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11 
Climate model projections of the terrestrial water cycle are often described using simple empirical 12 
models (“indices”) that can mislead. Instead, we should seek to understand climate model 13 
projections using simple physical models. 14 

15 
Future changes to droughts, floods, heatwaves and wildfires all depend on changes to the water cycle in a 16 
warming world. Changes in these extremes are not just determined by changes in precipitation, but also 17 
by changes in land surface water fluxes (including evaporation, transpiration and runoff) and storages 18 
(including soil moisture, vegetation and groundwater). In order to depict this future, climate science must 19 
rely on models. For example, a climate model can be run under a particular emissions scenario to observe 20 
how precipitation, soil moisture or runoff simulated by the model changes with time. Climate scientists 21 
should not blindly believe everything the model says, but it provides a physically plausible response, 22 
which integrates changes to different hydrological mechanisms in a physically consistent manner. 23 

24 
Instead of directly describing water storages or fluxes simulated by climate models, it has become 25 
common in climate change impact studies to use simple empirical models of “dryness”, “aridity”, or 26 
“drought”, which are calculated using simulated variables from climate models and are interpreted 27 
broadly as proxies for hydrological or ecosystem variables. The main reason for their use is historical: the 28 
relative lack of observations of most water storages and fluxes compared with widely-available 29 
meteorological data (such as precipitation and temperature) led to the historical development of an array 30 
of simple empirical models based on precipitation and temperature. The simple empirical models focused 31 
on here are often termed “indices”, so we shall use the terms interchangeably, while recognizing that the 32 
term “index” can be used more broadly. One prominent example is the “aridity index” (AI), the ratio of 33 
precipitation to potential evapotranspiration (also sometimes defined as the reciprocal and called the 34 
“dryness index”). The long-standing conceptual model of Budyko1 relates the AI to the partitioning of 35 
precipitation between evapotranspiration and runoff; specifically, a higher AI implies a higher “runoff 36 
ratio”, the ratio of the long-term mean annual runoff to the long-term mean annual precipitation. 37 
However, its scope has broadened significantly and it often seems to be interpreted as a general measure 38 
of land surface “dryness”: for instance, it is used explicitly in the definition of “drylands” adopted by the 39 
United Nations2, and is regularly compared to other hydrologic variables, such as soil moisture and 40 
relative humidity. Other examples of widely-used simple empirical models include the Palmer Drought 41 
Severity Index3, the Standardized Precipitation Evapotranspiration Index4, and other variants, which 42 
undergird key IPCC drought results5. 43 

44 
Redundancy, bias and ambiguity 45 
We argue that the use of such simple empirical models in describing climate model projections is often 46 
undesirable for at least three reasons. First, their use is often redundant. Many indices were originally 47 
introduced to circumvent data limitations. However, inside a climate model, data limitations are typically 48 
not a problem, since the climate model provides a complete view of the simulated earth system, including 49 
land hydrology and ecosystems. If one is interested in how soil moisture might change in a warming 50 
world, for example, then it is better to simply examine the soil moisture variable in the climate model 51 



