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ABSTRACT 

 

 

MASOUD SOBHANI.  A load-based temperature prediction model for anomaly 

detection.  (Under the direction of DR. TAO HONG) 

 

 

Electric load forecasting, as a basic requirement for the decision-making in power 

utilities, has been improved in various aspects in the past decades. Many factors may affect 

the accuracy of the load forecasts, such as data quality, goodness of the underlying model 

and load composition. Due to the strong correlation between the input variables (e.g., 

weather and calendar variables) and the load, the quality of input data plays a vital role in 

forecasting practices. Even if the forecasting model were able to capture most of the salient 

features of the load, a low quality input data may result in inaccurate forecasts. Most of the 

data cleansing efforts in the load forecasting literature have been devoted to the load data. 

Few studies focused on weather data cleansing for load forecasting. This research proposes 

an anomaly detection method for the temperature data. The method consists of two 

components: a load-based temperature prediction model and a detection technique. The 

effectiveness of the proposed method is demonstrated through two case studies: one based 

on the data from the Global Energy Forecasting Competition 2014, and the other based on 

the data published by ISO New England. The results show that by removing the detected 

observations from the original input data, the final load forecast accuracy is enhanced.   
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CHAPTER 1: INTRODUCTION 

 

 

Electric load forecasting is one of the basic requirements for power system planning 

and operations. Since the inception of the power industry, people have recognized the 

importance of accurate load forecasts to the business. Virtually every sector of the industry, 

from generation, transmission to distribution and retail are using load forecasts for their 

decision-making processes [1]. Due to the restructure of the market, deployment of smart 

grid technologies and the push for increasing renewable penetration, the demand for 

accurate load forecasts is rising to an even higher level than before.  

We can classify the load forecasting problems based on the forecast horizon into 

four categories: very short-term load forecasting (VSTLF), short-term load forecasting 

(STLF), medium-term load forecasting (MTLF) and long-term load forecasting (LTLF) 

with the cut-off horizons of one day, two weeks, and three years, respectively [2]. Each of 

them has specific applications in various departments of a utility company, such as 

planning, operations and energy trading. The research in this paper is generic to load 

forecasting across all horizons.  

Figure 1.1 shows a schematic diagram of a load forecasting process. The process 

consists of three main components: input data (weather history, load history and calendar 

variables), the forecasting model, and the output (load forecast).  There are various factors 

than can affect the performance of a load forecasting process. The forecasting model is the 

principal component that processes the input data and makes the forecasts. Load 
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forecasting models are typically grouped into statistical and artificial intelligence (AI) 

models. Numerous amount of forecasting models have been implemented in the power 

industry to predict the future demand of electricity. Both statistical and AI models provide 

accurate outcomes and help the decision-makers in various stages.  

 

Figure 1.1: Schematic of a load forecasting process 

 

 The data requirements of a load forecasting process are provided from two general 

sources: the load history from the previous measurements, and weather information such 

as temperature, relative humidity or wind speed. In some cases, depending on the 

forecasting horizon, the economy information or geographical variables are also being used 

in load forecasting practices. Therefore, a load forecasting process uses a combination of 

various variables such as calendar variables, weather and load to train the forecasting 

model. 

  A low quality input, even when the forecasting model is strong, can produce 

unsatisfying outcomes. In other words, garbage input results in garbage output. In a real 

world, there are various reasons leading to inconsistencies and anomalies in the data. Aging 

instruments, human error and reporting failures are some of the reasons that cause 
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abnormal conditions. Before feeding the raw data to the forecasting model, we need to 

detect the anomalies, and then replace them by better values to make the data cleaner.     

 Most of the researches in the load forecasting literature have been focused on 

developing the cleansing methods for the load data with minimal attention to the weather 

data cleansing. The basic assumption of these studies is based on a wrong belief that the 

weather data is perfect and reliable. The cleansing methods have been 

focused/concentrated on the load data, whereas in a load forecasting process, the weather 

data is as important as the load data.  

The aim of this research is proposing a method to detect the anomalies of the input 

data of temperature to tackle the weather data issues in the load forecasting literature. The 

proposed method consists of a temperature prediction model and an anomaly detection 

technique. To study the performance of the method, it is evaluated in two case studies: one 

based on the data from Global Energy Forecasting Competition 2014, and the other based 

on the data from New England ISO.  

 The rest of this thesis is organized as follows: Chapter 2 presents the literature 

review; Chapter 3 introduces the background and theoretical concepts of the study; Chapter 

4 develops a load-based temperature prediction, which later combined with a technique to 

build an anomaly detection method; Chapter 5 presents the anomaly detection technique 

and the performance of the proposed technique is studied by simulating the anomalies in 

different levels; Chapter 6 presents a case study, in which the proposed method is 
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implemented on NE-ISO dataset; Chapter 7 concludes the thesis and discusses the possible 

future works.  
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CHAPTER 2: LITERATURE REVIEW 

 

The subject of this study covers a wide range of research topics. Many papers are 

published each year in the field of electric load forecasting or weather prediction. To obtain 

a sufficient overview, this chapter reviews the representative papers in the following three 

subjects: (1) Electric load forecasting; (2) Temperature prediction methods; (3) Outlier 

detection and data cleansing in load forecasting practices.  
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2.1 Electric Load Forecasting 

 Based on forecasting horizon, load forecasting can be broadly categorized in two 

main groups: Short-term load forecasting (STLF) and long-term load forecasting (LTLF). 

The number of studies in the literature on STLF is larger than on LTLF [1]. Load 

forecasting techniques are generally divided in two classes: Statistical techniques and 

artificial intelligence techniques. In this section, we will present some recently published 

review papers, and then we will bring the representative papers regarding to the load 

forecasting techniques.  

 Gross and Galiana [3] presented a comprehensive and tutorial survey about the 

short term load forecasting. The authors define the short-term as the interval of one hour 

to one week. The paper begins with describing the importance of short-term load 

forecasting in the power industry and then the basic concepts of load forecasting are 

explained. The paper presents a broad literature survey in different subjects such as the 

type of load models, the data needs of the model, the computational requirements of the 

forecasting algorithm, and the availability of experimental results. After reviewing the 

techniques and other features, the authors discuss about the applications of different 

models, the methods for model selection and the evaluation measurements. 

 Alfares and Nazeeruddin [4] reviewed the load forecasting techniques in the 

literature. They classified the forecasting methods into nine groups: multiple regression, 

exponential smoothing, iterative reweighted least-squares, adaptive load forecasting, 

stochastic time series, autoregressive moving average models with exogenous inputs 

(ARMAX) based on genetic algorithms, fuzzy logic, ANN, and expert systems. In each 
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section, they review the representative researches in a chronological order. In addition, 

some other notable studies are also reviewed that compare different forecasting model. 

Hahn et al. [5] provided a brief review of the load forecasting models. The authors 

introduced some literature survey papers and then discussed about the forecasting methods. 

Similar to many other researches, they classified the load forecasting models into two main 

groups: statistical methods and artificial intelligence methods. In each group, some 

representative papers and models are listed. Among the statistical methods, the paper 

reviewed regression models and time series approaches (univariate and multivariate). The 

AI models reviewed include Neural Network, Support Vector Machine and hybrid 

approaches. 

Hong [1] reviewed 50 years of short-term load forecasting papers from three 

aspects: the developed techniques, the variables deployed and the representative works 

done by major research groups. The research’s aim was not covering any aspects of the 

field, but focusing on the major developments. He reviewed conceptual and experimental 

literature reviews on short-term load forecasting studies. The representative publications 

that implemented different types of the statistical and AI models are presented. The review 

also highlighted that the benchmarking and the standard reporting format in the field are 

the two issues that have not received much attention. 

 Hyndman and Fan [6] proposed a methodology to forecast the density of long-term 

peak electricity demand. The methodology is split into two models: a semi-parametric 

additive model for half-hourly demand, which is in the regression framework; and the other 
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model for annual effect to capture the correlation with the economic and demographic 

factors. The proposed models were implemented in a case study to forecast the long-term 

peak demand for South Australia. 

