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ABSTRACT 

 

 

STEVEN LEE JAMES.  Evaluation and validation of pavement distress and performance 

models for a Pavement Management System using automated asphalt condition data. 

(Under the direction of DR. DON CHEN) 

 

 

Since 2011, the North Carolina Department of Transportation (NCDOT) has 

implemented an automated data collection process for their Pavement Management System 

(PMS).  This study was conducted to update NCDOT’s PMS with the availability of new 

automated network data from 2014.  Distress indices were developed using NCDOT’s 

Maximum Allowable Extent (MAE) method and a composite performance index was 

developed using the Analytic Hierarchy Process (AHP).  To predict calculated distress and 

performance indices over time, non-linear sigmoidal models were developed.  These 

models, developed exclusively with 2014 data were then visually compared to previously 

developed models.  A visual comparison indicated that models developed in this study 

varied significantly compared to models developed using automated data from 2012 and 

2013. Models developed in this study present better performance ratings in years 0 to 10 

compared to previously developed models. From years 11 to 20, models developed in this 

research present higher deterioration rates compared to previous research. This indicates a 

more responsive PMS where timely maintenance strategies should be implemented to help 

eliminate excessive deterioration of roadways. For statistical conclusions, confidence 

intervals were developed for the b variable which controls the horizontal shift of a 

sigmoidal regression curve. Overall, most previously research b variables fell outside the 

upper bound of the interval. This statistically confirms the results of the visual comparison 

between models. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Background 

Roadways are an essential component of a country’s transportation network system. 

An efficient and effective roadway network provides economic and societal benefits such 

as agricultural and rural development; industry and trade; and access to education, health 

care, and recreation (Queiroz and Gautam 1995 and Young 2008). The World Bank’s 

analysis on road infrastructure and economic development provides insight on how 

significant roads are to the success of a nation. This worldwide study consisted of a cross-

section analysis of data from data 98 countries and a time-series analysis of US data since 

1950. The conclusions of this research revealed a statistically significant relationship 

between economic development, in terms of per capita gross national product (GNP), and 

road infrastructure, in terms of per capita length of paved road (Queiroz and Gautam 1995). 

The US road network, exceeding 8.65 million lane-miles, is the world’s largest 

roadway network (Roadtraffic Technology 2014). To provide quality and an acceptable 

level of service to the public, State Highway Agencies within the US must maintain and 

continually improve a constantly expanding roadway system. The issue within the US is 

that the investment needed to fund surface transportation infrastructure is no longer 

meeting the needs of the system. With a limited budget and a constantly deteriorating 

roadway network, asset management plays a crucial role in the success of transportation 

agencies. Asset management, as described by Has et al (2001) is “a systematic process of 
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maintaining, upgrading and operating physical assets cost-effectively.”  

A PMS is a transportation asset management tool used by SHAs to make appropriate 

decisions on how to optimally maintain its network of roadways and provide an adequate 

level of service to the public. According to the American Association of State Highway 

and Transportation Officials (AASHTO), a PMS, is “a set of tools or methods that assist 

decision-makers in finding optimum strategies for providing, evaluating, and maintaining 

pavements in a serviceable condition over a period of time.” With the use of a PMS, 

transportation officials and engineers utilize a strategic planning tool that provides 

objective and data driven funding decisions that optimizes the total performance of the 

entire roadway network.  

Currently, SHAs are shifting from a PMS that implements manually collected 

pavement condition data, which is collected by windshield evaluations, to a PMS that 

implements automated data, which is collected by vehicles equipped with high speed 

cameras and sensors. The NCDOT is one of many SHAs who are beginning to implement 

new technology into their PMS to increase the systems effectiveness. Since 2011, the 

NCDOT has begun collecting pavement distress data using a new automated approach. 

This method differs from the manual method and takes advantage of high-speed imaging, 

sensor technology, and image processing, all which is expected to increased data quantity, 

subjectivity, repeatability, and safety to roadway evaluators. Since implementing this new 

data collection method, a methodology for developing distress and performance models 

using automated data has been researched (Dye 2014). However, with the availability of 

data from 2014, NCDOT’s PMS must be updated by comparing previously developed 

asphalt models to models developed exclusively with new data. These models will present 
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different regression coefficients, which will in turn affect asset management analysis 

factors such as deterioration rates and trigger point values. 

1.2 Research Need and Significance 

There is a need to develop and validate asphalt pavement deterioration models based 

on 2014 automated data for the following reasons: 

1) Accuracy and suitability of pavement deterioration models are crucial to the success of 

NCDOT’s PMS and their application of maintenance and rehabilitation strategies. 

Initial automated models based on 2012 and 2013 data were developed in a previous 

study (Dye 2014). As with any new system, the first years of initiation are often a 

transition period. Since the development of the first automated models, the algorithm 

used to process raw data has changed. Because of the changes in data collection, there 

is a need to develop new distress and performance models that has the potential to 

present different deterioration rates. 

2) Once new models are developed, an evaluation and validation process will occur to 

determine the models compatibility with previously developed manual and automated 

models. Since NCDOT’s automated data collection method is relatively new and still 

in development, it is essential to compare the deterioration rates of each model to 

determine how effective this new data collection method is in terms of pavement 

performance.  

This research has been conducted to address these needs and the following outcomes 

are expected: asphalt pavement overall performance and individual distress predictions, 

updated maintenance trigger points, and an overall evaluation on models developed during 

this transition from manual to automated data collection. 
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1.3 Research Objectives 

The objectives of this research project are: (a) to develop new asphalt distress and 

performance models; (b) to calculate maintenance, rehabilitation, and reconstruction 

trigger points for asphalt distress types; and (c) to compare newly developed distress and 

performance models to models developed in previous research studies (Chen et al. 2013 

and Dye 2014). 

1.4 Report Organization 

• An introduction to this research project, its significance and overall objectives are 

presented in Chapter 1.  

• A literature review on pavement management systems and its various components is 

provided in Chapter 2.  

• The framework and methodology used to develop distress and performance models and 

calculate trigger points is discussed in Chapter 3.  

• Chapter 4 presents the results of this study. 

• Chapter 5 presents the comparisons of the models developed in this study to models 

developed in previous research by Chen et al. (2013) and Dye (2014). 

• Chapter 6 discusses the major findings, conclusion, and recommendations based on this 

research study.  

• Appendices A through H present asphalt distress models consisting of alligator 

cracking, transverse cracking, longitudinal cracking, longitudinal lane joint cracking, 

raveling, non-wheel path patching, wheel path patching, and raveling, respectively. 

Appendix I includes all asphalt performance models. 
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1.5 Scope and Limitations  

The limitation of this research study was that only one year (2014) of automated asphalt 

condition data was used. Since NCDOT’s raw data processing algorithm changed in 2014, 

multiple years’ worth of data could not be utilized since it varied. However, this issue 

signified the importance of comparing the differences between models developed in Dye’s 

research in 2014 (which applied NCDOT’s automated data collected in 2012 and 2013) 

and Chen’s research in 2013 (which applied NCDOT’s manual data). A methodology of 

developing distress and performance models and comparing the various phases of research 

was developed in this research. This allowed the researcher to visually interpret the 

differences between models developed with manual data, models developed using 

automated data from 2012 and 2013, and models developed using automated data from 

2014.  

 



 

 

CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 Pavement Management System Background 

According to AASHTO (2001), the amount of money spent on roadways is much less 

than what is needed. The need for effectively managing available funds is crucial with more 

than half of all roads in the United States in fair, mediocre, or poor condition. Past research 

indicates that it costs a SHA less to maintain roadways at a reasonable level of 

serviceability when a PMS is effectively implemented in management decisions (Peterson, 

1977). 

As defined by the Organization of Economic and Cooperative Development (OECD), 

a PMS is “the process of coordinating and controlling a comprehensive set of activities in 

order to maintain pavements, so as to make the best possible use of resources available, i.e. 

maximize the benefit for society” (OECD 1987). The idea of pavement management can 

date back to the Roman Empire, who constructed and maintained a network of roads 

throughout Europe that remain in use more than 2,000 years later (Abrams 2013). Although 

the basic theory of a PMS can be traced back over 2,000 years to when roads were first 

built and maintained, the origination of an integrated and systematic approach to pavement 

management did not begin until the mid-1960’s (Haas et al 2001). In 1980, the Arizona 

Department of Transportation (AZDOT) developed the first network-level PMS based on 

a linear optimization model to help minimize roadway maintenance costs. Pavement 

management has undergone significant advancements since Arizona’s first 
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network-level PMS. In 1991, the Intermodal Surface Transportation Efficiency Act 

(ISTEA) was passed with the help of the Federal Highway Administration (FHWA). This 

federal bill established pavement condition factors to be incorporated in a PMS while 

mandating that each state was to have an operational PMS for principal arterials in place 

by January 13, 1993. Today, all 50 states have some form of a PMS that incorporates 

pavement condition data and analysis tools, which are used primarily to address 

maintenance and rehabilitation needs of existing roadways (AASHTO 2001).  

A PMS is generally applied and used in two levels-network level and project level 

(AASHTO 1990). The goal of a network level PMS is to optimize the use of funds 

statewide and identify the budget that will have the greatest benefit. At a project level, 

consideration is given to alternative design, construction, maintenance, and rehabilitation 

activities for specific projects. This is accomplished by comparing the benefit of design 

alternatives and identifying the alternative with the least total cost over the projected life 

of the project (Utah Department of Transportation 2013). 

2.2 NCDOT Pavement Management 

NCDOT’s Pavement Management Unit (PMU), a sector of the Division of 

Transportation (DOT), is responsible for approximately 80,000 miles of roadways 

spanning across 100 counties in North Carolina (Hauser et al 2005). According to KPMG 

Peat Marwick LLP (1998), NCDOT’s PMU primary functions and responsibilities are to: 

“Manage the current maintenance management system to guide funding allocation to 

various roadway maintenance activities; Coordinate allocation of roadway maintenance 

funds-primary, secondary, urban, and contract resurfacing-based on established 

criteria;Coordinate and perform roadway maintenance activities, such as pavement 
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patching, resurfacing, snow and ice removal, drainage, shoulders and drop-off, and guard 

rails”.  

To assist the NCDOT PMU with the functions and responsibilities listed above, the 

state has implemented a PMS that has been collecting data on pavement condition since 

1982 (Mastin 2011). Manual data was used in 2012 by researchers at UNC Charlotte to 

validate and update NCDOT pavement performance models, pavement distress models, 

decision trees, and weight factors. The result of this research was an updated PMS used by 

the NCDOT PMU to strategically determine when to conduct preventive maintenance, 

light rehabilitation, heavy rehabilitation, and reconstruction (Thompson 2012). 

2.3 Manual Data Collection 

Manual or “windshield” data collection has been the primary method for collecting 

roadway condition data for SHAs since the initiation of the PMS. For manual data 

collection, pavement raters analyze the condition of roadways through windshield surveys, 

which involve driving at slow speeds along roadways or the shoulders of roadways. 

Personnel involved in windshield data collection are responsible for recording various 

distress types that can be seen from their vehicle. Observed distress types are recorded 

based on a severity rating of none (N), light (L), moderate (M), and severe (S). Typically, 

pavement rating crews using the windshield method can cover a distance of 125-200 miles 

in one day depending on the weather, number of lanes, and the condition of the roadway 

(Hartgen 1983).  

This survey method is considered outdated with respect to today’s technology and has 

a multitude of issues such as subjectivity, repeatability, and safety (Mastin 2011; Ong et 

al. 2010). Accuracy and reliability of pavement performance data has an effect on an entire 
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pavement management system. For manual data collection, quantitative conditions of 

roadway performance may vary from rater to rater causing variability in data used to 

determine an overall performance index of roadway sections. The overall result of 

inconsistent performance indices on a PMS is consequential decision making processes 

that “undermine the effectiveness of, and confidence in, the pavement management 

process” (Flintsch and McGhee 2009). In addition to data variability, manual methods of 

data collection are time consuming and pose a safety risk for vehicle operators and 

pavement raters. 

2.4 Automated Data Collection 

An automated pavement condition survey consists of data collected by vehicles 

outfitted with digital line-scan cameras and non-contact sensors. According to Timm and 

McQueen (2004), these digital line-scan cameras are capable of capturing pavement 

images that can exceed a resolution of 6,000 pixels per line. These vehicles travel at normal 

speeds while distress classification software analyzes data collected, making this method 

cost-effective, safe and efficient. Through research and the availability of new technology, 

many SHAs are transitioning from manual pavement condition surveys to automated 

pavement condition surveys. This transition has taken place in attempt to eliminate safety 

risks, efficiency issues, and objectiveness that are present with manual surveys.  

With increased interest to transition from manual to automated data, a multitude of 

research has been conducted to compare the two data collection techniques. Timm and 

McQueen (2004) conducted a study of manual versus automated pavement for the Alabama 

Department of Transportation, Groeger et al. (2003) conducted a similar study for the 

Naval Pavement Center of Expertise, and Wang et al. (2003) conducted a network crack 
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study using automated data for Arkansas. The results of these studies found that automated 

pavement condition data is an appreciated tool that will benefit SHAs with less subjective 

and more accurate data, the ability to survey an entire network in a time efficient manner, 

and a safer means of collecting data on high-speed interstates. 

