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ABSTRACT 

 
 

TIM GEORGE PAUL.  Microgrid management Architecture considering optimal battery 
dispatch.  (Under the direction of DR. SUKUMAR KAMALASADAN) 

 
 

 Energy management and economic operation of microgrids with energy storage 

systems at the distribution level have attracted significant research interest in recent years. 

One of the challenges in this area has been the coordination of energy management 

functions with decentralized and centralized dispatch. In this thesis a distributed dispatch 

algorithm for a microgrid consisting of a photovoltaic source with energy storage which 

can work with a centralized dispatch algorithm that ensure stability of the microgrid is 

proposed. To this end, first a rule based dispatch algorithm is formulated which is based 

on maximum resource utilization and can work in both off grid and grid connected mode. 

Then a fixed horizon optimization algorithm which minimizes the cost of power taken from 

the grid is developed. In order to schedule the battery based on changes in the PV farm a 

predictive horizon methodology based optimization is designed. Further, the rule based and 

optimization based dispatch methodologies is linked to optimize the voltage deviations at 

the microgrid Point of Common Coupling (PCC). The main advantage of the proposed 

method is that, an optimal active power dispatch considering the nominal voltage 

bandwidth can be initiated for the microgrid in both grid connected or off grid mode of 

operation. Also, the method allows the grid operator to consider cost based optimal 

renewable generation scheduling and/or the maximum power extraction based modes of 

operation simultaneously or separately based on grid operating conditions and topologies. 

Further, the methods allows maintaining PCC voltage within the limits during these modes 

of operation and at the same time ensure that the battery dispatch is optimal.        
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CHAPTER 1 : INTRODUCTION 
 

To face the increased electricity demand and at the same time satisfy the global 

environmental regulations, we need to reduce our dependence on fossil fuel resources for 

reducing CO2 emissions. Grid connected renewable power systems have gained great 

interest in this respect. Two main renewable energy systems that have gained increased 

attention and has the most update implementable technology are the wind energy systems 

and the Photo-Voltaic (PV) systems. Various incentive policies by the government have 

helped in PV development. Other than the incentives the technological expansion also 

keeps the cost of PV systems decreasing year by year.  Taking into account this reduction 

of the costs, expansion of grid connected PV systems is expected to continue in the next 

decade. One of the major challenges for PV generation is in managing the intermittent 

energy production with varying power demand which makes managing the grid demand 

harder. One way of mitigating this intermittency is to provide additional energy storage to 

the PV farm. This is mainly provided using a battery energy storage. An integrated energy 

source system that serves some local load is generally named as microgrid and if this 

microgrid can be developed with a PV-storage integrated system then it will be a feasible 

renewable energy based microgrid option. The microgrid is a group of distributed 

generation resources, energy storage and loads that is normally connected to a low voltage 

power network [15].  The point of common coupling (PCC) with the grid can be connected 

or disconnected based on which it can be in grid connected or islanded mode of operation. 
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Lot of research work has been done for energy management and control of microgrid with 

renewable sources and storage [33-38,49,50].The hierarchical control structure of 

microgrid can be found in [15], [16]. In this thesis only the tertiary control for calculating 

the active power set points is considered. So the work is mainly on the energy management 

and economic operation of these microgrids with distributed energy storage systems. One 

of requirements in this area is an architecture for coordination of energy management 

functions with decentralized and centralized dispatch management architectures in spite of 

the mode of operation of the microgrid.  The main aim of these energy management 

systems is to minimize the operation costs based on a short term optimization module, 

which provides the optimal schedule where the time scale is for a 24 hour daily operation. 

The existing energy management system architectures are reviewed in [36], where 

centralized and distributed architectures are identified as common control schemes. The 

centralized model collects all the necessary information for microgrid scheduling and 

performs centralized operation and control [37]-[40]. In the distributed scheme each 

component of the microgrid is considered separate and makes its own decisions. The 

optimal schedule is obtained by iterative data transfers among the components [41]-[43]. 

The main drawbacks of the centralized scheme are reduced flexibility in adding new 

components and extensive computational requirements [36]. The hybrid system can 

perform many applications [4] for utility side and for the consumer side. Utility side 

applications focus on optimizing properties of microgrid output for distribution upgrade 

deferral, transmission support, etc. Most of the work in the past has been in applying the 

battery constraints to the complete grid optimal power flow optimization problem [14, 44, 

and 51] such that it benefits the utility. But in this case any change of a particular unit 
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dispatch would require a new optimal power flow to be run for the system, because they 

are all integrated in a single optimization problem. Second the energy storage brings in 

dynamic time domain couplings among all other decision variables which are the dispatch 

values of all generators in the system. It creates problems of size since all the previous 

battery dispatch values need to be stored, computational complexity based on the size of 

the problem, also the forecasting errors of each time stage will influence all decision 

variables in all time steps of optimization horizon. The other main problem which is now 

considered in all energy management systems of microgrid is to handle the PV 

intermittency. For which the future PV generation data is used to obtain an optimal dispatch 

which reduces the cost of power taken from the grid over a horizon. This can be found in 

references [45-48] and [4]. 

1.1. Optimization   

The optimization techniques commonly used to solve the energy management problem 

described above are linear programming, dynamic programming, and quadratic 

programming and mixed integer programming. Since the microgrid has storage it makes 

the optimization problem dynamic i.e. it is time dependent. In this section the basic 

optimality conditions for static optimization and how it is applied to solve dynamic 

optimization problem is explained. 

1.1.1. Static Optimization 

The value the objective function must take so that the function is minimum or 

maximum is the aim of the optimization problem [31]. It is called static optimization 

since the solution is calculated for that instant of time and is independent of future time. 

The basic conditions that need to be checked for the optimality (maximum or minimum) 
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for a single variable function is shown in equation 1.1 and the conditions shown in 

equations 1.3 and 1.4. 

𝑓𝑓(𝑥𝑥)       (1.1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0   (1.2) 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑑𝑑2 > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (1.3) 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑑𝑑2 < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (1.4) 

The points where all these conditions are satisfied is called a stationary point. But for 

a multi-dimensional case as shown in equation 2.5, the gradient of the function with respect 

to all the variables need to be found to obtain the stationary points. 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 )      (1.5) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑛𝑛

= 0   (1.6) 

 

FIGURE 1.1: Hessian Matrix [31] 

To check whether the function has a maximum or minimum at these stationary points 

the hessian matrix as shown above is calculated. The conditions for optimality are then 

listed below: 
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• Calculate the eigenvalues of the Hessian matrix at the stationary point. If all the 

eigen values are greater or equal to zero then the matrix is positive semi-definite 

and the stationary point is a minimum. If the eigen values are less or equal to zero 

then the matrix is negative semi-definite and the stationary point is a maximum. 

•  If some or the eigen values are positive and others are negative then the point is a 

saddle point. A saddle point is a point in the domain of the function that is a 

stationary point but not a local extremum.  

These conditions can be used to solve unconstrained optimization problems. Now the 

optimization problem will have constraints which can be equality and inequality 

constraints. The optimization of functions with equality constraints are solved using 

lagrange multiplier method. But when inequality constraints are also included then the 

problem is solved using the Karush-Kuhn-Tucker (KKT) first order conditions. The KKT 

conditions are used in the solution of nonlinear programming problems [31]. The 

conditions are described as shown below. 

Minimize 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 )   (1.7) 

Subject to: 𝑤𝑤(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 ) = 0    (1.8) 

         𝑔𝑔(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 ) ≤ 0    (1.9) 

Where 

  𝑤𝑤(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 ) = 0 , are the equality constraints. 

  𝑔𝑔(𝑥𝑥1, 𝑥𝑥2 , … … . 𝑥𝑥𝑛𝑛 ) ≤ 0 , are the inequality constraints. 

The Lagrange function is formed as shown below in equation 1.10 with the optimality 

conditions.    
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𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) = 𝑓𝑓(𝑥𝑥) + �𝑤𝑤𝑖𝑖(𝑥𝑥)𝜆𝜆𝑘𝑘

𝑚𝑚

𝑖𝑖=1

+ �𝜇𝜇𝑗𝑗𝑔𝑔𝑗𝑗(𝑥𝑥)
𝑝𝑝

𝑗𝑗=1

   (1.10)  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 , 𝑖𝑖 = 1, …𝑛𝑛  (1.11) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑘𝑘

= 0 , 𝑘𝑘 = 1, …𝑚𝑚  (1.12) 

𝑔𝑔𝑗𝑗 (𝑥𝑥) ≤ 0, 𝑗𝑗 = 1, . . 𝑝𝑝   (1.13) 

𝜇𝜇𝑗𝑗 𝑔𝑔𝑗𝑗 (𝑥𝑥) = 0 , 𝑗𝑗 = 1, …𝑝𝑝   (1.14) 

𝜇𝜇𝑗𝑗 ≥ 0 , 𝑗𝑗 = 1, …𝑝𝑝    (1.15)   

1.1.2. Dynamic Optimization : 

The above explanation was considered for static optimization problems at a single point 

in time. But in this thesis the optimization solution deals not only with the present, but also 

with the future time periods as well. The optimization problem is solved for a horizon. 

Hence it is called Dynamic optimization. The main variable definitions used in this type of 

optimization are control variable and state variables. The control variable is a variable you 

can control, for example the most common example used is to describe how much you 

consume at each interval of time. In the case of this study it is the battery dispatch values. 

The things which we cannot control completely, but that are affected by what we choose 

as our control are called state variables. In the case of storage it is the state of charge of the 

battery. So in dynamic optimization, we want to solve for the control variables at every 

point of time. The state variables can show up in the objective function or in the constraints, 

but will be determined by the path of the control variables. The dynamic optimization 

problem can be solved in discrete and continuous time. In discrete time the time period is 

fixed and the solution is obtained for the fixed intervals. In this thesis the discrete time is 
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considered. The dynamic optimization problem can be solved using dynamic programming 

or using lagrangean function method. Here the lagrangean function method is used. The 

most common dynamic optimization problem is the life time consumption problem with 

fixed assets in discrete time which is described in reference [30]. So now if the lagrangean 

function is expressed over a time horizon and then can be solved using various optimization 

techniques like linear programming and quadratic programming. The only difference is 

that the lagrange function is defined for the full time horizon as shown in equation 1.16 

when compared with equation 1.10. 

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜇𝜇) = 𝑓𝑓(𝑥𝑥) + ��𝑤𝑤𝑖𝑖(𝑥𝑥)𝜆𝜆𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1

+ ��𝜇𝜇𝑗𝑗𝑔𝑔𝑗𝑗(𝑥𝑥)
𝑝𝑝

𝑗𝑗=1

𝑇𝑇

𝑡𝑡=1

   (1.16)  

The various methods used for solving the microgrid dispatch solution is described in the 

next sections. 

1.1.3. Linear Programming: 

Linear programming maximizes or minimizes the linear objective function with linear 

constraints. The linear programming method has been used in references [4], [17], [18] 

and [19] to solve the dispatch solution for the microgrid. 

Minimize 𝑓𝑓(𝑥𝑥) = 𝑐𝑐𝑇𝑇 ∗ 𝑥𝑥      (1.17) 

𝐴𝐴 ∗ 𝑥𝑥 ≤ 𝑏𝑏                               (1.18) 

Where 

𝑐𝑐 is the cost coefficient of the decision variables  

𝑥𝑥 the vector of variables to be determined 

1.1.4. Dynamic Programming: 

In dynamic programming the system refers to a discrete time system with finite time 

period [5]. The dynamic system can be defined as  
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𝑥𝑥𝑘𝑘 + 1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘)    (1.19) 

Where  

𝑘𝑘 = 0, 1,..N-1. 

𝑥𝑥𝑘𝑘 is the system state variable as described above 

𝑢𝑢𝑘𝑘 is decision variable or control variable  

Then the cost of the dynamic system is defined as follows 

𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁) + � 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘)
𝑁𝑁−1

𝑘𝑘=0

     (1.20 ) 

Where 

𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) is cost in period k and 𝑔𝑔𝑁𝑁(𝑥𝑥𝑁𝑁) is the terminal cost of the system i.e. at the 

final state. 

There is a functional relation between the states and the decision variables also. The 

aim of the problem is to determine an optimal solution sequence for the defined time period. 

The aim is to find the solution 𝑢𝑢𝑘𝑘  to minimize the performance index or objective function. 

In a microgrid generally the states are considered as the state of charge of the battery and 

the dispatch solution is the decision variable [5].The general algorithm of solution is 

explained as follows. A cost-to-go function as mentioned in equation 1.20 is defined, which 

usually starts from the terminal state and moves towards the previous states and it expresses 

the cost needed to move from N state to state N - 1. The cost-to-go function for the terminal 

state is fixed. The problem is divided into sub-problems. Every sub-problem is considered 

as a sub-optimal problem, whose solution could construct a feasible global solution. The 

total cost of solution will be the sum of each sub-optimal solution. Possible state transitions 

from each stage to stage are determined based on the limitation of control variable and the 
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limitation of cost function variables which are the constraints [28]. The advantages of using 

dynamic programming is that the performance index that is the cost functions can be linear, 

differential ,convex or concave and no specific matlab solver is needed. The disadvantage 

of this technique is that it requires high memory when studied over long period and the 

states are discretized with small time step [32].  

1.1.5. Quadratic Programming: 

A linearly constrained optimization problem with a quadratic objective function is 

called a quadratic program [24]. Here the Karush-Kuhn-Tucker conditions, which are the 

first order necessary conditions for a solution in nonlinear programming to have a 

maximum or minimum, are analyzed for the quadratic program, with a set of linear 

equalities and inequalities. The general quadratic program can be written as  

Minimize 𝑓𝑓(𝑥𝑥) = 1
2
∗ 𝑥𝑥𝑇𝑇 ∗ 𝑄𝑄 ∗ 𝑥𝑥 + 𝑐𝑐𝑇𝑇 ∗ 𝑥𝑥      (1.21) 

𝐴𝐴 ∗ 𝑥𝑥 ≤ 𝑏𝑏                              (1.22) 

𝑥𝑥 ≥  0                 (1.23) 

Where  

𝑐𝑐 is an n-dimensional row vector describing the coefficients of the linear terms in the 

objective function. 

