i)]2

)
, by 0 ≤ ψδi ≤ 1

≤ 4
N∑
i=1

(
[
C1

2δ
]2
∫
Qδi∩Ω

(u− U i)2 +

∫
Qi∩Ω

[
d

dx
(u− U i)]2

)
by (8)

≤ 4
N∑
i=1

(
[
C1

2δ
]2[εδ0(i)]2 + [ε1(i)]2

)

Proof. (iii) Using a similar argument adopted in (i) and (ii), we have

∫
Ω

[
d2

dx2
(u− U)]2 =

∫
Ω

[ d2

dx2

{ N∑
i=1

ψδi u−
N∑
i=1

ψδiU
i
}]2

=

∫
Ω

[ N∑
i=1

d2

dx2

[
ψδi

(
u− U i

)]]2

=
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

[ N∑
i=1

[
d2

dx2
ψδi ](u− U i) +

N∑
i=1

2
d

dx
ψδi

d

dx
(u− U i) +

N∑
i=1

ψδi [
d2

dx2
(u− U i)]

]2

≤ 3
N−1∑
k=1

∫
[x∗k,x

∗
k+1]

{[ N∑
i=1

[
d2

dx2
ψδi ](u− U i)

]2

+
[
2

N∑
i=1

d

dx
ψδi

d

dx
(u− U i)

]2

+
[ N∑
i=1

ψδi [
d2

dx2
(u− U i)]

]2}
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≤ 6

∫
Ω

N∑
i=1

{[
[
d2

dx2
ψδi ](u− U i)

]2

+ 4
[ d
dx
ψδi

d

dx
(u− U i)

]2

+
[
ψδi [

d2

dx2
(u− U i)]

]2}
≤ 6

N∑
i=1

∫
Qi∩Ω

{[
[
d2

dx2
ψδi ](u− U i)

]2

+ 4
[ d
dx
ψδi

d

dx
(u− U i)

]2

+
[
ψδi [

d2

dx2
(u− U i)]

]2}
≤ 6

N∑
i=1

(
[
C2

4δ2
]2[εδ0(i)]2 + 4[

C1

2δ
]2[εδ1(i)]2 + [ε2(i)]2

)
, by (9).

In Theorem 1, (ii) and (iii) shows that the error bound in the energy norm depends

on the selection of δ, which is the size of a non flat-top zone. With small δ size, we

might have small local errors, εδ0, εδ1, and εδ2, but we could have large constant C/2δ.

(i) shows that the error bound in the L2-norm does not depend on the selection of δ.

We choose δ between 0.001 and 0.1. An optimal choice of δ was discussed in [19].

Next, we prove the error bound in the energy norm for the two dimensional case.

Theorem 2. Let x = (x1, x2) ∈ R2, {ψi(x)}Ni=1 be the two-dimensional PU with flat-

top. Let the support of ψi(x) be Ωi, and the non flat-top part of the support of

ψi(x) be Ωδ
i . Suppose u ∈ H2(Ω) is the true solution, U i is the local approximation

on the patch Ωi, and U is the Galerkin approximation with respect to PU with flat-

top {ψi(x)}Ni=1 on the whole domain Ω. Then, U i(x) =
∑ni

k=1 ξ
i
kf

i
k(x) and U(x) =∑N

i=1 ψi(
∑ni

k=1 ξ
i
kf

i
k(x)). Suppose the local errors on Ωi and Ωδ

i are as follows:

‖u− U i‖L2(Ωi) ≤ ε0(i), ‖ 5 (u− U i)‖L2(Ωi) ≤ ε1(i), ‖4(u− U i)‖L2(Ωi) ≤ ε2(i),

‖u− U i‖L2(Ωδi )
≤ εδ0(i), ‖ 5 (u− U i)‖L2(Ωδi )

≤ εδ1(i), ‖4(u− U i)‖L2(Ωδi )
≤ εδ2(i).
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Then, we have the following error estimate:

‖4(u− U)‖2
L2(Ω) ≤ 27

{ N∑
k=1

[
[
C2

2δ2
]2[εδ0(k)]2 + 4[

C1

δ
]2[εδ1(k)]2 + [ε2(k)]2

]}
,

where C1 = ‖dφ
(pp)
gn (x1)

dx1

‖∞ and C2 = ‖d
2φ

(pp)
gn (x1)

dx2
1

‖∞, and φ
(pp)
gn (x1) is the unscaled

reference PU function defined by (6).

Proof.

‖4(u− U)‖2
L2(Ω) = ‖4

( N∑
i=1

ψiu−
N∑
i=1

ψiU
i
)
‖2
L2(Ω) = ‖4

( N∑
i=1

ψi(u− U i)
)
‖2
L2(Ω)

= ‖
( N∑
i=1

4ψi(u− U i) + 2
N∑
i=1

5ψi5 (u− U i) +
N∑
i=1

ψi4(u− U i)
)
‖2
L2(Ω)

≤ 3
[
‖

N∑
i=1

4ψi(u− U i)‖2
L2(Ω) + ‖2

N∑
i=1

5ψi5 (u− U i)‖2
L2(Ω) + ‖

N∑
i=1

ψi4(u− U i)‖2
L2(Ω)

]
By Lemma 3, each ψi has non void intersections with, at most, nine PU functions in

its support. By Lemma 4, ‖4ψi‖ and ‖ 5 ψi‖ are bounded by constants. Hence, we

have

‖4(u− U i)‖2
L2(Ω)

≤ 3 · 9
[ N∑
i=1

‖4ψi(u− U i)‖2
L2(Ω) + 4

N∑
i=1

‖ 5 ψi5 (u− U i)‖2
L2(Ω) +

N∑
i=1

‖ψi4(u− U i)‖2
L2(Ω)

]
≤ 27

{ N∑
i=1

( C2

2δ2

)2

‖(u− U i)‖2
L2(Ωδi )

+ 4
N∑
i=1

(C1

δ

)2

‖ 5 (u− U i)‖2
L2(Ωδi )

+
N∑
i=1

‖4(u− U i)‖2
L2(Ωi)

}
≤ 27

{ N∑
k=1

[
(
C2

2δ2
)2[εδ0(k)]2 + 4(

C1

δ
)2[εδ1(k)]2 + [ε2(k)]2

]}
.
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Lemma 3. Two dimensional ψi is defined by (18). The support of ψi is rectangular.

‖
N∑
i=1

4ψi(u− U i)‖2
L2(Ω) ≤ 9

N∑
i=1

‖
(
4ψi(u− U i)

)
‖2
L2(Ω)

‖
N∑
i=1

5ψi5 (u− U i)‖2
L2(Ω) ≤ 9

N∑
i=1

‖ 5 ψi5 (u− U i)‖2
L2(Ω)

‖
N∑
i=1

ψi4(u− U i)‖2
L2(Ω) ≤ 9

N∑
i=1

‖ψi4(u− U i)‖2
L2(Ω).

Proof.

‖
N∑
i=1

4ψi(u− U i)‖2
L2(Ω) =

∫
Ω

[ N∑
i=1

4ψi(u− U i)
]2

=
N∑
k=1

∫
Ωk

[ N∑
i=1

4ψi(u− U i)
]2

Only nine PU functions do not vanish on each patch, Ωk. Three one-dimensional PU

functions in the one direction and the other three one-dimensional PU functions in

the other direction do not vanish in each interval, respectively.

=
N∑
k=1

∫
Ωk

(
4ψi1(u− U i1) +4ψi2(u− U i2) + ...+4ψi9(u− U i9)

)2

≤
N∑
k=1

∫
Ωk

9
[(
4ψi1(u− U i1)

)2

+
(
4ψi2(u− U i2)

)2

+ ...+
(
4ψi9(u− U i9)

)2]
=

N∑
k=1

∫
Ωk

9
N∑
i=1

[(
4ψi(u− U i)

)]2

= 9

∫
Ω

N∑
i=1

[(
4ψi(u− U i)

)]2

= 9
N∑
i=1

∫
Ω

[(
4ψi(u− U i)

)]2

= 9
N∑
i=1

‖
(
4ψi(u− U i)

)
‖2

Similarly, we can prove the other two inequalities.

Lemma 4. Let x = (x1, x2) ∈ R2 and ψi(x) be a two-dimensional PU, ψi(x) =

φi1(x1)φi2(x2), which is a tensor product of one-dimensional PUs φi1(x1) and φi2(x2).

Assume that the one-dimensional PUs have the same size non-flat top part, 2δ. Then,
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we have

‖ 5 ψi‖ ≤
C1

δ
, ‖4ψi‖ ≤

C2

2δ2

where C1 = ‖dφ
(pp)
gn (x1)

dx1

‖∞ and C2 = ‖d
2φ

(pp)
gn (x1)

dx2
1

‖∞, and φ
(pp)
gn (x1) is the unscaled

reference PU function defined by (6).

Proof.

‖ 5 ψi‖ = ‖ 5 φi1(x1)φi2(x2)‖ =

√
(
dφi1(x1)φi2(x2)

dx1

)2 + (
dφi1(x1)φi2(x2)

dx2

)2

≤ ‖dφi1(x1)φi2(x2)

dx1

‖+ ‖dφi1(x1)φi2(x2)

dx2

‖ ≤ ‖dφi1(x1)

dx1

‖+ ‖dφi2(x2)

dx2

‖

≤ C1

2δ
+
C1

2δ
=
C1

δ

‖4ψi‖ = ‖4φi1(x1)φi2(x2)‖ = ‖d
2φi1(x1)φi2(x2)

dx1
2

+
d2φi1(x1)φi2(x2)

dx2
2

‖

≤ ‖d
2φi1(x1)φi2(x2)

dx1
2

‖+ ‖d
2φi1(x1)φi2(x2)

dx2
2

‖ ≤ ‖d
2φi1(x1)

dx1
2
‖+ ‖d

2φi2(x2)

dx2
2
‖

≤ C2

4δ2
+
C2

4δ2
=
C2

2δ2

Theorem 2 shows that the error in the energy norm depends on δ, size of the non

flat-top part as we observe in the error estimate of one dimension.

3.4 Total Cost Comparison of PU-IGA with IGA

The total cost for a numerical method is determined by the number of quadrature

points, the polynomial degrees of the basis functions, the regularity of enrichment

functions, the number of elements, the spatial dimension, etc. Extensive cost com-

parisons of IGA-Collocation and IGA-Galerkin with FEA-Galerkin were shown in
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[45]. We compare the computational cost of PU-IGA with that of IGA in bandwidth,

operation counts, and number of Gauss points.

Let Ni,p+1(x), i = 1, . . . ,mp
k, be Cp−k-continuous B-spline functions of degree p

corresponding to the open knot vector:

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξ1, . . . , ξ1︸ ︷︷ ︸
k

, ξ2, . . . , ξ2︸ ︷︷ ︸
k

, . . . , ξn−1, . . . , ξn−1︸ ︷︷ ︸
k

, ξn, . . . , ξn︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
p+1

} (20)

where 1 ≤ k ≤ p and mp
k = nk + p+ 1.

Suppose AX = B is the algebraic system of the discrete variational equation of

−u′′ = f with respect to B-spline basis functions, corresponding to (20).

• Bandwidth For a sparse matrix A = [aij]1≤i,j≤mpk , the smallest integers l1 and

l2, such that aij = 0 for i − j > l1 and aij = 0 for j − i > l2, are called the

lower and the upper bandwidth, respectively. The bandwidth of A is defined

by l1 + l2.

The bandwidth of the matrix A is 2p if k = 1 or k = p ; 2p−1 otherwise. As for

IGA, we use B-spline basis functions of high orders, p ≥ 10 in Table 5, of the

numerical example in Chapter 4. While, the author in [15] uses the piecewise

linear basis functions for the conventional FEM for the results, shown in Table 5.

In this example, the bandwidth of A by IGA is orders of magnitude larger than

that of A corresponding to piecewise linear basis functions because IGA uses

higher degrees of basis functions. If they use the same degree, the bandwidth

would be the same. In PU-IGA, we choose the degree of B-splines in patch-wise

manner without sacrificing the regularity of local approximation functions. For
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example, we could choose C9-continuous B-spline basis functions of degree 10

on a patch, Q1, where we need higher order basis functions. Whereas, we could

select C1-continuous B-spline basis functions of degree 2 on another patch, Q2,

where higher degree of basis functions are not required. If we use IGA, then

we should use the basis functions of degree 10 for the whole domain. Then, the

bandwidth of A would be 20. However, if we use PU-IGA, which divides patches

and puts different degrees of basis functions into each patch, we could have block

matrices A1 and A2 of A with A1 of bandwidth 4 and A2 of bandwidth 20.

• Operation Counts

Let k, multiplicity of (20) be 1 or p. Since the stiffness matrix A is symmetric,

then operation counts for LU factorization and forward/backward substitution

is p2 ·mk
p/2 + 2p ·mk

p, where mk
p is the number of basis functions and p is the

degree of B-splines.

Instead of using one degree and one family of B-spline basis functions for the

whole domain, if we choose selectively the degree and a family of B-splines in

a patch-wise manner, then the number of operations can be reduced because of

less basis functions and smaller degrees on each patch.

• Number of quadrature points

Suppose f il (x), l = 1, . . . , ni, are local approximation polynomials of degree p on

a patch, Qi = [xi−1− δ, xi + δ], and ψδQi(x) is a C1-continuous PU function with

flat-top of degree 3. Then, ψδQi(x)f il (x), l = 1, . . . , ni, are polynomials of degree

p+ 3 on the non flat-top parts, Qδ
i = [xi−1− δ, xi−1 + δ]∪ [xi− δ, xi + δ], and are
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polynomials of degree p on the flat-top part [xi + δ, xi+1 − δ]. The number of

quadrature points for the integral on the non flat-top part is (p+4)/2, while the

number of quadrature points for the integral on the flat-top part is (p + 1)/2.

Hence, the total number of quadrature points for the integral of C1-continuous

three piece-polynomial ψδQi(x)f il (x) on Qi is

p+ 1

2
+ (p+ 4)

because we have two parts of non flat-top parts. While IGA needs the number

of quadrature points, (p+ 1)/2. In PU-IGA, a few extra quadrature points are

required for the integrals of polynomial local approximation functions defined

on non flat-top zones.

3.5 Basis Functions of Enriched PU-IGA

In this section, we describe how to construct basis functions in enriched PU-IGA.

Let

Ψ̂ij, for i = 1, . . . , N ; j = 1, . . . ,M. (21)

be PU functions with flat-top defined on the reference domain Ω̂ = [0, 1] × [0, 1].

Note that we construct PU functions on the reference domain rather than a physical

domain.

We use the following notations for enriched PU-IGA:

1. Subdomains of Ω, Ω̂ij = [ξi, ξi+1]× [ηj, ηj+1]

2. supp(Ψ̂ij) = [ξi − δ, ξi+1 + δ]× [ηj − δ, ηj+1 + δ] ≡ Ω̂∗ij
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3. ϕij : Ω̂ = [0, 1]× [0, 1] −→ supp(Ψ̂ij) is the linear mapping from the parameter

domain onto a patch supp(Ψ̂ij) ⊃ Ω̂ij.

4. B̂st(ξ, η) = Ns(ξ) ×Mt(η), 1 ≤ s ≤ np and 1 ≤ t ≤ mq are two-dimensional

B-spline functions defined on [0, 1]× [0, 1] parameter domain.

5. B̃
(ij)
st = B̂st ◦ ϕ−1

ij , for 1 ≤ i ≤ N, 1 ≤ j ≤ M , 1 ≤ s ≤ np, 1 ≤ t ≤ mq, are

two-dimensional B-spline functions defined on the patch, Ω∗ij.

Let G : Ω̂ −→ Ω be a design mapping. Suppose we know an enrichment function

h(x, y) that resembles either a boundary layer function or a singular function on a

subdomain Ωi0,j0 = G(Ω̂i0j0) of physical domain Ω.

We call ĥ = (h ◦ G) the pullback of the enrichment function h into the reference

domain, and h = ĥ ◦G−1 the push-forward of ĥ into the physical domain.

The basis functions on the parameter domain are those in V̂1 ∪ V̂0 that consist of

B-spline functions and an enrichment function modified by PU functions, where

V̂1 =


(

Ψ̂ij · B̃(ij)
st

)
: 1 ≤ s ≤ ni; 1 ≤ t ≤ nj, and

i = 1, . . . , N ; j = 1, . . . ,M, ij 6= i0j0

 ,

V̂0 =

{
ĥ(ξ, η) · Ψ̂i0j0(ξ, η),

(
Ψ̂i0j0 · B̃

(i0j0)
st

)
: 1 ≤ s ≤ ni0 ; 1 ≤ t ≤ nj0

}
.