This relatively new technology does not come without issues, however, previous 

research has shown that automated surveys are a feasible and efficient method for 

collecting pavement data (Groeger et al., 2003). One issue with this method is that most 

pavement management systems have been developed for manual data, which differs 

significantly from automated data. There are a multitude of different distress types 

collected with the use of the automated survey method as compared to the manual method 

as shown in Figure 1 (Chen 2009). This issue makes the transition to a fully automated 

system difficult for SHAs who are hesitant to redesign their PMS to be fully compatible 

with the automated survey method.  
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FIGURE 1: NCDOT’s manual data collection vs. automated data collection (Chen 2009) 

 

 

The NCDOT has collected automated pavement condition data since 2011 with the 

publication of the agency’s “Digital Imagery Distress Evaluation Handbook”. This 

handbook specified that beginning in the fall of 2011, “interstate and primary condition 

surveys will be conducted using high speed digital imagery and automated/semi-automated 

data processing” (NCDOT 2011). Since then, two contractors have been acquired by the 

state for data collection purposes.  

One contractor is responsible for collecting automated pavement condition data with 

distance measuring, laser, and imaging equipment in compliance with the Digital Imagery 

Distress Evaluation Handbook. NCDOT’s automated distress handbook specifies that data 

collectors must survey the rightmost travel lane with downward digital images covering a 
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width of fourteen feet. To ensure quality data with identifiable distresses, pavement 

condition surveys are not conducted when weather conditions result in poor roadway 

visibility (NCDOT 2011).  

A separate contractor is responsible for evaluating the automated data and must comply 

with section 1.3 General Distress Evaluation Rules of NCDOT’s automated distress 

handbook. There are a multitude of rules that the data processor must comply with, 

however in terms of this research, it is important to reference rule seven of section 1.3 

which states how distresses will be rated and quantified (NCDOT 2011). In addition to 

section 1.3, the following standards are also examples of standards the data collector must 

comply with (refer to “NCDOT Digital Imagery Distress Evaluation Handbook” for a 

complete list of standards and procedures): 

• Automated data collection equipment shall conform to the latest version of ASTM 

Designation E1656/E1656M “Standard Guide for Classification of Automated 

Pavement Condition Survey Equipment”.  

• All inertial profilers shall be a Class 1 Inertial Profiler per ASTM E950. 

• Data collection contractor will evaluate pavement surface distresses on 100% of the 

pavement sections (continuous) utilizing the downward and forward perspective 

images.  

2.5 Pavement Distress Types 

Raw pavement condition data, obtained by manual or automated surveys, is typically 

converted into a composite index to represent an overall condition of a roadway section, 

trigger specific treatments, and predict future conditions (McGovern et al. 2013).  To 

develop a composite performance index that takes multiple roadway conditions into 
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account, individual pavement distress data (i.e. transverse cracking, longitudinal cracking, 

alligator cracking, etc.) are first defined and collected by an agency. The following 

subsections describe the various distress types collected for NCDOT’s asphalt roadways. 

2.5.1 Alligator Cracking 

Alligator cracking, as shown in Figure 2, typically occurs in the wheel path area of a 

roadway that is subjected to repetitive traffic loads. This distress type is often referred to 

as fatigue cracking and has a crack pattern that resembles scales on an alligator’s back. A 

low severity alligator crack, as defined by the NCDOT is a single sealed or unsealed 

longitudinal crack in the wheel path or an area of interconnecting cracks 
�
� inch or less in 

width. Moderate severity cracks are defined as an area of interconnecting cracks, typically 

�
� inch in width that form an alligator pattern. High severity occurs in an area of moderately 

or severely spalled cracks that are typically 
�
� inches in width (NCDOT 2011). 

 

 

 
FIGURE 2: Alligator cracking (NCDOT, 2011) 
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2.5.2 Transverse Cracking 

Transverse cracking, shown in Figure 3, is defined by the NCDOT as random cracks 

that run perpendicular to the pavement centerline. Transverse cracking that occurs over the 

joints over underlying jointed concrete pavement is referred to as reflective cracking. A 

low severity transverse crack is either 1) a sealed crack in good condition such that the 

cracks width cannot be determined or 2) a closed, unsealed crack less than 
�
� inch in width. 

Moderate transverse cracking is classified as either 1) an open and unsealed crack between 

�
� inch and 

�
� inch in width or 2) any crack with adjacent transverse cracking within 5 to 10 

feet. High severity cracking is defined as either 1) an open and unsealed crack greater than 

�
� inch in width or 2) any crack with adjacent transverse cracking within 5 feet (NCDOT, 

2011). 

 

 

 
FIGURE 3: Transverse cracking (NCDOT, 2011) 
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2.5.3 Longitudinal Cracking 

Longitudinal cracks run parallel to the centerline of a roadway as shown in Figure 4. 

The NCDOT only classifies longitudinal cracks outside the wheel paths. Cracks running 

parallel to the centerline of a roadway and occur inside the wheel paths are classified as 

low severity alligator cracking. A low severity longitudinal crack is defined as either 1) a 

crack with sealant in good condition such that the crack width cannot be determined or 2) 

a closed and unsealed crack less than 
�
� inch in width. Moderate severity is not collected by 

the NCDOT, however, high severity is classified as either 1) an open and unsealed crack 

or 2) any sealed or unsealed crack with adjacent random cracking (NCDOT, 2011). 

 

 

 
FIGURE 4: Longitudinal cracking (NCDOT, 2011) 

 

 

2.5.4 Longitudinal Lane Joint Cracking 

Longitudinal lane joint cracking, shown in Figure 5, is crack that runs parallel to the 

centerline of a roadway and occurs between two lanes where a fresh batch of hot-mix 

asphalt (HMA) has been laid adjacent to an existing lane. The NCDOT collects only low 
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and high severity levels of this distress type. Low severity consists of either 1) a 

longitudinal paving joint with sealant in good condition such that the width cannot be 

determined or 2) an open and unsealed joint. High severity is defined as a longitudinal lane 

joint crack with severe spalling or adjacent random cracking (NCDOT, 2011). 

 

 

 
FIGURE 5: Longitudinal lane joint cracking (NCDOT, 2011) 

 

 

2.5.5 Patching 

Patching, as shown in Figure 6, is an area located inside or outside of a roadways wheel 

path where asphalt has been removed and replaced, or where additional material has been 

placed on the surface to cover cracking or other distresses. No severity level is specified 

for patching as only the amount, in square feet, is recorded (NCDOT, 2011). 
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FIGURE 6: Patching (NCDOT, 2011) 

 

 

2.5.6 Rutting 

As shown in Figure 7, rutting is a longitudinal surface depression in the wheel path of 

a roadway. This distress type is collected using a laser sensor technology, which provides 

a profile of the pavement surface. The NCDOT calculates rut depths using an automated 

roadway profiler. Low severity is classified as a rut depth less than 0.25 inches; moderate 

severity consists of rut depths between 0.25 inches and 0.50 inches; and high severity 

consists of rut depths greater than 1.0 inches (NCDOT, 2011). 
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FIGURE 7: Rutting (NCDOT, 2011) 

 

 

2.5.7 Raveling 

Raveling, shown in Figure 8, is the wearing of an asphalt roadways surface and is 

caused by aggregate separation or loss of asphalt binder. Low severity is classified by the 

NCDOT as small amounts of aggregate loss and wear. Moderate severity consists of 

stripping areas less than one square foot and high severity consists of large areas, greater 

than one square foot (NCDOT, 2011). 

 

 

 
FIGURE 8: Raveling (NCDOT, 2011) 
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2.6 Composite Pavement Performance Index 

There are various methods SHAs use to combine individual pavement distress types 

into a single composite index that describes the total performance of a roadway. There is 

also no unanimous composite index scale that is used from state to state as some agencies 

calculate a present serviceability rating (PSR), present serviceability index (PSI), or 

pavement condition index (PCI) (Ganesan et al. 2006). The PSR, a rating of pavement 

performance based on ride quality, was developed in the 1960s at the AASHO Road Test 

(TRB 2007).  After the AASHO Road Test, the U.S. Army Corps of Engineers (USACE) 

developed the PCI, a more objective and complex index valued from 0 to 100. The 

USACE’s PCI was further standardized in ASTM D5340 and ASTM D6433. This method, 

or variations of this method, is used by many SHAs because various distresses and their 

severity result in deductions from the “perfect” condition, valued at 100. Timm and 

McQueen (2004) call this method the “deduct value approach” in which a composite index 

is deducted from a perfect score based on distress severity and an associated weight factor 

correlating to the type of distress and its effect on the overall performance. This method is 

used by ALDOT, which uses a composite pavement condition index called Pavement 

Condition Rating (PCR). In addition to ALDOT, NCDOT also uses PCR to rate pavement 

conditions. An adequate pavement condition rating for NCDOT’s network is defined as a 

PCR index of 80 or greater (NCDOT 2010). If a roadway’s PCR value is less than 80 it is 

selected as a candidate for maintenance, rehabilitation, or reconstruction and further 

analysis is conducted.  
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2.7 Analytic Hierarchy Process 

The use of the Analytic Hierarchy Process (AHP) provides an effective approach to 

evaluate a situation or alternative in terms of multiple criteria.  AHP is a multi-criteria 

decision-making approach introduced by Thomas L. Saaty in 1977. This methodology uses 

a hierarchical structure to break a problem down into major components such as objectives, 

criteria, sub criteria, and alternatives. Data pertaining to the overall objective is derived 

using a set of pairwise comparisons, which is used to determine the weights or importance 

of certain criteria (Triantaphyllou and Mann 1995). Sun and Gu (2011) have researched 

the advantages of using AHP and have developed a new methodology for pavement 

condition assessment and project prioritization using this process.  Because it is difficult 

and subjective to directly assign weights to various performance indicators, Sun and Gu 

used AHP to determine weight factors for individual performance indicators such as 

roughness, deflection index, deterioration ratio, rut depth, and friction coefficient.  

To determine weight factors for individual pavement distresses, Sun and Gu surveyed 

a group of 34 pavement engineers to develop a paired comparison matrix. The survey 

involved discussions, negotiations, and trade-offs between Sun, Gu, and pavement 

engineers to develop a single paired comparison matrix for asphalt and concrete pavements 

of the freeway in Jiangsu Province, China. With the use of algorithms, a weight vector is 

derived from a paired comparison matrix (Forman and Gass 2001; Sun and Grenberg 

2006). 

Weight factors for individual pavement indices can be developed using this method to 

eliminate subjectivity and provide a composite performance index that correlates closely 

to the actual performance of a roadway. 
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2.8 Pavement Performance Modeling 

The ability to evaluate current pavement conditions and forecasted future pavement 

conditions is essential in supporting various pavement management decisions (i.e. 

preventive maintenance, light rehabilitation, heavy rehabilitation, and reconstruction). 

Pavement deterioration or pavement performance modeling is a key function of a PMS. 

Pavement deterioration results from many factors such as traffic, climate, materials, layer 

thickness, layer type, and construction methods (McGovern et al. 2013).     

Based off pavement condition data, pavement performance models are developed to 

predict the behavior of pavements over time, which are used to determine appropriate 

activities that extend the serviceability of a roadway. Pavement performance models may 

be deterministic or probabilistic (Lytton 1987).  The Transportation Research Board (TRB) 

states that “deterministic models use regression equations to describe the evolution of 

pavement condition over time, whereas probabilistic models use Markov chains for the 

same purpose”.  Deterministic models predict a single dependent value such as PCR or PSI 

from one or more independent variables such as age or traffic volume.  In comparison to 

deterministic models, probabilistic models predict a probability distribution of PCR, PSI, 

etc. There are significant advantages and disadvantages associated with deterministic and 

probabilistic models. These advantages and disadvantages of probabilistic and 

deterministic modeling have been researched by many State’s PMS to determine what 

method works for their specific system. In 2001, the Maryland State Highway 

Administration (MDSHA), along with Axiom Decision Systems (AXIOM), developed an 

asset management system to improve the state’s pavement management services. Both 

deterministic and probabilistic models were compared in the process.  It was determined 
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that the probabilistic modeling approach offered a better modeling solution at the network 

level where “prediction of condition in the form of distributions is adequate” (Hedfi and 

Stephanos 2001). At the project level, where a specific prediction value is better suited, the 

probabilistic model does not provide a SHA the ability to determine specific predications 

of pavement performance.  Because of the need for both network and project level funding 

allocation, it was concluded by MDSHA and AXIOM that both deterministic and 

probabilistic modeling approaches were necessary for its PMS.  

In 2008 a case study, following the 7th International Conference on Managing 

Pavement Assets, was conducted for the Arizona Department of Transportation (ADOT). 

This case study compared the probabilistic and deterministic pavement management 

analysis.  ADOT previously implemented a PMS that used the probabilistic Markov 

process and a linear programming model to sustain the state’s pavement network at 

specified levels with a long-term budget constraint. In 2001, ADOT contracted Stantec 

Consulting to develop and implement a new deterministic modeling approach to predict 

pavement performance and an associated marginal cost-effectiveness. This case study, 

comparing both modeling methods, concluded that both systems closely predicted 

pavement performance although the deterministic model resulted in slightly closer values 

to the actual measured conditions (Bekheet et al. 2008).   In reviewing both ADOT’s and 

MDSHA’s comparison between probabilistic and deterministic pavement performance 

models, it is evident that both approaches will successfully predict pavement performance 

but the deterministic model methodology provides the distinct ability to address needs on 

both a project and network level. Along with ADOT, the Washington State Department of 
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Transportation (WSDOT) and Michigan Department of Transportation (MDOT) also have 

developed empirical-deterministic models to predict pavement performance over time. 

