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ABSTRACT

ZHONG LI. A stochastic segmentation method for interesting region detection and
image retrieval. (Under the direction of DR. JIANPING FAN)

The explosively increasing digital photo urges for an efficient image retrieval sys-

tem so that digital images can be organized, shared, and reused. Current content

based image retrieval (CBIR) systems face multiple challenges in all aspects: image

representation, classification and indexing. Image representation of current CBIR

system is of such low quality that the background is often mixed with the objects

which makes the signature of an image less distinguishable or even misleading. An

image classifier connects the low level feature with the high level concept and the low

quality feature will only make the effort of bridging of the semantic gap harder.

A new system to tackle these challenges more efficiently has been developed. My

contribution consists of: (a) A stochastic image segmentation algorithm that is able

to achieve better balance on integrity/oversegmentation. The algorithm estimates

the average contour conformation and obtains more accurate results and is very at-

tractive for feature extraction for customer photos as well as for tissue segmentation

in 3D medical images. (b) A new interesting region detection method which can

seamlessly integrate GMM and SVM in one scheme. It proves that the pattern of

the common interests can be efficiently learned using the interesting region classifier.

(c) The popularity and useability of the metadata of the +200 different models sold

on market is explored and metadata is used both for interesting region detection and

image classification. This incorporation of camera metadata has been missed in the

computer vision community for decades. (d) A new high dimensional GMM estimator

that tackles the oscillation of principle dimensionality of GMM in high dimension in

real world dataset by estimating the average conformation along the evolution history.

(e) An image retrieval system that can support query by keyword, query by example,

and ontology browsing alternatively.
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CHAPTER 1: INTRODUCTION

In the history of one and a half centuries of film photography and in less than

three decades of digital photography, taking, storing, and viewing pictures has never

been cheaper than today. Due to the giant progress made in the electronic industry

and digital camera industry, as well as in the software and hardware of computer,

one can own a digital camera capable of capturing 7 million pixels a frame with a 4

Gig memory costing less than $100. The digital camera has also become a standard

feature of the mobile phone on the market in all price ranges. Moreover, there are

free on line image hosts such as Flicker and Google image, as well as hundreds of

millions of images scattered blogs, forums, and articles with literally no limitation to

their contents. All these brought up a problem: how to efficiently analyze, index, and

search the explosively increasing digital photos so that the the majority of the photos

won’t be turned into a waste and forgotten.

Tackling this challenge has a strong commercial driven force since any progress

made has a potential contribution to the indexing, browsing, querying, and searching

of images both on line and on the desktop, as well as family photo album creation with

more features other than chronological arrangement that meets the diverse customers’

needs. The achievements have been characterized under the name of content based

image retrieval (CBIR) by the computer science society which mainly speaks of the

technique helping to organize digital images by their content. The technique entangles

with state of the art progress in psychology, statistics, information theory, web and

data mining, database system, human-computer interaction, information retrieval,

machine learning, and computer vision.
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A CBIR system typically contains the following major components:

• Image representation and feature extraction: How to efficiently represent an

image so that the discrimination power of the visual features can be enhanced

significantly and enable more reliable classifier training.

• Image classification and indexing: How to design and train a classifier to make a

more robust and accurate decision given the features extracted from an image.

• Image retrieval and query formulation: In what format can the machine bet-

ter understand the needs of a human being when someone is using the image

retrieval system?

• System benchmark: How big and complex could the image repository be so that

it is practically usable?

Each question is an unsolved challenge that needs to be broken through. Every

part depends on the previous parts’ developments and needs to accommodate the

imperfectness passed from upstream.

The biggest obstacle is bridging the gap between the low-level features we can

fetch from a digital photo and the high-level semantic meaning present in a human

brain once the photo is viewed[102]. The low-level feature which includes the color,

texture, and shape of an image that can be calculated solely based on the pixel

matrix. It may also include the metadata, which is recorded in the header file of a

photo. The metadata records the parameter settings of the camera (e.g., the date

and time), as well as the environment at the moment of the photo was taken (e.g.,

the exposure value and GPS value) for each photo. The high-level semantic is the

abstract label of the content of an image. For example - a “mug” for an object

image or a “mountain scene” for a scene image. The semantic gap exists due to

the lack of coincidence between the visual information extracted from the raw data,

called signature, and the interpretation by the user given the same information. The
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semantic interpretation of an image can be subjective in some degree that different

people may come up with different interpretation on the same image. Unfortunately,

user studies of this aspect has been scarce until now.

The similarity measurement between two images that makes clustering and clas-

sifying of image repositories possible remains another challenge. The similarity mea-

surement combines with the feature selection backward and the algorithm of machine

learning forward. There are mainly two types of features: local feature and global

feature. Each is rooted on the philosophy of whether the human visual system has

the ability to fetch the information of a scene in a bottom-up manner or in a re-

versely top-down manner. Both have support from psychology and neurology. The

top-down approach assumes that the visual system can interprate a scene quite suc-

cessfully only based on the global information before the detail is visually noticeable.

The anatomy of the eyeball suggests that the fovea at the center of the retina has

the most concentrated cone cells which provides the high resolution of detail of a

scene. The peripheral vision provides lower resolution for the non-central points in

the field of view. The structure of the visual perception indicates that not all stimuli

are treated equally. This derives the concept of the interesting region that catches

the human being’s attention, attracts the focus of the fovea, and probably has more

contribution to the interpretation of the image.

Since mimic of the human preception system is far beyond feasible at the current

stage, all attempts to bring a reasonable solution are applaudable even though they

do not have any support from the experiments of psychology and autonomy. These

attempts include the image segmentation techniques and the statistical methods for

machine learning that will be introduced in more detail later.

The years between 1994 and 2000 is the pioneer age of CBIR research. The

semantic gap problem was challenged at that time and still largely remains challenge

one decade later. The experiments are often applied on a narrow domain of images.
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Compared to the broad domain (or real world) image, the narrow domain often

has less diverge on visual features and better-formed characteristics which make the

searching and classification much feasible. The template of searching/browsing is also

categorized into four major types: (1) search by association (human in the middle)

where the result is refined during the process of searching given an unclear initial

target. (2) aimed search which has a clear target and search is conducted for the

most similar ones. (3) category search which finds the category of belonging given a

sample image. (4) image browsing which allows to reach individual images efficiently

by browsing the hierarchical structure of the image repository or the similarity among

the categories.

The index solely based on color histogram is presented by [104] and richer features

are extracted by QBIC [38], Pictoseek [102] and VisualSEEK [17]. Gabor filters were

successfully used for texture extraction. Shape matching has been applied to specific

domains such as medical imaging and hand writing recognition. Since the local feature

has been reported of better characterizing an image than the global feature, weak or

strong segmentation methods were employed to find the objects in an image and new

segmentation methods were developed partially driven by the research of CBIR. Using

local features for CBIR to avoid over simplification of an image remains a strong trend

today. To confront the imperfection of the segmentation, the grid partition associates

the feature with the coordination information indirectly assuming the whole image

can be summarized by the evenly distributed blocks.

Later we will focus on the state of the art methods dealing with CBIR for real

world images. By saying real world, we are facing the photos literally with no content

limitations.
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1.1 Image Representation

1.1.1 Local vs. Global

A bottom-up method inspired by the biological discovery of the high resolution in

fovea and low resolution in peripheral in human reception system defines the saliency

map [49]. The multiple resolution was implemented by subsampling the original

image in multiple scale to create an image pyramid based on the intensity and color.

Gabor filter of 4 directions and 8 scales was applied on the original intensity image.

The saliency map at each scale for each category (intensity, color, and orientation) is

calculated by the difference of point-to-point substraction of low resolution and high

resolution images in the same category. The saliency map within the same category is

normalized and merged into one. The three saliency maps between different categories

are added and averaged into one final saliency map. The most attractive regions in

an image are supposed to have higher intensity.

There are different formulas [48] for saliency calculation but all are based on the

same idea of the difference between different resolutions of images. Human attention

is not only attracted by the local difference, but also driven by the task of what to

look for in an image and by the personal experience in the higher level. Further

research includes combining a grid partitioned global information of the saliency map

(gist feature) with the saliency map itself for scene classification [101], modeling the

influence of task on attention [72], and predicting gaze direction in interactive visual

environments [87].

The saliency map is robust based on the low level features. Yet, the threshold

method to predict whether a region is salient or not is less predictive. This method is

not suitable for the close shot of a photo such that the main object takes the majority

of the space. Since no training is involved, it won’t predict the region that is really

attractive to a human being due to the semantic gap.

The saliency map also served as an attention seed and objects were extracted by
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growing the attention seeds [46]. The main subject region [62] was also detected using

Baysian models based on local features obtained from segmentation.

Global features were used as contextural information for object recognition in a

top-down fashion associated with the local saliency map. Supported by the fact that

human observers can recognize a scene by a glimpse despite the poor quality of the

image to be viewed due to fuzzy and noisy representation or in small size due to

the far distance, research has shown that the scene context can be built in a holistic

fashion without fetching the detail of individual objects [107]. With the assumption

that our universe is structured and a real world photo is a copy of a certain part of

the universe, the object in a scene has certain correlation with the scene itself, or

in other words, the images with the same scene tend to be composed with similar

objects in a similar spatial arrangement. By decoupling the feature vector into a local

feature and an global feature, the global feature can be trained for location priming,

object priming, and appearance priming. Compared to using a saliency map alone,

the global feature can provide prior knowledge of whether a specific object exists

and where it should be located [106, 105, 108, 77, 78]. It is clear that the global

information is used as a priming factor and the local information is never given up.

Grid partition of an image into blocks is an intermediate approach between local

and global representation. The features extracted are based on each block are indi-

rectly associated with the coordinate information. The grid partition is often much

faster than the local representation and usually describes an image better than the

global representation since the later one is often too rigid.

1.1.2 Major Type of Features

The most commonly used features are color, texture, shape, and interest points.

Exploration has been done to find the color space (e.g. the LUV color space) that

coincid with human vision other than the basic RGB color space. The color feature

is usually represented in a color histogram, summarizing the pixels per region or the
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whole image for the local/global feature.

The texture feature intends to represent the repetitive pattern in an image in

different scale and direction. For instance, even though the fur of a squirrel is similar

to the color of bark of a tree, the fur of a squirrel has a different texture than the

texture of the bark of the tree. The texture feature out performs the color feature

in the texture dominant cases. However, there is no clear result whether the texture

feature does beat the color feature overall in the repository of real world images.

Gabor filters [50], wavelet transforms [113], and multi-orientation filters [65] are often

applied as feature detectors. The multi-scale and multi-direction texture can be

represented in pixel base such that the texture feature is a multidimensional grayscale

image.

The quality of shape feature highly depends on the performance of segmentation.

Due to the challenges that still exist in segmentation, a robust shape detection for

generalized real world image is currently unrealistic. The shape analysis are often

limited to specific applications such as hand writing recognition or medical image

analysis with human supervision so that the correct segmentation (and the shape of

the object) can be achieved guaranteed. The Fourier transform is used to represent

the smoothness of the curve. The compactness and elongation are used to describe

the similarity of a shape to a circle. The Hough transform is used to represent the

line strength and position of an image.

The interesting points, the feature based on local invariants and traditionally

used for stereo matching, are used for image retrieval as well. The scale-invariant

feature transform (SIFT) [61] method, which was introduced in 1999, is an interesting

matching technique that gets more attention in the field of image retrieval. The SIFT

technique is invariant to image scale and rotation, robust to changes in illumination,

noise, and minor changes in viewpoint. Moreover, it is distinctive, easy to calculate,

and allows for fast matching in a large database. It has also been observed that
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the SIFT has relatively good performance when the object is the same one as the

target with a small amount of transform, rotate, scale, and when noise is applied.

The performance decreased drastically when the orientation changed too much or the

background was more complicated than the object we are interested in. In the latter

case, the SIFT points from the background will be dominant so that the feature of

the object will have little contribution.

1.1.3 Metadata

Camera metadata records the camera parameters, (e.g. exposion time, flash,

object distance and focal length), as well as the environment, (e.g. the GPS and

luminance information) and can be extracted from the EXIF (http://www.exif.

org/Exif2-2.PDF) file which is the header file for the jpeg formated images. Camera

metadata describes the condition of the whole image at the time the photo is shot,

thus it can be considered a global feature. The EXIF metadata was available in the

1990s but only until recently has it received more attention from the aspects of image

retrieval. It’s impossible to introduce each attribute of the metadata because different

manufactures and models may have different settings. We will also skip the direct

implementation such as using keyword for image retrieval and using date for image

storage, indexing and browsing.

Under the assumption that the universe is a spatial-temporal structure and that

photography is a copy of part of the universe, the metadata can provide prior knowl-

edge before the photo is viewed. For example, given the metadata, date: Aug. 1,

2008; time = 6:00am; flash = off; exposure time = 0.5sec, without viewing the photo-

graph, we almost can make the guess that it is a sunrise scene. With GPS coordinates

available 35◦33′′46′N83◦29′′55′W , it is probably a sunrise scene taken in the Great

Smokey Mountain. The camera metadata has been used for semantic scene classi-

fication by Bayesian fusion [9]. Metadata was also used for photo classification in

personal photo books [103, 119].
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How to efficiently use the information provided in the metadata based on their

popularity and availability to assist the task of CBIR needs to be explored.

1.2 Segmentation Methods

In order to extract the distinguishable signature of an image, people try to locate

the objects and extract signature based on the objects. This process requires seg-

mentation. The search of medical image collections has been increasingly important

in recent years due to the high dimension and high resolution imaging modalities

introduced. Since most of the 3D gray scale medical segmentation methods can find

their root in the 2D color image segmentation, we view it as a special case of 2D

color image. A condensed critical review of the state-of-the-art methods in the near-

est decade is presented in Chapter 2, categorized according to the methodology. A

review of more classic methods can be found in [82].

1.3 Image Classification

The signature of an image by the global feature can be represented as a vector

and the signature of an image by the local feature can be represented as an array

of vectors. The image classification is about calculating the similarity (or distance)

between two images, the similarity between one image and a set of images, or the

similarity between two sets of images given the image signature. How to measure the

similarity such that the measurement is in accord with the human perception remains

a challenging problem. Statistical machine learning methods show more promising

for the complicate real world image classification than the other methods in recent

years.

There are two types of matching methods for image classification: pairwise match-

ing based and template matching based. In order to find the similarity between an

image and a set of images belonging to the same category, the pairwise matching

needs to calculate the distance between the image and each of the images in the set.

The overall similarity is evaluated based on all the distances calculated (e.g. the
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average distance). The pairwise matching needs to scan each image in the repository

for every query provided, which could be a drawback for the large database. The

template matching based method allows one to summarize a template model for the

images in the same category after training. The matching is done between the incom-

ing image and the template. In this way, the scan of each image is no longer needed

which offers faster matching for the large database. The adaptivity and generality of

the template of a category needs to be taken care of.

The support vector machines (SVM) [28] are powerful statistic methods for pattern

recognition. The SVM is a pairwise classifier where two sets of samples that each can

be considered as a vector in high dimensional space. The SVM will construct a

hyperplane that maximizes the margin between the two data sets by constructing

two parallel hyperplanes on each side of the separating hyperplane which are ”pushed

up against” the two data sets. It can also be a Multi-class classifier, but in the bottom

it is doing a one-versus-the-rest calculation. If the classification based on the given

sample sets is not satisfied, kernel transform will be taken so that the sample sets will

be transformed into higher dimensions by the kernel function and the hyperplane is

sought in the higher dimension.

The Gaussian mixture model (GMM) is another powerful statistic method for

pattern recognition. Unlike the sample points in SVM that only edge points contribute

to the model, the GMM is estimated based on all sample points for the weight, mean,

and the covariance matrices. There are several ways to measure the distance between

two Gaussian models. The simplest Cartesian distance of mean does not consider any

covariance information among features

DCartesian(θ1(µ1, σ1), θ2(µ2, σ2)) = |µ1 − µ2| (1.1)

where θ(µ, σ) is a single Gaussian model having µ for mean and σ for covariance

matrix. The Mahalanobis distance measures the distance between two means while



11

taking into account the correlations of the data set and is scale-invariant

DMahalanobis(θ(µ1, σ1), θ(µ2, σ2)) =
√

(µ1 − µ2)T Σ′−1(µ1 − µ2). (1.2)

Obviously, Mahalanobis distance is an asymmetric measurement. Given the distance

function between a pair of Gaussian d(·, ·), the distance between two sets of Gaussian

models Θ1 and Θ2, where each has n1 and n2 samples, can be represented as

D(Θ1,Θ2) = Σn1
i=1Σ

n2
j=1si,jd(θi, θj) (1.3)

where the si,j is the weight between a pair of Gaussian such that Σisi,j = pj and

Σjsi,j = pi where pi and pj are the weight of the Gaussian model θi and θj in the

mixture Θ1 and Θ2 respectively [117]. It turns to be the Mallows distance by seeking

the si,j such that the distance is minimized

D(Θ1,Θ2) = min
si,j

Σn1
i=1Σ

n2
j=1si,jd(θi, θj). (1.4)

The earth mover’s distance (EMD) [94] is a special case of the Mallows distance which

is originally employed to calculate the distance between two histograms. Considering

the bins in the histogram as the height of the earth pile, given the cost function

of moving any amount of earth from one bin to the other, the measurement of two

different histograms is calculated by finding the minimum cost of transforming the

earth pile in one histogram to the same shape of another. The Hausdorff distance is

also used in image retrieval [55] that matches every θi in Θ1 to the closest θj in Θ2

and the distance between two sets is the maximum among all min d(·, ·). It can be

symmetric for asymmetric measure of d(·, ·) by switching the variables in the d(·, ·)
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and picking the larger distance

DHausdorff (θ1, θ2) = max(max
i

min
j
d(θi, θj),max

j
min

i
d(θj, θi)). (1.5)

The Kullback-Leibler (KL) divergence [41] is the natural way to define a distance

measure between probability distributions

DKL(f, g) =

∫
f(x) log

f(x)

g(x)
dx (1.6)

where f and g are two distributions. The KL-distance for a pair of Gaussian models

is

DKL(θ1, θ2) =
1

2
(log
|Σ2|

|Σ1|
+ Tr(Σ−1

2 Σ1) + (µ1 − µ2)
T Σ−1

2 (µ1 − µ2)− d) (1.7)

where Tr(·) is the trace of a symmetric matrix and d is the dimension of the mean.