𝑄𝑄 is an (n*n) symmetric matrix describing the coefficients of the quadratic terms 

If a constant term exists it is dropped from the model. As in linear programming, the 

decision variables are denoted by the n-dimensional column vector𝑥𝑥 and the constraints 

are defined by an 𝐴𝐴 matrix and an m-dimensional column vector 𝑏𝑏 .When the objective 

function is strictly convex for all feasible points the problem has a unique local minimum 

which is also the global minimum. The concept of local and global minimum can be 

explained using the figure 1.1, points A and D satisfy the conditions of maximum but only 
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point D is global maximum. But if we consider convex or concave functions as in figure 

1.2 there is only one minimum or maximum. The sufficient condition to guarantee strict 

convexity is for Q to  

 

FIGURE 1.2: Local and Global maximum [31] 

 

FIGURE 1.3: Convex function [31] 

be positive definite[24]. These conditions are sufficient for a global minimum when Q is 

positive definite. Excluding the non-negativity conditions, the lagrangian function for the 

quadratic program is shown in (1.4) 

𝐿𝐿(𝑥𝑥, 𝜇𝜇) =
1
2
∗ 𝑥𝑥𝑇𝑇 ∗ 𝑄𝑄 ∗ 𝑥𝑥 + 𝑐𝑐𝑇𝑇 ∗ 𝑥𝑥 +  𝜇𝜇 (𝐴𝐴𝐴𝐴 − 𝑏𝑏)     (1.24) 
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Where 𝜇𝜇 is a row vector, The Karush-Kuhn-Tucker conditions for a local minimum are 

given as follows. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 ≥ 0 , 𝑗𝑗 = 1, …𝑛𝑛                  𝑥𝑥𝑇𝑇 ∗ 𝑄𝑄 + 𝑐𝑐𝑇𝑇 + 𝜇𝜇 ∗ 𝐴𝐴 ≥ 0     (1.25) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑖𝑖

 ≤ 0 , 𝑗𝑗 = 1, …𝑚𝑚                                  (𝐴𝐴𝐴𝐴 − 𝑏𝑏) ≤ 0         (1.26)  

𝑥𝑥𝑗𝑗 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

= 0 , 𝑗𝑗 = 1, …𝑛𝑛               𝑥𝑥𝑇𝑇(𝑄𝑄 ∗ 𝑥𝑥 + 𝑐𝑐𝑇𝑇 +  𝜇𝜇 𝐴𝐴𝑇𝑇) = 0        (1.27)              

𝜇𝜇𝑖𝑖 ∗  𝑔𝑔𝑖𝑖 (𝑥𝑥) = 0 , 𝑗𝑗 = 1, …𝑚𝑚                            𝜇𝜇(𝐴𝐴𝐴𝐴 − 𝑏𝑏) = 0           (1.28)             

𝜇𝜇𝑖𝑖 ≥ 0 , 𝑖𝑖 = 1, …𝑚𝑚                                         𝜇𝜇 ≥ 0         (1.29)       

𝑥𝑥𝑗𝑗 ≥ 0 , 𝑗𝑗 = 1, …𝑛𝑛                             𝑥𝑥 ≥ 0        (1.30)       

To the equations 1.5 to 2.0 non negative surplus variables y to the inequalities in 1.5 and 

non-negative slack variables v ε to the inequalities in 2.6 to obtain the equations  

(𝑄𝑄𝑄𝑄 + 𝑐𝑐𝑇𝑇 +  𝜇𝜇𝑇𝑇 𝐴𝐴𝑇𝑇) − 𝑦𝑦 = 0  (1.31) 

(𝐴𝐴𝐴𝐴 − 𝑏𝑏) + 𝑣𝑣 = 0         (1.32) 

The KKT conditions can now be re written as  

(𝑄𝑄𝑄𝑄 +  + 𝜇𝜇𝑇𝑇 𝐴𝐴𝑇𝑇) − 𝑦𝑦 = −𝑐𝑐𝑇𝑇    (1.33) 

(𝐴𝐴𝐴𝐴) + 𝑣𝑣 = 𝑏𝑏      (1.34)      

𝑥𝑥 ≥ 0, 𝜇𝜇 ≥ 0, 𝑦𝑦 ≥ 0, 𝑣𝑣 ≥ 0    (1.35) 

𝑦𝑦𝑇𝑇 𝑥𝑥 = 0, 𝜇𝜇𝜇𝜇 = 0         (1.36) 

The equations 1.33 and 1.34 are linear equalities, 1.35 restricts all the variables to be non 

negative, and the fourth prescribes complementary slackness. An interior point convex 

algorithm can be used to solve the above equations [25, 24]. The quadratic programming 

method for solving the microgrid dispatch problem can be found in references [3], [6]. It 

gives very good results since the problem is formulated in a relaxing form through the 
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lagrangian multiplier [24]. Also quadratic programming is suitable for small problem 

sizes than 50 variables [2]. This technique has been used in HEV applications as in [26] 

and [27]. 

1.2. Scope and Organization   

The microgrid interconnection can be at the feeder level or at the consumer level at the 

end of the lateral feeders as shown in figure 1.4. However, the ability to interconnect the 

microgrid considering the grid operational benefits and maximizing the supply at the same 

time meeting the demand depends much on the need and ability of the feeder. For example, 

if the interconnection point is at the home or neighbourhood level, the need must be to 

maximize the customer side benefits. Customer side benefits could be to utilize the 

generation much to satisfy the load taking care of the voltages. On the other hand, if the 

interconnection point is at the feeder level, the need must be to maximize the grid side 

benefits. Thus there is a need to modularize the microgrid operation based on the various 

benefits and at the same time provide a way to link these benefits together.  The main scope 

of the thesis is to develop modular microgrid management algorithms considering 

• Maximum use of renewable energy resources in the microgrid and meet the 

changing demand  

• Maximizing the operational profit keeping the optimal use of renewable energy 

resources. 

• Provide a way to improve the operational cost and at the same time maximizing 

the stored energy. 

• Optimally manage the operational cost and at the same time consider the grid 

voltage stability.  
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The management of the microgrid is based on the optimal scheduling of the available 

battery energy storage such that the power taken from the grid is minimized and also be 

able to calculate dispatch values in off grid mode of operation based on flexible rules. 

Using this optimal schedule the developed algorithm dispatch values can be applied as 

reference power set points to the local controllers. To accomplish the above mentioned 

scope three algorithms are designed. The first one is a rule based dispatch algorithm which 

works in off grid mode. The second one is a fixed optimization based algorithm which 

works on grid connected mode of operation. The third algorithm is a predictive horizon 

optimization based on the concept of Receding Horizon Control [23]. Also, an algorithm 

that links the rule based and predictive horizon optimization based on the voltage 

deviations at the Point of Common Coupling is designed. This approach allows the grid 

operator to automatically switch the dispatch setpoints based on the microgrid mode of 

operation. The main advantage of the proposed architecture is the developed algorithms 

can be further scaled based on the PCC considered in the figure 1.4. If the interconnection 

is at the substation level then the various microgrid component constraints need to be 

developed in the optimization algorithm and the rule based dispatch algorithm need to be 

modified to include the other microgrid connected at the various feeders to calculate the 

dispatch values. Other advantages are listed below. 
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FIGURE 1.4: General distribution feeder 

• Rule based dispatch algorithm is flexible and can be applied to a PV+ storage 

microgrid.  

•  Dispatch algorithm provides a way to minimize the grid level power use such that 

the cost is minimum over a fixed horizon. 

• The above algorithm is based on dynamic optimization which is further modified 

to a predictive horizon based optimization algorithm. 

• The architecture provides for the seamless transfer or switching of the dispatch 

values obtained from both the algorithms based on the microgrid status. 

• Provides a way to link the new dispatch which minimizes the voltage deviations at 

the PCC. 

This thesis is organized as follows: 
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• Chapter 2 describes the rule based dispatch algorithm which can be applied to a 

microgrid in off grid mode of operation and can also provide the power required 

from the grid in case the load demand cannot be met.  

• Chapter 3 presents the dynamic optimization based dispatch algorithm which 

provides optimal dispatch values for the battery such that the grid power required 

is minimized. 

• Chapter 4 a predictive horizon based optimization which was based on the concept 

of Receding Horizon Control to develop a method for enhancing the capabilities of 

dynamic optimization. 

• Chapter 5 presents a methodology by which we can switch between the rule based 

and dynamic optimization algorithms based on the voltage deviations at PCC 

• Chapter 6 presents conclusion and future work. 

 



 
 

   
 
 

 
 

CHAPTER 2 :  RULE BASED RENEWABLE ENERGY INTEGRATED POWER 
DISPATCH ALGORITHM WITH ENERGY STORAGE FOR A MICROGRID 

 
 

Chapter 2 explains the dispatch algorithm that is based on some flexible rules that can 

be used in off grid mode of operation. Section 2.1 is the brief description of the rule based 

dispatch algorithm. The description of the rule based dispatch solution and the simulation 

results are described in sections 2.2 and 2.3 respectively and the summary is provided in 

section 2.4  

2.1. Overview 

As levels of penetration of renewable energy rise, the impact of this on grid operation 

led to the application of energy storage for renewables. There are various papers proposing 

this application like various schemes to charge and discharge the battery energy storage 

system when the solar power output exceeds a threshold and discharges when the load 

demand is high for various applications like PV smoothing, peak load reduction etc. As a 

large battery energy storage system is an expensive option for dispatching renewable 

resources, a control strategy is necessary for optimal use of the available Battery Energy 

Storage System (BESS). At the distribution level there is a significant market for these 

hybrid systems especially at the homeowner level due to the economic incentives. But it 

requires an algorithm that can work in both grid connected and off grid mode that can send 

power dispatch set points to the controllers in both conditions. This chapter is about one 

such algorithm called the rule based dispatch algorithm based on [1], where the above 

dispatch algorithm was used to make the renewable source dispatch able. Similar short 
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term scheduling of battery can also be found in [7] and [2] but it will work only in grid 

connected mode. But here the algorithm has been modified for battery dispatch scheduling 

based on a rule based management which can work in island mode of microgrid also, which 

is based on various conditions of state of charge constraints of the battery. The power 

scheduling is based on certain constraints, but the final dispatch may not be the optimal 

dispatch. In this chapter a non-optimal rule based algorithm has been developed that is 

based on maximum renewable resource utilization. Similar, battery scheduling in a 

PV/battery system predefined by rules considering the system load profile and the 

generation characteristic of PV power can be found in references [8]-[10],[20] and [14] 

where a PV limitation mode was considered. But here the PV output power was not 

curtailed and the excess power was used by the battery. Also the rules of charging and 

discharging the energy storage can be modified by each user.  

2.2. Description of the Rule Based Dispatch Algorithm 

The main components of the microgrid are the PV, energy storage, load and the system 

is described as shown in figure 2.1. 

PV

Battery

Load

Electric 
Grid

Ppv

 

FIGURE 2.1: Microgrid Architecture  
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As shown in the figure 2.1 the sign convention for power flowing to the grid is taken as 

negative and the power flowing into the microgrid is taken as positive. The battery dispatch 

is taken as positive for charging and negative for discharging. The storage charge equation 

is modelled as shown in equation 2.1. The state of energy stored in the storage at each time 

step is dictated by the preceding time step energy stored, it’s charging rate and discharging 

rate. 

                 𝐸𝐸(𝑡𝑡) =  𝐸𝐸(𝑡𝑡 − 1) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ ∗ 𝑑𝑑𝑑𝑑                    (2.1) 

Where  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡) is the battery charge or discharge value at that instant. 

 𝐸𝐸(𝑡𝑡) is the energy stored in the battery at that instant. 

The above equation has been implemented with a single variable for charge and discharge.  

So based on the sign of the dispatch solution it will determine if the net battery energy 

capacity is increased or decreased for that interval. So if the dispatch variable is negative 

which means the battery is discharging based on the assumed sign convention, then the net 

charge stored is decreased. Similarly if the dispatch solution is positive then the battery is 

charging and the net charge available is increased. The value of the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ variable is 

obtained from the rule based algorithm which will be described in the next section. Also 

the efficiency of charging and discharging process is taken as unity. The state of charge of 

a battery is its available capacity expressed as a percentage of its rated capacity. Knowing 

the amount of energy left in the battery compared with the energy it had when it was fully 

charged gives us the indication of how much longer the battery will continue to discharge 

before it needs recharging. It is the relative energy level of the Battery. As it is not desired 

to deplete or overcharge the battery, the SOC of the battery should be kept within proper 



19 
limits i.e. within (20% and 100%).Furthermore, by limiting the SOC, the charge/discharge 

time of the battery will also be limited according to the energy left in the battery. The SOC 

is calculated as shown in equation (2.2) and the constraint equation is (2.3). 

       𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)  =  𝐸𝐸(𝑡𝑡)/𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟                                    (2.2) 

   𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑙𝑙𝑙𝑙 ≤  𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)  ≤  𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑢𝑢𝑢𝑢                 (2.3) 

Where 

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)   is the state of charge at that instant. 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑙𝑙𝑙𝑙  is the lower limit of the state of charge. 

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑢𝑢𝑢𝑢  is the upper limit of the state of charge. 

The operating range of the battery is also limited as shown in constraint (2.4) below. This 

is because every battery manufacturer provides a fixed charging and discharging rate. This 

constraint is added to limit the degradation and ageing of the battery. 

          𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚                 (2.4) 

Where  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the battery dispatch value at that instant. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum charge or discharge rating. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum charge or discharge rating. 

The first step in the rule based algorithm is to calculate the net power demand required 

from the battery based on equation (2.5). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)                                           (2.5)        

Where 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the total load at that instant. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the photovoltaic generation at that instant. 
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The value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) corresponds to the amount of load that will be satisfied by the BESS 

(Battery Energy Storage System), now if the value is negative then it shows that there is 

excess PV generation so the battery can be charged during that interval. If the value is 

positive then the PV generation is less than the load at that instant and the battery has to 

discharge to satisfy the load. As explained already the charging and discharging power 

limits of the battery need to be checked and if the value is violating the limits then it is set 

to the lower or upper limit value. Then the charge left in the battery is calculated for that 

instant, based on which the State of charge (SOC) can be obtained as shown in the 

equations above. Based on the calculated state of charge (SOC) values three conditions are 

considered. The first condition being that the state of charge is within the limits. The second 

condition being that the state of charge has hit the lower limit and the third condition is that 

the stateo f charge has hit the upper limit. These conditions are further explained in detail 

in the next sections. 