2.8.1 Family Modeling Approach 

Performance models can be applied to a group of similar pavements that are considered 

to perform similarly. This method is called “family modeling” for a group of similar 

pavements and “section modeling” for independent pavements. A “family” of pavements 

should be grouped so that they have the same surface type, functional classification 

(Interstate/U.S/state highway/local road), and traffic volume (Chen et al. 2013). 

The family modeling method is used by many state DOTs. According to Applied 

Pavement Technology (2010) “approximately 84 percent of state agencies had developed 

performance models. 73 percent of them were created for pavement families, 10 percent 

for individual pavement sections, and 17 percent used a combination of family and section 

models”. The U.S. Army Construction Engineering Research Laboratory (USACERL) 

(1990) has developed a technique for family modeling which consists of defining pavement 

families, filtering data, conducting data outlier analysis, developing family models, and 

predicting the pavement section condition. 

Like many states, NCDOT uses deterministic models to estimate PCR and individual 

distress for roadway families. NCDOT groups pavements according to pavement type, 

functional classification, and traffic. Pavement performance models predict PCR and are 

used for Cost-Benefit-Analysis while the pavement distress models predict individual 

pavement distress and are used to trigger treatment selections (Chen et al. 2013). 
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2.9 Decision Trees 

Decision trees are used to establish a criteria for when to perform various maintenance 

strategies such as minor maintenance and overlay. Each “branch” on a decision tree 

represents a condition such as pavement type, distress type and severity, traffic volume, 

and functional classification (Hicks et al. 2000). Once a composite performance index is 

established and analyzed it can trigger a particular treatment on a PMS decision tree based 

on its overall condition or specific distress. Hicks et al. (2000) identified that the issue with 

decision trees based on a composite performance index is the inability to appropriately 

address actual distress conditions such as cracking. Because of this, Hicks et al. (2000) 

developed decision trees using a range of trigger values that independently address 

pavement roughness, rutting, cracking, and raveling. 

NCDOT uses decision trees in their PMS to determine when to conduct various 

maintenance activities. Similar to Hicks decision trees, NCDOT uses a range of trigger 

values that independently address pavement distress (alligator cracking, bleeding, 

transverse cracking, raveling, oxidation, rutting, etc.) and are based on pavement type 

(asphalt and JCP) and two highway functional classifications (interstate and non-interstate) 

(Chen et al. 2013). 

2.10 Model Comparison Strategies 

Pavement distress and performance models allow a PMS to quantitatively predict a 

roadways overall condition over time. If these prediction models are developed every time 

new data is available, a comparison can be used to differentiate between alternative models 

and uncover aspects of the PMS framework that require further elaboration or research 

(Schunn and Wallach, 2005). In order to determine a models effectiveness and 
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applicability, each developed model must be evaluated to validate if there if is a difference 

in data quality and performance predictions over time. This is referred to as the goodness-

of-fit (GOF) of a model and according to Schunn and Wallach, there are two different ways 

to evaluate this measure.  

The first method uses graphical presentation methods, which allow for visual 

comparisons to be made. The second method uses numerical measures of GOF, which 

provide summary measures of the overall accuracy of models. There are numerous 

measures of GOF, which include the R2 statistic and the standard error of regression. These 

measures indicate how well data fits a model and can be used to select a best-fit model. 

Although these measures provide an objective and quantitative means to analyze how well 

a model fits data, these methods are difficult to apply to this research due to the nature of 

the data. Since network level pavement data has many outliers and non-linear sigmoidal 

regression analysis is used, the R2 and standard error do no provide an appropriate measure 

of how well these models fit the given data. Because of this issue, distress and performance 

models were compared by overlaying regression curves developed in this research and 

regression curves developed in previous research. This allowed for comparisons to be made 

in practical terms i.e. deterioration rates and their effect on maintenance activities.  

To statistically determine if the difference in pavement performance predictions a 95% 

confidence interval was calculated for the optimum b variable of a model. This variable, 

which controls the horizontal shift of the prediction model was determined in the 

TableCurve 2D software. If the b variable of previous research fell outside the 95% 

confidence interval, the models were considered to be statistically different.  



 

 

CHAPTER 3: RESEARCH METHODOLOGY 

 

 

This chapter presents the methodology to update NCDOT’s pavement management 

system. Past research has been conducted by Chen et al. (2013) and Dye (2014) that have 

established a methodology for developing distress and performance models, determining 

trigger points on decision trees. When new automated data is available to a PMS, it is 

important that the data be analyzed and compared to previously collected data to ensure 

data quality within the system. This study will be conducted to provide the NCDOT with 

distress and performance models based on data collected in 2014. Once these distress and 

performance models are developed a comparison between developed models will validate 

the effectiveness of data collected from 2014. The following sections within this chapter 

will present the computer software programs, work flow, data collection, and processes 

used to update NCDOT’s PMS. 

3.1 Computer Programs Utilized 

To conduct this research a variety of software applications were used for data 

processing, statistical analysis, and model development. The following subsections will 

discuss the various software that was utilized and their overall function.  

3.1.1 Microsoft Excel® 

To develop a database for this research Microsoft Excel was selected as the main data 

storage software. All data received by the NCDOT was in the form of Microsoft Excel 

files. Data received for this project was be merged, processed, and exported in .xls  
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format. Once the central database was developed and exported as Microsoft Excel files, 

they served as the main source of data for other programs selected for statistical analysis 

and model development. 

3.1.2 SAS® 

For data processing and statistical analysis purposes, SAS was selected for this 

research. This software package provides the ability to perform linear and non-linear 

regression analysis and analyze large amounts of data. Since this research deals with large 

amounts of data, SAS was be used to create scatter plots, remove outliers, and perform 

regression analysis for each of the various roadway families.  

3.1.3 TableCurve 2D® 

To develop the final non-linear sigmoidal regression models for each roadway family, 

TableCurve 2D was used. This software package, created by Systat Software Inc., 

automated the curve fitting process and statistically ranked a list of candidate regression 

equations. 

3.1.4 Maple® 

To plot all final distress and performance models and compare automated performance 

models against previous NCDOT performance models, Maple computer software was 

used. This software package will provided the ability to graphically visualize the distress 

and performance model results.  

3.2 Work Processes 

This section presents a summary of the steps used for this research project. The 

development of updated distress and performance models began upon receiving data from 

the NCDOT. Once all pertinent data was collected the following steps were carried out: 
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Step 1:  Develop a central database by merging files containing automated distress data 

and pavement information. 

Step 2:  Determine distress indices by normalizing data, developing scatter plots and 

percentile limits, and determining maximized allowable extent (MAE) values. 

Step 3:  Develop distress models for each distress type.  

Step 5:  Determine a composite performance index using the AHP process to determine 

appropriate weights for each type of distress.  

Step 6:  Develop performance models for each roadway family.  

Step 7:  Calculate maintenance, rehabilitation, and reconstruction trigger points.  

Step 8:  Conduct a comparison between previously developed models and models 

developed in this study.  

3.3 Data Collection 

The NCDOT contracts automated data collectors and evaluators who collect and 

process automated pavement data in accordance to the NCDOT Digital Imagery Distress 

Evaluation Handbook discussed earlier in section 2.4 of the literature review. Data using 

this method is currently collected for Interstate, US, and NC roadways (SR not surveyed) 

in all fourteen divisions shown in Figure 9. For this research, no data was physically 

collected, therefor, specific testing protocols and procedures were not used. The various 

distress types and their recorded units that were used in this research are listed in Table 1. 
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FIGURE 9: NCDOT divisions 

 

 

 

TABLE 1: NCDOT recorded pavement distresses 

Distress Units 

Alligator Cracking Square feet 

Patching Square feet 

Delamination Square feet 

Rutting Average depth in inches 

Bleeding Square feet 

Transverse Cracking Linear feet 

Non-Wheel Path Longitudinal Cracking Linear feet 

Longitudinal Lane Joint Cracking Linear feet 

Raveling Square feet 

 

 

 

3.3.1 Data Sources 

Three data sources, Automated_ASP, AGE, an AADT, were obtained from the NCDOT 

for this research. These three databases include all the raw data that were used to develop 

asphalt distress indices and model their regression overtime. As shown in Figure 10, the 

Automated_ASP database included the following information:  
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• ROUTE1 – eight-digit code that describes:  

o Route type (1=Interstate, 2=US, 3=NC) 

o Route code (1=alternative, 2=bypass, etc.) 

o Direction (0=interstate, 4=southbound, etc.) 

o Additional five digit identification code  

• EFF_YEAR – year of pavement condition survey  

• COUNTY – county identification number   

• OFFSET_FROM – milepost (MP) to the nearest 0.001 mile that identifies the 

beginning point of the roadway section being surveyed.  

• OFFSET_TO – MP to the nearest 0.001 mile that identifies the ending point of the 

roadway section being surveyed.  

• LENGTH – length of roadway section surveyed (miles) 

• Pavement Distress Data:  

o Distress Severity Levels – Low (L), Moderate (M), High (H) 

o Extent of distress – depending on the distress type (alligator cracking, transverse 

cracking, etc.) the extent of each distress severity is quantified in terms of linear 

feet, square feet or other units as applicable (NCDOT 2011).  
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FIGURE 10: Automated_ASP database *note: only alligator cracking is listed; other 

distress information is provided but not shown in this figure* 

 

 

 

The database Age, as shown in Figure 11, included the following information:  

• ROUTE – eight digit route number    

• COUNTY – county identification number  

• OFFSET_FROM – begin MP of the roadway section that has received maintenance   

• OFFSET_TO – end MP of the roadway section that has received maintenance  

• LENGTH – length of roadway section surveyed (miles) 

• EFF_Year – year of roadway condition survey  

• YEAR_LAST_REHAB – year roadway section received rehab (PCR and Distress 

Indices are reset to 100)    

• YEAR_CONSTR – year roadway section was built  
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FIGURE 11: Age database 

 

 

 

The database AADT, as shown in Figure 12, includes the following information:  

• COUNTY – county identification number  

• ROUTE1 – eight digit route number  

• OFFSET_FROM – begin MP of the roadway section with AADT information    

• OFFSET_TO – end MP of the roadway section with AADT information 

• AADT – Annual Average Daily Traffic  
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FIGURE 12: AADT database 

 

 

 

3.3.2 Data Merging 

To determine distress indices and evaluate a roadway’s performance over time, each of 

the three databases were merged together using a SAS code. The central database 

developed in SAS was exported as an .xls file that contained all information needed to 

determine distress indices and model network level roadway conditions over time. It is 

important to note that for each of the three databases, OFFSET_FROM and OFFSET_TO 

points for each roadway were different, as shown in Figure 13.  
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FIGURE 13: Differences between databases 

 

 

 

This situation occurs because the beginning and ending points of maintenance and 

traffic data differ from the beginning and ending points of pavement condition data. This 
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problem, illustrated in Figure 14, had to be addressed to combine pavement condition, age 

and AADT data. 

 

 

 
FIGURE 14: Spatial differences in data 
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To merge data, related fields within each of the three databases were extracted and 

placed in the central database. This was a two-step process consisting of: 

1) Merging Automated_ASP and AADT databases using matching fields (county 

number, route number, OFFSET_FROM, and OFFSET_TO) to create a temporary 

database. 

2) Merging the temporary database containing pavement condition and AADT data 

with the Age database using matching fields (county number, route number, 

OFFSET_FROM, and OFFSET_TO).  

For step one, a SAS code was written to compare the Automated_ASP and AADT 

databases in terms of OFFSET_FROM and OFFSET_TO values. To do this, two tables 

were developed as shown in Figure 15. 

 

 

 
FIGURE 15: Data merging comparison example 

 

 

 

To extract data with similar spatial references, a set of merging rules were written is 

SAS. For the AADT database, the OFFSET_FROM and OFFSET_TO variables were 

renamed to OFFSET_FROM_B and OFFSET_TO_B. This was done to compare the 
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Automated_ASP database’s OFFSET_FROM and OFFSET_TO values to the AADT 

database. A data entry was either deleted or merged depending on the following rules:  

a. ��	OFFSET_FROM >= OFFSET_TO_B	�ℎ��	������  

b. ��	OFFSET_TO <= OFFSET_FROM_B	�ℎ��	������ 

c. ��	OFFSET_FROM >= OFFSET_FROM_B	���	OFFSET_TO <=
OFFSET_TO_B	�ℎ��	��� � 

d. ��	OFFSET_FROM_B ≤ OFFSET_FROM ≤ OFFSET_TO_B	���	OFFSET_TO ≥
OFFSET_TO_B then apply the following: 

a. ��	(OFFSET_TO_B	 − 	OFFSET_FROM) 	>= 	 (OFFSET_FROM	 −
	OFFSET_FROM_B) then merge 

For step two, a separate SAS code was written to compare the Age database to the 

merged Automated_ASP and AADT database. Similar to step one, two tables were created 

and compared to either merge or delete data entries. For the Age database the 

OFFSET_FROM and OFFSET_TO variables were renamed to Begin_MP and End_MP. 

Once the variables were renamed, each table was compared and data was either merged 

into the final database or deleted using the following merging rules:  

a. ��	End_MP <= OFFSET_FROM	)*	Begin_MP >= OFFSET_TO	�ℎ��	������  

b. ��	Begin_MP < OFFSET_FROM	���	End_MP < OFFSET_TO	���	End_MP −
					OFFSET_FROM > 	OFFSET_FROM− Begin_MP	then merge  

a. or Begin_MP < OFFSET_FROM	���	End_MP >= OFFSET_TO then 

merge 

b. or Begin_MP >= OFFSET_FROM	���	End_MP < OFFSET_TO then 

merge  
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c. or Begin_MP = OFFSET_FROM	���	End_MP >= OFFSET_TO then 

merge 

d. or Begin_MP > OFFSET_FROM	���	End_MP = OFFSET_TO	then merge 

e. or Begin_MP > OFFSET_FROM	���	End_MP >
OFFSET_TO	���	OFFSET_TO − Begin_MP	 > 	End_MP − OFFSET_TO 

then merge 

Once databases were merged, the data was then subdivided into families for data 

analysis. The data was sorted and divided according to roadway classification (Interstate, 

U.S., and N.C.) and AADT levels.  A total of seven asphalt roadway families, shown in 

Table 2, were defined based on roadway classification and their AADT values.  

