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ABSTRACT

TUCKER BISEL. Investigation into the capabilities and characteristics of
tomographic particle image velocimetry measurement techniques. (Under the

direction of DR. PETER TKACIK)

Literature describing measurement results obtained using tomographic particle im-

age velocimetry (TomoPIV) systems has become increasingly common, but details on

the processes used to obtain those results and reasons for selecting specified analysis

settings are not often explained. In this thesis, an overview is given of techniques and

methodologies found to be useful when conducting TomoPIV measurements using

an asymmetric four-camera system, including image pre-processing techniques and

methods of improving analysis settings. Effective image pre-processing techniques

include background subtraction for removing static background noise and improving

signal-to-noise ratios and a customized filter that easily and reliably increases voxel

reconstruction speed and reduces memory requirements. The custom filter acts to

concentrate light intensity around particle locations while muting background pixel

intensities. The effects on final measurement results are observed for voxel recon-

struction and 3D least squares matching (LSM) settings, including relaxation num-

ber, reconstruction iterations, and interrogation volume size. The effects of surface

reflections of laser light on TomoPIV results are also investigated by comparing mea-

surement results of a cubic bluff body painted first with a flat white aerosol paint,

and second with an airbrushed Rhodamine 6G fluorescent paint. Fluoresced light is

blocked by bandpass filters, resulting in minimal reflections from the Rhodamine 6G

paint and no observed impact on measurement results. White paint results in intense

surface reflections and increased image noise, preventing reliable recognition of distant

particles. Comparison of averaged 3D vector map results for both coatings reveals

that allowable measurement depth decreases as surface reflection intensity increases.
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CHAPTER 1: INTRODUCTION

Understanding flow phenomena often requires analysis of boundary layer charac-

teristics and near-body interactions. Any analysis method used to measure these flow

regions must be non-intrusive since any intrusion will disrupt the flow characteristics

[1]. PIV systems are non-intrusive measurement tools and have been used since 1984

[2]. Adrian [3] provides a detailed report of the development of PIV systems from

1984 to 2005. PIV systems use thin light sheets, typically from a high-power laser, to

illuminate neutrally buoyant seed particles. Early PIV systems typically used a single

camera to record particle positions, with short time steps between images. Changes in

particle positions are correlated to extract velocity data from flow regions of interest.

This approach is limited to two-dimensional measurement profiles, while thorough

understanding of flow characteristics requires a three-dimensional (3D) measurement

profile. Toward this end, advances have been made in PIV measurement systems,

with dual-plane stereoscopic PIV allowing limited measurement of 3D velocity gra-

dients. Tomographic PIV (TomoPIV), introduced in Elsinga et al. [4], uses three or

more cameras positioned at different angles to image a 3D flow region typically illu-

minated by a volumetrically expanded laser source, rather than the thin light sheets

used previously. The images from all camera views are correlated to reconstruct seed

particle locations within the illuminated volume, producing a 3D (volumetric) voxel

space. Velocity profiles can then be extracted from observed changes in particle lo-

cation, resulting in a complete volumetric flow measurement profile [5]. The work

presented in this thesis utilizes an asymmetric four-camera TomoPIV system.

Much of the available literature concerning TomoPIV typically either describes

novel techniques aimed at improving analysis speed or accuracy, or presents TomoPIV
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experimental flow measurements without giving detailed explanations of the methods

used to obtain the results. When details are given, they are typically limited to mea-

surement parameters such as voxel space resolution and vector map size and vector

density. This neglects to mention the settings chosen for the intermediate measure-

ment processes used in the commonly-available commercial TomoPIV measurement

platforms (DynamicStudio by Dantec Dynamics, DaVis by LaVision, etc.). Even if

the settings are specified, there is typically no explanation given for why or how those

settings were determined to be appropriate. One of the goals of this thesis is to provide

explanations of how various TomoPIV steps and settings impact final measurement

results (specifically using the DynamicStudio 6.1 platform), as well as provide a se-

quence of simple-to-implement image pre-processing steps that are found to reliably

improve TomoPIV measurement capabilities. This thesis should therefore provide

quick guidance on the salient settings for TomoPIV analysis techniques, particularly

those used in the DynamicStudio measurement platform, including Simultaneously

Multiplicative Algebraic Reconstruction Technique (SMART) voxel reconstruction

and 3D Least Squares Matching (LSM). Those unfamiliar with TomoPIV measure-

ment techniques should be able to use these explanations first to roughly determine

which measurement settings are appropriate for a given dataset, and second to refine

the settings after examining preliminary measurement results.

Measurement results are affected not only by the settings chosen during TomoPIV

analysis, but also, for obvious reasons, by the quality of raw measurement images.

As noted in Bisel et al. [1], despite PIV systems being non-intrusive by nature, PIV

resolution close to solid surfaces has generally been found to be very low due to surface

reflections. To improve resolution, one strives to reduce image noise by avoiding as

much reflected and scattered light as possible. Due to the high intensity light sources

required to illuminate seed particles, surface reflections are common concerns for PIV

measurements and are often identified as flares. The consequences of these flares may
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include overexposure in near-surface regions, camera sensor damage, and skewing of

results [6]. Surface reflections can compromise PIV measurements near the boundary

regions as increased background noise intensity reduces seed particle signal-to-noise

ratios. Hence, it is necessary to reduce surface reflections within the experimental

setup [1]. A variety of works have described methods to reduce surface reflections

during PIV measurements ([7, 8, 9, 10, 11]), but the observable effects of surface

reflections on PIV measurements are generally neglected. This thesis will present

measurement results that exhibit characteristic impacts of strong surface reflections

on TomoPIV measurement capabilities.

In summary, this thesis intends to explore techniques used during TomoPIV anal-

ysis (conducted using the DynamicStudio 6.1 TomoPIV measurement platform) and

explain how measurement settings affect final results, including characteristics indi-

cating poor measurement results and strategies to improve the results. The neces-

sity of reflection mitigation techniques for TomoPIV analysis will also be established

via examination of TomoPIV results under conditions of strong surface reflections.