Condition 1: 

When the SOC value is within the limits, then the corresponding value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  

calculated will be the dispatch solution, since the battery constraints are not violated. Based 

on the sign of  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  it will be to charge or discharge the battery. It is further explained 

using figure 2.2.  
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Calculate Pbatt(t)=Pload(t)-Ppv(t)

 Pbatt(t)Charge Discharge

Condition 1
SOC(t)ll<=SOC(t)<=SOC(t)ul

Dispatch(t)=Pbatt(t)

Calculate  E(t)=E(t-1)+Dispatch(t)*dt

 Pbattmin≤  Pbatt(t)≤ Pbattmax

If Pbatt(t)

Calculate SOC(t)= E(t)/Eref

Pbatt(t) >Pbattmax

Calculate SOC(t)= E(t)/Eref

Calculate  E(t)=E(t-1)+Pbatt(t)*dt

 Pbatt(t) < Pbattmin

Pbatt(t)=Pbattmin Pbatt(t)=Pbattmax

No

Yes

No

FIGURE 2.2: Flow chart for rule based dispatch-condition 1 

Condition 2: 

When the SOC value is less than or equal to the lower limit, then if net demand 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) 

is positive then it means the battery has to discharge, but the SOC is at the lower limit, so 

it cannot discharge and hence the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡) variable is set as 0. If 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is negative 

then it means excess generation available so battery can charge and the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡)   

variable is set equal to  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) .The flow chart for the above condition is shown in figure 

2.3 
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Calculate Pbatt(t)=Pload(t)-Ppv(t)

 Pbatt(t)Charge Discharge

Condition 2
SOC(t)≤ SOC(t)ll

Dispatch(t)=Pbatt(t)

Calculate  E(t)=E(t-1)+Dispatch(t)*dt

 Pbattmin≤  Pbatt(t)≤ Pbattmax

If Pbatt(t)

Calculate SOC(t)= E(t)/Eref

Pbatt(t) >Pbattmax

Calculate SOC(t)= E(t)/Eref

Calculate  E(t)=E(t-1)+Pbatt(t)*dt

 Pbatt(t) < Pbattmin

Pbatt(t)=Pbattmin Pbatt(t)=Pbattmax

No

Yes

No

Dispatch(t)= 0

 

FIGURE 2.3: Flow chart for rule based dispatch-condition 2 

Condition 3: 

When the SOC value calculated is greater than or equal to the upper limit, then if the 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value is positive, then the battery has to discharge and dispatch variable will be 

set as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value. Now if the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is positive then it means the battery has to 

charge, and the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡) variable is set equal to 0, as the SOC has hit the upper limit. 

Based on the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡) variable solution the new battery capacity for that instant is 

calculated. The flow chart is described in figure 2.4.   
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Calculate Pbatt(t)=Pload(t)-Ppv(t)

 Pbatt(t)Charge Discharge

Condition 3
SOC(t)≥  SOC(t)ul

Dispatch(t)= 0

Calculate  E(t)=E(t-1)+Dispatch(t)*dt

 Pbattmin≤  Pbatt(t)≤ Pbattmax

If Pbatt(t)

Calculate SOC(t)= E(t)/Eref

Pbatt(t) >Pbattmax

Calculate SOC(t)= E(t)/Eref

Calculate  E(t)=E(t-1)+Pbatt(t)*dt

 Pbatt(t) < Pbattmin

Pbatt(t)=Pbattmin Pbatt(t)=Pbattmax

No

Yes

No

Dispatch(t)= Pbatt(t)

FIGURE 2.4: Flow chart for rule based dispatch-condition 3 

The process is repeated in a loop for the full day horizon data. From the present dispatch 

values the excess power required from the grid can be calculated as shown in equation 2.6.  

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − (𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)   +  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡))              (2.6)    

Where 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the Power from the Electric grid.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the load at that instant. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the photovoltaic generation at that instant. 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡) is the battery charge or discharge value at that instant.  

The above equation (2.6) will give the net generation required from the grid to satisfy the 

load in the microgrid. The positive sign represents net power required from the grid and 

negative sign represents net power transferred to grid. The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value is calculated 

after the dispatch solution is obtained. The above equations and constraints are used in the 

dispatch algorithm to determine the battery dispatch. 

2.3. Simulation Results  

The day ahead forecasted photovoltaic generation data for a sunny day is used as the 

photovoltaic generation data. Half an hour interval data is read from the data and the 

following PV generation profile is obtained. The no of samples obtained from the initial 

data is explained as shown below and the generation profile is shown in fig 2.2   

  𝑁𝑁 ∗  𝑑𝑑𝑑𝑑 =  24 (ℎ𝑟𝑟)                    (2.7) 

𝑁𝑁 ∗  �
30
60
� =  24 (ℎ𝑟𝑟)    

𝑁𝑁 = 48 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

TABLE 2.1: Simulation parameters 

Simulation Parameter values 

T 24 hr 

dt 30 min 

SOCmin 0.2 

SOCmax 1 

BESS 1 MWhr/ 250 KW 

Load 500 KW 
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FIGURE 2.5: PV generation data 

Each sample corresponds to the 30 min interval data for the day.  The project setup is shown 

in table 2.1 and it consists of the BESS of capacity 0.25 MW with a rating of 1 MWhr 

connected with a 1MW PV station. A fixed load of 500 KW was considered for the full 

day. The dispatch results for the full day is explained in three parts based on the conditions 

as mentioned above. The battery was considered to be fully charged initially. 

2.3.1. Dispatch Results During Condition 1: 

During early morning when the PV generation is low, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value is positive 

and since the initial condition of BESS was full charged, the battery discharges by 250 KW 

as that is the discharging rate limit considered as shown in figure 2.6. Since the SOC 

calculated is within the limits as shown in figure 2.7 and hence the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡)   solution 

is equal to the maximum discharge value possible. It continues to discharge for about 3 

hours after which the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)   value is still positive but the battery cannot discharge 

since the SOC lower limit is hit .So during this mode of operation the battery is discharged 

and the rest of the power is taken from the grid to satisfy the load if grid connected else the 

load is curtailed. This condition is explained in flowchart shown in figure 2.2. 
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FIGURE 2.6: Rule based dispatch condition 1 

FIGURE 2.7: SOC during condition 1 

2.3.2. Dispatch Results During Condition 2: 

 The battery is fully discharged as shown in figure 2.9 and the battery 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value 

obtained cannot be discharged as the SOC will go below the lower limit and hence the 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡)  solution is set to zero and the load has to be satisfied by the grid as the 

photovoltaic output is zero. As explained in the flow chart When the  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value is 

positive and SOC has hit the lower limit then based on the sign of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) variable 

the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡)  value is set to zero as in this case it is positive and the battery cannot be 
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discharged further as explained in the figure 2.3  flowchart above. Also here the battery is 

not fully utilized as the SOC value has not hit the 0.2 limit. But this will depend on the 

loading conditions and also it can be modified by adding some new rules. 

FIGURE 2.8: Rule based dispatch during  condition 2 

FIGURE 2.9: SOC during condition 2 

2.3.3. Dispatch Results During Condition 3: 

As the PV generation increases the battery starts to charge till it hits the upper limit of 

SOC. The total load is satisfied by the PV generation and the power demand from the grid 

is zero. But once the battery is fully charged, then the excess power is send to grid. This 
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can be shown from figure 2.10 where the positive 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the charging power and 

Pgrid value is negative around 3 PM. Similar to the above condition, here also the final 

battery SOC limit has not hit the upper limit of 1 figure 2.11, as the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) value at that 

instant is negative and hence based on the flowchart description figure 2.4, since the SOC 

constraint will be violated the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑡𝑡)  variable is set to zero as can be seen in figure 

2.10 around 3 PM and the excess available PV power is send to grid. 

FIGURE 2.10: Rule based dispatch during  condition 3 

FIGURE 2.11: SOC during condition 3 
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2.3.4. Complete Rule Based Dispatch Solution: 

FIGURE 2.12:Full day rule based dispatch 

     

FIGURE 2.13: Full day rule based dispatch-SOC 
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FIGURE 2.14: 3 day rule based dispatch 

FIGURE 2.15: 3 Day rule based dispatch - SOC 

The complete dispatch solution for the full day is shown in figure 2.12 and 2.13. Further a 

new case was considered where a 3 day profile of PV during sunny and cloudy conditions 

was considered. The results are shown in figure 2.15 and 2.14 respectively. From the results 

it can be seen that the battery has not been fully charged means the upper limit was not hit 

and the same case with the lower limit. But this will depend on the system conditions like 

load levels, PV generation and battery sizing. Also the constraint limits can be modified 

based on each user requirement. 
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2.4. Summary 

In this chapter, the rule based dispatch algorithm was described. It is based on 

maximum resource optimization. There is minimum wastage of renewable resource as the 

total energy available is used completely to satisfy the load or charge the battery at that 

instant. The battery is not fully utilized as the state of charge has not hit the lower limit and 

the upper limit as shown in figure 2.15 and 2.13. But these results can be modified by 

having different rules. But the above algorithm also ensures that the battery is charged only 

when the PV generation is high and grid power is not utilized to charge the battery. This 

dispatch algorithm can be used when the microgrid is disconnected from the grid and incase 

excess power is required to satisfy the load it can be taken from the grid. Also the rules can 

be modified if the system conditions are known a day ahead by forecasting and then the 

power send to the grid and battery scheduling can be modified. Also the SOC limits can be 

modified based on user needs. No battery sizing algorithm was used to determine the 

battery size. The aim is to utilize the battery irrespective of its size based on the rules. In 

case the load cannot be satisfied when in off grid mode then loads have to be curtailed 

based on some demand response techniques which are not in scope of this work. 



 
 

   
 
 

 
 

CHAPTER 3 : DYNAMIC OPTIMIZATION WITH ENERGY BALANCE 
INCLUDING STORAGE FOR A MICROGRID 

 
Chapter 3 explains the dynamic economic dispatch of the microgrid connected to the 

grid. The main aim is to find an optimal dispatch to reduce the grid cost. In section 3.1 an 

overview of the microgrid economic dispatch is described. The  Dynamic optimization 

algorithm explanation is provided in section 3.2 and the formulation of objective function 

and constraints for the above problem is explained in section 3.3 The simulation results 

with Fixed Horizon Optimization is explained in section 3.4 Summary is provided in 

section 3.5 

3.1. Overview of the Microgrid Economic Dispatch 

PV

Battery

Load

Electric 
Grid

Ppv

P2

 

Pbatt

Pgrid

P2=Ppv+Pbatt

 

FIGURE 3.1: Microgrid Architecture for dynamic dispatch  

Consider the same system as used in the Rule Based Dispatch scheme with a new 

variable defined as 𝑃𝑃2 as shown in figure 3.1.It represents the total power from the PV plus 



33 
the battery which will be later explained in the further sections. It is called an economic 

dispatch since it is based on minimizing the cost of power taken from the grid at the Point 

of common coupling and obtain the battery dispatch. The optimization problem is 

formulated for a full day operation of the microgrid. The microgrid economic dispatch has 

a dynamic formulation due to the presence of energy storage, it has constraints such as 

power and energy limits which are time dependent and is considered in the microgrid 

optimization problem. Hence dynamic optimization techniques were used to solve the 

problem as explained in the introduction chapter.  This makes the dispatch solution at every 

time stage dependent on the dispatch solution of all other time stages. In other words, the 

dispatch solution in every time step influence the whole schedule of operation. So the 

schedule of operation is dynamic. For example in a dynamic economic dispatch for a daily 

operation with small time steps, the dispatch solution at noon will depend on the state of 

the system at that instant and also the past states of the system. In static economic dispatch, 

the dispatch solutions in a particular time stage only depend on the criteria of that time 

stage and are independent from the dispatch solutions in other time stages. In other words, 

the dispatch solutions in a particular time stage do not influence the dispatch solutions in 

other time stages. A similar dispatch solution for a microgrid was done in [5],[3] and [2]. 

3.2. Quadratic Programming 

Quadratic programming is used in this thesis for optimization since the objective 

function which is the grid cost is quadratic with linear constraints. The matlab toolbox was 

used to solve the above problem. The following description of quadratic programming was 

taken from reference [11]. 

1
2
∗ 𝑥𝑥𝑇𝑇 ∗ 𝐻𝐻 ∗ 𝑥𝑥 + 𝑐𝑐𝑇𝑇 ∗ 𝑥𝑥      (3.1) 
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𝐴𝐴 ∗ 𝑥𝑥 ≤ 𝑏𝑏                              (3.2) 

𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑥𝑥 = 𝑏𝑏𝑏𝑏𝑏𝑏                     (3.3) 

𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢                              (3.4)  

Where 

𝑐𝑐 is the Vector of linear terms of the quadratic objective function. 

𝐻𝐻 is the Symmetric matrix describing the coefficients of the quadratic terms. 

𝐴𝐴 is the coefficient matrix of inequality constraints. 

𝑏𝑏 is the Vector of inequality right side constraints. 

𝐴𝐴𝐴𝐴𝐴𝐴 is the Coefficient matrix of equality constraints. 

𝑏𝑏𝑏𝑏𝑏𝑏 is the vector of equality right side constraints. 

𝑙𝑙 is the Vector of lower bound variables. 

𝑢𝑢 is the Vector of upper bound variables. 

The quadratic programming in Matlab uses the interior point convex algorithm which has 

the following steps: 

1. Presolve/postsolve 

2. Generate initial point 

3. Predictor-corrector  

4. Multiple corrections 

Each of these are described in [11] in more detail. 

3.3. Formulation of Objective Function and Constraints for the above problem: 

The general objective function is shown in equation 3.1. It includes the cost function 

for the grid and battery and also any other source available in the microgrid. Similar 

problem formulation to solve the above problem can be found in [3], [5]. But in this thesis 
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only the grid cost is considered. Now since the cost function of the grid is quadratic and 

convex, the above algorithm was used to solve the optimization problem.  

��[(𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)]
𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=1

                                                             (3.1) 

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃2(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)�                                     (3.2) 

�𝑃𝑃2(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)�                                          (3.3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                  (3.4) 

  𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃2(𝑡𝑡) ≤ 𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                                    (3.5) 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                  (3.6) 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝐸𝐸𝐸𝐸 + �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

) ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)       (3.7) 

Where 

T is the time horizon of the optimization problem. 

