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ABSTRACT 

 

TOYOSI ASHIMOLOWO.  An Econometrics Analysis of the Relationship Between 
Corner Kick Numbers and Football Outcomes. (Under the direction of 

 DR. CRAIG A. DEPKEN, II) 
 

Corner kicks are arguably important during match play, but questions remain about the 

impact of corner kicks on match outcomes. This study analyzes the relevance of corner 

kicks numbers and their importance to match outcomes, then compares this result with that 

of shots on target and free kicks. In total, 7368 matches played in the English Premier 

League, French Ligue 1, German Bundesliga, Italian Serie A, Spanish La Liga, and the 

2018 FIFA World Cup are analyzed using the Multinomial logistic regression (MLR). The 

study finds that both the number of corner kicks and shots on target are significantly 

associated with the outcome of football games while free kick numbers are not.  Also, from 

the results of the MLR analysis, the study finds that the winning team tends to play more 

shots accurately while the losing team tends to be awarded more corners during the game. 

The findings thereby support Riquelme’s (2012) contention that match status affects the 

number of corners in a match and also Collert’s (2012) claim that there is a significant 

relationship between shooting efficiency and overall team success. The findings also 

disagree with Gordon et al’s (2013) argument that corner kicks numbers are statistically 

useless in soccer games. 
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CHAPTER 1: INTRODUCTON 

        With over 380 million viewers, the 2014 Champions League final between Atletico 

Madrid and Real Madrid in Lisbon will forever be remembered for Sergio Ramos’ 93rd 

minute equalizer. Luka Modric found the center back on a “corner kick”, and the Los 

Blancos hero buried his header into the far corner, just past the reach of the goalkeeper; it 

was not the first goal of the game, nor was it the last, but it was the one that changed history. 

Corner kicks are not particularly valuable events in soccer but when a player is away from 

action near the corner flag, fans are on their feet, knowing that a goal could come at any 

moment. Scoring goals is the ultimate determinant of a successful team and in order to be 

efficient in front of goal, the art of goal scoring ranks at the top of every manager, player, 

and teams’ agenda. 

           Football’s worldwide popularity and support has resulted in varieties of research 

investigating different aspects within the game. A significant number of researchers have 

analyzed the pattern of play and possession in relation to goal scoring (Hook and Hughes, 

2001; Hughes and Frank, 2005). Others (Sousa and Gargantua, 2001 and Armatus et al., 

2007) have focused on the impact of set-plays on scoring opportunities, focusing on free 

kicks, corners, and penalties. Set plays are important, but do their numbers really influence 

the outcome of a game? In this study, I intend to show that football outcomes are not only 

influenced by how efficient a team is in front of goal but that the number of corner kicks 

in one way or the other is also a significant determinant in match outcomes.  

         Set plays in football are crucial, providing the opportunity for a “free” shot towards 

goal. It offers teams, or individuals, the opportunity to perform tactical routines. Whether 

it is through the use of team strategies for corners or the individual technique of a penalty, 
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the anticipation of a goal increases as they are deemed to be a goal scoring scenario (Lowe, 

2015). A corner kick is a type of set-play awarded when the whole of the ball goes out of 

play over the goal line, without a goal being scored, and having last been touched by a 

member of the defending team. Corners provide attacking teams with the option of crossing 

the ball into an advantageous attacking position. For this reason, some authors have decided 

to analyze corner kicks in detail, with the majority of findings originating from tournaments 

such as the FIFA World Cup and the European Championship. Most of these studies carried 

out descriptive analyses of how corner kicks can be more effective and the effects of match 

status on corner kicks. There is little research on how the number of corner kicks taken 

affects match results, which is quite surprising as corner analysis across the duration of a 

season provides comprehensive data and the opportunity for detailed team comparisons.  

1.1 Aim 

The aim of this study is to broaden our understanding of corner kicks and their relevance 

to match outcomes by employing comparative data across five different leagues (English 

Premier League, Italian Serie A, French Ligue 1, German Bundesliga, Spanish La Liga) 

within the period 2014 to 2018 as well as the 2018 FIFA World Cup. This study also makes 

an effort to compare the relevance of corner kicks to shots on targets and free kicks.  

1.2 Research Questions 

Drawing on the literature reviewed, the study will aim to answer the following research 

questions; 

I. Does the relative number of corners a team plays affect the match outcome across 

the seven leagues during the period of 2014/2015 – 2017/2018 season and the 2018 

World Cup? 
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II. Does the relative number of shots a team plays on target affect the match outcome 

across the seven leagues during the period of 2014/2015 – 2017/2018 season and 

the 2018 World Cup ?  

III. Does the relative number of free kicks a team gets affect the match outcome across 

the seven leagues during the period of 2014/2015 – 2017/2018 season and the 2018 

World Cup? 

1.3 Hypothesis 

The null hypothesis (H0) states that the relative number of corner kicks is not significant 

towards match outcomes. The following hypotheses are also stated: 

• The relative number of shot on targets has no significant impacts on match 

outcomes. 

• The relative number of free kicks has no significant impacts on match outcomes. 

1.4 Limitations 

 The following limitations of the study have the potential to influence the results 

obtained; 

a) Knowing fully well that an individual corner kick will lead to a goal around 

0.03 (3%) of the time, the study does not account for the efficiency of corner 

kicks.  

b) The study ignores the tactical approach of teams towards attacking or 

defending corner kicks (i.e. man to man marking, zonal marking, combined 

marking, or aerial threats). 

c) Even though the aim is to analyze the impact of corner kicks numbers on match 

outcome, the research does not account for when home total corners are equal 

to away total corners. 
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d) Lastly, the results do not account for the playing style implemented by the 

teams during games. 

Having affirmed the rationale for the current research topic, chapter two presents a 

discussion of the literature. Chapter three considers the methodology employed. Chapter 

four presents’ findings from the tests conducted and the final chapter reinstates key 

findings, and general conclusion of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

            Corner kicks play an important role in football, providing teams with opportunities 

to deploy offensive strategy onto the opposition’s defense. They represent the chance to 

maintain possession in an attacking area of the field and to hit an unopposed pass into the 

opposition’s penalty area (Hill and Hughes, 2001). Research has been conducted (Olsen 

and Larsen, 1997; Hill and Hughes, 2001; Taylor et al., 2005, and Sainz de Baranda and 

Riquelme, 2012) that has provided information into why and how the corner kick is an 

important tool. All these studies investigate the effectiveness of corners during tournaments 

or league campaigns with Casal et al. (2015) providing the most in-depth and recent corner 

kick research, exploring corner characteristics across three competitions (FIFA World Cup 

2010, UEFA European Championships 2012, and UEFA Champions League 2010-2011).  

           The general consensus is that between nine and thirteen corner kicks on average are 

taken per match (Hill and Hughes, 2001; Yamanaka et al., 2002; Borrás and Sainz de 

Baranda 2005; Carling et al., 2005; Taylor et al., 2005; Acar et al., 2009; Sainz de Baranda, 

and Lopez Riquelme 2012, and Casal et al., 2015). As a result of this finding, Casal et al. 

