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ABSTRACT

NIRMAL PAUDEL. Dynamic suspension modeling of an eddy-current device: an
application to Maglev.

(Under the direction of DR. JONATHAN Z. BIRD)

When a magnetic source is simultaneously oscillated and translationally moved

above a linear conductive passive guideway such as aluminum, eddy-currents are in-

duced that give rise to a time-varying opposing field in the air-gap. This time-varying

opposing field interacts with the source field, creating simultaneously suspension,

propulsion or braking and lateral forces that are required for a Maglev system.

In this thesis, a two-dimensional (2-D) analytic based steady-state eddy-current

model has been derived for the case when an arbitrary magnetic source is oscillated

and moved in two directions above a conductive guideway using a spatial Fourier

transform technique. The problem is formulated using both the magnetic vector

potential, A, and scalar potential, φ. Using this novel A-φ approach the magnetic

source needs to be incorporated only into the boundary conditions of the guideway

and only the magnitude of the source field along the guideway surface is required in

order to compute the forces and power loss. The performance of this analytic based

steady-state eddy-current model has been validated by comparing it with a 2-D finite-

element model. The magnetic source used for the validation is a radially magnetized

Halbach rotor, called an electrodynamic wheel (EDW).

The 2-D analytic based transient eddy-current force and power loss equations are

derived for the case when an arbitrary magnetic source is moving and oscillating above

a conductive guideway. These general equations for force and power loss are derived

using a spatial Fourier transform and temporal Laplace transform technique. The

derived equations are capable of accounting for step changes in the input parameters,

in addition to arbitrary continuous changes in the input conditions. The equations

have been validated for both step changes as well as continuous changes in the input
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conditions using a 2-D transient finite-element model.

The dynamics of an EDW Maglev is investigated by using both steady-state and

transient eddy-current models. The analytic equations for the self as well as mutual

damping and stiffness coefficients of an EDW Maglev are derived using the 2-D an-

alytic steady-state eddy-current force equations. It is shown that the steady-state

eddy-current model in which the heave velocity is included in the formulation can ac-

curately predict the dynamic behavior of a 2-degree of freedom EDW Maglev vehicle.

The 2-D EDW Maglev vehicle has been built using Matlab/SimMechanicsTM.

A 1-degree of freedom pendulum setup of an EDW Maglev has been built in order

to investigate the dynamics of an EDW Maglev. The dynamic model of an EDW

Maglev has been validated using this pendulum setup. A multi-degree of freedom

Maglev vehicle prototype has been constructed using four EDWs. The dynamics

of the prototype Maglev has been investigated using the Matlab simulations. This

prototype setup will be used to investigate the dynamic behavior of EDW Maglev in

the future.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

As the world’s population grows, the demand for fast and reliable public trans-

portation has also been steadily increasing. It is most likely that conventional forms

of transportation such as automobiles and air services will not be able to fulfill the

demands placed on them by the increased population densities.

The innovative form of transportation using magnetic levitation (Maglev) that uti-

lizes magnetic fields in order to create suspension, propulsion and guidance forces has

been proposed as a viable alternative to existing transportation, more specifically to

the conventional wheel-on-rail trains. Maglev technology offers several benefits such

as reliability, safety, convenience, and compactness to name a few that are now be-

coming the basic requirements for the 21st century’s modern transportation systems.

Maglev’s non-contact nature of lift, thrust and guidance force production enables this

technology to operate at speeds higher than 500km/h with low guideway maintenance

cost, relatively low energy consumption and low vibrations, therefore producing low

noise and pollution to the environment [1]. Since Maglev does not operate on wheels,

the technology is immune to slippage and is less susceptible to adverse weather con-

ditions. In addition, Maglev vehicles can operate on steep gradients and small curve

radii [2].

Maglev vehicle technology has been studied for several decades [3–14] and numer-

ous experimental as well as theoretical investigations, have been undertaken [2,7,9,15–

32]. Maglev technology is not just limited to theory and laboratory scale setups, full

scale Maglev vehicles have been successfully implemented in countries such as China

[33], Japan [34,35] and South Korea [12]. The interest in this technology is increasing
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within the USA and several companies are trying to build commercially viable Maglev

operations [36, 37]. The full scale demonstration systems have shown that Maglev is

safe, reliable and affordable to the public. Unfortunately, the current Maglev tech-

nology has not been commercially successful and this is likely due to the expense

involved with building the infrastructure for this technology.

Different methods for the electromagnetic suspension or levitation, propulsion and

guidance are proposed by various authors utilizing electromagnets [38], permanent

magnets [39–41] and superconducting magnets [34,42,43]. Each of these concepts has

its own advantages and disadvantages; each will briefly be discussed in the following

sections.

1.2 Types of Suspension Technologies

Maglev systems can be broadly classified into two types. An attractive type

called electromagnetic suspension (EMS) and a repulsive type called electrodynamic

suspension (EDS). Each of these types of Maglev will be briefly discussed.

1.2.1 Electromagnetic Suspension

Electromagnetic suspension (EMS) is achieved by utilizing the force of attraction

between the electromagnets on a vehicle and a ferromagnetic rail placed on the un-

derside of an elevated guideway as shown in Figure 1.1 and Figure 1.2. Maglev using

EMS generally operates with a small air-gap at around 10mm. The separated type

suspension and guidance EMS used by the German Transrapid is shown in Figure

1.1. Although the ferromagnetic body cannot be suspended in stable equilibrium in

a static magnetic field [44], stability of EMS can be achieved by actively controlling

the current in the electromagnets to maintain a nominally constant gap between the

magnets and ferromagnetic guideway [45].