Now the approximation space Vh in the physical domain Ω enriched by h(x, y) is the

vector space spanned by linearly independent basis functions in (V̂1◦G−1)∪(V̂0◦G−1):

Vh = span
(
V̂1 ◦G−1 ∪ V̂0 ◦G−1

)
.
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Then, we calculate the stiffness matrix by the reference element approach. Let

∇x = (
∂

∂x
,
∂

∂y
)T , ∇ξ = (

∂

∂ξ
,
∂

∂η
)T , G : Ω̂ = [0, 1]× [0, 1] −→ Ω

Suppose B(u, v) =
∫

Ω
(∇xv)T · (∇xu). Then for two basis functions in Vh we have

B(
(

Ψ̂ij · B̃(ij)
s′t′

)
◦G−1,

(
Ψ̂lm · B̃(lm)

st

)
◦G−1)

=

∫
Ω

(∇x

(
Ψ̂lm · B̃(lm)

s′t′

)
◦G−1)T · (∇x

(
Ψ̂ij · B̃(ij)

st

)
◦G−1)dxdy

=

∫
Ω̂∗ij;lm

(∇ξ

(
Ψ̂lm · B̃(lm)

s′t′

)
)T ·

[
(J(G)−1)T · J(G)−1|J(G)|

]
(∇ξ

(
Ψ̂ij · B̃(ij)

st

)
)dξdη

where Ω̂∗ij;lm = suppΨ̂ij ∩ suppΨ̂lm, Ω̂∗ij;lm is a slim rectangle with δ width or length

if ij 6= lm, and Ω̂∗ij;lm is a rectangle which is the support of Ψ̂ij, if ij = lm.

Unlike PU-FEM and enriched IGA in [35, 36], since PU functions are constructed in

the reference domain, the intersection of supports of any two basis functions modified

by the PU function is always a rectangle on the reference domain that we could

integrate easily. Note that we could have this feature, integration over rectangular

area, since PU functions are constructed in the reference domain.



CHAPTER 4: SINGULARLY PERTURBED CONVECTION DIFFUSION
EQUATIONS IN A CIRCLE

4.1 Introduction

We consider a singularly perturbed problem that is a stationary convection-diffusion

equation 
−ε4u− uy = f(x, y) in Ω

u = 0 on ∂Ω

(22)

where 0 < ε � 1, Ω is the unit circle centered at (0, 0), and the function f is as

smooth as needed.

The variational formulation of (22) reads: Find uε ∈ H1
0 (Ω) such that

a(u, v) := ε(∇u,∇v)− (uy, v) = (f, v), ∀v ∈ H1
0 (Ω). (23)

In [13, 14], the authors discussed the problem (22) analytically. It was shown

that a boundary layer occurs around the lower half circle, x2 + y2 = 1, y < 0, and

singular behaviors can occur at the characteristic points (±1, 0) if f does not satisfy

compatibility conditions.

In [23], [37], [38] and [50], finer meshes around the boundary layer and domain de-

composition are used to solve singularly perturbed problems. In [13, 14], the authors

studied convection-diffusion equations in rectangular and circular domains using uni-
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form rectangular meshes that incorporate boundary layer correctors. [15] showed the

numerical solutions to the problem using a piecewise linear classical finite element

space enriched by the boundary layer correctors. Similarly, we develop the boundary

layer functions through boundary layer analysis and approximate the solution of (22)

in PU-IGA finite element space enriched by the boundary layer functions that are

scaled by a PU function. We apply enriched PU-IGA to the same problem as [15]

tested and compare the results. We have better numerical results with less degree

of freedom than that of [15]. We extend this to a singular perturbation problem

on ellipse in which we similarly develop the boundary layer approximation through

boundary layer analysis.

4.2 Geometric Mapping

We define the geometric mapping G from the parameter to physical domains. The

mapping G : Ω̂ −→ Ω is defined by

G(ξ, η) = (x(ξ, η), y(ξ, η) = ((1− η) cos 2πξ, (1− η) sin 2πξ) (24)

where η = 1− r, r is the distance to the origin and 2πξ is the polar angle from origin

of the circle. We define the reference domain as Ω̂ = [0, 1] × [0, 1] and the physical

domain as Ω = {(x, y)|x2 +y2 ≤ 1}. Note that Isogeometric analysis makes it possible

to use the exact geometric representation of CAD objects for analysis, a circle in this

example. For our convenience, we express mapping G by parametrization rather than

the linear combination of NURBS basis functions since we use parametric mapping

G when we analyze the boundary layer approximation.
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4.3 Boundary Layer Analysis

We analyze the boundary layer approximation on the reference domain using the

geometric mapping, G(ξ, η) defined by (24). Let

û(ξ, η) = u ◦G(ξ, η).

By the chain rule,

∂û

∂ξ
=
∂u

∂x
(G(ξ, η)

∂x

∂ξ
+
∂u

∂y
(G(ξ, η))

∂y

∂ξ
,

∂û

∂η
=
∂u

∂x
(G(ξ, η)

∂x

∂η
+
∂u

∂y
(G(ξ, η))

∂y

∂η
.

We have

∂u

∂x
= − sin 2πξ

2π(1− η)

∂û

∂ξ
− cos 2πξ

∂û

∂η
,

∂u

∂y
= − cos 2πξ

2π(1− η)

∂û

∂ξ
− sin 2πξ

∂û

∂η
,

4u =
∂2u

∂x2
+
∂2u

∂y2
=
∂2û

∂η2
− 1

1− η
∂û

∂η
+

1

(1− η)2

∂2û

∂ξ2
.

By this change of variables, the equation (22) becomes

−ε4u− uy = −ε∂
2û

∂η2
− ε

4π2(1− η)2

∂2û

∂ξ2
+

ε

1− η
∂û

∂η
− cos 2πξ

2π(1− η)

∂û

∂ξ
+ sin 2πξ

∂û

∂η

= f((1− η) cos 2πξ, (1− η) sin 2πξ). (25)

We analyze the behavior in the boundary layer around η = 0, 0 ≤ ξ ≤ 1/2 in the

reference domain. There are significant changes in û taking place on a very short η

interval, which suggest a length scale on the order of a function of ε, say εα. We

introduce the stretched variable

η̄ =
η

εα
.
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The equation (25) is transformed to

−ε1−2α∂
2û

∂η̄2
− ε

4π2(1− εαη̄)2

∂2û

∂ξ2
+

ε1−α

1− εαη̄
∂û

∂η̄
− cos 2πξ

2π(1− εαη̄)

∂û

∂ξ
+ sin 2πξε−α

∂û

∂η̄
= f(G−1(ξ, η)).

The coefficients of the terms in the differential equation are

ε1−2α, ε, ε1−α, ε−α, (26)

To determine α, we estimate these magnitudes by considering all possible dominant

balances between pairs of terms in (26). If ε1−2α and ε−α are the same order, both of

them are order 1/ε, which is large compared to ε and ε1−α. Therefore, a consistent

scaling is possible if we select α = 1. In other words, a reasonable boundary layer

equation is determined by setting α = 1 by dominant balancing. Hence, we have

−ε−1∂
2û

∂η̄2
− ε

4π2(1− εη̄)2

∂2û

∂ξ2
+

1

1− εη̄
∂û

∂η̄
− cos 2πξ

2π(1− εη̄)

∂û

∂ξ
+ sin 2πξε−1∂û

∂η̄
= f(G),

−∂
2û

∂η̄2
− ε2

4π2(1− εη̄)2

∂2û

∂ξ2
+

ε

1− εη̄
∂û

∂η̄
− ε cos 2πξ

2π(1− εη̄)

∂û

∂ξ
+ sin 2πξ

∂û

∂η̄
= εf(G). (27)

Now, we can apply the regular perturbation to (27). Because we are interested only

in the leading-order approximation, we set ε = 0 in (27) to obtain

−∂
2û

∂η̄2

∂û

∂ξ
+ sin 2πξ

∂û

∂η̄
= 0.

The general solution is

û(ξ, η̄) = C1 + C2 exp(sin 2πξ)η̄.
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Because the boundary layer is located around the lower half circle on the physical

domain, hence near η = 0 and 1/2 < ξ < 1 on the reference domain, we apply the

boundary condition û = 0 at η = 0. Thus, we have

C2 = −C1,

û(ξ, η̄) = C1(1− exp(sin 2πξ)η̄), 1/2 < ξ < 1.

In terms of ξ and η

û(ξ, η) = C1(1− exp(sin 2πξ)
η

ε
), 1/2 < ξ < 1.

The boundary layer approximation can be written as

û(ξ, η) = C1(1− exp(sin 2πξ)
η

ε
) χ[1/2,1](ξ),

where χA(ξ) is the characteristic function of A.

4.4 PU-IGA Approximation Space

We define IGA approximation space, Ṽ , and the enriched PU-IGA approximation

space, V , which includes the boundary layer element, ϕ0:

Ṽ = {
N∑
i=1

ciRi(x, y)} ⊂ H1
0 (Ω)

V = {
N∑
i=1

ciRi(x, y) +
M∑
i=1

di(ϕ0(ξ, η) ◦G−1)(Ni(ξ) ◦G−1)} ⊂ H1
0 (Ω),

where ci and di are amplitude constants, N is the number of B-splines corresponding

to the knot vectors in ξ and η directions, M is the number of basis functions along Γl,

where Γl = {(x, y) =| x2 + y2 = 1, y < 0}, Ri(x, y) is push-forwards of tensor product



47

of univariate B-splines 1 ≤ i ≤ N , Ni(ξ) is B-spline basis functions in ξ direction

1 ≤ i ≤M , and ϕ0(ξ, η) is the boundary layer function defined by

ϕ0(ξ, η) = (1− exp(
sin 2πξ

ε
η))ψ(η)χ[0.5,1](ξ). (28)

(28) is the boundary layer approximation multiplied by PU with flat-top, ψ(η) defined

by

ψ(η) =



0, if η ∈ [b+ δ, 1]

φRg2(
η−(b−δ)

2δ
, if η ∈ [b− δ, b+ δ]

1, if η ∈ [0, b− δ]

(29)

We can now formulate the following discrete analogues of the problem (23). Find a

ũh ∈ Ṽ and uh ∈ V , respectively, such that

a(ũh, v) = (f, v), ∀v ∈ Ṽ

a(uh, v) = (f, v), ∀v ∈ V ,

where a(·, ·) is the bilinear form defined by (23).

To treat the boundary layers, we add the boundary layer functions in V . There are

several ways to augment the basis of Ṽ by adding different boundary layer functions.

1. {ϕ0(ξ1, η)N1(ξ), ϕ0(ξ2, η)N2(ξ), ..., ϕ0(ξM , η)NM(ξ)},

2. {ϕ0(0.75, η)N1(ξ), ϕ0(0.75, η)N2(ξ), ..., ϕ0(0.75, η)NM(ξ)},

3. {ϕ0(ξ, η)N1(ξ), ϕ0(ξ, η)N2(ξ), ..., ϕ0(ξ, η)NM(ξ)},

where M is the number of B-splines in ξ direction on the lower semicircle. Here, ϕ0 is
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the boundary layer function defined by (28). First, we obtain M different enrichment

functions by plugging in different values in ξ direction. Second, we obtain only one

enrichment function by plugging in one value in ξ direction. In the first and second

one, we consider the boundary layer function as a function of η. Lastly, we obtain a

boundary layer function as a function of ξ and η. For convenience of implementation,

we are going to use the second choice of a boundary layer function, which is plugging

a specific value in ξ direction into the boundary layer function, namely

ϕ̂0(η) = (1− exp(
−η
ε

))ψ(η). (30)

Incorporating the boundary layer functions that absorb the singularity behavior in the

finite space, we expect accurate numerical results in the PU-IGA framework without

using fine meshes around the boundary layer.

4.5 Construction of Basis Functions

We divide the physical domain into three patches to apply different basis functions

on each patch. In the outer region (away from the boundary layer), we could obtain

an optimal solution by the standard Galerkin method. The boundary layer zone

requires more sophisticated basis functions;therfore, we add boundary layer functions

on the patch where the boundary layer is.

Partition of the Domain Ω

We consider that a covering of the physical domain consists of three patches: one
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disk and two annular regions, shown in Fig. 5, that are defined as follows:

Ω∗1 = {(x, y) : 0 ≤ x2 + y2 ≤ (1− (b− δ))2},

Ω∗2 = {(x, y) : (1− (b+ δ))2 ≤ x2 + y2 ≤ (1− (a− δ))2},

Ω∗3 = {(x, y) : (1− (a+ δ))2 ≤ x2 + y2 ≤ 1}. (31)

Ω∗1

Ω∗2

Ω∗3

Figure 5: Supports of circular PU functions in the physical domain.

To construct basis functions on these three patches, we need to construct PU

functions with flat-top, Ψ1,Ψ2,Ψ3, defined on three patches Ω∗1,Ω
∗
2,Ω

∗
3, respectively.

For this end, we consider a covering of the parameter domain Ω̂, consisting of the

following three patches:

Ω̂∗1 = [0, 1]× [b− δ, 1], Ω̂∗2 = [0, 1]× [a− δ, b+ δ], Ω̂∗3 = [0, 1]× [0, a+ δ].

Construction of PU function on the reference domain

For constructions of circular PU functions with flat-top, we define PU functions
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Ω̂∗1

Ω̂∗3

Ω̂∗2

a− δ
a+ δ

b− δ
b+ δ

1

0

Figure 6: Supports of PU function with flat-top in the reference Domain,
Ω̂∗1 = [1, 0]× [b− δ, 1], Ω̂∗2 = [1, 0]× [a− δ, b+ δ], Ω̂∗3 = [1, 0]× [0, a+ δ].

Ψ̂i, i = 1, 2, 3, on rectangular patches Ω̂∗i , i = 1, 2, 3, respectively, as follows:

Ψ̂1(ξ, η) =


φLg2(

η−(b+δ)
2δ

) if η ∈ [b− δ, b+ δ]

1 if η ∈ [b+ δ, 1]

0 if η /∈ [b− δ, 1],

(32)

Ψ̂2(ξ, η) =



φLg2(
η−(a+δ)

2δ
) if η ∈ [a− δ, a+ δ]

1 if η ∈ [a+ δ, b− δ]

φRg2(
η−(b−δ)

2δ
) if η ∈ [b− δ, b+ δ]

0 if η /∈ [a− δ, b+ δ],

(33)

Ψ̂3(ξ, η) =


φRg2(

η−(a−δ)
2δ

) if η ∈ [a− δ, a+ δ]

1 if η ∈ [0, a− δ]

0 if η /∈ [0, a+ δ],

(34)

where φRg2(x) and φLg2(x) are C1-continuous functions defined by (6) as follows:

φRg2(x) = (1− x)2(1 + 2x), and φLg2(x) = (1 + x)2(1− 2x).
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Note that we construct PU functions on the reference domain so that we could inte-

grate over the rectangular area. If we construct the PU on the physical domain, we

might have irregular shapes to integrate over.

Now, we have the following parameters, PU functions, and patches that are used

in this section:

1. Ω∗1 = G(Ω̂∗1), Ω∗2 = G(Ω̂∗2), Ω∗3 = G(Ω̂∗3).

2. Ψ̂1(ξ, η) + Ψ̂2(ξ, η) + Ψ̂3(ξ, η) = 1 for each (ξ, η) ∈ [0, 1]× [0, 1].

3. Let Ψk ≡ Ψ̂k ◦ G−1, k = 1, 2, 3. Then, their supports are three patches defined

by (31): that is, supp(Ψk) = Ω∗k, k = 1, 2, 3, shown in Figure 5. In this figure,

two narrow annuli are non flat-top parts of the PU functions Ψk.

4. We choose different parameters a, b, and δ for different diffusion coefficients ε:

a = 0.05(0.005), b = 1/2, δ = 0.01(0.001), when ε = 10−3(10−4).

Basis functions whose supports are Ω∗1 (Disk)

Since G : Ω̂∗1 −→ Ω∗1, defined by (24), is not one to one, unlike the constructions of

basis functions on Ω∗2 and Ω∗3, we directly construct the basis functions on the patch

Ω∗1 ⊂ Ω. That is, they are not the push-forwards of basis functions on Ω̂∗1 (Fig. 6) by

the geometric mapping G.

Let

N̂k(t) = qCk(1− t)q−ktk, k = 0, 1, 2, . . . , q

be the Bernstein polynomials (Bézier functions) of degree q defined on [0, 1]. Consider
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a linear transformation T1 : [−(1−(b+δ)), 1−(b+δ)] −→ [0, 1]. Then, the transformed

Bernstein polynomials by the linear transformation T1 are

Ñk+1(x) = N̂k(T1(x)) = qCk(1− T1(x))q−k(T1(x))k, k = 0, 1, 2, . . . , q. (35)

Since the inverse of the geometric mapping G defined by (24) is

G−1(x, y) =
(
ξ(x, y), η(x, y)

)
=
( 1

2π
tan−1 y

x
, 1−

√
x2 + y2

)
,

a circular PU function on Ω∗1 is defined by

Ψ1(x, y) = (Ψ̂1 ◦G−1)(x, y) =


1 if (x, y) ∈ Ω∗11 ,

φLg2(
η(x,y)−(b+δ)

2δ
) if (x, y) ∈ Ω∗21 ,

0 if x2 + y2 ≥ [1− (b− δ)]2,

(36)

where

Ω∗1
1 = {(x, y) : x2 + y2 ≤ [1− (b+ δ)]2},

Ω∗1
2 = {(x, y) : [1− (b+ δ)]2 ≤ x2 + y2 ≤ [1− (b− δ)]2},

which are the inner most disk and the smaller narrow annulus, respectively, inside

the square of Fig. 5. Multiplying the circular PU function (36) to the tensor product

of (35), we obtain basis functions on Ω∗1 in the following set

VA = {Bij(x, y) = Ψ1(x, y) · Ñi(x) · Ñj(y) : for 1 ≤ i, j ≤ q + 1}. (37)
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The bilinear form for the basis functions can be calculated as follows:

∫∫
Ω∗1

∇xBij · ∇xBi′j′

=

∫∫
Ω∗1

1

∇xBij · ∇xBi′j′ +

∫∫
Ω∗1

2

∇xBij · ∇xBi′j′

=

∫ 2π

0

∫ 1−(b+δ)

0

(
∇xBij · ∇xBi′j′

)
(r cos θ, r sin θ)rdrdθ

+

∫ 1

0

∫ b+δ

b−δ

(
(J(G)−1)∇ξ(Bij ◦G)

)T
·
(
J(G)−1∇ξ(Bi′j′ ◦G)

)
|J(G)|dξdη.

