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Abstract Future flood risk assessment has primarily focused on heavy rainfall as the main driver, with the
assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the
presence of and changes in vegetation have long been known to influence the relationship between rainfall and
runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the
corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble
to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the
magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in
event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are
linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both
linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning
regression tree approach, we find that changes in canopy evaporation is the most important variable related to
changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent
rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios.
Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand,
and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with
important implications for society.

Plain Language Summary Climate change is leading to increases in the magnitude and number of
extreme rainfall events. These increases in extreme rainfall events are often assumed to lead to an increase in
extreme flooding events. However, using a climate model ensemble, our results indicate that changes in
vegetation and atmospheric water demand may alter the relationship between extreme rainfall and extreme
runoff. Notably, for a majority of the Earth surface, we find that projected changes in atmospheric aridity and
vegetation lead to drier soil conditions prior to the extreme rainfall event that reduces the amount of hydrologic
runoff generated. These findings have important implications for water resources management.

1. Introduction
Hydrologic extremes have severe consequences for human, environmental, and economic sectors. One of the
well‐established outcomes of ongoing climate change is an increase in the number and magnitude of extreme
precipitation events even with minimal changes in annual or seasonal precipitation (Kirchmeier‐Young &
Zhang, 2020; Pendergrass & Knutti, 2018; Polson et al., 2013). Even for areas that are projected to experience a
decline in annual precipitation, the number and intensity of short duration heavy precipitation events are likely to
increase (Allan et al., 2021). This increase in precipitation extremes has already been observed throughout the
world (Barbero et al., 2017; Westra et al., 2013), with sub‐daily extreme precipitation changes generally aligning
at or above the Clausius‐Clapeyron relationship (∼7%°C− 1; Visser et al., 2021) and a lower precipitation
sensitivity (2%–3%°C− 1) for longer time intervals due to energetic constraints (Allen & Ingram, 2002; Visser
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et al., 2021). Climate model projections agree with these observations and suggest that precipitation extremes will
continue to increase into the future with increases in air temperature (Ficklin et al., 2022; Visser et al., 2021) with
high confidence (Allan et al., 2021).

It is often assumed that extreme precipitation increases also will lead to increases in extreme runoff. However,
previous work has suggested that this is not always the case (Ivancic & Shaw, 2015; Sharma et al., 2018; Wasko
et al., 2021; Zhang et al., 2022), resulting in uncertain regional runoff and subsequent flooding trends under
increasing extreme precipitation (Blöschl et al., 2019; Mallakpour & Villarini, 2015; Wasko & Nathan, 2019;
Wasko et al., 2021; Zhang et al., 2022). Prior work suggests that these discrepancies might stem from changes in
the extreme runoff generation mechanisms, where increases in rain‐induced extreme runoff events are offset by
decreases in snowmelt‐induced extreme runoff events (Burn & Whitfield, 2023; Zhang et al., 2022). However,
there remains a lack of consensus of runoff trends from extreme precipitation events (Mallakpour & Villar-
ini, 2015; Wasko et al., 2021), suggesting that (a) we lack a thorough understanding of how the interaction be-
tween climate and biotic factors affect precipitation partitioning into runoff and soil‐water infiltration, and (b)
mechanistic drivers of the changes in antecedent conditions need to be examined in more detail. Additionally,
given that extreme runoff events in many colder climates are transitioning from snowmelt‐to rain‐driven (Burn &
Whitfield, 2023; Zhang et al., 2022), we need an improved understanding of the relationship between future
extreme precipitation and runoff in multiple environmental and climatic settings.

Antecedent soil water content is the largest modulator of the amount of runoff from precipitation (Berghuijs
et al., 2019; Ivancic & Shaw, 2015; Wasko & Nathan, 2019). With climate change, declines in surface‐layer soil
water content are expected, even with increases in precipitation (Cook et al., 2020; Stevenson et al., 2022),
stemming from increases in vegetation water use due to greening (Li et al., 2023; Mankin et al., 2017, 2018, 2019)
and atmospheric demand due to higher temperatures (Ficklin & Novick, 2017; Novick et al., 2016). Additionally,
vegetation greening can increase canopy interception, which increases canopy evaporation and results in further
declines in soil water content (Mankin et al., 2019). Much of this work, however, has been on the seasonal or
annual scale, masking how these changes alter the event‐based relationship between extreme precipitation and
runoff that makes up a substantial portion of flooding events (Gillett et al., 2022). An increased understanding of
this relationship is crucial for water resource and hazard planning.

Here, we address this knowledge gap by investigating the changing relationship between projected changes in
daily extreme precipitation events (liquid precipitation; hereafter “rainfall”) and the corresponding runoff.
Specifically, we analyze daily rainfall and runoff from 30 members of the state‐of‐the‐art Community Earth
System Model version 2–Large Ensemble (CESM2‐LE; Rodgers et al., 2021) under historical and projected
medium‐to‐high scenario climate forcing (SSP3‐7.0; Meinshausen et al., 2020). Using a large ensemble allows for
robust sampling of extreme rainfall and runoff events while also controlling for radiative forcing and model
uncertainty or biases (Mankin et al., 2020; Stevenson et al., 2022; Touma et al., 2021, 2022). Although data from
multiple large ensembles are publicly available, only the CESM2‐LE output provides relatively high temporal
(daily) and spatial (∼1°) resolutions, includes all the required variables needed for the analysis, and has a rela-
tively large ensemble size (see Section 2).