 Hong [1] proposed a regression based model for short-term load forecasting. The 

model includes the interaction (cross effects) of the weather variables with the calendar 

variables to capture the seasonal patterns of load profile. This model has been used as a 

benchmark model in many studies and competitions. The Vanilla Benchmark Model 

(VBM) was used as the benchmark for the electric load track in the Global Energy 

Forecasting Competition 2012 [7]. Wang et al. studied the relationship of the load demand 

and the temperature of preceding hours by inserting recency effects to the VBM [8].  

 ANNSTLF (artificial neural network short-term load forecaster) is one of the well-

known ANN load forecasting models, which has been widely used in the power utilities 

[9]. The third generation of this model consists of two ANN load forecasters and an 

adaptive combiner. One ANN predicts the base load and the other is used to capture the 

change from the previous day’s load. 

 Hong and Wang [10] proposed a fuzzy interaction regression approach to short-

term load forecasting. The aim of the paper was to improve the underlying linear models 

for fuzzy regression. The proposed model outperforms the other two fuzzy regression 

models and one MLR model significantly. 

 The papers reviewed in this section are only some representative papers and notable 

studies among thousands papers that are published each year in the field of load forecasting. 
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There are other aspects of electric load forecasting that has not been covered in this 

research, such as variable selection, model selection methods, evaluation measurements, 

probabilistic load forecasting, etc.  
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2.2 Temperature Prediction Methods 

 More than hundred years ago, Abbe and Bjerknes [11] proposed the very first 

weather prediction model by using partial differential equations to mathematically model 

the laws of physics. Improvement of the technology over the past 40 years enables the 

scientists to implement complicated numerical weather prediction models with huge 

datasets. Accurate forecasts create considerable financial revenue, save lives, support 

emergency management and mitigation of impacts and prevent economic losses from high-

impact weather [12]. 

The weather prediction models are generally classified into two groups [13]: 

numerical or dynamic models and empirical or statistical models. The numerical weather 

predictions (NWP) use numerical methods to model a set of equations that describes the 

flow of fluids. The statistical models are based on the past information and pattern 

recognition skills that are mainly in four categories: linear regression; principal component 

analysis (PCA); canonical correlation analysis; and neural network (NN) models [14]. 

 The first operational NWP could model only the temporal variation of the vertical 

structure of the atmosphere, because it consists only one layer [15]. Due the improvement 

of the technology and computers, now the NWP models can resolve the variations of 

temperature, wind and humidity. 

The first implementation of artificial neural network (ANN) in weather prediction 

was done by Hu [16]. Hsieh and Tang [14] reviewed the applications of NN models in 

meteorology and oceanography. They believed that the difficulties in adopting NN to 
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weather predictions are nonlinear instability with short data records and its interpretation 

in large spatial data fields.  

Most of numerical weather prediction models rely on physics of the weather flows 

and physical properties of climate. The operational statistical models, also just mainly use 

the previous measurements of the weather parameters and they use the correlation between 

weather related variables to predict the future values. On the other hand, different weather 

conditions can affect the performance of many systems, such as air traffics or energy 

consumption. These correlations can be used to model the performance of the mentioned 

systems and in a reverse approach, we can use the correlations to study the weather 

behaviors as well.  
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2.3 Anomaly Detection in Load Forecasting Practices 

 Accurate prediction is the principle achievement of a forecasting practice. Quality 

of the data is an important factor in obtaining accurate outcomes. In the real world, the raw 

data includes significant amount of anomalies and inconsistencies that makes 

preprocessing of input data the first step in load forecasting practice. Therefore, outlier 

detection followed by a data cleansing is important in any load forecasting. This section 

reviews the common approaches of the data cleansing in load forecasting practices.   

 [17] is a review paper that introduces some representative outlier detection 

methods. The authors believe that there are three fundamental approaches to the problem 

of outlier detection: Type 1 determines the outliers with no prior knowledge of the data 

(unsupervised clustering); Type 2 models the cases where there are both normal and 

abnormal observations (supervised classification); Type 3 models only normality (semi-

supervised detection). The paper reviews different type of techniques used for outlier 

detection, including statistical, neural network, Machine learning and hybrid algorithms. 

In the power industry, a naïve or seasonal naïve method is often used for anomaly 

detection. The mean and standard deviation of the all history observations or all 

observations at the same hour of the day are used to define a threshold for the load value. 

If the load is out of the threshold interval, it is marked as a detected anomaly. Xie [18] 

utilized similar idea for data cleansing component of her submission in GEFComp2014 

[19]. The load values are estimated in her approach by implementing a multiple linear 

regression (MLR) model to calculate the absolute percentage error (APE) for each 
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observation. The observations with APE values of greater than 50% are treated as outliers 

and replaced by the predicted values from the regression model. 

 Akouemo and Povinelli [20] proposed an algorithm for anomaly detection in 

natural gas time series data. The detection algorithm is a two-stage method. In the first 

stage, a linear regression is fitted to the natural gas time series and then the geometric 

probability distribution of the residuals is calculated to detect the anomalies. In the second 

stage, based on the identified anomalies from the first stage, a Bayesian maximum 

likelihood classifier is trained to find the type of the anomaly. The detected anomalies are 

replaced by using a naïve imputation model. 

 Luo et al. [21] investigated the effect of data integrity attacks on the accuracy of 

the load forecasting. The robustness of four representative load forecasting models are 

studied including multiple linear regression, support vector regression (SVR), artificial 

neural networks, and fuzzy interaction regression. They simulated the data integrity attacks 

by injecting errors randomly to the data. The errors are some multipliers, which have 

uniform or normal distribution. Among the four models, SVR was the most robust with 

respect to the point forecast accuracy, while the fuzzy interaction regression was the least 

robust. In addition, while the level of the integrity attacks is large, all four models fail to 

provide accurate forecasts. 

 Gaun et al. [22] proposed a pre-filtering method to detect and correct spikes in load 

data. In this research, Spikes are classified as “micro spikes” and “macro spikes” based on 

their widths. The main idea of filtering is using a smoothed load data by applying a zero 
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phase filter. The method detects the spikes when the difference between smoothed load 

and the original load exceeds a threshold. The smoothed load replaces the detected spikes. 

 Fidalgo and Lopes [23] present a NN-based procedure to avoid the performance 

failures under anomalous conditions such as historical data bugs, anomalous behavior (like 

holidays or atypical days) and shape changes following switching operations. The pre-

processing approaches used in this study include simple filtering methods like if-then rules; 

low pass filtering and ANN based self-filtering. A similar approach was utilized in [24]. 

The zero value replaces the spikes and missing observations and then a splining algorithm 

or an interpolation from similar day actual load data (when f, the length of zero gaps, is 

big) is used to fix these values. 

 All papers reviewed in this section focused on anomaly detection and data cleansing 

of the load data. There is a gap in the load forecasting literature regarding to the weather 

data cleansing. The aim of this research is to propose a method for detecting the anomalies 

in the temperature data.   
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CHAPTER 3: BACKGROUND  

  

Multiple Linear Regression (MLR) is the main technique used in this research. The 

proposed load-based temperature prediction model is developed based on linear regression 

analysis. One of the application of the proposed model is outlier detection and data 

cleansing in load forecasting practices. The performance of the proposed anomaly 

detection method is evaluated by measuring the load forecasting accuracy for before and 

after cleansing. Tao’s Vanilla Benchmark model, which is a MLR based model, is 

implemented for load forecasting. The accuracy of the temperature predictions is measured 

in Mean Absolute Error (MAE) and the accuracy of the load forecasting is calculated in 

Mean Absolute Percentage Error (MAPE). Therefore, in this chapter the background of the 

following techniques and methods are presented; (1) Multiple linear Regression (2); Tao’s 

Vanilla Benchmark Model; (3) Evaluation measures including MAE and MAPE.  
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3.1 Multiple Linear Regression 

 MLR has been widely used in load forecasting practices. The proposed temperature 

prediction model (described in Chapter 4) is a regression based model, as well as, a Vanilla 

Benchmark Model, which has been for load forecasting. In temperature prediction, the 

temperature is the dependent variable and the other variables are independent ones. In load 

forecasting, load is dependent. Each MLR model includes quantitative and class variables; 

and the correlations between these variables are considered through main effects and cross 

effects. In this section, the theoretical background of MLR is explained. 