The important TomoPIV measurement steps outlined in this thesis include image

pre-processing, SMART voxel reconstruction parameters, and 3D LSM parameters.

Image pre-processing techniques focus on removing image noise to increase analysis

speeds and reduce computer memory requirements. Voxel reconstruction recreates

the 3D spatial locations of particles in the measurement images. 3D LSM calculates

velocity vectors based on changes in particle locations between two sequential re-

constructed voxel spaces. The user-defined parameters for voxel reconstruction and

LSM impact the quality of TomoPIV measurement results, but it can be difficult to

determine the impact of a single setting. The observations made in this thesis should

serve as a guide for recognizing characteristic signs of measurement inaccuracies and

provide assistance in determining how to modify measurement parameters in order

to improve results.



CHAPTER 2: EQUIPMENT AND METHODS

Figure 2.1: Overhead view of water channel experimental setup (left). Camera con-
figuration (right).

TomoPIV measurement runs were conducted in a closed-loop water channel located

at the University of North Carolina at Charlotte. The measurements utilized an

asymmetric four-camera system described by Fleischhauer et al. [12]. The system

consisted of four Flowsense EO 4M dual-frame CCD cameras with image resolutions

of 2048 x 2048 pixels, and a DualPower dual cavity 532 nm Nd:YAG laser capable

of outputting 200 mJ pulses with a pulse width of 4 nanoseconds. The laser pulses

were expanded using 5:1 thickness-to-width volumetric optics from Dantec Dynamics.

The laser illuminated the 1 m3 test section from below through the glass floor of the

water channel. The cameras were fitted with 60 mm lenses as well as narrow-band

532 nm optical bandpass filters. The camera configuration is seen in Figure 2.1, with

the first camera positioned normal to the side of the water channel and subsequent

cameras offset from the normal by 15, 30, and 45 degrees. A water-filled prism tank

with angled faces matching the camera offset angles was fitted to the glass side of
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the water channel. The prism faces are normal to the respective camera’s viewing

axis to minimize refractive errors associated with imaging an angled surface. The

measurements focused on turbulent flow around a 76.2 mm cubic bluff body mounted

to a flat plate. The plate was lowered into the test section with the bluff body facing

downward.

The TomoPIV system required calibration to determine spatial positions in the

measurement volume. The calibration images were acquired for each measurement

run using a 450 x 450 mm dotted calibration target across a calibration depth of +/-

50 mm. A precision traverse was used to move the calibration target in increments

of 5 mm, with a total of 21 calibration images captured per camera. To minimize

vibration errors, the calibration target was allowed to settle for 10 seconds before

capturing images at each position. A 3rd order polynomial calibration was conducted

for each measurement run, resulting in an overall average re-projection error of 0.310

pixels. The re-projection error for each individual camera never exceeded 0.4, the

maximum acceptable error specified by Elsinga et al. [4].

The bluff body model and flat plate were typically coated with a fluorescent Rho-

damine 6G paint (from Flow Visualization Components, dr.gindele-fischer-nauwerck

GBR) [13] in order to minimize surface reflections. The Rhodamine paint fluoresces

orange when exposed to the green 532 nm laser, shifting the spectrum of reflected

light to approximately 625 nm. The shifted light is then filtered out by the optical

bandpass filters attached to the cameras. Multiple coats of Rhodamine paint were

applied via airbrush, after which coverage was inspected visually using a hand-held

532 nm laser. A measurement run was also attempted without using fluorescent paint

to reduce surface reflections. For that run the model was coated with a flat white

aerosol paint (STRUST+SSPR FLAT WHITE) [14].

The water channel was seeded using neutrally-buoyant 50 µm polyamide spheres.

The seeding density was varied over multiple measurement runs by adding seed par-
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ticles to the channel, with seeding densities ranging from 0.005 to 0.035 particles per

pixel. For all measurement runs, doubleframe image pairs were acquired at a rate of

5 Hz for up to 25 seconds, resulting in a maximum of 125 image pairs per run.

Image acquisition and tomographic analysis were performed using Dantec Dy-

namic’s DynamicStudio 6.1 measurement platform. Analysis typically involved pre-

processing of images, SMART voxel reconstruction, and 3D LSM. The reconstructed

volume measured 200 x 140 x 100 mm with various voxel resolutions, typically 0.125 or

0.11 mm/voxel. Other SMART voxel reconstruction settings were varied for optimal

results, with SMART iterations and relaxation numbers respectively varying from 30

and 0.2 for noisy measurement data, to 5 and 0.1 for data with strong signal-to-noise

ratios. The LSM technique typically utilized Interrogation Volumes (IV) of 91 x 91

x 91 voxels for low seeding density measurements, and as low as 51 x 51 x 51 voxels

for higher seeding density measurements. The typical IV step size was 30 voxels in

all 3 directions, resulting in roughly 30,000 to 45,000 vectors per map depending on

IV size and voxel resolution.



CHAPTER 3: RESULTS AND DISCUSSION

3.1 IMAGE PRE-PROCESSING

Image pre-processing is critical to making TomoPIV measurements feasible resource-

wise. Pre-processing steps are necessary to remove noise from measurement images

not only to improve accuracy, but also greatly reduce computer memory require-

ments during voxel reconstruction. Herein are presented image pre-processing meth-

ods found to be useful when conducting TomoPIV measurements.

Figure 3.1: View of particles after performing image minimum background subtrac-
tion. Insert: typical pixel gray value distribution; many non-zero values remaining.