(2015), who analyzed 1139 corner kicks across multiple competitions, states that only 26 

per cent of these resulted in a shot. From the total shots, 9.8 per cent hit the target and only 

2.2 per cent ended in a goal being scored. This finding is supported by Marquez and Raya 

(1998) who argue that corner kicks are efficient in 2.28 per cent of all cases and Perez and 

Vicente (1996) who analyze the 1994 World Cup in the USA and find 1.6 per cent of shots 

from corners result in a goal.  

           Furthermore, common trends have been discovered in terms of corner type and the 

location that produces the highest number of shots on goal and goals scored. For example, 
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Olsen and Larsen (1997), Taylor et al. (2004) and Taylor et al. (2005) argue that a direct, 

swung corner provides a team with the best chance to create a scoring opportunity, while 

Hill and Hughes (2001) also state that corners with curl provide the most opportunities on 

goal. Both Olsen and Larsen (1997) and Taylor et al. (2005) support each other’s findings, 

stating that one in five out-swing and one in three in-swing corners result in a chance on 

goal. Taylor et al. (2005) further support these findings by arguing that out-swing corners 

lead to the highest number of attempts on goal (60.7 per cent), whilst in-swing corners lead 

to more goals (66 per cent). The nature of the out-swing corner means the ball is directed 

further away from the goal-keeper, increasing the chances of the attacking team making 

first contact with the ball. However, as a result, the chance of a goal being scored is reduced 

due to the difficulty of generating enough power on a shot as the ball is travelling away 

from the goal. The consensus that in-swing corners produce more goals does not come as 

a surprise, due to its proximity to the goal and the fact that more emphasis is put on shot 

direction rather than power, creating a greater chance of a goal.  

          On the other hand, the execution of the short corner has been found to produce 

numerous goal-scoring opportunities, although they are less common (Hill and Hughes, 

2001; Taylor et al., 2005). This could be due to the fact that these types of corners are more 

infrequent, and defenders are less familiar with the angle of delivery. As a consequence, 

this causes confusion as defenders become attracted to the ball, creating greater spaces 

behind the defense (Ali, 1998). Multiple discrepancies have been highlighted across 

research investigating corner kick delivery location. Some researchers (Hughes and Petit, 

2001; Taylor et al., 2005) declare that the area between the six-yard box and penalty spot 

is the optimal area of delivery, as this has led to the greatest number of attempts and goals. 
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Similarly, Taylor et al. (2005) state that in-swing corners into that same area provide the 

most attempts and the highest chance of a shot on target. Arguably, the corner is being 

delivered into the “goalkeepers’ area of uncertainty”, not knowing whether to stay on the 

goal line or come to collect the cross. Hughes (1999) also emphasize the use of in-swing 

will lead to a higher number of goals.  

         A variation in results was found in regard to match status and the target area of 

corners. Sainz de Baranda and Lopez-Riquelme (2012) discovered that there was a 

tendency for teams during the 2006 World Cup to target the front post regardless of the 

score-line (36.6 per cent), agreeing with Marquez and Raya (1998) who previously 

concluded similar results at the 1998 World Cup in France. An interesting finding by Ali 

(1998) is a trend in teams winning a match to perform more short corners. A discovery 

complemented by Sainz de Baranda and Lopez-Riquelme (2012) who find when winning 

29.2 per cent were played short compared to 10.1 per cent when drawing and 15.2 per cent 

when losing.  

        In addition, a wealth of research examines whether goal scoring is affected by time, 

(Jishan et al., 1993; Michaildis et al., 2004; Yiannakos and Armatas, 2006; Armatas et al., 

2007) yet multiple discrepancies have been found. Jishan et al. (1993) conclude in a study 

of the 1990 World Cup that most goals were scored in the final 15 minutes. Yiannakos and 

Armatas (2006) support this claim by investigating set-plays at the European 2004 

Championships and report more goals were scored in the second half. However, Michaildis 

et al. (2004) report that time has no effect on goal scoring when analyzing how, where, and 

when goals were scored during the 2002-03 Champions League. A recent study by Armatas 

et al. (2007) analyzes the effect that time has on goal-scoring from three World Cups (1998, 
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2002 and 2006) and conclude more goals are scored as time progresses during the second 

half, agreeing with Jishan et al. (1993) and Yiannakos and Armatas (2006). Specifically, 

across the three World Cups analyzed, no significant differences were found between goals 

being scored in 15 intervals. Evidently, some reports have supported that time-scale affects 

goal-scoring, however this is an area that requires further development.  

        There is abundance of literature concerning corner kicks in football however most of 

this research relies heavily on tournaments such as the FIFA World Cup and the European 

Championships; the nature of these tournaments can result in misleading findings as corner 

samples are very small and few matches are played per team. Also, none of the previous 

research conducted fully assesses how the relative number of corner kicks affects football 

outcomes. 

       This study aims to fully assess whether or not corner kick numbers affect football 

outcomes using data across six different domestic leagues and the FIFA world cup. The 

analysis will use Stata 15.  

 

 

 

 

 

 

 

 

 

 

 



 9 

CHAPTER 3: METHODOLOGY 
 
 
         Since the dependent variable (football match result) has two or more outcome 

categories (i.e., win, draw or loss), the logit and probit models should be used to model the 

impact of corner kicks on football results. Logit models can either be binary or 

multinomial; binary models consider two response outcomes (i.e. win vs lose or draw vs 

lose) while the multinomial models consider three or more response outcomes. This chapter 

further describes the method used in the study, the assumptions of multinomial logit 

regression (MLR), and several methodological procedures that should be used in testing 

the assumptions of the MLR.  

3.1. Multinomial Logit Regression 

       The multinomial logit regression (MLR) is an extension of the binary logistic 

regression with multiple predictors. It is used to model the relationship between a 

“polytomous” dependent variables (with more than two outcomes) and a set of independent 

variables. MLR compares multiple groups through a combination of binary logistic 

regressions which allows each category of the dependent variable to be compared to a 

reference category. The reference category, also known as the base category, serves as a 

contrast point for all analyses, and the effects of the analysis are always in reference to the 

contrast category.  

The general form of the multinomial logit model is; 

                      𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑦𝑦𝑖𝑖 = 𝑗𝑗] = exp�𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖� /∑ exp (𝑗𝑗 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖) , 

                                  𝑗𝑗 = 0, 1, . . . . . . . ,𝑚𝑚 , 
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where 𝑗𝑗 denotes the specific one of the “𝑚𝑚 + 1” possible unordered choices, 𝑦𝑦𝑖𝑖 is the 

indicator variable of choices, 𝑋𝑋𝑖𝑖 denotes the vector of the independent variables, and 𝛽𝛽𝑗𝑗 is 

the corresponding coefficient vector.  

           The MLR has many advantages in modelling football outcomes, such as: 

 The results can be interpreted by both the regression coefficient estimates 

and the exponentiated coefficients. 

 The estimates are asymptotically consistent with requirements of the 

nonlinear regression. 