An integrated suspension and guidance type EMS, as shown in Figure 1.2 has been

used by the Japanese HSST [2] and South Korean UTM [2]. The guidance force is

created via the lateral reluctance force of attraction between the electromagnets and
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Figure 1.1: Transrapid EMS with levitation and guidance electromagnets separated [2].

Figure 1.2: Japanese HSST with levitation and guidance electromagnets integrated [46].

the iron-rail. The interaction between the guidance and suspension for the integrated

suspension and guidance type EMS increase at high speed, making the active control

of the air-gap more challenging [2, 47]. Therefore, the system is better suited for low

speed whereas the separated guidance and suspension system is preferred for high

speed operation [2].
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MagneMotion’s M3 vehicle as illustrated in Figure 1.3, has an array of permanent

magnets (PMs) in addition to electromagnets. The PMs provide suspension and

guidance forces as well as provide the field for the linear synchronous motor for

propulsion [37, 48]. The M3 Maglev use the PM in conjunction with control coils to

achieve a magnetic air-gap of 20mm [37]. The use of superconductors for EMS has

(a) The PMs and propulsion windings of M3 [48]. (b) The preliminary vehicle and guide-
way design of M3 Maglev [37].

Figure 1.3: MagneMotion M3 Maglev system.

also been proposed by various authors [43, 49, 50]. The magnetic fields produced by

high temperature superconductors will be strong compared with electromagnets but

will require a separate cooling system, therefore, this is likely to be very expensive.

1.2.2 Electrodynamic Suspension

When magnets located on a vehicle are translationally moved above a conductive

sheet guideway or coils, currents are induced in the coils or guideway that creates an

opposing magnetic field. This induced magnetic field interacts with the field produced

by the magnet to create a repulsive force and lifts the vehicle. Thus EDS is achieved

by the repulsive force between the source field and this induced field. The demerit

of EDS is that the induced current in the guideway results in a magnetic drag force

and power loss. The magnetic drag force increases with the increase in speed until

it reaches a peak value and then slowly decreases as the speed further increases.

This is illustrated in Figure 1.4. Although the drag force decreases at high speed,
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aerodynamic drag is increasing at the square of the velocity. The propulsion system

should therefore be capable of overcoming this magnetic drag plus aerodynamic drag.

Since, the EDS system can produce enough lift (to overcome the weight) only at

sufficient speed, a system should be propelled on rubber-wheels like an airplane or

secondary suspension is required during the starting.
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Figure 1.4: Normalized force of EDS Maglev for different translational velocity.

EDS using the superconducting coils mounted on the vehicle interacting with

the conducting guideway was first proposed by Powell and Danby in 1966 [38, 51,

52]. Intensive analytical and experimental research, particularly in the 1970’s, was

undertaken to investigate the force produced by moving magnetic sources above a

conductive guideway [53–57]. The finite conductive sheet edge-effect and channel-

effects were also studied [58]. Most of these studies were carried out for high-speed

Maglev applications.

Using a judicious guideway design EDS can be considered to be an inherently

stable system at steady-state condition (according to Earnshaw’s theorem) [44]. The

EDS system have inherently low suspension and guidance damping coefficients and it

decreases further at high speed. In fact, this damping can become negative [56,59,60].
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Since the passive damping is inadequate, active control is always required for the

operation on any un-steady state conditions to maintain the ride quality and passenger

safety [61, 62]. Various damping techniques can be applied to maintain the stability

of the vehicle. For example, passive or active electrodynamic primary suspension

damping, passive or active mechanical secondary damping [63].

EDS using superconducting coils, as shown in Figure 1.5, has been developed by

Central Japan Railways. The MLX01 high-speed system, operates at a suspension

height of about 11cm above the guideway using a vertical null-flux structure that

provides both lift and guidance force for the vehicle [64]. This MLX01 system is the

world fastest Maglev system with a record-high speed of 581km/h [35].

Rare earth PMs have also been used for EDS. For example, General Atomic’s

Inductrack as shown in Figure 1.6 use a dual-Halbach array of PMs for suspension

and linear synchronous motor for the propulsion [18, 36].

(a) Guidance system (b) Levitation system

(c) Propulsion system (d) MLX01 Guideway

Figure 1.5: The Japanese MLX01 Maglev using null-flux structure [65].
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(a) Urban Maglev Vehicle and Guideway [17]. (b) Dual-Halbach Array Configuration.

(c) Inductrack Test Vehicle [17]. (d) Vehicle-to-Guideway Arrangement [17].

Figure 1.6: The Inductrack Maglev model using dual-Halbach array and linear synchronous
motor.

1.3 Types of Propulsion Technologies

The techniques that have been proposed for the propulsion of a Maglev vehicle

are the linear induction motor (LIM) [3, 66–69], the linear synchronous motor (LSM)

[70–72], the linear reluctance motor [73–77], the DC linear motor [24, 78–81] and the

segmented rail phase induction motor [82–84]. Only the most common techniques

such as LIM and LSM will be discussed in detail in the following sub-sections.