Background Subtraction: First, an image minimum background subtraction can be

performed to remove background noise from a set of images. This function is available

as a predefined analysis sequence in DynamicStudio, wherein an image minimum is

calculated by finding the minimum intensity value (gray value) seen in an image set

for each pixel coordinate. This image minimum (image min) represents an estimate
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Figure 3.2: View of particles after performing image minimum background subtrac-
tion, then applying a custom filter described in Figure 3.4. Insert: typical pixel gray
value distribution; increased particle intensity, and many gray values reduced to zero.

of the background noise present in the image set, and is most easily seen in Figures

3.12b and 3.14b. The gray values from the image min are then subtracted from every

image in the parent image set to ostensibly remove all background noise, as seen in

Figures 3.12c and 3.14c. Figure 3.1 shows a detailed view of a region of particles

following a background subtraction, along with a sample gray value distribution to

show the difference in intensity between seed particles and the background. The same

region is shown following subsequent processing steps in Figures 3.2 and 3.3.

Custom Filter: A background subtraction improves signal-to-noise ratios, but gen-

erally some low-level gray values remain in most pixels, as seen in Figure 3.1. Every

non-zero gray value increases the time and memory required for voxel reconstruc-

tion, so efforts must made to remove as many gray values as possible. A specially

customized filter (Figure 3.4) has proven useful for this purpose. After background

subtraction, the specified custom filter was applied to concentrate light at particle

locations. This amplifies particle brightness and, more significantly, removes light

from the surrounding background, as seen in the insert view of Figure 3.2. The pixels
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Figure 3.3: View of particles after performing image minimum background subtrac-
tion, then applying thresholding process. Insert: typical pixel gray value distribution;
many gray values reduced to zero.

not representing particle locations generally have all light intensity removed, giving

many pixels a gray value of zero. Every pixel with a non-zero gray value increases the

computer memory required during SMART voxel reconstruction, so using the custom

filter greatly speeds up voxel creation and reduces memory requirements, which is

critical for reconstructing large volumes.

The custom filter shown in Figure 3.4 may be modified as desired, such as by

changing the filter kernel size or increasing the filter divisor, but it should be noted

that the filter must always use integer values, not floating point values. Using floating

point filter values allows pixel gray values to become negative, producing undesirable

results. Using integer filter values limits the minimum pixel gray value to zero.

The filter kernel size may require modification depending on the average particle

spacing in the data that is to be filtered. When the custom filter is centered on a

particle, ideally there should not be any other particles within the filter area. The filter

kernel size should therefore be limited to twice the average particle spacing for any

given image. DynamicStudio allows measurement of average particle spacing using
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Figure 3.4: A customized filter designed to concentrate light at particle locations.

a built-in particle density measurement tool. The custom filter in Figure 3.4 uses a

kernel size of 5 x 5 pixels, and may be used for average particle spacings as low as 3

pixels. Note that it is not a requirement to increase the kernel size to the maximum

allowed for a given particle spacing; the 5 x 5 custom filter was successfully applied

for average particle spacings ranging from 16.2 down to 5.8 pixels (for reference, the

average particle spacing in Figure 3.1 is approximately 8.9 pixels).

A filter divisor may be used to reduce the magnitude of pixel gray values resulting

from the custom filter. If applied, the filter divisor typically matches the central value

of the filter kernel (4 in the case of the filter described in Figure 3.4). A filter divisor is

useful when particles are already bright before the custom filter is applied. Without

a filter divisor, the custom filter may amplify a significant number of pixel gray

values beyond the maximum allowed value (4095 for the 12-bit pixel depth utilized

in the experimental setup for this thesis). Any gray value exceeding the maximum is
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clamped down to the maximum value, altering the light intensity distribution in the

image and resulting in some signal strength loss.

Thresholding: Applying a threshold is another method used to mute pixel gray

values to zero, and was typically used after the custom filter since some low-intensity

gray values typically remained after applying the filter. These low-intensity gray

values were easily removed using thresholding. Thresholding can be used to mute

all pixel intensities below a specified value to zero, potentially allowing a majority of

background noise to be muted to zero without using the custom filter. However, this

is only possible for images with strong signal-to-noise ratios. If particle intensities are

too low, it is difficult to remove large amounts of background noise without erasing

low-intensity particles as well. Thresholding after applying the custom filter proves

to be simpler and more reliably implemented than purely using thresholding. Pure

thresholding without applying the custom filter requires careful inspection of noise

levels, which may vary between the two frames in an image pair, across different

cameras, and over the course of a measurement run. The custom filter consistently

removes gray values regardless of noise level or local pixel intensity distributions,

and can therefore be easily applied to multiple datasets. Particle intensities are also

amplified and easily distinguished from remaining low-level background noise. The

large difference between the background noise and the amplified particle intensities

allows for simple application of thresholding following the custom filter, since each

image set does not need careful inspection to determine a threshold level that will

remove noise without removing particles. Following application of the custom filter,

a general-purpose threshold of 30 was typically applied for all datasets.

Impact Of Light Intensity On Pre-Processing Ability: Analyses were attempted

without using the custom filter in order to observe possible changes in measurement

results. For this thesis, measurements were taken using two different light intensities.

For one set of high light intensity measurement runs, the laser source was expanded to
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the maximum allowed depth for the 5:1 volumetric optics, resulting in an illumination

depth of roughly 50 mm. This produced images with sharply defined seed particles

over the entire illumination depth and a maximum signal-to-noise ratio of roughly

20 after background subtraction. For one such measurement run, TomoPIV analysis

was attempted using only a background subtraction and thresholding for image pre-

processing, leaving out the custom filter. The threshold values were carefully chosen

for each camera view to ensure adequate noise removal without compromising particle

integrity. The number of pixel gray values reduced to zero using this method was

comparable to that achieved during typical measurement runs using both the custom

filter and thresholding, with roughly 3 million out of 4 million gray values reduced to

zero. Figure 3.3 shows the gray value distribution that resulted from the thresholding

process (threshold set to 17 for this camera view). The voxel reconstruction and LSM

analysis times were also comparable to the times required for analyses that utilized

the custom filter. The vector results for this analysis (Figure 3.10) appear similar to

the results obtained when the custom filter was used (Figure 3.9) when considering

only the region inside the 50 mm illumination depth. Outside this depth, no seed

particles should be visible, and therefore no motion should be observed. However, the

threshold-only results displayed motion vectors outside the illumination depth, while

the custom filter results did not. This is a problem characteristic of measurement

runs that use too small of time steps between image frames, resulting in small particle

displacements. Section 3.3 describes the characteristics and potential causes of this

problem in greater detail.