 It produces valid estimates as it applies transformation of the multinomial 

dependent variable to a continuous variable ranging from negative infinity 

to positive infinity.  

           The dependent variable (match outcome) in this paper consists of three outcomes 

categories (i.e. home win, draw, home loss), and is assumed to be unordered. Since the 

MLR works by choosing one outcome category as the base (reference) category for the 

other categories, hence home win is considered as the reference group, because it is the 

most frequent outcome of football results and the other outcome levels are estimated 

relative to home win. 

         The dependent variable Y, outcome, will then take on three values: a home win (1), 

draw (2), and home loss (3). This analysis will then compare draw (2) relative to home win 

(1) and home loss (3) relative to home win (1). The two equations of the MLR model are 

then given by; 

                                Log �Pr(Y=2)
Pr(𝑌𝑌=1)

� = 𝛽𝛽20 + 𝛽𝛽21𝑥𝑥1 + 𝛽𝛽22𝑥𝑥2 + ⋯  𝛽𝛽2𝑝𝑝𝑥𝑥𝑝𝑝 
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                                Log �Pr(Y=3)
Pr(𝑌𝑌=1)

� = 𝛽𝛽30 + 𝛽𝛽31𝑥𝑥1 + 𝛽𝛽32𝑥𝑥2 + ⋯  𝛽𝛽3𝑝𝑝𝑥𝑥𝑝𝑝 , 

where 𝑝𝑝 denotes the number of predictors for the binary response, Y, by x1, x2, …..., xp.  

There are a few applications of the MLR in modelling match outcomes. For example, 

Christian Collet (2013) applied the ordered MLR to analyze the impact of possession on 

team success/ football outcomes. Jefferey Allan (2014) applied the multinomial logistic 

regression to predict the outcomes of 380 matches of the 2011/2012 Premier league season. 

Despite these few applications of the MNL, this paper seeks to introduce new variables in 

capturing the determinants of match outcome and new methods of presenting the results of 

the MLR applications that have not been reported in other football outcome research. This 

new method includes proper analysis of the assumption of the independence of irrelevant 

alternatives (IIA), which is very crucial in the MLR modeling; tests for multicollinearity 

among the independent variables; the Likelihood Ratio (LR) and Wald test are used to 

properly test for the effect of independent variables; the marginal effects of all independent 

variables upon the dependent variables are presented.  

3.2. Model Assumptions  

To get a valid result using the MLR, the following assumptions needs to be met. 

a) The MLR assumes that the odds for any pair of outcomes are determined without 

referring to the other outcomes that might be available. This assumption is called 

the Independence of Irrelevant Alternatives (IIA) and it is very crucial in the 

modeling. 

b)  There should be no multi collinearity. Multicollinearity occurs when you have two 

or more independent variables that are highly correlated with each other. This can 

lead to problems of understanding which variable contributes to the explanation of 
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the dependent variable and issues while calculating a multinomial logistic 

regression. 

c) The MLR assumes that there should be a linear relationship between any 

continuous independent variables and the logit transformation of the dependent 

variables.  

3.3. Methodological Procedures/ Application 

3.3.1. Likelihood Ratio (LR) and Wald Test 

          If the dependent variable has 𝑀𝑀 categories, there are 𝑀𝑀 − 1 non-redundant 

coefficients associated with each independent variable 𝑥𝑥𝑁𝑁. The hypothesis that 𝑥𝑥𝑁𝑁 does not 

affect the dependent variable can be written as;  

𝐻𝐻0: 𝛽𝛽𝑁𝑁,1|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ⋯ = 𝛽𝛽𝑁𝑁,𝑀𝑀|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the base category (home win) used in the comparison. Since 𝛽𝛽𝑁𝑁,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is 

necessarily zero, the hypothesis imposes constraints on 𝑀𝑀 − 1 parameters. This hypothesis 

can be tested with either the Wald or a LR test.  

         The LR test estimates the full model that contains all of the independent variables 

with the resulting LR statistic 𝐿𝐿𝐿𝐿𝐹𝐹 . It then estimates the restricted model formed by 

excluding the independent variable 𝑥𝑥𝑁𝑁 with the resulting LR statistic 𝐿𝐿𝐿𝐿𝑅𝑅 . Finally, the LR 

test takes the difference between 𝐿𝐿𝐿𝐿𝐹𝐹 and 𝐿𝐿𝐿𝐿𝑅𝑅 which is distributed as chi-square with 𝑀𝑀 −

1 degrees of freedom if the hypothesis that 𝑥𝑥𝑁𝑁 does not affect the outcome is true: 

𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐹𝐹 − 𝐿𝐿𝐿𝐿𝑅𝑅 . 

If the 𝐿𝐿𝐿𝐿 statistic for the overall model is significant then there is evidence that the 

independent variables have contributed to the prediction of the outcome. 
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            The Wald test is an alternative to the LR test and can be computed without 

estimating additional models. The test is defined as follows: 

 𝑊𝑊𝑁𝑁 =   𝛽𝛽𝑁𝑁′�𝑉𝑉𝑉𝑉𝑉𝑉� �
1
𝛽𝛽𝑁𝑁�
�𝛽𝛽𝑁𝑁� , 

where, 𝛽𝛽𝑁𝑁  is the 𝑀𝑀 − 1 coefficients associated with 𝑥𝑥𝑁𝑁 and, 𝑉𝑉𝑉𝑉𝑉𝑉� (𝛽𝛽𝑁𝑁)� , is the estimated 

covariance matrix. 

If the null hypothesis is true, the 𝑊𝑊𝑁𝑁 is distributed as chi-square with 𝑀𝑀 − 1 degrees of 

freedom.  

In Stata, the command mlogtest, lr computes the likelihood ratio (LR) test, and the 

command mlogtest, wald computes the Wald test. 

3.3.2. Multicollinearity 

          Multicollinearity is a state of very high inter-correlations or inter associations among 

the independent variables. It is mostly caused by inaccurate use of dummy variables, 

repetition of the same kind of variables, variables being highly correlated with each other, 

and inclusion of a variable which is computed from other variable in the data set. 

         Multicollinearity can cause inaccurate estimates of the regression coefficients, inflate 

the standard errors of the regression coefficients, give false and non-significant p-values, 

and degrade the predictability of the model.  

         Testing for multi-collinearity can be achieved by either using the Eigen values 

method or Variance Inflation Factors (VIF) test. VIF is the most widely used test to 

measure how much the variance of the estimated regression coefficients are inflated 

compared to when the predictors are linearly related. It helps to identify the severity of any 

multicollinearity issues so that the model can be adjusted. The VIF may be calculated for 

each predictor by linearly regressing that predictor on all other predictors and obtaining the 
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R2 from that regression. The VIF obtained by the regression can be used in logistic 

regression models, because the concern is with the relationship among the independent 

variables included in the model and not with the functional form of the model. Thus, a VIF 

of 1.6 tells us that the variance of a particular coefficient is 60% larger than it would be if 

that predictor was completely uncorrelated with all other predictors. A VIF has a lower 

value of 1.0 but no upper bound. A VIF of more than 10.0, indicates high correlation which 

is a cause of concern. In a nutshell, the more a VIF increases, the less reliable the results 

are going to be.  