making the projection, rather than an index based on other modelled variables that is only approximately 52 
related to soil moisture6–8. A common response to this point is that land surface models exhibit larger 53 
errors than atmospheric models, so, when analyzing climate model outputs, it is preferable to use indices 54 
of surface quantities that are based on variables from the atmospheric component of the climate model, 55 
like the AI, rather than the land surface component. We agree that land surface models exhibit major 56 
uncertainties, but since they are tightly coupled to the atmospheric model, errors in one propagate rapidly 57 
to the other near the land surface9–11. Thus, there is no reason to favor an atmospheric model over a land 58 
surface model near the land surface. The solution to problems with climate models is not to build new 59 
offline empirical models on top of them, but to improve climate models12. Beyond the AI, the broader 60 
point is that parsimony should be valued by eliminating indices that outlive their usefulness and 61 
introducing new indices only when there is no reasonable existing alternative. 62 
 63 
Second, an index that is a reliable proxy of a particular water storage or flux in the current climate may be 64 
substantially biased in future climates. If an index explains spatial variability in the present climate, it is 65 
often assumed that it can explain temporal variability as the planet warms, but that assumption (space-for-66 
time substitution) may be badly wrong in a non-stationary environment. An example of this is the non-67 
radiative effect of CO2 on plants, which causes the leaves of most plants to fix more carbon for a given 68 
amount of water loss, all else being equal. CO2 is well-mixed in the atmosphere meaning that, in the 69 
current climate, plants are exposed to roughly similar concentrations of CO2. Therefore, CO2 does not 70 
explain much spatial variability in transpiration in the current climate, and indices such as the traditional 71 
AI do not directly include CO2 concentrations in their formulation. However, CO2 rises in a warming 72 
world, and non-radiative effects of CO2 on plants have a first-order impact on changes to the water cycle, 73 
at least in model projections11,13,14. The AI misses these and other15 effects and leads to substantially 74 
biased projections8,16. Specifically, the projected AI declines rapidly in most parts of the world, which 75 
should imply rapidly declining runoff ratios; yet the directly simulated runoff ratios do not reflect this and 76 
even increase in many parts of the world8,12,15. Similarly, the standard definition of a “dryland” is based on 77 
the AI, and so models project rapid and widespread expansion of drylands under warming. Yet the same 78 
models project substantial plant growth in many of the same regions projected to become drylands based 79 
on the AI, which is inconsistent17,18. Using an alternative index to define drylands – specifically designed 80 
to reproduce the spatial distribution of drylands produced by the AI in the current climate but defined in 81 
terms of plant and land surface properties rather than precipitation and temperature – results in projections 82 
of no dryland expansion, on average, in a warmer world18; in other words, projected global dryland 83 
expansion is an artifact of the AI. Beyond the AI, the broader principle is that one should not needlessly 84 
extrapolate an empirical index that has been designed for the present climate into the future, just as one 85 
should not needlessly extrapolate a statistical model beyond the period for which it was constructed.  86 
 87 
Third, indices often introduce definitional ambiguity that slows scientific progress. Concepts such as 88 
“dryness”, “aridity”, and “drought” have multiple definitions in the literature, often associated with a 89 
particular index. These terms are multifaceted and there is room for different perspectives. However, 90 
there is a tendency for definitional ambiguity to creep in, which can render the index unfalsifiable. For 91 
example, it is common to compare the AI and other indices to a range of hydrologic and ecosystem 92 
variables, even though the AI is only linked mechanistically to the runoff ratio and associated quantities. 93 
This is a problem because different hydrologic variables behave differently as the planet warms: for 94 
example, global mean surface soil moisture is projected to decrease, whereas global mean runoff is 95 
projected to increase15. If the AI poorly matches the runoff ratio, it will likely at least qualitatively match 96 
another hydrologic variable. The definitional ambiguity allows the AI to then be defended as tracking at 97 
least some aspects of “aridity” or other ambiguous terms. 98 
 99 
Back to fundamentals 100 
For these reasons, we recommend that simple empirical models not be used in describing climate model 101 
projections unless (1) there is no reasonable alternative, and (2) the index is precisely related to a 102 



hydrologic flux or storage by clear physical mechanisms, and thus makes testable predictions. For 103 
example, the use of the AI in studies of times or places where the runoff ratio has not been measured 104 
would satisfy (1), since the AI can be interpreted as a proxy for the runoff ratio; but its use to describe 105 
climate model projections of the runoff ratio would not, since the runoff ratio – and, more importantly, the 106 
runoff itself -- can be described directly using outputs from the climate model. If the AI is interpreted 107 
solely as a proxy for the runoff ratio using Budyko’s conceptual model1, then it arguably satisfies (2); but 108 
when interpreted as a broader measure of “aridity”, as is common, it does not. In practice, it is almost 109 
always better to describe climate model projections in terms of the climate model’s simulated water 110 
storages and fluxes, rather than using an index. 111 
 112 
We have outlined various problems with simple empirical models, but do not suggest that full-complexity 113 
climate models are the only useful tool for studying future changes to the water cycle. Indeed, simple 114 
physical models – models derived from clear physical arguments that distill a process down to its most 115 
fundamental mechanisms -- remain critical to understanding and scientific progress. A complete review is 116 
beyond the scope of this comment, but two recent examples are Byrne and O’Gorman’s theory of changes 117 
in relative humidity over land20; and Cerasoli et al.’s simple model of potential net cooling effects from 118 
midlatitude afforestation due to clouds21. Projected changes to the water cycle simulated by full-119 
complexity climate models are more robust when they can be reproduced, at least qualitatively, by simple 120 
physical models19. 121 
 122 
In summary, we do not recommend using simple empirical models to describe full-complexity climate 123 
model projections, but do recommend the use of simple physical models to understand them. 124 
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