2. Materials and Methods
2.1. Community Earth System Model Version 2–Large Ensemble

The Community Earth System Model (CESM) is a fully coupled, global‐scale climate model with a grid reso-
lution of 0.9424° latitude X 1.25° longitude. CESM uses the Community Land Model (CLM; Lawrence
et al., 2019) to simulate land surface processes. We use individual members of the CESM2 Large Ensemble
(CESM2‐LE; Rodgers et al., 2021) to assess whether the probability of extreme runoff from extreme rainfall will
change in the future. The CESM2‐LE is a 100‐member ensemble that was run from 1850 to 2014 under historical
forcing and from 2015 to 2100 under the high‐emission SSP3‐7.0 scenario. We use the first 30 of these ensemble
members, which allows us to balance computational time/effort for analyzing multiple global daily time series
while also sufficiently capturing the impact of forced changes in climate variability on extreme rainfall and runoff
events (Milinski et al., 2020). CLM simulates runoff using a combination of surface and subsurface runoff.
Surface and subsurface runoff are derived from soil moisture (e.g., saturation, saturated thickness) and topo-
graphic characteristics (e.g., slope; Lawrence et al., 2019). Full details on the CESM2‐LE model and initiali-
zations can be found in the model documentation (Danabasoglu et al., 2020; Rodgers et al., 2021).
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From the CESM2‐LE, we extracted simulated variables related to rainfall and runoff. Specifically, daily rainfall
(specified as RAIN in the CESM2‐LE model output naming convention), total runoff (QRUNOFF; a variable
used in previous work; Scheff et al., 2022), and snow depth (SNOWDP; used to assess whether snow was present
on the ground at the time of the extreme rainfall event). The extracted daily antecedent variables were liquid water
in the top 10 cm of the soil (SOILWATER_10CM), transpiration (QVEGT), canopy evaporation (QVEGE),
ground evaporation (QSOIL), total projected leaf area index (TLAI), and reference height (2 m) air temperature
(TREFHT) and relative humidity (RHREFHT) used to calculate vapor pressure deficit (VPD).

2.2. Runoff Ratio and Antecedent Analyses

For each CESM2‐LE member, we find the 95th percentile of rainfall and runoff (with dry days removed; defined
as <0.01 mm) occurring on a snow‐free surface for the pre‐industrial historical (1850–1880) time period for each
land surface grid cell. This time period was chosen to eliminate any influence of climate change on extreme
precipitation, runoff, and antecedent conditions. Based on the aforementioned definitions, we then extract every
rainfall event that meets or exceeds the historical 95th percentile of rainfall for the historical and projected (2070–
2100) time periods that also occurs on a snow‐free surface. For consecutive days with rainfall ≥95th percentile,
the rainfall, runoff (day of or day after), and antecedent conditions corresponding to the first day are extracted. We
chose days without a snowpack present to only assess the rainfall‐runoff relationship and not include snowmelt
from rain‐on‐snow as part of the runoff. For each extreme rainfall event, we then extract the maximum runoff
from this event, which is defined as the maximum runoff on the day of or the day after the extreme rainfall event.
The runoff ratio is estimated by dividing the maximum runoff depth by the extreme rainfall event depth. The
probability of extreme runoff is estimated by dividing how many extreme runoff events occurred (based on its
historical 95th percentile) by the total number of extreme rainfall events (# of extreme runoff events/# of extreme
rainfall events).

To assess the state of the antecedent hydrologic conditions prior to the extreme rainfall event, we extract the
antecedent variables (see above for CESM2 variable names) for each extreme rainfall event for the historical and
projected time periods. Specifically, we examine surface‐layer soil‐water content (top 10 cm of the soil column),
which is highly sensitive to runoff and ground evaporation (Penna et al., 2011), evapotranspiration (separated into
its components: ground evaporation + canopy evaporation + plant transpiration), leaf area index (LAI), vapor‐
pressure deficit (VPD), and total rainfall prior to the extreme rainfall event. We examine surface‐layer soil water
content because the event‐based runoff examined in this study is mostly driven by stormflow (rapid surface and
subsurface flow) while baseflow levels (between rainfall events) are mainly influenced by deep soil and
groundwater flow (Katsuyama et al., 2009; Penna et al., 2011; Scipal et al., 2005; Singh et al., 2021). To quantify
the mean state of the antecedent conditions and to match up with rainfall, runoff, and runoff ratio (which are a
singular value), we take the mean of each antecedent variable for the 5 days preceding the day of the extreme
rainfall event (but does not include the day of the extreme rainfall event), a commonly used time period for
rainfall‐runoff analyses (NRCS, 2004) that also includes shorter‐duration events. We acknowledge that the
antecedent time period can vary depending on the time of year and location (Brocca et al., 2008; Mishra &
Singh, 2006), and therefore we also compare the 5‐day antecedent results with a longer antecedent time period
(14 days) in the Supporting Information S1. Moreover, future climate projections often indicate a widespread
occurrence of time‐mean surface soil drying (Cook et al., 2020), suggesting that changes in antecedent soil water
content may not be affected by the length of the antecedent time period. Finally, historical and projected time
period results are summarized by taking the median of all extreme rainfall, runoff and their antecedent conditions
for the entire time period, resulting in one value for each time period for extreme rainfall, runoff and the ante-
cedent conditions (surface‐layer soil‐water content, evapotranspiration and its individual components, LAI, VPD,
and total prior rainfall). This was done for each land surface grid cell and ensemble member (n = 30). Changes
(either percent change or ratio change) are based on these values, and an CESM2‐LE mean was calculated.