The other variable descriptions are the same as in the rule based dispatch algorithm 

chapter. The PV operating costs are not incorporated here. The battery is modeled with 

minimum and maximum charging and discharging limits as shown in rule based dispatch 

algorithm. No battery operating costs are incorporated. The constraints are formulated such 

that the load demand is to be met by the PV. If the PV output is not enough to satisfy the 

load demand, the battery discharges to satisfy the load requirement. If the PV output is 

above the load requirement, the excess generation from the PV is used to charge the battery 

until full capacity of the battery is reached. The economic dispatch problem is to determine 

the optimum dispatch of the battery at any given time that minimizes the cost while 

satisfying the demand and operating limits. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ,𝑃𝑃2(𝑡𝑡), 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  are the control 
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variables representing power flows from the grid, PV and battery to the load at any time 

respectively. The first constraint (3.2) implies that the total power supplied by the PV and 

battery plus the grid must be equal to the load demand. The constraint (3.3) implies that 

the sum of the battery charging or discharging power and the power supplied directly to 

the load from the PV is equal to the PV output at that instant. When the PV generation is 

low, then based on constraint 3.2, it tries to increase the 𝑃𝑃2(𝑡𝑡) value to match the load and  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  value will be decreased. But now since the PV generation is low then the 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  value will be decreased i.e. it will have a negative sign to satisfy the constraint 

(3.3). So the battery discharges without taking too much power from the grid. Now as the 

PV generation increases and if excess generation is available after satisfying the load then 

the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) variable is increased to satisfy the constraint (3.3) and hence the battery 

charges.  All the other dispatch variables are constrained by minimum and maximum 

values as specified by constraints (3.4), (3.5), and (3.6).  

The basic algorithm for the matlab code implemented is shown in figure 3.2, which is 

further explained in the next sections. Initially the PV generation and load data is read from 

an excel file into matlab. Then the equality and inequality constraints as described above 

is formulated in matlab code which will be explained in detail in the next sections. Then 

the objective function is formulated which is the sum of the cost function for each instant 

of the solution i.e. for the full horizon considered. The structure of the objective function 

was explained in section 3.2. Initially the 𝑐𝑐  vector was formed which is the coefficients of 

the linear terms. To obtain this the gradient of the objective function is obtained and then 

the solution variable which is the 𝑥𝑥 vector is initialized to zero. The 𝐻𝐻 matrix contains the 

coefficients of the quadratic terms in the objective function and hence the hessian of the 
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function was calculated. Matlab functions are available to calculate the above values. Then 

the optimization solver was used to solve the above equations to obtain the battery and grid 

dispatch values required. 

3.3.1. Formation of the Bound Constraints in Matlab Code 

The optimization problem consists of three bound constraints, two equality 

constraints and one inequality constraint. Let’s consider the bound constraints as shown 

above first.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)     (3.8) 

𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃2(𝑡𝑡) ≤ 𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                       (3.9)   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                   (3.10)                

Syntax of the Solver in Matlab: 

   X = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options). 

The lower bound and upper bound vectors are represented as shown below and then 

concatenated to form the “lb” and “ub” vectors as required by the solver. Here “N” 

denotes the total no of samples or time scale considered. Since the solution vector 

consists of three variables the size becomes 3*N. 
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Read the PV and Load data for the fixed Horizon

Calculate the gradient of objective function to form C matrix

Calculate Hessian of objective function to form H matrix

Obtain solution vector  with battery and grid dispatch values

Define Equality constraints
�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃2(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)� 
�𝑃𝑃2(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)�     

Define Bound constraints
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                      
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                      

Define Inequality constraints

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝐸𝐸𝐸𝐸 + �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

) ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)  

Form Objective function

��[(𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)]
𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=1

   

Form the objective function based on Quadprog structure
1
2
∗ 𝑥𝑥𝑇𝑇 ∗ 𝐻𝐻 ∗ 𝑥𝑥 + 𝑐𝑐𝑇𝑇 ∗ 𝑥𝑥     

  

FIGURE 3.2: Flow chart of quadratic programming algorithm 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)

⎦
⎥
⎥
⎥
⎥
⎤

≤     

⎣
⎢
⎢
⎢
⎢
⎡

1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

    (3.11) 

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑁 + 1

𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚

2 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

      ≤

⎣
⎢
⎢
⎢
⎢
⎡

𝑃𝑃2(𝑡𝑡)

⎦
⎥
⎥
⎥
⎥
⎤

≤      

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑁 + 1

𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚

2 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

       (3.12) 

⎣
⎢
⎢
⎢
⎢
⎡

  

2 ∗ 𝑁𝑁 + 1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

3 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

    ≤

⎣
⎢
⎢
⎢
⎢
⎡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)

⎦
⎥
⎥
⎥
⎥
⎤

≤     

⎣
⎢
⎢
⎢
⎢
⎡

2 ∗ 𝑁𝑁 + 1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

3 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

         (3.13) 

3.3.2. Formation of the Equality Constraints in Matlab Code 

There are two equality constraints in the above problem. 

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃2(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)�                                     (3.14) 

�𝑃𝑃2(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)�                                           (3.15) 

The sum of the solution at each instant should be equal to the right hand side at each instant. 

Hence a diagonal identity matrix is considered to implement the above constraint.  

The “Aeq” matrix is formed as shown  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

 �

1 0 0 𝑁𝑁
0 1 0
0 0 1
𝑁𝑁 ⋱

�  �

1 0 0 2 ∗ 𝑁𝑁
0 1 0
0 0 1
𝑁𝑁 ⋱

�  �

0 0 0 3 ∗ 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

� 

�

0 0 0 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

�  �

1 0 0 2 ∗ 𝑁𝑁
0 1 0
0 0 1
𝑁𝑁 ⋱

�  �

1 0 0 3 ∗ 𝑁𝑁
0 1 0
0 0 1
𝑁𝑁 ⋱

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3.16) 

The “x” matrix is formed as shown below 
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⎣
⎢
⎢
⎢
⎢
⎡

1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
⋮
⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡

    

𝑁𝑁 + 1

𝑃𝑃2(𝑡𝑡)
⋮
⋮

2 ∗ 𝑁𝑁

   

⎦
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡
2 ∗ 𝑁𝑁 + 1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
⋮
⋮

3 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

 (3.17) 

The “beq” matrix is formed as shown below 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

Pload(t)
⋮
⋮
𝑁𝑁
1

Ppv(t)
⋮
⋮
𝑁𝑁

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.18) 

3.3.3. Formation of the Inequality Constraints in Matlab Code 

Let’s consider the inequality constraint (3.7) 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ≤ 𝐸𝐸𝐸𝐸 + �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

) ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)            (3.7) 

The energy stored in the battery at each instant is dependent on the previous time instant 

charge stored in the battery and the (charge/discharge) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) solution, so we need to 
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sum the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  solution of previous instants. The above constraint can be divided into 

two inequality constraints. 

Upper limit of Inequality 

�(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

) ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸0 (3.19)     

The “A1” matrix is formed as shown below 

�

0 0 0 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

� �

0 0 0 2 ∗ 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

� �

1 ∗ 𝑑𝑑𝑑𝑑 0 0 3 ∗ 𝑁𝑁
1 ∗ 𝑑𝑑𝑑𝑑 1 ∗ 𝑑𝑑𝑑𝑑 0
1 ∗ 𝑑𝑑𝑑𝑑 1 ∗ 𝑑𝑑𝑑𝑑 1 ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁 ⋱

� (3.20) 

The “b1” matrix is formed as shown below 

⎣
⎢
⎢
⎢
⎢
⎡

1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸
⋮
⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

 (3.21) 

Lower Limit of Inequality 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐸𝐸𝐸𝐸 + �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

) (3.22)   

Converting the above equation into standard form 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸 ≤�(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

)   

−𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐸𝐸𝐸𝐸 ≥ −�(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁

𝑡𝑡=1

)   

The “A2” matrix is formed as shown below 
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�

0 0 0 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

� �

0 0 0 2 ∗ 𝑁𝑁
0 0 0
0 0 0
𝑁𝑁 ⋱

� �

−1 ∗ 𝑑𝑑𝑑𝑑 0 0 3 ∗ 𝑁𝑁
−1 ∗ 𝑑𝑑𝑑𝑑 −1 ∗ 𝑑𝑑𝑑𝑑 0
−1 ∗ 𝑑𝑑𝑑𝑑 −1 ∗ 𝑑𝑑𝑑𝑑 −1 ∗ 𝑑𝑑𝑑𝑑
𝑁𝑁 ⋱

�(3.23) 

The “b2” matrix is formed as shown below 

⎣
⎢
⎢
⎢
⎢
⎡

1

𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
⋮
⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

 (3.24) 

Concatenating the “beq1” and “beq2” matrices to form the “b” matrix 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡

1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸
⋮
⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡

𝑁𝑁 + 1

𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
⋮
⋮

2 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.25) 

The “x” matrix is formed as shown below 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 3)
𝑃𝑃𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡 − 2)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 1)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)

⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

(𝑁𝑁 ∗ 1)

  

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃2(𝑡𝑡 − 3)
𝑃𝑃2(𝑡𝑡 − 2)
𝑃𝑃2(𝑡𝑡 − 1)
𝑃𝑃2(𝑡𝑡)
⋮

2 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

(𝑁𝑁 ∗ 1)

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 3)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 2)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 1)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)

⋮
3 ∗ 𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

(𝑁𝑁 ∗ 1)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.26) 

3.4. Simulation Results with Fixed Horizon Optimization 

The system considered is same as mentioned in Chapter 2 for rule based dispatch 

algorithm. Now here since we are optimizing the grid cost, the microgrid is always 

connected to the grid. The cost function assumed is shown in table 3.1. 

TABLE 3.1: Quadratic cost coefficients 

  x2 x Constant 

Coefficient 0.1 12.6 8 
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3.4.1. Dispatch Results for Full Day Horizon: 

FIGURE 3.3: Simulation result of dynamic optimization. 

Figure 3.1 shows the dispatch schedule for a full day. During the early morning and night 

the load is met by the battery and the grid. The battery dispatch is more uniform as 

compared to the rule based dispatch schedule. The battery dispatch is 106 KW during the 

morning time and 108 KW during evening.  Now as the PV generation increases it produces 

more than the load and is able to charge the battery bank and also satisfy the load. But the 

charging power is optimized such that there is a uniform value of 23 KW  power flowing 

back to the grid so that the overall cost function is minimized. Figure 3.3 shows that the 

State of charge has hit the lower limit of 0.2 and also the upper limit of 1 and hence the 

battery is fully utilized. The cost for the above dispatch schedule was 544.5 dollars and the 

rule based dispatch gave a total cost of 546.5 if we consider that the power is required from 

grid in off grid mode. 
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FIGURE 3.4: Dynamic optimization SOC 

3.4.2. Dispatch Results for 3 Day Horizon: 

FIGURE 3.5: 3-day dynamic optimization 

FIGURE 3.6: 3-Day dynamic optimization SOC 
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Now in this case the same data as shown in the rule based dispatch algorithm was used 

to obtain the dispatch values for a 3 day horizon. As already seen in the previous case the 

battery is fully utilized as compared to the Rule Based dispatch results for the same data. 

But one drawback of the above dispatch scheme is that it sees the fixed horizon only. So it 

is not able to optimize the battery dispatch based on the next day PV conditions. Hence the 

above algorithm was modified to include a predictive horizon based dispatch algorithm. 

3.5. Summary 

In this chapter, the fixed horizon dynamic optimization algorithm was described. It is 

based on obtaining a battery dispatch such that the power taken from the grid is minimized 

and hence the cost is reduced for the consumer. There is minimum wastage of renewable 

resource as the total energy available is used to completely satisfy the load or charge the 

battery at that instant. The major drawback is that the dispatch schedule is based on the 

single day data of PV generation and hence the battery state of charge is not optimized for 

the next day. Hence we go for a predictive horizon based approach in the next chapter. 

 

 

 

 

 

 

 



 
 

   
 
 

 
 

CHAPTER 4 : PREDICTIVE HORIZON BASED OPTIMIZATION  
 

This chapter explains the predictive horizon based optimization which is based on the 

concept of Receding horizon control [23]. Description of the predictive horizon based 

optimization is provided in section 4.1. The optimization algorithm is explained in section 

4.2. Simulation results with Predictive Horizon based modification and Fixed horizon is 

provided in section 4.3 and 4.4.  Summary is provided in section 4.5 

4.1. Description of the Predictive Horizon Based Optimization 

Fixed horizon optimization leads to a dispatch schedule, which begins at the current 

time and ends at some future time. This fixed horizon solution suffers from a drawback, It 

does not have information regarding the future PV generation data. This would render the 

fixed horizon dispatch solutions obsolete or it will not be optimal over a longer period. The 

above problem is addressed by the idea of receding horizon optimization. 

This idea can be summarized as follows: 

1. At time k and for the current state, solve an optimization problem over a fixed future 

interval, say [k; k+N-1], taking into account the current and future constraints as 

shown in figure 4.1. 
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FIGURE 4.1: Solution at first time step [13] 

2. Apply only the first step in the resulting optimization solution as shown in figure 

4.2. 

 

FIGURE 4.2: Solution at next time step [13] 

3. Measure the state reached at time k + 1. 

4. Repeat the fixed horizon optimization at time k + 1 over the future interval [k + 1; 

k + N], starting from the current state as shown in figure 4.3. 

5. In the absence of disturbances, the state measured at step 3 will be the same as that 

got from the optimization. 
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FIGURE 4.3: Overall solution of RHC [13] 

4.2. Algorithm Description 
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Solve Finite Horizon (N) Optimization problem 
Modify Equality Constraint

Read the PV and Load data 

⎣
⎢
⎢
⎢
⎢
⎡

1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
⋮
⋮
𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡

    

𝑁𝑁 + 1

𝑃𝑃2(𝑡𝑡)
⋮
⋮

2 ∗ 𝑁𝑁

   

⎦
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡
2 ∗ 𝑁𝑁 + 1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
⋮
⋮

3 ∗ 𝑁𝑁 ⎦
⎥
⎥
⎥
⎥
⎤

 

Obtain the solution vector X( )

Obtain the X(1) and X(2*N+1) solution for grid and battery 
dispatch

 while Time(t)<24 hr

Increment time (t)
 

FIGURE 4.4: Algorithm flowchart for predictive horizon optimization  

The predictive horizon methodology as described in section 4.1 is implemented in the 

algorithm as shown in figure 4.4. First the PV generation and load data is read and then the 
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finite horizon optimization problem which was described in the previous chapter is solved. 

The solution vector is obtained and the structure of the vector was described in the previous 

chapter. The first solution of the corresponding solution for battery and grid dispatch was 

selected. Then the time variable is incremented. The main difference is in the way the 

equality constraint is changed after each solution time step. As already described the 

constraints are expressed as matrices with fixed size, so by keeping the size constant the 

data is changed over a horizon value specified by N for each instant of time. This is 

equivalent to the ‘k’ variable described above in section 4.1 figures.  