Since the geometric mapping G is bijective on [0, 1]× [b− δ, b+ δ], we can integrate

pull-backs of the basis functions over [0, 1]× [b− δ, b+ δ] in the reference domain.

Basis functions whose supports are Ω∗2 (Annular Region)

Let T2 : [a − δ, b + δ] −→ [0, 1] be the bijective linear mapping. Then, the trans-

formed Berstein polynomials by the linear transformation T2 are

M̃B
k+1(η) = qCk(1− T2(η))q−kT2(η)k, k = 0, 1, 2, . . . , q(q ≥ 3). (38)

Let N̂k(ξ), k = 1, 2, . . . , 4p − 2, be B-splines corresponding to an open knot vector

with p ≥ 3,

{0 . . . 0︸ ︷︷ ︸
p+1

, 1/4 . . . 1/4︸ ︷︷ ︸
p−1

, 1/2 . . . 1/2︸ ︷︷ ︸
p−1

, 3/4 . . . 3/4︸ ︷︷ ︸
p−1

, 1 · · · 1︸ ︷︷ ︸
p+1

}. (39)

Next, N̂1 and N̂4p−2, the first and the last B-spline functions, respectively, are joined

to form one blending function, denoted by N̂B
1 (ξ), so that they can be periodic after
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Figure 7: Periodic basis function joining the first and the last B-splines

push-forwarded to the annular region Ω∗2 ∪ Ω∗3 through the mapping G:

N̂B
1 (ξ) =


(1− 4ξ)p if ξ ∈ [0, 1/4] (that is N̂1(ξ))

0 if ξ ∈ [1/4, 3/4]

(4ξ − 3)p if ξ ∈ [3/4, 1] (that is N̂4p−2(ξ)).

(40)

N̂B
k (ξ) = N̂k(ξ), k = 2, . . . , 4p− 3. (41)

Now, the push-forward of the PU function Ψ̂2 of (33) onto the physical domain Ω is

denoted by

Ψ2(x, y) = (Ψ̂2 ◦G−1)(x, y) = Ψ̂2(ξ(x, y), η(x, y)).

Then, basis functions on the annular region Ω∗2 are the following C0-continuous func-

tion with the cardinality (4p− 3)(q + 1):

VB =
{

Ψ2(x, y) ·
[(
N̂B
k × M̃B

l

)
◦G−1

]
(x, y) : 1 ≤ k ≤ 4p− 3, 1 ≤ l ≤ q + 1

}
.

Remark 1. For applications of Collocation IGA and numerical methods for higher

order equations, it is possible to modify the members of VB to be C1-continuous
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functions. Now, the basis functions in VB are C1-continuous except at points in

{(x, 0) : x ∈ (1−(b+δ), 1−(a−δ))}, where
(
N̂B
k ×M̃B

l

)
◦G−1(x, y) have discontinous

derivatives if k = 1. However, if (1− 4ξ)p and (4ξ − 3)p, respectively, are modified to

(1 − 4ξ)p−1(1 + (p − 1)ξ) and (4ξ)p−1(p + 1 − 4pξ) in the construction of N̂B
1 (ξ), all

basis functions become C1-continuous functions.

Enriched basis functions whose supports are Ω∗3 (Boundary Layer)

Since the boundary layer occurs along the lower half of the unit circle, we enrich

this region with the boundary layer function φ̂0, defined by (30).

Let T3 : [0, a+ δ] −→ [0, 1] be the bijective linear mapping. Then Berstein polyno-

mials transformed by T3 are

M̃C
k+1(η) = qCk(1− T3(η))q−kT2(η)k, k = 0, 1, 2, . . . , q.

Suppose N̂B
k (ξ) are same periodic B-spline functions for Ω∗2 corresponding to the knot

vector (39). Then we have this augmented basis functions:

V̂S1 =
{
N̂B
k (ξ) · ϕ̂0(η) : k = 2p+ 1, . . . , 4p− 3

}
,

V̂S2 =
{

Ψ̂3(ξ, η) ·
(
N̂B
k (ξ) · M̃C

l (η)
)

: 1 ≤ k ≤ 4p− 3, 2 ≤ l ≤ q + 1
}
,

where Ψ̂3 is defined by (34).

Since M̃C
1 (η) = 1 for η = 0 and the boundary layer problem has the homogeneous

boundary condition along ∂Ω, Ψ̂3(ξ, η) · N̂B
k (ξ) · M̃C

1 (η) are excluded in V̂S2 . We

augment the enrichment function φ̂0(η) along the lower half circle for k = 2p +

1, . . . , 4p− 3 in V̂S1 .
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Now a family of enriched basis functions on the boundary layer region Ω∗3 is

VC =
(
V̂S1 ◦G−1

)
∪
(
V̂S2 ◦G−1

)
. (42)

Note that the number of functions in VC is (2p − 3) + (4p − 3)q. Then, combining

three sets VA,VB,VC of basis functions constructed above, we finally construct an

enriched approximation space V to deal with the boundary layer effects, that is

V = span
(
VA ∪ VB ∪ VC

)
. (43)

Note that V contains a special boundary layer function modified by PU functions

with flat-top.

Galerkin method

The enriched Galerkin method for the boundary layer problem (22) is as follows:

Find uh ∈ V such that

ε(∇uh,∇v)− ((uh)y, v) = (f, v), ∀v ∈ V

where V = {ϕ1, ..., ϕN︸ ︷︷ ︸
B-splines

, ϕN+1, ..., ϕN+M︸ ︷︷ ︸
enrichment functions

}. Since uh(x, y) =
∑N+M

i=1 ciϕi(x), We can

write

N+M∑
i=1

ci[ε(∇ϕi,∇ϕj)− (
∂ϕi
∂y

, ϕj)] = (f, ϕj), j = 1, ..., N +M. (44)

In matrix form, the linear system (44) can be written as

Ac = b,
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where

A =


a11 . . . a1L

...
...

...

aL1 . . . aLL

 , c =


c1

...

cL

 , b =


b1

...

bL


where L = M + N , aij = ε(∇ϕi,∇ϕj) − (

∂ϕi
∂y

, ϕj), and bi = (f, ϕi). The stiffness

matrix consists of four block matrices, A1, A2, A3, A4,

A =

A1 A2

A3 A4


The submatrix A1 is composed of the terms involving only the B-splines whereas the

submatrices A2, A3 and A4 involve the boundary layer functions. For N + 1 ≤ i, j ≤

N +M , the bilinear form in A4 can be calculated as follows

a(∇ϕi,∇ϕj) = ε

∫∫
Ω

∇ϕi∇ϕj −
∂ϕi
∂y

ϕjdxdy

= ε

∫∫
Ω̂

(J(G)−1∇(N̂i(ξ)ϕ̂0(η))T (J(G)−1∇(N̂j(ξ)ϕ̂0(η))|J(G)|dξdη

− ε
∫∫

Ω̂

(J(G)−1
2 ∇(N̂i(ξ)ϕ̂0(η))(N̂j(ξ)ϕ̂0(η))|J(G)|dξdη,

where

J(G) =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

 =

−2π(1− η) sin 2πξ 2π(1− η) cos 2πη

− cos 2πξ − sin 2πξ

 ,
and |J(G)| = 2π(1− η) is the determinant of Jacobian of G(ξ, η), geometry mapping

and J(G)−1
2 is the second row of J(G)−1.

For 1 ≤ i ≤ N,N + 1 ≤ j ≤ N + M , the bilinear form in A2 can be calculated as
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follows:

a(∇ϕi,∇ϕj) = ε

∫∫
Ω

∇ϕi∇ϕj −
∂ϕi
∂y

ϕjdxdy

= ε

∫∫
Ω̂

(J(G)−1∇(N̂i(ξ)M̂i(η)))T (J(G)−1∇(N̂j(ξ)ϕ̂0(η)))|J(G)|dξdη

− ε
∫∫

Ω̂

(J(G)−1
2 ∇(N̂i(ξ)M̂i(η)))(N̂j(ξ)ϕ̂0(η))|J(G)|dξdη

4.6 Numerical Results

We present numerical solutions of (22) obtained by standard IGA and enriched

PU-IGA, which is enriched by the boundary layer function estimated by boundary

layer analysis.

One dimensional singularly perturbed convection-diffusion problem

We consider one dimensional convection-diffusion problem.
εu′′ + (1 + ε)u′ + u = 0, 0 < x < 1,

u(0) = 0, u(1) = 1.

(45)

Equation (45) can be solved exactly

u(x) =
1

e−1 − e−1/ε
(e−x − e−x/ε).

By the boundary layer analysis, we obtain the boundary layer approximation, ui

developed by (15),

ui = C(1− e−x/ε), for x = O(ε).

Then, we modify the boundary layer approximation by a PU function ψ(x) and obtain
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Table 3: Maximum error of 1D convection-diffusion problem obtained by standard
IGA and enriched PU-IGA with p-refinement, 4h = 0.1, ε = 0.001

Degree DOF NO Enrichment Enrichment

2 22 1.1843E+16 0.1863
4 42 1.8064 6.0128E-009
6 62 1.1829 5.8175E-014

Table 4: Maximum error of 1D convection-diffusion problem obtained by standard
IGA and enriched PU-IGA with h-refinement, p = 6, ε = 0.001

4h DOF NO Enrichment Enrichment

1 8 4.6265 0.6912
0.5 14 5.9244 0.3538
0.1 62 1.1829 5.8175E-014

the boundary layer function ϕ̂0 for enrichment.

ϕ̂0 = (1− e−x/ε)ψ(x),

where ψ(x) is a PU function defined by (29).

We compare the numerical results of standard IGA and enriched PU-IGA for

the one-dimensional convection-diffusion problem. In Table 3, we use enriched p-

refinement of IGA and standard IGA. Enriched PU-IGA has almost true solution

when the degree of basis functions is six, while standard IGA does not yield any

reasonable solution. In Table 4, we use enriched h-refinement of PU-IGA and obtain

similar results to that of p-refinement of PU-IGA. In Figure 8, standard IGA produces

oscillation, and it propagates beyond boundary layer in the direction of a convective

term, while enriched PU-IGA captures rapid transition in the boundary layer.

Singularly Perturbed Convection-Diffusion Equation in a Circle
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Figure 8: Numerical solution of 1D convection-diffusion problem obtained by standard
IGA (left) and enriched PU-IGA(right), ε = 10−3, N = 62,M = 1, 4h = 0.1, h-
refinement

We approximate the following exact solution u of (22):

u(x, y) =


(1− x2)2(−y +

√
1− x2 +

ε+
√

1− x2

(1− x2)3/2
), in Ω

0 on ∂Ω.

[15] shows that the corresponding f turns out to be f = (1− x2)2 +O(ε). With the

derived boundary layer function and basis functions, we construct an approximation

space for enriched PU-IGA in the previous section and now present numerical results

by the approximation space.

Relative error in percent in the l-norm ‖ · ‖l is defined by

‖err‖l,rel(%) =
‖uex − uh‖l
‖uex‖l

× 100.

Numerical results of the enriched PU-IGA, using the approximation space V , de-

fined by (43), are shown in Figures 9 and 10 and Table 5, in which we observe the

following:

1. The proposed enriched PU-IGA yields better results with lower degrees of free-



61

Table 5: Relative error in percent for 2D convection-diffusion problem on a circle
when ε = 10−4. The results in the third column are relative errors in percent by
enriched FEM reported in [15].

enriched PU-IGA PU-IGA adapt msh Hong et al.[15] IGA with radical msh
dof ‖err‖L2,rel(%) dof ‖err‖L2,rel(%) dof ‖err‖L2,rel(%) dof ‖err‖L2,rel(%)

1352 69.56 1332 70.01 1516 5.77 400 4.067
2004 3.480 1980 3.516 2347 5.01 1024 1.031
2784 0.074 2756 0.113 4130 4.43 1936 0.929
3692 0.038 3660 0.041 9217 3.39 3136 0.929

dom than those of the enriched FEM of [15], as shown in Table 5. We compare

the results with those in Table 1 of [15].

2. The authors in [15] used piecewise linear basis functions for enriched FEM,

while we use high degree of B-spline basis functions constructed through the p-

refinement or the k-refinement . Thus, enriched PU-IGA requires more quadra-

ture points than those of the enriched FEM of [15] for numerical integration.

Since no internal knots are repeated in the k-refinement of IGA, the support of

a B-spline function of degree p covers p + 1 (non-void) knot spans for extreme

cases. Hence, the integral region of a B-spline function of degree p should be

divided into p + 1 intervals for accurate integrations since B-splines are piece-

wise polynomial. Therefore, operation counts of enriched PU-IGA with higher

degree of B-spline basis functions might be more than those of FEM in [15].

For the results in Table 5, we use the p-refinement of IGA in which internal

knots are repeated p − 1 times and hence supports of corresponding B-splines

consist of two knot spans. For a comparison of operation counts between PU-

FEM and PU-IGA, suppose each piecewise linear basis function consists of four
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2-dimensional shape functions in FEM. We use B-splines of degrees p = 10 and

q = 10 in the framework of the p-refinement of IGA. Then we may use one

Gauss point per shape function in FEM, whereas we use six Gauss points per

B-spline function of degree 10 on each knot span. Thus, we have the following:

• The number of function evaluations is 9217 × 1 × 4 = 36, 868 (dof ×

Gauss points × number of shape function) in FEM, whereas the number

of function evaluations is 3692 × 36 × 4 = 531, 648 (dof × Gauss points

× number of knot span) in the proposed method. Here, 9217 and 3692,

respectively, are degrees of freedom shown at the last row of Table 5. Since

the polynomials of degree 10 have more terms than linear polynomials, the

proposed method requires much more function evaluations than enriched

FEM for numerical integrations. Since both enriched IGA and enriched

FEM use a similar boundary layer function for enrichment, extra Gauss

points used for evaluations of enrichment functions and PU functions are

not counted.

By the same reasons, if we assume that the bandwidths k of IGA and FEM are

similar, then we have the following.

• The Cholesky factorization costs 9217(k2 + 3k) flops for the enriched PU-

FEM and 3692(k2 + 3k) flops for the enriched PU-IGA, respectively. That

is, the enriched PU-FEM requires more flops for the factorization than

those of the proposed method.

• Since we use higher degree of B-splines and the bandwidth is bigger than
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Figure 9: Relative error plot of 2D convection-diffusion problem, relative errors in
percent when ε = 10−3, a − δ = 0.05, b = 0.5, δ = 0.01 (Left), relative errors in
percent when ε = 10−4, a− δ = 0.005, b = 0.5, δ = 0.001 (Right)

that of FEM generally, even though degree of freedom is much smaller, we

cannot guarantee smaller flops for the factorization overall.

Refer to [45] for detailed discussion for the bandwidths of IGA and FEM.

3. In both cases of ε = 10−3 and ε = 10−4, PU-IGA yields numerical solutions

with relative error 0.00038, which is as small as ε. Since we compare numeri-

cal solutions with the true solution that satisfies the stiff convection-diffusion

equation only upto ε, it has no meaning to pursue more accurate solutions than

those in the column “enriched PU-IGA” and “ PU-IGA adaptive” of Table 5.

4. PU-IGA with adaptive k-refinement and enriched PU-IGA are compared as

follows:

• We use B-splines of high order (6 ≤ p ≤ 12) as basis functions for both
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Figure 10: Numerical solution of 2D singularly perturbed convection-diffusion prob-
lem obtained by enriched PU-IGA when ε = 10−3(Left) and ε = 10−5(Right).

approaches. As shown in Table 5, the enriched PU-IGA yields accurate

solution at low cost (dof = 2784).

• For PU-IGA with adaptive mesh shown in Figure 9, we choose Ω∗3 to be

almost as small as the boundary layer zone and insert knots adaptively

for the k-refinement of the radial direction basis functions, M̃C
l (η), 1 ≤

l ≤ q + 1. In other words, using the PU function Ψ3 with small supports,

basis functions of high degree are constructed inside the boundary layer

zone. Relative errors in the last row of the column “ PU-IGA Adapt

msh” of Table 5 show that PU-IGA with adaptive mesh is as good as

enriched PU-IGA with boundary layer function. The goal we achieve in

this dissertation is to avoid fine mesh around boundary layer; however, we

can note that partition of unity with flat-top makes enrichment simple as

well as refinement.
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5. Figure 10 shows that enriched PU-IGA captures the boundary layer behavior,

and there is no oscillation around boundary layer for both ε = 10−3 and ε =

10−4.