 The general linear regression model, in terms of X variables, is defined [25]: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝−1𝑋𝑖,𝑝−1 + 𝜀𝑖                                                  (3.1) 

where: 

 β0, β1, …, βp-1 are parameters 

 Xi1, Xi2, …, Xi,p-1 are known constants 

 𝜀𝑖 is the independent normally distributed random variable N(0,σ2) 

 i = 1, 2, …, n 

Since 𝐸{𝜀𝑖} = 0, the response function for regression model is: 

𝐸{𝑌} = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝−1𝑋𝑝−1                                                 (3.2) 
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The general linear regression equation indicates that the observations Yi are 

independent normal variables, with mean 𝐸{𝑌𝑖} as given by (3.1) and with constant 

variance σ2.  
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3.2 Tao’s Vanilla Benchmark Model 

 Vanilla Benchmark Model (VBM) is a MLR based model which was proposed first 

in [1]. The model is widely used in the literature. It was used as a benchmark in the 

GEFCom2012 for the hierarchical load forecasting track [26]. In this study, we also used 

VBM as a benchmark for load forecasting. The performance of the proposed anomaly 

detection method is evaluated by implementing VBM on raw and cleaned data. The data is 

cleansed by removing the detected anomalies.  

 Components of the Vanilla Benchmark Model are [27]: 

a) Data: The model requires two sets of data: hourly load and hourly temperature for 

at least two years of history data. 

b) Linear Trend: In the utilities with stable service territory and local economics, the 

locally increasing (or decreasing) trend of load demand can be captured by a 

quantitative variable. The Trend variable is defined by assigning a natural number 

to each hour in ascending order.  

c) Temperature (TMP): Temperature is a driving factor electric load demand and the 

correlation between the load and the temperature is significantly considerable in 

load forecasting practices. Among all suggested functions between load and 

temperature based on previous studies, VBM uses 3rd ordered polynomials of the 

temperature to predict the load.  

d) Calendar Variables: The load demand behavior is different at different times of a 

day, in different days of a week and in different months of a year. These three 

seasonal blocks are used in the VBM to input calendar variables as predictors. The 
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qualitative variables (Hour, Weekday, and Month) with 24, 7, and 12 classes are 

used.  

e) Cross effects: There are obvious correlations between temperature and the hour of 

the day or the month of the year. The relationship between the day of the week and 

temperature is not evident. To capture these correlations, the interaction effects are 

included in the model.  

Therefore, the components of the benchmarking model are as follows: 

1) Quantitative variables: Trend, TMP; 

2) Class variables: Hour, Weekday, Month; 

3) Main effects: Trend, Month; 

4) Cross effects: Day×Hour, Month×TMP, Month×TMP2, Month×TMP3, 

Hour×TMP, Hour×TMP2, Hour×TMP3; 

The equation of the regression model is as follows: 

𝐿𝑜𝑎𝑑 = 𝛽0 + 𝛽1 × 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 × 𝐷𝑎𝑦 × 𝐻𝑜𝑢𝑟 + 𝛽3 ×𝑀𝑜𝑛𝑡ℎ + 𝛽4 ×𝑀𝑜𝑛𝑡ℎ ×

𝑇𝑀𝑃 + 𝛽5 ×𝑀𝑜𝑛𝑡ℎ × 𝑇𝑀𝑃2 + 𝛽6 ×𝑀𝑜𝑛𝑡ℎ × 𝑇𝑀𝑃3 + 𝛽7 × 𝐻𝑜𝑢𝑟 × 𝑇𝑀𝑃 + 𝛽8 ×

𝐻𝑜𝑢𝑟 × 𝑇𝑀𝑃2 + 𝛽9 × 𝐻𝑜𝑢𝑟 × 𝑇𝑀𝑃3,                                                                     (3) 

 

  



20 

 

3.3 Evaluation Measurement 

 To evaluate the performance of a prediction we need measurement scales. In point 

load forecasting, there are various evaluation measures such as absolute error (AE), 

percentage error (PE), mean absolute error (MAE), root square mean error (RSME) and 

mean absolute percentage error (MAPE). In this study, for temperature prediction we use 

MAE and for load forecasting we use MAPE. In the remaining of this section, these 

measures are explained in details.   

  MAE is scale dependent and measures the size of error in units. Equation (3.4) 

shows how to calculate MAE. Since this measurement is scale dependent, it should not be 

used across different data sets. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡|
𝑛
𝑡=1                                                      (3.4) 

 Mean Absolute Percentage Error (MAPE) is a scale-free measurement. The 

equation is shown in (3.5).  

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡

𝐴𝑐𝑡𝑢𝑎𝑙𝑡
|𝑛

𝑡=1                                                      (3.5) 

 The percentage error measures result unreliable accuracies when the variation of 

the data is high, because for small amounts of data, the percentages are very big. In the 

case study, since we have small and negative amount of temperature data, we use MAE. 

On the other hand, since the load data is mainly aggregated, we use MAPE for load 

forecasting. 
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3.4 Cross validation  

 Cross validation is a well-known and popular method for model selection. The main 

idea behind cross validation is to split data, once or several times, for estimating the risk 

of each algorithm [28]. For model selection, part of data is used for training the model and 

the remaining is used for validating the predictions. There are two different approaches for 

cross validation in load forecasting practices; X-fold cross validation and sliding 

simulation.  
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Figure 3.1: X-fold cross validation 

 Assume that we have 8 years of history data and we are supposed to forecast the 

next year. For x-fold cross validation, in each step, 7 years of the history data is used as the 

training window and the remaining year is used as validation year. We repeat the 

forecasting for all eight possible attempts and based on the forecasts we can validate the 
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performance of the model. Figure 3.1 shows a schematic graph of an x-fold cross 

validation. 

In sliding simulation, in each attempt the training windows moves forward one-step 

to forecast the next year. The length of history can be fixed or changing. This method can 

be used for variable selection, variable combination, selecting the length of history etc. 

Figure 2 shows schematic steps of a sliding simulation.  

 

 

 

 

 

Figure 3.2: Sliding simulation 
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CHAPTER 4: A LOAD-BASED TEMPERATURE PREDICTION MODEL 

 

 Temperature is a driving factor in electric load demand. The correlation between 

load and temperature has been utilized in many load forecasting models. The aim of this 

chapter is to use the correlation between temperature and load to develop a temperature 

prediction model. The proposed model is a MLR based one where load and calendar 

variables are used as the independent variables to predict the temperature. In this section, 

we study the correlation between load and temperature and we use the extracted features 

to develop the temperature prediction model. 

The dataset used in this chapter comes from load forecasting track of Global Energy 

Forecasting Competition 2014 (GEFCom 2014). The data includes 69 months of hourly 

load data (from January 2005 to September 2010) and 117 months of hourly weather data 

(from January 2001 to September 2010) [26].  

  



24 

 

4.1 Temperature vs. Load 

 Figure 4.1 shows the boxplot of the temperature from 2008 to 2010. Temperature 

follows a seasonal pattern each year with peak period in the summer and valley period in 

the winter. The increasing tendency of the temperature cannot be captured in figure 4.1, 

but this trend should be considered in modeling the temperature behavior. We define a 

quantitative variable (Trend) to consider this increase into the model.  

 

Figure 4.1: Three years temperature boxplot (2008-2010) 

 

 Correlation between temperature and load has been studied in previous researches. 