4.3.  Results with Predictive Horizon Based Optimization 

The algorithm was run with a horizon of one day and the dispatch schedule obtained 

was used to calculate the cost. For a full day horizon the dispatch setpoints obtained for the 

present day was based on the next day data. As shown in table 3.2 the cost for N=48 was 

higher as compared to the cost calculated in fixed horizon optimization which was 544.5 

dollars. But as the horizon length was decreased the battery discharged more and hence the 

power demanded from the grid reduced and hence the battery dispatch power reduced. This 

is shown in figure 4.5. Here N signifies the time horizon and the data used is every 30 

minute PV generation data hence as explained in chapter 1 there will be 48 samples. The 

following cases were analyzed. Since the horizon window size is modified based on 

samples the figure  x-axis is not represented in time values.   

Case1: N= 48 (full day horizon) 

Case2: N= 24 (half day horizon) 

Case3: N=12 

Case4: N=5 
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FIGURE 4.5: Predictive horizon battery dispatch for various horizon  

Table 3.2:  Cost of RHC with various horizon size 

  N=48 N=24 N=12 N=5 

Cost($) 554.1313 553.825 549.6287 544.8917 

As shown in figure 4.4 as the window size is reduced the overall cost for predictive horizon 

based optimization has reduced. For lower value of window size the battery discharges 

more and hence the power demanded from the grid is reduced. But as the window size 

increases as it sees the full next day PV generation schedule it gives a lower dispatch set 

point. Even though the cost is higher, the advantage is that the state of charge of the battery 

will be higher at the end of the day. So for the next day the battery power can be used to 

satisfy the loads and hence grid power required will be reduced. Now if a cost value was 

added for the conserved state of charge then the overall cost will be lesser for the predictive 

horizon based approach. 

4.4. Comparison with Fixed Horizon and Predictive Horizon Optimization  

To show the advantage of using the predictive horizon modification both the algorithms 

were run for 3 days considering sunny and cloudy weather days. In fixed horizon case the 

optimization algorithm was run for 3 days and at the end of each day the battery SOC was 

updated, if  SOC was below a  particular value then the cost for the next day was increased 
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by 10% which is nothing but the grid demand will be higher for the next day. This is done 

to bring an economic significance to the reduced battery discharge at the end of the day for 

the predictive horizon optimization dispatch as shown in figure 4.6 as compared to figure 

4.8 were the battery is fully discharged at the end of the day. After running the simulation 

for one day, the initial battery charge condition is changed to the previous day SOC. Then 

the optimization was re-run with next day data and the cost coefficients were increased 

based on the state of charge condition of the battery.   

 

FIGURE 4.6:  Predictive horizon 3 day dispatch 

 

FIGURE 4.7:  Fixed horizon 3 day dispatch 
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FIGURE 4.8:  Predictive horizon 3 day dispatch SOC 

 

FIGURE 4.9: Fixed horizon 3 day dispatch SOC 

Based on the figures 4.8 and 4.9 it is clearly visible that the SOC in the case of fixed horizon 

dispatch has hit the lower limit by midnight of the first day, but the battery is not drained 

and the SOC is about 0.6. Hence the battery can take part in the next day dispatch schedule. 

A cost comparison was done for each day and then the net cost was calculated and shown 

in table 3.3 and table 3.4.For the First day the fixed horizon optimization gave a lower cost 

compared to predictive optimization. But for Day-2 since the battery is fully discharged 

the cost for fixed horizon optimization is higher. Hence for 3 days the total cost is higher 

for Fixed horizon optimization. 
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Table 4.3:  Cost of 3 days-predictive optimization 

Predictive Horizon Control 
  Day-1 Day-2 Day-3 Total 
Cost 
($) 510.08 556.96 544.67 1611.71 

 

Table 4.4:  Cost of 3 days-fixed horizon 

Fixed Horizon Optimization 
  Day-1 Day-2 Day-3 Total 

Cost 
($) 498.62 612.75 601.03 1712.4 

 

4.5. Summary 

The predictive optimization dispatch is best when compared for a longer duration of 

day’s .Only then can the reduced battery dispatch values have some significant effect in 

the total cost. But if there is no large scale variation in the PV generation data then the 

fixed horizon dispatch values will have lesser cost. But the advantage of this algorithm 

can be better understood in the next chapter when dispatch set points need to change 

based on the status of the microgrid. The fixed horizon dispatch will only give a fixed 

dispatch set points for the whole horizon. So any variations in the PV generation cannot 

be seen in the dispatch set points.



 
 

   
 
 

 
 

CHAPTER 5 : SWITCHING BETWEEN DISPATCH ALGORITHMS BASED ON 
MICROGRID STATUS 

 
 

In this chapter the voltage at PCC is calculated for the dispatch algorithms described 

above and the Rule Based Dispatch algorithm and the Predictive Optimization algorithm 

has been linked to get a new dispatch with minimum voltage deviations. In section 5.1 an 

overview has been described regarding the system. A flow chart describing the voltage 

calculation is described in section 5.2. The linking between the dispatch algorithms is 

described in section 5.3 and the summary is provided in section 5.4 

5.1. Overview 

The microgrid was considered as attached to a radial distribution system. Now when 

the microgrid is in off grid mode the dispatch set points can be obtained based on the rule 

based algorithm and in case of grid connected mode based on the optimization algorithm. 

So if the microgrid switches between grid connected and islanded mode of operation then 

the dispatch set points have to be changed accordingly, but it depends on which state the 

microgrid was running initially. Now in off grid mode since there is no cost optimization, 

the dispatch results are not optimal but the maximum power available from the renewable 

source is used completely. When microgrid transfers from the off grid mode to grid 

connected mode then the rule based dispatch results are not valid anymore and we need to 

recalculate the optimized active power dispatch values based on the present SOC as initial 

condition. This is where the linking between the rule based and optimization based 

algorithm is done so that there can be a seamless transfer. This could be implemented based 
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on a status signal or based on voltage deviation at PCC. For this case it is assumed that the 

Rule Based Dispatch algorithm can also be used for grid connected mode of operation since 

there is no curtailing of loads. 

5.2. Voltage Calculation at PCC 

The system considered was a modified IEEE 9 bus radial distribution feeder. The load 

connected at last bus was considered to be 500 KW as in previous chapters and was 

included in the microgrid architecture. So the net grid power demand obtained from the 

dispatch algorithm becomes the net power demand or net load at that bus. The voltage 

calculation flow chart is shown in Figure 5.2. Now if a sensor is available to measure the 

voltage at the PCC, then system power flow data is not required. But since in this work to 

calculate the voltage at PCC the MATPOWER power flow architecture was used to run 

the power flow and obtain the voltages. The voltage profile for a single day for the Rule 

based and Predictive dispatch is shown in figure 5.1.  

Where Vrbd is the Rule based Dispatch Voltage. 

      Vrhc is the Predictive Optimization Voltage. 

FIGURE 5.1: Voltage calculation at PCC  
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Run the Dispatch algorithm 

Run power flow for the system 

The corresponding Pgrid demand becomes the net load at 
that Bus where it is connected.

Active power dispatch setpoints are obtained from the 
algorithm result

Obtain the Voltage at PCC  for the full day dispatch 
setpoints

MicrogridSubstation

Vpcc

IEEE 9 bus radial 
system modified in 

MATPOWER

While Time <24 hours

 

FIGURE 5.2: Voltage calculation at PCC flowchart  

5.3. Switching Between Predictive Optimization and Rule Based Dispatch 

The microgrid could be operating in off grid or grid connected mode of operation. If 

this status is available then the dispatch algorithm can be switched between the Rule Based 

and Predictive Optimization based algorithms. A simple case was taken to show the above 

operation, where initially the Rule Based algorithm was active and then based on the 
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microgrid status the dispatch values was switched to the Predictive Optimization algorithm 

values. Two cases were considered for this switching. The first case was based on an 

external status signal and instantly the dispatch values were changed. In the second case 

the dispatch values were changed based based on the voltage deviation at that instant.   

Case1:  

This case is shown in figure 5.3.Initially the system is dispatching based on the Rule Based 

Dispatch i.e. the system is operating in off grid mode. Then consider that at 7:30 am the 

status of the microgrid changes to grid connected mode. Now in the figure 5.3 the Vsw 

(green) plot shows the voltage profile during switching and the voltage profile if the 

dispatch was same as the value obtained from both the algorithms. 

FIGURE 5.3: Switching based on microgrid status 

Now as shown in figure 5.4 the voltage waveform (green) moves from the Rule Based to 

the Predictive Horizon based optimization value which is called Vrhc  in this figure as 

mentioned in the beginning . 
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FIGURE 5.4: Voltage during switching based on microgrid status 

FIGURE 5.5: Dispatch switching based on microgrid status 

FIGURE 5.6: Dispatch switching from rule based to predictive optimization 

The battery dispatch waveforms are shown in figures 5.5 and 5.6. At the instant at 7:30 am 

the dispatch setpoints change from the rule based dispatch to the predictive optimization 

dispatch values (Prhc). In figure 5.6 Pbatt (blue) shows the actual battery dispatch. 
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Case 2: 

Now in this case it was considered that the switching between the dispatch algorithms was 

done based on the voltage deviations at the instant. Here the microgrid is assumed to be 

running in the grid connected mode initially and then switches to the Rule Based dispatch 

based on the microgrid status at 15:00. As you can see from the waveform in figure 5.7, 

the Vsw has not switched from the predictive optimization based dispatch at the instant, 

instead it makes the transfer at 18:30 as shown in figure 5.8 when the deviation of voltage 

with respect to 1 is less and switches to the rule based dispatch. 

FIGURE 5.7: Switching based on voltage deviation 

FIGURE 5.8: Voltage switching from predictive to rule based 
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FIGURE 5.9: Dispatch switching based on voltage deviation 

 The battery dispatch also follows the same path as explained above. The dispatch values 

follow the Predictive Optimization dispatch till the instant the deviation is less and switches 

to the Rule Based Dispatch algorithm which is shown in figure 5.9.  

5.4. Linking Between Rule Based Dispatch and Predictive Optimization  

This algorithm is the extension of the previous case. In the previous case the deviation 

was only calculated when the switching between the algorithms was considered based on 

the microgrid status. In this case after first running the Rule Based and Predictive 

Optimization based algorithms, then the grid demand is obtained and this becomes the load 

at that bus, which is used to run the power flow for the system and obtain the voltage.at the 

bus. An assumption made in this case is that the grid power required at the bus obtained 

from the dispatch algorithm is the net load at that bus. Hence the generation will be equal 

to the demand in this case. Then the deviation w.r.t to 1 p.u is calculated and based on, 

which dispatch algorithm results has lesser deviation that battery dispatch is taken as 

reference. This is done so that the deviation is always within the limits while switching 

between the algorithms. This process continues all throughout the period of optimization 

and hence a new final dispatch schedule is obtained for the day which has lesser voltage 

deviation. The voltage deviations are calculated for the obtained dispatch schedule and then 
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the Voltage deviation index was calculated as done above. The flow chart of the above 

algorithm is shown below in figure 5.10 and the variables used are explained below.  

Vrbd(t) is the voltage obtained from rule based dispatch for that instant 

Prbd(t) is the battery dispatch obtained from rule based dispatch for that instant 

Vopt(t) is the voltage obtained from the predictive optimization dispatch for that instant 

Popt(t) is the battery dispatch obtained from the predictive optimization for that instant 

Rest of variables have been defined in the previous chapters. Initially the PV generation 

and load data is read from an excel file. Then the initial charge of the battery is initialized. 

This value is passed to both the algorithms which are defined as two separate functions 

which returns the Voltage and the battery dispatch. This voltage value is used to calculate 

the deviation w.r.t 1 p.u and then based on which absolute value difference is smaller, that 

dispatch value is used and then the charge and state of charge is calculated after which the 

grid demand is calculated. The battery constraints get calculated within each of the dispatch 

algorithm functions. Then the net grid demand is used to calculate the voltage based on the 

flowchart explained in figure 5.2. The power flow is run again in the end to get the new 

voltage profile for the new dispatch value. The algorithm was run for the system considered 

above and the voltage profile and battery dispatch was plotted in figures 5.10 and 5.11 and 

the results are explained below. 
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Read PV and Load data  

Run Rule based 
Dispatch

Run Predictive 
Dynamic optimization

Calculate  E(t)=E(t-1)+Pbatt(t)*dt

Calculate SOC(t)= E(t)/Eref

Update initial SOC

Obtain Vrbd(t) and Prbd(t)
 

Pbatt(t)=Prbd(t)

NoYes

Obtain Vopt(t) and Popt(t)
 

Calculate 1-Vrbd(t) & 1-Vopt(t) 

Pbatt(t)=Popt(t)

 while(Time<24 hr)

∆Vrbd <∆Vopt 

Follow Voltage calculation steps

Calculate Pgrid demand

 

FIGURE 5.10: Linking based on voltage deviation flowchart 
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FIGURE 5.11: Battery dispatch based on linked algorithm 

FIGURE 5.12: Final voltage at PCC for linked algorithm  

As shown in figure 5.12, the voltage obtained from Rule Based Dispatch is higher 

initially and hence the deviation w.r.t 1 p.u is smaller and hence the battery dispatch is set 

to the Rule based dispatch value which is clearly visible in figure 5.11. Here Vlinked 

represents the final waveform after switching. So initially the Vlinked waveform follows the 

Vrbd waveform. Then towards the evening it follows the predictive optimization dispatch.  

Now every time the SOC is updated and passed to both the algorithms so the final dispatch 

will be different from the case where it was running in Rule Based Dispatch or in Predictive 

Dispatch algorithm separately. As this process continues the voltage profile follows the 

rule based dispatch voltage values and the battery dispatch more or less follows the 

Predictive Dispatch only during the peak times of the day. The rest of the time it follows 
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the Rule Based dispatch. This algorithm gives minimum voltage deviations when 

compared with the Rule Based and Predictive Optimization based values. The voltage 

waveforms for the same 3 day data considered are shown in figure 5.13 when applied to 

all the algorithms described separately. Finally an index for voltage deviation (V.D.I) was 

calculated based on the area under the curve of the voltage deviations and an analysis was 

done if for the same 3 days of data if the Rule Based, Predictive, and Linked algorithms 

were used what will be the voltage deviation. The results show that the overall voltage 

deviation is lesser in the case of the linked algorithm when compared with the predictive 

optimization and the rule based dispatch running separately.    

