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Abstract 

A dv ances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription 
across the tree of lif e. W e de v elop a mathematical frame w ork to calculate complexity and compare transcript models. Str uct ural feat ures, i.e. 
intron retention (IR), donor / acceptor site v ariation, alternativ e e x on cassettes, alternativ e 5 ′ / 3 ′ UTRs, are compared and the distance between 
transcript models is calculated with nucleotide le v el precision. All metrics are implemented in a PyPi package, TranD and output can be used 
to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons 
bet ween: annot ations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread 
RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. 
In C. elegans, Z. ma y s, D. melanogaster, D. simulans and H. sapiens , alternative exons were observed more frequently in combination with 
an alternative donor / acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with 
empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are 
under-annotated. We recommend combined references. 
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ntroduction 

dvances in sequencing technology have facilitated an ex-
losion of genomic data, with an ever-increasing number of
pecies having genomes sequenced and annotated (e.g. ( 1–4 ).
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and / or encoded proteins from the same gene (e.g. ( 6–9 ). This
differential processing has been hypothesized to be a primary
mechanism of protein diversity in a variety of eukaryotes (e.g.
( 6 ,10–13 ). There is a positive relationship between organ-
ismal complexity and splicing ( 14 ). Dramatic differences in
splicing events among tissues, environments, cell types, and
developmental stages within a single species are well docu-
mented across the tree of life (e.g. ( 15–25 ). Evidence of in-
terspecific splicing has also been described across a variety of
plant (e.g. ( 26 ), invertebrate (e.g. ( 27 ,28 ), and vertebrate (e.g.
( 29 )) species, but there are many challenges associated with
cross-species transcriptome comparisons that may lead to in-
accurate interpretations (e.g. ( 30 )). 

Multiple different molecular mechanisms contribute to the
process of AS (e.g. ( 31–33 ). The spliceosome is a large com-
plex with some conserved splicing factors ( 34–36 ) and a
plethora of context specific factors ( 36 ), some of which may be
shared along specific evolutionary branches ( 37 ). More evo-
lutionary distant species (such as plants and mammals) have
differences in splicing patterns (e.g. ( 38–41 ) that can be due to
underlying mechanistic changes in splicing,. While we can vi-
sually separate alternative splicing patterns for each gene, we
lack the ability to computationally group similar transcripts
and identify patterns among transcript models. 

Recent advancements in sequencing technologies have
shed light on the importance of AS in adaptation and
ecological speciation (reviewed in ( 42 )). Through the
inclusion / exclusion of exons or alterations in donor / acceptor
sites, AS can generate variation in protein sequences. There
is selection in alternative exons that is correlated with
inclusion / exclusion rates ( 43 ), and alternative splicing and
gene duplication appear to be inversely correlated evolution-
ary mechanisms in mammals ( 44 ). Additionally, AS plays a
role in phenotypic plasticity, allowing genotypes to exhibit di-
verse phenotypes in varying environments (e.g. ( 45 )), as well
as ecological adaptations (e.g. ( 46 ,47 )). Alternative splicing
profiles can be species-specific (e.g. ( 29 )), sex-specific (e.g. ( 48–
50 ), Drosophila sex-determination pathway (e.g. ( 51 ), and
reviewed in ( 52 )), and may contribute to the resolution of
conflicts between sexes during speciation ( 28 ,53 ). Although
challenges remain in studying alternative splicing, long-read
sequencing offers promising opportunities for further re-
search in understanding how alternative splicing facilitates
evolution. 

Genomic approaches comparing transcript models from a
‘new’ species to a reference annotation from a similar species
are usually conducted via BLAST (e.g. ( 54 ,55 )). These anno-
tations are evaluated for ‘completeness’ primarily by exam-
ining the predicted protein composition of a transcriptome
( 56 ). Building annotations for a new species is an ongoing
effort in tool development. Popular genome annotation tools
such as MAKER ( 57 ), BRAKER ( 58 , 59 ), A UGUSTUS ( 60 , 61 ),
StringT ie ( 62 , 63 ), and P ASA ( 64 ) have emerged as power -
ful and widely used tools for genome annotation, leverag-
ing both ab initio and evidence-based methods to annotate
genes, assemble transcripts, and identify functional elements.
Furthermore, these tools can help identify regulatory regions,
structural variation, and other genomic features that are es-
sential for understanding the biology of the organism under
study. Given the widespread interest in genome annotation
and its importance for a wide range of applications, we antic-
ipate continued growth in the development and refinement of
genome annotation tools for new species in the coming years.
However, we lack tools that enable us to evaluate the impact
of bioinformatic choices on the resulting structure of the tran- 
script models. 

A benefit to long-read sequencing is the ability to directly 
sequence full length mRNA molecules, providing an oppor- 
tunity to directly observe splicing patterns. As with any new 

technology, there are challenges as well as opportunities in 

the use of lrRNA-seq. The challenges of data processing, an- 
notation, and interpretation of long-read data have inspired 

many computational tools. A database has been set up to track 

and describe the efforts in this area ( 65 ). As of this submis- 
sion, over 720 tools were listed in this database. Of the tools 
developed for lrRNA-seq, most produce transcript models.
There are at least 36 analysis tools for processing lrRNA-seq 

and estimating transcript models ( 66 ). Benchmarking is per- 
formed by calculating ‘accuracy’, ‘sensitivity’ and ‘specificity’ 
relative to some objective truth, usually determined by sim- 
ulation or by spike-in synthetic standards ( 67 ,68 ). Compar- 
isons between approaches are based on comparisons of the 
performance of these metrics between tools. Many lrRNA-seq 

experiments will also compare the de novo transcript mod- 
els to a reference annotation and identify exact matches for 
splice-junctions (full-splice matches, FSM) using tools such 

as SQANTI ( 69 ), GFFcompare ( 70 ), TALON (Wyman et al.
2020), FLAMES ( 71 ) and IsoTools ( 72 ). However, when the 
structure of transcript models does not match the reference 
there are no tools for understanding the structural differ- 
ences, or the distance, between the transcript models and the 
reference. 

We have developed a set of distance metrics, and an ac- 
companying software TranD that can be used to calculate dis- 
tance metrics between transcript models. These metrics can be 
calculated between transcript models for each gene in an an- 
notation (1GTF) and between pairs of transcript models for 
the same gene present between two annotations (2GTF). With 

these metrics we can group transcript models, pinpoint nu- 
cleotide level differences in alternative splicing between pairs 
of transcript models for all possible pairs, describe patterns 
of alternative splicing within and between transcriptomes. We 
illustrate the utility of these metrics and the resulting patterns 
in the examination of short and long read RNA-seq data in 6 

different species. 