For example, piecewise linear function was implemented in [29]; piecewise quadratic 

function was used in [30]; and 3rd ordered polynomials were considered in [31]. Figure 4.2 

shows a scatter plot of temperature-load for a utility in the US. The plot shows overall 

nonsymmetrical shape. Therefore, a piecewise linear or piecewise cubic function are proper 

options to model the relationship between temperature and load. Two separate multiple 

linear regression functions are fitted to upper and lower zones. The cut-off point is allocated 

to the comfort temperature, which is generally between 57 F to 63 F. For this dataset, the 
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cut-off point is 60 F. The third ordered polynomials of the load are used to capture the 

nonlinear relationship between temperature and load in each piece. Therefore, the square 

of load (load2) and the cube of load (load3) are considered as the independent variables in 

the MLR model.  

 

  

Figure 4.2: Temperature-load scatter plot (2008-2010) 

 

 

Figure 4.3: Load boxplot (2008-2010) 
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4.2 Seasonality 

 Typically, there are two seasonal blocks in temperature series: year and day. On the 

other hand, there are three seasonal blocks in load series: year, week and day. Since the 

temperature prediction model is load-based, the seasonal behaviors in both temperature and 

load should be considered. In this section, we discuss each seasonal block of load and 

temperature. 

A. Month of the Year 

 As we saw in figure 4.1, there is a correlation between the seasons of a year and the 

temperature. Figure 4.3 shows the load boxplot for three years (2008 to 2010). The seasonal 

pattern of the load demand through a year is the result of the seasonal behavior of the 

temperature. Typically, there is one peak load in winter and another one in summer. 

Therefore, seasonality of the temperature leads to the seasonality of the energy 

consumption [1]. To study the seasonal correlation between the temperature and load, a 

scatter plot for each month is shown in Figure 4.4. It is obvious that the scatter plot in each 

month is different and we can construct the plot for the whole year (figure 4.2) by putting 

all the 12 plots together. To sum up, we define variable Month, which is a class variable. 

The interaction between Month and Load captures the seasonality of the load through a 

year.  
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Figure 4.4: Temperature-load scatter plot (12 plots, one for each month) 

 

B. Hour of the day 

 Sunrise and sunset cause the temperature changes through a day. This correlation 

between the temperature and daytime seems to be seasonal. Since the load and the 

temperature are correlated, the seasonality of the temperature should be observed in the 

daily load profiles as well. Figure 4.5 shows the boxplot of hourly load for week. Figure 

4.6 shows 24 temperature vs. load scatter plots by each hour of a day. The load levels at 

the same temperature in different hours changes, which shows the interaction effects 

between the load and the hour. On the other hand, the load profile during the summer days 
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are different from the load profile during winter days. A typical load profile in a winter day 

has two peak values; one in the morning and one in the afternoon, whereas in a summer 

day, the load profile generally has one peak at noon when the temperature is at the highest 

amount. To capture the daily seasonality of the load, variable Hour, representing hour of 

the day, is assumed a class predictor and the interactions between the hour and the load 

polynomials are considered in the model. The interaction between the Hour and Month is 

considered to model different load profiles in winter and summer days.  

 

Figure 4.5: Boxplot of hourly load through a week 
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Figure 4.6: Temperature-load scatter plot for all 24 hours of a day 

 

C. Day of the Week 

 In weekly block, the human activities are not the same on different days. For 

example, people may sleep late on Friday night, wake up late on Saturday and Sunday 

mornings, most offices are closed and so forth. This makes the load profiles different on 

weekends. On the other hand, the weather conditions are not significantly different due to 
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weekends. The temperature is not affected by human activities during days of a week, but 

since the model is a load-based model and the load is correlated to the day of the week, we 

should consider this correlation to our model. There are various grouping methods in the 

literature. The days of a week were grouped into four groups in [32]: Monday; Tuesday- 

Thursday; Friday; Saturday, Sunday. In [33] the dataset is divided to five day-type 

categories: Monday; Tuesday-Thursday; Friday; Saturday; Sunday. Another way to group 

the days of a week is to use dummy variable for each day. In the other words , we can 

categorize the days into 7 classes [1][34]. In the proposed model, the Weekday is a class 

variable and the interaction effect between Hour and Weekday is included in the model.  
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4.3 Model Selection Method 

 As mentioned in section 4.1, two separate MLR equations are fitted to upper and 

lower zones of temperature-load scatter plot. The cut-off point is the average temperature 

of all observation in the history. We name the equation for the lower zone and upper zone, 

equation 1 and equation 2 respectively. To predict the temperature for a new observation, 

we need to select the proper equation. For this reason, we grouped the data based on month 

and hour. Therefore, we have 12×24 categories. For each category, we take a simple 

average among all temperatures of that category. If the average is less than the cut-off 

point, the corresponding equation is number one. Otherwise, it is number two. Table 4.1 

shows how the data is categorized based on the month and hour number and how each 

equation is allocated to a specific group.  

Table 4.1: Categorizing data based on the month and hour (cut-off point is 61 oF) 

Month Hour 
Mean 

Temperature 
Equation 

4 8 53.79 1 

4 9 57.09 1 

4 10 60.43 1 

4 11 63.12 2 

4 12 65.27 2 

4 13 66.87 2 

4 14 68.06 2 

4 15 68.79 2 

4 16 68.98 2 

4 17 68.63 2 

4 18 67.70 2 

4 19 65.88 2 

4 20 62.74 2 

4 21 60.27 1 

4 22 58.77 1 

4 23 57.62 1 
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4.4 Benchmark model 

 In previous sections of this chapter, various features of temperature, data and 

correlative factors of load, temperature and calendar variables were discussed. In this 

section, we develop a benchmark model for temperature prediction based on introduced 

features of the data and then the performance of the proposed model will be analyzed. To 

improve the benchmark model, more considerations will be applied to the model in the 

following sections.  

 Based on the features of load and temperature, their correlations and seasonal 

blocks, we assumed nine different predictor candidates. Using these predictor candidates, 

eight different models (M1-M8) are developed. Table 4.2 shows the predictor candidates 

and the models. 

Table 4.2: Candidate benchmark models 

 Predictor candidates 

 Trend 

Load 

Load2 

Load3 

Hou

r 
Month Weekday 

Month×Load 

Month×Load2 

Month×Load3 

Hour×Load 

Hour×Load2 

Hour×Load3 

Hour×Weekday Month×Hour 

M1 × ×        

M2 × × ×       

M3 × × × ×      

M4 × × × × ×     

M5 ×  × × × ×    

M6 ×  × × × × ×   

M7 ×   ×  × × ×  

M8 ×     × × × × 

 

The predictor variables are divided into two types: quantitative, and class variables. 

Quantitative variables: Trend, Load, Load2, Load3 

Class variables: Month, Hour, Weekday 
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The effect of the predictors are either main or cross effect. The interaction (cross) 

effects are shown by “×”. When a class variable has cross effect with another predictive 

variable, it is not required that the quantitative variable has a main effect in the model. In 

addition, when two class variables have cross effects, we can remove the individual class 

variables from the model.  

 For model selection, we did an ex-post forecasting. Two years of hourly load and 

temperature data is used as history to forecast the next hourly temperature. To evaluate the 

forecasts, MAE (Mean Absolute Error) is used as the measurement. The equation selection 

method proposed in the section 4.3 to switch between the piecewise equations for the new 

observations in the forecasting window. Table 4.3 shows the forecasts results for each 

model.  

Table 4.3 Ex-post forecasting MAEs for the candidate models 

Model MAE (oF) 

M1 4.30 

M2 3.14 

M3 2.97 

M4 2.96 

M5 2.93 

M6 2.85 

M7 2.79 

M8 2.74 

 

Table 4.3 indicates that the model M8 gives better prediction among all the 

candidate models. As discussed in the section 4.1, a piecewise regression model is used to 

capture the correlation between the temperature and the load in two MLR equation; one for 

upper zone of the temp-load scatter plot and the other for the lower zone (Figure 4.2). A 
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comparison is shown in the table 4.4 to confirm that a piecewise regression works better 

than one regression on the whole points. We can see that the piecewise regression wins the 

single regression in any candidate model implementation.  