2.3. Statistical Analyses

To attribute changes between extreme rainfall, runoff and antecedent variables, we perform correlations and
machine learning regression tree ensembles. Due to the variety of relationships between rainfall, runoff, and
antecedent variables, we use Spearman's rank correlations (rs). Additionally, due to the differential grid‐box
areas, rs values are estimated using probability‐weighted bootstrap sampling (n = 1000) and are presented as
the mean of the bootstrapped correlations. Unless otherwise noted, these correlations were performed at the global
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scale for all land surface grid cells (n – 14,000). While correlation analyses on their own do not indicate a causal
relationship, they allow us to document the strength and direction of relationships between important variables.

To control for the influence of changing antecedent rainfall on antecedent conditions (specifically soil water
content), we perform an additional analysis where we extract all land surface areas (or grid cells) with minimal
changes in ensemble mean antecedent rainfall (±10%) from the historical to projected time periods. In addition to
minimal changes in antecedent rainfall, areas with ensemble mean increases in runoff ratio (projected runoff ratio/
historical runoff ratio > 1) and decreases (<1) are further extracted for analyses. This results in two spatial units
(one with increases in runoff ratio and one with decreases) with a large number of grid cells that have minimal
projected changes in antecedent rainfall. For these separated regions, we use the nonparametric Mood's median
test to assess whether the medians are significantly different between regions of increasing and decreasing runoff
ratio and minimal changes in antecedent rainfall.

For these separated regions, we also use a machine‐learning regression‐tree approach to understand how changes
in individual antecedent evapotranspiration components (related to greening) are related to changes in antecedent
soil water content, a dominant variable in determining the rainfall‐runoff relationship (Penna et al., 2011).
Specifically, the dependent variable is the ensemble mean change in antecedent soil water content from the
historical to the projected time period, while the independent variables are changes in antecedent transpiration,
canopy evaporation, ground evaporation, and total antecedent rainfall. This approach was performed separately
for areas with increases and areas with decreases in the ensemble runoff ratio.

To understand the importance of the aforementioned variables in these separated regions, we use bagging (or
bootstrap aggregation), a generalized version of a random forest approach. Rather than relying on an individual
multiple regression model, bagging uses an ensemble of trees and aggregates results from each tree for a final
model and prediction, resulting in reduced overfitting and improved generalization (Breiman, 1996, 2001). No
distribution is assumed and the nonparametric fitting is flexible (James et al., 2013). From these individual
regression models, the importance of independent variables (in this case, the antecedent variables) can be
determined by calculating howmuch the objective function (in this case, mean square error) changes by swapping
in and out the predictors and then dividing that value by the number of branches. This approach also accounts for
correlations between predictor variables because at each step in the tree the best multiple predictors (in terms of
the objective function) are selected.

With bagging, the number of bootstrapped samples (or number of trees to grow) must be defined. Then, for each
tree, a minimum set of observations (or leaves) must also be defined for each tree branch. To find the number of
trees to grow and minimum number of leaves, we examined the relationship between the mean square error and
the number of trees and minimum number of leaves. The final values were chosen based on the number of trees
and minimum number of leaves where model improvement leveled off. This results in a parsimonious model as
possible to avoid overfitting. From this, we found that 15 number of trees with a minimum of 5 number of leaves
were the optimal values. We used MATLAB® version 2021b to build the regression trees. More details about
bagging in hydrology can be found in Zhang et al. (2018). We present model evaluation statistics for the
regression tree ensemble model for both separated regions in Table S1 and Figure S1 of Supporting Informa-
tion S1. Which antecedent variables are important for changes in antecedent soil water content for each region are
presented in the results.

All calculations reported here use areal weighting or areal percentiles (Willmott et al., 2007), including the
histograms summarizing the mapped results. When presenting our statistical results, we place a strong emphasis
on effect size rather than significance tests, driven by the widespread recognition that significance testing should
receive less attention (Gelman & Stern, 2006; Halsey, 2019).

2.4. Observational Comparisons

To ensure that the CESM2‐LE is adequately simulating the relevant variables during the historical time period, we
compare CESM2‐LE outputs against multiple monthly gridded observations compiled by the International Land
Model Benchmarking project (ILAMB; Collier et al., 2018; Table S2 in Supporting Information S1). These
include runoff from the Conserving Land‐Atmosphere Synthesis Suite (CLASS v1.1; Hobeichi et al., 2020) and
Linear Optimal Runoff Aggregate (LORA v1.0; Hobeichi et al., 2019), surface soil moisture (Wang et al., 2021),
evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017) and
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MOD16A2 (Mu et al., 2011), and LAI from MODIS (Myneni et al., 2002), AVHRR (Vermote, 2019), and
AVH15C1 (Claverie et al., 2016). In addition to monthly comparisons, we also compare runoff from the CESM2‐
LE against runoff from the National Centers for Environmental Prediction/Department of Energy Reanalysis II
(hereafter NCEP2; Kanamitsu et al., 2002a). Other relevant variables such as precipitation, temperature, and
snowpack from the CESM2‐LE have been validated in previous work (Abdelmoaty et al., 2021; Lawrence
et al., 2019; McKinnon & Simpson, 2022; Wieder et al., 2022; Zeder & Fischer, 2024).