 

 

TABLE 2: Asphalt roadway families 

Roadway Classification AADT Family 

Interstate All Interstate 

US Routes 

0-5K US 0-5K 

5-15K US 5-15K 

15K-plus US 15K-plus 

NC Routes  

0-1K NC 0-1K 

1-5K NC 1-5K 

5K-plus NC 5K-plus 
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3.4 Data Analysis 

The following sections describe how data was analyzed to calculate asphalt pavement 

distress indices, develop a composite performance index, and model performance over 

time. 

3.4.1 Distress Data Normalization 

Since asphalt distress types are recorded in differing units of measurement, a data 

normalization process was used to develop distress indices. To develop indices that are 

unit-less and describe the overall frequency and severity of individual distresses, raw data 

was normalized using the data normalization equations shown in Table 3 (Dye, 2014). For 

example, the alligator distress type is recorded in square feet. To obtain a value that was 

unit-less and could be used in the distress index calculation process, the initial raw data 

was divided by length and the factors of 7 and 5,280. The length is the distance (in miles) 

of the roadway section where the distress was surveyed. The conversion factors 7 and 5,280 

represent the width of the wheel path and the conversion of length from feet to miles, 

respectively. The same process was used to normalize the remaining asphalt distress types 

based on the normalization equations shown in Table 3 (Dye, 2014). 
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TABLE 3: Asphalt raw data normalization equations 

Distress Normalization Equation 

Alligator Cracking  
.��/ 0�1�	2�034/� 
(5�� �ℎ ∗ 7 ∗ 5280) 

Patching Area-Wheel Path  
<0�3ℎ/� 	.��0

(5�� �ℎ ∗ 7 ∗ 5280) 

Maximum Average Rut Depth  100 − 100	(>0?/�@�	.A��0 �	B@�	C�D�ℎ)� 

Transverse/Reflective Cracking  
E�0�F	2�34 + B�H��3�/A�	E�0�F	2�34

(5�� �ℎ ∗ 5280)  

Patching Area-Non Wheel Path  

<0�3ℎ/� 	.��0
(5�� �ℎ ∗ I J�3�/1�	K/��ℎ

L@�M��	1H	50��FN ∗ 5280
 

Longitudinal Cracking  
51� /�@�/�0�	2�034/� 

(5�� �ℎ ∗ 5280)  

Longitudinal Lane Joint 

Cracking  

51� /�@�/�0�	50��	2�034/� 
(5�� �ℎ ∗ 5280)  

Raveling  

B0A��/� 
(5�� �ℎ ∗ I J�3�/1�	K/��ℎ

L@�M��	1H	50��FN ∗ 5280
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3.4.2 Distress Index Calculation 

A distress rating, according to the NCDOT Pavement Condition Survey Manual 

(2011), is a composite score for a roadway section combining each of the three distress 

severity levels: Low (L), Moderate (M), and High (H). To calculate the distress index for 

each distress type, the Maximized Allowable Extent (MAE) method used in previous 

NCDOT manual data research was used (Chen, 2013). To calculate distress indices, the 

NCDOT MAE spreadsheet shown in Figure 16 was used.  

 

 

 
FIGURE 16: Distress index calculation 

f_mae(a.ALGTR_LOW_PCT,a.ALGTR_MDRT_PCT, a.ALGTR_HGH_PCT,null,100, 80, 50,75,40,0,0,0,0)

INPUTS

OUTPUT

low_sev_in 2.604

med_sev_in 0 *OK* - Sum distress total is 100 or less

high_sev_in 0

The normalizing factor will normalize absolute distress amounts null indicates no normailzation required

normalizing_in null

MAE Amounts (Low Med and High) are the Extent amounts that maximize deduction for that severity

low_sev_mae_in 32.496

med_sev_mae_in 2.65

high_sev_mae_in 0.399

Threshold Amounts are lowest possible score for that severity when it occurs alone

low_sev_threshold_in 60

med_sev_threshold_in 30

high_sev_threshold_in 0

Begin deduct scores are the extent value when point deductions begin for each severity level

low_sev_begin 0 distr_low 2.604

med_sev_begin 0 distr_med 0

high_sev_begin 0 distr_high 0

d1 3.20532

d2 0 d2c 3.20532

d3 0 d3c 3.20532

Alligator Cracking Index Value 96.7947

Distress Values passed into the function.  Distresses with less than three severities should pass null to low then med in 

that order. Function return MAE index with 100 as good 0 as bad
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As shown in Figure 16, this method consisted of defining both MAE amounts 

(low_sev_mae_in, med_sev_mae_in, high_sev_mae_in) and threshold values 

(low_sev_threshold_in, med_sev_threshold_in, high_sev_threshold_in). The MAE 

amounts represent the maximum percentage of light, moderate, and high severities that will 

be rated for each distress type and the MAE threshold values represent the lowest possible 

index rating when a distress severity occurs by itself. For example, in Figure 16, alligator 

cracking MAE amounts were determined to be 32.496, 2.650, and 0.399 for low severity, 

moderate severity, and high severity respectively. The MAE threshold values in this 

example were 60, 30, and 0 for low severity, moderate severity, and high severity 

respectively. If a roadway section was to only contain 32.496 percent low severity alligator 

cracking, the distress index would be 60. Similarly, if a roadway section was to only have 

2.650 percent moderate severity alligator cracking, the distress index would be 30. If only 

0.399 percent of high severity was recorded, the distress index would be 0.  

For the particular example shown in Figure 16, 2.604 percent of low severity alligator 

cracking was observed on a section of asphalt pavement and no moderate or high severity 

was present. The normalized data was entered into the orange input cells and the resulting 

alligator cracking index was calculated in the yellow output cell as 96.795, indicating this 

section of roadway had minimal alligator cracking. This process was utilized in SAS to 

analyze the large quantity of data provided by the NCDOT. 

To determine MAE amounts for the distress index calculator, normalized distress data 

was used and scatterplots were developed for low, moderate, and high severities. Figure 17 

displays a scatterplot developed for low severity alligator cracking. Scatterplots were 

developed for each roadway family and each distress severity. 
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FIGURE 17: Scatterplot developed for MAE amounts 

 

 

 

Once scatterplots for each distress severity were developed, the 98th percentile limits 

were calculated. The 98th percentile represents the percentage of distress that is present on 

a roadway section. Figure 17 displays the scatterplot of low severity alligator cracking for 

the interstate family. Figure 18 displays the calculated alligator cracking percentiles for 

low, moderate, and high severities for the interstate family. These percentile values were 

calculated for each roadway family (Interstate, US, NC) and were then averaged for each 

severity level (low, moderate, high). Once the average percentiles were determined, these 

values were entered into the MAE spreadsheet as the MAE amounts to calculate distress 

indices. 
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FIGURE 18: 98th percentile of interstate alligator cracking 

 

 

 

As shown in Figure 18, the low severity percentile was calculated to be 27.25%. This 

means that 98% of interstate roadway sections exhibited 27.25% or less of low severity 

alligator cracking. Similarly, 98% of interstate roadway sections exhibited 3.21% or less 

of moderate severity alligator cracking and 0.67% or less of high severity alligator 

cracking. 

3.4.3 Data Cleaning Process 

Once distress indices were calculated using the MAE process, scatterplots were 

developed to compare distress index to age. The scatterplot shown in Figure 19 provides 

an example of this process. 
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FIGURE 19: Initial scatterplot of Interstate alligator cracking vs. age 

 

 

 

As shown in Figure 19, there were no obvious trends found from these distress versus 

age scatterplots. This was also an issue with the PCR versus age scatterplots as well. The 

reason for this issue is due to the existence of large amounts of outliers. To address this 

issue an outlier removal process was carried out. Outliers were removed based on the 

principle that a roadways condition deteriorates over time. During this process each 

scatterplot was analyzed to remove outliers from the data set. Data points were removed in 

the lower left and upper right bounds of the scatterplots. Once outliers were removed, 

scatterplots were redeveloped as shown in Figure 20. It is important to note that original 

data points were preserved as much as possible during this data cleaning process to 

eliminate user subjectivity while developing models. 
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FIGURE 20: Cleaned scatterplot of Interstate alligator cracking vs. age 

 

 

 

3.4.4 Model Selection 

The NCDOT PMS accepts the seven types of distress and performance model types 

shown in Table 4. 

 

 

TABLE 4: NCDOT approved model types 

Model Type 

Exponential 

Hyperbolic 

Inverse Exponential 

Linear 

Piecewise Linear 

Power 

Sigmoidal 

 

 

 

Based on research conducted by Chen et al (2013), the sigmoidal form best fits 

pavement performance over time due to its “S-shaped” regression curve. There are five 

variations to the sigmoidal regression, which include the Logistic, Gompretz, Richards, 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

A
ll

ig
at

o
r 

C
ra

ck
in

g
 I

n
d
ex

AGE



47 

 

Weibull, and Morgan-Mercer-Flodin. It was determined in a study conducted in 2002 by 

Carrillo and Gonzalez, that a variation of the logistic sigmoidal equation, shown in 

Equation 1, best fits pavement deterioration predictions over time.  

O = P
�QR

STU
V

        Equation 1 

Where:  

? = age  

0, M, 3 = Model	Coefficients	  
O = Distress	or	Performance	Index  

The model coefficient 0 represents the initial value for the distress and performance 

curves. The coefficient M controls the curve’s horizontal shift along the x-axis and 3 

controls the slope. Both M	and	3 represent a pavements deterioration rate over time.  

3.4.5 Initial Coefficient Estimate 

Since this data has many outliers and there are no obvious trends, nonlinear regression 

will always result in a different set of optimal a, b, and c variables. Because of this 

discrepancy in regression analysis, it is an essential step in the model development to 

initially estimate a, b, and c variables. 

Since pavements are assumed to have a perfect initial rating after construction or 

maintenance, the initial value used for coefficient 0 was estimated to be 100. Using 

Equation 1, defined in section 3.4.4, and the estimated 0 coefficient of 100, Equation 2 was 

derived, allowing for the initial estimate of M and 3 coefficients. This equation was derived 

using the following steps:  

Let, 

0 = 100 
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Then, 

O = 100
1 + �efgh

 

Taking the natural logarithm yields, 

ln O = ln	(100) − ln(1 + �fefgh ) 
Then, 

ln( 1 + �fefgh ) = ln(100) − ln(O) 
 

The exponential was taken, 

I1 + �fefgh N = �ij(�kk)fij(l) 

Then, 

�fefgh = �ij(�kk)fij(l) − 1 

The natural logarithm was taken,  

−? − M
3 = ln	(�ij(�kk)fij(l) − 1) 

Let, 

m = ln	(�ij(�kk)fij(l) − 1) 
Then, 

      m = − �
h ? +

g
h                     Equation 2 

Once outliers were removed, a regression analysis was performed in SAS using 

Equation 2. This provided the initial estimates of b and c variables. Figure 21 is a SAS 

output that displays the initial estimates of variables a, b, and c for alligator cracking 
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models. It should be noted, that this figure only displays the SAS output for alligator 

cracking, however, this process was repeated for each distress type as well as PCR models.  

 

 

 
FIGURE 21: Initial estimate of sigmoidal equation variables 

 

 

 

3.4.6 Final Distress Model Development 

Once initial variable estimates were determined, calculated distress indices determined 

using the MAE spreadsheet were imported into TableCurve 2D to develop the most 

optimum sigmoidal distress models. This process consisted of first importing the calculated 

distress values and the corresponding pavement age. The initial TableCurve 2D interface, 

shown in Figure 22, displays how the data was imported into this software. The x-axis was 

defined with the age variable and the y-axis was defined as the distress index.  
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FIGURE 22: TableCurve 2D x-axis and y-axis interface 

 

 

 

Once data was imported into TableCurve 2D and the x-axis and y-axis were defined, 

the next step was to import the User Defined Function (UDF). The user defined function 

imported into TableCurve 2D was the sigmoidal regression equation, as defined in 

Equation 1. Once the UDF was imported, a, b, and c variables of the sigmoidal equation 

had to be defined. The initial c variable estimate, calculated in SAS was used in this step, 

as shown in Figure 23. The a and b coefficients were then estimated in TableCurve 2D to 

develop the final model. There were fifteen different model selections that were generated 

by TableCurve 2D once variables were defined. These fifteen model selections presented 

differing a and b coefficient estimations. The curve that had a y-intercept of 100 and fit the 

X and Y axis variables 
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data best, as shown in Figure 24, was selected as the best-fit-model and results were 

confirmed with engineers at the NCDOT.  

 

 

 
FIGURE 23: a, b, c variable optimization 

User Defined 

Function 

a b c 
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FIGURE 24: Best-fit model 

 

 

 

3.4.7 Composite Performance Index 

The NCDOT uses PCR, a composite performance index, to quantify the overall 

condition of roadways. PCR is calculated using Equation 3. 