A symmetric measure of KL distance (also called the Jessen-Shannon distance) can

be achieved by calculating

D(f, g) =
DKL(f, g) +DKL(g, f)

2
. (1.8)

Unscented transform based on the KL-distance is used to calculate the distance be-

tween two sets of Gaussian mixtures. This method always yields a distance larger

than 0 even when the Gaussian models within two groups are identical. It also causes

numerical difficulty when the pair of Gaussian models are extremely far apart.

Once the template of the real world sample distribution is prototyped in GMM,

both the complexity and the parameters of the GMM need to be estimated given

the training data. The complexity of the mixture model can be optimized given the

goodness-of-fit function where minimum description length (MDL) [90] is often served

as the criteria of optimization. The MDL based criteria works well in some kinds of
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images but poorly in others. The expectation maximization (EM) algorithm [29] is

an iterative optimization procedure that is efficiently used to optimize the GMM to

fit the training data giving a blind start. The split and merge operation is often

applied to make the optimization less dependent on initial conditional and less likely

to be trapped in a local minima. The EM-GMM is a general method used for model

estimation. Yet, as a stochastic process, the uncertainty of the model, as well as the

convergence of the process, received so little attention that the performance of the

GMM in real world was sometimes considered unsatisfied. Since the feature dimen-

sion for an image can easily reach several dozen or even more, dimension deduction

is a must process to make the calculation practically feasible on a normal desktop

computer.

Without the labled training images, the image repository can be a unsupervised

cluster according to their pairwise distance using k-means method, or clustered ac-

cording to their natural distribution in the feature space using GMM. In the k-means

clustering, a centroid is computed as the mean of the vectors belonging to each clus-

ter. Then all data vectors reclaim their belongings by looking for the nearest centroid.

The centroid location and the vector belonging is calculated iteratively until conver-

gence is reached. The EM-GMM is a special case of k-means in that the Gaussian

parameters are estimated instead of the centroid and data is allowed to partially

belong to all Gaussians instead of only belonging to one centroid at any stage in k-

means. One advantage of using the GMM for clustering is that not only the dataset is

partitioned, but also the density of the clusters are estimated in the mean time. The

unsupervised clustering is useful for image retrieval speedup and visualization. It is

suitable for large, unstructured image repository such as the images on the internet.

The drawback is limited to the low-level feature similarity and poor user adaptability.

Image categorization (classification) is preferable when the image database is well

specified and labeled training images are available. The classification is no longer
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limited to the similarity of low-level features. The category can be in a hierarchical

structure so that the top level is more general and abstract while the low level is much

specific. Since the probability density is addable, the GMM approach can seamlessly

be applied to the hierarchical structured categories.

1.4 Image Retrieval

The ultimate goal of CBIR is to serve the user who submits the query. The user’s

purpose is diverged which results in different designs of the CBIR systems. The query

could be a keyword, a sample image or a drawing picture. Query by keyword is a

text search that does not require any image processing technique. Query by a sample

image or a drawing picture are both query by example whereas the draw picture

requires much more intervention of the user. The user is also allowed to mark the

specific object that he or she needs to search. Although this kind of intervention from

the user can provide high quality query, it is also considered “less intelligent” in the

point of view of the CBIR system design which ideal provides high quality results

with minimum intervention from human beings.

The intent of the query could be finding images with the same scene, containing

similar or the same object. The intent of the user may not be clear or even hard

to represent at the beginning. Upon receiving feedback from the CBIR system, the

user’s intent may shift or the representation may be changed. The relevance feed back

[123] based CBIR system allows user in the middle to correct the performance of the

system. Disregarding of the user supervision during image retrieval, which could be

pro or con in different scenarios, the relevance feed back approach shares the same

technique with those none relevance feed back methods that are often facing more

challenge due to the lack of human guidance.

Providing the relevance feedback, the user will have a small amount of positive

and negative labeled sample sets. These labeled sample sets are usually better of

describing the intent of the user and what the user needs to search than the initially
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provided image. A learning process, for example the EM-GMM, can be applied to

estimate the density distribution of the query images in the feature space. A k-

means method can also be used to estimate the centroid of the positive sample in the

feature space. Since both positive and negative sample sets are available, the SVM

method, which was created for the pairwise classification, is used to estimate the

enclosed hypersphere of the positive sample set in the mapped space. The updated

description is used for rank the retrieval.

Although the relevance feedback approach provides a short cut for the challenging

problem in CBIR, it takes users’ patience because it usually requires multiple rounds

of feedback. Improvements have been done by allowing the user to label the feedbacks

into multiple categories, called semantic feedback [118]. To increase the efficiency,

multiple image example is used in the query and the history of the query is recorded

to assist the future query for the specific user.

As the researches have been focused on how to let the machine learn from the

user’s feedback, the user’s choice is taken as truth for granted. Yet, how to help

the user better represent his or her intent is another research topic that potentially

will improve the quality of the query. Efforts have been made to assist the user by

providing cues and hints for more specific query description, to learn the distribution

that represents the mental image of the user, to use that distribution to retrieve

images and to assist the user with the history that was used to provide the query.

The Bayesian network and other stochastic methods are widely used to model the

uncertainty of the user’s intention.

There is always the argument about the balance between an automatic CBIR

system and how much people need to be involved to refine the query. The practical

use of a relevance feedback approach for the real world image repository has not been

developed yet. This is probably because of the high cost of human involvement which

is both time consuming and mentally tedious.
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1.5 Research Motivation

The consumer photos, which are created by human beings, are driven by the

photographer’s intention, expressing his/her emotion and feeling, recording the scene

of objects in the style of either abstract or realistic with practically unconstrained

contents. Such human taken photos significantly differ from the images taken by a

fixed surveillance camera or a visual sensor of a mobile robot: although having a wide

range of diverse content, photographers follow the basic rules of esthetic sentiment

that is shared among the majority of civilized human beings to make the photos

attractive, beautiful, or even astonishing in all circumstances, even in tragedy. For

example, people often save certain amount of space for the sky in an outdoor photo

to make it look balanced. The subjects one is interested in are often placed in the

center of the frame and keep it integrated. If the environmental luminance is not

sufficient to make a clear shot and a flash must be used, one will often make sure that

the targeted subjects will have proper exposure while the surroundings are tolerated

with less exposure.

The human intention is buried under the pixels we can see and the metadata we

can read. The information from the metadata has been largely ignored for quite a

while but close attention is now being paid to it. From the above interpretations, one

can observe that not all pixels are born equal and some of them are more important

than the others. Thus we can define the region of interest (attended region) as a single

semantic object, or a group of semantic objects, that catches the viewers’ interests

and represents the core concept of a photo. Obviously, such regions of interest in an

image can provide an alternative way to interprate the semantics of the images.

Can the unspeakable esthetic sentiment be learned by the machine by studying

the photos taken by human beings? If so, than in a reverse way, the machine can

hopefully understand where the interesting region is and what the subject is in the

interesting region. Moreover, photos can be categorized and retrieved based on an
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Figure 1: Photographer, camera, photo and metadata.

interesting region that contains the core content of the image. Detecting the regions of

interest in an image has many applications, such as more effective image compression

(i.e., allocate more bits for the regions of interest and less bits for other regions) and

compact image content representation.

A typical scenario of people taking photos is illustrated in Fig. 1.5. A butterfly,

which is the object interesting to the photographer, appears in the right season at the

right time in the right place (it’s unlikely to appear in winter on the snow at night).

The photographer wears camouflage so that he can approach the object to achieve
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a better conformation. The parameter of the digital camera is set and the photo is

shot. The camera records the image in pixels that we can see and the settings as well

as the environment condition (such as GPS value and luminance etc.) in the readable

metadata. The photographer intensively blurs the forground and the background by

setting larger aperture so that the object that the photographer interested in can

vividly stand out.

Through controlling the camera selection variance camera metadata, photogra-

pher can intensively capture the photo and objects, which he/she wants to share

with others. Therefore, the camera metadata somehow reflects the intention of the

photographer and the focus of the photos. Based on these understandings, camera

metadata may play an important role for automatic image/photo understanding.

If the interesting region is detectable, we will not only have high qualified image

signature extracted based on the localized interesting region, but also a new index

method that represent a photo closer to the intention the photographer wants to

deliver by shooting the photo.

Realizing the challenges of the current CBIR system, we are going to tackle the

problem from the root and each part of the components:

• Image representation and feature extraction: In this research, we present a

novel segmentation/interesting region detection algorithm to extract features

precisely based on the object as well as the surrounding background to improve

the feature quality that better describes an image closer to the abstract concept

when people visualize the image. The GMM and SVM are combined to reach

a better prediction of the interesting region.

• Image classification and indexing: We explore the popularity and usability of

the contents of camera metadata and integrate the metadata with the image

visual content to improve the performance of the classifier. We present the

novel average configuration solution to tackle the problem of model uncertainty
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Image Representation Image Classification & Indexing Image Retrieval

Image Segmentation Ontology Structure

Classifier Training

Interesting Region Detection

Classifier Training

GMM + SVM

Visual Feature Extraction

Ontology Browsing

Query by Keyword

Query by Example

GMM

Figure 2: The flowchart of our work.

of GMM in which case the traditional optimal solution is unreliable.

• Image retrieval and query formulation: The photo repository is organized by

their ontology concepts rather than low lever visual features. A system support-

ing hierarchically browsing, query by keyword and query by example is designed

to demonstrate the performance and characteristic of the presented approach.

• System benchmark: The system is tested on 7000 photos with no restriction on

contents generated by +200 different models of cameras sold on the market in

the past decade.

The work is organized in the flow chart as shown in Fig. 1.5. The automatic

image segmentation method is presented in Chapter 2. The interesting region de-

tection based on the segmentation results is represented in Chapter 3. The image

classification and indexing based on the interesting region is presented in Chapter 4.

The image retrieval system is built upon all the above techniques and presented in

Chapter 5. Finally, the conclusion and future work is discussed in Chapter 6.
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1.6 Novel Contributions

• A stochastic image segmentation algorithm that is able to achieve better balance

on integrity/oversegmentation. The algorithm estimates the average contour

conformation and obtains more accurate results and is very attractive for feature

extraction for customer photos as well as for tissue segmentation in 3D medical

images.

• A new interesting region detection method which can seamlessly integrate GMM

and SVM in one scheme. It proves that photographers have common interests

and the pattern of the common interests can be efficiently learned using the

interesting region classifier.

• The popularity and useability of the metadata of the +200 different models

sold on market is explored and metadata is used both for interesting region

detection and image classification. This incorporation of camera metadata has

been missed in the computer vision community for decades.

• A new high dimensional GMM estimator that tackles the oscillation of principle

dimensionality of GMM in high dimension in real world dataset by estimating

the average conformation along the evolution history rather than by looking for

the optimal conformation at any instance.

• An image retrieval system that can support query by keyword, query by exam-

ple, and ontology browsing alternatively.



CHAPTER 2: IMAGE SEGMENTATION

2.1 Introduction

Image segmentation is a fundamental procedure for image processing which has

wide applications in pattern recognition, image analysis, and retrieval. It has been

a challenging problem which has been tackled for decades since the first day digital

imaging was available. Many different approaches have been presented, yet image

segmentation still remains an unsolved problem today.

The purpose of the segmentation in the image retrieval aspect is to group the

regions with similar visual characteristics together, thus one can represent an image

more concisely and meaningful comparing the pixel matrix of the raw data. For a

300×400 size image with 100 regions, the volume of the representation can be greatly

reduced to less than 1
1000

while still preserving the spatial information. Describing

an image based on segmentation makes the similarity evaluation between the images

more easy and somehow closer to the human perception. A generic segmentation is

purely based on the visual content of an image with no classification process involved.

In the other words, it has no propensity to any specific object.

Incomplete and oversegmentation is a challenge that any algorithms have to deal

with. The quality of a segmentation algorithm highly depends on the complexity of

the image. For example, an object level segmentation can be achieved in an image

with a fully controlled environment. However, for the customer photos which literally

has no restriction on its content, the object level segmentation is often a fail. For

the different applications, the accommodation to the imperfection of segmentation

is different which results in an automatic segmentation and segmentation with hu-
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man supervision. For example, the medical image often has low tolerance for miss

segmentation due to the extremely high costs of error, so human supervision is of-

ten preferred. But for the image retrieval purpose, with the huge number of image

and fairly low cost of miss classification, automatic segmentation is a more realistic

approach.

2.2 Some Existing Approaches for Image Segmentation

2.2.1 Stochastic Methods

Stochastic rich methods assume that the feature distribution can be described/simulated

by certain statistic models. Markov random field (MRF), hidden Markov random field

(HMRF), expectation maximization (EM), and finite Gaussian mixture models (FGM

or GMM), as well as other model optimization methods such as Markov chain Monte

Caro (MCMC) and minimum description length (MDL), were heavily used and often

cooperated with each other.

MRF and HMRF Based Methods

The Markov random field based image segmentation method originated in the late

1980s. The MRF is a trade off for the Gibbs distribution

P (x) =
1

Z
e−U(x)/T (2.1)

where

U(x) =
∑

c∈C

Vc(x) (2.2)

is the energy function where x denotes for the classification of a pixel, c represents

the member of clique C neighboring with the current pixel, T represents a constant,

and Z represents the normalization factor. The algorithm iteratively updates the

classification of a pixel based on the observations of the classification of its neighbors.

MRF was incooperated with EM algorithm to form Hidden Markov random field

[121, 30] to segment brain MR images and natural images based on color and texture
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features [54]. Considering the emission of the MRF as an internal state, the emitted

random field can be modeled by finite mixture Gaussian models. It was reduced to

a normal FGM, if assuming the emission of MRF is independent of the configuration

of the neighbors. The HMRF methods are criticized by not having good significant

improvement on FGM for clean images where significant complexity increased. The

region based HMRF method [18], specially designed for the brain MR image segmen-

tation, takes the bias field into account and the clique energy is modified so that a

neighborhood CSF voxel will only contribute to the centering voxel being gray mat-

ter but not being a white matter. Mean field like approximations [15] applied on

energy function assigned the neighborhood by the mean value of the neighborhood to

avoid the fluctuation caused by the neighborhood. Hierarchical MRF model [21] was

applied on multiband image so that the the spatial dependencies of pixels far away

is enhanced by the upper node of the hierarchy. Parzen window [85] was used to

calculate the PDF of the neighborhood to accomplish unsupervised MRI brain-tissue

classification [3].

EM and GMM Based Classification

The expectation maximization method [29] is a model optimization method often

consisting of an E-step and an M-step. The E-step estimates the expected complete

data log-likelihood function

Q(Θ | Θ(t)) =
K∑

k=1

M∑

m=1

{logπmp(xk | θm)}P (m | xk; Θ
(t)) (2.3)

where θ is the member of model set Θ, m is the model ID, t is the iteration number,

K is the sample number, and M is the model number. In the M-step, it estimates

the model parameters Θ(t+1) by maximization Q(Θ | Θ(t)). The EM algorithm is

frequently used with MRF based method as shown above. Considering the image

segmentation as a pixel labeling process, the EM algorithm can be directly applied
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to the field of image segmentation.

Split-and-merge EM (SMEM) algorithm [109, 122] were used in color image seg-

mentation to decrease the chances of being trapped in the local minim. A comparison

of GMM method with other stochastic methods taking color and texture features

shows that GMM has better performance on segmentation [86]. EM with GMM were

also applied to natural image modeling and conceptualization [35]. In order to in-

crease the efficiency of the EM algorithm dealing with a large data set like 3D medical

image, kd-tree is used to partition the image into smaller part with parts of the data

used during the EM iteration [75]. A partial update of the model parameter and only

utility of part of the data set for estimation are both allowed [74]. EM algorithm is

also used in line segments to find strong connections [91].