For a second set of measurement runs, the light intensity decreased as the illumi-

nation depth was expanded from 50 mm to roughly 100 mm. Seed particle intensity

values were therefore reduced overall, with the particles most distant from the cam-

eras having the weakest intensity. For these low light intensity runs it was found to

be impossible to use thresholding to achieve results comparable in speed to the re-
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sults attained by a combination of custom filter and thresholding. When attempting

to remove a number of gray values comparable with the custom filter results, the

required threshold levels were high enough to also remove a significant number of

particles in addition to the background noise. At those threshold levels, voxel recon-

struction and LSM analysis consistently produced few or no velocity vectors upon

completion of analysis. When threshold levels were reduced sufficiently to produce

adequate vector map results, the number of gray values removed was a fraction of

the number removed using the combination of custom filter and thresholding. The

voxel reconstructions (roughly 1600 x 1100 x 800 voxels) also required roughly 4

hours to complete, compared to roughly 15 minutes when using the custom filter.

It is therefore quite clear that the custom filter produces results overall superior to

those achieved purely through thresholding techniques. The custom filter, or a filter

of similar design, is also indispensable for increasing analysis speed of datasets with

weak signal-to-noise ratios.

Image Masking: Applying an image mask is the final step used to mute unwanted

pixel intensities and thereby reduce memory requirements and increase speed during

voxel reconstruction. The shape of the mask is defined to black out any image regions

that should not contain particles. Masking is effectively employed when a model must

be placed inside the illuminated measurement volume and the removal of the model

body is desired in the measurement images.

3.2 VOXEL RECONSTRUCTION

Voxel reconstruction involves correlating particle positions across multiple camera

angles to determine the 3D location of all seed particles in a calibrated measurement

volume. The SMART voxel reconstruction method available in DynamicStudio has

several user-defined settings that affect the speed and accuracy of the reconstruction.

This section will detail the observed effects that particular settings have on final

TomoPIV measurements, including voxel size, relaxation, and number of SMART
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iterations.

Voxel Size: The resolution of a reconstructed voxel space is determined by the

chosen voxel size. The voxel size should be close to the size represented by one pixel

length in a set of images. DynamicStudio automatically suggests a voxel size based

on the calibration performed for the measurement run. It was found not to be pos-

sible to significantly decrease the voxel size from the suggested size. The suggested

voxel size for the described four camera setup was 0.106 mm/voxel. Attempted voxel

reconstructions consistently resulted in errors when using voxel sizes below 0.098

mm/voxel. It was found to be possible, and sometimes preferable, to use a slightly

larger than suggested voxel size. Using a larger voxel size reduces the number of

voxels required to reconstruct a given volume, thereby reducing the required com-

puter memory. This is helpful when reconstructing large voxel spaces with a limited

amount of memory available. Increasing the voxel size to 0.125 mm/voxel produced

satisfactory measurement results, and in some instances produced results superior

to those obtained using 0.11 mm/voxel, despite 0.11 being closer to the suggested

voxel size. Further increasing the voxel size to 0.15 mm/voxel resulted in significant

information loss during voxel reconstruction and poor measurement results from 3D

LSM, as should be expected from the loss in resolution.

Relaxation: The relaxation parameter was observed to relate directly with the

number of particles recognized as valid during voxel reconstruction. According to the

DynamicStudio user manual [15], the allowable range of the relaxation parameter is

between 0 and 1, with a typical value of 0.1. Smaller relaxation numbers require more

SMART iterations to produce noticeable changes in measurement results. A very

small relaxation number permits very little change to occur between reconstruction

iterations, since particle recognition constraints are "relaxed" by only a small amount

every iteration. This can be observed in Figures A.1 and A.2, in which measurement

results change very little for a relaxation number of 0.001 even after roughly 30 ad-
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ditional iterations are added. Smaller relaxation numbers were observed to result in

overall smoother vector maps following voxel reconstruction and LSM, as can be seen

by comparing Figures A.3 and A.5. The smoother vector maps contained fewer vec-

tors that pointed in obviously incorrect directions, as compared to the rougher vector

maps produced using larger relaxation numbers. Vector maps containing many gaps

in measurement results was determined to be a sign of too few SMART iterations

used for a given relaxation number (Figure 3.5, left). The measurement gaps take

the form of regions containing unreasonably small velocity vectors compared to the

surrounding velocities. Depending on the visualization method, these regions may

appear to contain no velocity vectors at all due to the extremely small vector sizes.

Increasing the number of iterations fills in the measurement gaps, while also poten-

tially increasing the number of large, inaccurate vectors. It is possible to filter out

these large vectors using a range validation during post processing.

Figure 3.5: Left: too few SMART iterations for a given relaxation number displays
gaps in measurement results (regions of no or very slow motion); vector map produced
using 0.1 relaxation, 5 iterations. Right: an adequate number of iterations fills in the
measurement gaps; vector map produced using 0.1 relaxation, 40 iterations.

SMART Iterations: Voxel reconstruction is an iterative procedure, with the re-

quired number of iterations dependent on the relaxation parameter and how noisy a

given dataset is. For the described four-camera setup with the 5:1 volumetric illu-
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mination optics, resulting in an illumination depth of approximately 50 mm and a

strong signal-to-noise ratio, 2 iterations were found to produce satisfactory results for

relaxation numbers even as low as 0.001 (Figure A.1, left). When the illumination

optics were further expanded to cover an illumination depth of nearly 100 mm, the

signal-to-noise ratio was approximately half the signal-to-noise ratio of the 50 mm

illumination depth. The lower signal-to-noise ratio for that image set necessitated

an increase in SMART iterations, with 30 iterations at 0.2 relaxation found to be

optimal.