Materials and methods 

Starting from a GTF file, we describe alternative splicing pat- 
terns for each gene: alternative exons, intron retention, al- 
ternative donor / acceptors and alternative 5 

′ , 3 

′ variation in 

terms of the number of nucleotides that differ using distance 
metrics. Our distance metrics focus on the structural differ- 
ences between transcript models and report distance based 

on genomic positions of sequences, not the sequence itself 
(A,T,G,C) or on percent sequence identity. Exons that corre- 
spond to a single region that do not overlap with an exon 

in other transcript models are alternative exon cassettes. An 

exon region (ER) is defined by the boundaries of the 5 

′ most 
and 3 

′ most exon coordinates when exon annotation overlaps 
among transcript models. The exonic space is the union of 
all exon regions. Alternative splicing (AS) categories are as- 
sociated with ERs (Figure 1 A) and the number of nucleotides 
associated with each AS category are counted: (i) 5 

′ transcript 
length variation, (ii) 3 

′ transcript length variation, (iii) alter- 
native donor / acceptor, (iv) alternative exon cassette, (v) in- 
tron retention (IR) and (vi) non-overlapping (referred to here 
as ‘No Shared Nucleotides’). The presence / absence of each 
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Figure 1. Alternative splicing is relative ( A ). 1. Two transcript models that differ at the transcription start site in the first exon region (ER1), and match on 
all junctions (Full Splice Match; FSM). 2. Two transcript models that differ at the transcription termination site in the last exon region (ER5); and FSM. 3. 
Two transcript models that differ but whose exons overlap (ERS) with an intron retention. 4. Two transcript models that differ but ERS with alternative 
donor / acceptor. 5. Two transcript models that differ with an alternative exon, so the exon regions do not overlap (ERN). 6. Two transcript models that 
differ with no e x on o v erlap (no shared nucleotides). 7. Positions with v ariable annotations are indicated in red. ( B ) T hree metrics f or comparing transcript 
models. Each green transcript model is compared pairwise to the orange model and metrics are reported for (i) number of o v erlapping e x ons, percent of 
o v erlapping e x ons, (ii) number of shared junctions, percent of shared junctions (iii) number of o v erlapping nucleotides, percent of shared nucleotides. ( C ) 
Transcript models can be grouped based on o v erlapping e x ons. T hree transcript models from D. melanogaster Sxl RF, R O and RZ. R ed indicates a 
difference in nucleotide position. Models RF and RZ ha ving o v erlapping e x on regions (ER S) and can be grouped together into an e x on-region group (ER G). 
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ategory can be used to summarize the patterns of alterna-
ive splicing across genes and describe the structural variation
n the transcriptome. In addition, metrics for the number of
xons per gene (EpG), transcripts per gene (TpG), and the
umber of exons per transcript (EpT) ( 73–75 ) are calculated
nd output as transcriptome_complexity_counts.csv and plots
f the distributions for these metrics are output as complex-
ty_plots.png (Table 1 ). 

Distance metrics based on Jaccard Distances ( 76 ) identify
he proportion of the exon space that varies for each of the 6
ategories of alternative splicing and are provided as well as
ummary plots in the output of the open source PyPi pack-
ge, TranD. We provide details and examples, with additional
cripts for processing the TranD output on our github page
 https:// github.com/ McIntyre-Lab/ TranD ). 
Distance metrics at the gene level (TranD 1GTF 

gene) 

With 1 GTF file as input, for each gene g, with t transcript
models ( t > 1 ), the ER space is defined by the boundaries
of the 5 

′ most and 3 

′ most exon coordinates across the t
transcript models. We calculated the following quantitative
metrics: 

P _ E R g = 

(
number of E R shared bet ween t ranscript s 

)

t ot al number of ER present in either transcript 

P _ N g = 

(
num nucleotides annot at ed as exonic in any transcript model

t ot al number of nucleot ides 

https://github.com/McIntyre-Lab/TranD
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Table 1. Primary distance metrics. The descriptions and abbreviations of primary distance metrics used. All metrics are described in detail on the TranD 

github ( https:// github.com/ McIntyre-Lab/ TranD/ wiki/ Output-File-Column-Descriptions ) 

Metric Abbreviation Description 

Exons per Gene EpG number of exons annotated within a gene 
Transcripts per Gene TpG number of transcripts annotated within a gene 
Exons per Transcript EpT number of exons annotated within a transcripts 
Proportion of exon regions shared P ER g (number of ER shared between transcripts) / (total number of ER 

present in either transcript) 
Proportion of nucleotides shared P N g (number nucleotides annotated as exonic in any transcript 

model) / (total number of nucleotides) 
Proportion of variable exon regions P ER i j ( num ER i + num ER j ) /t ot al ER i j , where num ER i is the number of exon 

regions only annotated in T i , num ER j is the number of exon regions 
only annotated in T j , and t ot al ER i j is the union of unique exon 
regions annotated in either transcript model T i or T j 

Proportion of variable junctions P _ J i j ( num J i + num J j ) /t ot al J i j , where num J i is the number of junctions only 
annotated in T i , where num J j is the number of junctions only 
annotated in T j , and t ot al N i j is the union of unique junction 
coordinates annotated in either T i or T j 

Proportion of variable nucleotides P N i j ( num N i + num N j ) /t ot al N i j , where num N i is the number of nucleotide 
co-ordinates annotated as part of T i only, num N j is the number of 
nucleotide co-ordinates annotated as part of T j only, and t ot al N i j is 
the number of nucleotide co-ordinates annotated in either T i or T j 

Percent of annotated nucleotides 1 − P N i j 1 minus the proportion of variable nucleotides P N i j 
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For each gene, the P_ER and P_N
(all_gene_prop_nt_variability.csv) as well as the number
of exons per gene (uniq_exons_per_gene.csv), are output
and summary statistics are reported in output transcrip-
tome_complexity_counts.csv. These metrics provide insights
into the complexity of the annotation. Species can be com-
pared for complexity without needing to refer to the genome
coordinates ( 30 ). By default, TranD 1GTF produces a sum-
mary for each gene of the presence / absence of each of the
6 AS categories (pairwise_distance.csv), a graphical sum-
mary of the complexity in transcriptome_summary_plot.png;
all_gene_prop_nt_variability.png (the distribution of P_N g ),
and catalog files for junctions (junction_catalog.csv), exon
regions (event_analysis_er.csv), and a list of transcript models
with IR (ir_transcripts.csv). 

Distance metrics for pairs of transcript models 

(TranD 1GTF pairwise-mode) 

Given any pair of transcript models T i and T j in gene
g, the proportion of variable exon regions is P ER i j =
( num ER i + num ER j ) /t ot al ER i j , where num ER i is the number of
exon regions only annotated in T i , num ER j is the number of
exon regions only annotated in T j , and t ot al ER i j is the union
of unique exon regions annotated in either transcript model
T i or T j (Figure 1 B). The P ER i j metric signifies the relative pro-
portion of exons between the transcript models that vary in
inclusion / exclusion and therefore represents the proportion
of alternative exons present. 