  Specifically, 

                                                  𝑉𝑉𝑉𝑉𝑉𝑉𝐽𝐽 = 1
1−𝑅𝑅𝐽𝐽

2 

where, 𝑅𝑅𝑗𝑗2 is the coefficient of determination of the regression model that includes all 

predictors except the jth predictors. If 𝑅𝑅𝑗𝑗2 equals zero (no correlation between j and the 

remaining predictors), the VIF equals 1.0, which is the minimum value. In Stata, the 

command collins test is used to compute the VIF estimates. 

3.3.3. Independence of Irrelevant Alternatives (IIA) 

         The MLR assumes that the odds for any pair of outcomes are determined without 

reference to the other outcomes that might be available. This is known as the independence 

of irrelevant alternatives or IIA. If the IIA holds, the MLR can be used. It can be tested by 

either the Hausman specification test or the Small and Hsiao test. The null hypothesis for 

both tests is that the IIA does not exist and estimators of the full and restricted models are 

consistent. On the other hand, under the alternative hypothesis the IIA does exist and only 

the estimator of the restricted model is consistent.  



 15 

         The Hausman specification test was proposed by Hausman and McFadden (1984) 

and involves the following steps; 

 Estimate the error coefficients of the full model with all K categories of 

the dependent variable included; these coefficients are contained in 𝐸𝐸𝑓𝑓� . 

 Estimate the error coefficients of a restricted model by eliminating one 

or more outcomes categories; these coefficients are contained in 𝐸𝐸𝑟𝑟� . 

 Let 𝐸𝐸𝑓𝑓∗� represents 𝐸𝐸𝑓𝑓� after eliminating all coefficients not estimated in 

the restricted model. The Hausman test of IIA is defined as: 

𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 = �𝐸𝐸𝑟𝑟� − 𝐸𝐸𝑓𝑓∗��
′
[𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸𝑓𝑓�� − 𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸𝑓𝑓∗��]−1(�𝐸𝐸𝑟𝑟� − 𝐸𝐸𝑓𝑓∗��. 

           Hausman and McFadden (1984:1226) note that 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 can be negative when 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸𝑓𝑓�� − 𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸𝑓𝑓∗�� is not positive semidefinite and suggest a negative 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 is evidence 

that IIA holds. 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 is asymptotically distributed as a chi-square with the degrees of 

freedom equal to the rows in 𝐸𝐸𝑟𝑟� if IIA is true. 

             To compute Small and Hsiao’s test, the sample is divided into two random 

subsamples of approximately equal size and the unrestricted MLR is estimated on both 

subsamples. The weighted average of the coefficients from the two samples is defined as 

follows: 

𝐸𝐸�𝑢𝑢 =  �
1
√2
�𝐸𝐸�𝑢𝑢𝑆𝑆1 + �1 − �

1
√2
�� 𝐸𝐸�𝑢𝑢𝑆𝑆2 , 

 
where 𝐸𝐸�𝑢𝑢𝑆𝑆1 is a vector of estimates from the unrestricted model on the first subsample and 

𝐸𝐸�𝑢𝑢𝑆𝑆2 is its counterpart for the second subsample. The next step involves creating a restricted 

sample from the second subsample by eliminating all cases with a chosen value of the 
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dependent variable. MLR is estimated using the restricted sample yielding the estimates 

𝐸𝐸�𝑟𝑟𝑆𝑆2 and the likelihood 𝐿𝐿�𝐸𝐸�𝑟𝑟𝑆𝑆2�. The Small-Hsiao statistic is the difference: 

𝑆𝑆𝑆𝑆 = −2� 𝐿𝐿�𝐸𝐸�𝑢𝑢𝑆𝑆1𝑆𝑆2� −  𝐿𝐿�𝐸𝐸�𝑟𝑟𝑆𝑆2�� . 

SH is asymptotically distributed as a chi-square with the degrees of freedom equal N+1, 

where N is the number of independent variables. 

            This paper will rely more on the Hausman specification test. It will be applied on 

each outcome pair of the dependent variable (i.e. match outcome). Since the home win is 

assumed to be the base category, the test will be applied on basically draw and home loss. 

This will be done for each of the 6 different leagues chosen and compared to the model 

with all leagues. If the value of the 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 computed in any of the leagues is significant, then 

the IIA assumption is violated in that model which implies that MLR cannot be used in the 

modelling. On the other hand, if the values of the 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼 are insignificant, then the IIA 

assumption holds and the MLR can be used in the modeling process. 

3.3.4. Average Marginal Effects 

          Marginal effects are useful estimates of the impact of a one-unit change of a predictor 

on the dependent variable. Marginal effects (ME) or partial effects, most often measure the 

effect on the conditional mean of y of a change in one of the regressors, say, xj. In the linear 

regression model, the ME equals the relevant slope coefficient but for nonlinear models it 

is quite different. In MLR, the marginal effect of an explanatory variable is the partial 

derivative of the event probability with respect to the predictor of interest (i.e. the change 

in the event probability of the dependent variable for a unit change in the predictor), and 

can be positive or negative. Positive values indicate that the explanatory variable positively 

contributes to the dependent outcome (i.e. would increase the degree of the predictor 
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affecting the match outcome), while negative values indicate that the predictor negatively 

contributes to the dependent outcome.  

         An average marginal effect is interpreted as the effect of a one-unit change in an 

independent variable (keeping all other independent variables constant at their mean 

values) on the dependent variable.   

           For a multinomial logistic regression model, the probability of response level is 

given by: 

𝑝𝑝𝑖𝑖 = 𝑃𝑃𝑃𝑃[𝑦𝑦𝑖𝑖 = 𝑗𝑗|𝑦𝑦𝑖𝑖 = 𝑗𝑗 𝑜𝑜𝑜𝑜 1] =  
𝑒𝑒𝑥𝑥𝑖𝑖

′𝛽𝛽𝑗𝑗

1 + 𝑒𝑒𝑥𝑥𝑖𝑖
′𝛽𝛽𝑗𝑗

 , 

Where 𝑥𝑥′ is the predictor of interest, and 𝛽𝛽𝑗𝑗 is the regression coefficient (i.e. log odd) of 𝑥𝑥′. 

The marginal effect of the 𝑗𝑗𝑡𝑡ℎ predictor is then given by: 

                                            𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

= 𝑝𝑝𝑖𝑖 �
𝜕𝜕𝑋𝑋′𝛽𝛽𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

− ∑ �𝑝𝑝𝑘𝑘
𝜕𝜕𝑋𝑋′𝛽𝛽𝑘𝑘
𝜕𝜕𝜕𝜕𝑗𝑗

�𝐾𝐾  � .  

In Stata, the margins command computes the average marginal effect. 

3.3.5. Goodness of Fit 

Testing the goodness-of-fit is an important step in evaluating a statistical model. 