1.3.1 Linear Induction Motor

The LIM is similar to the conventional rotary induction motor except that the sta-

tor (primary) and rotor (secondary) are cut open and flattened such that it produces

a linear force instead of torque. Unlike a rotary induction motor, the LIM has an

open air-gap and a finite length which causes “end-effects” [66, 67]. The basic opera-
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tion principle of the LIM is similar to its rotary counterpart. Time-varying magnetic

fields are produced in the air-gap by the primary side which induces eddy-currents in

the secondary. The induced eddy-currents interact with the air-gap flux to produce

the thrust force by Lorentz’s law. LIMs are broadly divided into two different types:

single sided (SLIM) and double sided (DLIM) as shown in Figure 1.7 and Figure 1.8.

The primary of the SLIM is typically placed horizontally flat on to the guideway.

The SLIMs can be further divided into two classifications depending on the length

of the primary compared to the secondary as the long-stator and the short-stator

LIMs as shown in Figure 1.7. The primary is composed of a conductive plate such as

aluminum placed on top of back iron. This conductive plate provides a low resistance

path for the induced currents and the back iron improves the magnetic circuit path.

Figure 1.7: Single sided linear induction motor (a) short-stator SLIM (b) long-stator SLIM.

Figure 1.8: Double sided linear induction motor.

DLIM usually has a vertically positioned conducting secondary on the guideway

and the short dual primary attached to the vehicle on either side [69]. In the SLIM,

the inherently large attractive force between the primary and the secondary back-

iron is significantly reduced and sometimes becomes repulsive at high-speed due to the

induced current in the secondary [41]. Although LIMs are considered the best low cost

solution for the production of direct linear motion, they suffer from a low power factor,

when operating at large airgap, heavy weight and the necessity of a very long primary
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to overcome the end-effects problems at high-speed [70,85]. These problems are more

pronounced in high-powered and high-speed applications [68]. However, the use of

LIMs for propulsion has the structural advantage as it is simple and strong. Therefore,

LIMs are only being used for low and medium-speed transportation applications.

The concept of using LIMs for the propulsion was proposed a century ago [69,86].

However the concept was not developed for several decades. The first big transporta-

tion research project using LIMs was perhaps the Westinghouse ‘Electropult’ aircraft

launcher developed in 1946 [87]. However this project was not continued because of

the associated initial capital cost [88]. The interest in the application of DLIMs for

high-speed transportation gained momentum during the sixties and seventies [3, 86].

This is because the DLIMs has a better thrust performance than the SLIMs for the

same weight and because of its sandwich structure the attractive force between the

primary and secondary is cancelled in DLIMs. However, the guideway structure for

DLIM is complicated compared to SLIM. Recently there has been a renewed interest

in using LIMs for aircraft launch applications in the USA [89–91]. A summary of

recent and proposed projects using different types of propulsion system is presented

in Table 1.1.

Table 1.1: Current status of Maglev projects around the world [85].
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1.3.2 Linear Synchronous Motor

The linear synchronous motor (LSM) is a type of linear motor in which the me-

chanical speed is in synchronism with the magnetic field motion. This is analogous

to its rotary counterpart. The propulsive force is produced by the interaction of a

travelling electromagnetic field on the guideway with an array of permanent magnets,

electromagnets or a variable reluctance rail on the vehicle [71]. The guideway’s trav-

elling field is created by either a sinusoidally distributed current carrying poly-phase

windings or by an electronically switched direct current circuit [71]. For high-speed

Maglev applications, sinusoidally distributed 3-phase windings packed in the guideway

are typically used. The speed is continuously adjusted by controlling the frequency

of the guideway alternating current through the poly-phase windings. Electromag-

netic braking can be achieved by reversing the direction of current in the windings.

The motor actually acts as a generator during this reverse operation and the energy

generated can be re-used and fed back to the grid [1].

The German Transrapid system uses a LSM with steel core excitation electromag-

nets embedded in the vehicle and the poly-phase stationary windings on the guideway,

as illustrated in Figure 1.9. Whereas the Japanese MLX001 Maglev test system uses

air-core superconducting electromagnets mounted on the vehicle and three-phase sta-

tionary windings on the guideway [71].

Figure 1.9: The LSM propulsion used for German Transrapid [72].
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Various excitation systems can be used in LSMs such as PMs in the reaction rail,

PMs in the armature (passive reaction rail), electromagnetic excitation system (with

winding), superconducting excitation system and passive reaction rail with saliency

(variable reluctance motor) [71].

The LSM can be divided into two types, the long-stator and short-stator [85, 92].

For high-speed applications, long-stator LSM is preferred because it has a higher

efficiency as well as higher power factor compared with the LIM [2]. Laminated iron

is used within the guideway stator windings in order to reduce eddy-current loss. Most

current and proposed high-speed Maglev projects are using LSM for the generation

of thrust force as illustrated in Table 1.1.

1.4 Integrated Propulsion and Suspension Techniques

Integrated propulsion and suspension techniques use the same passive guideway

to achieve two forces; thrust and lift simultaneously. Since the same guideway is

used for thrust and lift, construction cost could be significantly reduced using this

technique. However, the design of the motor that can generate the desired suspension

and propulsion forces simultaneously is challenging and complicated. Various meth-

ods have been proposed to obtain the simultaneous lift and thrust using a passive

guideway [38, 93, 94].

1.4.1 LIM Using Magnetic Attraction

Rohr Inc. demonstrated an integrated method in which a LIM was used for

propulsion and the normal attraction between the LIM primary and secondary was

used for suspension. The 3.4 ton ROMAG vehicle system was demonstrated in 1972

[93]. This test vehicle used two linear induction motors, one on each side of the

vehicle such that both traction and dynamic active suspension was provided. The

disadvantage with this approach is that the system can only operate at low-speeds

since the attractive force is dramatically reduced at high-speeds and can become

repulsive. Hence, this method is not efficient and safe for high-speed applications.
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This method has more recently been considered for steel plate transportation using

a transverse flux LIM [93].