Junction coordinates, defined by the coordinates of the
donor and acceptor associated with the junction, and exon
regions are tracked between T i and T j . The proportion of
variable junction coordinates between the transcript mod-
els is calculated as P _ J i j = ( num J i + num J j ) /t ot al J i j , where
num J i is the number of junctions only annotated in T i , where
num J j is the number of junctions only annotated in T j , and
 ot al J i j is the union of unique junction coordinates anno-

tated in either T i or T j (Figure 1 B). The P _ J i j metric in-
dicates the proportion of junctions that vary and therefore
represents the relative amount of junction variability (due
to alternative donor / acceptors, alternative exons, or intron 

retentions IR). 
Between a pair of transcript models T i and T j , P N i j = 

( num N i + num N j ) /t ot al N i j is a the proportion of nucleotides 
whose genomic position varies between the two transcript 
models, where num N i is the number of nucleotide co-ordinates 
annotated as part of T i only, num N j is the number of nu- 
cleotide co-ordinates annotated as part of T j only, and t ot al N i j 

is the number of nucleotide co-ordinates annotated in either 
T i or T j (Figure 1 B). The proportion of the co-ordinates that 
overlap is 1 − P N i j (percent annotated nucleotides). The P N i j 

metric represents the relative number of co-ordinates that vary 
between the transcript models due to differences in splicing 
between T i or T j . 

We classify the distance between the transcript 
model pair based on the structural relationships be- 
tween T j and T k : FSM, ER S_noIR, ER S_wIR, ERN 

(Figure 1 A). All metrics are output along with binary 
indicators (pairwise_transcript_distance.csv). Metrics 
are summarized using upset plots for transcript pairs 
(transcript_pair_AS_upset_nt_boxplot.png) and genes 
(genes_AS_upset.png). Plots have automatically generated 

legends that report the total number of pairs / genes in the 
plot. 

Comparing transcript models between annotations 

(TranD 2GTF pairwise-mode) 

Given two transcriptome annotation files, GTF1 and GTF2,
annotated on the same genome coordinates, we ascertain the 
number of genes in both annotations, the number of genes 
only in GTF1 and the number of genes only in GTF2. We 
match based on gene name, and a step may need to be taken 

to facilitate this comparison. For each gene g, that is present 
in both GTF1 and GTF2 all transcript models j, from GTF1 

are compared pairwise to transcript models 1 to k in GTF2 

and P ER jk 
P ER jk 

, P J jk and P N jk 
are calculated (output in pair- 

wise_transcript_distance.csv). 
We define the minimum distance min T D j between transcript 

model j and the set of models [1, …, k ] with the following 

https://github.com/McIntyre-Lab/TranD/wiki/Output-File-Column-Descriptions
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equential procedure: 1) select all transcript models with min
 P ER jk 

), 2) from the minimum transcript models in step 1, se-
ect all transcript models with min ( P J jk ), 3) from the minimum
ranscript models in step 2, select all models with min ( P N jk 

).
he pair with the min T D j also has a classification of the based
n the structural relationship of the pair: FSM, ERS_noIR,
RS_wIR, ERN. There may be more than 1 transcript pair
ith the same minimum value (ties). For example, when all

ranscripts are similar and differ by only donor / acceptor vari-
tion. If there is a tie, an indicator variable ( flag_[d1]_tie = 1
r flag_[d2]_tie = 1, where d1 and d2 are the names of GTF 1
nd GTF 2); the first T k (as defined by the alphabetical order
f transcript_id values) is listed as min T D j , and the set of tran-
cript_ids that are ties are indicated ([d1]_distance_ties
r [d2]_distance_ties ). The minimum distance pair
or transcripts in GTF1 is indicated with the variable
ag_minimum_distance_transcript_GTF1 = 1; and the mini-
um distance pair for transcripts in GTF2 is indicated with

he variable flag_minimum_distance_transcript_GTF2 = 1.
ll metrics are present in the pairwise_transcript_distance.csv
le, enabling other versions of the minimum distance between
wo transcripts to be readily calculated. For all genes present
n both GTF files, the default is to output distances for all
airs, to output only the minimum distance pairs use the
ption ‘-p both’. 
An often-overlooked computational challenge in the com-

arison of isoforms is the existence of non-transitive relation-
hips (where A is most similar to B, B is most similar to C,
ut A and C may not be similar at all). For transitive relation-
hips, min T D j = min T D k 

and when this condition is met, we
lassify this relationship as a reciprocal minimum pair (RMP,
ag_RMP = 1). Care must be taken in the interpretation of
MP. If there is only 1 transcript model for a gene in either
TF1 or GTF2, by definition there will be an RMP. If there

s a transcript j or k for which there is no reciprocal mini-
um pair, the transcript is classified as no reciprocal match

NRM). The binary presenence / absence variables: flag_FSM,
ag_ER S_wIR, flag_ER S_noIR, flag_RMP, flag_NRM are also
resent in the output. 

xon region groups 

or any pair of transcripts T i and T j , when P ER i j = 0 all exon
egions overlap (Figure 1 A.1–A.4). An exon region group
ERG) is defined when P ER i j = 0 (Figure 1 C). ERG can be con-
tructed allowing for intron retention (IR) containing mod-
ls (‘–includeIR Y’) or not including models with IR (‘–
ncludeIR N’, default). ERGs are identified by running the util-
ty id_ERG.py on the pairwise_distance.csv file that is output
rom TranD . In addition to a label identifying the sets of tran-
cripts in the same exon region group, a GTF file with a single
epresentative transcript for each exon region group is also
enerated. 

omparing transcript models (transcript model 
aps) 

hen a transcript pair is a full-splice match (FSM), the two
ranscripts share the same junction chain, and we annotate
nd output a single representative of the unique junction
hain (UJC) in the union GTF. Otherwise, both transcripts
re present in the union GTF. The union_UJC_ID.csv con-
ains gene, transcript, and junction identifiers for all tran-
cript_id’s (Figure 2 A). We then identify the exon region
groups using the id_ERG.py script. The resulting output
ERG.csv is merged to the union_UJC_ID to form the file
union_UJC_transcript_map.csv. The transcript model map is
defined as: (i) a GTF file, with one transcript model repre-
senting each unique junction chain (UJC) in the union of the
two annotations and the accompanying union_UJC_ID.csv;
(ii) an exon Region Group (ERG) GTF file, with one tran-
script model representing each unique ERG, or set of overlap-
ping exons, in the union of the annotations and accompanying
ERG.csv that links the individual transcriptIDs to the ERG;
(iii) a pairwise_distance.csv file that is the output of TranD 2
GTF for genes shared in GTF1 and GTF2; (iv) for genes that
are present in only 1 of the 2 GTF files TranD 1 GTF output.