Singularly Perturbed Convection-Diffustion Equation in a Square

To present the effectiveness of the proposed enriched PU-IGA, we compare the

performance of enriched PU-IGA with other numerical methods. For simplicity, we

test enriched PU-IGA to a singularly perturbed convection-diffusion problem on a

square with mild boundary layer effect.

Consider a singularly perturbed convection-diffusion problem with an exponential

layer at the outflow boundary and two characteristic layers given by
−ε∆u− bux + cu = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

(46)

where b = 2 − x, c = 3/2, ε = 10−2, and f is calculated from the following solution

of (46)

u(x, y) =

(
cos

πx

2
− e−x/ε − e−1/ε

1− e−1/ε

)
(1− e−y/

√
ε)(1− e−(1−y)/

√
ε)

1− e−1/
√
ε

.

The function has an exponential boundary layer at x = 0, two characteristic boundary

layers at y = 0 and y = 1, respectively.

To find the inner approximation ui, we introduce a boundary-layer coordinate given

as

x̄ =
x

εα
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Using this boundary-layer coordinate, (46) transforms to

−ε1−2α∂
2u

∂x̄2
− ε∂

2u

∂y2
− 2ε−α

∂u

∂x̄
+ x̄

∂u

∂x̄
+ 2/3u(εαx̄, y) = f(εαx̄, y).

The leading terms are

−ε1−2α∂
2u

∂x̄2
, −2ε−α

∂u

∂x̄
.

By the dominant balancing, α = 1. With this we have the following problem to solve:

−∂
2u

∂x̄2
− 2

∂u

∂x̄
= 0

with the boundary condition u(0, y) = 0. The general solution of this problem is

ui(x, y) = C(1− exp(−2x

ε
))

where C is a constant that we could find by matching condition. We modify the inner

approximation ui and obtain the boundary layer function φ0 for enrichment:

ϕ0(x) = 1− exp(−2x

ε
).

Ω̂1 Ω̂2

a− δ a+ δ

Figure 11: Supports of PU for 2D convection-diffusion problem on a square,
Ω̂1 = [0, a] × [0, 1], Ω̂2 = [a, 1] × [0, 1], where a = 0.1 and δ = 0.05. The supports of
PU functions with flat-top, Ψ1 and Ψ2, are Ω̂∗1 = [0, a + δ] × [0, 1] = supp(Ψ1), and
Ω̂∗2 = [a− δ, 1]× [0, 1] = supp(Ψ2)
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In this problem, the parameter and physical domains are both [0, 1] × [0, 1], and

the geometric mapping G is an identity mapping. For the results shown in Table 6

and Figure 12, we use the following parameters and PU-functions:

We divide the reference domain, Ω̂ = [0, 1] × [0, 1] into two subdomains shown in

the Figure 11:

Ω̂1 = [0, a]× [0, 1], Ω̂2 = [a, 1]× [0, 1], where a = 0.1.

Two PU-function with flat-top are defined by

Ψ̂1(ξ, η) = ψ
(δ,1)
[0,a] (ξ)× η and Ψ̂2(ξ, η) = ψ

(δ,1)
[a,1] (ξ)× η,

where δ = 0.05, ψ
(δ,1)
[0,a] and ψ

(δ,1)
[a,1] are defined by (7). Then, the supports of Ψ̂1 and Ψ̂2,

respectively, are [0, a+δ]× [0, 1] and [a−δ, 1]× [0, 1]. The refinements, B-splines, and

an enrichment function used to get the results shown in Figure 12 are as follows:

1. For the result of “ PU-IGA ”, we use two different sets of basis functions in the

ξ-direction:

(i) the scaled B-splines N̂
[0,a+δ]
k,p+1 (ξ) · ψ(δ,1)

[0,a] (ξ), k = 1, . . . , n1 that are B-spline

functions corresponding to an open knot vector on [0, a + δ], scaled by the PU

function ψ
(δ,1)
[0,a] (ξ).

(ii) the scaled B-splines N̂
[a−δ,1]
l,p+1 (ξ) · ψ(δ,1)

[a,1] (ξ), l = 1, . . . , n2, that are another set

of B-splines corresponding to an open knot vector on [a − δ, 1], scaled by the

PU function ψ
(δ,1)
[a,1] (ξ).

2. For the result of “ Enriched PU-IGA ” of Table 6 and Fig. 12, we use the
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following basis functions:

(i) By the boundary layer analysis, we get the enrichment function φ0(ξ) =

1− e−2ξ/ε . On the boundary layer zone [0, a+ δ]× [0, 1], we use the enrichment

functions Hj(ξ, η) defined by

Hj(ξ, η) =
(
φ0(ξ) · ψ(δ,1)

[0,a] (ξ)
)
×Mj(η), 0 ≤ j ≤ p,

as well as

(
N̂

[0,a+δ]
k,p+1 (ξ) · ψ(δ,1)

[0,a] (ξ)
)
×Mj(η), 2 ≤ k ≤ n1, 0 ≤ j ≤ p,

where Mj(η), j = 0, 1, . . . , p, are Bézier functions of degree p.

Because of the enrichment function φ0(ξ), it is not necessary to use B-splines

corresponding to a fine mesh on the boundary layer zone.

(ii) On [a − δ, 1], we construct B-splines by the k-refinement of IGA in the

ξ-direction.

(
N̂

[a−δ,1]
k,p+1 (ξ) · ψ(δ,1)

[a−δ,1](ξ)
)
×Mj(η), 1 ≤ k ≤ n1, 0 ≤ j ≤ p,

3. For the result of ”IGA with radical mesh refinement”, we use B-splines obtained

by the k-refinement with inserting nξ knots determined by

ri =
( i

nξ + 1

)1/3
, i = 1, . . . , nξ,

where the number of knots, nξ, is increased as the p-degree is elevated.

4. For the result of “ IGA ”, we use the k-refinement of IGA in both ξ- and
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Table 6: Relative errors in L2-norm in percent of 2D convection-diffusion problem on
a square obtained by IGA, PU-IGA, enriched PU-IGA, and IGA with radical mesh
refinement when ε = 10−2

IGA PU-IGA Enrich PU-IGA IGA with Rad msh
dof(p-deg) ‖err‖L2,r(%) dof ‖err‖L2,r(%) dof(p-deg) ‖err‖L2,r(%) dof ‖err‖L2,r(%)

121(6) 8.98E-0 119 2.32E-2 65(4) 4.39E-1 121 1.13E-0
225(8) 1.52E-0 180 1.02E-2 107(6) 7.47E-2 225 9.93E-2

361(10) 1.35E-1 275 1.38E-3 195 (8) 3.81E-3 361 5.07E-3
529(12) 7.84E-3 364 3.10E-4 309 (10) 1.80E-4 529 3.60E-4
729(14) 3.12E-3 495 3.08E-5 449 (12) 7.59E-6 729 9.50E-5

612 2.08E-6 615 (14) 6.14E-7

η-directions.

Even though the boundary layer effect is not very strong (since ε = 10−2 ), we

observe the following from the results shown in Table 6 and Figure 12:

1. Enriched PU-IGA is superior over any other methods (including streamline

diffusion techniques).

2. To get the streamline diffusion method, we multiply the equation (46) by the

test function v + δVβ, where v ∈ H1
0 (Ω), we get

−εδ(4u, vβ) + ε(∇u,∇v) + (β∇u, v) = 0

where β = (−1, 0), δ = Ch if ε < h with C > 0 sufficiently small.

We now formulate the following streamline diffusion method for (46): Find

uh ∈ Vh such that

ε(∇uh,∇v)− εδ(4uh, vβ) + (uhβ, v + δvβ) = 0 ∀v ∈ Vh

where vβ = β · ∇v
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Figure 12: Relative errors in L2-norm in percent for 2D convection-diffusion problem
on a square obtained by IGA, PU-IGA, enriched PU-IGA, and IGA with radical
mesh.

3. One can use only one patch with sufficiently large number of knot insertions in

the k-refinement of IGA to get similar results to enriched PU-IGA. However, in

such case, the degrees of freedom become much lager.

4. When ε gets smaller, one should consider the boundary layer in y direction also

for this problem. Without considering the boundary layer in y direction, we

may not able to get an accurate solution.

4.7 Singulary Perturbed Convection-Diffusion Equation in an Ellipse

We consider the same convection-diffusion problem on an ellipse.
−ε4u− uy = f(x, y) in Ω

u = 0 on ∂Ω

(47)

where 0 < ε� 1, Ω is an ellipse centered at (0, 0) and one radius along the x-axis is

2r and the other along the y-axis is r. The function f is as smooth as needed.
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The geometry mapping G : Ω̂ −→ Ω is defined by

G(ξ, η) = (x(ξ, η), y(ξ, η) = (2(1− η) cos 2πξ, (1− η) sin 2πξ)

where η = 1− r, r is the distance to the origin along the y-axis and 2πξ is the polar

angle from the origin of the ellipse. We define the reference domain Ω̂ = [0, 1]× [0, 1]

and divide the domain into two patches, Ω̂1 = [0, 1]×[0, b+δ] and Ω̂2 = [0, 1]×[b−δ, 1].

To find the boundary layer approximation ui, we pullback the problem (47) to the

reference domain. Using the stretched variable, η̄ =
η

εα
. we obtain the transformed

equation of (47).

3ε

4π(1− εαη̄
sin 2πξ cos 2πξ

∂û

∂ξ
− ε

4π2(1− εαη̄2
(
1

4
sin2 2πξ + cos2 2πξ)

∂2û

∂ξ2

+
ε1−α

1− εαη̄
(
1

4
sin2 2πξ + cos2 2πξ)

∂û

∂η̄
+

ε1−α

2π(1− εαη̄)
sin 2πξ cos 2πξ

∂2û

∂η̄∂ξ

−ε1−2α(
1

4
sin2 2πξ + cos2 2πξ)

∂2û

∂η̄2
− 1

2π(1− εαη̄)
cos 2πξ

∂û

∂ξ
+ ε−α sin 2πξ

∂û

∂η̄
= f(G(ξ, η))

Dominating terms are

−ε1−2α(
1

4
sin2 2πξ + cos2 2πξ)

∂2û

∂η̄2
, ε−α sin 2πξ

∂û

∂η̄
.

Therefore, a consistent scaling is possible if we select α = 1. Because we are interested

only in the leading-order approximation, we obtain

−(
1

4
sin2 2πξ + cos2 2πξ)

∂2û

∂η̄2
+ sin 2πξ

∂û

∂η̄
= 0

The general solution is

ui = C1 + C2 exp(
sin 2πξ

1/4 cos2 2πξ + sin2 2πξ)
η̄), 1/2 < ξ < 1
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Because the boundary layer is located near η = 0, we apply the boundary condition

û = 0 at η = 0, and so

ui = C1(1− exp(
sin 2πξ

1/4 cos2 2πξ + sin2 2πξ
· η
ε

), 1/2 < ξ < 1

We modify the boundary layer approximation to get our boundary layer function φ0

for enrichment, plugging ξ = 3/2 in for the numerical simulation:

ϕ0 = 1− exp(−η
ε

).

Applying the proposed enriched PU-IGA similarly as the circular case of the previous

section, we believe to have an accurate numerical solution of the singularly perturbed

problem in an ellipse.



CHAPTER 5: SINGULARLY PERTURBED PARABOLIC EQUATION IN A
CIRCLE

5.1 Introduction

We consider the two-dimensional singularly perturbed heat equation of the form

∂u

∂t
− ε4u = f, in Ω× (0, T )

u(x, y, t) = 0, on ∂Ω× (0, T )

u(x, y, 0) = u0(x, y), on Ω

(48)

where 0 < ε � 1 is the heat conductivity and Ω is the unit circle centered at (0,

0). The functions f and u0 are assumed to be sufficiently regular. We also assume

the compatibility condition

u0 = 0 on ∂Ω.

Most of the numerical methods used to solve singularly perturbed parabolic problems

are based on the finite difference methods with fine mesh on the rectangular domain,

[43], [44], [46] and [47]. For time-dependent problems, mesh refinement is costly since

we need to solve the linear system at every time step. In [17], instead of using fine

mesh refinement on the boundary layer zone, the author use the conventional FEM

enriched with boundary layer correctors. In this dissertation, we use B-spline basis

functions enriched with boundary layer approximation developed by the boundary

layer analysis. We can avoid the costly mesh refinements by enriching the approxi-
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mation space on the circular domain. We believe this enriched PU-IGA should also

be applicable to many other types of time-dependent singularly perturbed problems

such as reaction-diffusion equations.

5.2 Discretization

The semi-discrete analogue of (48) will be based on the variational formulation:

Find u(t) ∈ V , t ∈ I such that
(u̇(t), v) + a(u(t), v) = (f(t), v) for all v ∈ V , t ∈ I,

u(0) = u0.

(49)

Now, let Vh be a finite-dimensional subspace of V with basis {ϕ1, ϕ2, ..., ϕN︸ ︷︷ ︸
B−spline

, ϕN+1, ..., ϕN+M︸ ︷︷ ︸
enrichment

}.

We find the following semi-discrete analogue of (49): Find uh(t) ∈ Vh, t ∈ I, such

that 
(u̇h(t), v) + a(un(t), v) = (f(t), v) ∀v ∈ Vh, t ∈ I,

(uh(0), v) = (u0, v) ∈ Vh.

(50)

For a full discretization, we apply the unconditionally stable backward Euler method

to the semi-discrete problem (50). Now, we seek approximations uhn ∈ Vh of u(., tn), n =

0, ..., N , satisfying
(
unh − un−1

h

kn
, v) + a(unh, v) = (f(tn), v) ∀v ∈ Vh, n = 1, 2, , .., N,

(u0
h, v) = (u0, v) ∀v ∈ Vh.

(51)

The classcial time-discretization method, the backward Euler method, satisfies the

stability condition, which is stable regardless of the size of the time steps kn; namely,
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this method is unconditionally stable.

5.3 Boundary Layer Analysis

The unperturbed problem of (48), namely when ε −→ 0, is
∂u

∂t
= f, in Ω× (0, T )

u(x, y, 0) = u0(x, y) on Ω.

(52)

We find the explicit solution

uouter(x, y, t) = u0(x, y) +

∫ t

0

f(x, y, s)ds.

Define a geometric mapping G : [0, 1]× [0, 1] −→ Ω by

G(x, y) = ((1− η) cos 2πξ, (1− η) sin 2πξ).

To investigate the boundary layer in the circular domain, we pull back the (48) to

the reference domain by the geometry mapping, G. Using the change of variables, we

obtain

∂u

∂x
= − sin 2πξ

2π(1− η)

∂û

∂ξ
− cos 2πξ

∂û

∂η
,

∂u

∂y
= − cos 2πξ

2π(1− η)

∂û

∂ξ
− sin 2πξ

∂û

∂η
.

4u =
∂2u

∂x2
+
∂2u

∂y2
=
∂2û

∂η2
− 1

1− η
∂û

∂η
+

1

(1− η)2

∂2û

∂ξ2
.

The equation (48) becomes

∂u

∂t
− ε4u =

∂û

∂t
− ε∂

2û

∂η2
− ε

4π2(1− η)2

∂2û

∂ξ2
+

ε

1− η
∂û

∂η
= f(G(ξ, η)).
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We look for the expansion of u at fist order:

u ' uouter + uinner

where uouter is the solution of (52), and uinner is the first order boundary layer ap-

proximation. Setting f = 0 in (48), we introduce the stretched variable to find the

boundary layer approximation.

η̄ =
η

εα

The parabolic problem (48) is transformed to

∂û

∂t
− ε1−2α∂

2û

∂η̄2
− ε

4π2(1− εαη̄)2

∂2û

∂ξ2
+

ε1−α

1− εαη̄
∂û

∂η̄
= 0.

The coefficients of the terms in the differential equation are

1, ε1−2α, ε, ε1−α

To determine α, we estimate these magnitudes by dominant balancing. The domi-

nating terms are

∂û

∂t
− ε1−2α∂

2û

∂η̄2
= 0.
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A consistent scaling is possible if we select α = 1/2. We obtain the equations for

boundary layer approximation:

∂u

∂t
− ∂2u

∂η̄2
= 0, in Ω× (0, T )

u(0, t) = −uouter at η̄ = 0

u(x, 0) = 0

u −→ 0, as η̄ −→∞

(53)

We refer to [17] for the details. The solution of (53) is

uinner = −
∫ t

0

I(η, t− s)∂uouter
∂t

(ξ, 0, s)ds,

where

I(x, t) = erfc(
x√
2εt

),

erfc(z) = 1− erf(z) =

√
2

π

∫ ∞
z

exp(−y
2

2
)dy,

erf(z) =

√
2

π

∫ z

0

exp(−y
2

2
)dy.

We refer to [4] for the details.

5.4 1D Numerical Results

We present the numerical result of a one-dimensional singularly perturbed parabolic

problem using the standard IGA and enriched PU-IGA.