The goodness-of- fit test basically compares observed and estimated frequencies in groups 

of observations defined by the estimated probability of the reference outcome. It basically 

targets model misspecification and may help detect a poorly fitting model. Most of the 

goodness-of-fit tests for the logistic regression are designed for a binary outcome. As the 

multinomial logistic model can be considered a generalization of the binomial logistic 

regression with multiple possible outcomes, most authors basically just extended their test 

statistic from the binary case. Hosmer and Lemeshow (1980, 1989) proposed an extension 

to the Pearson’s chi-square test using a grouping method based on estimated probabilities. 
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The generalized Hosmer-Lemeshow test is an important goodness of fit measure to assess 

whether or not the observed events match expected events by sorting data according to the 

probabilities estimated from the final fitted MLR model. The sorted dataset is partitioned 

into several equal-sized groups which inherently leads to a construction of a chi-square 

distribution based on the observed and predicted group frequencies.  

          The null hypothesis of the Hosmer-Lemeshow test is that the differences between 

the observed and predicted events are insignificant while the alternative hypothesis is that 

the differences are significant. An insignificant test statistic implies that the fitted model is 

a good fit while a significant test implies that the fitted model is not a good fit. 

          In Stata, the command mlogitgof, table is used to generate the Hosmer-Lemeshow 

test results. 

3.3.6. Model Comparison 

        In as much as the goodness-of-fit test is useful in comparing observed and estimated 

frequencies in groups of observations, it is not something we use in the model building 

stage to compare different models. Several approaches such as the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), the McFadden R-squares, and Cox 

& Snell’s R-squares have all being invented to compare various MLR models and select 

the best.  

       The McFadden R-squares result ranges from 0-1, with higher values indicating better 

model fit. It is defined as: 

                                                                𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀2 = 1 − ln𝐿𝐿𝑀𝑀
ln𝐿𝐿0

 , 

 Where L0 is the value of the likelihood function for a model with no predictors (i.e. with 

only a intercept), and LM is the likelihood function for the model being estimated. The 
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model with a small ratio of likelihoods indicates that the full model is a better fit than the 

intercept model. Thus, when comparing two models on the same data, the McFadden R-

square would be higher for the model with the greater likelihood. 

        The Akaike Information Criterion (AIC), proposed by Akaike (1973, 1974), is widely 

used for selecting the best model among the candidate models on the same data. The model 

with the smallest AIC among the candidate models is the best model. In the MLR model, 

the subset explanatory variables in the best model is the best subset.  

               AIC has the form: 

                                               𝐴𝐴𝐴𝐴𝐴𝐴 =  −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑘𝑘, 

where k is the number of explanatory variables included in the model. 

          However, the AIC may perform poorly; that is, a model having too many parameters 

tends to be chosen as the best when the sample size is small, or the number of unknown 

parameters is large (Satoh, Kamo, and Imori 2012).  

          The Bayesian Information Criterion (BIC) on the other hand, proposed by Schwarz 

(1978), extends the AIC, arguing from a Bayesian point of view. The BIC has an advantage 

over the AIC since the BIC selects the correct model with a probability of 1 as the sample 

size increases or decreases. The BIC has the form: 

                                            𝐵𝐵𝐵𝐵𝐵𝐵 =  −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑛𝑛) , 

where 𝑛𝑛 is the sample size, 𝐿𝐿 is the maximized likelihood, and 𝑘𝑘 is the number of regressors 

including the intercept. Both the BIC and AIC will be used in the study. In Stata, fitstat, 

dif command provides this model comparison methods. 
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CHAPTER 4: RESULTS 

 

 4.1 Data Description    

The study is based on an analysis of publicly archived match reports and uses no 

experimental data or information that involved human subjects. Data were collected for all 

club matches in the English Premier League, the Italian Serie A, French Ligue 1, German 

Bundesliga, and the Spanish La Liga from the 2014/2015 season to the 2017/2018 season. 

A separate dataset of a national team tournament based on the 2018 FIFA World Cup was 

constructed for comparison purposes. The club dataset consists of 7304 matches while the 

national dataset consists of 64 matches. Club data were obtained from Opta and ESPN 

Soccernet. While FIFA World Cup data are obtained from FIFA website. The descriptive 

statistics of variables are summarized in Table 1. 

Table 1: Description of Variables  

Variables                             Description 
 

Total Percentage 

Match 
Outcome 

   

            1                        Home Win   3373 45.78% 
            2                        Draw 1827 24.8% 
            3                        Home Loss 2168 29.42% 
H/Corner   Home team total corners 
A/Corner   Away team total corners 
H/Sot   Home team shots on target 
A/Sot   Home team shots on target 
H/FK   Home team free kicks 
A/FK   Away team total free kicks 

Note: Total number of games= 7368 
 
As seen in Table 1, football match outcomes (the dependent variable) is modelled using 

the following three categories: 

 Home win:  Occurs when the home team scores more goals than the away team.  
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 Draw: Occurs when the home team number of goals is equal to the away team 

number of goals. 

 Home Loss: Occurs when the home team scored less goals than the away team. 

       Variables used as predictors of match outcomes include the number of corner kicks for 

both the home and away team, the number of shots on target for both the home and away 

team and the total number of free kicks for both the home and away team. Also, a new set 

of dummy variables were created to account for when a home predictor is greater or less 

than an away predictor. 

         The summary statistics of the independent variables hypothesized as affecting 

football outcomes across the different leagues and overall are reported in Table 2. 

Table 2: Summary of Independent Variables  
League Statistic 

 
H/Corner A/Corner H/SOT A/SOT H/FK A/FK 

All   Mean    5.58     4.43     4.78    3.86 13.07   13.54 
   S.D    2.95     2.57     2.58    2.27   4.28     4.36 
England   Mean    5.85     4.71     4.70    3.80 10.65   11.26 
   S.D    3.14     2.64      2.65    2.23   3.42     3.49 
France  Mean    5.35     4.22     4.53    3.74 12.85   13.51 
  S.D    2.76     2.51     2.40    2.27   3.94     4.22 
Germany  Mean    5.18     4.27     5.08    4.12 13.94   14.79 
  S.D    2.84     2.43     2.66    2.31   4.20     4.37 
Italy  Mean    5.82     4.70     4.84    3.92 14.17   14.38 
  S.D    3.07     2.71     2.59    2.30   4.42     4.54 
Spain  Mean    5.68     4.24     4.84    3.78 13.87   13.93 
  S.D    2.88     4.24     2.56    2.23   4.30     4.25 
W/Cup   Mean    4.84     4.53     4.55    3.30 14.11   14.56 
   S.D    2.66     2.27     2.47    1.79   4.43     4.93 

Note: “H” indicates Home team, “A” indicates away team, “SOT” indicates shots on 
target, “FK” indicates Free kicks awarded. 
 
           Since the research is aimed at analyzing if the relative number of each predictors 

affect football results, dummy variables were created to compare the number of each home 

team predictor versus the number of each away team predictor in every game. 
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Table 3: Description of Variables contd. 