Traditional pixel based classification methods work on global information while

the spatial information is not used. This leads to the malfunction when dealing with

the images spatially separable but numerically inseparable. Or even if the segmenta-

tion can be conducted, the result regions can hardly be continuous regions if without

a post segmentation morphological process. Some approaches have been attempted

to tackle this problem. Assuming every pixel should belong to the same region as

their neighboring pixels, the enforcement can reduce the redundant model numbers

while keeping the segmentation result more continuous [120]. However, the Gaus-

sian model will be flattened if the neighboring pixels are truly belonging to different

distributions. The coordinates of the pixels were taken as additional feature besides

the color and texture [5] for color image classification using GMM with EM. This

approach achieves a more continues region and less over segmentation. However, it

is obvious that the Gaussian distribution is an extremely poor model for the distri-

bution of coordinates. In the symmetric image scenarios, such as head MRI, which is

roughly mirror symmetric, taking coordinates as additional features may lead to false

segmentation. A new version based on the same idea [44], with application on brain
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tissue classification, used a cluster of small Gaussian models to fulfill the complex

shape of a region and for content-dependent segmentation [43]. Thus, the complexity

of the Gaussian model is related with the complexity of the region shape.

Other Model Optimization Methods

The reversible jump MCMC [53, 42] method allows the model number to be

changed (by split and merge) so that it adapts to the complexity of the data set

and is used as a pixel classification method. MDL [90] was applied to gray scale

image segmentation [57] as well as color images [63]. Both MDL and RJMCMC can

balance the complexity of the model and the goodness of fit. Comparing with MCMC,

MDL does not require the simulation procedure.

2.2.2 None Stochastic Methods

Thresholding and Histogram Analysis

Thresholding is a classic, robust and easy implemented method that classify ob-

jects according to their intensity contrast. It is considered naive when dealing with

images when the contrast of an object/background is weak or has large divergence on

spatial distribution. New thresholding methods, focused on using local information,

are still getting published.

The Otsu method [80] applied the idea of maximizing the between class variance

thus the threshold is selected adaptive to the histogram. A new threshold select

criterion combines the within-class variance and intensity contrast is proposed [88].

Adaptive local thresholds [73] was applied on color image segmentations by first

transforming the color image into gray scale, initializing partitioning of the image

using Canny edge detector, and then recursively merging based on the local threshold

determined by the edge strength, intensity, and variance of the pair of the candidate

regions. Histogram multithresholding and fusion [56] was applied to color image

segmentation by segmenting the image based on the histogram of combination of the

color channel (RG, RB, GB). The final segmentation is voted by the result of the
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original segmentation. Fuzzy classification [8] were applied to histogram-based pixel

classifications to bypass the threshold procedure, which can be incorporated with

local information [14]. Mean Shift [25, 24, 27, 23, 26, 22], a cluster algorithm based

on density gradient, has been applied to cell image segmentation and brain tissue

classification [51] supported by edge detection [68]. Including texture features besides

colors, mean shift was also used for content-based image retrieval [81]. A color image

segmentation method, based on the color compactness and subset connectedness [64],

is proposed which takes the spatial connectedness of pixels within the same class into

account. A thorough review of the performance of different kinds of color spaces for

different segmentation algorithm was presented [19].

Color space can be adaptively picked for image segmentation [114] so that the most

descriptive color is picked and combined from a color space bank, which virtually can

contain all kinds of color spaces, until a stop criterion is met. The study of the light

spectrum transformations upon light reflection from material surface helps to segment

images at object boundaries while ignoring the spatial color inhomogeneities [76].

2.2.3 Region Based, Edge Based, and Region/Edge Combined Methods

Region Based Methods

Watershed [7, 112, 116, 66, 6] is a morphology method that considers a gray

scale image in 3D space, where the gray scale is the altitude. Imaging rain is pulled

over the landscape, lakes are going to form. When water surface rises, a dam can

be built or the lakes can be merged. The original watershed method often results

over segmentation and can be used as an initialization method for region clustering

methods [33]. In order to form reasonable segmentation, criterion must be chosen to

merging neighboring regions. The watershed method has also been extended to color

image segmentation.

Seeded region growing (SRG) [1] first manually put seeds or classes in the image,

then the pixels neighboring with seeds were assigned to the same class with the pixels.
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Those with the smallest difference in color have the most priority. Automatic seed

selection and region merging were applied to form more continues regions [36, 100, 45].

The multiresolution genetic clustering method is used for texture segmentation

[58].

Edge Based Methods

Static edge based methods first use edge detectors to find edges based on color

or texture, which are often broken. Then edges are chained to form enclosed regions

(or partially closed). The edge based method is suitable for the images containing

man made objects with sharp edges. Challenges are often faced when the edges are

blurred. Edge detection can combine with region based methods to provide improved

segmentation for man-made objects in high resolution satellite imagery [69]. A re-

view of strategies of combining edge information with region for segmentation was

presented [71].

Active Contour and Level Set Methods

Level set [97, 79] is a contour evolution method based on the shape of the contour

and driven force field. The original level set method solves the partial differential

equal

dφ

dt
+ F | ▽φ |= 0 (2.4)

to find the curve, represented with φt = 0 under a speed field F where φ is the level

set function in which φ < 0 is for the inner side of a region, φ > 0 is for the outer

side of a region, and φ = 0 is for the implicit of the contour of the region. Given an

initialized contour, the force field along the contour and the evolution of the contour

is updated iteratively. It handles the topological change of region nicely. In order

to speed up the calculation, only a narrow band along the contour is updated for

general cases (called narrow band method). If the evolution is always toward outside

or inside, a fast marching method can be applied. The level set method can naturally

handle the topological change of the regions and can also constrain the change by



28

only allowing evolving the simple points [47, 96] on the contour.

Original level set based segmentation methods were available for binary segmenta-

tion: the object and the background. It has been used to segment skull [89] and brain

[4] MRI volumes. Gray scale image gradients in different directions were treated as

feature vectors [92] and segmentation was conducted based on a geodesic active region,

like the level set method [93]. Coupled geodesic active regions [83, 84], which used

the region force and boundary force together, allowed for multiple class segmentation

where the parameter of the classes were predetermined based on histogram analy-

sis. Binary geodesic active regions were extended to multiple regions in [12, 11, 40].

However, the region term during evolution was potentially doing binary competition

(the region itself vs. all the rest) which is basically not fully localized. [52] uses the

Gaussian mixture model in level set for binary segmentation with stochastic active

contour[110, 111] with a perturbation force that reduces the chances to be trapped

in the local minima.

Level set based segmentation can be considered a special case [67] of region com-

petition [124] in which the general form can be described as

E(Ωi, pi, N) =
N∑

i=1

(−

∫

Ωi

LOGO(x | Ωi)DC +
ν

2

∫

Γi

D′s+ λ) (2.5)

where the Ω and Γ are the region and contour, N is the total number of regions, ν

is the weight of contour factor, and λ is the penalty of the number of the segmen-

tation. Thus, multiple regions level set based segmentation becomes possible [13].

The region competition method can be further generalized as a minimum partition

problem [70]. Rooted on the same theory, another approach of multiple regions level

set can be deployed such that the region force is depended on the difference of pixel

color to the region mean [20, 115, 16, 32]. A statistical approach to curve evolution

for image segmentation [2] yields similar result to the region competition method.
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By decoupling the smoothing process from the evolution and using kernel smoothing

instead of curvature, the partial differential calculation can be avoided so that the

speed of segmentation can be increased [99]. After all, one should think again about

how the regularity of shape will increase by paying off the large calculation on PDE

when doing image segmentation and the adaptivity for the complexity of the image

in the point of view of pattern recognition.

Fuzzy and Artificial Neural Network (ANN) Methods

ANN [37] based methods have many applications in the different procedures in im-

age processing and recognition [34]. Its influence on image segmentation is marginal-

ized in the recent years due to the open problems for ANN, such as convergence,

selection of architecture, and over fitting. As an alternative method for other statis-

tical based methods, ANN can do pixel based classification based on training sets.

2.2.4 Model Uncertainty for Stochastic Methods

As for an object detection task (e.g. face detection), the evaluation of image seg-

mentation could be quite objective. However, as a generalized segmentation task,

different people may come up with different solutions due to their personal definition,

experience, and preference of objects and details. This model uncertainty is widely

ignored in the research of image segmentation where each proposed an energy func-

tion and the unique solution was found by exploring the function surface to find the

global minimal that is usually not guaranteed. Do we have a golden rule to find (de-

fine) the unique solution as the best segmentation, among all the published methods

or even within one method with different settings? How predictive and selective of

such a golden rule if ever exists? The answer turns to be probabilistic: some regions

are segmented with higher probability when people have less arguments about claim-

ing it as a separate region, while other regions are segmented with less probability

when people have diverse opinions for it. Moreover, even the contours of the same

region drawn by different people could be different which turns the contours’ positions
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themselves to be probabilistic.

The ideal solution could be formed by asking a group of people to draw the con-

tours of the same image on a transparent paper, then overlap them together to form

an average contour. Our approach mimics the same process to achieve a probabilistic

solution for image segmentation. We first initialize the image into multiple partitions

(agents) in which each is described by one Gaussian model or a Gaussian mixture

model. The agents then do stochastic contour evolution driven by the region restricted

EM algorithm (RREM)[59], which is based on a modified level set flavored method

with efficiency and regularity[99, 97]. Each pixel counts the number of times of being

taken as a contour pixel weighted by the contrast of neighboring regions to form the

contour confidence map. The image is then partitioned hierarchically according to

the average contour. In this way, the dummy performance of the individual agents is

tolerated and convergence is not strictly required.

People have long been aware of the localized optimization of segmentation due to

the estimation of the numerical model and the dependency of initial conditions, both

numerically and spatially. Yet, only half of the problem has been seriously addressed.

The split and merge operation was applied on the numerical model optimization in

order to escape from the local maxima and different criteria have been developed to

evaluate the goodness of fit. As to the problem of dependency on initial spatial con-

ditions, people were focused on finding the optimized initial position/size which will

result in an optimized resolution. However, no applauded result has been presented

in this aspect. Here are the major reasons to cause the effort of finding an optimized

position/size fruitless: Firstly, the deterministic relationship between an initial con-

dition and the result from a stochastic process has not been realized yet. Secondly, if

the initial conditions are allowed to be stochastic, how to generate the optimal result

from the set of possible solutions needs to be addressed.

We treat the image segmentation as a probabilistic problem and the model’s un-
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certainty is respected. The method is not focusing on finding the unique best confor-

mation of segmentation directly based on any energy function, but constructing the

conformation by finding the average conformation from the contour confidence map

- a collection of segmentation candidates where the converged contours have higher

weights. The RREM is a stochastic process in which contour evolution and model

optimization is alternatively driven by each other under the framework of EM algo-

rithm coupled by a curvature smoothing function. The pixel coordinate information

was taken implicitly and the Gaussian model in the feature space was better pro-

tected. The split and merge operation were applied both numerically and spatially

to decrease the chances of being trapped in the local minima and the dependency on

the initial conditions. The presented algorithm not only inherits the good character

from the GMM based methods such as good performance on noisy data, but also

tolerates the imperfection of similarity measurement and initial conditions. A hier-

archical tree of segmentation based on the average contour was developed and the

optimized segmentation is formed by truncating the tree based on the increment of

dissimilarity.

2.3 Our Stochastic Contour Approach

The workflow is presented in Fig. 3 with each step discussed in detail later on.

The images are resized to 480×320 (or 320×480) pixels without changing the layout

style. The system first extracts the color and texture features from an image, then

it will do the split/evolve/merge cycle 12 times. The contour evolves 320 times in

each cycle, each time the contour pixel can move 1 pixel distance. The numbers of 12

and 320 are picked large enough to reach convergence. The contour confidence map

is formed during contour evolution. A hierarchical tree is built based on the contour

confidence map and truncated to form the final segmentation.
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Contour evolution
x 320

Image (color + texture)

Build tree (construct base region)

Truncate tree (segmentation result)

Contour confidence map
Split

Merge

x12

Figure 3: Workflow chart.

2.3.1 Region Restricted EM Algorithm

Let I be the input image, Ix be the color (e.g. the RGB channel and can be

extended to texture features) of a pixel in position x,x ∈ R while R is the collection

of all the pixels coordinates in the image, R. Suppose the image is partitioned into

M non-overlapped regions {Ri}, i = 1, 2, · · · ,M , R = ∪M
i=1Ri, Ri ∩ Rj = ∅ if i 6= j.

Assuming each segmentation is a homogeneous region corrupted by Gaussian noise,

one Gaussian model is used to describe the region N (i)(µi,Σi), 1 ≤ i ≤ M , where

the µi and Σi are respectively the mean and the covariance matrix of the Gaussian

model, which are also denoted as θi.

We define a binary level set function φi(x) for each region Ri over the whole

image such that all the pixels inside of the region Ri are assigned −1 while the rest

are assigned 1.

φi(x) =





1 x /∈ Ri

−1 x ∈ Ri

i ∈ {1, · · · ,M} (2.6)

Let Li
in be the set of inner contour pixels of region Ri and Li

out be the outer contour

pixels of region Ri with D(x,y) be the Euclidean distance ‖x−y‖ between two pixels
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x and y, Li
in = {x ∈ Ri|∃y /∈ Ri ∧D(x,y) = 1}, Li

out = {x ∈ Rj |∃y ∈ Ri ∧D(x,y) =

1 ∧ j 6= i}, i ∈ {1, · · · ,M}. We denote the index of the region in which a given pixel

of coordinate x lies in as R(x) and the set of indices of regions neighboring to x as

NR(x) = {i ∈ {1, · · · ,M}|i 6= R(x) ∧ x ∈ Li
out}.

The traditionally EM algorithm treats image segmentation as a pixel labeling

process. Given the input image I, the complete data set Z = (I,Y) consists of

the sample set I and the set Y of variables indicating from which component of the

mixtures the sample came. EM algorithm consists of an E-step and a M-step in each

iteration. Let Θt be the set of parameters of the mixture models at iteration t. At

t+ 1 iteration, the E-step computes the expected complete data log-likelihood

Q(Θ|Θ(t)) =
∑

∀x∈R

M∑

m=1

logπmp(Ix|θm)P (m|Ix; Θ
(t)) (2.7)

where the πm ∈ (0; 1)(∀m = 1, 2, · · · ,M) are the mixed proportions subject to

ΣM
m=1πm = 1. For the Gaussian mixtures, the conditional probability p(Ix|θm) is a

normal probability distribution

p(Ix|θm) =
1

(2π)n/2|Σm|
1/2
e−

1
2
(Ix−µm)T Σ−1

m (Ix−µm) (2.8)

where T denotes the transpose operation, µm and Σm are the mean and convariant

matrix of the Gaussian model θm. We denote this standard form as N (Ix|θm). The

P (m|Ix; Θ
(t)) =

π
(t)
m p(Ix|θ

(t)
m )

ΣM
i=1π

(t)
i p(Ix|θ

(t)
i )

(2.9)

is the posterior probability of the mixture Gaussian model. The M-step finds the Θ

maximizing Q(Θ|Θ(t)) where ∂Q
∂θ

= 0. Thus, we get

π(t+1)
m =

1

| R |

∑

∀x∈R

P (m|Ix; Θ
(t)), (2.10)
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µ(t+1)
m =

∑
∀x∈R IxP (m|Ix; Θ(t))∑
∀x∈R P (m|Ix; Θ(t))

, (2.11)

Σ(t+1)
m =

∑

∀x∈R

P (m|Ix; Θ
(t))(Ix − µ

(t+1)
m )(Ix − µ

(t+1)
m )T

∑
∀x∈R P (m|Ix; Θ(t))

. (2.12)

Here we apply the region restriction

p(Ix|θm) =





0 x /∈ (Rm ∪ Lm
out) ∨ |Rm| < δ

N (Ix|θm) x ∈ (Rm ∪ Lm
out) ∧ |Rm| ≥ δ

(2.13)

where δ = 500pixel denotes the threshold of minimum area. It clearly states that a

Gaussian model θm can only predict probability of observing the pixel Ix, which is

located within the region Rm or on the outer contour of Rm when the region area is

larger than the minimum area. It predicts 0 probability otherwise. Carry Eq.(2.13)

into Eq.(2.9), the posterior probability is now

P (m|Ix; Θ
(t)) =





0 x /∈ (Rm ∪ Lm
out) ∨ |Rm| < δ

1 x ∈ (Rm − L
m
in) ∧ |Rm| ≥ δ

p(Ix|θ
(t)
m )

p(Ix|θ
(t)
m )+

P

∀l∈NR(x) p(Ix|θ
(t)
l

)
x ∈ Lm

in ∪ L
m
out ∧ |Rm| ≥ δ.

(2.14)

.

The first two lines in Eq.(2.14) are the basic idea implied in the other localized

models [67, 12, 11, 40] saying that only the pixels within a region can inference the

region itself. The third line in Eq.(2.14) says the contour pixels can inference the

neighboring regions. It roots on the core value of the normal EM algorithm that each

element is partially belonging to all the clusters which makes EM algorithm differ

from a K-means algorithm. It sets up the fundamental rule of how the contour can

be evolved by relabeling the contour pixels which will be discussed in detail later on.

It also implies that all the regions are “equally important” despite their area. Taking
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the region restriction into usual EM, the M-step turns to

π(t+1)
m =

1

M
(2.15)

µ(t+1)
m ≈

∑
∀x∈Rm

Ix

|Rm|
(2.16)

Σ(t+1)
m ≈

∑
∀x∈Rm

{(Ix − µ
(t+1)
m )(Ix − µ

(t+1)
m )T}

|Rm|
(2.17)

if |Rm| ≫ |L
m
in + Lm

out|. Thus, with region restriction, Θ is updated in M-step with

the pixels of each region followed by the relabel of the contour pixels with Θ in each

iteration. A region with too small samples has little statistical power and may achieve

a pure color which further causes difficulty in probability density calculations. Thus,

a region less than “minimum area” δ must die, which means its contour pixels will

always be labeled as its neighbor in the next iteration.