1.4.2 Linear Reluctance Motor

Ross proposed that a linear reluctance motor (LRM) could be used to provide

both a lift force and propulsion force. The lift force would be provided by attraction

of the iron and the propulsion by the reluctance forces created between the salient

guideway poles [93]. Unfortunately, this approach suffers from a low power factor

since only AC excitation is used [93].

1.4.3 Iron Cored LSM

An iron cored linear synchronous motor was proposed by Levi in 1973 using both

a DC and AC excitation system on the same LRM primary [95]. This combined ap-

proach could overcome the low power factor problem associated with LRM [95, 96].

Different guideway configurations such as homopolar [97], heteropolar [98] and zig-zag

[99] have been proposed for iron cored LSM in which the lift force and magnetiza-

tion fields are produced by DC excitation whereas the thrust is produced by the

synchronous interaction of the AC windings with the salient pole guideway [98–100].

The concept was demonstrated experimentally by Boldea using a 4-ton, 4-m long

research vehicle, Magnibus-01 using a transverse-flux iron cored LSM [7, 8].

The homopolar LSM has been considered for high-speed Maglev use in Switzerland

(called Swissmetro) [101]. The concept involved using partially evacuated tunnels in

order to reduce the aerodynamic drag. Unfortunately, the Swissmetro went into

liquidation in November 2009 due to the lack of federal funding [102].

1.4.4 Electromagnetic River

Electromagnetic River (ER) concept was proposed by Eastham and Laithwaite

[103, 104]. As mention in section 1.3.1, when the LIM secondary is used without the

back-iron a significant amount of repulsive force between the primary and secondary

is produced, particularly at high-speed. In addition, a large propulsion force can be
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produced if the slip is controlled [103]. Therefore, ER can be used for integrated

suspension and propulsion applications. However, the ER concept has several disad-

vantages such as having an extremely low power factor, a low lift-to-weight ratio and

it suffer from edge-effect problems therefore a very long primary is required for effi-

cient operation [105, 106]. Although various methods have been proposed to improve

the performance like using superconducting windings for greater lift-to-weight ratio

or cooling the windings, the ER concept has never progressed past the small scale

experimental setup tested by Eastham [104].

Recently the National Aeronautics and Space Administration (NASA) placed a

contract with PRT Advanced Maglev Systems in association with the University of

Sussex to develop a prototype electromagnetic accelerator based on the ER concept

[107]. In [107] the authors claim that the ER concept is not suitable for the high-speed

accelerator because both the levitation and propulsion forces are highly coupled and a

function of the vehicle speed and the primary supply frequency. Therefore, a sophis-

ticated control law is required to precisely control the frequency. The demonstration

accelerator guideway with a model vehicle mounted is shown in Figure 1.10-(a). For

this project, the ER has been modified with separate induction levitation and propul-

sion sub-systems. The induction levitation sub-system as shown in Figure 1.10-(b)

provides the levitation independent of velocity with no propulsion effect. Whilst a

DLIM provides the propulsion with no levitation effects.

1.4.5 Electrodynamic Wheels

The mechanical rotation of a magnetic source such as a radially magnetized mag-

netic rotor above a passive conductive guideway, such as aluminum, will induce eddy-

currents in the guideway. This will results in an opposing magnetic field being created

that interacts with the source magnetic field to produce lift and thrust forces simul-

taneously. Since the airgap flux is associated with the magnetic source field, this

concept does not suffer from a low power factor issue like with the ER concept. How-
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(a) Demonstration of electromagnetic launch as-
sistance track of NASA [108].

(b) The induction levitation of electro-
magnetic launch system [107].

Figure 1.10: The electromagnetic launch assistance system located at the NASA Marshall
Space Flight Center.

ever, the system will have additional losses associated with the mechanical rotation

of the magnetic source.

The inherent eddy-current drag in EMS and EDS can be converted to a thrust

by rotating the magnetic source over the passive guideway [39, 41, 109]. Several

methods have been proposed to rotate the magnetic source over the passive guideway

[41, 110, 111]. For example, the concept of rotating magnetic rotor over a passive

guideway for transportation was first investigated by Davis and Borcherts in 1973

using superconducting magnets with radial and helical configurations [110, 112] as

shown in Figure 1.11.

(a) Radial rotor configuration [112]. (b) Helical rotor configuration [112].

Figure 1.11: Radial and helical superconducting rotor configurations.

After the discovery of rare-earth magnets, researchers have considered rotating
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PM wheels over the conductive guideway instead of superconducting magnets. Fujii

rotated an axial rotor using NdFeB magnets over a passive guideway to generate

the integrated thrust and suspension [39, 40, 111]. Fujii investigated two different

types of wheels; a tilted wheel rotating above an inclined guideway and an overlap

type wheel rotating near the edge of a flat guideway. These topologies are shown

in Figure 1.12. More recently a radially magnetized Halbach rotor rotating above a

Figure 1.12: Magnet wheels rotating above a conductor [40, 113].

passive aluminum guideway was investigated and proposed as a low-cost alternative

for high-speed ground transportation by Bird [41, 109, 114, 115]. The author called

this device an Electrodynamic Wheel (EDW). The concept of an EDW for high-speed

transportation is illustrated in Figure 1.13. The production of the thrust or braking

depends on the relative slip speed, sl, between circumferential speed, vc, and the

translational speed, vx. The slip speed is defined as

sl = vc − vx (1.1)
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If the rotor is rotated at a circumferential speed greater than the translational speed

i.e. at positive slip values, a thrust force can be generated and vice-versa.