Comparing transcript models between species 

Transcriptomes from closely related species can be compared
if the transcript models from one species can be mapped to
the genomes coordinates of the other species (e.g. D. simu-
lans and D. melanogaster ). For each set of coordinates, the
transcript models from one species are mapped onto the co-
ordinates of the other species. When a pair of transcripts are
RMP on both sets of coordinates and that pair is an FSM, or
an ERS_noIR with a ‘small’ number of nucleotide positions
different the two transcript models ( ̂  T sp1 , ˆ T sp2 ) we consider the
transcript models between the two species structurally similar,
and we label these as a single transcript model ( ̂  T ) (Figure 3 ).
The pair is indicated by flag_T_hat = 1 (a binary 0 / 1) in the
cross_species.csv ( Supplementary File 1 ). We note that there
is no phylogenetic relationship demonstrated here. This is in-
tended identify transcript models that are structurally similar
in both species, while allowing for variation due to techni-
cal and biological issues in comparing genomes. In addition,
we identify transcript models in one species that are not an-
notated in the other species. The definition of ‘small’ should
depend on the particular biological comparison and the qual-
ity of the genomes and annotations being compared. For the
D . melanogaster and D . simulans comparison, we consider the
distance between the structure of the two transcript models to
be ‘small’ when there are fewer than 15 nucleotide positions
different in the splice junctions. This is the average number
of exons per gene ( 5 ) multiplied by the length of a codon ( 3 )
( Supplementary Table S1 ). This criterium can be easily mod-
ified as the code allows a variable input and the distance file
retains the nucleotide distance information. 

Running TranD 

In all modes of TranD , the output includes complexity met-
rics (EpG, TpG, EpT). Input files are in the GTF file format.
A pairwise_distance.csv file contains a line for each pair of
transcripts compared, the distance metrics for that particular
pair of transcripts and then the classifications of the pair. A se-
ries of summary plots that visualize splicing patterns are also
output by default. 

We have developed utilities that use the pair-
wise_distance.csv file as input to: subset the file (sub-
set_ TranD _pairwise_transcript_distance.py), generate plots
(plot_ TranD _from_output_files.py), make the csv files for
union annotation (make_union_key.py) and construct the
transcript model map (Make_transcript_map.py). 

We compare transcript models with the same gene identi-
fier and not within a specific region due to overlap of genes in
many organisms’ annotations (e.g. ( 77–79 ) and reviewed in

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
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Figure 2. Union GTF and e x on region group (ERG) example. ( A ) A union file. When the transcript model in GTF1 is an FSM with the transcript model in 
GTF2 there is a single unique junction chain (UJC) for both transcript models in the Union GTF and the corresponding csv file. In all other cases the 
Union GTF file has 2 UJC. ( B ) D. simulans Sxl gene (FBgn0016343) transcript models from the reference (black), FLAIR (gray) and IsoSeq3 cluster 
(y ello w) that ha v e been assigned e x on region groups (ER Gs) based on the distance output of TranD 2GTF. ( C ) D. melanogaster Sxl (FBgn0264270) FLAIR 

and IsoSeq3 cluster transcript models assigned ERG. Red arrows show the reciprocal minimum distance between species transcript models. We note 
not all transcript models are displa y ed. 
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( 80 )). To allow more flexibility and functionality in pairwise
mode (1 GTF or 2 GTF), an optional argument (–subset-pairs )
can be utilized to specify the pairwise comparisons that will
be calculated. If one is interested in a specific subset of tran-
script model pairs, either within one annotation or between
two annotations, this argument can be used. For example, to
make comparisons based on specific genome regions. In addi-
tion, this option can greatly reduce computational resources
required and time to process. The input file for this argument
is a text file with no header row and each row containing
the transcript model identifiers (or transcript_id values in the
GTF) for each pair to be assessed for distance calculations. For
example if transcript model T1 and T5 are to be compared,
the input file would have one row that contains ‘T1,T5’. For
the two GTF file input the transcript_id from GTF1 is the first
column and the transcript_id from GTF2 is the second col-
umn. Note that when the subset pair input is used, TranD will
not calculate minimum distance metrics. 
In genes with many transcripts there may be excessively 
large numbers of pairwise comparisons. In these situations,
runtime becomes a concern. It is advisable to check the num- 
ber of transcripts per gene before running TranD to calculate 
distances by using the TranD with the -c / –complexityOnly 
option. We also recommend splitting 2GTF comparisons by 
chromosome. 

Long-read data 

Head tissue of males ( n = 2) and females ( n = 2) from isogenic
lines of both D. melanogaster (R153) and D. simulans (Sz12),
for a total of eight independent samples, were collected (by 
authors SS and SV). Additional details about the experiment 
and long-read pre-processing can be found in Supplementary 
Materials Section 2. We also use data publicly available from 

C. elegans ( 81 ), Z. mays ( 82 ) and human cell lines ( 83 ). Fur-
ther details for these data are in Supplementary Table S2 . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
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Figure 3. Workflow for generation of cross-species Transcript model Map. We use D. melanogaster FlyBase 6.17 and D. simulans FlyBase 2.02 
annotations to demonstrate the construction of a cross-species Transcript Model Map. Transcript sequences from both species are mapped to both sets 
of genome coordinates. Transcript models from the mapping of the two species are compared using TranD for each set of coordinates. Using the 
calculated distance metrics and minimum distance associations, a Transcript Map file is generated for each set of coordinates. The cross-species 
Transcript Model Map file links annotations across coordinates. Note that not all transcripts in either species will ha v e a pair in the other species, and 
that in addition to identifying annotated pairs, potential missing annotations are also identified. 
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ranD 1 GTF examples 

e illustrate the utility of distance metrics and how to inter-
ret results first with a single gene from D. melanogaster Sxl
Figure 2 C). There are experimentally validated isoforms with
 male-specific exon cassette in D. simulans ( 16 ,84–87 ) and,
lthough these transcript models are not present in the D. sim-
lans annotation, they are present in the annotation of the
ister species D. melanogaster . From the IsoSeq3 / FLAIR tran-
cript models derived from lrRNA-seq data we observe more
plicing patterns than are annotated in D. simulans (Figure
 B). We grouped the IsoSeq3 / FLAIR transcript models ac-
ording to their overlapping exons into exon region groups
ERGs). For D. melanogaster although there are model tran-
cript models annotated, we still observe a novel set of ex-
ns for FLAIR (ERG2) and Isoseq3 (ERG7) (Figure 2 C). ERG
ith a similar structure in both species are linked by red ar-

ows (Figure 2 B, C). 
We ran TranD 1 GTF using GTF input files from C. el-

gans WBcel235 annotation ( 88 ,89 ), two versions of the
. mays annotation v4 B73 and Mo17 ( 90 ,91 ), H. sapi-

ns RefSeq GRch38p14, H. sapiens Ensembl GRch38.104,
. melanogaster FlyBase r6.17 ( 92–94 ) and D. simulans Fly-
ase r2.02 ( 92–94 ). 