We do not use the boundary layer approximation directly since the term I(η, t −

s) is not convenient for the integration. Instead, we modify the boundary layer
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approximation and obtain a boundary layer function φ0 for enrichment:

uinner ∼
∫ t

0

I(η, t− s)ds, f is bounded

=

∫ t

0

1− 1√
πεt

exp(− η2

4εt
)ds

∼ 1− 1√
πεt

exp(− η2

4εt
), t is bounded

≡ φ0(η, t).

Consider the singularly perturbed problem:

ut − εuxx = f(x, t), on (0, 1)× (0, T )

u(0, t) = u(1, t) = 0, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ (0, 1).

(54)

We choose the exact solution u as

u = t(1− exp(− x√
ε

) cos(
x√
ε

))(1− cos(
1− x√
ε

)exp(−1− x√
ε

)).

Hence, f is computed from (54). We have two boundary layers at the end points of

the interval (0, 1). Similarly, we could derive the boundary layer function at x = 1.

Since φ0 depends on time, we need to calculate different boundary layer functions

for each time step. To improve computational efficiency, we introduce the modified

time-independent boundary layer elements φ0 and φ1 such that
φ0(x) = 1− exp(−x

2

4ε
)ψ1(x),

φ1(x) = 1− exp(−(1− x)2

4ε
)ψ3(x),

(55)

where PU functions ψ1 and ψ3 are used to avoid the singularity of φ at x = 0 and
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x = 1:

ψ1(η) =



0, if η ∈ [a+ δ, 1]

φRg2(
η − (a− δ)

2δ
, if η ∈ [a− δ, a+ δ]

1, if η ∈ [0, a− δ]

ψ3(η) =



0, if η ∈ [0, b− δ]

φLg2(
η − (b+ δ)

2δ
, if η ∈ [b− δ, b+ δ]

1, if η ∈ [b+ δ, 1]

where 
φRg2(x) = (1− x)2(1 + 2x)

φLg2(x) = (1 + x)2(1− 2x).

Figure 13: Numerical solution of 1D singularly perturbed parabolic problem obtained
by standard IGA(left) and enriched PU-IGA (right), ε = 10−5, N = 25,M = 2,
4h = 0.5, h-refinement

We present numerical results of (54) using the standard IGA and enriched PU-IGA,

which is enriched by the boundary layer function. In Figures 13 and 14, we observe
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Figure 14: Numerical solution of 1D singularly perturbed parabolic problem obtained
by standard IGA(left) and enriched PU-IGA (right) with smaller h, ε = 10−5, N =
121,M = 2, 4h = 0.1, h-refinement

Table 7: Maximum errors of 1D parabolic problem obtained by standard IGA and
enriched PU-IGA , h-refinement, p = 12

4h DOF IGA Enriched PU-IGA

1 13 0.6084 2.0256E-002
0.5 25 0.3545 6.8586E-003
0.1 121 2.0443E-002 6.4348E-013

that standard IGA produces oscillations near the boundary; however, enriched PU-

IGA captures the sharp transition near the boundary. From Table 7, we observe that

the errors of enriched PU-IGA is significantly smaller than those of standard IGA.

We believe that we can obtain an accurate numerical solution for two-dimensional

parabolic problems on a circle with developed enrichment functions.

5.5 Error Estimates for Fully Discrete Approximations

We obtain an error estimate for the backward Euler scheme with Vh piecewise linear

finite space from [20].

Theorem 5. Let Un be the numerical solution of (51) and u be the solution of (48)
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Table 8: Maximum error and space convergence rate of 1D parabolic problem, h-
refinement in space direction, with p = 1, 4k = 0.001

4h DOF Error Convergence Rate

1 2 0.8671 0.56577648602290742
0.5 3 0.5858 1.2734234229268424
0.1 11 7.5459E-002 1.9739747308538562
0.05 21 1.9208E-002 1.9825994760155063
0.01 101 7.9015E-004 1.9609085209372052
0.005 201 2.0296E-004

for n = 1, ..., N . Then, there is a constant C such that

max
t∈I
‖u(t)− U(t)‖ ≤ C(max

n≤N
kn‖u̇‖∞,I,n + max

t∈I
h2‖u(t)‖H2(Ω)). (56)

Here, the first term bounds the time discretization error, and the second term

bounds the space discretization error. Note that this error estimation is for lin-

ear finite element space. We present numerical results of one-dimensional parabolic

problem (54) using linear IGA to show that the convergence rates from the numerical

test support Theorem 5. For a numerical test for the error estimate, we consider (54)

with the true solution:

u = exp(−xt)
(
1− exp(− x√

ε
) cos(

x√
ε

)
)(

1− cos(
1− x√
ε

)exp(−1− x√
ε

)
)
.

We use boundary layer functions (55) developed in the last section. We calculate the

convergence rate for h and k, by

log
ei+1

ei

log
ti+1

ti

where ei is error at the time level ti. Tables 8 and 9 show that the convergence rate

for space h is about two, and the convergence rate for time t is about one, which

support Theorem 5. We generally use higher degrees of B-spline basis functions for
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Table 9: Maximum error and convergence rate obtained by IGA, h-refinement in
space direction, with p = 1, 4h = 0.01

4k DOF Error Convergence rate

1 101 0.15387 0.84659173615218630
0.5 101 8.5569E-002 0.93983918732470273
0.1 101 1.8853E-002 0.97872058935658002
0.05 101 9.5670E-003 0.98369693616531739
0.01 101 1.9642E-003 0.96873175100314268
0.005 101 1.0036E-003

IGA, and we will pursue to prove error estimates for a higher order approximation

space in later work.



CHAPTER 6: FOURTH ORDER DIFFERENTIAL EQUATIONS CONTAINING
SINGULARITIES

6.1 Introduction

We consider the fourth order equations with clamped boundary condition on a

cracked disk. 

42u = f in Ω

u(1, θ) =
∂u

∂n
(1, θ) = 0 on ∂Ω

u(r, 0) = u(r, 2π) = 0

∂u

∂y
(r, 0) =

∂u

∂y
(r, 2π) = 0

where Ω is the cracked unit disc centered at (0, 0).

The Galerkin method for fourth order differential equations requires at least C1-

continuous basis functions, which is a challenging task for the classical FEM. In

Isogeometric Analysis in which NURBS basis functions are used for design as well as

analysis, one can construct the basis functions with any regularity easily.

However, the standard IGA is not able to yield reasonable solutions to the fourth-

order equations containing singularities. Hence, the B-spline functions are enriched

by singular functions that resemble the singularities of the fourth-order equation on

the cracked domain.

But, such enrichment methods as GFEM or X-FEM usually encounter large con-

dition numbers of stiffness matrix and integrals of singular functions. We propose



84

a mapping method to overcome these limitations of the enriched Galerkin method

in which enrichment functions are externally added to approximation spaces. In the

frame of FEM, a mapping method for the elasticity equations on cracked domain,

was introduced in [29]. Also, in the frame of IGA, a mapping method for second

order PDEs with singularities was introduced in [35]. We generalize the proposed

mapping method introduced in [35] and apply it to fourth-order equations containing

singularities.

Enriched PU-IGA, which is developed to handle the singularly perturbed problems

in previous chapters, is extended to solve the fourth-order equation with singularities.

In singularly perturbed problems, we approximate the boundary layer functions on

the reference domain and then push-forward them to the physical domain to construct

enrichment basis functions. Now, we consider fourth order PDEs with domain singu-

larities whose asymptotic behaviors are known. First, we apply enriched PU-IGA in

which we add singular functions into the approximation space directly. Secondly, we

propose a new approach in which we construct a singular geometric mapping from

the reference domain onto the physical domain that generates singular basis functions

on the physical domain, referred to as PU-IGA with Mapping Method.

Enriched PU-IGA with external enrichment functions gives an accurate numerical

solution but yields large condition numbers and has singular integrals. However,

PU-IGA with Mapping Method does not have large condition numbers nor integrals

of singular functions because the singular basis functions are generated through a

particular geometric mapping without introducing external enrichment functions.
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6.2 Condition Number and 1D Model Problem

The condition number κ(A) of A is defined by

κ(A) =
λmax
λmin

where λmax = maxλj, λmin = minλj, λj, j = 1, . . . ,M are positive eigenvalues of A.

For a problem of order four such as the biharmonic problem, one has κ(A) = O(h−4).

These estimates hold if the finite element mesh is quasi-uniform, i.e, all elements

have roughly the same size, and if the usual minimum angle assumption is valid

[20]. We can see that the condition number of a fourth-order equation is higher than

that of a second-order equation. Furthermore, an enriched Galerkin method has a

much higher condition number than that of a Galerkin method without enrichment.

Thus, we expect to have a higher condition number of the fourth-order equation with

enriched PU-IGA.

Consider the following one-dimensional model problem with clamped boundary

conditions: 
u(4)(x) = f(x) in (a, b)

u(a) = u′(a) = 0

u(b) = u′(b) = 0

(57)

Let V = {w ∈ H2(a, b) : w,w′ ∈ H1
0 (a, b)} . Multiplying the equation by an arbitrary

function v ∈ V and using integration by part along with clamped boundary condition,

we have ∫ b

a

u(4)vdx =

∫ b

a

u(2)v(2)dx =

∫ b

a

fvdx ∀v ∈ V .
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Thus the variational equation is

B(u, v) ≡
∫ b

a

u(2)v(2)dx =

∫ b

a

fvdx ≡ F(v), ∀v ∈ V .

We construct an example of a fourth-order equation containing singularity of the

type xα. To determine how strong the intensity of singularity α is allowed, we prove

the following lemma.

Lemma 6. Suppose v ∈ H2
0 (a, b), 0 ≤ a < b. Then,

(1) |v(x)| < Cx1.5

(2) |
∫ b

a

xα−4v(x)dx| <∞ if α > 1.5.

Proof. (1) Since v(x) ∈ H2
0 (a, b), v′(x) ∈ H1

0 (a, b), then |v′(x)| < Cx0.5, C ∈ R by

Theorem 7.17 in [8]. Hence we have

|v(x)| = |
∫ x

a

v′(t)dt| ≤ C

∫ x

0

t0.5dt ≤ Cx1.5.

(2)
∣∣∣ ∫ b

a

xα−4v(x)dx
∣∣∣ < C

∫ b

0

xα−4x1.5dx to be integrable,

α− 4 + 1.5 > −1. Therefore, α > 1.5.

6.3 Enriched PU-IGA

For simplicity, we assume that the physical domain is the same as the reference

domain. Therefore, B-spline functions N̂i,p+1(ξ) and their push-forwards Ni,p+1(x)

onto the physical domain are same. Consider a fourth-order equation containing
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singularities ξα and ξα/2+1 with 1.5 < α < 2 (due to Lemma 6).

I. Partition of the physical domain

We divide the physical domain into singular, Ωsing = [0, 0.4] and regular zones,

Ωreg = [0.3, 1].

II. Construct C1-continuous B-spline functions

We present PU-IGA with the p-refinement as well as with the k-refinement of IGA.

Consider the following two open knot vectors that correspond to the p-refinement and

the k-refinement, respectively:

Ξp =
{

0, .., 0︸ ︷︷ ︸
p+1

, 0.1, .., 0.1︸ ︷︷ ︸
p−1

, 0.2, .., 0.2︸ ︷︷ ︸
p−1

, .., 0.8, .., 0.8︸ ︷︷ ︸
p−1

, 0.9, .., 0.9︸ ︷︷ ︸
p−1

, 1, .., 1︸ ︷︷ ︸
p+1

,
}

(58)

Ξk =
{

0, . . . , 0︸ ︷︷ ︸
p+1

, 0.1, 0.2, . . . 0.8, 0.9, 1, . . . , 1︸ ︷︷ ︸
p+1

}
. (59)

Then we have C1-continuous B-spline functions according to (58) and Cp−1-continuous

B-spline functions according to (59). The corresponding approximation spaces for the

p-refinement and the k-refinement, respectively, are as follows:

Vp = {Nk,p+1(x) | k = 1, . . . , 10p− 8}, (60)

Vk = {Nk,p+1(x) | k = 1, . . . , p+ 10}. (61)

III. Boundary Conditions

To satisfy the clamped boundary conditions at both ends with the B-spline func-

tions (60) and (61), we consider the following two approaches.

• Discarded The first two and the last two B-spline functions from (60) and (61)
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are discarded.

VpI =
{
Ni(ξ) : 3 ≤ i ≤ 10p− 10

}
,

VkI =
{
Ni(ξ) : 3 ≤ i ≤ p+ 8

}
.

• Modified The first two and the last two B-spline functions from (60) and (61)

are modified by PU functions with flat-top as follows:

pN∗i (ξ) =


Ni(ξ)× ψR(ξ + 0.02), if i = 1, 2,

Ni(ξ)× ψL(ξ − 0.45), if i = 10p− 9, 10p− 8

kN∗i (ξ) =


Ni(ξ)× ψR(ξ + 0.02), if i = 1, 2,

Ni(ξ)× ψL(ξ − 0.45), if i = p+ 9, p+ 10

Now modified C1-continuous B-spline approximation functions for the p-refinement

and the k-refinement, respectively, are as follows:

VpII = VpI ∪ {
pN∗1 ,

pN∗2 ,
pN∗10p−8,

pN∗10p−9} (62)

VkII = VkI ∪ {kN∗1 , kN∗2 , kN∗p+9,
kN∗p+10}

where

ψR(ξ) =


0 if ξ ≤ 0.02

Npu
5 (ξ) +Npu

6 (ξ) if 0.02 ≤ ξ ≤ 0.06

1 if 0.06 ≤ ξ
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ψL(ξ) =


1 if ξ ≤ 0.5

Npu
7 (ξ) +Npu

8 (ξ) if 0.5 ≤ ξ ≤ 0.55

0 if 0.55 ≤ ξ

and Npu
j is B-spline function corresponding to the knot vector:

Ξpu =
{

0, .., 0︸ ︷︷ ︸
4

, 0.02, 0.02︸ ︷︷ ︸
2

, 0.06, 0.06︸ ︷︷ ︸
2

, 0.5, 0.5︸ ︷︷ ︸
2

, 0.55, 0.55︸ ︷︷ ︸
2

, 0.8, 0.8︸ ︷︷ ︸
2

, 1, .., 1︸ ︷︷ ︸
4

}
IV. Approximation Space

Two singular enrichment functions, ξα and ξα/2+1, are added to the basis functions

listed above. We define a modified and enriched C1-continuous approximation space

as union of scaled enrichment functions and family of basis functions in (62).

Enriched p-refinement of PU-IGA

Construct two PU functions with flat-top ψ2 and ψ∗2 by the B-spline functions

generated by the knot vector Ξp defined by (58). Notice that the two PU functions

change as the p-degree varies. We divide the domain into two patches, which are the

supports of these two PU functions. The local approximation functions on the two

patches are the same set of B-splines generated by Ξp. Additionally, two enrichment

functions are added to the family of B-splines.

The two PU functions ψ2 and ψ∗2 are constructed by:

ψ2(ξ) =

3p−1∑
j=1

Np
j (ξ) =


1 if 0 ≤ ξ ≤ 0.3,

Np
3p−2(ξ) +Np

3p−1(ξ) if 0.3 ≤ ξ ≤ 0.4,

0 if 0.4 ≤ ξ

ψ∗2(ξ) = 1− ψ2(ξ)
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Enrichment functions N s
i are scaled by PU function ψ2 :

N s
i (ξ) =


ξα × ψ2(ξ), if i = 1,

ξα/2+1 × ψ2(ξ), if i = 2.

Now define a modified and enriched C1-continuous approximation space as follows:

Vprich = {N s
1 , N

s
2} ∪ {ψ2(ξ)Nk(ξ) : 1 ≤ k ≤ 4p− 2, Nk(ξ) ∈ VpII}

∪ {ψ∗2(ξ)Nk(ξ) : 3p− 2 ≤ k ≤ 10p− 8, Nk(ξ) ∈ VpII}. (63)

Note that the number of basis functions used in this approach is

card(Vprich) = 11p− 5.

This approach gives accurate solution but, yields large matrix condition numbers.

Hence, in order to reduce condition numbers, next consider another approach that

reduces a number of B-spline basis functions in the singular zone, the support of

ψ2. Moreover, since the maximum error occurs over the common non flat-top zone

[0.3, 0.4] of two PU functions ψ2 and ψ∗2, we choose PU functions that have a smaller

non flat-top zone [0.35, 0.4].

Reduced, enriched p-refinement of IGA

Consider

Ξp =
{

0, . . . , 0︸ ︷︷ ︸
p+1

, 0.1, .., 0.1︸ ︷︷ ︸
p−1

, 0.2, .., 0.2︸ ︷︷ ︸
p−1

, 0.3 + δ∗, .., 0.3 + δ∗︸ ︷︷ ︸
p−1

, 0.4, .., 0.4︸ ︷︷ ︸
p−1

, . . . , 0.9, .., 0.9︸ ︷︷ ︸
p−1

, 1, .., 1︸ ︷︷ ︸
p+1

}
,
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with δ∗ = 0.05. We define a PU function as follows:

ψ̃2(ξ) =


1 if 0 ≤ ξ ≤ 0.3 + δ∗,

N3p−2(ξ) +N3p−1(ξ) if 0.3 + δ∗ ≤ ξ ≤ 0.4,

0 if 0.4 ≤ ξ,

Enrichment functions N s
i (ξ) are scaled by PU function ψ̃2:

N s
i (ξ) =


ξα × ψ̃2(ξ), if i = 1,

ξα/2+1 × ψ̃2(ξ), if i = 2,

ξ2 × ψ̃2(ξ), if i = 3.