The validation data sets listed in Table S2 of Supporting Information S1 are linearly interpolated to the same
spatial resolution as the CESM2‐LE. Due to the lack of gridded, daily observations for all relevant variables, the
CESM2‐LE daily data are aggregated to a monthly time period for direct comparison with the monthly obser-
vations. While global submonthly observational data exists for some land surface and hydrological variables (e.g.,
MODIS ET), their temporal extents are relatively short, which impedes our ability to robustly assess submonthly
uncertainties. Over such a short period of analysis, differences between CESM2‐LE and the observational data
sets could be dominated by differences in the phases of modes of variability like El Niño–Southern Oscillation
(ENSO) or the Pacific Decadal Oscillation (PDO) and periods of accelerated warming, clouding our insight into
the model uncertainties.

Between the CESM2‐LE ensemble mean and gridded observations, we compare spatial biases in the mean state
and the variability (using the interquartile range; IQR) of all months (January through December) during the direct
time period overlap; see Table S2 in Supporting Information S1. For the mean and IQR, spatial biases are
calculated by subtracting the observations from the CESM2‐LE ensemble mean. Area‐weighted Pearson corre-
lations, area‐weighted mean absolute errors, and kernel density scatterplots are calculated between the obser-
vations and the CESM2‐LE ensemble mean. Using the overlapping monthly time series of the CESM2‐LE
ensemble mean and the observations, we also present the mean absolute error for each grid cell. Additionally,
using the Theil‐Sen trend test, we assess trends in greening between the CESM2‐LE ensemble mean and LAI data
sets in Table S2 of Supporting Information S1. For the NCEP2 daily runoff validation, we compared the 95th and
99th percentiles of runoff for the 1980–2009 overlapping time period for each data set. Results from these an-
alyses are shown in Figures S2–S16, and Tables S2 and S3 of Supporting Information S1).

2.5. CMIP6 Monthly Comparisons

To ensure that the CESM2‐LE projections are consistent with other CMIP6 models, we compare monthly pro-
jections of surface soil moisture (CMIP6 variable IDmrsos), runoff (mrro), evapotranspiration (evspsbl), and LAI
(lai). Historical and projected (SSP3‐7.0) CMIP6 data are downloaded from the Center for Environmental Data
Analysis (CEDA) Archive (https://data.ceda.ac.uk/badc/cmip6/data) and are listed in Table S4 of Supporting
Information S1. Daily data are not available for a large number of GCMs, so we assess the CESM2‐LE projections
using monthly data (the CESM2‐LE daily data are aggregated to monthly data). All GCM data are linearly
interpolated to the same spatial resolution of the CESM2‐LE (0.9424° latitude X 1.25° longitude). Although this
monthly comparison allows us to contextualize the overall spatial patterns of hydrologic and land surface vari-
ables in CESM2‐LE, sufficient daily data availability for other CMIP6 models would have allowed for more
relevant comparisons for our study. Using similar metrics as the CESM2‐LE analysis, we compare changes from
the historical to the projected time period. Results from this analysis are shown in Figures S17–S20, and Table S4
of Supporting Information S1).

3. Results and Discussion
3.1. Changes in Extreme Rainfall and Corresponding Runoff

The CESM2‐LE projects widespread projected increases in both the magnitude and number of extreme rainfall
events, consistent with previous work (Akinsanola et al., 2020; Pendergrass & Knutti, 2018). Figure S21 in
Supporting Information S1 displays the CESM2‐LE ensemble mean of the number of extreme rainfall events
assessed for the historical and projected time periods. On average, the number of extreme rainfall events and their
magnitudes increased across the land surface relative to the historical time period, with robust agreement among
CESM2‐LE members (defined as an agreement on the sign of the change for 2/3 of the ensemble members;
Figures 1a and 1b). The largest percent increases in the numbers of extreme rainfall events were found in the
northern hemisphere, with large changes in western North America, and western Asia (ensemble mean >150%
increase), while portions of Central America, South America, the Mediterranean, and Africa showed slight
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decreases (∼10%–20%). Similarly, we found increases in extreme rainfall magnitude using the CESM2‐LE
ensemble mean, with large (>10%) increases found throughout the global land surface. In general, changes in
the numbers of extreme rainfall events were much larger than those in the extreme rainfall magnitude (Figures 1a
and 1b), likely due to energy limitations (Barbero et al., 2019; Ivancic & Shaw, 2015). In addition to the increases
in extreme rainfall magnitude, the number of extreme rainfall events is projected to increase due to warming‐
driven transitions from snow to rain (number of historical and projected events shown in Figure S21 of Sup-
porting Information S1). With a declining snowpack, more rainfall events also occur on a snow‐free land surface
(Musselman et al., 2018; Wieder et al., 2022). We recognize that the interpretation of an extreme precipitation
event can vary between studies (Pendergrass, 2018). The 95th percentile used in this study allows for a robust
sampling of rainfall‐runoff events compared to events farther into the upper tail. We do, however, compare the
runoff ratio using the 99th percentile as a threshold and found no substantial differences (Figures S22 and S23 in
Supporting Information S1).