Figure 1.13: The translationally moving and rotating EDW above a passive guideway [41].

1.5 Research Goals

The goal of this research is to (1) derive 2-D analytic based steady-state and

transient force equations for the case when a magnetic source such as Halbach rotor

( or multiple Halbach rotors in series) is rotating and/or moving above a conductive

passive aluminum guideway (2) investigate both numerically and experimentally the

dynamics of a sub-scale EDW Maglev. In order to achieve these goals, the following

tasks have been performed:

• A 2-D analytic based steady-state eddy-current model has been developed and

validated.

• A 2-D analytic based transient eddy-current model has been developed and

validated.

• The dynamic electromechanical suspension behavior of a 2-degree of freedom

EDW Maglev has been investigated.
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• A 1-degree of freedom pendulum style experimental setup has been used to ex-

perimentally investigate the dynamic suspension behavior of the EDW Maglev.

• A 4-wheeled sub-scale EDW Maglev vehicle experimental setup has been con-

structed and tested for lateral stability. This setup could be used for the inves-

tigation of the dynamic behavior of an EDW Maglev and design appropirate

control laws.

1.6 Organization of the Thesis

This dissertation is organized in the following format.

Chapter 1 includes the background on different types of Maglev systems includ-

ing a discussion on the various techniques used to create magnetic suspension and

propulsion. The research goals of this dissertation are also outlined.

Chapter 2 includes a review of different techniques for 2-D electromagnetic steady-

state modeling. This is followed by a complete derivation of the steady-state analytical

model for force and power loss. The derived force and power loss equations are

validated by using a steady-state finite element analysis (FEA) model using a Halbach

rotor as a magnetic source.

Chapter 3 presents a brief review of transient eddy-current modeling techniques.

This is followed by a detailed derivation of the transient force and power loss cal-

culations using the spatial Fourier and temporal Laplace transform method. The

performance of the derived analytic equations has been verified by using a transient

FEA models developed in COMSOL and Magsoft.

Chapter 4 presents a detailed review of the dynamics of EDS Maglev systems and

their magnetic damping and stiffness characteristics. It also investigates the dynamic

suspension behavior of the EDS Maglev using EDWs with both steady-state and

transient models developed in Chapter 2. The 2-degree of freedom EDW Maglev has

been simulated. In addition, the analytic equations for the magnetic stiffness and

damping constants are derived using the steady-state force equations.
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In Chapter 5 a 1-degree of freedom EDW pendulum experimental setup is pre-

sented. The various experimental test results has been compared with the analytic

results in this chapter.

Chapter 6 includes the details on the multi-degree of freedom sub-scale EDW

Maglev setup. The dynamic simulation of the experimental Maglev setup are included

in this chapter.

Chapter 7 presents the summary of the thesis and outlines the future direction of

research for the successful control of a sub-scale EDW Maglev vehicle.



CHAPTER 2: A 2D STEADY-STATE ANALYTIC EDDY-CURRENT MODEL

2.1 Introduction

In this chapter the two-dimensional (2-D) analytic steady-state model is devel-

oped for a magnetic source simultaneously moving and/or rotating above a conduct-

ing guideway. The general equation for the tangential and normal components of

the forces as well as the power loss in the guideway is developed. The developed

equations are verified by using the electrodynamic wheel as a magnetic source which

is both rotated and/or translationally moved above a conductive (aluminum) guide-

way. In section 2.2 a review of 2-D eddy-current modeling techniques is presented.

In section 2.3 a 2-D analytic based steady-state model is developed using the quasi-

static Maxwell’s equations. The model has been derived using the vector potential

in the conducting guideway region and the scalar potential in the non-conducting air

region. The physical presence of the magnetic source is accounted for by including

the source fields on the conducting boundary. The governing equations are solved

using the spatial Fourier transform technique. The derived forces and power loss

equations are verified by using a 2-D finite element analysis (FEA) model developed

using COMSOL FEA software [116]. A summary of the chapter is provided in section

2.4.

2.2 A Review of 2-D Eddy-Current Modeling Techniques

The most common techniques that have been utilized for modeling 2-D eddy-

current problems are the equivalent-circuit method, thick and thin conductive sheet

approximation methods, numerical methods and the Fourier transform method. Each

of these techniques will be reviewed in the following sub-sections.
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2.2.1 Equivalent-Circuit Model

The equivalent-circuit modeling technique has been successfully applied by several

authors to develop models for linear induction motors [117–120]. Most of these mod-

els utilize a modified version of general machine theory for rotatory machines. Several

authors have successfully developed complicated equivalent-circuit models of LIMs in-

cluding the various effects such as end-effects, skin-effects and longitudinal end-effects

[121–123]. Most recently, an improved T-model equivalent circuits of a single-sided

LIM has been developed and verified experimentally [124, 125]. The electrodynamic

wheel configuration has a conductive guideway, a finite width, a non-uniform air-gap,

and is not symmetric in 2-D therefore, the 2-D equivalent-circuit modeling technique

would be highly inaccurate [41].