Variables 
  

Description 

Corner   

            0  H/corners < A/corners                   

            1  H/corners > A/corners                   

Shot on target  

            0 H/SOT < A/SOT 

            1 H/SOT > A/SOT 

Free kicks    

            0 H/FK < A/FK 

            1 H/FK > A/FK 

 
4.2. Multinomial Logistic Regression Results 
 

The prediction results of the MLR are shown in the following sections; 
 
4.2.1 Multinomial Logit Coefficients 
 

The multinomial logistic regression model estimates (m-1) equations, where m is 

the number of outcome levels of the dependent variable, and the mth  equation is relative to 

the reference group. In this research, home win is considered as the reference group (base 

outcome) because it is the most frequent outcome of football games, and the other outcome 

levels (i.e. home loss and draw) are estimated relative to home win. The standard 

interpretation of the multinomial logistic regression is that for a unit change in the predictor 

variable, the probability of one of the outcomes relative to the referent group is expected 

to change by its respective parameter estimate given the other predictors in the model are 

held constant.               

    If the coefficients are positive, then the predictors would increase the likelihood 
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of the match outcome and if the coefficients are negative, then the predictors would 

decrease the likelihood of the match outcome.  

Table 4.  
Multinomial Logistic Coefficient Estimates 
 ALL  England France Germany 
Independent 
Variable 

   LEAGUES    

  DRAW   
     
CORNER 0.443*** 0.325* 0.686*** 0.395* 
 (0.0640) (0.140) (0.140) (0.154) 
SOT -1.333*** -1.054*** -1.356*** -1.225*** 
 (0.0656) (0.142) (0.142) (0.159) 
F/K -0.0594 0.0642 -0.111 -0.295 
 (0.0612) (0.133) (0.135) (0.153) 
CONS 0.00856 -0.129 -0.0982 0.0685 
 (0.0608) (0.130) (0.131) (0.144) 
  HOME LOSS   
     
CORNER 0.618*** 0.640*** 0.823*** 0.596*** 
 (0.0661) (0.147) (0.144) (0.164) 
SOT -2.521*** -2.576*** -2.301*** -2.508*** 
 (0.0692) (0.156) (0.149) (0.172) 
F/K          0.129 0.0775 0.222 0.234 
 (0.0625) (0.140) (0.136) (0.155) 
CONS 0.428*** 0.387** 0.143 0.326* 
 (0.0583) (0.123) (0.128) (0.142) 
N 7368 1520 1520 1224 

 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
Note: “SOT” indicates shots on target, “FK” indicates Free kicks awarded. 
 
          Many of the estimated coefficients in Table 4 themselves render interesting plausible 

explanations, especially the shots target variable. For example, in all leagues, when home 

teams play more shots on target, they have a lower log likelihood ratio of losing over 

winning the game than away teams. This is consistent with previous findings such as Collet 

(2012) who claims that there is a significant relationship between shooting efficiency and 

overall team success. Collet’s conjecture is indirectly corroborated by Hacker’s (2013) 
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findings that even though possession is a key factor in relative team success, the ability to 

convert possessions into shots on goal distinguishes successful teams from unsuccessful 

teams. 

          For the corner predictor, across all leagues, when home teams play more corner 

kicks, they have a slightly higher log likelihood ratio of drawing or loosing over winning 

the game. This is also consistent with previous findings such as Baranda (2010) who claims 

that match status plays a huge role on the number of corner kicks played. The losing team 

tends to intensify their attacks, which increases the probability of getting comer kicks. 

However, free kicks are found to be insignificant across all leagues.  

Table 4.  
Multinomial Logistic Coefficient Estimates contd. 
       Italy Spain World Cup 
Independent 
Variables 

   

  DRAW  
    
CORNER 0.563*** 0.252 -0.298 
 (0.147) (0.142) (0.803) 
SHOTS -1.664*** -1.397*** -1.103 
 (0.151) (0.146) (0.809) 
F/K 0.0342 -0.105 1.510 
 (0.136) (0.136) (0.803) 
CONS 0.143 0.129 -0.729 
 (0.136) (0.147) (0.706) 
  HOME LOSS  
    
CONRER 0.545*** 0.558*** -0.453 
 (0.149) (0.147) (0.622) 
SHOTS -2.709*** -2.652*** -0.701 
 (0.156) (0.152) (0.631) 
F/K 0.128 0.0305 -0.458 
 (0.139) (0.139) (0.647) 
CONS 0.677*** 0.570*** 0.800 
 (0.128) (0.142) (0.508) 
N 1520 1520 64 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Note: “SOT” indicates shots on target, “FK” indicates free kicks awarded. 
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4.2.2 Multinomial Logit Marginal Effects 
 

Marginal effects are defined as the slope of the prediction function at a given value 

of the explanatory variable and thus inform us about the change in predicted probabilities 

due to a change in a particular predictor. The marginal effect reflects the impact of one-

unit change of a predictor on the event probability of the predicted variable (keeping all 

other predictors constant). In MLR,  the marginal effect of an explanatory variable is the 

partial derivative of the event probability with respect to the predictor of interest (i.e. the 

change in the event probability of the dependent variable for a unit change in the predictor), 

and the could be positive or negative. Positive values indicate that the predictor would 

positively contribute to the football outcome (i.e. would increase the probability of home 

win, draw, or home loss), while negative values indicate that the predictor would negatively 

contribute to the football outcome.  

          The signs of the estimated marginal effects reported in Table 5 are generally 

consistent across all leagues. For instance, in the English Premier League, the variable 

corner has a marginal effect of 9.81% (negative and significant), for home win. This 

implies that every game the home team play more corner kicks then the probability that the 

home team won decreases by 9.81%. Similarly, the corner has a marginal effect of 8.5% 

(positive and significant) for home loss, which implies that every game the away team play 

more corner kicks, the probability that the away team lost increases by 8.5%. This could 

be because the losing team tends to attack more when in search of goals, and corner kicks 

are product of attacking play. 
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         For shots on targets, take for instance in Italian Serie A, the shots predictor has a 

marginal effect of 41.84% (positive and significant) for home win, which implies that when 

the home team plays more shots accurately than the away team the probability that the 

Table 5.  
Multinomial Logit Marginal Effects Estimates 

LEAGUES       1     2    3 
  Home Win   Draw Home Lose 
All Leagues 
 

CORNER -0.1072*** 
(0.0110) 

0.0343***  
(0.0105) 

0.0729***    
(0.0101) 

 
 

SOT 0.3863***   
(0.0074) 

-0.0517*** 
(0.0088) 

-0.3346***   
(0.0077) 

 
 

F/K -0.0060  
(0.0107) 

-0.0210    
(0.0102) 

0.0270 
(0.0098) 

     
England 
 

CORNER -0.0981***   
(0.0249) 

0.0131***   
(0.0234) 

0.0850***   
(0.0221) 

 
 

SOT 0.3662***   
(0.0175) 

-0.0055***   
(0.0198) 