    <2B = ∑ (K. p.q	× 	C/F���FF	s���?q)tq        Equation 3 

Where:         

K.p.q = Weight	Factor	for	distress	type	/ 
C/F���FF	s���?q = 0 − 100	index	describing	a	distresszs	severity	and	extent	 

To develop a composite performance index that takes into account multiple criteria, the 

AHP method was used. The AHP method was chosen because it is an effective method for 

Alligator Cracking: Interstate
Rank 3  Eqn 8023  102.9(a)

r^2=1e-08  DF Adj r^2=0  FitStdErr=17.225862  Fstat=1.252e-05

a=14.091059 
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calculating weight factors and it eliminates user subjectivity when determining a variables 

importance.  

To calculate the weight factors for each distress type the following steps were 

performed:  

Step 1: Distress deductions points were calculated using existing NCDOT manual data 

algorithms shown in Table 5.   

Step 2: Table 6 was developed by averaging the L/M/H deduction points for each distress 

type. This average value was considered the overall importance of a specific distress type. 

Table 7 provides an example of how the average deduction was obtained for alligator 

cracking. 

 

 

TABLE 5: Asphalt distress deduction point system 

Distress Severity 

Level 

Deduction  

Alligator Cracking  (L)ight  

(M)oderate  

(H)igh  

3.3 points – 10% to 90% ; 1  point  > 90% 

7.5 points – 10% to 40% ; 2  points > 40% 

15  points – 10% to 20% ; 3 points > 20% 

Transverse 

Cracking  

(L)ight  

(M)oderate  

(H)igh 

5    points 

15  points  

30  points 

Rutting  (L)ight  

(M)oderate  

(H)igh 

5    points  

20  points 

30  points 

Raveling  (L)ight  

(M)oderate  

(H)igh 

2    points  

5    points 

15  points 

Patching  (L)ight  

(M)oderate  

(H)igh 

5    points 

10  points 

20  points 
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TABLE 6: Asphalt distress relative importance table 

Distress Average L/M/S Deduction 

Alligator Cracking  A=42 

Transverse Cracking  B=17 

Longitudinal Cracking  C=9 

Longitudinal Lane Joint Cracking  D=7* 

Raveling  E=7 

Patching Area – WP F=12 

Patching Area – NWP G=7* 

Rutting – Max Avg. Depth  H=18 

* non-load related: use the smallest deduction value 

 

 

 

TABLE 7: Alligator cracking average deduction calculation 

Distress 

Type 

Severity 

Level 
Deduction Average 

Alligator 

Cracking 

(L)ight (3.3 × 9) + (1 × 1) = 30.7 

42 (M)oderate (7.5 × 4) + (2 × 6) = 42 

(H)igh (15 × 2) + (3 × 8) = 54 

 

 

 

Step 3: Average L/M/H deduction values for each asphalt distress type was then entered 

into a pairwise comparison matrix and an AHP calculator in order to determine the matrix’s 

eigenvalues. The resulting eigenvalues for each distress type represented the weight factors 

for the PCR index equation. Figure 25 displays the pairwise comparison matrix that was 

used for the AHP calculator.  
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FIGURE 25: Pairwise comparison matrix 

 

 

 

Step 4: To validate the results of the AHP method, a Consistency Index (CI) was calculated 

using Equation 4. If the CI value equals 0, there is no logical inconsistency among the 

pairwise comparison judgments and the judgment is considered 100 percent consistent 

(Shinohara and Osawa, 2007). 

     2s = (���Sft)
(tf�)                      Equation 4	

Where;	
2s = Consistency	Index 

��Pe = maximum	eigenvalue	 
� = number	of	criteria 

Asphalt 

Distress 

Type

ALGTR TRNSVRS LNGTDNL LNGTDNL_JNT RVL WP NWP RUT

Alligator 

Cracking                  

(ALGTR) =42/42 =42/17 =42/9 =42/7 =42/7 =42/12 =42/7 =42/18

Transverse 

Cracking 

(TRNSVRS) =17/42 =17/17 =17/9 =17/7 =17/7 =17/12 =17/7 =17/18

Longitudinal 

Cracking     

(LNGTDNL) =9/42 =9/17 =9/9 =9/7 =9/7 =9/12 =9/7 =9/18

Longitudinal 

Lane Joint 

Cracking      

(LNGTDNL_

JNT) =7/42 =7/17 =7/9 =7/7 =7/7 =7/12 =7/7 =7/18

Raveling                                          

(RVL) =7/42 =7/17 =7/9 =7/7 =7/7 =7/12 =7/7 =7/18

Patching 

Area-Wheel 

Path      (WP)
=12/42 =12/17 =12/9 =12/7 =12/7 =12/12 =12/7 =12/18

Patching 

Area-Non 

Wheel Path 

(NWP) =7/42 =7/17 =7/9 =7/7 =7/7 =7/12 =7/7 =7/18

Rutting                                              

(RUT) =18/42 =18/17 =18/9 =18/7 =18/7 =18/12 =18/7 =18/18
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Step 5: The Consistency Ratio was then calculated using Equation 5. 

2B = ��
�� 	× 100                                              Equation 5 

Where; 

Bs = Random	matrix	consistency	index; RI = 1.41	for	n = 8	(Kardi	Teknomo	2015) 
If the CR is less than or equal to 10 percent, the inconsistency is acceptable. If the CR 

is greater than 10 percent, comparisons must be re-examined and the process repeated 

(Kardi Teknomo 2015). Once the eigenvalues for each distress type were calculated using 

the AHP process, the PCR equation was developed. Equation 6 shows the equation that 

will be developed with the determination of each distresses weight factor.  

PCR = (W. F.q )(ALGTR	CRCK) + (W. F.q )(TRANS	CRCK) + (W. F.q )(LONG	CRCK) +
(W. F.q )(LONG	JNT	CRCK) + (W. F.q )(RAV) + (W. F.q )(WP	PATCH) +
(W. F.q )(NWP	PATCH) + (W. F.q )(RUT)                                                           Equation 6 

Where:  

PCR = Pavement	Condition	Rating 

W. F.q = Distress	Weight	Factor 
ALGTR	CRCK = Alligator	Cracking	Index 

TRANS	CRCK = Transverse	Cracking	Index 

LONG	CRCK = Longitudinal	Cracking	Index 

LONG	JNT	CRCK = Longitudinal	Lane	Joint	Index 

RAV = Raveling	Index 

WP	PATCH = Wheel	Path	Patching 

NWP	PATCH = Non −Wheel	Path	Patching	Index 

RUT = Rutting	Index 
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3.4.8 Composite Performance Models 

Pavement performance models were developed using the same methodology used to 

model pavement distress. The sigmoidal regression equation given in Equation 1, was used 

to model composite condition indices in a PCR versus age performance model as shown in 

Figure 26. The initial 0 coefficient, representing the PCR index at year 0, was fixed at 100 

to solve for initial M and 3 coefficients. TableCurve 2D was then used to enter the sigmoidal 

regression equation into the UDF interface using initially estimated model coefficients for 

each roadway family. Similar to developing the distress curves, the 3 variable was held 

constant while allowing the a and M variable to change. TableCurve 2D was then used to 

determine the final 0, M, 3 coefficients that best fit the data and final performance models 

were graphed using the Maple Software.  

 

 

 
FIGURE 26: Composite performance model 

Asphalt PCR: Interstate

Rank 8  Eqn 8021  101.6(a)

r^2=0.47123811  DF Adj r^2=0.47004451  FitStdErr=18.093984  Fstat=395.69742

a=11.933664 
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3.4.9 Trigger Point Value Calculation 

With the determination of a composite index and the development of pavement 

performance models, trigger points for decision trees were calculated using algebraic 

manipulation of the PCR equation. As shown in Figure 27, the NCDOT uses trigger points 

based on a roadway’s PCR rating to determine an appropriate maintenance activity such 

as: preventative maintenance, light rehabilitation, heavy rehabilitation, and complete 

reconstruction. For this research the predefined PCR threshold values of 80, 60, and 30 

were used for maintenance, rehabilitation, and reconstruction trigger points.  

 

 

 
FIGURE 27: NCDOT PCR threshold values 

 

 

 

The three PCR threshold values of 80/60/30 were used to determine the individual 

distress indices that will trigger a maintenance, rehabilitation, or reconstruction activity. 

To determine these values, the PCR equation and relative importance of each distress index 
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was algebraically manipulated to determine each distress types trigger point. The first step 

was to take the PCR equation and solve for a single distress using the relative importance 

determined in the AHP process. An example of a trigger point equation for alligator 

cracking is shown in Equation 7. 

PCR = (W. F.����� )(ALGTR	CRCK) + (W. F.������� )�Relative	Weight�/�� +

(W. F.���� �� )�Relative	Weight¡/�� + �W. F.���� ��	¢�� ��Relative	Weight£/�� +

(W. F.��� )�Relative	Weight¤/�� + (W. F.¥¦ )�Relative	Weight§/�� +

(W. F.�¥¦ )�Relative	Weight¨/�� + (W. F.�©� )�Relative	Weightª/��       Equation 6 

Once the PCR equation was manipulated to solve for a single distress index, the PCR 

threshold values of 80/60/30 were set equal to the trigger point equation. An example of 

this calculation is provided in Equation 8.  

80/60/30 = (W. F.����� )(ALGTR	CRCK) + (W. F.������� )�Relative	Weight�/�� +

(W. F.���� �� )�Relative	Weight¡/�� + �W. F.���� ��	¢�� ��Relative	Weight£/�� +

(W. F.��� )�Relative	Weight¤/�� + (W. F.¥¦ )�Relative	Weight§/�� +

(W. F.�¥¦ )�Relative	Weight¨/�� + (W. F.�©� )�Relative	Weightª/��       Equation 7 

Using the PCR equation and the relative importance values, individual trigger points 

for each distress type were determined for each maintenance threshold. These trigger points 

can be used by the NCDOT to trigger various maintenance activities on a decision tree. 



 

 

CHAPTER 4: RESULTS 

4.1 Distress Models 

4.1.1 Alligator Cracking 

Alligator cracking distress models were developed for each asphalt roadway family. 

Figure 28 displays the alligator cracking model developed for the Interstate family and the 

complete set of models are provided in Appendix A. Table 8 displays the MAE values used 

to calculate the alligator cracking index and the coefficients that generated the best-fit 

distress model. The MAE_IN values were developed for light, moderate, and high 

severities of alligator cracking.  

 

 

 
FIGURE 28: Interstate alligator cracking model
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TABLE 8: Alligator cracking distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

A
ll

ig
a

to
r 

C
ra

ck
in

g
 

(A
L

G
T

R
) 

Interstate 102.9 14.091 -4.107 

32.496 2.65 0.399 

US 0-5K 104 13.268 -4.163 

US 5-15K 105.5 11.486 -3.976 

US 15K+ 103.2 14.111 -4.098 

NC 0-1K 103 18.495 -5.274 

NC 1-5K 101 20.031 -4.439 

NC 5K+ 104 15.598 -4.877 

 

 

 

4.1.2 Transverse Cracking 

Transverse cracking distress models were developed for each asphalt roadway family. 

Figure 29 displays the transverse cracking model developed for the Interstate family and 

the complete set of models are provided in Appendix B. Table 9 displays the MAE values 

used to calculate the transverse cracking index and the coefficients that generated the best-

fit distress model. The MAE_IN values were developed for light, moderate, and high 

severities of alligator cracking. 
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FIGURE 29: Interstate transverse cracking model 

 

 

 

TABLE 9: Transverse cracking distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

T
ra

n
sv

er
se

 C
ra

ck
in

g
 

(T
R

N
S

V
R

S
) 

Interstate 103 17.847 -4.833 

4.319 4.193 1.933 

US 0-5K 100.2 11.796 -1.973 

US 5-15K 100.4 12.481 -2.269 

US 15K+ 101.6 11.946 -2.926 

NC 0-1K 101 12.889 -2.999 

NC 1-5K 100.3 11.175 -2.067 

NC 5K+ 100.4 13.054 -2.405 

 

 

 

 

 

 



63 

 

4.1.3 Longitudinal Cracking 

Longitudinal cracking distress models were developed for each asphalt roadway 

family. Figure 30 displays the longitudinal cracking model developed for the Interstate 

family and the complete set of models are provided in Appendix C. Table 10 displays the 

MAE values used to calculate the longitudinal cracking index and the coefficients that 

generated the best-fit distress model. The MAE_IN values were developed for light and 

high severities of longitudinal cracking as moderate severity is not collected for this distress 

type. 