2.2.2 Thick and Thin Conductive Sheet Approximation

The thick conductive sheet technique is based on the assumptions that the guide-

way thickness, b, will always be greater than the magnetic skin depth, δs. i.e. b > δs.

where the skin depth , δs, is related to the source frequency, ωe, and relative perme-

ability of the material, µr, by [41]

δs =

√
2

µoµrσωe
. (2.1)

The use of this technique is limited because it can only be used when the guideway

is very thick compared to the magnetic skin depth or when the source is travelling at

very low speed [41]. Nevertheless, this thick conductive sheet approximation method

for eddy current modeling has been used by several authors [126–129] with various

magnetic sources.

The thin sheet approximation is based on the assumption that the guideway thick-

ness, b, is thin compared to the magnetic skin depth of the dominant frequencies of

the source field i.e. b < δs. Therefore, the induced eddy-current in the conductor is

uniform throughout the guideway thickness.
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Maxwell first proposed the concept of thin sheet approximations based on the

principle of images [130, 131]. Smythe [132] used the method to calculate the torque

produced by magnets or electromagnets moving above a rotating disk. Reitz [54]

expanded on this technique to model the magnetic force on the magnets and coils

moving parallel to and above a conducting plate of infinite length and width. Several

other authors have considered this method for eddy-current modeling for Maglev

applications [131, 133]. The thin sheet approximation has also been used to model

linear induction motors by Yamamura and Ooi [3,134]. These eddy-current problems

are often solved using the vector potential, A [3]. In general the current is uniform

throughout the conductor thickness at low speed but at high speed this is not true.

Therefore, this approach is not applicable for EDW applications where accurate force

prediction across the full range of translational speeds will be needed [41].

2.2.3 Numerical Methods

2-D steady-state eddy-current models have been successfully developed by using a

range of numerical methods such as the finite element method [135–138], finite differ-

ence method [135], boundary element method [135] and the hybrid boundary element

method [139]. Numerical methods are extremely useful since they can be used to solve

complex geometric eddy-current problems. In this research, the model developed in

[41] using the finite element method will be used to validate the performance of the

proposed analytical models. The FEA model was developed in COMSOL v3.5 soft-

ware where both the rotational and the translational motion are included at the same

time. The FEA model is described in detail in [41]. Almost all commercial FEA soft-

ware cannot model both the rotational and translational motion. However, COMSOL

is an exception in which both motions are possible. Therefore, the COMSOL software

is used to develop the FEA model in this research.
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2.2.4 The Spatial Fourier Transform Method

The spatial Fourier transform technique involves Fourier transforming one of the

spatial variables in the direction of motion. This reduces the 2-D partial differential

equations into a 1-D Fourier transformed equation, thus enabling a simple solution

to be derived. The spatial Fourier transform technique has been used to calculate

the force produced when moving an infinitely long coil [140] and also rectangular coil

[55] above a infinitely thick conductor (conducting half-space). The spatial Fourier

transform technique has also been used by several authors to model the linear induc-

tion motor in both 2-D and 3-D [3, 141] and study their performance for high-speed

maglev transportation. 3-D end-effects have also been considered [66, 67]. Excel-

lent agreement between the experimental measurements and the Fourier transform

method were presented in [55, 66, 67].

The spatial Fourier transform technique will be used in this research to represent

the 2-D steady-state model of the EDW rotating and/or moving above a conductive

guideway. This method is adapted because the governing equations as well as the

source field were Fourier transformable and the 2-D model significantly simplified in

the Fourier domain. The detail of this modeling is presented in the following section.

2.3 Fourier Transform 2-D Analytical Steady-State Solution

A computationally fast model is essential if active control of an eddy-current

device is to be implemented. Deriving the 2-D eddy-current forces is a first step

towards the development of such control laws. Since a 2-D model ignores the source

edge-effect and a guideway edge effect; the performance will be different from the

actual experimental results (as shown in section 5.4). However, for the special case

in which the source and conductive guideway are sufficiently wide and uniform then

2-D modeling of the forces can be utilized [142].

Exact modeling approaches often model current sources using simple filament coils

or current sheets that can be easily incorporated into the conductive region’s geometry
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[55, 143]. However, when a current or magnet source has a complex geometric shape

and/or complex motion it is difficult to easily obtain the direct analytic solution by

calculating the forces on the source. An EDW source as illustrated in Figure 2.1 is

an example of one such complex source.

(a) A 2-D Halbach rotor showing mag-
netic field lines

(b) A 3-D Halbach rotor with a finite width

Figure 2.1: A four pole-pair Halbach rotor.

2.3.1 Governing Subdomain Equations

The model used for this analytic based solution is shown in Figure 2.2. It is com-

posed of three subdomains; a conducting guideway region Ω2 and two non-conducting

air regions Ω1 and Ω3. The magnetic source is present only in the upper non-

conducting region Ω1. The material of the conductive guideway is assumed to be

isotropic and linear.

The electromagnetic fields can be accurately modeled using the quasi-static Maxwell’s

equations, where the displacement current is neglected and a moving conductor is

present. The applicable equations are:

∇×E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)
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Figure 2.2: A FEA COMSOL model of a four-pole pair Halbach rotor rotating and transla-
tionally moving above a long conducting guideway. The induced guideway eddy-current are
also shown in the guideway.

∇×H = J (2.4)

J = σ(E + v ×B) (2.5)

where

σ = conductivity of the guideway (Sm-1)

v = velocity vector of the guideway (ms-1)

E = electric field intensity (Vm-1)

H = magnetic field intensity (Am-1)

B = magnetic flux density (T).