While we find increases in ensemble mean rainfall extremes for much of the land surface, these increases do not
lead to concomitant increases in runoff extremes simulated by the CESM2‐LE. We see declines in both the
probability of extreme runoff and the event‐based runoff ratio (projected runoff ratio/historical runoff ratio < 1)
for 43.5% and 56.9% of the land surface, respectively, for the CESM2‐LE ensemble mean (Figures 1c and 1d),
with declines in the runoff ratio more widespread than declines in runoff magnitudes (Figure S24 in Supporting
Information S1). There is widespread robust agreement among CESM2‐LE members for the widespread declines
in the runoff ratio, suggesting that declines in extreme runoff occur in the same places where extreme rainfall is
projected to increase. While many of the grid points are near the runoff ratio increase/decrease division line
(projected runoff ratio/historical runoff ratio = 1), it is important to note that these minor runoff ratio decreases
are occurring even with a corresponding increase in extreme rainfall in both magnitude and number of events

Figure 1. Ensemble mean of projected (2070–2100) changes from the historical time period (1850–1880) for (a) extreme rainfall magnitude (%), (b) number of extreme
rainfall events (%), (c) probability of an extreme runoff event occurring from an extreme rainfall event (%), and (d) change in the event‐based runoff ratio (projected/
historical). The stippling indicates a non‐robust ensemble agreement (defined as <2/3 of the ensemble members agree on the sign of the change). The histograms for
each subpanel show the distribution of percent of the land surface with an increase (for a, b) or a decrease (for c, d) in the projections across the individual CESM2
members and the distribution of area‐weighted land surface averages across the ensemble.
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(Figure 1). Of the land surface area with a CESM2‐LE ensemble mean projected runoff ratio decrease, 93% had an
increase in extreme rainfall magnitude. This suggests that there are other mechanisms that account for these
declines (or lack of increase).

These declines in event‐based runoff ratio are largely concentrated in the northern high latitudes and Amazon
region; however, we also find declines for portions of western North America and Central America (Figures 1c
and 1d). Large increases in runoff ratio following extreme rainfall events are found in central Africa and western
Asia (Figures 1c and 1d). We also find a weak correlation (area‐weighted Spearman correlation rs = 0.31) be-
tween changes in extreme rainfall magnitude and extreme runoff magnitude across all land grid cells (n – 14,000)
in the ensemble mean field.

3.2. Drivers of Runoff Ratio Changes

We observe that areas with projected declines in event‐based CESM2‐LE simulated runoff ratios are linked to
reduced antecedent soil water content (rs = 0.56), even in locations experiencing increases in rainfall extremes
(Figures 2a and 2b) and with an extended antecedent time period of 14 days (see Figure S25 in Supporting In-
formation S1). Previous studies have also highlighted that this contrasting relationship under historical and
projected changes in climate is largely controlled by simulated changes in antecedent soil water conditions
(Ivancic & Shaw, 2015; Sharma et al., 2018; Wasko et al., 2021), particularly for frequent rainfall extremes where
the rainfall rate does not exceed the top soil layer maximum infiltration rate (Masson‐Delmotte et al., 2021).
Building on this, we find widespread, robust declines in CESM2‐LE ensemble mean antecedent soil water content
for the land surface (ensemble average decline for 62% of land surface area; Figure 2a). The largest declines
(− 40% or less) are found in the northern latitudes, but other regions such as the western United States and the
Amazon region also exhibit robust declines (− 25% to − 15%).

Antecedent rainfall (soil water increase) and the role of vegetation via transpiration and canopy evaporation (soil
water decrease) are the dominant controls on antecedent soil water content (Jung et al., 2010) and therefore the
runoff ratio. Antecedent soil water content has often been equated with antecedent rainfall (Woldemeskel &
Sharma, 2016), but ongoing climate change increases evaporative and vegetation water demand, with sometimes
rapid decreases in soil water content (Pendergrass et al., 2020; Yuan et al., 2023). Here, we find minimal changes
in CESM2‐LE simulated ensemble mean antecedent rainfall (ensemble average + 0.13%) with declines for 62%
of the land surface area (Figure 3a), a further indication of hydrologic intensification whereby extreme events are
preceded by drier than usual periods (Ficklin et al., 2022). The changes are spatially variable, with areas such as
the Amazon region, western Africa, and western Asia exhibiting declines (− 30% to − 20%), while increases are
found in regions such as western North America and portions of northern Africa and southern South America
(25%–40%). It is also important to note that there are large areas (especially in the northern latitudes) where

Figure 2. Ensemble mean of projected (2070–2100) changes from the historical time period (1850–1880) for (a) % change in antecedent surface soil water content and
(b) a binned scatterplot of the relationship between changes in event runoff ratio and antecedent soil water for each land grid cell. The histograms in panel a show the
projections from each individual member of the CESM2 large ensemble of area with a decrease and the area‐weighted land surface average. The stippling indicates a
non‐robust ensemble agreement (defined as <2/3 of the ensemble members agree on the sign of the change). The size of the filled circles in b is proportional to the area
of the terrestrial surface in each bin. The percentages in b represent the percent of the total area in each quadrant.
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projected changes in antecedent rainfall are not robust. The Spearman correlation between changes in antecedent
rainfall and antecedent soil water content is +0.42 for all land grid cells, suggesting that changes in antecedent
rainfall exhibit some control on antecedent soil water content, but changes in evapotranspiration are likely
important as well.