 

Table 4.4: Comparison between piecewise regression v. single regression 

 MAE (oF) 

Model 
Piecewise 

regression 

Single 

regression 

M1 4.30 15.19 

M2 3.14 14.97 

M3 2.97 5.92 

M4 2.96 5.97 

M5 2.93 3.85 

M6 2.85 3.72 

M7 2.79 3.71 

M8 2.74 3.00 

 

As a conclusion, among all candidate models (M1 to M8), piecewise version of 

model M8 in combination with the model selection technique gives the best results. 

Therefore, the final benchmark model is as follows: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝛽0 + 𝛽1 × 𝑇𝑟𝑒𝑛𝑑 + 𝛽2 ×𝑊𝑒𝑒𝑘𝑑𝑎𝑦 × 𝐻𝑜𝑢𝑟 + 𝛽3 ×𝑀𝑜𝑛𝑡ℎ ×

𝐻𝑜𝑢𝑟 + 𝛽4 ×𝑀𝑜𝑛𝑡ℎ × 𝐿𝑜𝑎𝑑 + 𝛽5 ×𝑀𝑜𝑛𝑡ℎ × 𝐿𝑜𝑎𝑑2 + 𝛽6 ×𝑀𝑜𝑛𝑡ℎ × 𝐿𝑜𝑎𝑑3 + 𝛽7 ×

𝐻𝑜𝑢𝑟 × 𝐿𝑜𝑎𝑑 + 𝛽8 × 𝐻𝑜𝑢𝑟 × 𝐿𝑜𝑎𝑑2 + 𝛽9 × 𝐻𝑜𝑢𝑟 × 𝐿𝑜𝑎𝑑3                                   (4.1) 

where Month, Hour and Weekday are class variables. 
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4.5 Recency Effects 

 Recency effect in psychology refers to a principle that it is most likely for human 

beings to remember the most recent experiences. Same analogy can be adopted to the 

power grid where the demand tends to be affected by the recent temperatures [8]. Lagged 

temperature terms were used in [1] for the first time in a load forecasting methodology. To 

study the Recency effect on the temperature prediction benchmark model, we use lagged 

load terms in the model. The proceeding load values were added to the model including 

their polynomials and their interactions with Month and Hour. In addition, we mentioned 

that the demand tends to be affected by the recent temperature. Therefore, in a load-based 

temperature prediction model, we can use the following load values to capture the Recency 

effect of temperature on the load demand. In the customized model, we will add lead-

lagged load values to the model including their polynomials and their interactions with 

Month and Hour.  

Table 4.5: Improving the benchmark model (M8) by adding lagged and lead-lagged variables 

ID Model 
MAE 

(oF) 

M8 Benchmark 2.74 

R1 Benchmark + Load(t-1) 2.54 

R2 Benchmark + Load(t-1) + Load(t-2) 2.51 

R3 Benchmark + Load(t-1) + Load(t-2)+ Load(t-3) 2.50 

R4 R3 + Load(t+1) 2.42 

R5 R3 + Load(t+1) + Load(t+2) 2.38 

R6 R3 + Load(t+1) + Load(t+2)+ Load(t+3) 2.37 

 

Table 4.5 shows the results of adding lagged and lead-lagged variables to the benchmark 

model. In each step one level of lagged variable, its polynomials, and the interactions with 
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hour and month are added to the benchmark model. Adding lagged and lead-lagged values 

of load variable for three preceding and three ahead hours (R6) improved the benchmark 

model 13%.  
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4.6 Holiday Effects 

 Generally, the load profile in holidays are not similar to the one in a regular day. 

There are different types of holidays with respect to which day of week they are falling on. 

Some holidays are in fixed weekdays. For instance, Memorial Day and Labor Day are on 

Monday. There are some holidays such as New Year’s Day and Christmas Day, which are 

fixed date holidays and may fall into any day of the week. Depending on the situation of 

the holiday and features of location, the load profile of the holiday would be different. In 

addition, the surrounding days of the holidays are affected by the human behavior through 

holidays. To capture the holidays effects on the correlation of the temperature and load, a 

new variable, Holiday, is defined which is a class variable. Among all holidays in the 

United States, New Year’s Day, Memorial Day, Independence Day, Labor Day, 

Thanksgiving Day and Christmas Day are called “big six” holidays which almost all 

companies observe them and they are closed.  

 The holiday effect in load forecasting models has been studied in the literature. For 

instance, the holidays were grouped together as a dummy variable along with weekday and 

weekend in [34]. The weekday holidays are grouped into Monday holidays, winter holidays 

and summer holidays in [35]. In some researches, the holidays are treated as weekends, for 

example Saturday [36].   

 In this section, we take only “big six” holidays to study the holiday effects on the 

improved version of the benchmark model (R6). The holidays are grouped together as a 

class variable. Each holiday is assigned to a number (from 1 to 6) and the other days of the 

year are zero. The interaction between the predictor variables of Holiday, Month and Hour 
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are added to the model to see whether accuracy of the model will be improved. Table 4.6 

shows the results of holiday effects on the improved model. We can see that the holiday 

effects improved the accuracies where MAE of the holidays is improved by 5%.  

 

Table 4.6: Holiday effect on the benchmark model (R6) for whole year and for the holidays 

Model 
MAE 

(Whole year) 

MAE 

(Holidays) 

R6 2.37 2.56 

R6 + Holiday Effect 2.36 2.41 
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CHAPTER 5: ANOMALY DETECTION 

   

The quality of the data has significant impact on the accuracy of the load forecasting 

outcomes. Having a high quality weather data and load history as the inputs to a load 

forecasting model, provides good and reliable predictions. When the input data is not clean 

and consistent, even if the model is strong enough, the output of the forecasting is not good. 

In the real world, as a result of various factors such as old instruments and meters, human 

errors and so forth, the data often includes errors and inconsistencies. Therefore, the 

preprocessing of the data is one of the first steps to prepare the data for the forecasting. 

Depending on the quality of the data, in many practices, the data is required to be cleansed. 

In this chapter, we discuss about the application of the proposed model in anomaly 

detection of the weather data.  

 Weather data as a major driver of load demand plays an essential role in load 

forecasting. The aged equipment of weather stations, human errors and failures in reporting 

procedures lead to the quality issues in the weather data such as outliers and missing values. 

To have a high quality data, we need to cleanse the data out of the anomalies, but first we 

should detect the outliers of the data. In this chapter, we propose a method for anomaly 

detection, which is one of the application of the proposed temperature prediction model.  
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5.1 Methodology 

 As discussed before, temperature follows a seasonal pattern during a day and 

through a year. The weather reports generally includes errors and inconsistencies, which 

can be detected visually. In this section, we introduce a brand new method for anomaly 

detection of temperature data.  

 The load-based temperature prediction model (LBTP) proposed in the chapter 4 

estimates the value of the temperature using the load history data and calendar variables. 

These estimations can be used for detection of the outliers. The method is described as 

follows: 

1-  Implementing the LBTP model on the history data (In-sample fit) to have 

estimations for all the temperature observations 

2- Calculating the absolute error (AE) using the reported temperature and the 

estimated value at each observation 

3-  Calculating the average (µ) and variance (σ) of the MAE values through the all 

observations 

4- At each observation, if the absolute error of the predicted temperature is greater 

than (µ+ σ), the point is marked as an outlier.  

The method is shown as a flow chart in Figure 5.1. 
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Figure 5.1: Flow chart of the proposed anomaly detection method 

 

  



42 

 

5.2 Performance Analysis  

 In this section, we study the performance of the proposed anomaly detection 

method. An anomaly simulation method is used to measure the detecting power of the 

proposed method. In addition, the quality of the data for before and after anomaly detection 

is measured by inputting them into a load forecasting practice.  

 The dataset similar to Chapter 4 is used in this section. The hourly load and the 

hourly temperature data of years 2008 and 2009 are used in training period and the year 

2010 is the forecast window. For anomaly simulation, n% of the history (training) data is 

selected randomly with their temperature altered by multiplying with 1+k% to make these 

selected data points anomalies. Different levels of corruption were injected to the history 

data and in each level, the performance of anomaly detection method is studied. Two 

measures are used to study the performance of the method [37][38]:  

 False Negative Rate (FNR): is defined as the ratio of the number of undetected 

anomalies to the number of all anomalies. 