The RREM holds for the case that a region is described by a mixture of Gaussian

models, in which another EM is coupled with the RREM to estimate the GMMs

within a region. More detail will be given on how to associate the region restricted

EM with the level set method.

2.3.2 Stochastic Contour Evolution

The original level set method solves the PDE dφ
dt

+ F |▽φ|= 0 to find the curve

under a speed field F which is represented with φt = 0. φ is the level set function

where φ < 0 is for the inner side of a region, φ > 0 is for the outer side, and φ = 0 is for

the implicit of the contour of the region. Geodesic region based methods[93, 92, 83, 84]

use single Gaussian for each region estimated from histogram analysis and [52] extends

to multi-Gaussian for binary segmentation with stochastic perturbation. We proved

that the evolution of the contour driven by multi-Gaussian models can be treated as

if driven by a single Gaussian as shown in Appendix A.

The fast curve evolution algorithm[99] decouples the smoothness regulation from
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curve evolution and solving PDE is no longer needed for the purpose of segmentation.

We extend the algorithm to multi-region, stochastic evolution under the framework of

EM. Fig. 4 shows the joint of three neighboring regions R1, R2 and R3. Let’s consider

A B C

D E F

G H I

J K L

R1 R2

R3

Figure 4: Enclosure sets of a joint of three regions.

the simplest two point case {A,B} where A ∈ L2
out∧B ∈ L

1
out∧D(A,B) = 1. Without

causing confusion, P (k|Ix; Θ), k ∈ {1, 2},x ∈ {A,B},Θ = {θ1, θ2} will be donated as

Pk|X in short. The following equation, with the probability sum up to 1 according to

Eq.(2.14), implies 1 = P1|A + P2|A = P1|B + P2|B.

1 = P1|AP1|B︸ ︷︷ ︸
L1

out expand on B

+ P2|AP2|B︸ ︷︷ ︸
L2

out expand on A

+ P1|AP2|B︸ ︷︷ ︸
no movement

+P2|AP1|B︸ ︷︷ ︸
illegal state

(2.18)

The last state is illegal considering only one direction can be taken with any pair

of neighboring pixels (which uniquely defines the evolution of level set φ = 0 in

between[99]). Taking Eq.(2.14), the illegal state can be re-arranged as P2|AP1|B =

(1− P1|A)(1− P2|B) and the above equation can be rewritten as

1 =
P1|A

P1|A + P2|B
(P1|B + P2|B)

︸ ︷︷ ︸
B choices

+
P2|B

P1|A + P2|B
(P1|A + P2|A)

︸ ︷︷ ︸
A choices

, (2.19)
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or equally

1 =

1
P2|B

1
P1|A

+ 1
P2|B

(P1|B + P2|B)

︸ ︷︷ ︸
B choices

+

1
P1|A

1
P1|A

+ 1
P2|B

(P2|A + P1|A)

︸ ︷︷ ︸
A choices

. (2.20)

The right hand is composed of all the legal evolution states presented in respect of the

alternative evolution of R1 and R2. The B choices are the possibility of B taken over

by R1 or no change when considering expansion of R1. It is clear that the probability

of operation on point B is proportional to P1|A or equivalently reverse proportional

to P2|B. Similar explanation applies to A choices.

The probability of operation on {A,B} does not depend on any other pixels and we

define such a set as an enclosure set S(x) = {y|∃z ∈ S(x)∧D(y, z) = 1∧R(z) 6= R(y)}

given point x. This set can be populated recursively by any given point y ∈ S(x).

The other two enclosure sets are {G,J} and {D,E,H, I,K,L}. Without causing

confusion, an enclosure set is also donated as S in general. All operations about the

points within an enclosure set have conjugated possibilities with each other and only

one point will be operated (change or not change its label) in one evolution step. In

practice, points far away from each other are allowed to evolve at the same time to

increase efficiency.

A general formula is given in Eq.(2.21) which holds for all elements in any enclosure

set S

1 =
∑

∀x∈S

1
P (R(x)|Ix,Θ)∑

∀y∈S
1

P (R(y)|Iy ,Θ)︸ ︷︷ ︸
Ppixel considered

(P (R(x)|Ix,Θ)︸ ︷︷ ︸
Pno change

+
∑

∀l∈NR(x)

P (l|Ix,Θ)︸ ︷︷ ︸
Plibrate by a neighbor

) (2.21)

with justification provided in Appendix B. The stochastic selection of operation on

the contour pixels of an enclosure set S when considering evolution of region Rm is

shown in pseudocode as follows:
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Algorithm 1 StochasticEvolution

for all xi ∈ S do

pi ←
1

P (R(xi)|Ixi
,Θ)

P

∀y∈S
1

P (R(y)|Iy,Θ)

end for
randomly pick i in respect of the distribution of pi

if xi ∈ Lm
out then

randomly pick l in respect of the distribution of P (l|Ixi
; Θ), l ∈ {R(xi), NR(xi)}

if l = m then
point xi will be taken by Rm, exit.

end if
end if
no operation for S, exit.

(a) (b)

Figure 5: Smoothing of contour is a necessary process. (a) Sponge like structure devel-
oped in 5 steps of evolution without smoothing. (b) Sponge like structure suppressed
in 100 steps of evolution with smoothing.

A smoothing process must be coupled with the contour evolution in order to keep

the contour smooth and regular. It suppresses the sponge like structure that might

develop along the contour which will cause further evolution practically impossible.

A 3 × 3 median filter along the contour was applied. Fig. 2.5(a) shows the sponge

like structure developed along the contour in 5 iteration of evolution on an image of

white noise which causes further evolution practically impossible. Fig. 2.5(b) shows

that the contour is thin and smoothing after 100 iteration of evolution. The presented

smoothing method efficiently suppress the developing of a sponge like structure.
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In order to confront the dependency on sequential selection of regions, the contour

evolution and smoothing are always carried out in paired runs. With symbolic label

for each region, the region was picked to evolve in the ascending order according to

their labels, which occurred also for the smoothing. The next run is in the descending

order so that no region has any priority to its neighboring regions because of the

sequence of being selected. Furthermore, the pixel of the contour of a region is also

picked in a random order so that the process is not biased on the sequential order of

the contour pixels.

2.3.3 Feature Selection

The distribution of the dissimilarity increment [39] of the samples generated by a

variety of different stochastic processes have been observed following the exponential

distribution. Given xi ∈ X, where xi is any arbitrary element of a set of patterns

X and some dissimilarity measure, d(., .) between patterns, (xi, xj , xk) is the triplet

of nearest neighbors, which is obtained as follows: xj : j = arg minl{d(xl, xi), l 6=

i}; xk : k = arg minl{d(xl, xj), l 6= i, l 6= j}. The dissimilarity increment between the

neighboring patterns is defined as dinc(xi, xj , xk) = |d(xi, xj)−d(xj , xk)| which can be

seen as the first derivative of the dissimilarity function at the first point of the ordered

list of neighboring samples. Assuming the pixels perceived by the digital camera are

corrupted by certain stochastic process, we now measure the dissimilarity increment

of each pixel on the 2D space with their neighbors and find that this dissimilarity

increment still follows the exponential distribution as shown in Fig.6. The minimum

dissimilarity increment in Fig.2.6(b) represents the texture of a material. According

to the central limit theorem, we replace the pixel value in Fig.2.6(b) with the mean

value of its neighbors within a small window and the distribution turns to be Gaussian.

Thus, we can use Gaussian model to describe the texture along with the RGB color

features. Based on our observation, this combination of texture-color feature has

balanced performance on both color-dominant and texture-dominant images.
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(a) (b)
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Figure 6: Minimum dissimilarity increment represents texture. (a) Original image.
(b) Minimum dissimilarity increment. (c) Exponential distribution of minimum dis-
similarity increment.

The exponential distribution was also observed in the similarity measure during

the merging process which we will describe in detail later.

2.3.4 Measure of Similarity

The earth mover algorithm [60] was originally applied on histogram similarity

analysis in which one histogram is transformed into the other by moving the extra

height of a bin so that the effort of the transform is minimized. We apply this

algorithm on the similarity measure among two groups of GMMs EMD(Θ,Θ′) =

EMD(DM(Θ,Θ′)) where Θ = {θ1, · · · θi} and Θ′ = {θ′1, · · · θ
′
j} are two Gaussian

mixtures. The

DM =




SMD(θ1, θ
′
1) · · · SMD(θi, θ

′
1)

...
. . .

...

SMD(θ1, θ
′
j) · · · SMD(θi, θj)




(2.22)

is the distance matrix between two single Gaussian model provided for the earth mover

distance algorithm calculated by symmetric Mahalanobis distance SMD(θ, θ′) =

MD(θ,θ′)+MD(θ′,θ)
2

where MD(θ, θ′) =
√

(µ− µ′)T Σ′−1(µ− µ′) is the Mahalanobis dis-

tance from the mean value of Gaussian model θ(µ) to Gaussian model θ′(µ′), where

Σ′ is the covariance matrix of Gaussian model θ′.
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Our defined measurement of distance is positive, symmetric, and yields a mea-

surement of zero if the GMMs in the two groups are identical. EMD distance reduces

to symmetric Mahalanobis distance SMD when single Gaussian is used.

2.3.5 Split and Merge

The GMMs get updated while the contours evolve. The split and merge operation

provides chances for individuals to jump out of the local minima from the conforma-

tion of the contour of previous state and meanwhile inherits the already converged

contour in some degree. Initialized with square partition, the split and merge oper-

ation reduces the dependence on the initial condition to the minimum. We follow

the protocol in [122] for the numerical split and merge. In a certain interval, we will

partition one region into multiple regions and the models will be updated for each

newly created region. This split operation on physical space is a must step even for

the cases that the single Gaussian model was used for each region where numerical

split was no longer needed.

Using the EMD as distance function, we observe the exponential distribution

of the similarity measurement among the possible neighboring regions that can be

merged. The criterion of threshold of merge operation can be set based on the mean

value of the exponential distribution which is adaptive to the distribution itself. It

can be done by executing the Merge algorithm twice: First run Merge(−1) to do

a “test merge” that will collect the similarity measurement during merge operation

and find the threshold to be two times of the average similarity. Secondly, run

Merge(threshold) to do the merge that their similarities are less than the threshold.

The Cx denotes the cluster of regions, C is the set of clusters, PQ is the priority

queue that stores a pair of clusters sorted on cluster similarity SC in ascending order,

SimArray is the array of cluster similarity value, NC(Cx) is the set of clusters that is

neighbors with Cx but does not overlap. The similarity measurement among clusters
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Algorithm 2 Merge(threshold)

for all i ∈ {1, · · · ,M} do
Ci ← Ri,C← C ∪ Ci

end for
for all i ∈ {1, · · · ,M} do

for all Cj ∈ NC(Ci) ∧ i < j do
PQ← PQ ∪ {{Ci, Cj}, SC(Ci, Cj)}

end for
end for
while |PQ| > 1 do
{{Ci, Cj}, SC(Ci, Cj)} ← PQ.top
PQ← PQ− PQ.top
if ({Ci ∪ Cj}  ) then
Ck ← Ci ∪ Cj

SimArray ← SimArray ∪ SC(Ci, Cj)
for all Cl ∈ NC(Ck) do
PQ← PQ ∪ {{Ck, Cl}, SC(Ck, Cl)}

end for
C← C ∪ Ck

end if
end while
threshold = 2

P

SimArray
|SimArray|
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was defined as

SC(C1, C2) =

∑

∀R′∈M(R)∧R′∈C2

(EMD(R,R′)× |L(R,R′)|)

∑

∀R∈C1

∑

∀R′∈M(R)∧R′∈C2

|L(R,R′)|
(2.23)

where C1, C2 are two clusters, M(R) is the set of all neighboring regions of region

R, |L(R,R′)| is the length of the contour between a pair of neighboring regions. The

Dedge(Ci, Cj) is true if the mean of the contour pixel is larger than two times the

mean of that region on the edge map for both regions (clusters), false otherwise. An

edge map was generated based on the average of the first derivative of each pixel as

shown in Fig.2.7(b). The Gaussian model of the merged region is estimated based on

the Gaussian models that this region merged from.

2.3.6 Average Contour and Hierarchical Segmentation

We count the times of each pixel being labeled as a contour pixel during evolu-

tion. This counter is further weighted by the contrast measured in the normalized

distance in the feature space between the two regions sharing the certain piece of

contour. After 12 rounds of split/evolve/merge operation, we have a contour confi-

dence map as shown in Fig.2.7(c). The brighter the pixel is, the higher probability

of being a contour pixel. Scaling the intensity to [0, 255], a multiple thresholding

{128, 96, 80, 64, 56, 48, 40, 32} was applied from high intensity to low intensity. Since

the distribution of intensity is exponential, the thresholding interval is smaller for

smaller intensity. A connected component labeling was taken at each threshold, until

new regions formed, based on the previous partitions. The newly formed regions are

treated recursively until no new region forms at the last threshold(32). The thick

contour was eliminated by growing the region edge pixels having the lowest contour

confidence value until regions with different labels meet. A region with area less than

a threshold was painted as a contour with the minimum contour confidence value the
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(a) Original image (b) Edge map

(c) Contour confidence map (d) Base segmentation
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(e) Histogram of increment of dissimilar-
ity

(f) Hierarchical tree

(g) Hierarchical tree after truncation
(h) Segmentation result

Figure 7: Average contour and hierarchical segmentation.
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region edge once had. It was later eliminated as the thick contour by other regions.

In this way, the base regions were formed, as shown in Fig. 2.7(d), where the hotter

color of contour shows the higher probability of that piece of line being chosen as a

contour. The number of the base regions is denoted as Mb.

It is straightforward to define the segmentation as the regions enclosed by brighter

contour which can result in a hierarchical structure. However, finding the regions

enclosed by contour having the largest average intensity (or second largest, third

and so on) can be represented as the traveling salesman problem, which is NP-

hard. We use the greedy algorithm to build the hierarchical partition, shown in

BuildTreeFromNode(C). The result of the hierarchical partition is shown in Fig. 2.7(f).

Algorithm 3 BuildTreeFromNode(C)

while |C| > 1 do
sort contour within C according to the descending order of their intensity in
priority queue
pop the priority queue until the C is partitioned into {C1, C2}s.t.C1 ∪ C2 = C
C← {C1, C2}
dist← the intensity value of the last piece of contour that partition C
Cd

1 ← dist,Cd
2 ← dist

BuildTreeFromNode(C1), BuildTreeFromNode(C2)
end while

It is a bottom-up tree with roots on the top and leaves underneath. The image has

53 base regions, alternatively displayed in black and white in the second row. By

dropping a vertical line from each of them, it can be found where the base segmen-

tation belongs to in the different levels of partitioning. The white horizontal line

represents the node (due to the resolution of the image, some nodes close to each

other may not be displayed) and its vertical position represents the shortest distance

between its neighboring node that forms its parent node (root has a dummy value).

The alternative color of blue and green represents the branching of a node. The nodes

are the segmentation with different probability. The distance between one node and

its children is the minimum dissimilarity. The minimum dissimilarity between nodes
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follows the exponential distribution, as shown in Fig.2.7(e). Obviously, the higher the

node is, the more probable it is to be selected as a segmentation. It is a reasonable,

yet brutal way, to truncate the tree at a certain level such that those having lower

probability will merge together.

We apply the classification based on the exponential distribution of the minimum

dissimilarity in an adaptive and more conservative way that the branch of a tree is

truncated at different levels so that the regions separated by less confident contours are

merged. The algorithm of truncation is shown in Appendix C given the tree obtained

previously. First, take the exponential distribution of the minimum dissimilarity {Cd
. }

obtained during the tree construction, record the mean multiplied by 2 as truncation

threshold TT . Do depth first iteration from the leaves of the tree: if the distance

between the current node and the nearest of the deepest bottome leaf of any subnode

is larger than the threshold TT , the current subnodes are partitioned into different

regions and the current node is then marked as NodehasCut; If any subnodes contains

NodehasCut, the subnodes in the current node is treated partitioned (they can’t merge

with each other into one region).

The truncated tree is shown in Fig. 2.7(g). The top row (colored orange and

blue alternatively) shows that there are 14 final truncated segmentations containing

different numbers of base regions. From left to right labeling from [0, 11], the result

of segmentation is shown in Fig. 2.7(h) accordingly.

More examples of segmentation based on the average contour via hierarchical tree

is shown in Fig. 8, Fig. 9 and Fig. 10.