ranD 2 GTF examples 

e demonstrate how TranD 2 GTF can be used by compar-
ng GTF files from reference annotation to augmented anno-
ation in non-model D . y akuba by comparing an augmented
annotation based on RNA-seq data ( 95 ) to the D . y akuba
FlyBase r1.05 (here on referred to as dyak-FB105). We used
each of these two GTF files as input into TranD 2GTF and
summarized the output with the plotting utility . Similarly , we
compared the RNA-seq data augmented D. simulans w 

XD1

(21 562 transcript models) ( 96 ) constructed using MAKER
to the current FlyBase D. simulans r2.02 (26 261 transcript
models). We mapped D. simulans r2.02 GTF annotation and
D. simulans w 

XD1 GTF to the D. simulans w 

XD1 genome. We
used SQANTI3 QC ( 69 ) to identify FSM pairs between the
annotated positions and the mapped positions. 26065 tran-
script models from D. simulans r2.02 and 19 188 transcript
models from D. simulans w 

XD1 . 
There are many methods for processing and estimating

transcript models from empirical data. For simplicity we
focus on two approaches to lrRNA-seq but as the input
to TranD is a GTF file, output from short read assem-
blers could also be evaluated. Since our goal here is not to
debate long-read versus short read assembly, but to high-
light the distance-based approach used in TranD we focus
on two relatively new lrRNA-seq methods to demonstrate
how TranD 2GTF aids in the analysis of the differences.
We compare a reference-based method, FLAIR (v1.5) ( 97 ),
with a de novo approach, IsoSeq3 cluster ( https://github.
com/ PacificBiosciences/ IsoSeq ). For each of the five species
( Supplementary Table S2 ) we implemented the FLAIR and
IsoSeq3 cluster protocols from the same set of starting reads
and compared the resulting transcript models (Supplementary
Materials Section 6, https:// github.com/ McIntyre-Lab/ TranD/
wiki/Long- read- Method- Comparison- (Drosophila- PacBio )). 

https://github.com/PacificBiosciences/IsoSeq
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://github.com/McIntyre-Lab/TranD/wiki/Long-read-Method-Comparison-(Drosophila-PacBio
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We use TranD 2GTF output to compare the human an-
notations for hg38 Ensembl (release 104) and RefSeq (p13).
For transcripts that share all their junctions (FSM) we include
only a single representative unique junction chain (UJC) in
the GTF file for comparison using the utility ID_UJC.py (a re-
duced reference). This step avoids ties in minimum distances
due to exact matches at the junctions within a GTF. We use
the reduced reference GTF files from each of these annota-
tions as input to TranD 2GTF. We use the pairwise distance
output of TranD 2GTF to identify exon region groups (ERG)
for genes shared in both annotations, and separately for the
genes found only in one of the two GTF files using the util-
ity ERG_id.py. Full details including the exact options used
are on in the Supplementary Materials and all scripts are pro-
vided ( https:// github.com/ McIntyre-Lab/ TranD/ docs/ ). 

Comparing D. melanogaster and D. simulans 

We linked the D. melanogaster and D. simulans results across
species by comparing the minimum distance pairs on both sets
of co-ordinates. We only linked transcript models when the
results were concordant. 

Results 

Distance metrics can be applied in a wide variety of scenarios.
We illustrate some of the anticipated common applications of
TranD . We highlight how scientists who either seek to improve
annotations or wish to quantify transcript level differential
expression can gain insights using the formal distance-based
approach developed in TranD . We also provide on our wiki
page the code for all of the examples we use for illustration
( https:// github.com/ McIntyre-Lab/ TranD/ wiki ). 

Quantifying splicing patterns (1GTF) 

TranD can be used to explore and compare the complexity of
transcriptomes without the need of matching transcript IDs
in the 1GTF analysis mode. We compare transcript models
from C. elegans ( 88 ) (WBcel235 annotation, Supplementary 
Figure S1 A), D. melanogaster (FB6.17), D. simulans (FB 2.02),
H. sapiens Hg38 Refseq and Ensembl and Z. mays B73 v4
( 90 ) (Mo17 YAN annotation, Supplementary Figure S1 B) and
quantify the splicing patterns using the distance metrics in
TranD 1GTF pairwise. Z. mays has greater structural com-
plexity in the transcriptome annotation than C. elegans with
on average a greater number of transcripts per gene (TpG:
∼2.98 versus ∼1.36 in C. elegans ), more exons per gene (EpG:
∼8.80 versus ∼4.29 in C. elegans ), and exons per transcript
(EpT: ∼8.75 versus ∼4.45 in C. elegans ). For genes with mul-
tiple transcripts, we can immediately identify differences in
splicing patterns between these species using the TranD 1GTF
output summaries (Figure 4 ). Z. mays has more annotated in-
tron retentions than C. elegans consistent with previous liter-
ature describing IR as the most prevalent class of alternative
splicing in plants (reviewed in ( 39 ,98 ). While in C. elegans , the
use of alternative exon cassettes is more prevalent than in Z.
mays . Of note, in both species, alternative exons occur more
frequently together with alternative donors / acceptors than ei-
ther event individaully. 

We use TranD 1GTF to quantify the splicing patterns for
human hg38 Ensembl (release 104) and RefSeq (p13) anno-
tations ( Supplementary Figure S6 ). There were 162 865 Ref-
Seq transcript models and 234 201 Ensembl transcript mod-
els. Additionally, we can see that Ensembl contains more tran- 
scripts that differ only at the 5 

′ / 3 

′ end, and has both more al- 
ternative donors / acceptors, and more alternative exons than 

RefSeq (Figure 4 , Supplementary Figure S6 ). The Ensembl an- 
notation contains an average TpG of 3.86 ± 6.84, EpT of 
6.34 ± 6.95, and EpG of 10.71 ± 17.61. The RefSeq annota- 
tion has similar TpG (4.28 ± 6.90), and EpG (10.28 ± 11.85) 
but larger EpT (11.78 ± 11.25) (Figure 4 ) and Ensembl has 
a higher proportion of non-overlapping transcripts ( ∼16%) 
compared to RefSeq ( ∼3%). 