Figures in Appendix A further illustrate the interaction between number of SMART

iterations, relaxation number, and signal-to-noise ratio. As previously noted, datasets

with strong signal-to-noise ratios and sharply defined particles are able to produce

satisfactory measurement results using very small relaxation numbers and few it-

erations (Figure A.1). Small relaxation numbers appear to produce more accurate

results than larger relaxation numbers, presumably due to larger relaxation numbers

allowing more flexible determination of particle locations during voxel reconstruction.

This may allow the formation of a greater number of ghost particles (see Wieneke

[16] for further information on ghost particles), leading to larger inaccuracies in mea-

surement results. Figures A.3, A.4, and A.5 show differences in measurement results

caused by increasing relaxation number. All three figures utilize analysis parame-

ters identical to those used for Figure A.1 (left) (calculated using 0.001 relaxation),

but with relaxation numbers increased to 0.01, 0.1, and 0.95, respectively. As re-

laxation number increases, the number of large, obviously incorrect velocity vectors

also increases. The right-hand side of each figure displays the differences between the

respective vector map and the vector map given in Figure A.1, with the magnitude

of difference between vector maps increasing as the difference in relaxation number

increases. Since the 0.001 relaxation vector map from Figure A.1 displays none of the

characteristically observed signs indicating too few SMART iterations were used for
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a given relaxation number, it can be assumed that SMART reconstruction is able to

perform accurate reconstructions using few iterations even at low relaxation numbers,

provided the dataset has a strong signal-to-noise ratio and clearly defined particles.

Under these conditions, SMART reconstruction can quickly identify true particle lo-

cations, and the general rule that small relaxation numbers require more iterations

is irrelevant since the initial measurement results are already adequate with few iter-

ations. Thus, it is more accurate to state that low relaxation numbers require more

iterations to show improvement of results, not that low relaxation numbers necessarily

require more iterations to produce good results.

Figure A.1 has shown that it is possible to use few iterations to produce acceptable

results even with very low relaxation numbers, but this is predicated on having a

dataset with a strong signal-to-noise ratio. For datasets with weak signal-to-noise

ratios, larger relaxation numbers are required to complete TomoPIV analysis in a

reasonable amount of time. The measurement results in Figure A.2, calculated from

a dataset with a weak-signal-to-noise ratio, quite clearly show the characteristic mea-

surement gaps associated with running too few SMART iterations for a given re-

laxation number. Even when the iterations are increased from 5 to 40, there is a

negligible improvement in results. At very low relaxation numbers, results obviously

cannot be improved without increasing iterations to an unreasonably large number,

and in fact DynamicStudio currently limits the maximum number of SMART iter-

ations to 100. Consequently, the relaxation number must be increased in order to

improve measurement results. Even though low relaxation numbers were observed to

produce the smoothest and most accurate vector maps with the fewest irrationally

large vectors, noisy datasets contain too great of uncertainty in particle location to

allow for the use of very small relaxation numbers. Low relaxation numbers allow

minimal leeway when determining particle locations during voxel reconstruction, so

using small relaxation numbers on datasets with large particle location uncertainty
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will cause many particle locations to be rejected as false, unless very large numbers of

iterations are allowed. The strength and clarity of the measurement signals can there-

fore be said to have the greatest impact on optimal relaxation number and required

number of SMART iterations. Noisy data requires larger relaxation numbers and

more iterations, while strong signal-to-noise ratios allow for low relaxation numbers

and few iterations.

3.3 3D LEAST SQUARES MATCHING

DynamicStudio’s 3D Least Squares Matching technique produces velocity vector

maps based on changes in particle locations between two temporally sequential voxel

spaces. This section will describe various settings that affect LSM results. This

section will also provide examples indicating poor results and the actions that will

likely improve those results.

Figure 3.6: Vector map created using an insufficiently large IV size, producing noisy
measurement results (used IV size of 51x51x51 voxels; recommended minimum IV
size was 71x71x71 voxels).
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The LSM technique calculates velocity vectors based on particle motion observed

in groups of voxels referred to as Interrogation Volumes (IV). The DynamicStudio

manual [15] specifies that a minimum of 8 to 9 particles should be present per IV

in order for LSM to perform well. The minimum required IV size can therefore be

estimated based on the seeding density observed in the measurement images. The

DynamicStudio manual provides a chart to assist with determining appropriate IV

size based on seeding density and measurement depth. Insufficient IV size for a given

seeding density produces a relatively rough and inconsistent vector map, as seen in

Figure 3.6. The vector map in Figure 3.6 was produced using an IV size of 51 x 51 x

51 voxels, while the recommended minimum IV size was roughly 71 x 71 x 71 voxels.

Increasing the IV size produces smoother vector maps since there are more parti-

cles present in each IV. Having more particles helps mitigate inaccuracies stemming

from incorrect particle identification during voxel reconstruction. The difference in

accuracy and smoothness can be observed when comparing Figure 3.6 (51 x 51 x 51

voxel IV) with Figure 3.7 (75 x 75 x 75 voxel IV), both of which were calculated from

the same voxel space with a recommended minimum IV size of roughly 71 x 71 x 71

voxels.

One other parameter that has a potentially significant impact on LSM results is

the time step between image frames. An instructional presentation from Dantec

Dynamics [17] recommends using a time step that results in a maximum particle

displacement between frames of roughly 1/4 of the IV size. When selecting a time

step, one should take into account both the slowest- and fastest-moving portions of the

measurement region of interest. Particle displacement in the fastest potions should

not significantly exceed the recommended 1/4 IV size limit, while the slowest portions

should exhibit at least a minimum of discernible motion, greater than 1 or 2 pixels.

Note that the measurement region of interest (e.g. a turbulent wake region) may be

surrounded by a fast-moving free stream region. In instances such as this, the free
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Figure 3.7: Vector map created using a sufficiently large IV size, producing rela-
tively smooth measurement results (used IV size of 75x75x75 voxels; recommended
minimum IV size was 71x71x71 voxels).

stream region is likely not of great interest, and can be ignored when determining an

appropriate measurement time step. Additionally, regions of laminar flow typically

produce reliable measurement results even for particle displacements exceeding the

recommended 1/4 IV size limit because of the simplicity of the flow regime.