2.4 3D MRI Brain Segmentation

Brain tissue segmentation and classification, especially the white matter, gray

matter, and cerebrospinal fluid, are of major interest in numerous applications such

as diagnosis and surgical planning. This task remains a challenge due to the facts

that: (1) There may lack a clear edge between adjacent tissues; (2) The intensity of
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(a)

(b)

(c)

(d)

(e)

Figure 8: Average contour and hierarchical segmentation. (a) the original images, (b)
the contour confidence map, (c) the base segmentation, (d) the truncated hierarchical
tree, (e) the final segmentation results.
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(a)

(b)

(c)

(d)

(e)

Figure 9: Average contour and hierarchical segmentation. (a) the original images, (b)
the contour confidence map, (c) the base segmentation, (d) the truncated hierarchical
tree, (e) the final segmentation results.
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(a)

(b)

(c)

(d)

(e)

Figure 10: Average contour and hierarchical segmentation. (a) the original images,
(b) the contour confidence map, (c) the base segmentation, (d) the truncated hierar-
chical tree, (e) the final segmentation results.
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(a) First self-registration (b) Second self-
registration

Figure 11: Normalize head image by self-registration.

the same tissue may vary in different locations; (3) The image may be noisy. We

apply the stochastic contour evolution algorithm on 3D image.

2.4.1 Preprocess: Normalization by Self-registration

The 3D brain image is first normalized by doing self-registration two times. Firstly,

the original image is named as A and its mirror image by the yz plane (midsagittal

plane) as A′. The homogeneous transformation matrix Σ1 can be found by registering

A′ to A as A = Σ1A
′. The square root of the homogeneous transformation matrix will

set the head straight along the midsagittal plane B = Σ
1
2
1A

′ and the image is named

as B. This process is shown in Figure2.11(a). Although there is no strict mirror

plane exist perpendicular to the y axis, we do another self-registration as shown in

Figure2.11(b) where only translation along with z or y axis and rotation along with

x axis is allowed. Similarly, B = Σ2B
′ ⇒ C = Σ

1
2
2B

′, where B′ is the mirror image

of B, Σ2 is the homogeneous transformation matrix and C is the final normalized

image. By doing the second self-registration, the head image can be set straight in

the middle.

2.4.2 Compact Configuration Analysis For Smoothing

Smoothing operation is important during evolution to eliminate sponge-like struc-

tures. Although using a window function to smooth the contour is affordable in 2D

image, the calculation increases drastically when the image dimensions go to 3. The

compact configuration analysis iterates on every contour voxels of all the regions and

decides whether the current voxel needs to be replaced by its alien neighbors based
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on scanning the 6 neighboring voxels such that the shape of the region turns to be

more compact. We use 6 bits to code the label of neighboring voxels for a given voxel,

0 if they are of the same label, and 1 for the different label. Among the 64 possible

combinations, there exists 5 types of configurations each having 12, 3, 12, 6, and 1

kinds of orientations which can be derived from the given configuration by rotation

transmission along the x, y, z axis and by the mirror plane symmetry operation along

the xy, yz and xz planes. By using the compact analysis, a decision (replace the cur-

rent voxel or not) can be made in an early stage just by reading the configuration

of its 6 neighbors in many cases. Unlike the window based smoothing method, the

compact configuration analysis method does not force a cube to gradually reduce into

a sphere and finally to a point. It emphasis that if a voxel should exist, it must have

a strong connection to the neighbors of its own kind.

2.4.3 Experimental Results

For each region, the volume, statistic of intensity and coordinates, compact-

ness (SurfaceArea/volume) and the connection strength with the neighboring regions

(
|Li

out

T

Rj |

|Li
out|

) were extracted as inputs of a fuzzy rule based classifier to finally group

the segmentation of the same tissue into a whole region.

The rule is based on the observation that the white matter has higher intensity

than gray matter and forms one connected region. The gray matter has higher in-

tensity than the cerebrospinal fluid and is vacant. The other tissues, such as the

skull, skin, and muscle, are called other materials which we do not intend to segment.

The other materials are resides on the outside of the image volume which should not

connect with the white matter or the connection strength should be extremely weak.

A segment of white matter often has weaker connection strength to the neighboring

whiter matter than to the neighboring gray matter. A segment of gray matter often

has weaker connection strength to the neighboring gray matter than to the neigh-

boring white matter. A segment of white matter often has a smaller difference of
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(a) A slice of pseudo image (b) Segmentation of pseudo image

Figure 12: Flow chart of brain tissue segmentation and the segmentation of pseudo
image composed of 6 Gaussians.

intensity to the neighboring white matter than to the neighboring gray matter. A

segment of gray matter often has a smaller difference of intensity to the neighboring

gray matter than to the neighboring white matter. The gray matter is less compact

than the white matter.

The classifier first recognizes the “most surely” regions (e.g. the large chunk of

white matter) and then labels the neighboring unknown regions based on the known

until all the segments are labeled.

We construct a pseudo image of 6 segmentation which form one cube and four

spheres attached to the diagonal point of the cube. The Gaussian distributions are

(150 ± 30), (50 ± 10), (200 ± 40), (100 ± 20), (240 ± 50). One piece of the original

image and the segmentation results based on the RREM algorithm are shown in

Figure2.12(a) and Figure2.12(b).

The more different the neighboring regions are, the smoother the contour in be-

tween will be.

The RREM was tested using the simulated phantoms from BrainWeb (http:

//www.bic.mni.mcgill.ca/brainweb/) which has the isotropic voxel size of 1mm,
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(a) Segmentation of white matter

(b) Segmentation of gray matter

Figure 13: The axial, coronal and sagittal view of the segmentation of the white
matter and the gray matter.

20% spatial inhomogeneity, and various noise levels from 1 to 9%. The reason we use

the simulated phantoms as a testing bed is because its ground truth is well set and

the results can be compared with already reported methods.

Figure 13 shows the segmentation of the simulated phantom with voxel size of

1mm, 7% noise level and 20% spatial inhomogeneity. Figure 14 shows a cutting slice

of the segmentation displayed in Figure 17. The segmentation results were evaluated

using the Tanimoto coefficient, T (X, Y ) = |X
T

Y |
|X

S

Y |
which both measures the overlap

between two segmentations as shown in Figure 15. Let X be the ground truth and Y

be the segmentation, then the bottom column is the Tanimoto coefficient, the medium

column is |Y −(Y
T

X)|
|X

S

Y |
and the top column is |X−(Y

T

X)|
|X

S

Y |
.

The Tanimoto coefficient of white matter and gray matter fluctuates at low noise

level showing the fact that the Gaussian based statistical model is strong with noisy

data and the performance decreases when the data has less noise.
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Figure 14: Slice view of the original image (left), the ground truth (middle) and the
segmentation using RREM algorithm (right).

2.5 Algorithm Evaluation and Benchmark

The convergence of the stochastic contour is shown in Fig. 2.16(a) which takes

100 images, each taking 14 cycles of split/evolution/merge. Data was collected each

cycle and the mean of the difference of the contour confidence map with the previous

was plotted. The vertical line shows the standard deviation among 100 images.

We compare the stochastic contour method with normalized cut[98], JSEG[31],

mean shift[25], seeded region growing[100] method. The CPU time of each method

is shown in Fig. 2.16(b) where JSEG, meanshift, and SRG are completed within

seconds, NCut completes within one minute with huge memory consumed, and the

stochastic contour approach completes within minutes on an Intel Core2 Quad CPU

Q6600 2.40GHz. The results are shown in Fig. 17 and Fig. 18. More results of the

presented method are shown in Fig. 19, Fig. 20 and Fig. 21.

People share the common consensus at this moment that there is no generic seg-
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(a) White matter

(b) gray matter

Figure 15: The segmentation result of white matter and gray matter with 1%, 3%,
5%, 7%, 9% noise level and 20% spatial inhomogeneity.
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Figure 16: Convergence of the contour confidence map and comparison of CPU time
of different methods.

mentation method good enough for a generic image segmentation task. Prior domain

knowledge is always helpful for a specific task. We carry out the experiment without

considering any prior knowledge to reveal the essential characteristic of each method.

Based on all the experimental results, the normalized cut is the most aggressive

method to fetch an object as one whole region while taking both the risks of not

finding the object and only segment an object partially. The chances of successfully

segment a region is fairly low using normalized cut while the over segmentation is the

minimum. Both stochastic contour and JSEG have balanced performance on integrity

and detail. Stochastic contour has less over segmentation comparing to JSEG. The

edge region emits an extra strong signal in a texture feature which will mislead the

prediction of the Gaussian model when both color and texture feature are contained

in the Gaussian model. Thus in the color-dominant images, the stochastic contour

method may fit the object’s edge less accurately. This phenomenon was also observed

in the other texture based segmentation methods. Both seeded region and mean shift

have better performance only on “simple” images where classification and alignment

of pixels are less challenging. The mean shift is a robust method but the ignorance

of how pixels physically align on an image can cause fatal mistakes in many cases.

Due to the lack of efficient goodness of fit algorithm in seeded region growing and
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Figure 17: Experimental results comparing with other methods. From top to bottom:
original images, our method, JSEG, SRG, meanshift, NCut.
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Figure 18: Experimental results comparing with other methods. From top to bottom:
original images, our method, JSEG, SRG, meanshift, NCut.
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Figure 19: Segmentation results of stochastic contour method.
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Figure 20: Segmentation results of stochastic contour method.
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Figure 21: Segmentation results of stochastic method.
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meanshift methods, their performance highly depends on the tuning of parameters

without any adaptivity for diverged image complexity.

Our presented method outperforms the compared methods mainly because we are

using a stochastic algorithm to mimic a non-deterministic process. Many so called

stochastic methods in image segmentation are actually deterministic methods using

probability functions, in which cases, winner takes all and the solution is unique.

In those cases, the accuracy and stability of the average segmentation has never

been appreciated as it should be. Considering the segmentation process as a time

sequential process, the “winner takes all” in an early stage will certainly limit the

chances of probing the less possible cases which may lead to higher probability cases

in the following stages. The stochastic contour method improves in two aspects: (1)

Less dependent on initial conditions. (2) Less dependent on convergence.

We accept the fact that a segmentation exists with probability which can be

represented by the average contour. As a result, the segmentation should no longer

be treated as a unique configuration. The result is represented in a hierarchical tree.

It can be a direct gain from this hierarchical segmentation in the cases that the

truncation is not perfect, we often can pick up the object in the subtree or in the

upper nodes.

The segmentation criterion based on the exponential distribution of incremental

dissimilarity also presents its efficiency such that the over segmentation is largely

reduced while the important parts are preserved. Since there is no training process

involved, the stochastic contour approach is a generalized segmentation method that

can be applied in many different applications, such as 3D medical image segmentation,

with minimum modification.

The main drawback of the stochastic contour method is its low efficiency compar-

ing to the most of the deterministic methods.
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2.6 Conclusion and Discussion

By modeling the image segmentation process as a stochastic process, the pat-

tern recognition and image segmentation are evolutionarily driven by each other. A

stochastic contour was used to record the footage of the constantly moving contour

while the average contour represents the correct contour position with the highest

probability. The split and merge operation was done both numerically and spatially

to minimize the chances of being trapped in the local maxima. The segmentation

is stored in a hierarchical tree. By truncating the tree based on the dissimilarity

increment the best estimated segmentation can be reached. The presented method

is able to couple with other stochastic contour moving algorithms or a deterministic

method with slow or unpredictable convergence. Overall, the segmentation result is

no longer a unique snapshoot of a certain process, it is constructed with confidence.



CHAPTER 3: INTERESTING REGION DETECTION

3.1 Introduction

With tireless effort to improve the performance of the image segmentation, one

can hardly achieve a subject level segmentation for the customer photo with unlimited

topics. Even if one is lucky enough to segment the subject successfully occasionally,

the system won’t be able to tell if the segmentation is the subject or the background.

Thus, we need a higher level classifier upon the segmentation process to predict which

parts are the subject and which are the background. At this level, a binary classifier

will separate the background from the foreground and the foreground is called the

interesting region. The interesting region may contain multiple subjects that the

photographer wants to show us most. Features based on the interesting region removes

the contamination from the background and the quality of the representation of an

image can be improved.

The customer photo has no limits to the content and people tend to shot pictures

for the rare and exciting scene. This arises the concern of the complexity of the

common interests among different people. By browsing a family photo album or a

photo repository collected from a group of photographers, it clearly shows that there

are common interests for an individual in a period of time as well as for a group of

photographers with different individual interests. For example, individuals may have

diverged interests that one’s album may contain a majority of plant/flower and the

other one’s may contain a majority of people/party. Putting them together, some

rare topics for an individual turns to be common for the majority. For example, the

London bridge is a favorate topic for the photographers which turns out to be the
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common interests in a photo repository but usually is rare in any individual album.

These common interests contrusts the pattern of the interesting region and can be

learned from examples.

Not only people sharing common interests, they also share the common rules of

how to represent the interesting topic using photographs. Photographers are story

tellers, or more precisely showers, who tell stories using photographs in which the

interesting region is the core value of the story. The story is composed by adjusting

two factors: the composition and the camera parameters. The composition is adjusted

by the physical position between the camera and the object which finally presented

by the pixel array that a viewer can see. The camera parameters largely control the

tone of an photo, as well as zooming scale, and the setting is recorded in the image

metadata that is readable. The metadata records the photographer manual settings,

the machine settings, as well as the nature conditions at the moment the shutter is

triggered. The camera metadata somehow reflects the intention of the photographer

and the focus of the photos. Based on these understanding, camera metadata may

play an important role for automatic image/photo understanding.

We explore the metadata recorded by 200+ different models of digital cameras on

the market in the last decade and come to the conclusion that the following metadata

are most helpful for photo analysis: the exposure value (EV), object distance, and

data/time. Although the GPS can be recorded in the EXIF and provides the infor-

mation where the photo is taken, no camera in our review records this message yet.

Many digital cameras today can select different modes of focal points such as central,

face, or dynamically set anywhere using the touch screen or a joystick-like device.

With this information, one can know where the interesting region is in the photo.

Unfortunately, this information is not released to the public in the standard format.

Another useful information once available earlier in the century in a few models is

the object distance probably due to the insufficient accuracy for predicting luminance
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Table 1: Exposure value and type of lighting situation chart.

EV Type of lighting situation

· · · · · ·
4 Candle lit close-ups. Christmas lights, floodlit buildings, fountains, and

monuments. Subjects under bright street lamps.
· · · · · ·
16 Subjects in bright daylight on sand or snow.
· · · · · ·

compensation. However, it is good enough for object’s size estimation in the interests

of photo analysis. With the help of the object distance, one can tell the difference

between a shot of a mountain scene and a copy of the mountain scene from a postcard

in that the previous distance is often infinite and the later is within one meter. Based

on the assumption that object one shot has time and space structure, data/time can

help to predict the scene/object that can only be seen at a certain time such as the

sunset and night scene. Since the specific photo databased we collected are the photos

shot for testing the quality of the cameras, most of the date/time recorded were not

properly set. Thus the date/time in our data set are more misleading than helpful.

Most of the metadata that were hopefully useful are practically useless due to

the availability and popularity. The one left is the exposure value that is available

in most of the models on the market today, either directly provided in the meta-

data or can be calculated from the exposure time(t) and the aperture(f -number, N),

EV = log2
N2

t
. This value can be set with exposure prior or aperture prior with the

other one automatically adjusted by the user or both set automatically in a certain

mode. The EV value is a function of luminance, EV = log2
LS
K

, where L is lumi-

nance, S is the ISO speed and K is the reflected-light meter calibration (both S

and K can be treated as constant). Therefore, we have an accurate measurement

of luminance given EV . The luminance is closely related with the scene and it’s

value is set based on the scene for a traditional camera such as the one shown in

Tab. 1(http://www.fredparker.com/ultexp1.htm) for instance. In other words,
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Figure 22: Histogram of EV and density of interestingness.

we have the prior knowledge of the scene with certain confidence given the exposure

value before the photo is really viewed. The histogram of the exposure value of tested

photos is shown in Fig. 3.22(a). The metadata is frame based information that have

not been used for assisting the interesting region detection before. By looking at

the Fig. 3.22(a), the photos having low luminance (small EV) are most likely to be

treated as outliers for a GMM based classifier. We partition the photos according to

their EV into (EV 6 6.5, 6.5 < EV 6 9.5, 9.5 < EV 6 12.5, 12.5 < EV ) and train

the classifier separately and a guess of the EV is made according to the EV histogram

once the EV is not available for some photos.

3.2 Interesting Region Classification

The interestingness is an objective concept which depends on the photo reposi-

tory and needs to be learned from the users. The divergent of the users’ interests

is not studied and the photos are binary labeled into objects (interesting regions)

and background. GMM and SVM are used as the classifiers for interesting region

detection.

3.2.1 Feature Selection

A 10 dimension feature vector is used to describe each segmentation that each

dimension is defined as followed given the same annotation as in Chapter 2:

• Average color channel Red Red =
P

∀x∈R Ired
x

|R|
.
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• Average color channel Green Green =
P

∀x∈R I
green
x

|R|
.

• Average color channel Blue Blue =
P

∀x∈R Iblue
x

|R|
.

• Texture Tex =
P

∀x∈R TextureMapx

|R|
where the texture map is described in 2.3.3.

• Vertical position. V ert =
P

∀x∈R xy

|R|

• Interestingness. Int =
P

∀x∈R InterestingMapx

|R|
where the Interesting map is shown

in Fig. 3.22(b).

• Length on top frame LT =
P

∀x∈R∧xy=0 1

ImageWidth

• Length on side frame LV =
P

∀x∈R∧xx=0∨xx=ImageWidth−1 1

ImageHeight

• Length on bottom frame LB =
P

∀x∈R∧xy=ImageHeight−1 1

ImageWidth

• Area Area = |R|
ImageWidth×ImageHeight

• Compactness Comp = |R|
P

∀i∈NR
|Li

in|

The feature vector contains the color, texture, shape and location information.