 

 

 
FIGURE 30: Interstate longitudinal cracking model 
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TABLE 10: Longitudinal cracking distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

L
o

n
g

it
u

d
in

a
l 

C
ra

ck
in

g
 

(L
N

G
T

D
N

L
) 

Interstate 100 15.405 -2.385 

4.681 0 1.996 

US 0-5K 100.2 13.903 -2.274 

US 5-15K 100.2 13.622 -2.259 

US 15K+ 100.2 12.719 -2.145 

NC 0-1K 100.3 14.050 -2.356 

NC 1-5K 100.8 13.429 -2.531 

NC 5K+ 100.4 13.952 -2.562 

 

 

 

4.1.4 Longitudinal Lane Joint Cracking  

Longitudinal lane joint cracking distress models were developed for each asphalt 

roadway family. Figure 31 displays the longitudinal lane joint cracking model developed 

for the Interstate family and the complete set of models are provided in Appendix D. Table 

11 displays the MAE values used to calculate the longitudinal lane joint cracking index 

and the coefficients that generated the best-fit distress model. The MAE_IN value was 

developed solely for light severity of longitudinal lane joint cracking as moderate and high 

severities are not collected for this distress type. 
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FIGURE 31: Interstate longitudinal lane joint cracking model 

 

 

 

TABLE 11: Longitudinal lane joint cracking distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

L
o

n
g

it
u

d
in

a
l 

L
a
n

e 
J

o
in

t 

C
ra

ck
in

g
  

(L
N

G
T

D
N

L
_

J
N

T
) 

Interstate 100 13.184 -1.654 

0.414 0 0 

US 0-5K 100.9 13.240 -2.063 

US 5-15K 100.6 12.485 -1.752 

US 15K+ 101 13.225 -2.106 

NC 0-1K 100 18.845 -2.348 

NC 1-5K 100.3 15.977 -2.163 

NC 5K+ 100.3 14.816 -1.931 
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4.1.5 Raveling  

Raveling distress models were developed for each asphalt roadway family. Figure 32 

displays the raveling model developed for the Interstate family and the complete set of 

models are provided in Appendix E. Table 12 displays the MAE values used to calculate 

the raveling index and the coefficients that generated the best-fit distress model. The 

MAE_IN values were developed for light, moderate, and high severities of raveling. 

 

 

 
FIGURE 32: Interstate raveling model 
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TABLE 12: Raveling distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

R
a

v
el

in
g

 

(R
V

L
) 

Interstate 100.7 17.635 -3.347 

42.865 9.154 4.314 

US 0-5K 100.2 15.513 -2.686 

US 5-15K 100.6 14.904 -2.926 

US 15K+ 101 13.698 -2.969 

NC 0-1K 101.7 15.410 -3.757 

NC 1-5K 101 14.271 -3.119 

NC 5K+ 102.2 12.419 -3.253 

 

 

 

4.1.6 Patching (Non-Wheel Path) 

Non-wheel path patching distress models were developed for each asphalt roadway 

family. Figure 33 displays the non-wheel path patching model developed for the Interstate 

family and the complete set of models are provided in Appendix F. Table 13 displays the 

MAE values used to calculate the non-wheel path patching index and the coefficients that 

generated the best-fit distress model. The MAE_IN value was developed solely for light 

severity non-wheel path patching as moderate and high severities are not collected for this 

distress type.  
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FIGURE 33: Interstate patching (non-wheel path) model 

 

 

 

TABLE 13: Patching (non-wheel path) distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

P
a

tc
h

in
g

 (
N

o
n

-W
h

ee
l 

P
a

th
) 

(N
W

P
) 

Interstate 100 20.777 -2.469 

3.967 0 0 

US 0-5K 100 19.720 -3.069 

US 5-15K 100.3 20.436 -3.759 

US 15K+ 100 17.789 -2.807 

NC 0-1K 100.6 19.639 -3.259 

NC 1-5K 100.6 18.452 -2.996 

NC 5K+ 101 18.671 -3.599 
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4.1.7 Patching (Wheel-Path) 

Wheel path patching distress models were developed for each asphalt roadway family. 

Figure 34 displays the wheel path patching model developed for the Interstate family and 

the complete set of models are provided in Appendix G. Table 14 displays the MAE values 

used to calculate the wheel path patching index and the coefficients that generated the best-

fit distress model. The MAE_IN value was developed solely for light severity wheel path 

patching as moderate and high severities are not collected for this distress type. 

 

 

 
FIGURE 34: Interstate patching (wheel path) model 
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TABLE 14: Patching (wheel path) distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a b c 

P
a

tc
h

in
g

 (
W

h
ee

l 
P

a
th

) 

(W
P

) 
Interstate 100.2 17.837 -2.222 

12.887 0 0 

US 0-5K 100.4 21.822 -3.938 

US 5-15K 101 19.322 -4.238 

US 15K+ 100.3 18.401 -3.290 

NC 0-1K 101 17.749 -3.002 

NC 1-5K 100.8 18.259 -3.495 

NC 5K+ 101.9 16.452 -4.011 

 

 

 

4.1.8 Rutting 

Sigmoidal regression analysis of this distress type was found not to fit the data 

appropriately since this distress is measured in depth rather than area or length. Analysis 

showed that the power function fit the rutting data better than the sigmoidal equation. The 

power function used to model this distress type is as follows:  

B@��/� 	s���? = 100 − 0 × (. �)�.«.  

Figure 35 displays the rutting model developed for the Interstate family and the 

complete set of models are provided in Appendix H. Table 15 displays the power function 

used to calculate the rutting index and the coefficients that generated the best-fit distress 

model. 
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FIGURE 35: Interstate rutting model 

 

 

 

TABLE 15: Rutting distress model parameters 

Distress 

Type  
Family  

Model Coefficients  Low 

Severity 

MAE 

Value  

Med 

Severity 

MAE 

Value  

High 

Severity 

MAE 

Value  
a 

R
u

tt
in

g
 

(R
U

T
) 

Interstate 0.917 

Rutting	Index = 100
− (a × AGE)�.« 

US 0-5K 0.995 

US 5-15K 1.021 

US 15K+ 0.984 

NC 0-1K 1.002 

NC 1-5K 1.023 

NC 5K+ 1.014 
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4.2 Composite Performance Index 

As discussed previously in section 3.4.7, a composite performance index was 

developed using the AHP method. Distress deduction points, shown in Table 5 of section 

3.4.7 were calculated for each distress type and averaged to determine distress importance. 

Table 6, shown in section 3.4.7 displays the average deduction points calculated for each 

distress.  

The average deduction points calculated using NCDOT’s deduction point system were 

then transferred into a pairwise comparison matrix as shown in Figure 31 located in section 

3.4.7. The pairwise comparison matrix was then imported into an AHP calculator to 

determine each distress’s weight factor. Table 17 displays the weight factors calculated 

using the AHP method. The consistency index was determined to be 0 using equation 4 

presented in section 3.4.7. Using equation 5, also presented in section 3.4.7, the consistency 

ratio was determined to be 0. This indicated that the comparisons between each asphalt 

distress are adequate and no re-evaluation needed to occur.  

 

 

TABLE 16: Weight factors for asphalt distresses 

 

Asphalt Distress Type Weight Factor 

Alligator Cracking                  

(ALGTR)
0.353

Transverse Cracking (TRNSVR) 0.143

Longitudinal Cracking     

(LNGTDNL)
0.076

Longitudinal Lane Joint Cracking      

(LNGTDNL_JNT)
0.059

Raveling                                          

(RVL)
0.059

Patching Area-Wheel Path      (WP) 0.100

Patching Area-Non Wheel Path 

(NWP)
0.059

Rutting                                              

(RUT)
0.151

Max Eigen Value = 8          

C.I. = 0  C.R. = 0
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With the computation of weight factors for each distress type, the PCR formula was 

developed to be as follows: 

 

<2B = 0.353(.5¬EB) + 0.143(EBLJ­BJ) + 0.076(5L¬ECL5)
+ 0.059(5L¬ECL5	®LE) + 0.059(B­5) + 0.1(K<) + 0.059(LK<)
+ 0.151(B¯E) 

 

Where: 

PCR = Pavement Condition Rating  

ALGTR = Alligator Cracking Index 

TRNSVRS = Transverse Cracking Index 

LNGTDNL = Longitudinal Cracking Index 

LNGTDNL_JNT = Longitudinal Lane Joint Cracking Index 

RVL = Raveling Index 

WP = Patching (Wheel Path) Index 

NWP = Patching (Non-Wheel Path) Index 

RUT = Rutting Index 
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4.3 PCR Models 

PCR models were developed using the calculated distress indices and the PCR equation 

defined in section 4.2. Figure 36 displays the PCR model developed for the Interstate 

family and the complete set of PCR models can be found in Appendix I. Table 18 includes 

the complete set of best-fit model parameters for each asphalt roadway family. 

 

 

 
FIGURE 36: Interstate PCR model 
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TABLE 17: PCR model parameters 

Family 
Model Parameters 

a b c 

Interstate 101.6 11.934 -2.924 

US 0-5K 104.7 10.842 -3.552 

US 5-15K 102.9 12.157 -3.456 

US 15K + 103.1 11.096 -3.216 

NC 0-1K 104.4 11.884 -3.807 

NC 1-5K 103.7 11.915 -3.616 

NC 5K + 106.1 12.198 -4.368 

 

 

 

4.4 Maintenance Trigger Points 

As discussed in section 3.4.9, trigger points were calculated using the PCR equation 

and the NCDOT maintenance thresholds. Trigger points help aid the NCDOT in selecting 

appropriate maintenance actions when the overall pavement condition reaches a certain 

threshold. The PCR threshold levels the NCDOT uses are set at 80, 60 and 30, which 

correlate to preventative maintenance (100-80), light rehabilitation (80-60), heavy 

rehabilitation (60-30), and reconstruction (30-0). To calculate a specific distress trigger 

point, equation 8 presented in section 3.4.9 was used. This allowed for a distress index that 

triggers a maintenance activity to be solved for. Once distress indices were solved for, the 

average was taken for each PCR threshold. Table 19 presents the results of this process.  

 

 

TABLE 18: Trigger point results 

 

PCR 

Threshold 
ALGTR TRNSVRS LNGTDNL LNGTDNL_JNT RVL WP NWP RUT

Average Composite 

Distress Index 

80 121.1 49.0 26.0 20.2 20.2 34.6 20.2 51.9 42.9

60 90.8 36.8 19.5 15.1 15.1 26.0 15.1 38.9 32.2

30 45.4 18.4 9.7 7.6 7.6 13.0 7.6 19.5 16.1

Asphalt Pavement Trigger Point Values 



 

 

CHAPTER 5: DISTRESS AND PERFORMANCE MODEL EVALUATION 

 

 

 

The foundation of this research was to develop new distress and performance models 

using updated automated asphalt pavement condition data. This data, provided by the 

NCDOT was considered to be more suitable than previous automated data collected in 

2012 and 2013 because of the change in their raw data processing algorithm.  

Whenever new data is available, distress and performance models should be updated 

and compared to previously developed models to ensure that collected data is of quality 

and the overall PMS is effective. As indicated in section 2.10, the best method of comparing 

multiple models is the visual method. This method was implemented to compare newly 

developed distress and performance models (PMS III) to models that were developed using 

NCDOT’s windshield data (PMS I) and also models that were developed using automated 

data from 2012 and 2013 (PMS II). The following sections within this chapter present the 

model comparisons between each phase of NCDOT’s PMS.  

5.1 Distress Model Comparisons 

Distress models were compared between phase two and phase three of NCDOT’s PMS. 

Phase two (PMS II) implemented automated data from 2012 and 2013 and phase three 

(PMS III) implemented automated data from 2014. 
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5.1.1 Alligator Cracking Comparison  

Alligator cracking comparison models are shown in Figures 37 – 43. In practical terms, 

a majority of alligator cracking models developed in PMS II were consistent with the 

models developed in this research. The largest discrepancy between alligator cracking 

models occurred in the US roadway family with average annual daily traffic (AADT) 

exceeding 15,000 vehicles per day and the NC roadway family with an AADT of 0 – 1,000 

vehicles per day as shown in Figures 40 and 41. In these two roadway families, PMS II 

models presented higher deterioration rates than PMS III models. To determine if there 

was a statistical difference between models, the b variable which controls the horizontal 

shift of the model was analyzed. If the b variable of PMS II models fell within the 

confidence interval of the models developed in this study there was no statistical difference 

in models. As shown in Table 19, there was a statistical difference at 95% confidence in 6 

out of 7 models (85.7%). 

 

 

TABLE 19: Alligator cracking confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

ALGTR Interstate (13.79,14.39) 13.44 

ALGTR US 0-5K (13.07,13.47) 13.72 

ALGTR US 5-15K (11.34,11.64) 11.35* 

ALGTR US 15K + (13.84,14.39) 8.59 

ALGTR NC 0-1K (18.05,18.94) 11.00 

ALGTR NC 1-5K (19.78,20.28) 12.13 

ALGTR NC 5K + (15.41,15.78) 11.48 

* denotes no statistical difference between models  
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FIGURE 37: Alligator cracking – Interstate comparison 

 

 

 

 
FIGURE 38: Alligator cracking – US 0-5K comparison 
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FIGURE 39: Alligator cracking – US 5-15K comparison 

 

 

 

 
FIGURE 40: Alligator cracking – US 15K + comparison 
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FIGURE 41: Alligator cracking – NC 0-1K comparison 

 

 

 

 
FIGURE 42: Alligator cracking – NC 1-5K comparison 
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FIGURE 43: Alligator cracking – NC 5K + comparison 

 

 

 

5.1.2 Transverse Cracking Comparison  

Transverse cracking comparison models are shown in Figures 44 – 50. In practical 

terms, transverse cracking models developed in PMS II were fairly consistent with the 

models developed in this research. The largest discrepancy between these models occurred 

in the NC roadway family with an AADT of 0 – 1,000 vehicles per day and the NC roadway 

family with an AADT exceeding 5,000 vehicles per day, as shown in Figure 48 and 50 

respectively. In these two roadway families, PMS II models presented higher transverse 

cracking deterioration rates than PMS III models. As shown in Table 20, at 95% confidence 

there was a statistical difference in 5 out of 7 (71.4%) models.  
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TABLE 20: Transverse cracking confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

TRNSVRS Interstate (17.47,18.23) 16.39 

TRNSVRS US 0-5K (11.36,11.78) 10.91 

TRNSVRS US 5-15K (12.34,12.62) 12.58* 

TRNSVRS 15K + (11.70,12.19) 11.33 

TRNSVRS NC 0-1K (12.42,13.36) 9.54 

TRNSVRS NC 1-5K (11.02,11.33) 11.13* 

TRNSVRS NC 5K + (12.80,13.30) 10.75 

* denotes no statistical difference between models 

 

 

 

 
FIGURE 44: Transverse cracking – Interstate comparison 
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FIGURE 45: Transverse cracking – US 0-5K comparison 

 

 

 

 
FIGURE 46: Transverse cracking – US 5-15K comparison 
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FIGURE 47: Transverse cracking – US 15K + comparison 

 

 

 

 
FIGURE 48: Transverse cracking – NC 0-1K comparison 
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FIGURE 49: Transverse cracking – NC 1-5K comparison 

 

 

 

 
FIGURE 50: Transverse cracking – NC 5K + comparison 
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5.1.3 Longitudinal Cracking Comparison  

Longitudinal cracking models developed in this research presented higher deterioration 

rates compared to PMS II as shown in Figures 51 - 53. However, as shown in Figures 54 - 

57, US roadways with traffic exceeding 15,000 vehicles per day and all NC roadway family 

models developed in this research presented higher deterioration rates until year ten of 

service life. After year ten of service life for these roadway families, deterioration rates 

were less significant than that of PMS II. As shown in Table 21, there is a statistical 

difference in 6 out of 7 (85.7%) models at 95% confidence. 