Overall, we find that the global land surface average simulated antecedent evapotranspiration increased by 0.67%
for the projected time period, with increases found for 42.3% of the area (Figure 3b). There is an upper limit on
howmuch evapotranspiration can occur, with some regions being water‐limited or energy‐limited or transitioning
between these two regimes, resulting in high spatial variability of evapotranspiration and its relationship to soil
water content (Berg & Sheffield, 2018). For example, Feng et al. (2023) found high spatial variability between the
correlation of peak growing season soil moisture and evapotranspiration, with widespread areas having corre-
lations of different signs. Additionally, using an ensemble of climate models, Berg and Sheffield (2018) found
notable climate model diversity in global terrestrial soil moisture and evapotranspiration coupling in terms of both
patterns and magnitude. Finally, Novick et al. (2016) found that VPD and soil moisture decouple as the temporal
resolution increases (seasonal to hourly). While VPD is not the same as evapotranspiration, it is a large driver.
Additionally, this work assesses correlations in percent changes from the historic to projected time periods in
variables that are either at the daily time step (rainfall or runoff) or averages of the 5‐day antecedent time period
and then summarized for subsequent analyses. Both are snapshots in time, rather than an annual or seasonal time
step where correlations between soil moisture and evapotranspiration are more coupled (Novick et al., 2016). It is
not surprising, then, that the correlation between projected changes in antecedent soil water content and
evapotranspiration for all land grid cells was weak (rs = 0.07) and the correlation between changes in antecedent

Figure 3. Ensemble mean of projected (2070–2100) changes from the historical time period (1850–1880) for (a) % changes in antecedent rainfall, (b) % changes in
antecedent evapotranspiration, (c) change in antecedent leaf area index (LAI) (defined as projected antecedent LAI/historical antecedent LAI), and (d) % changes in
antecedent vapor pressure deficit. The stippling indicates a non‐robust ensemble agreement (defined as <2/3 of the ensemble members agree on the sign of the change).
The histograms for each subpanel show the distribution of percent of the land surface with a decrease (for a) or an increase (for b–d) in the projections across the
individual CESM2 members and the distribution of area‐weighted land surface averages across the ensemble.
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rainfall and evapotranspiration was moderate (rs = 0.30). However, to instill confidence that the CESM2
ensemble is adequately simulating the coupling of evapotranspiration and surface soil moisture, we performed a
Pearson correlation analysis between daily evapotranspiration and surface soil moisture (not just antecedent) from
1980 to 2009 and found strong coupling (both negative and positive) in energy‐ and water‐limiting areas
throughout the global land surface (Figure S26 in Supporting Information S1).

3.3. A Closer Look at Antecedent Conditions

Extreme rainfall events can be preceded by smaller antecedent rainfall events that replenish soil water content and
alter evapotranspiration, resulting in changes to the runoff ratio. To address this, we perform an additional
analysis separating areas where the CESM2‐LE ensemble mean projected runoff ratio increases (projected runoff
ratio/historical runoff ratio > 1) or decreases (ratio < 1). Within these separated areas, we also extract areas where
antecedent rainfall changes minimally (±10%) compared to the historical time period, thus allowing for a
consistent comparison of antecedent soil water content inputs (i.e., rainfall) between the historical and projected
time periods. Taken together, this allows for a comparison of changes in the runoff ratio while controlling for
changes in antecedent rainfall. Using these separation thresholds, we find that runoff ratio increases for 28% of the
land surface (excluding Greenland and Antarctica) and decreases for 30% of the land surface, while controlling
for minimal changes in antecedent rainfall. Diverse environments are represented in each category (Figure 4a).

After controlling for changes in antecedent rainfall, differences in the antecedent conditions that drive CESM2‐
LE simulated runoff changes between areas with runoff ratio increases or decreases emerge, largely driven by
changes in evapotranspiration via changes in vegetation (Figure 4). As expected, we find a significant difference
(Mood's median test) in the medians of antecedent soil water content changes between areas with runoff ratio
increase (area‐weighted median for soil water change: +0.81%) and areas with decrease (− 3.5%). Similarly, we
find slight increases in antecedent evapotranspiration associated with decreases in runoff ratio (+0.97%)
compared to increases in runoff ratio (− 4.6%), where both medians are significantly different from each other
(Figure 4b).

Figure 4. Summary of changes in antecedent conditions for areas with minimal projected antecedent rainfall change (±10%) but with increases or decreases in runoff
ratio. The maps indicate the delineated areas for runoff ratio decreases (panel a; red color) and increases (panel a; blue color). The specific antecedent conditions
assessed include evapotranspiration (b), leaf area index (LAI, defined as projected antecedent LAI/historical antecedent LAI; (c)), vapor pressure deficit VPD (d),
transpiration (e), canopy evaporation (f), and ground evaporation (g). Vertical lines represent the area‐weighted median for each grouping.
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3.4. The Role of Vegetation Greening in Changes in Runoff Ratio and Soil Water Content