3.2.2 Classifier Based on GMM

The “interest” in the information theory usually refers to scarce and rare occurred

events. The “interesting region” in our scenario no longer refers to the “uncommon

objects”. On the contrary, we expect that the features of the interesting regions

will cluster on multiple centroids, given the segmentation within each image binary

labeled into “interesting” and “background” and the GMM classifier can be employed

immediately. The occurrence of the feature vector of the interesting region is more

common than rare since people share common interests when taking photos. For

example, the flower is a common topic among the photos in the repository and it can

be expected that there exists clusters in red, white and yellow in the color space for

the colorful flowers.

One approach is training 2 GMM classifiers, one for the interesting region Θ1 and

one for the background Θ0. For each segmentation in a photo, the region is classified
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as an interesting region if P (v|Θ1) > P (v|Θ0) where v is the feature vector of a

segmentation and P (·) is the probability density function. The performance of this

approach is poor due to 2 reasons. First, it may predict that all segmentation within a

photo are interesting or non-interesting. Second, the probability of a segmentation is

an interesting region and is calculated against the probability distribution estimated

from all the segmentation of all images. However, the interestingness needs to be

compared locally among the segmentation within a photo. To solve this problem,

each segmentation in a photo is calculated for the probability of being the interesting

region and the measurement is sorted in an ascending list l1, · · · , lm for a photo having

m segmentation. An adaptive threshold is taken at the largest value li
li−1

so that the

segmentations are partitioned into the interesting regions and the background.

The complexity of the GMM is less critical when GMM is used for the interesting

region classification compared to being used for image segmentation where the num-

ber of Gaussian models determines the number of segmentation. There exists a large

tolerance of redundancy between the poor estimation of probability density when the

Gaussian model is too simple and over fitting when the Gaussian model is too com-

plex. The redundancy of the Gaussian model (indicating by multiple models having

similar parameters) will only reduce the calculation efficiency while the accuracy of

the estimation of the probability density changes very little. We can pre-define the

complexity of the GMM for the sample set, as small as possible, within a reasonable

range. We observe that 20 Gaussian models are good enough for the sample set that

is still far from over fit.

GMM for High Dimensional Samples

Special treatment is needed for the GMM when dealing with high dimensional

data samples. One major problem is that the determinant of the covariance matrix

being singular is common when the sample data dimension reaches 10 or even smaller.

Principle component analysis (PCA) transforms a number of possibly correlated vari-
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Figure 23: PCA transformation causes over simplification.

ables into a smaller number of uncorrelated variables called principal components. It

can be used as a dimension deduction method that projects the sample data onto

the most significant principle components and it can be seamlessly joined with the

EM algorithm for GMM estimation. Yet, careless use of this technique in GMM

estimation will cause trouble.

Fig. 23 shows 2 datasets generated from the Gaussian model θ1(5, 2) and θ2(8, 2)

that lay in 2 dimensional space. For each model, the standard deviation along the

y-axis is 0 and the determinant of the covariance matrix is 0. By using the PCA trans-

formation, both datasets are projected onto the most principle component and forms

a 1 dimensional distribution. Although the probability density is now computable

after dimension deduction, the original well separated samples are now overlapped

quite a lot that decrease the accuracy of classification greatly.

Another trouble case is shown in Fig. 24 where 2 dataset generated from the

Gaussian model θ1(5, 2) and θ2(




8

8


 ,




2 0

0 2


) lay in 2 dimensional space. When

EM-GMM is employed, the probability of a red sample may have larger belonging
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Figure 24: Comparing probability density of model with different dimension is “un-
fair”.

(P (PCA(v2)|θ1)) to the blue group than to the red group itself (P (v2|θ2)), where v

is a sample vector and PCA(·) is the transformation function project higher dimen-

sion data onto lower dimensions, due to the “unfairness” of comparing of probability

between models with different dimensions. This may cause the constant decreasing

of the weight of the model in higher dimension and eventually the model in higher

dimension will shrink to death. In this case, not only the samples are highly over-

lapped after projection to lower dimension, only one model will survive at the end of

the EM-GMM estimation.

One approach to tackle this problem is manually add small amount of noise to

all the data so that the impulse signal will have a certain small amount of devia-

tion. This approach can’t solve the problem that the 0 determinant was formed by

correlation. Another approach is first finding the eigen values (the covariant matrix

after transformation) and the eigen vectors (the transformation matrix), then assign-

ing a constant δ for the eigen values less than certain threshold δ. With no model

dimension change, the greedy EM-GMM will converge almost for sure. Fig. 3.25(b)
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Figure 25: EM-GMM convergence if model dimension keeps constant.

shows the GMM estimate from Fig. 3.25(a) converges. Yet, poor convergence during

model optimization is a common case as shown in Fig. 26 once the feature dimension

deduction [10], in which BIC [95] is served as the criteria for dimension deduction, is

used in high dimensional feature sample set for interesting region classification. The

traditional approach of EM-GMM that seeks a snapshot of the model configuration

during the evolution of optimization performs poorly both in image segmentation and

interesting region classification.

Average model configuration

We adapt the high dimensional data clustering [10] to tackle the problem described

in Fig. 26.

Let Θt be the set of parameters of the mixture models (or the configuration of

models) at iteration t and Θ be the set of configuration of models in the history of

configuration optimization from time t1 to the end time t2. Let the initial time be t0.

Usually t1−t0 > tini indicates history just after initialization so will not be considered

since the configuration at that moments are well beyond optimized. Given the time

point t, the premeters are θt
i = {πt

i , µ
t
i,Σ

t
i, a

t
ij , b

t
i, Q

t
i, d

t
i} where π, µ, Σ are the weight,
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Figure 26: Traditional EM-GMM fails when oscillation is common in high dimen-
sional sample set in interesting region classification. The GMM contains 5 models
taking 500 steps of evolution. The first column is the weight of the mixture models
while the second column is the feature dimension after dimension deduction for the
corresponding model.
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mean, and covariance matrix in Gaussian model, the aij is the eigen values larger

than the threshold bi in the decomposition Eq.(3.1)

∆i = QT
i ΣiQi (3.1)

where ∆i is the eigen values, Qi is the matrix of eigen vectors and QT
i is the trans-

portation of the matrix.

As shown in Fig. 26, the size of the reduced feature dimension dt
i is most likely

to be a mixture of different dimensions, we define this set as Di (e.g. Di = {1, 2, 3}

which indicates that the model θi used to have di = 1, 2 or 3 at certain time point t

in the history) and |Di| is size of the set Di. The model θi is a mixture of |Di| sub-

models with artificial labeling ik with k ∈ Di. Accordingly, the posterior probability

of the sub-models are

P (mk|Ix; Θ
(t1), · · · ,Θ(t2)) =

Σt2
t=t1

π
(t)
m p(Ix|θ

(t)
m )B(k|t)

ΣM
i=1π

(t)
i p(Ix|θ

(t)
i )

t2 − t1 + 1
where B(k|t) =





1 dt
i = Dk

i

0 otherwise

.

(3.2)

Thus, we get

πmk
=

1

| R |

∑

∀x∈R

P (mk|Ix; Θ
(t1), · · · ,Θ(t2)), (3.3)

µmk
=

∑
∀x∈R IxP (mk|Ix; Θ(t1), · · · ,Θ(t2))∑
∀x∈R P (mk|Ix; Θ(t1), · · · ,Θ(t2))

, (3.4)

and

Σmk
=

∑

∀x∈R

P (mk|Ix; Θ
(t1), · · · ,Θ(t2))(Ix − µmk

)(Ix − µmk
)T

∑
∀x∈R P (mk|Ix; Θ(t1), · · · ,Θ(t2))

. (3.5)

It clearly shows that the model parameters are estimated among the configurations

in the history. For each θmk
, since the di is already known, the Qi,∆i (including aij)

are easy to solve using the eigen decomposition in Eq.(3.1) follow the routine of high

dimensional data clustering [10]. The ∆i is patched with p− di constant bi as shown
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in Eq.(3.6) where bi is the average value of the last p− di smallest eigen values and p

is the feature dimension. The matrix of eigen vectors Qi is partitioned into Q̃i and Qi

accordingly where Q̃i is made of the first di columns of Qi supplemented by (p− di)

zero columns and Qi = Qi −Qi.

∆i =




di︷ ︸︸ ︷

ai1 0

. . .

0 aidi

0

0

bi 0

. . .

0 bi
︸ ︷︷ ︸

p−di




(3.6)

The log-probability can be solved in Eq.(3.7)

log(P (x|θi)) = −
1

2
(||µi−Pi(x)||

2
Ai

+
1

bi
||µi−Pi(x)||

2 + log(det ∆i)+ p log(2π)) (3.7)

where

||x||2Ai
= xtAix with Ai = Q̃i∆

−1
i Q̃i

t
(3.8)

and

log(det ∆i) = Σdi

j=1 log(aij) + (p− di) log(bi) (3.9)

Pi(x) = Q̃iQ̃i

t
(x− µi) + µi. (3.10)

3.2.3 Classifier Based on SVM

The SVM classifier, born as a binary or pairwise classifier, is well suitable for

the prediction of the interesting region/background task. A SVM classifier is trained

based on the labelled photos for interesting region detection using RBF kernel. The
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Figure 27: SVM parameters optimization.

optimization of the parameters C and γ is shown in Fig. 27.

3.2.4 Classifier Model

It is observed that the SVM classifier tends to present either better prediction for

some cases or totally fail to predict any in the other comparing to the GMM classifier.

Thus, we use the SVM classifier for the interesting region detection and use GMM as

backup once the SVM fails. Combining these two we have overall better performance

than using either of them along.

3.3 Algorithm Evaluation and Benchmark

Fig. 29, 30, 31, 32, 33, 34, 35, 36, 37 and 38 shows the presented interesting region

detection technique comparing to the salient map approach. The salient map method

does not require any training procedure and the salient map is formed based on the

local contrast to the environment based on color and texture between multiple scales

of an image pyramid. The brighter color in the salient map represents the salient

object. The image saliency detection is fast. It only works well for the small areas

with high contrast regions. It’s result can hardly reach a semantic object detection.

With the double classifier of SVM+GMM, our presented method can efficiently
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Figure 28: Flowchart of interesting region detection.
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remove the background regions. Features are extracted from the cleaned image, hope-

fully only containing the objects people are interested in, for indexing and query in the

image retrieval system. More results for the interesting region detection in the flower

category is shown in Fig. 39. To show how generalized the method could be, we use

the classifier trained on customer photos to detect the factory illustration diagrams

of automobiles and parts which contains no metadata shown in Fig. 40, Fig. 41 and

Fig. 42. The GMM classifier alone performs perfectly for these kinds of images never

trained before. The SVM classifier alone performs poorly and will miss nearly half of

the images. Combining SVM+GMM, the performance is slightly decreased from the

optimal. The real application is to classify automobiles and parts from illustration

diagrams and the user is satisfy with the interesting region detection result which

serves as a pre-process to extract the interesting objects.

3.4 Conclusion and Discussion

The ground truth is marked maually for all the images. The experimental results

show that pattern of the common interests among different photographers can be

learned by our hybrid classifier composed by GMM and SVM. The accuracy of the

interesting region detection (
P

(TP+TN)
P

(TP+TN+FP+FN)
where TP is the area of true positive

of interesting, TN is true negative, FP is the false positive, and FN is the false

negative) rises 2.8% by using the metadata versus not using it. This shows though

the connection between the metadata and the interesting region is subtle, yet it is

detectable and provides positive contribution for the interesting region detection.

Please note that this non-frame-based numerical evaluation is coarse since it does

not reveal the different importance of the contribution of the interesting region in

different photos. For example, a mis-detection of the interesting region which only

contains 0.2% may makes the interesting region detection totally fail in one photo

while a 50% mis-detection may still contains enough interesting region information

in the other.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 29: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 30: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 31: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 32: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 33: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 34: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 35: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 36: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 37: Interesting region detection.
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(a) original images

(b) Saliency map

(c) Salient objects

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 38: Interesting region detection.
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Figure 39: Interesting regions for photos in flower category.
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(a) original images

(b) Contour confidence map

(c) Image segmentation

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 40: Interesting region detection for factory illustration.
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(a) original images

(b) Contour confidence map

(c) Image segmentation

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 41: Interesting region detection for factory illustration.
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(a) original images

(b) Contour confidence map

(c) Image segmentation

(d) Interesting region detection based on GMM

(e) Interesting region detection based on SVM

(f) Interesting region detection based on SVM+GMM

Figure 42: Interesting region detection for factory illustration.
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The GMM is heavily used as a clustering tool for image segmentation in the previ-

ous chapter and as a probability density calculator in this chapter. With the training

data we have (> 10000), there is quite a large buffer for the model complexity before

overfit is reached. Since the effective dimension of each model is also in estimation,

the fitness of the overall GMM is our major concern. The oscillation and poor con-

vergence is caused by the sudden change of the principle component dimension of

the model. This model uncertainty is tackled by estimating the optimal GMM along

the history of its evolution which results in an average conformation of GMM. This

average conformation is nearly equals to the traditional optimal conformation if no

oscillation occurres.

The concept of interestingness of a region in a photo is a subjective phenomena

related to emotions or motives. Considering a photo as an article, the interesting

region contains the core value of the story that the photographer wants to tell or

the feeling and passion he or she wants to deliver. By saying that, it is undoubtedly

that difference between how people selectively digest the information created by the

photographer and delivered via the photo. How diverse the perspectives are among

the viewers is an interesting topic and little research is accomplished in this aspect.

Fig. 43 illustrates some of the trouble cases in interesting region detection. Fig. 3.43(a)

shows a repeating texture that does not contain any specific interesting region, or all

the pixels in the image are equally interesting. Similar cases are also observed in close

up shots. Fig. 3.43(b) contains multiple interesting concepts (people, garden, castle)

that may result in diverged understanding. Fig. 3.43(c) is the Ferris wheel that has a

transparent structure causing unstable segmentation/representation of itself. Similar

cases are observed for bicycles as well. Fig. 3.43(d) shows that interesting region

detection may reach a different scale of an object. This brings the problem of how to

represent a category of photos efficiently to enhance the similarity within the category

and the dissimilarity between categories. After the interesting regions are detected,
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(a) Texture (b) How interesting (c) Transparent Objects

(d) Baby or face

Figure 43: Challenge in interesting region detection.

we have cleaner photos that local features, that are based on the interesting regions,

can be extracted. Unlike the segmentation in most cases, the interesting region is no

longer homogeneous.



CHAPTER 4: IMAGE CLASSIFICATION & ONTOLOGY STRUCTURE

4.1 Introduction

The image classifier joins the low level feature with the high level abstract concept.

Only after the classification can an image be categorized into different categories. In

other words, the classifier labels images with keyword. And reversely, it can find

images given a keyword. This makes the image retrieval system practically usable.

Image classification and indexing is the core module in the image retrieval system

with the ultimate goal of serving the user with the query easy to construct and in

which the results fit their needs. The machine system has every detail of an image

(low level features such as color, texture and other calculation results based on that)

but people seldom query based on low level features (“Search for the image with

histogram like this.”). More often the queries are more semantic and in higher levels,

such as “show me the images about red flowers” or “show me the images about

flowers”. How to model the high level concept with the low level features is called

the semantic gap. The CBIR system in the early days grouped images according to

their low level features, yet those CBIR systems can hardly satisfy the users’ needs

in the real world.

Query by example can be easily constructed by the user providing an image and

asking the CBIR system for more images “like that”. Here are the questions people

need to answer before a CBIR system can be proposed: How to interprate an image

as close to the human beings’ understanding as possible? How to represent images, as

well as the distance function, efficiently so that images belonging to the same category

are close in the distance function and images belonging to the different categories are
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Figure 44: Global information ignores spatial alignment.

far away? Different answers result in different approaches.

The global information approach interprets and represents an image based on the

global information such as color histogram or statistics of pixel values or textures. It

is robust and fast compared to the other approaches. This approach works well for

a few scenes such as a sunset where the distinguishable reddish color dominants the

image and well describes the topic against most other common scenes. The drawback

of the global information approach is also significant as shown in Fig. 44. The images

have totally different visual aspects but actually have the same global information.

Obviously, the global information approach won’t be able to tell the difference

due to the ignorance of the spatial alignment.

The grid partition approach partially associates the feature with their spatial in-

formation by summarizing an image using the features extracted from grid partitions

as shown in Fig. 4.45(a). The partition of an object into multiple partitions or one
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(a) Grid partition can’t reach semantic level segmentation

(b) Interesting region reaches semantic level segmentation

Figure 45: Interesting region reaches semantic level segmentation while grid partition
can’t.

partition contains multiple objects is common. With the segmentation and interest-

ing region detection methods developed in the previous chapters, we are now able to

represent an image with the interesting regions as shown in Fig. 4.45(b).

Fig. 46 illustrates the goal of this chapter: we are going to explore and evalu-

ate the different indexing methods (interesting region approach, interesting region +

background approach and global information approach) based on the retrieval per-

formance. The research also solves the problem of whether camera metadata can

improve photo retrieval performance.