 False Positive Rate (FPR): is defined as the ratio of the number of normal points, 

which is detected as anomalies to the number of normal points. 

The smaller amounts of FNR or FPR shows the effectiveness of the proposed 

method.  

Different stages of corruption are injected to the data including 4 levels of sampling 

(n=10% to 40% of history) and in each sampling 8 levels of corruption are injected to the 

sample (k=5% to 40%). In each stage, the corrupted data is used as a history to forecast the 
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hourly loads of the next year and after the anomaly detection, the detected values are 

removed from the data and the cleansed data is used as the history for the load forecasting. 

The MAPEs for before and after cleansing is compared to evaluate the quality of the data. 

Table 5.1: Error analysis of the anomaly detection method 

    MAPE (%) 

n k 
FNR 

(%) 

FPR 

(%) 

Corrupted 

data 

Cleansed 

data 

10 

5 0.80 0.06 6.07 6.06 

10 0.41 0.05 6.43 6.18 

15 0.23 0.05 6.72 6.18 

20 0.14 0.04 6.80 6.13 

25 0.08 0.03 6.95 6.11 

30 0.06 0.03 7.18 6.15 

35 0.05 0.02 7.31 6.11 

40 0.04 0.02 7.49 6.12 

20 

5 0.81 0.05 6.24 6.14 

10 0.46 0.04 6.89 6.24 

15 0.29 0.04 7.32 6.34 

20 0.21 0.03 7.63 6.22 

25 0.18 0.02 7.95 6.32 

30 0.14 0.02 8.21 6.23 

35 0.12 0.01 8.36 6.34 

40 0.11 0.01 8.52 6.29 

30 

5 0.81 0.05 6.41 6.24 

10 0.51 0.04 7.35 6.39 

15 0.35 0.03 7.94 6.56 

20 0.29 0.02 8.41 6.70 

25 0.25 0.02 8.87 6.90 

30 0.23 0.01 9.09 6.87 

35 0.20 0.01 9.34 6.85 

40 0.19 0.00 9.68 7.13 

40 

5 0.83 0.04 6.69 6.49 

10 0.57 0.03 7.88 7.00 

15 0.41 0.02 8.70 7.06 

20 0.36 0.02 9.18 7.10 

25 0.33 0.01 9.71 7.54 

30 0.30 0.01 10.20 7.98 

35 0.29 0.00 10.23 7.93 

40 0.28 0.00 10.63 8.24 
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Table 5.1 shows the error analysis of the anomaly detection method. We can see 

that in a given n, as k increases, FNR and FPR decreases which means the anomaly 

detection method works better in more corrupted datasets. In the other words, the methods 

can detect the bigger outliers better. In the most corrupted data (n=40% and k=40%), the 

detection method was able to detect 72% of the simulated anomalies. In addition, if we 

compare the MAPEs for before and after removing the detected anomalies form the 

corrupted data, we can see that the cleansed data produced more accurate forecasts in all 

levels of simulation (32 out of 32).  
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CHAPTER 6: ISO NEW ENGLAND CASE STUDY 

 

In this chapter, we present a case study using another dataset to investigate the 

performance of the proposed model and method and to confirm that the model is not 

specific to only one dataset. For this reason, we use ISO-NE data, which is publicly 

available. The anomaly detection method will be applied to the dataset. To evaluate the 

quality of the data before and after removing the detected anomalies, the accuracy of the 

load forecasts is compared. In the following sections, first, we describe the ISO-NE dataset, 

then the results of the model implementation are presented, and finally we will discuss 

about the results.  
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6.1 Data 

 Two different datasets are used in the thesis: the first one is from GEFComp2014 

which has been used in chapter 4 to develop the model and the second one is from ISO-NE 

which has been used in a case study as described later in this chapter. These two datasets 

cover load data of seven states in the United States. The datasets from GEFCom2014 and 

ISO-NE are publicly available and have been used in previous studies. The portion of the 

information that we use in the case study includes the hourly load demand in different 

zones, as well as the hourly temperature data obtained from various weather stations.  

 The dataset includes system load and weather data for the ISO New England 

Control Area (ISO NE CA) and its eight wholesale load zones. The load zones are shown 

in Figure 6.1. There are weather data from seven different weather stations in the ISO-NE 

territory. The names of weather stations are listed in Table 6.1 and their locations are shown 

in Figure 6.2. The data contains 14 years (2003 to 2016) of hourly load and hourly 

temperature data.  

Table 6.1: ISO-NE weather station names and codes 

Weather 

Station 

Station 

Code 
State 

Boston BOS MA 

Burlington BTV VT 

Concord CON NH 

Portland PWM ME 

Providence PVD RI 

Windsor Locks BDL CT 

Worcester ORH MA 
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Figure 6.1: Wholesale load zones in New England [39] 

 

 

Figure 6.2: Weather station location in ISO-NE dataset 



48 

 

6.2 Temperature Prediction 

  In the proposed anomaly detection method, which was introduced in the Chapter 

5, the first step is estimating the temperature by using the load-based model. Similar to the 

previous chapter, in this section we implement the load-based temperature prediction 

model on ISO-NE dataset. The dataset includes eight load zones, as well as seven weather 

stations. We take all pairs of load zone and weather station to make 56 different cases. 

Therefore, we will have 56 different temperature predictions. The history period is the 

hourly data of the years 2014 and 2015, and the forecasting window is the year 2016. Mean 

Absolute Error (MAE) is used as the measurement to evaluate the predictions.  

Table 6.2: The MAE value of the temperature predictions for all 56 load zone/weather station pairs in ISO-NE. 

Zone / WS PWM CON BTV BDL PVD ORH BOS 

ME 5.54 6.32 7.09 6.01 5.55 6.08 5.46 

NH 4.54 4.97 5.88 4.54 4.6 4.74  

VT 5.57 5.9 5.71 5.26 5.24 5.46 5.5 

CT 5.23 5.56 6.14 4.21 4.14 4.85 4.7 

RI 5.1 5.8 6.6 4.6 4.29 4.97 4.92 

SEMASS 4.87 5.56 6.3 4.62 4.02 4.86 4.41 

WCMASS 5.13 5.58 6.08 4.49 4.72 4.89 4.95 

NEMASSBOST 4.71 5.46 6.07 4.63 4.23 4.77 4.15 

 

Table 6.2 shows the MAE values for each pair of load zone and weather station. The 

numbers are displayed as a heat map: the lower amounts, which are more accurate 

predictions, are marked green and the higher amounts are shown in red.  

 The load zones and weather stations are distributed in different locations of ISO-

NE territory (Figure 6.1 and Figure 6.2). The heat map of Table 6.2 shows that there is a 
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best load data (from a specific load zone) for each weather station. For instance, the 

temperature data from weather station “BOS” can be estimated more accurately if we use 

the load data from “MEMASSBOST”. The distance of the weather station from the load 

zone, and the area of the load zone can affect the quality of the temperature predictions. 

For instance, all predictions of weather station BVT is not good. If we look at the weather 

station location in the Figure 6.2, we can see that this weather station is very far from all 

load zones except from VT and obviously the best prediction is for the pair of VT/BVT. 

On the other hand, the load zone “ME” is not a good option to be paired with any 

of the weather station for the temperature prediction. The reason might be the large area of 

the load zone and wider distribution of the electricity consumers. The weather stations 

measure the temperature for a specific location. For the load zones with large areas, the 

correlation between the load and the temperature of a specific weather station is weaker 

than for the smaller zones. This weak correlation leads to less accurate predictions.  
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6.3 Anomaly Detection  

  In this section, the proposed anomaly detection method is implemented in ISO-NE 

dataset to study the performance of the method in another dataset. We used the data from 

years 2014 and 2015 as the history data of a load forecasting practice. The forecasting 

window is hourly load demand of the year 2016. ISO-NE dataset includes 8 load zones and 

7 weather stations. We tried each pair of load zone and weather station. Therefore, we have 

56 pairs in total. For each pair, the anomaly detection method is implemented. After 

detection, the anomalies are removed to make the data cleansed. The cleansed data is used 

for load forecasting. The accuracy of the load forecasts (in MAPE) is compared for before 

and after anomaly detection.  