To further understand the cause of antecedent evapotranspiration changes and the role of vegetation greening, we
now assess changes in individual evapotranspiration components and their relationship to changes in soil water
content simulated by the CESM2‐LE (Figures 4 and 5). Historically, the approximate area‐weighted median of
the ratios of antecedent transpiration, antecedent canopy evaporation, and antecedent ground evaporation to total
antecedent evapotranspiration are 0.40, 0.20, and 0.40, respectively, though these values can vary significantly
depending on vegetation types (or lack of vegetation) and climates. Modeling these individual evapotranspiration
components can be highly uncertain, and errors in one component can cascade into errors into the other com-
ponents (e.g., Miralles et al., 2011; Zhang et al., 2016). It is also important to note that other mechanisms such as
changes in roughness, enhanced infiltration from changes in microporosity, and net radiation that are not
explicitly assessed in this work can also influence runoff via changes in soil water content and evapotranspiration.
Additionally, we find that antecedent VPD, a large driver of evapotranspiration and potential evapotranspiration
(Liu et al., 2020) is significantly increasing for much of the global land surface area and likely influences much of
the results within this study. However, VPD has large increases in both areas of runoff ratio increases and de-
creases (Figure 4), suggesting that VPD increases alone are not the sole reason for changes in the runoff ratio.
Further, we found essentially no correlation between antecedent canopy evaporation (rs = 0.07), transpiration
(rs= 0.11), and a small‐to‐moderate correlation with antecedent ground evaporation (rs= 0.34) for the entire land
surface.

We hypothesize that, via changes in individual evapotranspiration components, projected antecedent greening
(increased LAI) leads to a decline in antecedent soil water content that results in a decline in the runoff ratio, even
with increases in extreme rainfall. Increased antecedent LAI results in enhanced antecedent transpiration and
canopy evaporation, therefore reducing antecedent soil water content (negatively correlated). Further, changes in
antecedent soil water content, then, are positively related with antecedent ground evaporation because the de-
clines in antecedent soil water content drive declines in ground evaporation. Building on this, we find strong
correlations between antecedent LAI and antecedent transpiration (rs = 0.81) and antecedent LAI and antecedent
canopy evaporation (rs = 0.63), and a moderate correlation between antecedent LAI and ground evaporation
(rs = − 0.46). However, given the complex, non‐linear relationships between these variables, we perform a
regression tree analysis to understand how projected changes in individual antecedent evapotranspiration com-
ponents rank in importance in affecting changes in antecedent soil water content.

As before, we analyze the changes in individual CESM2‐LE simulated antecedent evapotranspiration compo-
nents for areas of increases or decreases in runoff ratio and minimal antecedent rainfall change (Figure 4a). We
find a clear shift to higher antecedent transpiration for areas with decreases in runoff ratio (land surface median:
− 12.1%) as compared to areas with increases in runoff ratio (median: − 35.9%; Figures 4e and 5), even though
antecedent transpiration decreased compared to the historical time period. Using the regression tree models to
understand the relative importance of each antecedent evapotranspiration component to changes in antecedent
soil water content, we found that antecedent transpiration was the least important evapotranspiration component
in determining changes in soil water content in areas of decreased runoff ratios and areas of increased runoff ratios
(Figure 6). This indicates, that while changes in antecedent transpiration may be important in dictating changes in
antecedent soil water content, changes in the other antecedent evapotranspiration components had a larger effect
on changes in antecedent soil water content.

Figure 5. Ensemble mean of percent changes from the historical to projected time period in antecedent (a) transpiration,
(b) canopy evaporation, and (c) soil evaporation. The stippling indicates a non‐robust (defined as less than 2/3 of the CESM2
large ensemble members agree on sign) increase.
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Projected antecedent transpiration generally declined for both groups compared to the historical time period,
even though we find widespread vegetation greening (Zhu et al., 2016; defined here as LAIproj/LAIhist > 1;
Figure 3c), likely due to a widespread decline in antecedent soil water content (source of evapotranspiration),
increased CO2‐induced water‐use efficiency (Kooperman et al., 2018; Mankin et al., 2019; Swann et al., 2016;
Yang et al., 2019) (average CO2 for the projected time period is ∼780 ppm), and large increases in antecedent
VPD for 87% of the land surface (Figures 3d and 4d), further decreasing stomatal conductance and limiting
transpiration (Grossiord et al., 2020). However, as previously mentioned, the relationship between LAIproj/
LAIhist and change in antecedent transpiration across all land grid cells has a strong positive correlation
(rs = 0.81; Figure S27 in Supporting Information S1), suggesting that increased LAI causes transpiration to
increase prior to heavy rainfall events (Wang et al., 2014) even though antecedent transpiration itself exhibits
projected declines (Figure 4e). Increased LAI and/or earlier leaf‐out can also produce warmer conditions (and
hence VPD), especially in the northern latitudes (Xu et al., 2020). However, while some differences in the
median dates of extreme rainfall event timing (e.g., median day of the year) between areas with an increase or
decrease in runoff ratio exist (Figure S28 in Supporting Information S1), the difference is minimal, with a shift
in +1.8 days for areas with runoff ratio increases and +2.5 days for areas with runoff ratio decreases (Figure
S29 in Supporting Information S1).