4.2 Ontology Structured Photo Repository

Traditional CBIR systems cluster the images based on their visual features and

hope that clusters will have semantic meaning by selecting suitable features. With
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Figure 46: Exploring and evaluating indexing methods with the assistance of camera
metadata based on retrieval performance.
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Figure 47: Size of categories in the photo database and the EV distribution among
different categories.

unlimited complex background, the signature of an image can be submerged by the

strong signal from the background and the interpretation of an image is often un-

reliable and misleading. Thus, doing the CBIR in the old way only fits the small

and clean toy dataset usually containing dozens or a few hundreds of images doing

pairwise classification.

The photo repository contains 7000 customer photos shot by +200 different mod-

els of digital cameras. Although it is mostly city scene, the topic is literally unlimited.

It contains buildings, boats, cars, human, tools, plants, animals, mountains, etc. The

database of the photos is constructed hierarchically roughly according to the ontology

structure with 111 leaf nodes containing 1 to 1051 photos as shown in Fig. 4.47(a)

while the EV value among different categories are shown in Fig. 4.47(b). The scat-

tering of the EV histogram among different categories indicates that the EV value

has certain distinguishing power and is taken as a feature for category classification.
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The branching of the database is shown in Fig. 48 with detail shown in Fig. 49,

Fig. 50 and Fig. 51.

By browsing the photo database, the degree of homogeneity diverges among dif-

ferent categories and we leave this for the GMM based classifier to learn from the

examples. We also expect that by removing the background, the feature vectors

within the same category will cluster more compact or visually more similar than

using the features of the whole image. Given a query photo, the features based on

the interesting region are extracted and the user decides how many photos need to

be returned (here we use 50). The photo retrieval system picks top 5 candidate cat-

egories and randomly draws photos from them with the number proportional to the

normalized probability among the candidates. The photos are mostly portrate-like

with 78% EV value available. The database is highly skewed with visual homogeneity

not strictly enforced within the category. For example, the “flower” category is not

divided into different colors such as “red flower” or “yellow flower”. A portion of the

photos in the “building” category is shown in Fig. 52.

4.3 Experimental Results

The experiment is designed as follows in order to answer the questions of the

statistical hypothesis:

Exp. 1 Image retrieval based on ideal interesting region approach with camera meta-

data.

Exp. 2 Image retrieval based on ideal interesting region approach without camera

metadata.

Exp. 3 Image retrieval based on practical interesting region approach (?camera meta-

data).

Exp. 4 Image retrieval based on global information approach (?camera metadata).

Exp. 5 Image retrieval based on ideal interesting region + background approach
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Figure 48: Hierarchical structure of the photo repository.
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Figure 49: Hierarchical structure of the photo repository.
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Figure 50: Hierarchical structure of the photo repository.
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Figure 51: Hierarchical structure of the photo repository.
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Figure 52: Sample photos in the “building” category.
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(?camera metadata).

Exp. 6 Image retrieval based on practical interesting region + background approach

(?camera metadata).

By comparing the experiment result of Exp. 1 and Exp. 2, it will be able to determine

if camera metadata will improve the performance of photo retrieval and the decision

of whether to use camera data or not for the photo retrieval task will apply for the

rest of the experiments. The ideal interesting region uses human marked interesting

regions that serves as ground truth for the interesting region detection. The practical

interesting region uses the interesting region detected by the system which induces

incomplete or false interesting region detections. The global information approach

involves no interesting region detection and the global feature is used.

The statistical hypotheses are:

1. Exp. 1 and Exp. 2 are significantly different and we expect Exp. 1 (with meta-

data) to outperform Exp. 2 (without metadata).

2. Exp. 1 and Exp. 4 are significantly different and we expect Exp. 1 to outperform

Exp. 4 which indicates the image signature based on interesting region is more

distinguishable than based on global information.

3. Exp. 1 and Exp. 3 are significantly different and we expect Exp. 1 to outperform

Exp. 3 which indicates that there exists significant cost when practically apply-

ing the interesting region approach for photo retrieval due to the incomplete

and false detection of the interesting region.

4. Exp. 5 and 6 are significantly different from Exp. 4 and we expect both to

outperform the global information approach.

The experiment also explores how the hierarchical structure may change the perfor-

mance of image retrieval for different categories.
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4.3.1 Hierarchical Structure and Ideal Interesting Region Approach

The system is trained with ideally labeled interesting regions with GMM for each

category and the images are then retrieved from the system. A feature vector of

6 dimensions (RGB color, texture, interestingness and metadata of EV) is used as

the signature of each image. The average posterior probability of an image in each

category being retrieved with respect to the rest of the categories are shown in Fig. 53,

Fig. 54, Fig. 55, Fig. 56 and Fig. 57. The figure is a category vs. category matrix

where the gray scale shows the average posterior probability value with white for

1 and black for 0. The alternative green bar shows the logarithm (base of 2) of the

volume of each category and the blue block shows the volume unit for 1, 2, 4, 8, 16, · · · .

The matrix reads vertically: column n shows the average posterior probability of

category n in respect to all the categories. The value of a column sum up to 1. The

diagonal of the matrix (marked red) is the posterior probability that an image from

certain category claims belong to the category itself. After the GMM is trained, it is

expected that the value on the diagonal line is the maximum value of each column

which indicates that a category has the largest similarity to itself. This is true for

most categories in all levels of the hierarchical structure but there are a few exceptions

as the one marked in a yellow circle in Fig. 53. There are obvious brighter horizontal

lines for the categories having the largest members (pointed to by a black arrow as

shown in Fig. 53). This indicates that excepting for the largest similarity to the

category itself, all categories have quite larger similarity to the categories having the

large volume than to the categories having less volume. This is probably due to the

fact that the categories with a larger volume are more divergent in the feature space

and the GMM trained based that covers a larger feature space. Besides, the larger

weight of the category also provides certain contribution. The categories with a little

member are “memorized” rather than “generalized” thus overfit is expected for those

categories. Those categories could be grouped into a larger group in the hierarchical
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Figure 53: Average posterior probability for all categories in the hierarchical structure
level 1.
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Figure 54: Average posterior probability for all categories in the hierarchical structure
level 2.
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Figure 55: Average posterior probability for all categories in the hierarchical structure
level 3.



111

Figure 56: Average posterior probability for all categories in the hierarchical structure
level 4.
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Figure 57: Average posterior probability for all categories in the hierarchical structure
level 5.
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Figure 58: Posterior probability at different Hierarchical level.

structure. Fig. 4.58(a) shows that the average posterior probability of all categories

belonging to themselves turns larger at higher hierarchical level. This is due to the

fact that false classifications among the sub-categories are turned to be the correct

classification in the higher, coarser category. Fig. 4.58(b) indicates how the posterior

probability changes for the categories having sub-structures.

4.3.2 Metadata vs. Non-metadata for Image Retrieval

A 5 dimension (with the metadata removed from previous experimental design)

feature vector is used as the signature of an image for the image retrieval based

on the same labeled ideal interesting regions. The normalized posterior probability

at the bottom hierarchical level by the approach using metadata (Exp. 1) vs. not

using metadata (Exp. 2) is shown in Fig. 59 sorted based on the volume of the

category (plotted in yellow line). A t− test for the values in Fig. 59 of all categories

indicates that there is no significant difference between the mean value of the two

different methods among all categories. This no-difference observation is largely due

to the categories only containing a few samples that overfit occurs for the known

samples. Once overfit occurs, the category will have posterior possibility to itself close
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Figure 60: Pairwise comparison of posterior probability using metadata vs. not using
metadata.

to 1 no matter what method is used. Since categories are treated with same weight

despite of their volume, those categories having a small volume contribute most to the

50%− 50% alignment in Fig. 59. A t− test over the first 15 largest categories (with

minimum volume larger than 80) shows there exists significant difference between the

two approaches and that the approach using metadata outperforms the one not using

it. The pairwise of comparison between with and without metadata for the posterior

probability for each image is plotted in Fig. 60. The histogram of both approaches

are shown in Fig. 4.61(a) and Fig. 4.61(b). The Kolmogorov-Smirnov test on the

posterior probability of the two approaches showed significant different at 5% level

(P = 2.3%). The median value of the distribution of the approach using metadata is

0.1009 while the approach without using metadata is 0.0881. This indicates that the

metadata significantly improves the performance of the image retrieval. The camera

metadata is used as one feature item in the rest of the experiments.
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(a) Histogram of posterior probability using
metadata, median = 0.1009

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

Posterior probability

V
o
lu

m
n

(b) Histogram of posterior probability without
using metadata, median = 0.0881
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(c) Histogram of posterior probability using
global feature, median = 0.0890
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(d) Histogram of posterior probability using
practical interesting region approach, median =
0.0811
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(e) Histogram of posterior probability using
ideal interesting region + background approach,
median = 0.0953
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(f) Histogram of posterior probability using
practical interesting region + background ap-
proach, median = 0.0800

Figure 61: Histogram of posterior probability.
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4.3.3 Interesting Region vs. Interesting Region + Background vs. Global Information

A 5 dimension (with the interestingness removed from ideal interesting region ap-

proach) feature vector is used as the signature of an image for the image retrieval

based on the global feature. In this case, the interestingness of every image is a

constant and has no contribution to classification. The “ideal” means the interesting

region detection is perfect. Since the same classification method (GMM) is used for

all approaches, we assume the GMM provides equally good estimation of the feature

distribution in all approaches. Thus, comparing the difference between the ideal inter-

esting region approach, where no miss-detection of interesting region is involved, with

the global information approach reveals the characteristic using the selected features.

In practical use, there is always a risk of miss detection of the interesting region and

that is the cost for the interesting region approach. Comparing the ideal interesting

region approach and a practical interesting region approach reveals the cost of the

method of interesting region approach. Fig. 62 shows the normalized posterior prob-

ability achieved by an ideal interesting region approach, practical interesting region

approach and global information approach for all categories. A pairwise t− test for

all categories indicates that the ideal interesting region approach significantly outper-

forms the rest. This proves that the interesting region approach is a better approach

than using global information if we can ideally detect the interesting region. However,

the t − test shows there is no significant difference between the practical use of the

interesting region approach and the global information approach. This is due to the

overfitting problem for the large number of categories in which each contains only a

few samples. We should focus on the categories having large enough samples that

GMM can be well trained. The normalized posterior probability of ideal interesting

region + background, practical interesting region + background and global informa-

tion approach is plotted in Fig. 63. The similar arrangement is observed as in Fig. 62

except that the t− test indicates that all three experiments are significantly different
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Figure 64: Posterior probability achieved by different approaches among the largest
14 categories.

and that both interesting region approaches outperforms the global information based

on the median posterior probability. Fig. 64 shows the performance of all approaches

for the largest 14 categories.

Ideal Interesting Region Approach vs. Global Information Approach

The histogram of both approaches are shown in Fig. 4.61(a) and Fig. 4.61(c). The

median value of the distribution of the ideal interesting region approach is 0.1008 while

the approach using global information is 0.0890. The Kolmogorov-Smirnov test on

the posterior probability of the two approaches shows a significant difference at the

5% level (P << 1%). This again proves that the ideal interesting region approach

significantly improves the performance of the image retrieval.

Ideal Interesting Region Approach vs. Practical Interesting Region Ap-
proach

The histogram of both approaches are shown in Fig. 4.61(a) and Fig. 4.61(d). The

median value of the distribution of the ideal interesting region approach is 0.1008
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Figure 65: Pairwise comparison of area difference vs. feature distance for practical
interesting region detection.

while the approach using global information is 0.0811. The Kolmogorov-Smirnov

test on the posterior probability of the two approaches show significant difference

at the 5% level (P << 1%). This proves that in the practical use, the interesting

region approach pay significant cost for the miss interesting region detection. Fig. 65

shows the relationship between the imperfection of interesting region detection and

the feature distance brought by. If the practical interesting region detection perfectly

matches the ideal one, the distance in the feature space is a minimum. If the practical

interesting region poorly matches the ideal one, the larger variant in feature distance

is observed. It is also observed that the majority of the images achieves good quality

of interesting region detection.

Practical Interesting Region Approach vs. Global Information Approach

The histogram of both approaches are shown in Fig. 4.61(a) and Fig. 4.61(c). The

median value of the distribution of the practical interesting region approach is 0.0811

while the approach using global information is 0.0890. The Kolmogorov-Smirnov test
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on the posterior probability of the two approaches shows significant difference at the

5% level (P << 1%). This indicates that the cost paid for the interesting region

detection due to the incomplete and false interesting region detection could be too

much for what we gained from getting rid of the contamination of the background

for some categories. Fig. 64 indicates that the practical interesting region approach

outperforms the global information approach for the categories having a large volume

of samples that GMM can be properly trained. The case study also shows the perfor-

mance of the practical interesting region significantly decreases when facing certain

categories when the interesting region detection is poor, for example, the bikes. The

practical interesting region approach has better performance when the interesting re-

gion detection quality is high. Overall, the performance of the practical interesting

region approach depends on the quality of the interesting region detection which is

highly related with the characteristic of the images in a category.

Interesting Region + Background vs. Interesting Region Only

Histogram in Fig. 4.61(e) and Fig. 4.61(f) shows slightly decreased performance

over all categories by the interesting region + background comparing to using inter-

esting region only and the Kolmogorov-Smirnov proves the difference is significantly

different. It is interesting to observe that the interesting region + background ap-

proach have a tendency to outperform the interesting region only approach for the

categories having large volumes. This is due to the following reasons: Firstly, the

universe itself is a structured object that has correlation with its environment. For

example, a flying airplane is often displayed surrounded by the sky which has a very

distinguishable color and texture. Thus, by detecting the sky one may be able to

make a reasonable guess for the airplane. There are also objects that have complex

and diverse visual content but simple and distinguishable backgrounds for certain

categories. Secondly, increasing the length of a feature vector usually increases the

separability. This increased complexity may also bring the overfitting problem for the
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categories containing small volume as well.

4.4 Conclusion and Discussion

We draw the following conclusions based on experiment results:

1. Image retrieval using features based on the ideal interesting region is a better

approach than using the features based on the whole image.

2. Practically, our interesting region detection method achieves a declined per-

formance than the ideal one due to the incomplete or false detection of the

interestion region.

3. Practically, the performance of interesting region approach depends on the qual-

ity of the interesting region detection thus it is category dependent. The cur-

rent practical interesting region approach does not achieve the overall better

performance for all categories but the interesting region is worthwhile for the

categories having a large volume of samples.

4. Integrating the selected metadata with the visual feature improves the perfor-

mance of image retrieval by using the visual feature only.

5. A coarse category usually has better performance in image retrieval, yet is less

useful.

6. The background information is not a complete waste and has positive contribu-

tion for photo retrieval.

It is also observed that the structure of a real world photo repository is highly skewed.

Overfitting for the category containing only a few samples is a common case.



CHAPTER 5: IMAGE RETRIEVAL

5.1 Introduction

The complexity of the photo repository can be generally described as narrow

and broad. The narrow repository often contains restricted content and their visual

characters are usually more distinguishable. The broad repository usually has no

limitation to the content and the volume is often large. The system design and

performance is highly depended on the complexity of the repository itself.

Despite the feature and classification method used by individual photo retrieval

systems, they often provide some common query modality to serve the needs of the

users. Query by keywords is the fastest and the most robust way that does not involve

any image processing procedure. The photos in the repository needs to be tagged in

the metadata or well organized according to their categories. Query by free-text does

not involve image visual content analysis and classification either. A word analyze

for the user input text will classify the text to a known category and the photos

under which are fetched. Query by example is the core module that involves the

work of image processing and visual content analysis as well as metadata analysis

for a given sample image. The result could be a group of the most similar images

or a group of random images belonging to the same category. In the later case, a

classification procedure is needed and the repository needs to be structured while a

distance function may well serve the job for the first one. The user involvement is

diverse due to the different system design. In one hand, the deep involvement of the

user allows the user to provide more accurate query that makes the classification on

the system side more efficient. For example, user can mark an image to show his/her
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interest. On the other hand, people are bothered that the extra burden put on the

user will finally make the system less usable. More complicated query modules such

as allowing user drawing synthetic images and providing it as a query is also proposed.

Besides the query modality, a browsing modality is basic for a photo retrieval

system. It allows the user to explore the content of the repository without specifying

any special interest. A hyperbolic browser allows the user to dynamically view a

group of images as well as the relationship to similar categories. The intention of the

user is hardly unique and sometimes even not clear to the user itself. Thus, surfing

modality is almost as important as the searching modality. The surfing modality

should help the user clarify his/her query in the mind, for example, by providing

examples.

5.2 System Design

We design a photo retrieval system using C++ in a Linux environment. The photo

repository is collected from the internet which contains 7000 photos taken by +200

different models of digital cameras sold on the market in the past decade. There is no

restriction to the content. Our photo retrieval system supports hierarchical browsing,

query by example and query by keywords.

The system not only allows one to explore the content of the photo repository, but

also provides an organized and efficient hierarchical structure which contains both a

sample image icon and the name of the category. This sample image with a keyword

can inspire the user to come up with a better query at the time in case he/she is

unsure of what he/she is really looking for. Fig. 66 shows hierarchical browsing.

Query by keyword is another efficient query method for the hierarchical repository

since the images are already labeled. If the interpretation of the keyword used by the

user matches the content of the category, the system will directly display the images

within the category. No visual content analysis is involved when query by keyword.