 

FIGURE 5.13: Comparison of voltage deviation for 3 day data 

Table 5.1:  3 days-voltage and cost comparison 
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VDI 0.59405 0.4934 0.5054 0.49635 

COST ($) 1710.8 1712.4 1612.5 1711.2 
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FIGURE 5.14: Comparison of grid power for 3 days 

FIGURE 5.15: Comparison of SOC for 3 days 

 A cost analysis was done similar to the comparison done in chapter 4 between Fixed 

Horizon and Predictive Horizon Optimization. The power demand from grid is shown in 

figure 5.14. As explained in the first chapter the positive sign represents power required by 

the microgrid and the negative sign represents the excess power dispatched back to the 

grid. Now in the case of Predictive optimization the SOC value does not hit the limit at the 

end of the day as shown in figure 5.15. But in all the other cases the battery is fully 

discharged and hence a 10% increase in cost coefficients was applied to quantify the state 

of charge preserved. This can be seen in figure 5.13 where RHC grid represents the power 

demand from the Predictive Optimization. Hence the overall cost is less in the case of the 
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Predictive optimization case.  In the above algorithm the battery dispatch can be modified 

based on the voltage deviation i.e. if the deviation is positive then the battery can be charged 

and if the deviation is negative then the battery can be discharged to improve the voltage 

profile and the peaks seen in voltage waveform of above graphs in figure 5.12 can be 

reduced. This is based on the concept of voltage deviation proportional to the change in the 

battery dispatch multiplied by a constant. This has not been implemented in this work but 

can be considered for future works. 

5.5. Summary 

The Rule Based Dispatch has the highest deviation index when compared to all the 

algorithms. The Fixed Horizon Optimization and the Linked algorithm has the least voltage 

deviation index. The main aim of linking the two algorithms was to obtain a framework to 

switch between maximum resource utilization mode of operation and optimized mode of 

operation while maintaining PCC voltage within the limits during these modes of operation 

and at the same time ensure that the battery dispatch is optimal. The linked algorithm also 

minimizes the voltage deviations at the Point of Common Coupling. 

 



 
 

   
 
 

 
 

CHAPTER 6 : CONCLUSION AND FUTURE WORKS 
 

6.1. Conclusion 

• The Rule based algorithm was developed which can provide the active power 

reference signals in off grid mode and also if loads cannot be curtailed then in grid 

connected mode. 

• In grid connected mode an optimization algorithm based on dynamic formulation 

was written to obtain the optimal battery dispatch such that the power taken from 

grid is minimized. 

• It was further modified to include a predictive horizon based approach so that the 

cost could be minimized based on the future PV generation. 

• Then both the Rule based and predictive algorithms were linked to obtain a 

switching mechanism to transfer the active power reference setpoints  when the 

microgrid transfers from grid connected to off grid mode of operation such that the 

voltage deviation at the PCC was minimized.  

6.2. Future Works 

• Analysis of the proposed method for various PV penetration level based on the 

optimal initial state of charge of the battery. 

• Evaluation of the proposed method that links the rule based architecture and 

optimal dispatch architecture based on the voltage index that minimizes or 

optimizes the voltage variations. 
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• Integrated cost and reliability based management of the microgrid for a safe and 

resilient infrastructure. 

• Optimal hybrid active and reactive power management of the microgrid based on 

battery energy storage inverter. 

• Implementation of the proposed architecture on the simulator and evaluating the 

effect of the controllers. 

• Providing a load and renewable energy output prediction algorithm and updating 

the performance of the rule based and integrated optimization architecture 
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APPENDIX A: MATLAB CODES 

 
 

Rule Based Dispatch Algorithm Code : 
 
global inc pv_gen Pq_demand 
n=1; 
count=0; 
tot_loss=0; 
inc=1; %initial sample starting from 2 because zero cannot be used as 
index. 
%dispatch(1)=0; 
%batt_dis(1)=0; 
%E=zeros(15,0); 
Pgen=zeros(282,1); 
% E(1)=75;    % initial soc value 
% E_f(1)=75;  
% Eref=75;    % max soc value  
%E(1)=1000;    % initial soc value 
%E_f(1)=1000;  
%soc(1)=1; 
Eref=1000;    % max soc value  
E0=1000; 
d=0; 
dt=30/60;     % time step  
%global Gen1 Gen2 Gen3  
%m=xlsread('trial.xls','D2:D14'); 
%t=xlsread('full_day.xls','M3:M33740') % full day net Pload-PVgen 
 %pv=xlsread('full_day.xls','K3:K33740'); % full day PV generation 
 P_pv = xlsread('final_sc_data1.xlsx','J2:J193') % reading pv data 99 
197 
 Pload  = xlsread('final_sc_data1.xlsx','K2:K193')% reading load data 
99 197 
 net_load = xlsread('final_sc_data1.xlsx','I2:I193')% reading netload 
data ie Pload-P_pv 99 197 
soc_ll=0.20;    %soc lower limit                  
soc_ul=1;       %soc upper limit 
 % value used to get 5  min data increments from the full day excel 
data 
 m(inc,1)=Pload(n);     % m stores the 5 min load data  
 pv_gen(inc,1)=P_pv(n); % this is the PV generation schedule in 5 min 
interval 
  
% Calculate the Pload – Ppv 
%this becomes the load that must be satisfied by the battery taking 
this sign 
 % +ve means that value to be discharged from batt 
 % -ve means that value to be charged from PV, as PV is excess. 
                                                                               
  % if (m(inc)<0)     % charging value 
  %if (net battery demand) <0) 
  %Use the dispatch to charge the battery 
  %else   % discharge value 
  %Discharge the battery. 
  % end 
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    % Pess needs to be between -25MW and +25 MW 
    Pess(inc,1) =X_new(inc,1);    
    %E(inc,1)=E(inc-1,1)+Pess(inc,1)*dt ;  % calculating the Echarge 
value  
    E(inc,1)=E0+Pess(inc,1)*dt 
    soc(inc,1)= E(inc,1)/Eref ;            % SOC values to get into 
condition checks. 
    
    % 1st condition if the soc should be between upper and lower limits 
          
    %2nd condition if the soc should be equal to lower limit or less 
than the lower limits 
           
      % 3rd condition if the soc should be equal to upper limit or 
greater than the upper limit 
     
    % dispatch variable is the net Pstorage or Pdischarge value,-ve or 
+ve  
    % +ve dispatch means charging value    
    % -ve dispatch means discharging value 
    switch d     % switching based on the conditions above based on d 
variable 
        case 1 
            if (P_batt(inc,1)<0) 
   % 1st condition satisfied then the available Pes is dispatched 
            end 
        case 2 
            if (P_batt(inc,1)>0)                     
 % 2nd condition  % means it has hit the lower limit and cannot 
discharge anymore, dispatch =0; 
                
            else if (P_batt(inc,1)<0)                 
  % means it can charge since net Pess is negative so dispatch= Pcharge 
                    batt_dis(inc,1)=0; 
                end 
            end 
        case 3                                  % 3rd condition 
            if (P_batt(inc,1)>0)                    
  % means battery has hit upper limit so it can only discharge, and no 
charging  
                dispatch(inc,1)=X_new(inc,1);        %since m(inc)> 0, 
it can discharge 
                batt_dis(inc,1)=X_new(inc,1); 
            else if (P_batt(inc,1)<=0)               
 % no charge possible since upper limit hit and since m(inc)<0 it is a 
charge value   
                    dispatch(inc,1)= 0;             % but since upper 
limit no charge 
                    
  %Pgen(inc,1)=X_new(inc,1)    % if it hit limit then the available 
value can be given to grid. 
                end 
            end 
        case 4  
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           % if (m(inc)<0) 
             dispatch(inc,1)=0; 
            %end 
        case 5 
            %if ( m(inc)>0) 
                dispatch(inc,1)=0; 
            %end  
             
    end 
 
    E(inc,1)=E0+ dispatch(inc,1)*dt ;   %final Echarge values 
calculated with the dispatch variable 
    soc(inc,1)= E(inc,1)/Eref ;                 % final soc value  
    Pq_demand(inc,1)=net_load(inc,1)+dispatch(inc,1); % final net 
Pg=dispatch+Pload-Pgen 
    E0=E(inc,1); 
     
  
%result=runpf('case_thesis2.m'); 
 % result=runpf('case_dist_9bus.m'); 
  result=runpf('case_dist_9bus.m'); 
   %result=runpf('case_dist.m'); 
  
  v(n,1)=(result.bus(10,8)) %10 
  loss(n,1)=(sum(get_losses(result))); 
 tot_loss= loss(n,1)+ tot_loss; 
  %count(n,1)=n; 
n=n+1; 
inc=inc+1; 
  
 %T = 
table(E,soc,dispatch,Pgrid,lambda,P_pvbatt,dispatch,pv_gen,P_batt,P_bat
t1); %writing the required values to table. 
 %filename = 'batt_opf_new_ed_23_5_1.xlsx'; 
%writetable(T,filename); 
while(n<144)       % reading values till less than sample size 
%m=xlsread('trial.xls','D2:D14'); 
  
   % value used to get 5  min data increments from the full day excel 
data 
 m(inc,1)=Pload(inc);     % n m stores the 5 min data not required here 
since it is Pload-Ppv 
 pv_gen(inc,1)=P_pv(inc); % n this is the PV generation schedule in 5 
min interval 
  
  
P_batt(inc,1) = m(inc,1)-pv_gen(inc,1); %this becomes the load that 
must be satisfied by the battery taking this sign 
 % +ve means that value to be discharged from batt 
 % -ve means that value to be charged from PV, as PV is excess. 
                                             
    E(inc,1)=E0+ dispatch(inc,1)*dt ;   %final Echarge values 
calculated with the dispatch variable 
    soc(inc,1)= E(inc,1)/Eref ;                 % final soc value  
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    Pq_demand(inc,1)=net_load(inc,1)+dispatch(inc,1); % final net 
Pg=dispatch+Pload-Pgen 
    E0=E(inc,1); 
  
%result=runpf('case_thesis2.m'); 
 % result=runpf('case_dist_9bus.m'); 
 result=runpf('case_dist_9bus.m'); 
%  result=runpf('case_dist.m'); 
  
  v(n,1)=(result.bus(10,8))  %10 
  loss(n,1)=(sum(get_losses(result))); 
 tot_loss= loss(n,1)+ tot_loss; 
  %count(n,1)=n; 
n=n+1; 
inc=inc+1; 
  
 %T = %filename = 'batt_opf_new_ed_23_5_1.xlsx'; 
%writetable(T,filename); 
end 
% plot(v,'-*b'); 
 P_pv = pv_gen;         %xlsread('opt_file.xlsx','A2:A282') % reading 
pv data 
 pgrid =Pq_demand;      %xlsread('rule_dispatch.xlsx','E2:E282') % 
reading load data 
 pbatt=dispatch;                 
%xlsread('rule_dispatch.xlsx','C2:C282') 
 soc =soc;                  %xlsread('rule_dispatch.xlsx','B2:B282')   
  
  
subplot(3,1,1); 
plot(pgrid,'-b'); 
hold on; 
plot(pbatt,'--r'); 
hold on; 
plot(P_pv,'-g'); 
% Add labels 
xlabel(' sample'); 
ylabel('dispatch'); 
title('PV and Pgrid and Pbess'); 
  
subplot(3,1,2); 
plot(soc,'-b'); 
xlabel(' sample'); 
ylabel('SOC'); 
title('SOC'); 
% plot(pv_gen,inc); 
%end 
subplot(3,1,3); 
plot(v,'-*b'); 
xlabel(' sample'); 
ylabel('Voltage'); 
title('Voltage'); 
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Fixed Horizon Optimization Code : 

 
% Dynamic optimization  
P_pv =xlsread('30_min_data_new.xlsx','E2:E50'); % reading pv data 99 
197 
 Pload  =xlsread('30_min_data_new.xlsx','F2:F50');% reading load data 
99 197 
 plot_pv= xlsread('30_min_data_new.xlsx','E2:E50'); 
  
 %Pload  =xlsread('opt_file.xlsx','D2:D290') 
 E0 = 1000;  % initial charge in battery 
 %Emin = 20 MWhr  
 %Emax = 75 MWhr 
 %dt=0.0833; % timestep (5/60) 5 min interval for 24 hours 
 dt=0.5; 
a1=0.1;b1=12.6;c1=8;a2=0.0;b2=0.0;c2=0;% coefficients of cost function 
% coefficients of cost fucntion 
const=[a1 b1 c1 a2 b2 c2];                % defining the constants to 
be used in code 
%Pload=[30;30;30;30;30;30;30;30;30;30]; 
%P_pv=[0;0;40;50;40;40;30;20;10;10]; 
%P_pv=[-0;0;0;0;0;0;0;0;0;-0]; 
  
%N=288 ;        % no of samples  
N=48; 
x0 = [zeros(size(1:N));-25*ones(size(N+1:N))]; % initial solution 
assumption x0 but quadprog does notuse it. 
  