-0.3607***   
(0.0169) 

 
 

F/K -0.0147   
(0.0240) 

0.0062  
(0.0227) 

0.0084   
(0.0216) 

     
France 
 

CORNER -0.1554***   
(0.0239) 

0.0638*   
(0.0228) 

0.0916***   
(0.0222) 

 
 

SOT 0.3734*** 
(0.0172) 

-0.0734*    
(0.0199) 

-0.3000***   
(0.0180) 

 
 

F/K -0.0097    
 (0.0237) 

-0.0380   
 (0.0226) 

0.0478    
(0.0215) 

     
Germany 
 

CORNER -0.1011***   
(0.0274) 

0.0300*    
(0.0258) 

0.0711**   
(0.0245) 

 
 

SOT 0.3760***    
(0.0191) 

-0.0443***   
(0.0221) 

-0.3316***   
(0.0190) 

 
 

F/K 0.0113   
(0.0268) 

-0.0724    
(0.0257) 

0.0611    
(0.0235) 

     
Italy CORNER 

 
-0.1071***    
(0.0241) 

0.0581***   
(0.0233) 

0.0489***   
(0.0227) 

 SOT 
 

0.4184***   
(0.0146) 

-0.0798**   
(0.0192) 

-0.3329***  
(0.0168) 

 F/K 
 

-0.0153*   
(0.0227) 

-0.0044*   
(0.0222) 

0.0197   
 (0.0216) 

     
Spain CORNER 

 
-0.0793**   
(0.0241) 

0.0037***  
(0.0226) 

0.0756**   
(0.0219) 

 SOT 
 

0.3978***  
(0.0150) 

-0.0529***  
(0.0184) 

-0.3449***   
(0.0155) 
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 F/K 
 

0.0080    
(0.0232) 

-0.0210   
 (0.0219) 

0.0129    
(0.0213) 

Standard errors in parentheses.  * p < 0.05, ** p < 0.01, *** p < 0.001 
Note: “SOT” indicates shots on target, “FK” indicates free kicks awarded. 
             
home team wins the game increases by 41.84%. Similarly, the shots predictor has a 

marginal effect of 33.29% (negative and significant) for home loss, which implies that 

when the home team plays fewer shots accurately than the away team, the probability that 

the home team wins that game decreases by 33.29%.  The marginal effect of the total free 

kicks predictor on match outcomes is insignificant across all leagues 

4.3. Multinomial Logistic Regression Assumptions 
 
4.3.1. Likelihood Ratio and Wald test 
 
Table 6. Likelihood Ratio (LR) and Wald Test results 
 
Test 
 

# Observations  Test Statistic  p-value 

LR 
 

  7367 2933.20 0.0000 

WALD 
 

  7367 1808.14 0.0000 

 
        The likelihood ratio (LR) statistic test is used for testing the effect of any independent 

variable on the outcome (dependent variable). The null hypothesis of this test is that the 

predictor variables do not affect the predicted variable. It is calculated by obtaining the log 

likelihood of the observations with just the outcome in the model with the intercept alone. 

The final fitted model is then calculated by obtaining the log likelihood of observations 

with all the predictors in the model. The difference between these two models yields a chi-

square Likelihood ratio statistic which is a measure of how well the independent variables 

affect the dependent variable categories. A significant LR statistic indicates that there is 

evidence that the predictors are effective, and they have contributed to the prediction of the 

outcome. On the other hand, if the LR statistic is insignificant then there is evidence that 
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the predictors are not effective. The results in Table 6 indicates that the LR stat for match 

outcome is significant at 95% confidence level with its p-value less than 0.05. This implies 

that all independent/predictor variables included in the model are not equal to zero and that 

they are effectively contributing to modelling the impacts of corner kicks on match 

outcome for all categories. Thus, the overall chosen models have good fit. 

          The Wald test, on the other hand, approximates the LR test, but with the advantage 

that it only requires estimating one model. The Wald test works by testing the null 

hypothesis that a set of parameters is equal to some value. In the model being tested, the 

null hypothesis is that the four coefficients of interest (home shots on target, away shot on 

target, home free kicks, and away free kicks) are simultaneously equal to zero. If the test 

fails to reject the null hypothesis, this suggests that removing the variables from the model 

will not substantially harm the fit of the model. The result presented in Table 6 indicate 

that the p-value is less than the generally used criterion of 0.05 so the null hypothesis is 

rejected, indicating that the coefficients are not simultaneously equal to zero. Because 

including statistically significant predictors should lead to better prediction (i.e., better 

model fit) it can be concluded that including these four variables results in a statistically 

significant improvement in the fit of the model.   

4.3.2. Multicollinearity 
 

Multicollinearity is a common problem when estimating linear or generalized linear 

models, including Logistic regression. It occurs when there are high correlations among 

predictor variables, leading to unreliable and unstable estimates of regression coefficients. 

The Multinomial Logit Regression (MLR) model requires that multicollinearity be low 

between predictors in the model. To test this assumption, the Variance Inflation Factor 
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(VIF) is used to detect multicollinearity among all predictors in the MLR model as it is the 

most wildly used test for multicollinearity. The VIF measures how much the variance of 

the estimated regression coefficients is inflated as compared to when the predictors are not 

linearly related; in other words, the VIF measures how much the behavior of an 

independent variable is influenced by its interaction with other independent variables.  

Table 7. Multicollinearity Test; VIF results 
 
Variables  
 

         VIF  

Home Corner 
 

         1.16 

Away Corner 
 

        1.14 

Home total shot on 
target 

        1.12 

Away total shot on 
target 

        1.11 

Home total free kicks 
 

        1.07 

Away total free kicks  
 

        1.06 

Mean VIF        -   1.11 
 
         VIF has a lower value of 1.0 but no upper bound. A value of 1 implies that the 

predictor is not correlated with other variables. The higher the value, the greater the 

correlation of the variable with other variables. Values of more than 4 or 5 are sometimes 

regarded as being moderate to high, with values of 10 or more regarded as very high. As 

seen in Table 7, the VIFs of all independent variables are much less than 4 and for this 

reason, it can be concluded that multicollinearity is not a problem in the data. 

4.3.3. Independence of Irrelevant Alternatives (IIA) 
 
        Multinomial Logit models are valid under the Independence of Irrelevant Alternatives 

(IIA) assumption which states that characteristics of one particular choice alternative do 
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not impact the relative probabilities of choosing other alternatives.  It implies that adding 

or deleting alternative outcome categories does not affect the odds ratios among the 

remaining outcomes The Hausman specification test is used to test the IIA assumption for 

this football outcome model.  

Table 8. Independence of Irrelevant Alternatives (IIA) Assumption results 
 
        Category 
 

              HIIA              p-value 

 
Draw vs. Home loss (2 vs 
3) 
 

 
             5.618   

 
             0.585 

 

         The Hausman test was run on each outcome pair of the dependent variable (i.e. 

football outcome) separately, excluding the base category which in this case is “home win”. 