The corresponding approximation space is as follows:

Wp
rich2 = {N s

1 , N
s
2 , N

s
3} ∪ {Nk(ξ) : 3p ≤ k ≤ 10p− 8, Nk(ξ) ∈ VpII}.

Let us note the following:

1. card(Wp
rich2) = 7p− 4� card(Vprich) = 11p− 5.

2. 1 =
∑10p−8

k=1 Nk(ξ) =
∑3p−1

i=1 Ni(ξ) +
∑10p−8

k=3p Nk(ξ) = ψ̃2(ξ) +
∑10p−8

k=3p Nk(ξ) on

[0, 1].

3. Numerical results, presented in Table 10, show that condition numbers are

reduced by half, but accuracy is also decreased by more than two orders of

magnitude.
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Enriched k-refinement of IGA

Since the B-spline functions generated by the knot vector Ξk are highly regular, we

consider two C2-continuous PU functions defined as follows:

ψ3(ξ) =


1 if 0 ≤ ξ ≤ 0.3,

(4− 10x)3(600x2 − 330x+ 46) if 0.3 ≤ ξ ≤ 0.4,

0 if 0.4 ≤ ξ,

ψ∗3(ξ) = 1− ψ3(ξ).

Two enrichment functions are scaled by a PU function with flat-top, ψ3.

N s
j (ξ) =


ξα × ψ3(ξ), if j = 3

ξα/2+1 × ψ3(ξ), if j = 4

A modified and enriched approximation space is as follows:

Vkrich = {N s
3 , N

s
4} ∪ {ψ3(ξ)Ni(ξ) : 1 ≤ i ≤ p+ 4, Ni(ξ) ∈ VkII}

∪ {ψ∗3(ξ)Ni(ξ) : 4 ≤ i ≤ p+ 10, Ni(ξ) ∈ VkII} (64)

Note that:

1. card(Vkrich) = 2p+ 13� card(Vprich) = 11p− 5

2. Numerical results, presented in Tables 10 and 11, show that the condition num-

bers are about one half of the enriched p-refinement of IGA because the degree

of freedom is significantly smaller.

Both enriched p-refinement and k-refinement of IGA yield accurate solutions. How-

ever, their condition numbers are still large. Furthermore, since enrichment functions
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and their derivatives are singular, this method fails to give reasonable solutions with-

out special treatment for accurate integrals.

V. Substitution method to deal with singular integrals

We use a special substitution method to treat singular integrals.

1. Let T (x) = xβ be a substitution function, whose exponent β is determined by

the strongest singular term.

∫
[a,b]

((ξα)′′)2dξ = C

∫
[a,b]

ξ2(α−2)dξ = C

∫
T−1([a,b])

x2(α−2)βxβ−1dx

Choose β for this to be a regular integral:

2(α− 2)β + β − 1 ≥ 0, that is β ≥ 1

2α− 3
.

2. Since α = 1.6, we select a substitution function T : [0, 0.41/5] −→ [0, 0.4] defined

by ξ = T (x) = x5. Then this substitution function converts a singular to a

regular integral. For example,

∫ 0.3

0

[(ξ1.6)′′]dξ =

∫ 0.31/5

0

0.96(T (x)−0.4)5x4dx =

∫ 0.31/5

0

4.8x2dx

3. The p-refinement of PU-IGA For Nj, N
s
i ∈ V

p
rich of (63), we compute the

bilinear form by the substitution method as follows:

B(N s
i , Nj) =

3∑
k=0

∫ ak+1

ak

N
(2)
j (T (x))(N s

i )(2)(T (x))5x4dx

F(N s
i ) =

3∑
k=0

∫ ak+1

ak

f(T (x))(N s
i (T (x))5x4dx

where ai = T−1(xi), xi = 0.1, 0.2, 0.3, 0.4.
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4. The k-refinement of PU-IGA For Nj, N
s
i ∈ Vkrich of (64), we compute the

bilinear form by the substitution method as follows:

B(N s
i , Nj) =

3∑
k=0

∫ ak+1

ak

N
(2)
j (T (x))(N s

i )(2)(T (x))5x4dx

F(N s
i ) =

3∑
k=0

∫ ak+1

ak

f(T (x))(N s
i (T (x))5x4dx

where ai = T−1(xi), xi = 0.1, 0.2, 0.3, 0.4.

6.4 Enriched PU-IGA with Mapping Method

In this section, we propose a mapping method that reduces the matrix condition

number and does not have singular integrals caused by adding external enrichment

functions to the approximation spaces. The proposed mapping method generates

singular functions through a mapping from the reference domain onto the singular

zone. Then, the condition number is as small as that of IGA with no enrichment.

Moreover, singular integrals do not appear in computation of stiffness matrices.

Consider a fourth order equation whose true solution is

u(x) = x1.6 − 2x1.8 + x2,

which is singular at the left end of the physical domain Ω = [0, 1]. Note that the

physical domain is the same as the reference domain.

I. Partition of the physical domain and construction of Mappings

We divide the domain into singular Ωsing = [0, 0.5] and regular zones Ωreg = [0.4, 1].

Next, we define two mappings to construct singular basis functions on a singular
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zone and regular basis functions on a regular zone, respectively,

F : Ω̂ = [0, 1] −→ Ωsing, G : Ω̂ = [0, 1] −→ Ωreg,

defined by

x = F (ξ) = 0.5 · ξ5, x = G(ξ) = 0.6ξ + 0.4. (65)

Then we have

G−1(x) =
x− 0.4

0.6
, G−1([0.4, 0.5]) = [0, 1/6], F−1([0.4, 0.5]) = [0.80.2, 1].

The selection of F and G depend on the strength of singularity. More specifically,

the mappings (65) correspond to the intensity of singularity α = 1.6. The inverse

mapping ξ = F−1(x) brings

ξ8, ξ9, ξ10, ξ15, ξ20, . . . ξ5k

in the reference domain to

(2x)1.6, (2x)1.8, (2x)2, (2x)3, (2x)4, . . . , (2x)k

in the physical domain. These functions satisfy the clamped boundary conditions at

x = 0.

Note that push-forwards ξk, k ≤ 7, through F mapping, are not acceptable basis

functions in the physical domain.

ξk ◦ F−1(x) = (2x)k/5 < (2x)7/5 = (2x)1.4.

This cannot be a basis function on the physical domain since its second derivative is
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not integrable by Lemma 6.

II. C1-continuous PU functions with flat-top on the physical domain

Note that we can construct PU on the reference domain for enriched PU-IGA.

However, for the Mapping Method, we need to construct PU on the physical domain

since we have a singular geometry mapping to a singular zone and a regular geometry

mapping to a regular zone, respectively, through which push-forwards of PU on the

reference domain can no longer be PU on the physical domain.

Let us define two PU functions on the physical domain as follows:

ψ4(x) =


1 if 0 ≤ x ≤ 0.4

(5− 10x)2(20x− 7) if 0.4 ≤ x ≤ 0.5

0 if 0.5 ≤ x ≤ 1

(66)

=


1 if x ∈ [0, 0.4]

N5,4(x) +N6,4(x) if x ∈ [0.4, 0.5]

0 if x ∈ [0.5, 1]

ψ∗4(x) = 1− ψ4(x) (67)

Pull-backs of these PU functions are

ψ̂4(ξ) = ψ4 ◦ F, ψ̂∗4(ξ) = ψ∗4 ◦G.

Here, Nk,4(x), 1 ≤ k ≤ 14 are the B-spline functions corresponding to the following

knot vector

{0 . . . 0︸ ︷︷ ︸
4

, 0.2, 0.2︸ ︷︷ ︸
2

, 0.4, 0.4︸ ︷︷ ︸
2

, 0.5, 0.5︸ ︷︷ ︸
2

, 0.6, 0.6︸ ︷︷ ︸
2

, 0.8, 0.8︸ ︷︷ ︸
2

, 1 · · · 1︸ ︷︷ ︸
4

}.
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Note that

ψ4(x) + ψ∗4(x) = 1, ∀x ∈ Ω, but ψ̂4(ξ) + ψ̂∗4(ξ) 6= 1, ∀ξ ∈ Ω̂.

Pull-back of PU functions through different mappings are not PU functions on the

reference domain.

The physical and the reference domains are partitioned as follows:

Ω = [0, 0.4] ∪ [0.4, 0.5] ∪ [0.5, 1],

Ω̂F = [0, 0.80.2] ∪ [0.80.2, 1], Ω̂G = [0, 1/6] ∪ [1/6, 1].

Non flat-top zones of ψ̂4 and ψ̂∗4 are [0.80.2, 1] and [0, 1/6], respectively.

III. Basis functions on the reference domain

We construct monomials for the singular zone and B-splines for the regular zone,

respectively.

V̂F = ψ̂4(ξ)× {M̂1 = ξ8, M̂2 = ξ9, M̂1+k = ξ5k, k = 2, 3, 4} (68)

V̂pG = ψ̂∗4(ξ)× {N̂k,p+1(ξ) : k = 1, . . . , 2p− 1}, (69)

where ψ̂4 and ψ̂∗4 are defined by (66) and (67), and N̂k,p+1(ξ) are B-spline functions

corresponding to the following knot vector:

Ξ = {0 · · · 0︸ ︷︷ ︸
p+1

, 1/p+ 1︸ ︷︷ ︸
1

, 2/p+ 1︸ ︷︷ ︸
1

, · · · , p/p+ 1︸ ︷︷ ︸
1

, 1 · · · 1︸ ︷︷ ︸
p+1

}.

For the singular zone, the push-forwards of these monomial basis functions (68)

through F mapping resemble the singularities. For the regular zone, the last two

B-spline functions in V̂pG were discarded to satisfy the clamped boundary conditions.
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Then, we have the number of basis functions as follows:

card(V̂F ∪ V̂pG) = 2p+ 4.

IV. Bilinear Form and load vector

We have the following two lemmas for calculation of bilinear forms and load vectors.

Their proofs are straightforward.

Lemma 7. If û(ξ) = (u ◦ F )(ξ), then

uxx ◦ F = ûξξ

(
(
dF

dξ
)−1
)2

+ ûξ

(
(
dF

dξ
)−1
)
ξ
(
dF

dξ
)−1

= (ûξξ)(16ξ−8) + (ûξ)((−16)ξ−5)(4ξ−4)

= 0.16
(
ûξξξ

−8 − 4ûξξ
−9
)
. (70)

Lemma 8. If ŵ(ξ) = (w ◦G)(ξ), then

wxx ◦G = ŵξξ

(
(
dG

dξ
)−1
)2

+ ŵξ

(
(
dG

dξ
)−1
)
ξ
(
dG

dξ
)−1

= ŵξξ(
1

0.36
). (71)

Bilinear forms are one of the following three cases.

1. Bilinear form for two basis functions in VF

Suppose u = û ◦ F−1, v = v̂ ◦ F−1, where û = ψ̂4(ξ) · M̂k and v̂ = ψ̂4(ξ) · M̂l are in

V̂F . By Lemma 7 , we have

B(u, v) =

∫ 0.5

0

uxxvxxdx =

∫ 1

0

(uxx ◦ F )(vxx ◦ F )|J(F )|dξ

=
(∫ 0.82

0

+

∫ 1

0.82

)
(uxx ◦ F )(vxx ◦ F )|J(F )|dξ

= (0.162)
(∫ 0.82

0

+

∫ 1

0.82

)(
ûξξξ

−8 − 4ûξξ
−9
)(
v̂ξξξ

−8 − 4v̂ξξ
−9
)
|J(F )|dξ
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= (0.162)

∫ 0.82

0

(
(M̂k)ξξξ

−8 − 4(M̂k)ξξ
−9
)(

(M̂l)ξξξ
−8 − 4(M̂l)ξξ

−9
)
|J(F )|dξ

+(0.162)

∫ 1

0.82

(
(ψ̂4 · M̂k)ξξξ

−8 − 4(ψ̂4 · M̂k)ξξ
−9
)

·
(

(ψ̂4 · M̂l)ξξξ
−8 − 4(ψ̂4 · M̂l)ξξ

−9
)
|J(F )|dξ

F(v) =

∫ 0.5

0

fvdx =

∫ 1

0

(f ◦ F )(v ◦ F )|J(F )|dξ

=
(∫ 0.82

0

+

∫ 1

0.82

)
(f ◦ F )(v ◦ F )|J(F )|dξ

=

∫ 0.82

0

(f ◦ F )(M̂l)|J(F )|dξ +

∫ 1

0.82
(f ◦ F )(ψ̂4 · M̂l)|J(F )|dξ

where |J(F )| = 2.5ξ4 and

ψ̂4(ξ) =
(

5− 10 · F (ξ)
)2(

20 · F (ξ)− 7
)

= (5− 5ξ5)(10ξ5 − 7), for ξ ∈ [0.82, 1].

2. Bilinear form for two basis functions in V̂G

Suppose u = û ◦ G−1, v = v̂ ◦ G−1, where û = ψ̂∗4(ξ) · N̂k(ξ) and v̂ = ψ̂∗4(ξ) · N̂l(ξ)

are in V̂G. By Lemma 8, we have

B(u, v) =

∫ 1

0.4

uxxvxxdx =

∫ 1

0

(uxx ◦G)(vxx ◦G)|J(G)|dξ

=
(∫ 1/6

0

+

∫ 1

1/6

)
(uxx ◦G)(vxx ◦G)|J(G)|dξ

= (
1

0.36
)2

∫ 1

1/6

(N̂k)ξξ(N̂l)ξξ|J(G)|dξ + (
1

0.36
)2

∫ 1/6

0

(ψ̂∗4N̂k)ξξ(ψ̂
∗
4N̂l)ξξ|J(G)|dξ

F(v) =

∫ 1

0.4

fvdx =

∫ 1

0

(f ◦G)(v ◦G)|J(G)|dξ

=
(∫ 1/6

0

+

∫ 1

1/6

)
(f ◦G) · (v̂)|J(G)|dξ

=

∫ 1/6

0

(f ◦G) · (ψ̂∗4N̂l) · |J(G)|dξ +

∫ 1

1/6

(f ◦G) · N̂l · |J(G)|dξ
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where |J(G)| = 0.6 and

ψ̂∗4 = 1−
(

5− 10 ·G(ξ)
)2(

20 ·G(ξ)− 7
)

= 1− (1− 6ξ)2(12ξ + 1), for ξ ∈ [0, 1/6].

3. Bilinear form for mixed type: one in V̂F and one in V̂G

Suppose u = û ◦ F−1 and v = v̂ ◦ G−1, where û = ψ̂4(x)M̂ and v̂ = ψ∗4(x)N̂ . The

product of two basis functions u and v vanish except for points in [0.4, 0.5]. In other

words, the supports of u and v intersects only on [0.4, 0.5].

By Lemmas 7 and 8, we have the following:

B(u, v) =

∫ 0.5

0.4

uxxvxxdx

=

∫ 0.5

0.4

(
(û ◦ F−1)xx(v̂ ◦G−1)xx

)
dx

=

∫ 0.5

0.4

(
(û ◦ F−1)xx(v̂ ◦G−1)xx

)
◦G ◦G−1dx, by G ◦G−1 = 1

=

∫ 0.5

0.4

(
(ψ̂4 · M̂ ◦ F−1)xx ◦G

)
·
(

(ψ̂∗4 · N̂ ◦G−1)xx ◦G
)
◦G−1dx

=

∫ 0.5

0.4

(
(ψ̂4 · M̂ ◦ F−1)xx ◦G

)
·
( 1

0.36
(ψ̂∗4N̂)ξξ

)
◦G−1dξ

=

∫ F−1(0.5)

F−1(0.4)

(
((ψ̂4 · M̂) ◦ F−1)xx ◦ F

)
· 1

0.36

(
(ψ̂∗4N̂)ξξ ◦ (G−1 ◦ F )

)
|J(F )|dξ

=

∫ 1

0.82
0.16

(
(ψ̂4 · M̂)ξξξ

−8 − 4(ψ̂4 · M̂)ξξ
−9
)
·

1

0.36

(
(ψ̂∗4N̂)ξξ ◦ (G−1 ◦ F )

)
|J(F )|dξ

where (G−1 ◦ F )(ξ) =
5

6
(ξ5 − 0.8).

Note that it is necessary to divide integrals over [0.82, 1] whenever knots are inserted

in [0, 1/6] for the knot vector (70).



101

6.5 Numerical Results

We test enriched PU-IGA and PU-IGA with the Mapping Method to one dimen-

sional fourth order differential equation containing singularities. We also test the

standard IGA with modified B-spline functions to a fourth order problem with smooth

solution to compare condition numbers of enriched PU-IGA and the standard IGA.

We calculate relative errors in the maximum and the energy norms to measure

accuracy.