For the described experimental setup, the LSM technique produced unexpected

results when particles displacements were very small. Figure 3.8 displays LSM mea-

surement results (range-validated and spatially averaged for clarity) based on very

small particle displacements (1 to 2 pixels). The measurement volume was calibrated

to a depth of 100 mm, but with an illumination depth of only the central 50 mm.

The maximum possible depth over which velocity vectors can be calculated is roughly

the calibration depth minus twice the IV size. For the measurement in Figure 3.8

this was roughly 75 mm. Theoretically, velocity vectors should only be calculated
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Figure 3.8: LSM measurement results based on an insufficiently large time step (re-
sultant particle displacements of 1 to 2 pixels). Velocity vectors extend beyond 50
mm illumination depth (region between planes).

across the illuminated depth, with the regions outside the illumination showing no

visible particles, and therefore no motion. The time step for this measurement, 1100

µs, was too short to give adequately large particle displacements in the wake re-

gion behind the 75 mm model cube, resulting in displacements of only 1 to 2 pixels

(equivalent to roughly one particle width in this experimental setup). When particle

displacements are too small, the LSM technique has been observed to produce veloc-

ity vectors across the entire allowable measurement depth, not just the 50 mm that

was actually illuminated. For comparison, Figure 3.9 was created based on a time

step of 2500 µs, which resulted in wake region particle displacements of roughly 5 to 6

pixels. The LSM results showed a more reasonable arrangement of vectors in Figure

3.9 (also range-validated and spatially averaged for clarity), with vectors roughly con-

fined to the illuminated central 50 mm region. Note also, however, that the vectors
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Figure 3.9: LSM measurement results based on a sufficiently large time step (resultant
particle displacements of 5 to 6 pixels). Velocity vectors generally confined to 50 mm
illumination depth (region between planes).

representing the free-stream region below the model cube generally extend across the

entire allowable measurement depth despite having even larger particle displacements

than the wake region, averaging roughly 15 pixels. Further measurement runs indi-

cate that the LSM technique produces this extended depth of vectors for regions of

uniform flow, such as the free stream region, regardless of particle displacement value.

Additionally, use of the custom filter during image pre-processing appears to re-

duce the extent or severity of the problems associated with insufficient particle dis-

placements. As noted in Section 3.1, when the custom filter is not applied during

pre-processing (instead replaced by careful thresholding), the extended vector depth

issue occurred at larger time steps. When images were pre-processed using the custom

filter, the 2500 µs time step appeared to be sufficiently large and showed a very lim-

ited number of vectors extending beyond the illuminated depth (Figure 3.9). When
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Figure 3.10: LSM measurement results based on the same time step as Figure 3.9.
Image pre-processing utilized only thresholding, no custom filter. Vectors once again
extend beyond 50 mm illumination depth (region between planes).

thresholding is applied instead of the custom filter, the 2500 µs time step (Figure

3.10) no longer appeared to be sufficiently large, with many vectors extending be-

yond the illumination depth. This indicates that the overall vector depth extension

issue may relate to the amount of noise remaining in the processed images, and by

extension the number of ghost particles created during voxel reconstruction.

Ghost particles may be formed at locations where the line of sight from all four

cameras coincides with an observed particle location, but the observed particle is not

the same for all four cameras. This may be due to overlapping particles, or from

noise being treated as a possible particle in one or more cameras. At small time

steps the particles move very little between frames, so any conditions that caused the

formation of a ghost particle in the first frame may still exist in the second frame.

This would create a ghost particle in the second frame that is shifted very slightly
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from the location of the ghost particle in the first frame. Since this shift stems

from the motion of true particles, the LSM algorithm will likely be able calculate a

satisfactory correlation for the movement of all ghost particles. These ghost particles

may be formed outside the illuminated volume, which would result in motion vectors

outside the illuminated region that appear consistent with the motion observed within

the illuminated region. At larger time steps, the particles shift a greater amount. The

shift may eliminate the conditions that caused the formation of a ghost particle in

the first frame, so there would not be a matching ghost particle created in the second

frame. The LSM algorithm would therefore be unable to find consistent correlations

for ghost particle motion outside the illuminated region for larger time steps.

If, however, there is sufficient noise in an image set, pairs of ghost particles may still

be formed at larger time steps. When purely using thresholding and not the custom

filter (as was the case in Figure 3.10), there are many instances where small groups

of background pixels remain untouched after the threshold is performed. Despite the

increased particle shift between frames, that extra noise increases the chance that

both frames will contain conditions that allow the formation of ghost particles that

mimic the motion of true particles. This would explain the presence of vectors outside

the illuminated region in Figure 3.10.

3.4 EFFECTS OF REFLECTION MITIGATION

Reflection mitigation techniques are important during TomoPIV measurements

when a physical model is placed inside the illuminated volume. Surface reflections

from the model can increase background noise in images and potentially cause un-

wanted illumination of particles outside the calibrated measurement volume. Various

reflection mitigation techniques are known and discussed [6, 7, 8, 9], but how the

reflection mitigation techniques, or lack there-of, affect PIV measurement results is

generally unexplored. This section describes the observed differences in measurement

results of a four-camera TomoPIV system, as detailed in Bisel et al. [1].
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Figure 3.11: Background subtraction sequence for camera 1 (centerline) view of white
model: raw image (a), image min (b), background subtraction (c).

Figure 3.12: Background subtraction sequence for camera 1 (centerline) view of Rho-
damine 6G model: raw image (a), image min (b), background subtraction (c).

Separate measurement runs were conducted with a cubic bluff body model coated

with Rhodamine 6G fluorescent paint and flat white aerosol paint. In conjunction with

a narrow band-pass optical filter, the Rhodamine 6G paint reduced surface reflections

to negligible levels, while the flat white paint provided no reflection mitigation. The

effects of two different types of surface reflections are observed: direct and indirect

reflections. As described in Bisel et al.: "direct reflection is defined as light that is

reflected off a surface that is within a camera’s direct line of sight. Indirect reflection

is defined as light that is reflected off a surface that cannot be seen directly by a

camera. The indirectly reflected light only becomes visible to the camera after it is
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Figure 3.13: Background subtraction sequence for camera 4 (45 degree offset) view
of white model: raw image (a), image min (b), background subtraction (c).