When transcripts differ by only donor / acceptors all exonic 
regions overlap (ERS). Interestingly, donor / acceptor variation 

is more likely to occur in conjunction with alternative exons 
than alone and the combination is more frequent than ex- 
pected by chance in all of the species we examined (Figure 
4 ). This underscores the importance of whole transcript eval- 
uation in understanding the impact of alternative splicing on 

the complexity of the transcriptomes. 

Data driven annotation augmentation (2GTF) 

It is common practice to support and extend annotations with 

empirical data from RNA-seq short reads using tools such 

as MAKER ( 57 ), BRAKER ( 58 , 59 ) and A UGUSTUS ( 60 , 61 ).
The default output of these tools does not pinpoint changes in 

transcript models made as a result of the data inputs. It can be 
difficult to know when transcript models have been modified 

by ‘small’ versus ‘large’ amounts and how the experimental 
data improves the quality of the annotation. 

TranD 2GTF mode can be used to pinpoint differences in 

transcript models between the starting and the augmented ref- 
erence. For example, in the non-model species D . y akuba, an 

augmented annotation was published that leveraged RNA- 
seq data ( 95 ). This annotation (here on referred to as dyak- 
RR-revised) was compared to the D . y akuba FlyBase r1.05 

(here on referred to as dyak-FB105). The dyak-RR-revised 

has fewer transcripts per gene (TpG) but more exons per 
gene (EpG) than dyak-FB105 ( Supplementary Figure S3 ). Al- 
though genes exclusive to the dyak-FB105 (7907 gene loci) 
and dyak-RR-revised (5168 gene loci) are easily identified by 
a variety of tools ( Supplementary Figure S4 A), TranD provides 
this information in addition to metrics designed to quantita- 
tively compare transcript models in the 8162 genes present 
in both annotations. There were 5241 transcript models with 

new exons or new exon combinations in dyak-RR-revised 

compared to the closest transcript model in dyak-FB105. The 
vast majority of these (4464 transcript models) also differ by 
an alternative donor / acceptor ( Supplementary Figure S4 D).
The TranD output pinpoints the structural differences with 

nucleotide-level resolution between each of the dyak-RR- 
revised transcript models and its closest dyak-FB105 tran- 
script ( Supplementary Figure S4 D, Supplementary File 2 ). This 
enables the scientist to pinpoint not only the new exons, but 
the changes in the donor / acceptors that accompany that exon 

in the transcript model. 
The same general trends were observed when we compared 

the RNA-seq data augmented D. simulans w 

XD1 genome and 

annotation (21 562 transcript models) ( 96 ) to the FlyBase D.
simulans r2.02 annotation (26261 transcript models) using 
TranD 2GTF ( Supplementary Figure S5 ). There were 3103 

transcript models with large (hundreds of nucleotides) differ- 
ences compared to the r2.02 model. As with the D . y akuba 
data augmentation, the D. simulans w 

XD1 MAKER aug- 

https://github.com/McIntyre-Lab/TranD/docs/
https://github.com/McIntyre-Lab/TranD/wiki
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
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Figure 4. Splicing patterns in reference annotations of five species. TranD 1 GTF pairwise was run on the following annotations: H. sapiens RefSeq 
GRc h38p1 4, H. sapiens Ensembl GRch38.104, Z. ma y s B73 v4, C. elegans WBcel325, D. melanogaster FlyBase r6.17 and D. simulans FlyBase r2.02. 
The pairwise_distance.csv output file from each genome was used ignore_AS_type.py , with the options ‘-i3 -i5’. 
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ented transcript annotation makes significant additions to
he structure of the transcript models altering donor / acceptor
ites in combination with alternative exon structure. TranD
istance metrics pinpoint all of the changes in the structure
f the transcript and enable a transcriptome level summary of
he impact of data augmentation on the reference annotation
 Supplementary File 3 ). 

omparison of transcript model estimation 

ethods 

ith the advent of long reads, there are a number of tools for
stimating transcript models. To illustrate how TranD can be
sed to provide a quantitative assessment of the differences
n the transcript models estimated between different tools, we
ompare FLAIR transcript models (GTF1) to IsoSeq3 cluster
ranscript models (GTF2) using TranD 2GTF. We use 5 in-
ependent sets of data from 5 different species representing a
ange of complexity in the reference transcriptomes: (i) PacBio
ong read cDNA from a human WTC11 cell line from LR-
GASP ( 83 ), (ii) Z. mays B73 root tissue ( 82 ), (iii) ONT from
C. elegans L1 larval stage ( 81 ), (iv) PacBio IsoSeq data from
D. melanogaster head tissue and (v) PacBio IsoSeq data from
D. simulans head tissue. Each of these datasets differ in com-
putational complexity and accuracy with respect to different
types of isoform variation. 

The LRGASP project reported large difference between
bioinformatic methods when inferring transcript models from
long-read data ( 83 ) and focused many evaluations on differ-
ences from matching a known, spliced spike-in control or per-
formance using simulated long-read data. LRGASP identified
overlap among transcript models but did not identify similar
models between approaches, limiting our understanding of the
differences between tools in complex scenarios when there is
no single objective truth. TranD can be used for this purpose.

We compared FLAIR and IsoSeq3 for 5 different datasets.
For each dataset we compared transcript models using TranD
2 GTF. We see some general trends for all the datasets an-
alyzed (Figure 5 A, B). Isoseq3 (Orange) estimates more tran-
script models than FLAIR (Gray) (Figure 5 A). When transcript

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
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Figure 5. Comparison of transcript model estimation with FLAIR or IsoSeq3 cluster. ( A ) Percent of genes identified in each dataset by either FLAIR or 
IsoSeq3 cluster, colored by the relationship of the number of estimated transcript models identified in each method. Genes with the same number of 
models are blue, genes with more models in FLAIR compared to IsoSeq3 are gray, genes with the reverse are orange. ( B ) Percent of genes with 1, 2, 3 
or 4+ e x on region groups (ERG) present across all IsoSeq3 cluster and FLAIR estimated transcript models. ( C ) Reciprocal minimum transcript model 
pairs ( n = 11 128) of FLAIR vs. IsoSeq3 cluster in the D. simulans dataset are plotted results including 5 ′ / 3 ′ variation is in Supplementary Figure S2 A. 
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models are estimated in FLAIR and Isoseq3, both approaches
identify the same set of exonic regions, a single exon region
group (ERG), for a majority of the genes (Figure 5 B). The ma-
jority of transcript models also agree on the splice junctions.
For example, in D. simulans , ∼87% of the transcript models
are FSM (9790 / 11218, Figure 5 C) but only ∼26% are identi-
cal (matching also both 5 

′ and 3 

′ ends) between the two meth-
ods ( Supplementary Figure S2 A). Variation at the 5 

′ / 3 

′ ends
of the transcript is common in all the datasets examined and
underscores the difficulties in algorithmically identifying the
5 

′ / 3 

′ ends from lrRNA-seq data. 
For D. simulans, there were transcript models for 670 genes

in FLAIR only and 2475 genes in IsoSeq3 cluster only. There
were 8206 genes with transcript models in both methods
but only ∼42% (3447) had the same number of transcript
models. For these 3447 genes, 3127 had only one transcript
model. Interestingly, when the number of transcript models
is greater in one of the methods, the transcript models from
the method with fewer transcript models are often an RMP
subset of the other approach. These patterns are similar for
the other 4 species ( Supplementary Table S3 ). We note that
the RMP that are not FSM are likely to differ both alternative
exon and alternative donor / acceptor ( D. simulans Figure 5 C,
Supplementary Figure S2 ). This pattern is consistent for all the
datasets examined (Supplementary Materials Section 6.2). 