3-D FEA eddy-current formulations are often solved by utilizing the magnetic

scalar potential in the air region and the vector potential in the conducting region.

This formulation is often used because the number of unknowns in the non-conducting

region is reduced and the source field only needs to be incorporated on the conducting

boundary region [144, 145]. This is also advantageous for 2-D modeling because it

enables the field and forces to be neatly formulated with respect to only the conducting

boundary. In this thesis a novel formulation using the magnetic scalar potential in

the air region and magnetic vector potential in the conducting region will be used.
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The formulations for both regions are discussed in the following sections.

2.3.2 Non-Conducting Regions

There is no external current in the non-conducting region therefore Ampere’s law

(2.4) reduces down to

∇×H = 0 (2.6)

Since the curl of a gradient is zero the magnetic field intensity, H can be written in

terms of the magnetic scalar potential, φ as

H = −∇φ (2.7)

Therefore, the reflected magnetic flux density, Br due to the induced eddy-current in

the conducting guideway becomes

Br = −µ0∇φ (2.8)

The source field within the non-conducting region will be

Bs = Bs
x(x, y)x̂+Bs

y(x, y)ŷ (2.9)

and the total field in the non-conducting region, Ω1, is then

B = Bs − µ0∇φ1 in Ω1 (2.10)

where φ1 is the magnetic scalar potential due to the induced guideway currents in

region Ω1. Assuming that the magnetic source material is linear then after taking the

divergence of both sides of (2.10) and noting that

∇ ·Bs = 0 (2.11)
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Figure 2.3: Illustration of the conductive and non-conductive regions and boundaries used
by the analytic based 2-D steady-state model.

the formulation in the non-conducting region Ω1 simply reduces to Laplace’s equation:

∇2φ1 = 0 in Ω1 (2.12)

The analogous equation can be obtained for the non-conducting region Ω3. Hence, the

governing equation for non-conducting regions can be obtained by expanding (2.12)

to yield

∂2φn
∂x2

+
∂2φn
∂y2

= 0 in Ωn for n = 1, 3 (2.13)

Due to (2.11) it is not necessary to model the rotor’s field within the non-conducting

region [114,138]. However, the presence of the magnetic source (Halbach rotor in this

case) is analytically accounted for by incorporating the magnetic fields due to the

rotor at the boundary interface Γ12. Thus the problem region that will be solved for

will be devoid of the source within the subdomain. Figure 2.3 shows the subdomains

and boundary conditions that will be used by this model.

2.3.3 Conducting Guideway Region

Since the divergence of a curl is zero, the magnetic flux density can be written in

terms of the cross product of a vector quantity

B = ∇×A (2.14)

The quantity A is called the magnetic vector potential or simply vector potential.

The conducting region Ω2 will be solved using this vector potential, A. Substituting
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(2.5) into (2.4) and noting that

B = µ0H (2.15)

the following expression is obtained

∇×B− µ0σ(E + v ×B) = 0 (2.16)

The magnetic flux density and electric field intensity can be written in terms of vector

potential A and electric scalar potential φ by using

B = ∇×A (2.17)

E = −∂A
∂t
−∇φ (2.18)

Substituting (2.17) and (2.18) into (2.16) gives

∇× (∇×A) + µ0σ(
∂A

∂t
+∇φ− v ×∇×A) = 0 (2.19)

Now using the vector identity:

∇× (∇×A) = ∇ · (∇ ·A)−∇2A (2.20)

and Coulomb guage law

∇ ·A = 0 (2.21)

allows the relation (2.19) to be re-written as

µ0σ
∂A

∂t
−∇2A− µ0σv × (∇×A) + µ0σ∇φ = 0 (2.22)
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In 2-D modeling, the current J and therefore the vector potential A flows only in the

z-direction and hence B and H have only an x-component and y-component but no

z-component. In 2-D the relationship between the vector potential and the magnetic

field component is therefore

∇×Az =

∣∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

0 0 Az

∣∣∣∣∣∣∣∣∣∣∣
= x̂

∂Az
∂y
− ŷ ∂Az

∂x
= x̂Bx + ŷBy (2.23)

where x̂, ŷ and ẑ are the unit vectors in the x, y and z directions and Bx and By are

the projections of the magnetic flux densities along the x and y directions. Since for

2-D modeling, ∇ · Az = 0, ∇ · Jz = 0 there is no source to produce the electric scalar

potential, its value is zero in (2.22) [41]. The detail explanation of this can be found

on section 2.3.1 and section 5.3 of reference [41]. After neglecting the electrical scalar

potential the 2-D equation for a moving conductive media in terms of Az will be

µ0σ
∂Az
∂t
−∇2Az − µ0σv × (∇×Az) = 0 (2.24)

The motional effect of the source translationally moving above the conductive

guideway is incorporated into the conductive region by using the convective term in

(2.24) [114]. Most steady-state based models incorporate only one velocity term, typi-

cally the velocity in the direction of translational motion [3,114,138]. However, in this

research both a translational velocity, vx, and heave velocity, vy, will be considered.