The energy norm of u ∈ H2(a, b) is defined by

{1

2

∫ b

a

u(2)u(2)dx
}1/2

=

√
1

2
B(u, u) = ‖u‖Eng

The relative error in the energy norm is

‖u− U‖2
Eng,rel =

∣∣∣‖u‖2
Eng − ‖U‖2

Eng

‖u‖2
Eng

∣∣∣
Example 9. Fourth-order differential equation containing singularities

Suppose

u(x) =
(
xα/2 − x

)2

= xα − 2xα/2+1 + x2

is the true solution of the model problem (57), satisfying the clamped boundary

conditions at both ends of Ω = (0, 1). Then, we have

u(4)(x) = (α)(α−1)(α−2)(α−3)xα−4−2(α/2+1)(α/2)(α/2−1)(α/2−2)xα/2−3 = f(x).

Suppose we select an intensity of singularity α = 1.6, then

‖u‖2
eng = 0.304.
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By Lemma 6, we have

|
∫ 1

0

f(x)v(x)dx| <∞, v ∈ H2
0 (0, 1).

Table 10: Relative maximum and energy errors of 1D fourth-order equation containing
singularities by enrcihed p-refinement of PU-IGA. κ(A) denotes the matrix condition
number.

Enriched p-refinement PU-IGA
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 28 1.355E-05 9.727E-05 3.4986E+19
4 39 4.963E-08 5.737E-06 1.7504E+17
5 50 3.814E-09 2.750E-06 6.6324E+17
6 61 3.224E-10 3.917E-06 1.0178E+19
7 72 9.160E-11 1.314E-06 1.6273E+19
8 83 1.546E-10 2.949E-05 2.4194E+18
9 94 5.818E-11 4.083E-06 1.0687E+19
10 105 1.018E-09 4.766E-06 9.1598E+18

Reduced, Enriched p-refinement of PU-IGA
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 17 8.509E-02 1.882E-02 4.4658E+09
4 24 5.265E-02 1.212E-02 4.5521E+09
5 31 1.546E-02 5.160E-03 4.5545E+09
6 38 9.254E-04 1.244E-03 4.4294E+09
7 45 3.674E-04 6.800E-04 4.2640E+09
8 52 1.281E-04 5.002E-04 4.1050E+09
9 59 2.626E-05 2.766E-04 3.9573E+09
10 66 4.297E-06 1.306E-04 3.8204E+09

We test enriched PU-IGA - p-refinement, reduced p-refinement, and k-refinement-,

and PU-IGA with Mapping Method to the fourth-order equation containing singu-

larities. We observe the following:

1. Table 10 shows that enriched p-refinement of IGA yields highly accurate nu-

merical solutions of the fourth-order equation containing singularities; however,

condition numbers are unacceptably large. For the reduced p-refinement of IGA
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Table 11: Relative maximum and energy errors of 1D fourth-order PDE containing
singularities obtained by enriched k-refinement of PU-IGA. κ(A) denotes the matrix
condition number.

Enriched k-refinement PU-IGA
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 19 1.504E-05 9.903E-05 1.4983E+10
4 21 2.700E-07 2.197E-06 2.4058E+10
5 23 6.678E-08 1.315E-06 3.6642E+10
6 25 1.037E-08 1.558E-06 5.8168E+11
7 27 1.642E-09 1.738E-06 5.3845E+13
8 29 2.716E-10 1.015E-06 5.6871E+15
9 31 5.867E-11 1.278E-06 6.6014E+17
10 33 2.618E-11 1.126E-06 7.7665E+16

in which degree of freedom is much smaller, the condition numbers become

smaller; however, we cannot get as much accuracy as enriched p-refinement of

IGA.

2. Condition numbers exceeding E+10 would be problematic. It would be better to

use a preconditioner to transform the linear system for more numerical precision.

3. Table 11 shows that enriched k-refinement of IGA is also able to yield highly ac-

curate numerical solutions. However, the condition numbers are still large. The

second half of Table 12 shows that the k-refinement of IGA with no enrichment

cannot solve singularity problems.

4. The first half of Table 12 shows that the mapping method is able to yield

accurate numerical solutions as well as small condition numbers.

5. The matrix condition number κ(A) does not depend on the regularity of PU

functions. Applying PU-IGA with Mapping Method with degree 10 and degree
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Figure 15: Relative error in maximum norm versus DOF (Left) and condition numbers
versus degrees in semi log scale (Right) of 1D fourth-order PDE with singularities

of freedom 24 to the model problem with singularities, we have the following

condition numbers for various regularities of PU.

κ(A) = 1.9814E + 8, PU: C1-continuous,

κ(A) = 2.1041E + 8, PU: C2-continuous,

κ(A) = 2.1203E + 8, PU: C3-continuous,

κ(A) = 7.0361E + 8, PU: C4-continuous.

6. Figure 15 shows that Mapping Method has better accuracy with smaller degrees

of freedom and smaller condition numbers for the same degrees than those of

enriched PU-IGA.

To demonstrate the effectiveness of the mapping method, we compute the condition

numbers and relative errors obtained by applying the standard IGA to the model
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Table 12: Relative maximum and energy errors of 1D fourth-order PDE containing
singularities obtained by PU-IGA with mapping method and by k-Refinement of IGA
with no enrichment. κ(A) denotes the matrix condition number.

PU-IGA with Mapping Method
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 10 7.6014E-05 1.8016E-04 1.4912E+06
4 12 5.0087E-07 3.4060E-06 1.4924E+06
5 14 1.6232E-08 1.1203E-06 1.5133E+06
6 16 2.8455E-09 1.2240E-06 1.5320E+06
7 18 2.5328E-10 8.3857E-07 1.6545E+06
8 20 1.3839E-11 2.5675E-07 3.4523E+06
9 22 6.4221E-12 5.4473E-07 6.6485E+06
10 24 6.9568E-12 1.2311E-07 1.2109E+07

k-refinement of IGA without enrichment
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 13 7.339E-02 0.866E-00 5.4460E+03
4 14 3.144E-02 0.785E-00 7.1718E+03
5 15 2.395E-02 0.717E-00 1.1849E+04
6 16 2.035E-02 0.658E-00 1.9012E+04
7 17 1.679E-02 0.605E-00 2.9001E+04
8 18 1.584E-02 0.557E-00 4.2240E+04
9 19 1.433E-02 0.512E-00 5.9166E+04
10 20 1.339E-02 0.468E-00 8.0227E+04
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problem with a smooth true solution.

Example 10. Fourth-order differential equation with smooth solution

Suppose

u(x) = ex
(

(1− x)3x2
)

is the true solution of model problem (57) with clamped boundary conditions at both

ends of the domain Ω = (0, 1). Then we have

f(x) =
(
ex((1− x)3x2)

)(4)

= −ex(x+ 2)(x4 + 15x3 + 45x2 − 31x− 6)

u(2)(x) = ex(x− 1)(x4 + 8x3 + 7x2 − 12x+ 2)

‖u‖2
Eng = 0.315697892048689.

Relative errors of numerical solutions obtained by IGA using approximation spaces

VpII, constructed by the p-refinement, VkII, constructed by the k-refinement, and VhII,

constructed by the h-refinement with fixed p = 5, respectively, are shown in Table

13. Their condition numbers are shown in Table 14. The approximation spaces VpII

and VkII are defined by (62) and VhII is similarly defined.

The numerical results in Table 13 and 14 show that the numerical results by PU-

IGA with Mapping Method are as accurate as results by standard IGA to the fourth

order equation with smooth true solution. Moreover, the condition numbers are com-

patible. In other words, the mapping method virtually makes a singularity problem

as simple as a regular problem.
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Table 13: Relative maximum and energy errors of 1D smooth forth-order equation
by IGA. For the h-refinement of IGA, p-degree is fixed to be p = 5

k-refinement p-refinement h-refinement (deg=5)
DEG DOF ‖Err‖Max DOF ‖Err‖Max h-size DOF ‖Err‖Max

3 13 8.440E-04 22 6.768E-04 1/10 42 2.034E-07
4 14 3.230E-05 32 1.253E-05 1/20 82 3.234E-09
5 15 3.056E-06 42 2.034E-07 1/40 162 1.427E-10
6 16 1.303E-07 52 1.816E-09 1/100 402 4.428E-09
7 17 3.886E-09 62 5.881E-11
8 18 1.793E-10 72 4.208E-11
9 19 8.994E-11 82 3.120E-11
10 20 9.149E-11 92 2.824E-11

k-refinement p-refinement h-refinement (deg=5)
DEG DOF ‖Err‖Eng DOF ‖Err‖Eng h-size DOF ‖Err‖Eng

3 13 2.734E-02 22 2.559E-02 1/10 42 4.142E-05
4 14 2.447E-03 32 1.511E-03 1/20 82 1.548E-06
5 15 1.674E-04 42 4.142E-05 1/40 162 1.065E-05
6 16 8.836E-06 52 7.680E-07 1/100 402 6.314E-05
7 17 3.684E-07 62 5.955E-07
8 18 7.956E-08 72 1.302E-06
9 19 9.744E-08 82 1.336E-06
10 20 8.795E-08 92 2.880E-06

Table 14: Condition numbers of 1D smooth fourth-order equation obtained by IGA.
κ(A) denotes the matrix condition number.

Condition numbers
k-refinement p-refinement h-refinement(deg=5)

DEG DOF κ(A) DOF κ(A) h-size DOF κ(A)
3 13 5.44E+03 22 5.36E+04 1/10 42 1.67E+05
4 14 7.17E+03 32 9.54E+04 1/20 82 1.34E+06
5 15 1.18E+04 42 1.67E+05 1/40 162 1.07E+07
6 16 1.90E+04 52 2.90E+05 1/100 402 1.68E+08
7 17 2.90E+04 62 4.52E+05
8 18 4.22E+04 72 6.68E+05
9 19 5.91E+04 82 9.52E+05
10 20 8.02E+04 92 1.31E+06
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6.6 Two Dimensional Fourth Order Elliptic Equations on a Cracked Disk

We extend the proposed PU-IGA with mapping method to the two-dimensional

fourth order equation containing singularities.

It was shown in [10] that the fourth-order equation in a cracked domain with

clamped boundary conditions along the crack face has the following asymptotical

behaviors.

Theorem 11. [10] If f ∈ P k
2 (Ω), i.e. r−k+|α|Dαf ∈ L2(Ω), |α| ≤ k, then the solution of

∆2u = f in cracked domain Ω = {(r, θ)|0 ≤ θ ≤ 2π, r > 0} is locally of the following

formula:

u(r, θ) =
∑

1≤m<k+5/2

rm+1/2
(
λms

1
m + νms

2
m

)
+ ureg(r, θ) (72)

where s1
m = sin(m+ 1/2)θ − 2m+ 1

2m− 3
sin(m− 3/2)θ,

s2
m = cos(m+ 1/2)θ − cos(m− 3/2)θ, ureg ∈ P k+4

2 (Ω),

where λm, νm are constants.

We construct a test problem with the highest singular term from the asymptotic

solution in the Theorem.

Example 12. Consider the fourth-order equation, ∆2u = f , in the cracked unit circular

domain Ω with clamped boundary conditions whose solution is

u(r, θ) = (1− r)2r1.5
(

sin(1.5θ)− 3 sin(0.5θ) + cos(1.5θ)− cos(0.5θ)
)
.
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Then u(1, θ) =
∂u

∂n
(1, θ) = 0,

u(r, 0) = u(r, 2π) = 0,
∂u

∂y
(r, 0) =

∂u

∂y
(r, 2π) = 0.

f(r, θ) = ∆2u = −r−3/2
(

24r cos(θ/2)− 16
√

2 sin(3θ/2 + π/4) + 72r sin(θ/2)
)
,

Energy =
1

2

∫∫
Ω

∆u∆u = 16.755160678572160.

crack

Ω

Ωreg

Ωsing

Figure 16: Two patches on cracked disk, Ω = Ωsing ∪ Ωreg.

PU-IGA with Mapping Method

I. Partition of the physical domain

We divide the physical domain into two subdomains, Ωsing = {(x, y)|0 ≤ x2 + y2 ≤

0.52} and Ωreg = {(x, y) : 0.42 ≤ x2 + y2 ≤ 1}.

II. Mappings

We construct one geometric mapping onto Ωreg, denoted by G-mapping, and a sin-

gular mapping, denoted by F -mapping that generates singular functions to resemble

the singularities.

[G-mapping] Define a geometric mapping G : Ω̂ = [0, 1]× [0, 1] −→ Ωreg by

G(ξ, η) = (0.4 + 0.6η)
(

cos 2π(1− ξ), sin 2π(1− ξ)
)
, (73)
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where Ωreg has a crack along the positive x-axis. Then we have

G−1(x, y) = (ξ(x, y), η(x, y))

where ξ(x, y) =


1

2π
cos−1(

x

r
) if y < 0

1− 1
2π

cos−1(x
r
) if 0 ≤ y

, η(x, y) =
(r − 0.4)

0.6

r =
√
x2 + y2, |J(G)| = 1.2π

(
0.4 + 0.6η

)
.

[F-mapping] To generate singular basis functions, we define a singular mapping

F : Ω̂ = [0, 1]× [0, 1] −→ Ωsing by

F (ξ, η) = 0.5η2
(

cos 2π(1− ξ), sin 2π(1− ξ)
)
.

Then F−1(x, y) = (ξ(x, y), η(x, y)).

where ξ(x, y) =


1

2π
cos−1(

x

r
) if y < 0

1− 1
2π

cos−1(x
r
) if 0 ≤ y

, η(x, y) =
r1/2

√
0.5

,

J(F ) =

 πη2 sin 2π(1− ξ), −πη2 cos 2π(1− ξ)

η cos 2π(1− ξ), η sin 2π(1− ξ)

 , |J(F )| = πη3.

III. C1-continuous PU functions with flat-top on the physical domain

We construct PU functions on the physical domain as follows:

ψR(r, θ) =


1 if 0 ≤ r ≤ 0.4(

5− 10r
)2(

20r − 7
)

if 0.4 ≤ r ≤ 0.5

0 if 0.5 ≤ r ≤ 1

(74)
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ψL(r, θ) = 1− ψR(r, θ). (75)

Pullbacks of PUs by the F- and G-mappings, respectively, are

ψ̂R(ξ, η) = ψR ◦ F

=


1 if 0 ≤ η ≤

√
0.8(

5− 5η2
)2(

10η2 − 7
)

if
√

0.8 ≤ η ≤ 1

0 if 1 ≤ η

(76)

ψ̂L(ξ, η) = ψL ◦G

=


0 if η ≤ 0

1−
(

6η − 1
)2(

1 + 12η
)

if 0 ≤ η ≤ 1/6

1 if 1/6 ≤ η.

Note that

1. ψR defined by (74) on the two-dimensional physical domain is similar to ψ4

defined by (66) on the one-dimensional physical domain.

2. The choice of non flat-top zones for PU functions ψR and ψL is flexible. For a

non flat-top zone, one can choose any [a, b] with 0.2 ≤ a < b ≤ 0.5 instead of

[0.4, 0.5].

3. Since we construct PU on the physical domain, the pull backs of PU by different

mappings cannot be PU on the reference domain. That is,

ψL(r, θ) + ψR(r, θ) = 1 for all (r, θ) ∈ Ω, but ψ̂L(ξ, η) + ψ̂R(ξ, η) 6= 1. for all

(ξ, η) ∈ Ω̂.



112

IV. Construction of C1-continuous basis functions

In the following, we construct basis functions on the singular Ωsing and on the

regular zones Ωreg, respectively.

Basis functions on Ωsing

We assume p ≥ 3 and q∗ ≥ 4. N̂k,p+1(ξ), k = 1, 2, . . . , p + 10, are Cp−1-continuous

B-splines of degree p, corresponding to a uniformly spaced open knot vector:

Sξ = {0 . . . 0︸ ︷︷ ︸
p+1

,
1

p+ 1︸ ︷︷ ︸
1

,
2

p+ 1︸ ︷︷ ︸
1

, . . . ,
p− 1

p+ 1︸ ︷︷ ︸
1

,
p

p+ 1︸ ︷︷ ︸
1

, 1 · · · 1︸ ︷︷ ︸
p+1

}. (77)

We modify these B-splines to satisfy the clamped boundary conditions. Like the

one dimensional cases, it can be done by either modifying the first two and the last

two B-splines or discarding these four functions. In the construction of an approx-

imation space, we removed the first two and the last two B-spline functions among

N̂i,p+1(ξ), 1 ≤ i ≤ p + 10, so that the clamped boundary conditions are satisfied at

both ends. We define basis functions on the reference domain for the F -mapping,

which are tensor products of the modified B-splines and monomials as follows:

V̂F = {N̂i,p+1(ξ)(η
√

0.5)l : i = 3, . . . , p+ 8; l = 2, 3, 4, 5, 6, 7, 8, . . . , q∗},

where q∗ ≥ 2k + 5, k determined by (72), which depends on the regularity of the

source function f .

Then the set V̂F ◦ F−1 generates the crack singularity as well as the complete

polynomials of degree [q∗/2] in the radial direction:

r, r1.5, r2, r2.5, r3, r3.5, . . . , rq
∗/2, (78)
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where r2 = x2 + y2.