Figure 3.14: Background subtraction sequence for camera 4 (45 degree offset) view
of Rhodamine 6G model: raw image (a), image min (b), background subtraction (c).

scattered by surrounding particulate matter."

The white model showed marginally higher average seeding density than the Rho-

damine 6G model, since the strong indirect reflections from the model surfaces added

a second pass of illumination to the particles. This is notably visible in Figure 3.11a

where the particles directly below the model surfaces are brighter than particles in

surrounding regions. Comparatively, in Figure 3.12a the particle brightness is uniform

across the entire image and gains no additional illumination from surface reflections.

However, the background noise is much higher for the white model. The image min-

imum calculated during background subtraction is representative of the background
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Figure 3.15: Average of 125 vector maps for the white paint model (angled front
view).

noise present in an image set. Based on the pixel gray values for the white and Rho-

damine 6G model image minimums (Figures 3.11b and 3.12b), the region directly

below the white model shows 65 times greater background noise than the same re-

gion for the Rhodamine 6G model. The high intensity background noise in the region

below the model for the flat white images means that the signal-to-noise ratio is sig-

nificantly worse than that of the Rhodamine 6G paint images. The signal-to-noise

ratio for the region directly below the model was approximately 10 for the brightest

particles in the Rhodamine 6G paint images and approximately 2 for the brightest

particles in the white paint images. This is despite the fact that the particles in the

flat white images are typically an order of magnitude brighter than the particles in

the Rhodamine 6G images.

Figures 3.11c and 3.12c show the flat white and Rhodamine 6G models after using
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Figure 3.16: Average of 125 vector maps for the white paint model (upstream view).

a background subtraction to reduce the amount of noise in the images. The back-

ground subtraction removed a significant portion of the white image brightness. In

the region below the white model, typical particles lost between 80% and 90% of their

intensity. Typical particles in the region below the Rhodamine 6G model lost only

approximately 10% of their intensity since the Rhodamine 6G paint greatly mitigates

the background noise stemming from indirect surface reflections.

Particles that are distant from the cameras have lower intensities than particles

close to the cameras. Intense background noise, such as that seen in the region

below the white model in Figure 3.11a, can make it very difficult to differentiate

between background noise and distant particles. A background subtraction is used

to improve signal-to-noise ratios, but if the background noise intensity is close to the

intensity of distant particles, the background subtraction may remove a significant

portion of a distant particle’s intensity. In that case, the background subtraction will
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Figure 3.17: Average of 125 vector maps for the Rhodamine 6G paint model (angled
front view).

not significantly improve the signal-to-noise ratio of distant particles, which makes

particle recognition difficult during voxel reconstruction.

Direct reflections can be much brighter than indirect reflections. The direct reflec-

tions stemming from the white model’s rear face and the flat mounting plate (Figure

3.13a) have high enough intensity to completely saturate the camera pixels. Since the

pixels in this region are all at the camera’s maximum allowed intensity, there is no

contrast in the region, giving a signal-to-noise ratio of exactly 1. No particles can be

distinguished in this region, which can be more easily seen after a background sub-

traction is performed in Figure 3.13c. All pixels across all doubleframes in the image

set have the same value in this region, so the background subtraction removes all

intensity and leaves a uniformly black region. Direct reflections are greatly mitigated

for the Rhodamine 6G model, as seen in Figure 3.14a. After a background subtrac-
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Figure 3.18: Average of 125 vector maps for the Rhodamine 6G paint model (upstream
view).

tion is performed (Figure 3.14c) the effects of any direct reflections are negligible,

ensuring that particle recognition is easily achievable during voxel reconstruction.

A comparison of vector flow maps for the flat white and Rhodamine 6G models

illustrates the need for reflection mitigation techniques for TomoPIV analysis. The

displayed vector maps were created by averaging the 125 vector maps calculated from

the respective white and Rhodamine 6G measurement runs. Figure 3.15 confirms

expectations that no measurements can be made in regions of intense direct reflections

since no particles are distinguishable. It is still possible to make measurements in the

regions where there are no intense direct reflections, such as the free-stream region,

but with some limitations. Figure 3.16 shows that intense indirect reflections limit the

distance at which measurements can be accurately made. Intense indirect reflections

interfere with recognition of distant particles. The allowable measurement depth is
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therefore limited by the intensity of the indirect reflections.

Figures 3.17 and 3.18 demonstrate the capability of TomoPIV analysis when em-

ploying effective reflection mitigation. Measurements appear uniformly accurate across

the entire measurement depth, indicating that indirect reflections from the Rho-

damine 6G model are negligible and thus do not limit measurement depth. Direct

reflections from the rear face of the model are also negligible and have no impact on

particle recognition capability.



CHAPTER 4: CONCLUSIONS

This thesis highlights techniques and methodologies useful for conducting TomoPIV

measurements, and also explains ways in which TomoPIV analysis settings influence

measurement results. Observations are made based on an asymmetric four-camera

TomoPIV system’s measurement results based on seed particles suspended in water.

Image pre-processing is necessary to complete TomoPIV measurements in a reason-

able time frame and reduce computer memory requirements during voxel reconstruc-

tion. This is especially important for large voxel spaces, where available computer

memory may be a limiting factor. The purpose and effects of several pre-processing

techniques are described.

A background subtraction is useful to enhance signal-to-noise ratios by removing

static noise from images. A custom filter (Figure 3.4) has proven to be simple to

implement and useful for reducing memory requirements during voxel reconstruction.

The custom filter effectively concentrates surrounding pixel light intensities into par-

ticle locations. Particle brightness is enhanced, and surrounding pixel gray values

are reduced to zero, typically removing roughly 3/4 of all pixel intensities. This

greatly reduces voxel reconstruction memory requirements and improves reconstruc-

tion speed. Thresholding can further increase reconstruction speed by removing any

low-level pixel gray values remaining after the custom filter is applied.