% constraints formation 
  
% Define_constraints; 
%bounds LB<=x<=UB 
  
% ---- 2 bound constraints --- 1 equality constraint ----- 1 inequality 
constraint 
 % formation of matrix as shown in report 
  
% ---equality constraint--- 
 % formation of matrix as shown in report 
 
%---inequality constraint--- 
% formation of matrix as shown in report 
% formation of matrix as shown in report  
% objective function 
% Now since my solution consists of Pgrid and Pbatt for the full 
horizon, 
% it will have 2N variables 
X = sym('x',[3*N,1]);  % reates an 2*N by 1 symbolic matrix filled with 
automatically generated elements 
  
E_init = sym('E_init'); 
c_o = sym ({'a1','b1','c1','a2','b2','c2'}.','r'); % creating symbolic 
constants for the cost function, the constants are defined above 
% the objective function is the sum of Pbatt and Pgrid cost function 



81 
C= (a1.*((X(1:N).^2))) + (b1.*(X(1:N)))+ c1   %(a2.*((X(N+1:2*N).^2))) 
+ (b2.*(X(N+1:2*N)))+ c2 
%C=((c_o(1)).*((X(1:N))))+c_o(2) 
% Now forming the objective equation for the full horizon,so it will be 
the 
% above sum over the full horizon of solution variables 
tot_obj = sum(C) 
  
tot_obj = subs(tot_obj,[c_o],[const']); %substituting the constants 
into the equations 
% this function creates a function from the above formed equation. 
matlabFunction(tot_obj,'vars',{X},'file','obj_test'); 
%F = double(gradient(tot_obj,X)); %the gradient of the function is 
found 
fsym = gradient(tot_obj,X); %the gradient of the function is found 
f = double(subs(fsym,X,zeros(size(X)))); % now to get the constants,the 
X()values are substituted zero. 
H = 0.5.*double(hessian(tot_obj,X)); % the hessian of the objective 
matrix is found 
qpoptions = optimset('Algorithm','interior-point-
convex','Disp','iter'); 
%qpoptions = optimset('Algorithm','active-set','Disp','iter'); 
%options = optimset('MaxFunEvals',Inf,'MaxIter',5000,... 
 %   'Algorithm','interior-point','Display','iter'); 
tic 
[out,fval3,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,LB,UB,x0,qpoptions); 
%[out,fval3,exitflag,output,lambda] = linprog(F,A,b,Aeq,beq,LB,UB,x0); 
%[out, fval3] = fmincon(@obj_test,x0,A,b,Aeq,beq,LB,UB,[],options); 
toc 
out  
fval3 
% exitflag  
output 
lambda 
%plotResults( out, N); 
a=(1:N); 
b=(N+1:2*N); 
pgrid=out(1:N); 
P =out(N+1:2*N); 
Pbatt=out(2*N+1:3*N); 
%soc= ((E0)+(ot*pbatt))/75 ; 
soc= ((E0)+(A_new1*out))/1000 ; 
%  T = table(out); %writing the required values to table. 
%   filename = 'optimization_results_7_6.xlsx'; 
%  writetable(T,filename); 
subplot(2,1,1); 
plot(pgrid,'-*b'); 
hold on; 
plot(P,'--*r'); 
hold on; 
plot(P_pv,'-*g'); 
hold on; 
plot(Pbatt,'-*c'); 
% Add labels 
xlabel(' sample'); 
ylabel('dispatch'); 
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title('PV and Pgrid and Pbess'); 
  
subplot(2,1,2); 
plot(soc,'-*b'); 
xlabel(' sample'); 
ylabel('SOC'); 
title('SOC'); 
 
 

Predictive Horizon Optimization Code : 
 
% Predictive Horizon Optimization  
 
 P_pv =xlsread('final_sc_data1.xlsx','J2:J193'); % reading pv data 99 
197 
 Pload =xlsread('final_sc_data1.xlsx','K2:K193');% reading load data 99 
197 
 plot_pv= xlsread('final_sc_data1.xlsx','J2:J193');% 50 
 global final_grid i 
 %Pload  =xlsread('opt_file.xlsx','D2:D290') 
 E0 = 1000;  % initial charge in battery 
 i=1; 
 days=0; 
 s=0; 
 while(days<3) 
 tot_loss=0; 
 %Emin = 20 MWhr   
 %Emax = 75 MWhr 
 %dt=0.0833; % timestep (5/60) 5 min interval for 24 hours 
 dt=0.5; 
a1=0.1;b1=12.6;c1=8;a2=0.0;b2=0.0;c2=0;% coefficients of cost function 
% coefficients of cost fucntion 
const=[a1 b1 c1 a2 b2 c2];                % defining the constants to 
be used in code 
%Pload=[30;30;30;30;30;30;30;30;30;30]; 
%P_pv=[0;0;40;50;40;40;30;20;10;10]; 
%P_pv=[-0;0;0;0;0;0;0;0;0;-0]; 
  
%N=288 ;        % no of samples  
N=48; 
%N=96; 
x0 = [zeros(size(1:N));-25*ones(size(N+1:N))]; % initial solution 
assumption x0 but quadprog does notuse it. 
  
% constraints formation 
     % formation of matrix as shown in report  
 
% Define_constraints; 
%bounds LB<=x<=UB 
     % formation of matrix as shown in report  
 
% ---- 2 bound constraints --- 1 equality constraint ----- 1 inequality 
constraint 
     % formation of matrix as shown in report  
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% ---equality constraint--- 
     % formation of matrix as shown in report  
 
%---inequality constraint--- 
    % formation of matrix as shown in report  
 
ot1 = dt.*sparse(zeros(N));    % formation of matrix as shown in report 
-this will form Pgrid side 
ot2 = dt.*sparse(tril(ones(N))); % formation of matrix as shown in 
report - this will from Pbatt side 
A_new1 = [ot1 ot1 ot2];               
b_new1 = [(1000-E0).*ones(N,1)];   %upper limit  
A_new2 = [ot1 ot1 -ot2]; 
b_new2 = [(-200+E0).*ones(N,1)]; %lower limit 
A = [A_new1;A_new2]; 
b = [b_new1;b_new2]; 
  
% objective function 
% Now since my solution consists of Pgrid and Pbatt for the full 
horizon, 
% it will have 2N variables 
X = sym('x',[3*N,1]);  % creates an 2*N by 1 symbolic matrix filled 
with automatically generated elements 
  
E_init = sym('E_init'); 
c_o = sym ({'a1','b1','c1','a2','b2','c2'}.','r'); % creating symbolic 
constants for the cost function, the constants are defined above 
% the objective function is the sum of Pbatt and Pgrid cost function 
C= (a1.*((X(1:N).^2))) + (b1.*(X(1:N)))+ c1   %(a2.*((X(N+1:2*N).^2))) 
+ (b2.*(X(N+1:2*N)))+ c2 
%C=((c_o(1)).*((X(1:N))))+c_o(2) 
% Now forming the objective equation for the full horizon,so it will be 
the 
% above sum over the full horizon of solution variables 
tot_obj = sum(C) 
  
tot_obj = subs(tot_obj,[c_o],[const']); %substituting the constants 
into the equations 
% this function creates a function from the above formed equation. 
matlabFunction(tot_obj,'vars',{X},'file','obj_test'); 
%F = double(gradient(tot_obj,X)); %the gradient of the function is 
found 
fsym = gradient(tot_obj,X); %the gradient of the function is found 
f = double(subs(fsym,X,zeros(size(X)))); % now to get the constants,the 
X()values are substituted zero. 
H = 0.5.*double(hessian(tot_obj,X)); % the hessian of the objective 
matrix is found 
qpoptions = optimset('Algorithm','interior-point-
convex','Disp','iter'); 
%qpoptions = optimset('Algorithm','active-set','Disp','iter'); 
%options = optimset('MaxFunEvals',Inf,'MaxIter',5000,... 
 %   'Algorithm','interior-point','Display','iter'); 
tic 
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[out,fval3,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,LB,UB,x0,qpoptions); 
%[out,fval3,exitflag,output,lambda] = linprog(F,A,b,Aeq,beq,LB,UB,x0); 
%[out, fval3] = fmincon(@obj_test,x0,A,b,Aeq,beq,LB,UB,[],options); 
toc 
out  
fval3 
% exitflag  
final_out(i,1)=out(2*N+1); 
p(i,1)=out(N+1); 
%plot_s=out(97:97+N-1); 
%final_out(i,1)=out(193); 
final_grid1(i,1)=out(1);  
final_grid(i,1)=out(1);  
E(i,1)= E0+ (final_out(i,1)*dt); 
E0=E(i,1); 
%result=runpf('case_dist_9bus.m'); 
result=runpf('case_dist_9bus_dynopt.m'); 
  
loss(i,1)=(sum(get_losses(result)));  
 tot_loss= loss(i,1)+ tot_loss; 
  v(i,1)=(result.bus(10,8)); 
i=i+1; 
  
% output 
% lambda 
%plotResults( out, N); 
n=1; 
while (n<48) 
    
N=48; 
x0 = [zeros(size(1:N));-25*ones(size(N+1:N))]; % initial solution 
assumption x0 but quadprog does notuse it. 
  
% constraints formation 
  
% Define_constraints; 
%bounds LB<=x<=UB 
      % formation of matrix as shown in report  
 
% ---- 2 bound constraints --- 1 equality constraint ----- 1 inequality 
constraint 
     % formation of matrix as shown in report  
 
% ---equality constraint--- 
     % formation of matrix as shown in report  
 
%---inequality constraint--- 
    % formation of matrix as shown in report  
  
% objective function 
% Now since my solution consists of Pgrid and Pbatt for the full 
horizon, 
% it will have 2N variables 
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X = sym('x',[3*N,1]);  % reates an 2*N by 1 symbolic matrix filled with 
automatically generated elements 
  
E_init = sym('E_init'); 
c_o = sym ({'a1','b1','c1','a2','b2','c2'}.','r'); % creating symbolic 
constants for the cost function, the constants are defined above 
% the objective function is the sum of Pbatt and Pgrid cost function 
C= (a1.*((X(1:N).^2))) + (b1.*(X(1:N)))+ c1   %(a2.*((X(N+1:2*N).^2))) 
+ (b2.*(X(N+1:2*N)))+ c2 
% Now forming the objective equation for the full horizon,so it will be 
the 
% above sum over the full horizon of solution variables 
tot_obj = sum(C) 
  
tot_obj = subs(tot_obj,[c_o],[const']); %substituting the constants 
into the equations 
% this function creates a function from the above formed equation. 
matlabFunction(tot_obj,'vars',{X},'file','obj_test'); 
%F = double(gradient(tot_obj,X)); %the gradient of the function is 
found 
fsym = gradient(tot_obj,X); %the gradient of the function is found 
f = double(subs(fsym,X,zeros(size(X)))); % now to get the constants,the 
X()values are substituted zero. 
H = 0.5.*double(hessian(tot_obj,X)); % the hessian of the objective 
matrix is found 
qpoptions = optimset('Algorithm','interior-point-
convex','Disp','iter'); 
%qpoptions = optimset('Algorithm','active-set','Disp','iter'); 
%options = optimset('MaxFunEvals',Inf,'MaxIter',5000,... 
 %   'Algorithm','interior-point','Display','iter'); 
tic 
[out,fval3,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,LB,UB,x0,qpoptions); 
%[out,fval3,exitflag,output,lambda] = linprog(F,A,b,Aeq,beq,LB,UB,x0); 
%[out, fval3] = fmincon(@obj_test,x0,A,b,Aeq,beq,LB,UB,[],options); 
toc 
%out  
%fval3 
% exitflag  
final_out(i,1)=out(2*N+1); 
%plot_series=out(97:97+N-1) 
final_grid1(i,1)=out(1); 
final_grid(i,1)=out(1); 
p(i,1)=out(N+1); 
E(i,1)= E0+ (final_out(i,1)*dt); 
E0=E(i,1); 
%result=runpf('case_dist_9bus.m'); 
result=runpf('case_dist_9bus_dynopt.m'); 
  v(i,1)=(result.bus(10,8)) 
  loss(i,1)=(sum(get_losses(result))); 
 tot_loss= loss(i,1)+ tot_loss; 
i=i+1; 
n=n+1; 
pgrid=final_grid1; 
pbatt=final_out; 
soc=(1/1000).* E ; 
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end 
days=days+1; 
if (days==1) 
s=48; 
elseif (days==2) 
    s=96; 
end 
n=0; 
 end 
%soc= ((E0)+(A_new1*out))/75 ; 
%  T = table(out); %writing the required values to table. 
%   filename = 'optimization_results_7_6.xlsx'; 
%  writetable(T,filename); 
%plot(v,'-*b'); 
%hold on 
subplot(3,1,1); 
 plot(pgrid,'-b'); 
 hold on; 
plot(pbatt,'--r'); 
hold on; 
plot(plot_pv,'-g'); 
% Add labels 
xlabel(' sample'); 
ylabel('dispatch'); 
title('PV and Pgrid and Pbess'); 
  
subplot(3,1,2); 
plot(soc,'-*b'); 
xlabel(' sample'); 
ylabel('SOC'); 
title('SOC'); 
  
subplot(3,1,3); 
plot(v,'-*b'); 
xlabel(' sample'); 
ylabel('Voltage'); 
title('Voltage'); 
 
  

 
Linking Algorithm Code : 

Main function  
 

% Combined Algorithm 
% function for Rule based Dispatch rbd() 
% function for Dynamic Optimization dyopt() 
global count Math 
  
count=1; 
tot_loss=0; 
E0=1000; 
dt=30/60; 
P_pv = xlsread('final_sc_data1.xlsx','J2:J193'); % reading pv data 99 
197 
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Pload  = xlsread('final_sc_data1.xlsx','K2:K193');% reading load data 
99 197 
 net_load = xlsread('final_sc_data1.xlsx','I2:I193');% reading netload 
data ie Pload-P_pv 99 197 
del_load1=0; 
del_load=0; 
  
sw=0; 
while(count<144) 
   % E0; 
    count 
 [r1,r2,out_grid1]= %Call Rule based dispatch function 
 V_rbd(count,1)=r1; 
 P_rbd(count,1)=r2; 
 P_out1(count,1)=out_grid1; 
[r3,r4,out_grid,p2]= %Call Predictive Optimization function 
V_dyopt(count,1)=r3; 
P_dyopt(count,1)=r4; 
P_out2(count,1)=out_grid; 
p_plus(count,1)=p2; 
  
% if rule based voltage deviation less than   predictive optimization 
voltage deviation  
 % Assign Battery dispatch based on voltage deviation 
       
 Pg_demand(count,1) = net_load(count,1)+P_batt(count,1);%send(count,1) 
%net_load(count,1)+P_batt(count,1);send(count,1); 
 Math(count,1)= Pg_demand(count,1); 
 result=runpf('case_dist_9bus_combined.m'); 
 loss(count,1)=(sum(get_losses(result))); 
 tot_loss= loss(count,1)+ tot_loss; 
 voltage(count,1)=(result.bus(10,8)) 
 E(count,1)= E0+(P_batt(count,1)*dt); 
 soc(count,1)=E(count,1)/1000; 
 E0=E(count,1); 
 pgrid_new(count,1)= abs(Pg_demand(count,1)); 
p_rhc = abs(out_grid); 
  
count=count+1; 
end 
 subplot(3,1,1); 
plot(P_batt,'-b'); 
hold on; 
plot(P_rbd,'--r'); 
hold on; 
plot(P_dyopt,'-g'); 
% Add labels 
xlabel(' sample'); 
ylabel('dispatch'); 
title('P_batt and P_rbd and P_dyopt'); 
  
subplot(3,1,2); 
plot(V_rbd,'-b'); 
hold on; 
plot(V_dyopt,'--r'); 
hold on; 
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plot(voltage,'--g'); 
% Add labels 
xlabel(' sample'); 
ylabel('Voltages'); 
title('V_rbd and V_dyopt and Voltage'); 
% base=1; 
% area(base,voltage) 
subplot(3,1,3); 
plot(soc,'-b'); 
xlabel(' sample'); 
ylabel('SOC'); 
title('Final-SOC'); 