We determined how many of the transcript models from
FLAIR and IsoSeq3 cluster were supported by the long-read
data that were used as input ( Supplementary Table S3 ). Most
of the transcript models were supported by the data, includ-
ing all transcript models identified by FLAIR that were not
found in IsoSeq3. However, some IsoSeq3 transcript models
not identified by FLAIR lacked support from the original reads
( Supplementary Table S3 , Supplementary Materials Section
6). The concordance between FLAIR and Isoseq3 was much 

lower for the WTC11 PacBio human data compared to the 
other four species, suggesting that additional caution is needed 

in estimating transcript models as transcriptome complexity 
increases. 

Comparison of alternative annotations (transcript 
models) for the same genome 

The choice of a particular annotation affects downstream 

analyses and impacts biological interpretations ( 99 ,100 ). We 
used TranD 2 GTF to compare the transcript models in RefSeq 

and Ensemble for H. sapiens hg38 genome ( Supplementary 
Figure S7 ). Differences between RefSeq and Ensembl are a 
known issue, and as a result a consortium to resolve these an- 
notations has been working for several years resulting in a set 
of ∼19 000 manually curated transcripts ( 101 ). We verified 

that the TranD 2GTF output from the comparison of Ref- 
Seq to Ensembl contained 19 316 of the MANE transcripts 
(a handful of transcripts were missing from the version of En- 
sembl we used). The similarity between the two annotations is 
higher when only protein coding genes are considered. There 
are 19 417 protein coding genes in both annotations. For all 
of these genes there is a RMP for at least 1 transcript. For 
protein coding genes there were 52 567 RMPs with 46 712 

FSM. Overall, there were 55 538 FSM transcript pairs. We 
note that the MANE consortium has developed criteria for 
linking transcripts, and are not suggesting that exact junction 

matches supplant the MANE criteria. 
The majority of genes are different between the RefSeq and 

Ensembl annotations (35 641 / 66 921 = 53% of genes, Ta- 
ble 2 ). Genes unique to one annotation had fewer transcript 
models than those annotated by both approaches. Transcript 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
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Table 2. RefSeq GRc h38p1 4, compared to H. sapiens Ensembl 
GRch38.104 o v erall (protein coding gene) 

Genes 

RefSeq 6316 (343) 
Ensembl 29 325 (611) 
both 31 281 (19 417) 
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odels in Ensembl only had 1.12 TpG(transcripts per gene)
nd while those in RefSeq only had 1.6 TpG. In contrast there
ere an average of 9.1 TpG in genes that are annotated in
oth references. 
We hypothesized that lrRNA-seq data could provide insight

nto whether one of these two annotations had better empiri-
al support. We used publicly available lrRNA-seq data from
acBio and ONT from human WTC11 cells to evaluate the

ong-read support for the union of the RefSeq and Ensembl
nnotations (Figure 6 ). We mapped the data to hg38 and used
QANTI3 ( 69 ) to identify FSM and incomplete splice matches
ISM; reads match a continuous subset of junctions) ( 69 ) be-
ween reads and annotated UJC for the PacBio data (Figure
 A) and the ONT data (Figure 6 C). The two technologies
rovide consistent support of the same transcript models even
ith more ONT reads overall. In expressed genes, 70% of the

ranscript models from both RefSeq and Ensembl have read
upport for both PacBio (Figure 6 B) and ONT (Figure 6 D).
efSeq transcript models had higher levels of read support
ompared to Ensembl but the number of transcript models
upported is similar. 

omparative genomics leveraging annotation 

cross species 

e note that our linking of transcript models between species
Figure 3 ) does not depend on the annotation of the genes
s an ortholog but on the transcript models being both struc-
urally similar and reciprocally mapping to the same positions.
or example, we find a single transcript model ˆ T between D.
elanogaster Ubx-RE and D. simulans Ubx-RB . While in Fly
ase OrthoDB release FB2022_01 ( 102 ), Dmel / Ubx is iden-

ified as an ortholog to Dsim / Ubx, we caution that ˆ T cannot
e interpreted as an orthologous transcript without the addi-
ional work necessary to confirm the evolutionary history. 

In the 10 542 genes with a single annotated tran-
cript model in both D. melanogaster and D. simulans ,
ost meet the definition for a single transcript model ˆ T 

 Supplementary Figure S8 A). For genes with 2 transcripts in
ach species (1375), ∼81% have a single ˆ T for both tran-
cripts ( Supplementary Figure S8 B). When the number of
ranscript models is the same between the species for larger
umbers of transcripts, ∼62% have a full complement of ˆ T 

 Supplementary Figure S8 C) and when the number of tran-
cripts is larger in one species, most genes present with the
ranscripts in the species with the smaller number of tran-
cripts are a subset of ˆ T to the transcript models in the other
pecies ( Supplementary Figure S8 D,E) suggesting that the ‘ex-
ra’ transcript models may be potentially missing annotation.
verall, we identify 14800 structurally similar ˆ T . Of these
4 669 are in 12 863 one-one gene pairs. In head tissue we find
mpirical support for the majority of these transcript models
n lrRNA-seq data for both species (Figure 7 A). Since this is
 single tissue, we do not expect to find support for all genes
and all models. We also find evidence in lrRNA-seq data in D.
melanogaster for D. simulans annotated transcripts and vice
v er sa (Figure 7 B, C) indicating that both species may be under-
annotated. 