Parameters affecting the results of SMART voxel reconstruction are explored. Voxel

reconstruction is an iterative procedure, with the required number of iterations de-

pendent on measurement signal strength and relaxation number. Weak measurement

signals and smaller relaxation numbers may require more iterations. For all tested

measurements utilizing relaxation numbers ranging from 0.001 to 0.95, signal strength
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appears to be the dominant factor for determining required number of iterations, with

high signal strengths requiring few iterations even for low relaxation numbers (2 iter-

ations found acceptable even for relaxation numbers as low as 0.001). Low relaxation

numbers do not necessarily require large numbers of iterations to achieve acceptable

results. Instead, low relaxation numbers require large numbers of iterations to show

improvement of poor results. Gaps in measurement data are indicative of running

too few SMART iterations for a given relaxation number. The measurement gaps

can be observed as spaces where no vectors are visible in LSM vector maps. The

measurement gaps can be filled in by increasing the number of SMART iterations,

with lower relaxation numbers requiring more iterations to fill in the gaps.

The quality of 3D LSM vector maps is dependent on the IV size used during

calculation. The minimum required IV size is determined from the seeding density

of the measurement images, with lower seeding densities requiring large IV size to

encompass an adequate number of particles (8-9) per IV [15]. Inadequate IV sizes

produce noisy vector maps, while larger IV sizes produce smoother vector maps. The

3D LSM technique may produce misleading vector maps if image frames are not

separated by a time step large enough to allow sufficient particle motion between

frames. In instances where the calibrated measurement depth is larger than the

illumination depth and the time step between measurement frames results in particle

displacements of less than one particle width (e.g. 1 to 2 pixel displacements relative

to particle widths of 2 to 3 pixels), the 3D LSM technique is observed to produce

vector maps displaying consistent motion over the entire calibrated depth even though

particle motion should only be visible inside the illumination volume.

Reflection mitigation techniques are required for TomoPIV measurements when

a physical model must be placed within the illumination volume. The impact of

surface reflections on TomoPIV measurements is examined using a four-camera To-

moPIV system to conduct measurements involving a cubic bluff body coated first
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with a commercially available flat white aerosol paint, and second with an airbrushed

Rhodamine 6G fluorescent paint. The Rhodamine 6G fluorescent paint, coupled with

optical bandpass filters to block the fluoresced light, reduces surface reflections to

negligible levels. Flat white paint affords no reflection mitigation capability, and thus

produces high intensity surface reflections. High intensity reflections from model sur-

faces prevent any possible TomoPIV measurements in the image regions for which

those surfaces are directly visible. The high intensity reflections completely saturate

the pixels in those image regions, preventing particle recognition during TomoPIV

analysis. Reflections from the underside of the white painted bluff body, despite not

being directly visible to any camera, also interfere with TomoPIV measurements by

increasing the background noise intensity of the region below the bluff body. The

increased noise interferes with particle visibility in the rear of the measurement vol-

ume (the region located furthest from the cameras). Particles closer to the cameras

are generally bright enough to remain visible despite the increased background noise.

TomoPIV measurements for the volume beneath the bluff body are therefore still pos-

sible in the regions closest to the cameras, while becoming more unreliable as distance

increases from the cameras and particle visibility degrades.

Measurements of the Rhodamine 6G bluff body show consistent measurement reli-

ability across the entire measurement depth. This is due to the low intensity surface

reflections that result in low background noise intensity. Comparing the Rhodamine

6G and white paint TomoPIV measurement results indicates that allowable mea-

surement depth decreases as surface reflection intensity increases. Effective reflection

mitigation techniques are therefore crucial to the success of TomoPIV analysis of large

measurement depths.

Depending on factors such as size of voxel space and desired vector map resolu-

tion, TomoPIV measurements can be extremely computationally intensive. Extensive

trial-and-error attempts at improving measurement results can therefore be time-
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prohibitive. The techniques and observations presented in this thesis should serve

as a guide for improving data acquisition and processing methodologies, recogniz-

ing potential measurement errors, and optimizing analysis settings and measurement

results, with the goal of making TomoPIV methodologies more accessible to those

unfamiliar with this form of measurement system.
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APPENDIX A: VOXEL RECONSTRUCTION ITERATION AND RELAXATION

COMPARISONS

The figures in this appendix further illustrate the impact of changing the relaxation

parameter and the number of iterations used during SMART voxel reconstruction.

Smaller relaxations require larger numbers of iterations to produce noticeable changes

in results. Datasets with strong signal-to-noise ratios and sharply defined seed par-

ticles permit the use of smaller relaxation numbers and fewer numbers of iterations.

Datasets with weak signal-to-noise ratios and poorly defined seed particles require

larger relaxation numbers to produce reliable measurement results.

Figure A.1: Vector maps created using 0.001 relaxation from data with a strong signal-
to-noise ratio. Left: 2 SMART iterations. Right: 30 SMART iterations. Bottom:
Difference between results (left subtracted from right).
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Figure A.2: Vector maps created using 0.001 relaxation from data with a relatively
weak signal-to-noise ratio. Left: 5 SMART iterations. Right: 40 SMART iterations.
Bottom: Difference between results (left subtracted from right).

Figure A.3: Left: vector map created from the same data as Figure A.1 (0.001 re-
laxation), using 2 SMART iterations and 0.01 relaxation. Right: difference between
0.01 and 0.001 relaxation results.
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Figure A.4: Left: vector map created from the same data as Figure A.1 (0.001 relax-
ation), using 2 SMART iterations and 0.1 relaxation. Right: difference between 0.1
and 0.001 relaxation results.

Figure A.5: Left: vector map created from the same data as Figure A.1 (0.001 re-
laxation), using 2 SMART iterations and 0.95 relaxation. Right: difference between
0.95 and 0.001 relaxation results.