Error comes from different interpretation of the keywords. This error can largely be
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Figure 66: Hierarchical browsing.
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Figure 67: Query by keyword.

avoided for the tested photo repository which contains 7000 photos within ∼ 100

categories. Fig. 67 shows query by keyword.

Query by example is the core function for the photo retrieval system that allows

the user to retrieve photos by submitting a sample image. Fig. 68 shows the flow

chart of query by sample imaging. The GMM model is first trained based on the

hierarchical structure of the photo repository. The sample image is segmented and

the interesting region is detected. The feature is extracted based on the interesting

region and the top 5 categories, having the highest posterior probability, can be found.

The user defines the number of images to be retrieved (the default is 50). The sum of

the posterior probability of the top 5 categories is normalized to 1. Random images

were drawn from the top 5 categories with a number proportional to the normalized
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Figure 68: Flow chart for query by sample image.

posterior probabilities. Besides the retrieved images, the categories of their belonging

are displayed as well. Fig. 69 shows the result of query by photo example. A repeat

search on the same image brings up “the next top 5” categories if the previous search

does not meet the goal of the user. Fig. 70 shows the photos fetched from the top

5 − 10 categories for another image that the right category is not classified in the

top 5. The user can select the category and view the contents within the specific

category. A double click on a retrieved photo brings more similar images within the

same categories as the same category as the clicked image.

Besides the image query and browsing functionality, the system is also designed to

show the intermediate results for image segmentation and interesting region detection.

Fig. 71 shows the interesting region detection results for the selected images.

5.3 System Performance Evaluation

The performance of the photo retrieval based on interesting region versus global

information of the whole image is shown in Fig. 72. The precision and recall is defined

as

Precision =
|{relevant photos} ∩ {photos retrieved}|

|{photos retrieved}|
(5.1)

Recall =
|{relevant photos} ∩ {photos retrieved}|

|{relevant photos}|
. (5.2)

The performance of the interesting region approach versus global information ap-

proach for the first 30 largest categories are listed in Tab. 2 (e.g. it contains 1051
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Figure 69: Query by photo example: photo retrieved from the top 5 related categories.
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Figure 70: Query by photo example: photo retrieved from the top 6 − 10 related
categories.
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Figure 71: Interesting region detection for the selected photos.
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Figure 72: Retrieval results sorted for different categories’ size: The interesting region
approach are shown in red while the global information approach are shown in blue.
The first two rows are the results of the precision for each approach while the second
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Figure 73: Retrieval results given query image belonging to the “none-stone building”
category. The top right window is the photo retrieval results while the bottom is the
photo browsing window.

photos in the none-stone building category. The precision of the interesting region

approach is 85% and the precision of the global information approach is 70%. The

recall of the interesting region approach is 4.0% and the recall of the global infor-

mation approach is 3.3%). Fig. 73 shows the retrieval results given a query image

belonging to the “none-stone building” category. One can see that a few photos from

the “people” and “boat” categories were also retrieved.

Both retrieval methods’ recall rises along with the decreasing of the category’s

size and this value rises to 1 for the categories have only a few members, which indi-

cates the cases are “memorized” rather than “generalized”. Both retrieval methods

have higher precision for the categories with the most members, which indicates the
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Table 2: Performance of photo retrieval.

Category Size Precision(%) Recall(%)

None-stone Building 1051 85/70 4.0/3.3
People 797 43/33 2.7/2.1
Flower 406 41/86 5.1/10
Boat 321 8.6/13 1.3/2.0
Tree 260 21/31 4.0/5.9
None-stone,none-iron Sculpture 253 5.0/5.9 1.0/1.1
Sign 248 17/4.0 1.1/2.5
House 210 4.5/10 1.7/0.3
Stone Sculpture 207 9.5/12 2.7/3.4
Bridge 175 3.0/2.0 0.9/0.6
Car 162 7.1/7.1 2.6/2.6
Sales 139 2.0/16 0.7/5.9
FerrisWheel 135 22/1.6 8.6/0.6
Face 133 0.1/1.3 0.06/0.6
Toy 103 0/0.8 0/0.4
Light 92 20/5.1 12/3.0
Pet 85 12/8.8 7.6/5.3
Iron Sculpture 82 1.4/19 0.8/12
Tower 82 6.7/2.6 4.2/1.6
Bird 81 5.7/14 4.1/10
Indoor Aisle 69 0.8/8.7 0.6/6.3
Stone Building 69 35/21 32/18
China 56 5.4/2.9 4.8/2.6
Motorbike 56 6.3/2.9 5.7/2.6
Plant 55 24/10 22/9.6
Window 54 2.8/16 2.7/15
Animal 53 14/0.1 14/0.1
Door 50 0/2.7 0/2.7
Food 50 40/38 40/38
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models are better learned given sufficient examples. The precision drops along with

the decreasing of the size of the category which indicates that many categories do

not have sufficient samples to train the model. As the categories’ size continues to

decrease, both precision rises. This indicates that the distribution in feature space

for small categories is simpler for GMM to simulate, cases are “memorized” rather

than “generalized”. The precision continues to drop due to the constant decrease of

the category’s size less than the fixed number of photos retrieved.

Although the performance of the interesting region approach on average is slightly

better than the global information approach as shown in Tab. 2, only those categories

having sufficient examples are worth being studied with care. The interesting region

approach has significantly better performance on precision for the first two largest

categories “none-stone building” and “people”, which contains more than 1000 and

800 photos, than the global information approach (85% vs. 70% and 43% vs. 33%).

5.4 Conclusion and Discussion

A photo retrieval system is designed with user interface that supports photo repos-

itory browsing, query by keyword, and query by example. User can “page down” by

continuous query on the same image until the the feedback is satisfied. The user

can also jump to the related category by double clicking on the interested images.

The model of the category is estimated each time the system is booted based on the

hierarchical structure of the photo repository. It can be modified and extended by

adding/deleting the folder of the hierarchical tree or the photos inside of a folder. The

interface is neat and straightforward and the system is robust. The system also reveals

the intermediate results of stochastic segmentation and interesting region detection

if needed so that a case study can easily be conducted.



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

There is a strong tendency that future image retrieval systems should focus on

the localized features. A novel image segmentation algorithm, which is able to obtain

more accurate results and is very attractive for feature extraction, is developed. It is

also intuitive to imagine that the features based on an object itself should be more

distinguishable than the feature mixed by the object and the surrounding background.

An interesting region detection method, which can seamlessly integrate GMM and

SVM in one scheme, is developed that GMM is suitable for multi-class situation and

SVM is good for high dimensional bi-class cases. The segmentation based interesting

region detection does its utmost to purify an image by removing the background

from the objects compared to the grid partition methods. An image classification

algorithm is developed, which can corporate camera metadata for detection and this

has been missed in the computer vision community for decades. Our experiment

proves that high qualified interesting region detection results better performance for

image retrieval. An image retrieval system, which can support query by keyword,

query by example, and ontology browsing alternatively is also developed.

The quality of the interesting region detection highly depends on and is largely

diverted among different categories. Since the backbone of the interesting region de-

tection method is image segmentation, the diversity of the performance again proves

the consensus that no segmentation method is good enough for all images. A gen-

eralized region based segmentation method is developed which works both for the

purpose of interesting region detection and 3D medical image segmentation. The seg-
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mentation method based on the stochastic contour is a pure stochastic process that

GMM has estimated during contour evolution and the contour evolution is driven

by the GMM alternatively. It differs from many other so called stochastic methods

which only use the probabilistic model in a deterministic manner. The “throwing a

dice” operation makes our method robust for both simple and complex images. The

decreased efficiency is payed as a trade off. The model complexity is critical which

directly determines the number of segmentation. The traditional goodness-of-fit func-

tion is good to distinguish a reasonable configuration from an extremely poor one,

but is not able to tell the difference from a good one from a reasonable one. Thus,

finding an optimal configuration by minimizing the energy of the goodness-of-fit func-

tion often fails the needs of the user. Basically, the configuration of the model is still

allowed to change significantly while the energy changes a little. This observation is

common among the cases in the real world and we tackle the uncertainty of the model

by the average of the configuration rather than finding the optimal configuration. If

the data distribution is ideally separable, the average configuration converges to the

optimal. In real world and complex distribution, the average configuration is a better

estimation than the unstable “optimized” one. The uncertainty of the model is also

observed for the real world, high dimensional dataset that dimension oscillation is

a common scene. By estimating the average configuration along the history of the

model evolution, the uncertainty of the model can be handled robustly.

The presented interesting region detection method outperforms the traditional

saliency map approach in which the classification purely depends on the contrast of

a region to its surroundings in multiple scales. We find that the interesting detection

model trained based on one repository have fairly good performance for the images

from quite different sources. This indicates that there are some common characteris-

tics of the interesting region independent of the visual content and is efficiently learned

by the interesting region detection model. The combination of using both the GMM
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and the SVM model for interesting region detection provides better predictions.

The customer photo is taken by human beings that delivers the photographers’

thoughts via the alignment of the pixels, as well as the setting of the camera param-

eters. The pixel builds up the visual content of a photo while the camera metadata

records the camera parameters along with the nature conditions at the moment when

the photo is taken. Ignored in the early years, the metadata is getting more attention

and expectation today. We explore the popularity and usability of all categories of the

metadata for the photo retrieval task among major models sold on the market in re-

cent decades. Our experiment shows that the metadata can improve the performance

of photo retrieval. Our study shows that certain categories of metadata, that seem

extremely promising, are practically useless due to their availability and popularity

for a general photo retrieval system. The study also urges the factory to release more

standard metadata such as the object distance and the focal point position that will

increase the performance of the photo retrieval greatly.

Finally, a user friendly photo retrieval system is built with the interesting region

approach plus metadata assistance. The system provides browsing, query by key-

word, and query by sample image modules that demonstrates the performance of the

approach.

6.2 Future Works

The rules of interesting region detection learned upon 7000 photos will be applied

to a much larger repository with hundreds of thousands of images collected from the

internet with more diverse topics. This will show how general the rules for interesting

region detection can be. We will explore different classification methods such as SVM

for the image retrieval task. This experiment is going to find which classification

benefits most from the imperfect interesting region detection. A larger volume and

richer topic repository will indicate for which categories that interesting region ap-

proach works better and for which categories that the interesting region approach has
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the most challenge. This experiment will provide a guide line for the classification of

specific topics.

We will compose a photo repository from certain models of cameras that can

provide the specific metadata that other cameras usually don’t. For example, the

object distance and the focal point position. Combining with the interesting region

detection technique, the object’s area in the real world can be estimated with the

distance given. Moreover, the focal point tells the system what the photographer was

looking at which could be a robust indicator for the interesting region detection.

We are interested in persuing the answers for the following questions in the future

work:

• What are other information sources that can be exploited for interesting region

detection and improving image classification and retrieval?

• What kind of visual features are more representative of image classification and

retrieval?

• What is the best way to support users to find what they need from large-scale

image collections?

• How to benchmark our algorithm in a large-scale image database?
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APPENDIX A: LEVEL SET DRIVEN BY GMM

Let’s define the cost function needed to be minimize during segmentation as in[67]:

F (Ω, ∂Ω) =
M∑

i=1

∫

Ωi

− ln p(Ix | θi)dx+ length(∂Ω) (A.1)

where p(Ix | θi) is the joint probability same as in Eq.(2.8). Using the same form of

heavy side function Hǫ, the cost function of a level set φi is

F (φi) = −

∫

Ωi

ln p(Ix | θj)Hǫ(φi)dx. (A.2)

We compute the first variation of F

∂F (φi + ǫψ)

∂ǫ
|ǫ=0= −

∫

Ωi

ln p(Ix | θi)H
′
ǫ(φi)dx −

∫

Ωi

(ln p(Ix | θi))
′Hǫ(φi)dx (A.3)

∂ ln p(Ix | θi)

∂µi
= P (i | Ix; θi)

∂

∂µi
ln(πip(Ix | θi))

= P (i | Ix; θi)(−Σ−1
i (Ix − µi))

(A.4)

∂ ln p(Ix | θi)

∂Σi

= P (i | Ix; θi)
∂

∂Σi

ln(πip(Ix | θi))

= P (i | Ix; θi)
1

2
(−Σ−1

i (Σi − (Ix − µi)(Ix − µi)
T )Σ−1

i )

(A.5)

∂ ln p(Ix | θi)

∂πi
= P (i | Ix; θi)

∂

∂πi
ln(πip(Ix | θi))

= P (i | Ix; θi)
1

πi

= 1

(A.6)
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Taking Eq.(2.14, 2.15, A.6) into Eq.(A.3), the second term can be expressed as

∫

Ωi

∂(ln p(Ix | θi))

∂ǫ
|ǫ=0 Hǫ(φi)dx =

m∑

i=1

(
∂µi

∂ǫ
|ǫ=0

∫

Ωi

∂ ln p(Ix | θi)

∂µi
Hǫ(φi)dx+

∂Σi

∂ǫ
|ǫ=0

∫

Ωi

∂ ln p(Ix | θi)

∂Σi

Hǫ(φi)dx+

∂πi

∂ǫ
|ǫ=0

∫

Ωi

Hǫ(φi)dx)

. (A.7)

By the definition of the EM algorithm in Eq.(2.10, 2.11, 2.12), the µi and Σi are

calculated such that Eq.(A.4), and Eq.(A.5) equals 0. Thus, Eq.(A.7) equals 0 and

Eq.(A.3) equals −
∫

Ωi
ln p(Ix | θi)H

′
ǫ(φi)dx, which has the same form as the single

Gaussian model. As a result, the level set of multi-region competition can be used.
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APPENDIX B: PROBABILITY OF STOCHASTIC EVOLUTION

Given an enclosure set S and x ∈ S, the following equation holds for the posterior

probability in Eq.(2.14) with the region restriction

1 =
∑

∀l∈NR(x)∩R(x)

P (l|Ix,Θ) (B.1)

which states that the probability of a pixel’s label remains unchanged or relabels as

one of its neighbor region is 1. The marginal probability of the current conformation

of S despite the operation on x is

∑

∀l∈NR(x)∩R(x)

P (l|Ix,Θ)
∏

∀y∈S∧y 6=x

P (R(y)|Iy; Θ) =
∏

∀y∈S∧y 6=x

P (R(y)|Iy; Θ) (B.2)

The normalized probability considering operation on x for the current conformation

of S is ∏

∀y∈S∧y 6=x

P (R(y)|Iy; Θ)

∑

∀z∈S

∏

∀y∈S∧y 6=z

P (R(y)|Iy; Θ)

∑

∀l∈NR(x)∩R(x)

P (l|Ix,Θ), (B.3)

which can be re-arranged as

1
P (R(x)|Ix;Θ)∑

∀z∈S
1

P (R(z)|Iz ;Θ)

∑

∀l∈NR(x)∩R(x)

P (l|Ix,Θ) (B.4)

It’s trivial that the sum of all the probability of operation on all points in the enclosure

set equals 1

1 =
∑

∀x∈S

1
P (R(x)|Ix ;Θ)∑

∀z∈S
1

P (R(z)|Iz ;Θ)

∑

∀l∈NR(x)∩R(x)

P (l|Ix,Θ) (B.5)

where
∑

∀z∈S
1

P (R(z)|Iz;Θ)
is a normalization factor.
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APPENDIX C: PSEUDOCODE FOR THE TREE TRUNCATION

Algorithm 4 CalculateThreshold(Array,C)

for all Ci ∈ C do
Array ← Array ∪ (Cd − Cd

i )
CalculateThreshold(Array, Ci)

end for

Algorithm 5 Init(C, btm, top)

if |C| = 1 then
Cmark ← 0,ChasCut ← false,CDB ← Cd,CSB ← Cd, btm ←
min(btm,CDB), top← max(top,CSB)

else
Cmark ← 0,ChasCut ← false
for all Ci ∈ C do

Init(Ci,CDB,CSB)
end for
btm← min(btm,CDB), top← max(top,CSB)

end if

Algorithm 6 Mark(C, TT )

for all Ci ∈ C do
if cihasCut = true ∨Mark(Ci, TT ) = true then

ChasCut ← true,Cmark ← 0, BREAK
else

if Cd − Cd
i > TT then

Cimark ← 1,ChasCut ← true
end if

end if
end for
return ChasCut

The 500 is an artificial large dummy number for the contour intensity of the tree

root to guarantee the root has larger contour intensity than any sub-regions.
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Algorithm 7 Truncate(C, TT )

if |C| = 1 ∨ Cmark = 0 then
Cmark ← 2,
return false

end if
for all Ci ∈ C do

if Cimark = 0 ∧ CidoCut = false then
CdoCut ← CdoCut ∨ Truncate(Ci)

end if
end for
if CdoCut = false then
MinMaxDistance ← max({CiDB∀Ci ∈ C})
if CSB −MinMaxDistance > TT then
CdoCut = true
for all Ci ∈ C do

if Cimark = 2 then
Cimark ← 3

end if
end for

else
Cmark ← 2

end if
end if
return CdoCut

Algorithm 8 Segment(C)

if Cmark > 0 then
merge all sub-regions as one

else
for all Ci ∈ C do

Segment(Ci)
end for

end if

Algorithm 9 Main(C)

Array ← ∅

CalculateThreshold(Array,C)

TT ← 2×
P

Array
|Array|

Init(C, 500, 0)
Mark(C, TT )
Truncate(C, TT )
Segment(C)