 Table 6.3 shows the percentage of detected anomalies in the history data by the 

proposed method. Table 6.4 shows the MAPE numbers of load forecasts in all 56 pairs of 

load zone and weather station. The Figure 6.3 shows samples of detected anomalies in two 

different months of the history. The anomalies are determined by small blue circles.  

Table 6.3: The percentage of the detected anomalies for all pairs of load zone vs. weather station 

of ISO-NE 

Zone / WS PWM CON BTV BDL PVD ORH BOS 

ME 7.41 7.49 8.11 7.71 8.26 7.21 8.06 

NH 5.50 5.91 7.69 6.66 6.72 5.99 3.40 

VT 7.63 7.20 6.84 7.19 7.65 7.09 7.56 

CT 7.32 6.73 8.19 5.64 6.79 6.27 7.48 

RI 7.36 6.06 8.21 6.35 6.07 6.17 6.57 

SEMASS 7.13 5.66 8.41 6.58 5.98 5.84 7.12 

WCMASS 7.16 6.10 8.14 6.25 6.52 6.03 6.87 

NEMASSBOST 7.14 5.89 8.45 6.31 6.32 5.70 6.56 
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Table 6.4: MAPEs of load forecasts for each pair of the ISO-NE. In each cell, the upper number 

is for raw data and the lower one is for the data, which the detected anomalies are removed. 

Zone / Weather Station PWM CON BTV BDL PVD ORH BOS 

ME 
Raw 3.749 3.779 4.513 4.196 3.951 3.871 3.989 

Removed 3.744 3.744 4.456 4.291 3.943 3.831 3.990 

NH 
Raw 3.918 3.455 4.583 3.606 3.852 3.357 4.023 

Removed 3.937 3.484 4.587 3.683 3.788 3.444 3.979 

VT 
Raw 5.142 5.003 4.854 4.774 5.160 4.751 5.188 

Removed 5.167 4.980 4.789 4.757 5.109 4.713 5.174 

CT 
Raw 6.361 5.505 6.858 4.881 4.881 4.931 6.189 

Removed 6.329 5.455 6.840 4.911 4.814 4.888 5.984 

RI 
Raw 5.334 4.858 6.165 4.247 3.877 4.162 4.885 

Removed 5.354 4.865 6.171 4.271 3.852 4.240 4.839 

SEMASS 
Raw 5.769 5.386 6.894 5.076 4.456 4.685 5.423 

Removed 5.810 5.350 6.830 5.085 4.418 4.740 5.372 

WCMASS 
Raw 5.380 4.726 5.818 4.310 4.756 4.490 5.179 

Removed 5.341 4.708 5.740 4.326 4.677 4.493 5.143 

NEMASSB

OST 

Raw 4.831 4.502 6.055 4.624 4.044 3.794 4.325 

Removed 4.831 4.526 6.046 4.622 3.968 3.832 4.277 

 

 

 

Figure 6.3: Samples of the detected anomalies 
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The following observations can be made from Table 6.3, Table 6.4 and Figure 6.3: 

 The percentages of the detected anomalies show that the quality of the original 

dataset is reasonably high and we should not expect a big difference after removing 

the anomalies. Based on the results shown in chapter 5 (Table 5.1), the effectiveness 

of the method depends on how high the anomaly ratio is. 

 The ratio of the detected anomalies in all pairs of weather station “BTV” with any 

load zone is high. Respectively in the corresponding attempts for load forecasting, 

the accuracy of the outcomes gets better after removing the detected anomalies in 

most cases (6 out of 8). This shows us that the quality of the data in weather station 

“BTV” is not good and the detection method works effectively and improves the 

quality of the data.  

 Figure 6.3 shows two sample months of history data, where some of the anomalies 

are obvious. For instance, in some time intervals, the temperatures goes flat for a 

couple of hours in a row, which is not possible in real world. It might be because 

of an incorrect report, or a wrong procedure for replacing the missing values. The 

graph shows that the proposed method can detect these types of unusual behaviors.  

 In overall, when we removed the detected anomalies from the raw data, the MAPE 

is decreased in 32 out of 56 cases. It shows that even with a high quality data, the 

detection method works effectively and finds the possible anomalies.  
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CHAPTER 7: CONCLUSION 

 

 Temperature is a driving factor in electric consumption and it has been utilized as 

a predictor variable in many load forecasting models. The quality of the input data plays a 

vital role in the performance of the load forecasting process. Since the real world data 

includes various types of anomalies and inconsistencies, the raw data requires to be 

prepared for using in a forecasting process. The anomalies are not specified only to the 

load data. Due to many reasons like human errors or aging instruments, the weather data 

includes anomalies such as missing data, outliers and inconsistencies.  

This research proposes an anomaly detection method for the temperature data. The 

method consists of two components: a load-based temperature prediction model; and a 

detection technique. The prediction model is a regression-based model using the calendar 

variables, lagged and lead load values, and the interactions among them to estimate the 

temperature. The estimated temperature profile is used as a baseline or reference to detect 

the anomalies.  

 We developed a load-based temperature prediction model to build a foundation for 

anomaly detection. The temperature prediction is a regression-based model. We used 

calendar variables, load, lagged and lead values of the load and interaction among these 

variable to create a MLR model. The model is developed based on the data from Global 

Energy Forecasting Competition 2014 (GEFCom 2014). By analyzing different features 

on the basic model such as recency and holiday effect, the best model turned to be our 

proposed model. 
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 The proposed anomaly detection method was evaluated through two case studies. 

The first one is based on the data from GEFCom 2014. In this case study, an anomaly 

simulation was used to study the performance of the proposed method. We created 32 

scenarios to inject different levels of corruptions into the data. In each attempt, the detected 

anomalies were removed and both corrupted and cleansed data were used separately for 

load forecasting. The proposed method improved the accuracy of the load forecast for all 

32 scenarios.  

 We conducted another case study based on the publicly available data from NE-

ISO. In this case study, the method was implemented on the raw data. Based on the 

available data, 56 combinations of load zone and weather station were created. The 

proposed method improved the accuracy of the load forecast for 32 out of 56 pairs. The 

MAPE values were improved by about 1% on average.  

The significance of this work lies in its interdisciplinary nature by building a bridge 

between meteorology and energy. During the past several decades, meteorologists have 

been analyzing weather data and developing numerical weather prediction models without 

taking electricity demand as an input. On the other hand, load forecasters have been taking 

weather history with the full faith without devoting much effort into data cleansing. The 

research demonstrates the benefits of marrying the two domains by using load data to 

validating temperature data.  

The research conducted in this thesis opens a door to data cleansing for other 

weather variables used in load forecasting models, such as humidity and wind speed. 
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Temperature is not the only weather variable used in the load forecasting models. Other 

variables such as humidity and wind speed have some levels of correlation with the load. 

The similar approach can be implemented on the other weather variables to improve the 

quality of predictors and improving the forecast accuracies.  

The introduced technique is used for the detection part of the cleansing process. 

The next step of the preprocessing is fixing these detected anomalies. An extension to this 

thesis would be developing a method to estimate appropriate temperature values for 

replacing the anomalies.  

We assumed the proposed load-based temperature prediction model as a benchmark 

model. Improving the temperature prediction model leads to better estimations for the 

temperature and consequently enhances the power of anomaly detection. Another future 

work would be improving the temperature prediction model.   

 

 

 

 

 

  



56 

 

REFERENCES 

 

[1] T. Hong, “Short Term Electric Load Forecasting.,” Sep. 2010. 

[2] T. Hong and S. Fan, “Probabilistic electric load forecasting: A tutorial review,” Int. J. 