 

 

TABLE 21: Longitudinal cracking confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

LNGTDNL Interstate (14.85,15.96) 16.57 

LNGTDNL US 0-5K (13.57,14.24) 14.47 

LNGTDNL US 5-15K (13.44,13.80) 15.32 

LNGTDNL US 15K + (12.29,13.15) 12.18 

LNGTDNL NC 0-1K (13.52,14.58) 12.36 

LNGTDNL NC 1-5K (13.15,13.71) 13.76 

LNGTDNL NC 5K + (13.79,14.12) 13.97* 

* denotes no statistical difference between models 
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FIGURE 51: Longitudinal cracking – Interstate comparison 

 

 

 

FIGURE 52: Longitudinal cracking – US 0-5K comparison 
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FIGURE 53: Longitudinal cracking – US 5-15K comparison 

 

 

 

FIGURE 54: Longitudinal cracking – US 15K + comparison 
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FIGURE 55: Longitudinal cracking – NC 0-1K comparison 

 

 

 

FIGURE 56: Longitudinal cracking – NC 1-5K comparison 
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FIGURE 57: Longitudinal cracking – NC 5K + comparison 

 

 

 

5.1.4 Longitudinal Lane Joint Cracking Comparison 

With the exception of NC roadways with traffic of 0 – 1,000 vehicles per day and NC 

roadways exceeding 5,000 vehicles per day, longitudinal lane joint cracking models 

developed in this research presented significantly higher rates of deterioration than that of 

PMS II as sown in Figures 58 - 61. Models developed for NC roadways with traffic of 0 – 

1,000 vehicles per day and NC roadways exceeding 5,000 vehicles per day presented a 

lower deterioration rate than that of PMS II as shown in Figures 62 and 64. As shown in 

Table 22 there was a statistical difference at 95% confidence in 7 out of 7 (100%) models.  
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TABLE 22: Longitudinal lane joint cracking confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

LNGTDNL_JNT Interstate (13.05,13.31) 18.76 

LNGTDNL_JNT US 0-5K (13.01,13.47) 13.50 

LNGTDNL_JNT US 5-15K (12.38,12.59) 15.93 

LNGTDNL_JNT US 15K + (13.11,13.34) 21.51 

LNGTDNL_JNT NC 0-1K (18.75,18.94) 16.71 

LNGTDNL_JNT NC 1-5K (15.65,16.30) 17.46 

LNGTDNL_JNT NC 5K + (14.78,14.85) 13.87 

 

 

 

FIGURE 58: Longitudinal lane joint cracking – Interstate comparison 
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FIGURE 59: Longitudinal lane joint cracking – US 0-5K comparison 

 

 

 

 
FIGURE 60: Longitudinal lane joint cracking – US 5-15K comparison 
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FIGURE 61: Longitudinal lane joint cracking – US 15K + comparison 

 

 

 

 
FIGURE 62: Longitudinal lane joint cracking – NC 0-1K comparison 
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FIGURE 63: Longitudinal lane joint cracking – NC 1-5K comparison 

 

 

 

FIGURE 64: Longitudinal lane joint cracking – NC 5K + comparison 
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5.1.5 Raveling Comparison  

With the exception of the interstate family, shown in Figure 65, raveling models 

developed in this research presented significantly higher rates of deterioration as shown in 

Figures 66 - 71. The interstate model developed in this research was consistent fairly 

consistent to the model developed in PMS II. However, this model presented a slightly less 

deterioration rate after year 15 of service life. As shown in Table 23, at 95% confidence it 

was concluded that 7 out of 7 (100%) models had a statistical difference in raveling 

predications. 

 

 

TABLE 23: Raveling confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

RVL Interstate (17.15,18.12) 17.10 

RVL US 0-5K (15.30,15.72) 30.41 

RVL US 5-15K (14.71,15.10) 22.59 

RVL US 15K + (13.41,13.98) 20.95 

RVL NC 0-1K (14.93,15.89) 16.45 

RVL NC 1-5K (14.06,14.48) 22.64 

RVL NC 5K + (12.23,12.61) 21.18 

* denotes no statistical difference between models 
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FIGURE 65: Raveling – Interstate comparison 

 

 

 

 
FIGURE 66: Raveling – US 0-5K comparison 
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FIGURE 67: Raveling – US 5-15K comparison 

 

 

 

 
FIGURE 68: Raveling – US 15K + comparison 
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FIGURE 69: Raveling – NC 0-1K comparison 

 

 

 

 
FIGURE 70: Raveling – NC 1-5K comparison 
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FIGURE 71: Raveling – NC 5K + comparison 

 

 

 

5.1.6 Rutting Comparison  

As shown in Figures 72 – 78, rutting models developed in this research were very 

consistent to rutting models developed in PMS II. Rutting models for both US roadways 

with traffic of 5,000 – 15,000 vehicles per day and NC roadways with traffic of 0 – 1,000 

vehicles per day presented the same deterioration curve for PMS II and this research. The 

interstate family model developed in this research presented a slightly lower rate of 

deterioration and a majority of US and NC models presented a slightly higher rate of 

deterioration. However, the differences between these models were not significant, 

indicating that the change in NCDOT’s raw data processing algorithm did not effect this 

distress type. As shown in Table 24, there was a statistical difference at 95% confidence in 

5 out of 7 (71.4%) models. 
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TABLE 24: Rutting confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

RUT Interstate (0.88,0.95) 0.99 

RUT US 0-5K (0.98,1.01) 0.94 

RUT US 5-15K (1.01,1.03) 1.02* 

RUT US 15K + (0.96,1.01) 0.95 

RUT NC 0-1K (0.96,1.04) 1.00* 

RUT NC 1-5K (1.00,1.04) 0.94 

RUT NC 5K + (1.00,1.03) 0.94 

* denotes no statistical difference between models 

 

 

 

 
FIGURE 72: Rutting – Interstate comparison 
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FIGURE 73: Rutting – US 0-5K comparison 

 

 

 

 
FIGURE 74: Rutting – US 5-15K comparison 
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FIGURE 75: Rutting – US 15K + comparison 

 

 

 

 
FIGURE 76: Rutting – NC 0-1K comparison 
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FIGURE 77: Rutting – NC 1-5K comparison 

 

 

 

FIGURE 78: Rutting – NC 5K + comparison 
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5.1.7 Patching (Non-Wheel Path) Comparison 

The non-wheel path patching comparison graphs are shown in Figures 79 – 85. With 

the exception of the interstate family model, which presented a lower rate of deterioration, 

overall non-wheel path models developed in this research show higher deterioration rates 

for US and NC roadway families compared to PMS II. As shown in Table 25, there was a 

statistical difference at 95% confidence in 7 out of 7 (100%) models.  

 

 

 

TABLE 25: Patching (non-wheel path) confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

NWP Interstate (20.20,21.35) 18.77 

NWP US 0-5K (19.38,20.06) 21.86 

NWP US 5-15K (19.99,20.88) 24.41 

NWP US 15K + (17.42,18.16) 22.45 

NWP NC 0-1K (18.90,20.37) 24.24 

NWP NC 1-5K (18.16,18.75) 21.04 

NWP NC 5K + (18.34,19.00) 21.31 
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FIGURE 79: Patching (non-wheel path) – Interstate comparison 

 

 

 

 
FIGURE 80: Patching (non-wheel path) – US 0-5K comparison 
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FIGURE 81: Patching (non-wheel path) – US 5-15K comparison 

 

 

 

 
FIGURE 82: Patching (non-wheel path) – US 15K + comparison 
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FIGURE 83: Patching (non-wheel path) – NC 0-1K comparison 

 

 

 

 
FIGURE 84: Patching (non-wheel path) – NC 1-5K comparison 
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FIGURE 85: Patching (non-wheel path) – NC 5K + comparison 

 

 

 

5.1.8 Patching (Wheel Path) Comparison  

Wheel path patching comparison models are shown in Figures 86 - 92. As shown in 

Figure 86, the interstate model developed for this research presented lower a deterioration 

rate than the model developed in PMS II. This was also the same case for the model 

developed for US roadways with traffic ranging from 0 – 5,000 vehicles per day. As shown 

in Figure 88, the model developed for US roadways with traffic ranging from 5,000 – 

15,000 vehicles per day presented an initially higher rate of deterioration compared to PMS 

II. However, after year 17 of service life, this model shows less of a deterioration rate 

compared to PMS II. This was also the same case for the model developed for NC roadways 

with traffic ranging from 1,000 – 5,000 vehicles per day. The remainder of the models (US 

15K plus, NC 0-1K, and NC 5K plus), present higher deterioration rates throughout the 
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entire service life compared to PMS II. As shown in Table 26, there was a statistical 

difference at 95% confidence in 6 out of 7 (85.7%) models.  

 

 

TABLE 26: Patching (wheel path) confidence intervals 

Model Family 
95% C.I. for b 

variable  

PMS II b 

variable 

WP Interstate (17.10,18.58) 14.67 

WP US 0-5K (21.44,22.21) 18.14 

WP US 5-15K (18.97,19.67) 18.81 

WP US 15K + (18.03,18.77) 20.50 

WP NC 0-1K (17.27,18.23) 20.07 

WP NC 1-5K (17.89,18.63) 18.00* 

WP NC 5K + (16.12,16.79) 18.39 

* denotes no statistical difference between models 

 

 

 

FIGURE 86: Patching (wheel path) – Interstate comparison 
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FIGURE 87: Patching (wheel path) – US 0-5K comparison 

 

 

 

 
FIGURE 88: Patching (wheel path) – US 5-15K comparison 
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FIGURE 89: Patching (wheel path) – US 15K + comparison 

 

 

 

 
FIGURE 90: Patching (wheel path) – NC 0-1K comparison 
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FIGURE 91: Patching (wheel path) – NC 1-5K comparison 

 

 

 

 
FIGURE 92: Patching (wheel path) – NC 5K + comparison 
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5.2 Performance Model Comparison 

Performance models were compared between phase one, two and three of NCDOT’s 

PMS. Phase one (PMS I) implemented manual data to develop performance models while 

phase two (PMS II) implemented automated data from 2012 and 2013 and phase three 

(PMS III) implemented automated data from 2014. Although the data collection method 

was different for the first phase of NCDOT’s PMS, the overall deterioration trends should 

be similar.  

5.2.1 Interstate Asphalt Roadway Performance Comparison 

Figure 94 displays the interstate PCR comparison between each NCDOT PMS phase. 

With the comparison of each model, it is evident that for this family the various PCR curves 

are fairly consistent in practical terms. Overall the PCR model developed in this research 

presents an initially lower rate of deterioration during the service life of 0 to 10 years. After 

year 10, the deterioration rate for PMS III is higher than that of PMS I and PMS II. Table 

27 displays the confidence interval for this roadway family. At 95% confidence it is evident 

that there is a statistically significant difference between models developed in this study 

compared to models developed in previous studies. Both b variables for PMS I and PMS 

II fell outside the upper bound of the confidence interval. This indicates that the interstate 

model developed in this study presents a higher deterioration rate and less service life until 

maintenance is needed for this particular group of asphalt pavements.  

 

 

TABLE 27: Interstate PCR confidence interval 

Model Family 95% C.I. for b variable PMS I b variable PMS II b variable 

PCR Interstate (11.58,12.29) 12.41 12.68 
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FIGURE 93: PCR – Interstate comparison 

 

 

 

5.2.2 US Asphalt Roadway Performance Comparison 

Figures 94 - 96 display the US roadway PCR comparisons between each NCDOT PMS 

phase. As shown in Figure 94, the US model developed for roadways with traffic of 0 – 

5,000 vehicles per day presents less of a deterioration rate for years 0 to 10 compared to 

PMS I. After year 10, the deterioration rate is slightly higher compared to PMS I. Compared 

to PMS II, the US 0 – 5K model developed in this research presents a significantly higher 

deterioration rate throughout the service life.  

As shown in Figure 95, the US model developed for roadways with traffic of 5,000 – 

15,000 vehicles per day presents a lower deterioration rate for years 0 to 8 compared to 

both PMS I and PMS II. After year 8, the deterioration rate is higher compared to PMS II. 