We construct basis functions defined on Ωsing, which push-forwards of V̂F through

F are scaled by ψR as follows:

VF = (V̂F ◦ F−1) · ψR

=
{(
N̂i,p+1(ξ) · (η

√
0.5)l · ψ̂R(ξ, η)

)
◦ F−1 :

i = 3, . . . , p+ 8; l = 2, 3, 4, 6, 7, . . . , q∗
}
, (79)

where ψ̂R is defined by (76). The degree of freedom of VF is

card(VF ) = (2p− 3)(6 + q∗ − 3).

Basis functions on Ωreg

Suppose for q ≥ 3, M̂k,q+1(η), k = 1, 2, . . . , 2q + 1, are Cq−1-continuous B-splines

corresponding to an open knot vector

Sη = {0 . . . 0︸ ︷︷ ︸
q+1

,
1

q + 1︸ ︷︷ ︸
1

,
2

q + 1︸ ︷︷ ︸
1

, . . . ,
q − 1

q + 1︸ ︷︷ ︸
1

,
q

q + 1︸ ︷︷ ︸
1

, 1 · · · 1︸ ︷︷ ︸
q+1

}. (80)

Define basis functions on the reference domain for the G-mapping as follows:

V̂G = {N̂i,p+1(ξ) · M̂j,q+1(η) : i = 3, . . . , 2p− 1; j = 1, · · · , 2q − 1}.

Now, using the PU function ψL, we construct basis functions defined on Ωreg as

follows:

VG = (V̂G ◦G−1) · ψL (81)

=
{(
N̂i,p+1(ξ) · M̂j,q+1(η) · ψ̂L(ξ, η)

)
◦G−1 : 3 ≤ i ≤ 2p− 1; 1 ≤ j ≤ 2q − 1

}
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The degree of freedom of VG is

card(VG) = (2p− 3)(2q − 1).

[IV] Approximation Space on Ω

Note the following features of basis functions on the physical subdomains Ωsing and

Ωreg.

1. The first two and the last two among N̂i,p+1, 1 ≤ i ≤ 2p + 1 were discarded in

the ξ-direction to satisfy the cramped boundary condition along the crack.

2. The last two among M̂j,q+1, 1 ≤ i ≤ 2q + 1 were removed in the η-direction to

satisfy the cramped boundary condition on the boundary.

Our approximation space to handle the fourth-order partial differential equation on

a cracked circular domain Ω is the union of the families of basis functions for singular

and regular zones:

VΩ = VG ∪ VF . (82)

We observe the following:

1. The number of the degree of freedom is

card(VΩ) = card(VF ) + card(VG)

= (2p− 3)
(

6 + q∗ − 3) + (2q − 1)
)

2. The intersections of basis functions in VF and those in VG occur only in the
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annular region

Ωsing ∩ Ωreg = {(r, θ) : 0 < θ < 2π, 0.4 ≤ r ≤ 0.5}.

V. Bilinear Form on the reference domain

Pullbacks of the Laplacian need to be calculated for the stiffness matrix when

Laplacian on the physical domain is pulled back to the reference domain.

Let Φ : Ω̂ −→ Ω be a mapping from the parameter space to the physical space

defined by

Φ(ξ, η) = (x(ξ, η), y(ξ, η)),

and let

û = u ◦ Φ, ∇x = (∂x, ∂y)
T , ∇ξ = (∂ξ, ∂η)

T ,

where u is a differentiable function defined on Ω. Then, we have

(∇xu) ◦ Φ = J(Φ)−1∇ξû or (83)

 ux ◦ Φ

uy ◦ Φ

 =
1

|J(Φ)|

 yη −yξ

−xη xξ


 ûξ

ûη

 =

 J−1
11 J−1

12

J−1
21 J−1

22


 ûξ

ûη

 .
Using (83), we have

(∇xux) ◦ Φ = J(Φ)−1∇ξ(ux ◦ Φ)

= J(Φ)−1∇ξ(J
−1
11 ûξ + J−1

12 ûη) (84)
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uxy ◦ Φ

 = J(Φ)−1

 (J−1
11 ûξ + J−1

12 ûη)ξ

(J−1
11 ûξ + J−1

12 ûη)η


Similarly, we have

(∇xuy) ◦ Φ = J(Φ)−1∇ξ(uy ◦ Φ)

= J(Φ)−1∇ξ(J
−1
21 ûξ + J−1

22 ûη) (85)

 uyx ◦ Φ

uyy ◦ Φ

 = J(Φ)−1

 (J−1
21 ûξ + J−1

22 ûη)ξ

(J−1
21 ûξ + J−1

22 ûη)η


Let ϕ(x, y) = ϕ̂ ◦ Φ−1(x, y). Then

(∂xxϕ) ◦ Φ = J−1
11

∂

∂ξ
(J−1

11

∂

∂ξ
ϕ̂+ J−1

12

∂

∂η
ϕ̂) + J−1

12

∂

∂η
(J−1

11

∂

∂ξ
ϕ̂+ J−1

12

∂

∂η
ϕ̂)

(∂yyϕ) ◦ Φ = J−1
21

∂

∂ξ
(J−1

21

∂

∂ξ
ϕ̂+ J−1

22

∂

∂η
ϕ̂) + J−1

22

∂

∂η
(J−1

21

∂

∂ξ
ϕ̂+ J−1

22

∂

∂η
ϕ̂)

(∂xyϕ) ◦ Φ = J−1
21

∂

∂ξ
(J−1

11

∂

∂ξ
ϕ̂+ J−1

12

∂

∂η
ϕ̂) + J−1

22

∂

∂η
(J−1

11

∂

∂ξ
ϕ̂+ J−1

12

∂

∂η
ϕ̂)

(∂yxϕ) ◦ Φ = J−1
11

∂

∂ξ
(J−1

21

∂

∂ξ
ϕ̂+ J−1

22

∂

∂η
ϕ̂) + J−1

12

∂

∂η
(J−1

21

∂

∂ξ
ϕ̂+ J−1

22

∂

∂η
ϕ̂)

(86)

For u, v ∈ VΩ, we can calculate the bilinear form B(u, v) and the linear functional

F(v) in a similar manner as those in one-dimensional cases. Let 4x =
∂2

∂x2
+

∂2

∂y2
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Case 1: For u, v ∈ VF , we have

B(u, v) =

∫ ∫
Ωsing

(∆xu)(∆xv)dxdy

=

∫ 1

0

∫ 1

0

(∆xu ◦ F ) · (∆xv ◦ F )|J(F )|dξdη

=
(∫ 1

0

∫ F−1(0.4)

0

+

∫ 1

0

∫ 1

F−1(0.4)

)
(∆xu ◦ F ) · (∆xv ◦ F )|J(F )|dξdη

F(v) =

∫ ∫
Ωsing

fvdx =

∫ 1

0

∫ 1

0

(f ◦ F )(v ◦ F )|J(F )|dξdη

=
(∫ 1

0

∫ F−1(0.4)

0

+

∫ 1

0

∫ 1

F−1(0.4)

)
(f ◦ F ) · v̂ · |J(F )|dξdη.

Case 2: For u, v ∈ VG , we have

B(u, v) =

∫ ∫
Ωreg

(∆xu)(∆xv)dxdy

=

∫ 1

0

∫ 1

0

(∆xu ◦G) · (∆xv ◦G)|J(G)|dξdη

=
(∫ 1

0

∫ G−1(0.5)

0

+

∫ 1

0

∫ 1

G−1(0.5)

)
(∆xu ◦G) · (∆xv ◦G)|J(G)|dξdη

F(v) =

∫ ∫
Ωreg

fvdx =

∫ 1

0

∫ 1

0

(f ◦G)(v ◦G)|J(G)|dξdη

=
(∫ 1

0

∫ G−1(0.5)

0

+

∫ 1

0

∫ 1

G−1(0.5)

)
(f ◦G) · v̂ · |J(G)|dξdη.

Case 3: For u ∈ VF and v ∈ VG

This calculation of the bilinear form is similar to that of the one-dimensional coun-

terpart shown in the previous section. The two basis functions u and v intersect only
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on annulus, Ωsing ∩ Ωreg.

B(u, v) =

∫ ∫
Ωsing∩Ωreg

(∆xu)(∆xv)dxdy

=

∫ ∫
Ωsing∩Ωreg

∆x(û ◦ F−1)∆x(v̂ ◦G−1) ◦G ◦G−1dxdy

=

∫ ∫
Ωsing∩Ωreg

(
∆x(û ◦ F−1) ◦G ·∆x(v̂ ◦G−1) ◦G

)
◦G−1dxdy

=

∫ 1

0

∫ 1

F−1(0.4)

(
(∆x(û ◦ F−1) ◦G ·∆x(v̂ ◦G−1) ◦G

)
◦ (G−1 ◦ F )|J(F )|dξdη

=

∫ 1

0

∫ 1

F−1(0.4)

(
∆x(û ◦ F−1) ◦ F

)
·
(

∆x(v̂ ◦G−1) ◦G
)
◦ (G−1 ◦ F )|J(F )|dξdη,

where

(G−1 ◦ F )(ξ, η) = (ξ,
0.5η2 − 0.4

0.6
).

Table 15: Relative maximum error for 2D fourth-order PDE on a cracked disk ob-
tained by PU-IGA with mapping method. κ(A) stands for the condition numbers of
stiffness matrices

PU-IGA with Mapping Method
DEG DOF ‖Err‖Max ‖Err‖Eng κ(A)

3 24 5.3597E-02 1.3072E-01 2.1058E+06
4 50 6.6570E-03 2.8878E-02 4.0600E+06
5 84 6.3363E-04 4.6050E-03 1.9574E+07
6 126 4.4320E-05 5.6291E-04 1.0146E+08
7 176 3.4687E-06 7.1296E-05 4.6353E+08
8 234 2.1079E-07 9.1481E-05 2.0954E+09
9 300 1.3017E-08 9.1610E-05 8.6866E+09
10 374 6.1083E-10 9.1632E-05 3.5862E+10

VI. Numerical Results

Applying the described two dimensional PU-IGA with Mapping Method to Exam-

ple 12, we list the numerical results in Table 15. We observe the following:

1. We have fairly accurate solutions as well as small condition numbers with the
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mapping method.

2. Since the solution u(r, θ) contains singular terms r1.5, r2.5, andr3.5, we must

choose q∗ ≥ 7 in the construction of the approximation space VF . Otherwise,

we do not have enough singular functions.

3. An approximation space can be enriched by adding the singular functions di-

rectly,
(
r1.5, r2.5, r2.5

)
×
(

sin(1.5θ)−3 sin(0.5θ)+cos(1.5θ)−cos(0.5θ)
)

to obtain

a similar spectral accuracy, shown in Table 15. However, this directly enriched

IGA in the physical space will face integrations of singular functions as well

as large matrix condition numbers, which we observed in the one dimensional

counterpart.

4. Since this example does not have a regular part in the solution, the G-mapping

is not necessary. However, if a domain has n corners and/or cracks, we have

to construct n singular mappings Fi : Ω̂ −→ Ωi, i = 1, · · · , n and a regular

mapping G : Ω̂ −→ Ω \ ∪ni=1Ωi to apply the Mapping Method.

5. Figure 17 shows numerical solutions obtained by IGA with Mapping Method

and by the standard IGA without Mapping Method. These two approximate

solutions are compared with the true solution in the figure.
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Figure 17: Numerical solution of 2D fourth-order PDE on a cracked disk by PU-
IGA with mapping method(Left) and by standard IGA(Right), true Solution(Down
center), when B-spline basis functions of degree p = 5 are used.



CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS

We show that enriched PU-IGA yields accurate numerical solutions of convection-

diffusion equations with small convection coefficients and parabolic equations with

small thermal conductivities. One of the goals of this research is to get non oscilla-

tory numerical solutions using B-spline basis functions, enriched with boundary layer

functions, to avoid extensive mesh refinement in a curved domain.

In order to make local refinement and implementation of enrichment functions

simple in the framework of IGA, we introduce partition of unity isogeometric analysis

(PU-IGA). We adopt the partition of unity with flat-top to keep the enrichment

functions on the singular zone only. We implement PU functions in the reference

domain whose supports divide the reference domain into several rectangular patches.

When the enrichment functions and B-spline basis functions are pulled back by a

geometric mapping, the supports of pull-backs become rectangles in the reference

domain. Thus the integrals for stiffness matrices and load vectors become easier and

more accurate than the cases in which PU functions are implemented in physical

domains.

We test the proposed method to boundary layer problems in a disk and a square

domain. Comparing enriched PU-IGA to all other methods, we conclude that enriched

PU-IGA is superior over other existing numerical methods whenever the boundary

layer behavior of the given problem is known.
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This enriched PU-IGA is also extended to solve the fourth-order equations with

singularities and has accurate numerical solutions; however, we encounter high con-

dition numbers and singular integrals. Thus, we introduce PU-IGA with Mapping

Method to overcome these limitations and tested the proposed method to the fourth

order equation containing singularities on a cracked disk. The numerical results show

that the Mapping Method gives accurate solutions as well as small matrix condition

numbers. The proposed Mapping Method can be extended to handle various types

of singularities, such as corners and/or cracks of non convex physical domain.
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[28] Melenk J. M., Babuška I. :The partition of unity finite element method:Theory
and application , Comput. Methods Appl. Mech. Engr. 139 (1996) 239-314.



125

[29] Oh H.-S., Babuska: The method of auxiliary mapping for the finite element so-
lutions of elasticity problems containing singularities; Journal of Computational
Physics, v121 n2 (1995): 193-212

[30] Oh H.-S., Kim J. G., Hong W.T. The Piecewise Polynomial Partition of Unity
Shape Functions for the Generalized Finite Element Methods, Comput. Methods
Appl. Mech. Engrg. 197 (2008) 3702-3711

[31] Oh H.-S., Kim J.G., Jeong J.W. :The Closed Form Reproducing Polynomial
Particle Shape Functions for Meshfree Particle Methods, Comput. Methods Appl.
Mech. Engrg. 196 (2007) 3435-3461

[32] Oh H.-S., Kim J. G., Jeong J.W. , The smooth piecewise polynomial particle
shape functions corresponding to patch-wise non-uniformly spaced particles for
meshfree particles methods, Comput Mech 40 (2007) 569-594

[33] Oh H.-S., Jeong J.W. , Hong, W.T. The generalized product partition of unity
for the meshes methods, J Comput Phyics 229 (2010) 100-1620

[34] Oh H.-S. , Jeong J.W. , Kim J. G., The Reproducing Singularity Particle Shape
function for problems containing singularities, Comput Mech 41 (2007) 135-157

[35] Jeong J. W., Oh H.-S. , Kang S., Kim H., Mapping Techniques in Isogeometric
Analysis for elliptic boundary value problems containing singularities, Comput.
Methods Appl. Mech. Engrg. 254 (2013) 334-352.

[36] Oh H.-S., Kim H., Jeong J. W. Enriched isogeometric analysis of elliptic boundary
value problems in domains with crackes and/or corners, Int. J. Numer. Meth.
Engrg 97 (2014) 149-180.

[37] Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory.
In: Applied mathematics and mathematical computation. Chapman and Hall,
Boca Raton(1999)

[38] O’Malley, R.E.: Singularly perturbed linear two-point boundary value problems.
SIAM Rev. 50(3), 459-482(2008)

[39] Ciarlet P. G., Basic error estimates for elliptic problems, Handbook of Numerical
Analysis, Vol. II, North-Holland, 1991.

[40] Hughes T. J. R., The finite element method: linear static and dynamic finite
element analysis, Dover, 2000.

[41] Rogers D. F., An introduction to NURBS, Academic Press, 2001.

[42] Piegl L. and Tiller W., The NURBS Book, 2nd ed, Springer, 1997.



126

[43] Roos, ,H., Styness, M., Tobiska, L.: Robust Numerical Methods for Singularly
Perturbed Differential Equations, Volume 24 of Springer Series in Computational
Mathematics, 2nd edition. Springer, Berlin(2008). Convection-diffusion-reaction
and flow problems

[44] Roos, H., Uzelac, Z.: The SDFEM for a convection-diffusion problem with two
small parameters. Comput. Methods Appl. Math. 3(3), 443-458(2003). (elec-
tronic) Dedicated to John J. H. Miller on the occasion of his 65th birthday

[45] Schillinger D., Evans J.A., Reali A., Scott M.A., Hughs T.J.R. : Isogeometric
Collocation: Cost Comparison with Galerkin methods and Extension to Adaptive
Hierarchical NURBS Discretization, Comput. Methods Appl. Mech. Engrg., V.
267 (2013) 170-232.

[46] Stynes, M.: Steady-state convection-diffusion problems. Acta Number. 14. 445-
508 (2005)

[47] Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with
a bounary layer: optimal error analysis and enhancement of accuracy. SIAM J.
Numer. Anal. 41(5), 1620-1642(2003) (electronic)

[48] Szabo B., Babuska I., Finite Element Analysis, John Wiley, 1991.

[49] Temme N.M.: Analytical methods for an elliptic singular perturbation problems
in a circle, J. of Computational and applied Math. 207 (2007) 301-322

[50] Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for
linear differential equations with small parameter. Uspekhi Mat. Nauk. 12, 3-
122(1957)

[51] Viscor, M., Stynes, M. : A robust finite difference method for a singularly
perturbed degenerate parabolic problem II. IMA J. NUmer. Anal. 33(2), 460-
480(2013)