Forecast., vol. 32, pp. 914–938, 2016. 

[3] G. Gross and F. D. Galiana, “Short-term load forecasting,” Proc. IEEE, vol. 75, no. 12, 

pp. 1558–1573, 1987. 

[4] H. K. Alfares and M. Nazeeruddin, “Electric load forecasting: Literature survey and 

classification of methods,” Int. J. Syst. Sci., vol. 33, no. 1, pp. 23–34, Jan. 2002. 

[5] H. Hahn, S. Meyer-Nieberg, and Pickl Stefan, “Electric load forecasting methods: Tools 

for decision making,” Eur. J. Oper. Res., vol. 199, no. 3, pp. 902–907, Dec. 2009. 

[6] R. J. Hyndman and S. Fan, “Density Forecasting for Long-Term Peak Electricity 

Demand,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1142–1153, May 2010. 

[7] T. Hong, P. Pinson, and S. Fan, “Global Energy Forecasting Competition 2012,” Int. J. 

Forecast., vol. 30, no. 2, pp. 357–363, Apr. 2014. 

[8] P. Wang, B. Liu, and T. Hong, “Electric load forecasting with recency effect: A big data 

approach,” Int. J. Forecast., vol. 32, no. 3, pp. 585–597, Jul. 2016. 

[9] A. Khotanzad, R. Afkhami-Rohani, and D. Maratukulam, “ANNSTLF-Artificial Neural 

Network Short-Term Load Forecaster- generation three,” IEEE Trans. Power Syst., vol. 

13, no. 4, pp. 1413–1422, 1998. 

[10] T. Hong and P. Wang, “Fuzzy interaction regression for short term load forecasting,” 

Fuzzy Optim. Decis. Mak., vol. 13, no. 1, pp. 91–103, Mar. 2014. 

[11] P. C. Abbe and P. C. Abbe, “THE PHYSICAL BASIS OF LONG-RANGE WEATHER 

FORECASTS1,” http://dx.doi.org/10.1175/1520-

0493(1901)29[551c:TPBOLW]2.0.CO;2, Dec. 1901. 

[12] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical weather 

prediction,” Nature, vol. 525, no. 7567, pp. 47–55, Sep. 2015. 



57 

 

[13] G. Shrivastava, S. Karmakar, M. K. Kowar, P. Guhathakurta, and S. Nagar, “Application 

of Artificial Neural Networks in Weather Forecasting: A Comprehensive Literature 

Review,” Int. J. Comput. Appl., vol. 51, no. 18, pp. 975–8887, 2012. 

[14] W. W. Hsieh, B. Tang, W. W. Hsieh, and B. Tang, “Applying Neural Network Models to 

Prediction and Data Analysis in Meteorology and Oceanography,” Bull. Am. Meteorol. 

Soc., vol. 79, no. 9, pp. 1855–1870, Sep. 1998. 

[15] A. C. Lorenc, “Analysis methods for numerical weather prediction,” Q. J. R. Meteorol. 

Soc., vol. 112, no. 474, pp. 1177–1194, Oct. 1986. 

[16] M. J. C. Hu, H. E. Root, M. J. C. Hu, and H. E. Root, “An Adaptive Data Processing 

System for Weather Forecasting,” J. Appl. Meteorol., vol. 3, no. 5, pp. 513–523, Oct. 

1964. 

[17] V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artif. Intell. 

Rev., vol. 22, no. 2, pp. 85–126, 2004. 

[18] J. Xie and T. Hong, “GEFCom2014 probabilistic electric load forecasting: An integrated 

solution with forecast combination and residual simulation,” Int. J. Forecast., vol. 32, pp. 

1012–1016, 2016. 

[19] T. Hong and S. Fan, “Probabilistic energy forecasting: Global Energy Forecasting 

Competition 2014 and beyond,” Int. J. Forecast., vol. 32, no. 3, pp. 896–913, Jul. 2016. 

[20] H. N. Akouemo and R. J. Povinelli, “Probabilistic anomaly detection in natural gas time 

series data,” Int. J. Forecast., vol. 32, no. 3, pp. 948–956, Jul. 2016. 

[21] J. Luo, T. Hong, and S.-C. Fang, “Benchmarking robustness of load forecasting models 

under data integrity attacks,” Int. J. Forecast., vol. 34, no. 1, pp. 89–104, Jan. 2018. 

[22] C. Guan, P. B. Luh, L. D. Michel, Y. Wang, and P. B. Friedland, “Very Short-Term Load 

Forecasting: Wavelet Neural Networks With Data Pre-Filtering,” IEEE Trans. Power 

Syst., vol. 28, no. 1, pp. 30–41, Feb. 2013. 

[23] J. N. Fidalgo and J. A. Lopes, “Load Forecasting Performance Enhancement When Facing 

Anomalous Events,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 408–415, Feb. 2005. 



58 

 

[24] P. Shamsollahi, K. W. Cheung, Quan Chen, and E. H. Germain, “A neural network based 

very short term load forecaster for the interim ISO New England electricity market 

system,” in pica 2001. Innovative Computing for Power - Electric Energy Meets the 

Market. 22nd IEEE Power Engineering Society. International Conference on Power 

Industry Computer Applications (Cat. No.01CH37195), pp. 217–222. 

[25] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, Applied Linear Statistical Models, 

5th editio. 2005. 

[26] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, “Probabilistic 

energy forecasting: Global Energy Forecasting Competition 2014 and beyond,” Int. J. 

Forecast., vol. 32, no. 3, pp. 896–913, Jul. 2016. 

[27] T. Hong, P. Wang, and H. L. Willis, “A Naïve multiple linear regression benchmark for 

short term load forecasting,” in 2011 IEEE Power and Energy Society General Meeting, 

2011, pp. 1–6. 

[28] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection *,” 

Stat. Surv., vol. 4, pp. 40–79, 2010. 

[29] Shu Fan, K. Methaprayoon, and Wei-Jen Lee, “Multiregion Load Forecasting for System 

With Large Geographical Area,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1452–1459, 

Jul. 2009. 

[30] Tao Hong, Min Gui, M. E. Baran, and H. L. Willis, “Modeling and forecasting hourly 

electric load by multiple linear regression with interactions,” in IEEE PES General 

Meeting, 2010, pp. 1–8. 

[31] M. T. Hagan and S. M. Behr, “The Time Series Approach to Short Term Load 

Forecasting,” IEEE Trans. Power Syst., vol. 2, no. 3, pp. 785–791, 1987. 

[32] K. Methaprayoon, W.-J. Lee, S. Rasmiddatta, J. R. Liao, and R. J. Ross, “Multistage 

Artificial Neural Network Short-Term Load Forecasting Engine With Front-End Weather 

Forecast,” IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1410–1416, 2007. 

[33] T. M. Peng, N. F. Hubele, and G. G. Karady, “Advancement in the application of neural 

networks for short-term load forecasting,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 250–



59 

 

257, 1992. 

[34] B.-J. Chen, M.-W. Chang, and C.-J. Lin, “Load Forecasting Using Support Vector 

Machines: A Study on EUNITE Competition 2001.” 

[35] A. Khotanzad, Rey-Chue Hwang, A. Abaye, and D. Maratukulam, “An adaptive modular 

artificial neural network hourly load forecaster and its implementation at electric utilities,” 

IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1716–1722, 1995. 

[36] S. Rahman, “Formulation and analysis of a rule-based short-term load forecasting 

algorithm,” Proc. IEEE, vol. 78, no. 5, pp. 805–816, May 1990. 

[37] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Data Mining 

Researchers,” 2003. 

[38] A. Ashok, M. Govindarasu, and V. Ajjarapu, “Online Detection of Stealthy False Data 

Injection Attacks in Power System State Estimation,” IEEE Trans. Smart Grid, pp. 1–1, 

2016. 

[39] “About the Different Types of Costs and Reports.” [Online]. Available: https://www.iso-

ne.com/markets-operations/market-performance/load-costs. 

 

 

 

 

 

 