It is not until year 14 that the deterioration rate is higher for this model compared to PMS 

I.  
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As shown in Figure 96, the US model developed for roadways with traffic greater than 

15,000 vehicles per day presents less of a deterioration rate for years 0 to 7 compared to 

PMS I and PMS II. After year 7, the deterioration rate increases for this model and by year 

10 the PCR deteriorates at a much faster rate compared to PMS I and PMS II.  

 Table 28 displays the confidence intervals for the US family models. With the 

exception of the US 0-5K model, all b variables for both PMS I and PMS II fell outside the 

confidence intervals for models developed in this study. This indicates that there is a 

statistical difference between models at 95% confidence. For the US 0-5K model, the    

PMS I b variable fell within the 95% confidence interval, indicating that there was no 

difference in performance predictions between the model developed in this study and the 

model developed in phase one. 

 

TABLE 28: US PCR confidence intervals 

Model Family 95% C.I. for b variable PMS I b variable PMS II b variable 

PCR US 0-5K (10.56,11.13) 10.70* 14.57 

PCR US 5-15K (11.96,12.35) 10.68 14.23 

PCR US 15K + (10.78,11.41) 12.61 14.23 

* denotes no statistical difference between models 
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FIGURE 94: PCR – US 0-5K comparison 

 

 

 

 
FIGURE 95: PCR – US 5-15K comparison 
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FIGURE 96: PCR – US 15K + comparison 

 

 

 

5.2.3 NC Asphalt Roadway Performance Comparison 

Figures 103 - 105 display the NC roadway PCR comparisons between each NCDOT 

PMS phase. As shown in Figure 103, the NC model developed for roadways with traffic 

of 0 – 1,000 vehicles per day presents a slightly less deterioration rate for years 0 to 10 

compared to PMS I and PMS II models. After year 10, the deterioration rate is slightly 

higher compared to PMS I and PMS II. 

As shown in Figure 104, the NC model developed for roadways with traffic of 1,000 – 

5,000 vehicles per day presents a lower deterioration rate for years 0 to 8 compared to both 

PMS I and PMS II. After year 8, the deterioration rate is higher compared to PMS II. It is 

not until year 14 that the deterioration rate is higher for this model compared to PMS I.  
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As shown in Figure 105, the NC model developed for roadways with traffic greater 

than 5,000 vehicles per day presents less of a deterioration rate for years 0 to 7 compared 

to PMS I and PMS II. After year 7, the deterioration rate increases for this model compared 

to PMS II. Compared to PMS I, the model developed in this research is fairly consistent. 

However, after year 16 this model shows slightly higher deterioration compared to PMS I. 

As shown in Table 29, there was a statistical difference between all NC family PCR models 

at 95% confidence. Compared to PMS II b variables, the models developed in this study 

have smaller b values. This indicates that delaying maintenance reduces service life which 

is a practical conclusion to what actually happens when maintenance on roadways is 

delayed. 

 

 

 

TABLE 29: NC PCR confidence intervals 

Model Family  95% C.I. for b variable  PMS I b variable PMS II b variable 

PCR NC 0-1K (11.55,12.22) 11.52 12.30 

PCR NC 1-5K (11.71,12.12) 11.14 13.58 

PCR NC 5K + (11.95,12.45) 10.88 13.51 
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FIGURE 97: PCR – NC 0-1K comparison 

 

 

 

 
FIGURE 98: PCR – NC 1-5K comparison 
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FIGURE 99: PCR – NC 5K + comparison 

 



 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

For this research, distress and performance models were developed for asphalt 

roadways, maintenance trigger points were calculated, and a systematic method of 

evaluating and validating models was proposed. Distress indices were developed for eight 

different distress types using the MAE process defined in section 3.4.2. A composite 

performance index was developed using the AHP method defined in section 3.4.7. Once 

distress and composite performance indices were developed, their deterioration over time 

was modeled using sigmoidal regression analysis defined in section 3.4.4. To calculate 

maintenance trigger points for each distress type and PCR threshold, an algebraic 

substitution method was implemented by using the AHP pairwise comparisons and the 

PCR equation developed in section 4.2. Once new asphalt models were developed, an 

evaluation was performed by visually comparing these models to previously developed 

models. 

6.1 Conclusions 

A systematic method of developing distress and performance models was carried out 

in this study by incorporating previous research methodologies (Chen et al, 2013 and Dye, 

2014). Using updated asphalt condition data provided by the NCDOT, a methodology for 

evaluating and validating newly developed distress and performance models has been 

proposed in this study. 
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6.1.1 Distress and Performance Indices 

The first step was to merge three different databases provided by the NCDOT. The 

databases consisted of a 1) a pavement condition database 2) a maintenance and 

construction history database and 3) a traffic usage database. A data merging process, 

explained in section 3.3 was carried out to develop a central database that contained 

pavement condition data with a corresponding age and average annual daily traffic value. 

Data was subdivided into three classification families consisting of Interstate, US, and NC 

roadways. The US and NC roadways were further divided into three different families 

based on traffic usage. This family modeling approach was used because these roadway 

families are considered to perform similarly.  

Once the data merging process was carried out, the second step was to calculate distress 

indices for each asphalt distress type collected by the NCDOT. The NCDOT observes most 

distress types in three severity levels consisting of low, moderate, and high. The distress 

types consisting of wheel path patching, non-wheel path patching, and longitudinal lane 

joint cracking were observed exclusively as low severity levels. For longitudinal cracking 

low and high severities were observed. Rutting was observed as the maximum average 

without regards to any severity level. The remaining distress types were observed as low, 

moderate, and high severities. Raw data for each distress and type and severity level was 

then normalized and the 98th percentile was calculated for distress type and asphalt roadway 

family. As explained in section 3.4.2, the 98th percentile of each severity level was averaged 

and used in NCDOT’s MAE process to calculate a distress index that combines each 

distress severity into an overall index ranging from 0 to 100. A distress index of 100 
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indicates that no distress is present and a distress index of 0 indicates that high amounts of 

a specific distress is present.  

A composite performance index, PCR, was developed by using the AHP method to 

determine each distress type’s weight factor. Distress deduction points were calculated for 

each distress type and averaged as indicated in section 3.4.7. These deduction points were 

incorporated into a pairwise comparison matrix and the AHP method was carried out by 

squaring this matrix and calculating the eigenvalues or weight factors. A consistency index 

and consistency ratio was then calculated to ensure pairwise comparisons were appropriate. 

Once weight factors were determined, the PCR equation was developed as indicated in 

section 4.2.  

6.1.2 Distress and Performance Models  

The non-linear sigmoidal model form was used to develop both distress and 

performance models. Initial estimates of model coefficients a, b, and c were obtained using 

the process shown in section 3.4.5. The final distress and performance models were 

developed in TableCurve® as indicated in section 3.4.6. A data cleaning process had to be 

utilized in the development of these distress and performance models due to the large 

number of outliers and the fact that a pavements age is not reset in NCDOT’s database after 

it received maintenance, rehabilitation, or reconstruction. Since a pavements age is not 

reset after it has received maintenance, there were no obvious declining trends in pavement 

performance over time. This issue should be addressed in future research to more 

accurately predict pavement performance over time and increase the efficiency and 

effectiveness of a PMS.  
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6.1.3 Maintenance Trigger Points  

Maintenance, rehabilitation, and reconstruction trigger points were developed for each 

asphalt distress type. The PCR equation developed in section 4.2 and the NCDOT PCR 

threshold values of 80, 60, and 30 were used to calculate each distress types trigger point. 

These trigger point values only takes into consideration that the distress type occurs by 

itself and no other distress is present. Trigger points were developed by algebraically 

manipulating the PCR equation, substituting each distress’s relative importance, and 

solving for the trigger point that enables the PCR to equal the threshold amounts of 80, 60, 

and 30. As shown in Table 19 in section 4.4, the trigger point values for alligator cracking 

were substantially higher than the other various distress types trigger point values. For the 

PCR threshold of 80 the trigger point value for alligator cracking was 121.1. Since the 

alligator cracking index is on a scale of 0 to 100, this would continuously trigger a 

maintenance activity, even if the roadway was newly built. This issue should be addressed 

in further research to quantify an appropriate trigger point for alligator cracking.  

6.1.4 Distress and Performance Model Comparison 

Distress models were compared between phases two and three of NCDOT’s pavement 

management system research. Phase two consisted of automated data from years 2012 and 

2013. Phase three consisted of this research project and used data from 2014. Since 

NCDOT’s raw data processing algorithm changed beginning in 2014, data for phase three 

was considered more suitable. With the visual comparison of each distress model it was 

found that were substantial differences between a majority of the distress types. A 95% 

confidence interval was calculated for the b coefficient of distress models developed in this 

study to determine if there was a statistical difference between models. The b variable of 
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PMS II was analyzed to determine if it fell within the 95% confidence interval. If the 

coefficient did not fall within the confidence interval it was determined that there was a 

statistical difference between data used to develop these models. Table 20 displays the 

results of the confidence interval comparison. It was determined that out of the 56 family 

models, only 7 models (ALGTR US 5-15K, TRNSVRS US 5-15K, TRNSVRS NC 1-5K, 

LNGTDNL NC 5K+, WP NC 1-5K, RUT US 5-15K, and RUT NC 0-1K) were not 

statistically different from PMS II models. This reveals that 12.5% of models showed no 

statistical difference compared to models developed with previous data. This concludes 

that 87.5% of models developed in this study were statistically different than models 

developed in previous research with an outdated raw data processing algorithm. 

Performance models were compared between all three phases of NCDOT’s pavement 

management system research. Phase one consisted of manual data, however the PCR 

curves between each of the three phases should be consistent. With the comparison of each 

performance model it was found that the performance models developed with 2014 data 

were more consistent with the models developed with manual data. There were substantial 

differences between the performance models developed in phase two of NCDOT’s 

research. To statistically determine the differences between models, a 95% confidence 

interval was calculated for the estimated b variable of the models developed in this study. 

It was found that out of 14 comparisons there was only 1 model (US 0-5K) for PMS I that 

was not statistically different. This concludes that 92.9% or 13 out of 14 model 

comparisons were statistically different. Comparing this research to PMS II, it was 

determined that all of PMS II b variables fell outside the upper bound of the confidence 

interval. This indicates that asphalt roadway models developed in PMS II overall delay 
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maintenance compared to models developed in this study. This is likely to be due to the 

change in NCDOT’s raw data processing algorithm. Comparing this research to PMS I it 

was determined that most of PMS I b variables fell outside the lower bound of the 

confidence interval. This indicates that in PMS I roadway prediction models showed higher 

deterioration rates and a reduced service life compared to PMS III models.  

Overall, the PCR models developed in this study cross NCDOT’s rehabilitation 

threshold around the service life of 10-15 years. This is typical for most asphalt pavements 

in North Carolina as a rehabilitation strategy is usually implemented every 15 years for 

most roadways. The models developed in this study are considered robust because they 

promote a responsive PMS that indicates a negative impact of network level performance 

if maintenance is delayed. 

6.2 Recommendations 

There are a total of three recommendations based on the results of this study. It is 

recommended that distress and performance models be updated when at least three years’ 

worth data is available. Since the raw data processing algorithm changed beginning in 

2014, it is crucial that when similar data is available, the process conducted in this study 

be repeated to better predict pavement performance. Also, three years’ worth of consistent 

data would allow for pavement age to be reset when there is a significant increase in the 

PCR over a roadway section’s performance history.  If maintenance activities can be more 

appropriately identified and the pavement age reset to reflect a maintenance strategy such 

as preventative maintenance, rehabilitation, and reconstruction, prediction models that take 

into consideration a SHAs maintenance program could be developed.  
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The second recommendation is to use the comparisons between PMS II and PMS III to 

improve crack analyzing algorithms that are used to classify the extent of distress on 

roadways. The results of this research indicate that in practical terms the models and 

predictions of the raveling distress are not significant. This could be due to the fact that this 

is not a cracking distress type and data for this distress is collected using a profile system 

to determine maximum rutting averages. There were large discrepancies between a 

majority of PMS II and PMS III distress models. Further research should be conducted to 

determine how the changes to the data collectors crack analyzer effects data quality and 

pavement performance predictions.   

The final recommendation is to further research asphalt distress weight factors and 

maintenance trigger point values. The weight factor for alligator cracking was substantially 

higher than the other distress types observed by the NCDOT. This is thought to be the 

reason why the trigger point values for alligator cracking was greater than 100. More 

appropriate weight factors would potentially solve this issue. It is recommended that future 

research be conducted to determine if the amount of variables used to calculate the PCR 

index can be combined into one distress index. For example, non-wheel path patching and 

wheel path patching can be combined into an overall patching index that represents all 

patching on an asphalt pavement section. The resulting effect on distress weight factors 

could potentially reduce the substantially high maintenance trigger points calculated in this 

research. Another method of reducing the alligator cracking trigger points is to develop a 

new deduction point system for the automated data collection system to determine distress 

importance and distress weight factors. This would potentially eliminate the issue of 
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alligator cracking being substantially more important or over weighted compared to other 

distress types. 
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APPENDIX A: ALLIGATOR CRACKING MODELS 
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APPENDIX B: TRANSVERSE CRACKING MODELS 
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APPENDIX C: LONGITUDINAL CRACKING MODELS 
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APPENDIX D: LONGITUDINAL LANE JOINT MODELS 
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APPENDIX E: RAVELING MODELS 
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APPENDIX F: PATCHING (NON-WHEEL PATH) MODELS 
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APPENDIX G: PATCHING (WHEEL PATH) MODELS 
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APPENDIX H: RUTTING MODELS 
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APPENDIX I: PCR MODELS 
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