 
 
Rule Based Dispatch Function: 
 
 
function [v1,P_b,out_grid1] = % Rule based function definition  
global inc pv_gen Pq_demand  
%persistent Pload2 net_load P_pv 
n=count; 
%count=0; 
inc=count; %initial sample starting from 2 because zero cannot be used 
as index. 
dispatch(1)=0; 
batt_dis(1)=0; 
%E=zeros(15,0); 
Pgen=zeros(282,1); 
% E(1)=75;    % initial soc value 
% E_f(1)=75;  
% Eref=75;    % max soc value  
E(1)=1000;    % initial soc value 
E_f(1)=1000;  
soc(1)=1; 
Eref=1000;    % max soc value  
  
d=0; 
dt=30/60;     % time step  
  
P_pv2 = xlsread('final_sc_data1.xlsx','J2:J193') ;% reading pv data 99 
197 
 Pload2  = xlsread('final_sc_data1.xlsx','K2:K193');% reading load data 
99 197 
 net_load = xlsread('final_sc_data1.xlsx','I2:I193');% reading netload 
data ie Pload-P_pv 99 197 
  
%end 
soc_ll=0.20;    %soc lower limit                  
soc_ul=1;       %soc upper limit 
% while(n<49)       % reading values till less than sample size 
  
%Pload2(inc)=Pload2(inc)+del_load1; 
 %Pload2 
m(inc,1)=Pload2(n);     % m stores the 30 min data  
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pv_gen(inc,1)=P_pv2(n); % this is the PV generation schedule in 30 min 
interval 
  
  
% Calculate the Pload – Ppv 
%this becomes the load that must be satisfied by the battery taking 
this sign 
 % +ve means that value to be discharged from batt 
 % -ve means that value to be charged from PV, as PV is excess. 
                                                                               
  % if (m(inc)<0)     % charging value 
  %if (net battery demand) <0) 
  %Use the dispatch to charge the battery 
  %else   % discharge value 
  %Discharge the battery. 
  % end 
        
    % Pess needs to be between -25MW and +25 MW 
    Pess(inc,1) =X_new(inc,1);    
    %E(inc,1)=E(inc-1,1)+Pess(inc,1)*dt ;  % calculating the Echarge 
value  
    E(inc,1)=E0+Pess(inc,1)*dt 
    soc(inc,1)= E(inc,1)/Eref ;            % SOC values to get into 
condition checks. 
    
    % 1st condition if the soc should be between upper and lower limits 
          
    %2nd condition if the soc should be equal to lower limit or less 
than the lower limits 
           
      % 3rd condition if the soc should be equal to upper limit or 
greater than the upper limit 
     
    % dispatch variable is the net Pstorage or Pdischarge value,-ve or 
+ve  
    % +ve dispatch means charging value    
    % -ve dispatch means discharging value 
    switch d     % switching based on the conditions above based on d 
variable 
        case 1 
            if (P_batt(inc,1)<0) 
   % 1st condition satisfied then the available Pes is dispatched 
            end 
        case 2 
            if (P_batt(inc,1)>0)                     
 % 2nd condition  % means it has hit the lower limit and cannot 
discharge anymore, dispatch =0; 
                
            else if (P_batt(inc,1)<0)                 
  % means it can charge since net Pess is negative so dispatch= Pcharge 
                    batt_dis(inc,1)=0; 
                end 
            end 
        case 3                                  % 3rd condition 
            if (P_batt(inc,1)>0)                    
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  % means battery has hit upper limit so it can only discharge, and no 
charging  
                dispatch(inc,1)=X_new(inc,1);        %since m(inc)> 0, 
it can discharge 
                batt_dis(inc,1)=X_new(inc,1); 
            else if (P_batt(inc,1)<=0)               
 % no charge possible since upper limit hit and since m(inc)<0 it is a 
charge value   
                    dispatch(inc,1)= 0;             % but since upper 
limit no charge 
                    
  %Pgen(inc,1)=X_new(inc,1)    % if it hit limit then the available 
value can be given to grid. 
                end 
            end 
        case 4  
           % if (m(inc)<0) 
             dispatch(inc,1)=0; 
            %end 
        case 5 
            %if ( m(inc)>0) 
                dispatch(inc,1)=0; 
            %end  
             
    end 
    E(inc,1)=E0+ dispatch(inc,1)*dt ;   %final Echarge values 
calculated with the dispatch variable 
    soc(inc,1)= E(inc,1)/Eref ;                 % final soc value  
%     Pq_demand(inc,1)=m(inc,1)+dispatch(inc,1); % final net 
Pg=dispatch+Pload-Pgen 
      Pq_demand(inc,1)=net_load(inc,1)+ dispatch(inc,1); % final net 
Pg=dispatch+Pload-Pgen 
  
  result=runpf('case_dist_9bus.m'); 
  
  v(n,1)=(result.bus(10,8)); 
  v1=v(n,1); 
%n=n+1; 
%inc=inc+1; 
  
 
% plot(v,'-*b'); 
 P_pv2 = pv_gen;         %xlsread('opt_file.xlsx','A2:A282') % reading 
pv data 
 pgrid =Pq_demand;      %xlsread('rule_dispatch.xlsx','E2:E282') % 
reading load data 
 P_b=dispatch(inc,1);                 
%xlsread('rule_dispatch.xlsx','C2:C282') 
 soc =soc;                  %xlsread('rule_dispatch.xlsx','B2:B282')   
out_grid1=Pq_demand(inc,1); 
 end 
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Predictive Optimization Function: 
 
function [v2,P_bb,out_grid,p2] 
=dyopt_3_day_linking_new(count,E0,del_load) 
persistent nn 
nns=0; 
P_pv1 =xlsread('final_sc_data1.xlsx','J2:J193'); % reading pv data 99 
197 
 Pload1  =xlsread('final_sc_data1.xlsx','K2:K193');% reading load data 
99 197 
 plot_pv= xlsread('final_sc_data1.xlsx','J2:J193');% 50 
%end 
%      
 global final_grid i 
 %Pload  =xlsread('opt_file.xlsx','D2:D290') 
 %E0 = 1000;  % initial charge in battery 
 i=count; 
 %Emin = 20 MWhr  
 %Emax = 75 MWhr 
 %dt=0.0833; % timestep (5/60) 5 min interval for 24 hours 
 dt=0.5; 
a1=0.1;b1=12.6;c1=8;a2=0.0;b2=0.0;c2=0;% coefficients of cost function 
% coefficients of cost fucntion 
const=[a1 b1 c1 a2 b2 c2];                % defining the constants to 
be used in code 
 
%N=288 ;        % no of samples  
N=48; 
%N=96; 
x0 = [zeros(size(1:N));-25*ones(size(N+1:N))]; % initial solution 
assumption x0 but quadprog does notuse it. 
  
% constraints formation 
if (count==1) 
% Define_constraints; 
%bounds LB<=x<=UB 
  
% ---- 2 bound constraints --- 1 equality constraint ----- 1 inequality 
constraint 
 % formation of matrix as shown in report 
% ---equality constraint--- 
 % formation of matrix as shown in report 
%---inequality constraint--- 
% formation of matrix as shown in report 
% objective function 
% Now since my solution consists of Pgrid and Pbatt for the full 
horizon, 
% it will have 2N variables 
X = sym('x',[3*N,1]);  % reates an 2*N by 1 symbolic matrix filled with 
automatically generated elements 
  
E_init = sym('E_init'); 
c_o = sym ({'a1','b1','c1','a2','b2','c2'}.','r'); % creating symbolic 
constants for the cost function, the constants are defined above 
% the objective function is the sum of Pbatt and Pgrid cost function 
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C= (a1.*((X(1:N).^2))) + (b1.*(X(1:N)))+ c1  ; %(a2.*((X(N+1:2*N).^2))) 
+ (b2.*(X(N+1:2*N)))+ c2 
%C=((c_o(1)).*((X(1:N))))+c_o(2) 
% Now forming the objective equation for the full horizon,so it will be 
the 
% above sum over the full horizon of solution variables 
tot_obj = sum(C) 
  
tot_obj = subs(tot_obj,[c_o],[const']); %substituting the constants 
into the equations 
% this function creates a function from the above formed equation. 
matlabFunction(tot_obj,'vars',{X},'file','obj_test'); 
%F = double(gradient(tot_obj,X)); %the gradient of the function is 
found 
fsym = gradient(tot_obj,X); %the gradient of the function is found 
f = double(subs(fsym,X,zeros(size(X)))); % now to get the constants,the 
X()values are substituted zero. 
H = 0.5.*double(hessian(tot_obj,X)); % the hessian of the objective 
matrix is found 
qpoptions = optimset('Algorithm','interior-point-
convex','Disp','iter'); 
%qpoptions = optimset('Algorithm','active-set','Disp','iter'); 
%options = optimset('MaxFunEvals',Inf,'MaxIter',5000,... 
 %   'Algorithm','interior-point','Display','iter'); 
tic 
[out,fval3,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,LB,UB,x0,qpoptions); 
%[out,fval3,exitflag,output,lambda] = linprog(F,A,b,Aeq,beq,LB,UB,x0); 
toc 
out  
fval3 
% exitflag  
final_out(i,1)=out(97); 
p(i,1)=out(49); 
%final_out(i,1)=out(193); 
final_grid1(i,1)=out(1); 
final_grid(i,1)=out(1); 
%E(i,1)= E0+ (final_out(i,1)*dt); 
%E0=E(i,1); 
result=runpf('case_dist_9bus_dynopt.m'); 
  v(i,1)=(result.bus(10,8)); 
%i=i+1; 
  
v2=v(i,1); 
P_bb=final_out(i,1); 
 out_grid= final_grid1(i,1); 
p2=p(i,1) 
else 
    if isempty (nn) 
        nn=1; 
    else 
        nn=nn+1; 
    end 
    nns=nn; 
% output 
% lambda 
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%plotResults( out, N); 
  
 %while (i<49) 
    % Pload1(i)= Pload1(i) + del_load ; 
 N=48; 
 Pload1 
 x0 = [zeros(size(1:N));-25*ones(size(N+1:N))]; % initial solution 
assumption x0 but quadprog does notuse it. 
%  
% % constraints formation 
%  
% % Define_constraints; 
% %bounds LB<=x<=UB 
%  
% % ---- 2 bound constraints --- 1 equality constraint ----- 1 
inequality constraint 
%  % formation of matrix as shown in report 
% % ---equality constraint--- 
% % formation of matrix as shown in report 
% %---inequality constraint--- 
% % formation of matrix as shown in report 
% % objective function 
% % Now since my solution consists of Pgrid and Pbatt for the full 
horizon, 
% % it will have 2N variables 
 X = sym('x',[3*N,1]);  % reates an 2*N by 1 symbolic matrix filled 
with automatically generated elements 
%  
 E_init = sym('E_init'); 
 c_o = sym ({'a1','b1','c1','a2','b2','c2'}.','r'); % creating symbolic 
constants for the cost function, the constants are defined above 
% % the objective function is the sum of Pbatt and Pgrid cost function 
 C= (a1.*((X(1:N).^2))) + (b1.*(X(1:N)))+ c1  ; 
%(a2.*((X(N+1:2*N).^2))) + (b2.*(X(N+1:2*N)))+ c2 
% %C=((c_o(1)).*((X(1:N))))+c_o(2) 
% % Now forming the objective equation for the full horizon,so it will 
be the 
% % above sum over the full horizon of solution variables 
 tot_obj = sum(C); 
%  
 tot_obj = subs(tot_obj,[c_o],[const']); %substituting the constants 
into the equations 
% % this function creates a function from the above formed equation. 
 matlabFunction(tot_obj,'vars',{X},'file','obj_test'); 
%F = double(gradient(tot_obj,X)); %the gradient of the function is 
found 
 fsym = gradient(tot_obj,X); %the gradient of the function is found 
 f = double(subs(fsym,X,zeros(size(X)))); % now to get the 
constants,the X()values are substituted zero. 
 H = 0.5.*double(hessian(tot_obj,X)); % the hessian of the objective 
matrix is found 
 qpoptions = optimset('Algorithm','interior-point-
convex','Disp','iter'); 
% %qpoptions = optimset('Algorithm','active-set','Disp','iter'); 
% %options = optimset('MaxFunEvals',Inf,'MaxIter',5000,... 
%  %   'Algorithm','interior-point','Display','iter'); 
 tic 
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 [out,fval3,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,LB,UB,x0,qpoptions); 
% %[out,fval3,exitflag,output,lambda] = 
linprog(F,A,b,Aeq,beq,LB,UB,x0); 
% %[out, fval3] = fmincon(@obj_test,x0,A,b,Aeq,beq,LB,UB,[],options); 
 toc 
% %out  
% %fval3 
% % exitflag  
 final_out(i,1)=out(97); 
 p(i,1)=out(49); 
 final_grid1(i,1)=out(1); 
 final_grid(i,1)=out(1); 
 %E(i,1)= E0+ (final_out(i,1)*dt); 
 %E0=E(i,1); 
 result=runpf('case_dist_9bus_dynopt.m'); 
 v(i,1)=(result.bus(10,8)) 
 %i=i+1; 
  
 pgrid=final_grid1; 
 pbatt=final_out; 
% soc=(1/1000).* E ; 
% end 
% %soc= ((E0)+(A_new1*out))/75 ; 
%nn=nn+1 
 v2= v(i,1); 
 P_bb=final_out(i,1); 
 out_grid= final_grid1(i,1); 
 p2=p(i,1) 
end 
end 
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APPENDIX B: SYSTEM DATA 

 
 
9 Bus Test System Data: 

Line No. From 

Bus 

To bus R  X P Q 

1 0 1 0.1233 0.4127 1840 460 

2 1 2 0.014 0.6057 980 340 

3 2 3 0.7463 1.205 1790 446 

4 3 4 0.6984 0.6084 1598 1840 

5 4 5 1.9831 1.7276 1610 600 

6 5 6 0.9053 0.7886 780 110 

7 6 7 2.0552 1.164 1150 60 

8 7 8 4.7953 2.716 980 130 

9 8 9 5.3434 3.0264 0.500 200 
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