Since there are just basically just two categories left after the exclusion of the base category, 

the test is performed on just the second and third categories, (i.e., draw vs home loss). The 

null hypothesis of the test is that IIA does not exist and under the alternative hypothesis the 

IIA does exist. The Hausman test statistic is asymptotically distributed as chi square and 

significant values indicates that the IIA assumption is violated.  As seen in Table 8, the 

Hausman test statistic was insignificant at the 95% confidence level with its p-value greater 

than 0.05. This implies that the null hypothesis cannot be rejected, and it can be concluded 

that the IIA assumption has not been violated.  

4.3.4. Goodness of Fits (Hosmer-Lemeshow Statistic) 
 
         The goodness-of-fit tests are based on a comparison of observed and estimated 

frequencies in groups of observations defined by the estimated probability statistic assesses 

whether or not the observed events match the predicted events. The Hosmer-Lemeshow 
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test works by sorting the data according to the probabilities estimated from the final fitted 

MLR model, the sorted dataset is partitioned into several equal-sized groups, in this 

research ten groups. The Hosmer Lemeshow (HL) test statistic follows a chi-square 

distribution that is constructed based on the observed and predicted group frequencies. The 

null hypothesis is that the difference between the observed and predicted events are 

insignificant, so the fitted model is correct, while the alternative hypothesis is that the 

differences are insignificant, so the fitted model has a deficiency. A significant HL test 

statistic implies that we reject the null hypothesis and conclude that the data do not fit the 

hypothesized fitted MLR model. On the other hand, an insignificant HL statistic implies 

that we fail to reject the null hypothesis and conclude that the fitted model is a good fit.  

Table 9. Hosmer-Lemeshow test results 
  
Model 
 

HL statistic p-value 

Corners 
 

  13.410    0.643 

Shot on target 
 

  29.864    0.019 

Free kicks 
 

  14.277    0.578 

Overall model 
 

  28.640    0.026 

Note: Total number of observations is 7367 and total number of groups is 10. 
 
       The results in Table 9 show that even though the HL test statistic for the corner and 

free kicks model are insignificant at the 95% level, the overall model is significant at the 

95% confidence level with a p-value lower than 0.05. This implies that we fail to reject the 

null hypothesis and it can be concluded that the overall models are not a good fit as there 

is no good match between the predicted events and observed events for all categories of 

the dependent variable. Goodness-of-fit tests should be considered as just one of several 
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tools for assessing how fit a model is. Specifically, we cannot conclude that a model fits 

on the basis of a nonsignificant result from the goodness-of-fit test.  

4.3.5. Model Comparison 
 
The McFadden R-square, Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC) are used to asses which model better predicts the outcome. They are applied 

to the intercept only model for each dataset and then they are applied to the full model with 

Table 10. McFadden R-squared, AIC and BIC test results  
 
Criterion 
 

Intercept Full Difference 

McFadden R-
squared 
 

        0.001    0.188   -0.187 

AIC 
 

    15667.270 12750.067 2917.203 

BIC 
 

    15708.699 12846.734 2861.965 

 
 all predictors to capture any improvement in the fitted full model. The McFadden R-square 

treats the log likelihood of the intercept model as a total sum of squares and the log 

likelihood of the full model as the sum of squared errors. It ranges from 0-1, with higher 

value indicating better model fit. AIC and BIC on the other hand, assess the overall fit of a 

model and allows the comparison of both the full and intercept models. The model with 

the smaller AIC and BIC is preferred.  

       As indicated in Table 10, the improvement of the full model over the intercept model 

through these three approaches is clear. The McFadden R-squared is higher in the full 

model while the AIC and BIC values are smaller in the full model. This indicates that the 

fitted full model better predicts the outcomes of the dependent variable, and the predictions 

are effective in modelling the different outcomes of football matches.  
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CHAPTER 5: CONCLUSION 

 

5.1. Conclusion 
 
       This paper applies multinomial logistic regression (MLR) to model the relationship 

between relative number of corner kicks and football outcomes across five different 

domestic leagues and the 2018 FIFA World Cup.  The categories of the dependent variables 

are home win, draw and home loss whereby home win was considered the base outcome 

(reference group). This paper investigated the influence of corner kicks numbers, shot on 

targets (SOT) numbers, and free kicks (F/K) numbers on match outcomes using a wider 

range of datasets, given that past research made use of limited number of independent 

variables. 

      The findings show the existence of a relationship between the relative number of corner 

kicks, shots on target and match outcome are significant. However, even though there 

exists some sort of relationship, the relative number of free kicks played by teams are 

insignificant towards match outcome. With reference to the results, this finding disagrees 

with those of Gordon et al (2013) who claim that corner kicks numbers are statistically 

useless in soccer games. However, the study supported findings by Baranda (2010) and 

Riquelme (2012) who found that match status affects the number of corners in a match and 

how corners are delivered. The results also support Collert (2012) and Hacker (2013) that 

the key to success in a football game is how well possessions are converted into shot on 

goals.  

       In addition, this paper introduces a variety of new procedures in presenting the results 

of the MLR applications that have not being reported in other football research including: 

1) a focus on the assumption of Independent and Irrelevant Alternatives (IIA) that is very 
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important in in the MLR modelling, using the Hausman specification test; 2) testing 

multicollinearity among independent variables as precondition assumption; 3) presenting 

the marginal effects of all the predictors upon the dependent variable; 4) using the 

generalized Hosmer-Lemeshow test as an important goodness of fit measure; and 5) the 

use of McFadden R-squared, the Akaike Information Criteria (AIC) and the Bayesian 

Information Criteria (BIC) as potential goodness of fits and model comparison. Results 

showed the effective use of the MLR approach in analyzing the match outcomes. 

5.2. Future Research 
       
       With regard to future research, the study unveils some interesting as well as obvious 

findings when analyzing the effect of corner kick numbers on match outcome. The current 

study does not consider matches whereby the home team and away team play equal number 

of corner kicks, shots on goal, and free kicks. Therefore, a comparison of how the 

effectiveness of corner kicks regardless of their number affects match outcome should be 

undertaken. Also, the current study does not consider playing style implemented by teams 

such as counter attack, possession, and direct play when analyzing the effects of corner 

kicks on match outcomes. Future studies may devote more attention to how differing styles 

of play affect corner success which simultaneously affects both shot on goals and a team 

success.  
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APPENDIX A 

 

Table 5.  
Multinomial Logit Marginal Effects Estimates contd. 
 
LEAGUES       1     2     3 
      Win   Draw   Lose 
World Cup CORNER 

 
0.0921    
(0.1286) 

-0.0112 
(0.1003) 

-0.0809*   
(0.1252) 

 SHOTS 
 

0.1884*** 
(0.1239) 

-0.1048*   
(0.0973) 

-0.0836***   
(0.1240) 

 F/K 
 

-0.0362*   
(0.1246) 

0.2353   
(0.0898) 

-0.1991*   
(0.1172) 

     
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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APPENDIX B 
 

 
Average Marginal Effects at 95% Confidence Interval  
 

                
 

                 

                   
 
 