While projected antecedent transpiration generally decreases, simulated antecedent canopy evaporation increases
for a majority of the land surface (Figure 5), even when controlling for minimal change in antecedent rainfall
(Figure 4f). Larger projected increases in canopy evaporation are found for areas with runoff ratio decreases
(median: 38.5%) compared to areas with runoff ratio increases (median: 17.9%; Figure 4f). Based on the
regression tree models, for areas of runoff ratio decreases, antecedent canopy evaporation was the most important
variable in determining changes in antecedent soil water content, while both antecedent canopy evaporation and
transpiration were nearly equal in importance in areas of runoff ratio increases (Figure 6). This indicates that in
areas of runoff ratio increases, changes in antecedent canopy evaporation have large importance in determining
the changes in antecedent soil water content.

Increased LAI can lead to increased annual canopy evaporation due to increased interception (Mankin
et al., 2018), but canopy evaporation also has been shown to decline due to less frequent and more intense rainfall
events (Lian et al., 2022). While we show increased extreme rainfall and frequency, we also find a strong cor-
relation between antecedent LAI and canopy evaporation across all land grid cells (rs = 0.63). In addition to
greening, the widespread increase in evaporative demand from higher VPD (Figure 4d), as well as increased
surface roughness from higher LAI values (Xu et al., 2020), would further result in increased canopy evaporation.

In contrast to antecedent canopy evaporation, we find that projected decreases in the simulated runoff ratio are
largely associated with slight decreases in antecedent ground evaporation (median = − 1.3%; Figures 4g and 5).
Increases in runoff ratio, however, are associated with increases in antecedent ground evaporation

Figure 6. Importance values (defined as an increase in mean square error if the variable is removed divided the sum by the number of branch nodes) for each predictor for
areas of runoff ratio increases and areas of runoff ratio decreases.
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(median = +18.2%), driven by larger negative shifts in antecedent transpiration and canopy evaporation from an
overall lower probability of large antecedent LAI increases (Figure 4c). The regression tree models confirm this,
where antecedent ground evaporation is the most important variable in determining changes in antecedent soil
water content for areas of runoff ratio increases (Figure 6). With a large increase in LAI, more of the antecedent
evapotranspiration would shift to occur via transpiration and canopy evaporation rather than ground evaporation
(Mankin et al., 2018; Piao et al., 2020). Our results show this as well, with a moderate negative correlation
between changes in antecedent ground evaporation and LAI (rs= − 0.46) across all land grid cells, with a stronger
correlation in areas of runoff ratio increases (rs = − 0.58) than decreases (rs = − 0.40). This is further highlighted
by a moderate negative correlation between antecedent ground evaporation and canopy evaporation (rs = − 0.43)
in areas of runoff ratio increases. Additionally, increases in runoff ratio are associated with increases in antecedent
soil water content, thus allowing for a larger soil water pool for antecedent ground evaporation to occur if the
energy is available (Jung et al., 2010).

4. Summary and Implications
Runoff generation from extreme rainfall is a complex, dynamic mechanism that depends on antecedent con-
ditions and vegetation status. Here, using a prominent and state‐of‐the‐art large climate model ensemble, we
shed light on this complexity and show that even with climate‐change‐induced increases in the magnitude and
number of extreme rainfall events, the runoff ratio during these events is projected to decline for the majority of
the land surface, in spite of general increases in the amount of runoff. These simulated declines in projected
runoff ratio are largely attributed to projected decreases in antecedent soil water content. For areas where the
ensemble projects declines in the runoff ratio with minimal changes in antecedent rainfall, the decrease in
antecedent soil‐water content is associated with vegetation‐greening‐induced increases in canopy evaporation
and increased antecedent atmospheric water demand. Using a machine learning regression tree approach, we
find that antecedent canopy evaporation is a key variable associated with projected changes in soil‐water
content in areas of decreased runoff ratios, which changes in antecedent ground evaporation was the most
important variable for areas with increased runoff ratios. Our results suggest that vegetation greening combined
with increased evaporative demand will play an important role in the dampening of runoff from extreme rainfall
in the future.

While this work uses a large ensemble from a single climate model to understand mechanisms of simulated
change in the event rainfall‐runoff ratio, the results fall in line with recent empirical work on these mechanisms
(Fowler et al., 2022; Trancoso et al., 2017; Ukkola et al., 2016; Williams et al., 2022). Additionally, this work
does not specifically examine how land use/land cover change (LULC) might influence the extreme rainfall/
runoff relationship. The SSP3 scenario used in this work has a relatively aggressive loss of forest area and natural
land, largely replaced by cropland and pastures (O’Neill et al., 2016), which would certainly have an influence on
LAI and thus runoff. Even so, given the influence of LULC on hydrology, any impacts from LULC would be
reflected in our analysis of LAI and other hydrologic variables.

This work is a first step to understand how climate change may alter the relationship between extreme rain and
extreme runoff. Future work should examine whether greening has an influence on the vertical movement of
water in the soil column from enhanced interception and increased availability of soil water infiltration. Moving
forward, analyses should be performed on remote sensing data sets and sophisticated land surface and climate
models that produce the output used in this work at least a daily time step and higher spatial resolution that can
address the questions proposed in this work. In summary, planning for the impacts of extreme rainfall events
should increasingly consider the responses of vegetation to changing climate and the resultant effect on ante-
cedent soil moisture conditions.

Data Availability Statement
The CESM2‐LE output is available at Danabasoglu et al. (2021). The NCEP2 output is available at Kanamitsu
et al. (2002b). Code availability: Codes used to extract individual rainfall/runoff events and their antecedent
conditions can be found at Ficklin (2023).
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