Discussion 

We develop a set of distance metrics that identify and quan-
titate the relative structure of transcript model pairs. We pro-
pose a set of sequential rules that prioritize minimizing the
number of overlapping exons, then the number of shared
junctions, and finally the number of overlapping nucleotides
to identify minimum distance pairs. In addition to distance
metrics, we also develop complexity metrics for transcrip-
tomes based on the number of annotated genes, transcripts,
and exons (EpT, TpG, EpG). We developed TranD to calcu-
late distance and complexity metrics for a single annotation
(1GTF) and between two annotations (2GTF). TranD output
can be used to group transcript models, by structural com-
ponents; describe alternative splicing patterns within and be-
tween transcriptomes; and pinpoint variation in transcripts
with nucleotide-level precision- for an entire transcriptome.
This enables the scientist to quickly identify sets of transcript
models that are structurally similar and compare transcript
structure across the tree of life ( 30 ). We have provided exam-
ples for 5 species ( https:// github.com/ McIntyre-Lab/ TranD/
wiki/Precomputed-Files ). 

The choice of annotation impacts the quantification of gene
expression for the human genome ( 100 ). There has been an ef-
fort to unify annotations (e.g. 101) with a single representative
transcript per gene, however an extensive process was neces-
sary, ending with manual curation that selects a high qual-
ity intersection of the two annotations. Using distance met-
rics we are able to reproducibly and automatically: (i) iden-
tify the transcripts that share all junctions in both annotations
and seamlessly link the individual RefSeq and Ensembl identi-
fiers to the same set of junctions, (ii) make a combined / union
reference that retains all individual transcript models from
both annotations, (iii) identify all transcript models in both
annotations that contain overlapping exon regions (shared
transcript structure), (iv) generate a representative transcript
model for sets of overlapping transcripts and (v) pinpoint
structural differences among all of the transcript models at
nucleotide resolution. We demonstrate how to use the a tran-
script model map between two annotations to map lrRNA-seq
data from WTC11 lrRNA-seq ( 83 ). Transcript models were
inadequately described by RefSeq / Ensembl annotations in-
dividually, but the union annotation adequately captures the
variability in the data, with 75% of the PacBio reads and 90%
of the ONT reads associated with an annotated splicing pat-
tern. ( https:// github.com/ McIntyre-Lab/ TranD/ wiki ). We sug-
gest that investigators using the union reference ( https://data.
rc.ufl.edu/ pub/ mcintyre/ trand/ tmm/ human _ tmm/ ) as a way of
capturing the combined expertise of RefSeq and Ensembl. 

TranD distance metrics can be used to compare any two
annotations for a single genome. For example to compare dif-
ferent methods, FLAIR and IsoSeq3, for estimating transcript
models from long-read data on 5 different datasets. For H.
sapiens data we evaluate both methods for two technologies,
PacBio and ONT. The technologies resulted in very similar
splicing patterns for each of the two methods. Overall FLAIR
and IsoSeq3 produce similar transcript models when genes
have one predominant splicing pattern per gene. However, for

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae056#supplementary-data
https://github.com/McIntyre-Lab/TranD/wiki/Precomputed-Files
https://github.com/McIntyre-Lab/TranD/wiki
https://data.rc.ufl.edu/pub/mcintyre/trand/tmm/human_tmm/
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Figure 6. Long-read support for hg38 RefSeq and Ensembl union annotation. ( A ) Number of genes annotated in both RefSeq and Ensembl with 
long-read evidence in WTC11 PacBio data that are FSM, ISM or mapped to an annotated transcript model. ( B ) Exon region groups (ERG) in expressed 
genes with transcript models in both annotations are separated b y ER G e x clusiv e to Ensembl, R efSeq or in both annotations that are expressed (blue) or 
not expressed in the WTC11 PacBio data. ( C ) Number of genes annotated in both RefSeq and Ensembl with long-read evidence in WTC11 ONT data that 
are FSM, ISM, or mapped to an annotated transcript model. ( D ) Exon region groups (ERG) in expressed genes with transcript models in both 
annotations are separated by ERG exclusive to Ensembl, RefSeq, or in both annotations that are expressed (blue) or not expressed in the WTC11 ONT 
data. For panels B and D the number of ERG represented is indicated within each bar and the total ERG ( n ) below each. 
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the H. sapiens data, where there is empirical evidence for mul-
tiple transcript models per gene, the two methods diverged.
FLAIR transcript models were frequently, but not always, a
subset of the Isoseq3 transcript models. While Isoseq3 gener-
ally produced more transcript models, not all of these models
were validated by individual reads. We recommend that users
of any transcript model estimation tool check whether there is
empirical support for each reported transcript model. In addi-
tion we note that empirically observed transcript models not
present in the reference annotation can be included in a union
annotation using TranD . 

TranD distance metrics are based on a GTF file, and can be
used to compare annotations. For example between an exist-
ing reference and a reference improved with short read data.
We illustrate this by quantifying the data-driven annotation
updates for D . y akuba and D . simulans . We observed that for
both of these empirical processes, the inclusion of an alter-
native exon was more often accompanied by a change in a 
donor / acceptor than expected due to chance. Intriguingly, in 

five different species ( C. elegans , D. melanogaster , D. simu- 
lans , H. sapiens and Z. mays ) an analysis of the reference tran- 
scriptomes showed the same pattern: when a pair of transcript 
models differ by an alternative exon, they are more likely to 

also differ by a donor / acceptor. 
For each of these five species we also examined lrRNA-seq 

data. We observed in the lrRNA-seq data of all five species 
that when there are multiple transcript models represented for 
a gene and when a pair of transcripts differ by an alternative 
exon, they are more likely to also differ by a donor / acceptor.
This empirical observation supports the pattern identified in 

the reference annotations. Although we do not yet have a 
mechanistic insight for this observation, we suggest that this 
and many other observations will be facilitated by deploying 
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Figure 7. Read support for transcript models. (Panel A ) D. melanogaster and D. simulans PacBio long read support for ˆ T . (Panel B ) D. melanogaster and 
D. simulans PacBio long read support for transcript models annotated only in D. simulans r2.02. (Panel C ) D. melanogaster and D. simulans PacBio long 
read support for transcript models annotated only in D. melanogaster r6.17. 
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There are many scenarios where TranD structural compar-
sons provide valuable distance and complexity metrics that
an enhance biological interpretations, generate hypotheses
nd advance our understanding of transcriptome evolution.
e have previously demonstrated the utility of some of these
etrics in phylogenetic comparative studies ( 56 ). TranD has
een designed to be general and flexible to implement to allow
or more broad applications of the transcript distance met-
ics and potentially further studies incorporating these metrics
ith phylogenetic comparative methods. 

ata availability 

ll code, examples, results and documentation are avail-
ble in Zenodo at https:// doi.org/ 10.5281/ zenodo.10475517 .
hese data are also available in Github ( https://github.com/
cIntyre-Lab/ TranD/ wiki ). There is a PyPi package and

nstructions for installation using a conda environment.
rosophila data are deposited to the SRA BioProject PR-

NA737411. 

upplementary data 

upplementary Data are available at NAR Online. 
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