In this case the convective term will be

v × (∇×Az) = (x̂vx + ŷvy)×
(
x̂
∂Az
∂y
− ŷ ∂Az

∂x

)
(2.25)
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Using the vector cross product on (2.25), one obtains

v × (∇×Az) = −
(
vx
∂Az
∂x

+ vy
∂Az
∂y

)
(2.26)

Substituting (2.26) into (2.24) gives

µ0σ
∂Az
∂t
−∇2Az = −µ0σ

(
vx
∂Az
∂x

+ vy
∂Az
∂y

)
in Ω2 (2.27)

If the model is steady-state in which ωe is the source frequency then the vector

potential can be written as

Az(x, y, t) = Assz (x, y)ejωet in Ω2 (2.28)

where the superscript ‘ss’ denote ‘steady-state’. Substituting (2.28) into (2.27) and

expanding, one obtain

∂2Assz
∂x2

+
∂2Assz
∂y2

= µ0σ

(
jωeA

ss
z + vx

∂Assz
∂x

+ vy
∂Assz
∂y

)
in Ω2 (2.29)

2.3.4 Boundary Conditions

The boundary conditions for the electromagnetic fields at the top boundary in-

terface between the non-conducting and conductive guideway regions, Γ12 are [146]

nc · (BΩ1
−BΩ2

) = 0 , on Γ12 (2.30)

nc × (HΩ1
−HΩ2

) = 0 , on Γ12 (2.31)

Since the permeability of the non-conducting and conducting regions is the same, the

boundary condition (2.31) can be written as

nc × (BΩ1
−BΩ2

) = 0 , on Γ12 (2.32)
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where BΩ1
is the magnetic flux density at the boundary Γ12 due to scalar potential

and source field

BΩ1
= Bs − µ0∇φn (2.33)

BΩ2
is the magnetic flux density in region Ω2 due to the vector potential

BΩ2
= ∇×A (2.34)

Substituting (2.33) and (2.34) into (2.30) and (2.32) one obtains [144, 147, 148]

nc · (Bs − µ0∇φ1) = nc · (∇×A) , on Γ12 (2.35)

nc × (Bs − µ0∇φ1) = nc × (∇×A) , on Γ12 (2.36)

Utilizing the relation (2.23) and vector algebra on (2.35) and (2.36), the boundary

condition equations simplify down to

− µ0

∂φ1(x, b)

∂x
+Bs

x(x, b) =
∂Assz (x, y)

∂y

∣∣∣∣
y=b

, on Γ12 (2.37)

− µ0

∂φ1(x, y)

∂y

∣∣∣∣
y=b

+Bs
y(x, b) = −∂A

ss
z (x, b)

∂x
, on Γ12 (2.38)

If the source is only present in Ω1 then the bottom conducting surface, Γ23 has no direct

connection to the source field. Therefore, the normal and tangential components at

the Az − φ interface are

− µ0

∂φ3(x, b)

∂x
=
∂Assz (x, y)

∂y

∣∣∣∣
y=b

, on Γ23 (2.39)

− µ0

∂φ3(x, y)

∂y

∣∣∣∣
y=b

= −∂A
ss
z (x, b)

∂x
, on Γ23 (2.40)
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The source field is assumed to be centrally located at x = 0 and the guideway is

sufficiently long to ensure that the field is zero at the guideway ends, x = ±L, such

that

Bs
x(±L, y) = 0 , on Γ2 (2.41)

Bs
y(±L, y) = 0 , on Γ2 (2.42)

Az(±L, y) = 0 , on Γ2 (2.43)

Also, on the outer non-conducting boundaries, one has

φ1 = 0 , on Γ1 (2.44)

φ3 = 0 , on Γ3 (2.45)

2.3.5 Fourier Transformed Governing Subdomain Equations

The governing equations for the problem regions are given by (2.27) and (2.13).

These equations must satisfy the boundary conditions (2.37)-(2.45). The governing

equations are solved by utilizing the Fourier transform technique. The spatial Fourier

transform [149] for the vector potential and scalar potential with respect to the x-axis

are defined as [150]

Assz (ξ, y) =

∞∫
−∞

Assz (x, y)e−jξxdx (2.46)

φn(ξ, y) =

∞∫
−∞

φn(x, y)e−jξxdx for n = 1, 3 (2.47)

Noting that

∂Az(ξ, y)

∂x
= jξAz(ξ, y) (2.48)

∂2Az(ξ, y)

∂x2
= −ξ2Az(ξ, y) (2.49)
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and taking the Fourier transform on either side of (2.29), will be

− ξ2Assz (ξ, y) +
∂2Assz (ξ, y)

∂y2
= µ0σ (jωeA

ss
z (ξ, y) + jξvxA

ss
z (ξ, y))

+µ0σvy
∂Assz (ξ, y)

∂y
(2.50)

Rearranging (2.50), one obtains

∂2Assz (ξ, y)

∂y2
− µ0σvy

∂Assz (ξ, y)

∂y
− (ξ2 + jµ0σ(ωe + ξvx))A

ss
z (ξ, y) = 0 (2.51)

Defining

γ =
√
ξ2 + jµ0σ (ωe + vxξ) (2.52)

2λ = µ0σvy (2.53)

allows (2.51) to be written as:

∂2Assz (ξ, y)

∂y2
− 2λ

∂Assz (ξ, y)

∂y
− γ2Assz (ξ, y) = 0 (2.54)

The general solution of Assz (ξ, y) can be obtained by solving (2.54) by using

Assz (ξ, y) = M(ξ)eβ1y +N(ξ)eβ2y in Ω2 (2.55)

where

β1 = λ+
√
λ2 + γ2 and β2 = λ−

√
λ2 + γ2 (2.56)

and M(ξ) and N(ξ) are unknowns constants. These unknowns M(ξ) and N(ξ) are

evaluated by solving the boundary condition equations.

The Fourier transform of (2.13) in the non-conducting regions is

∂2φn(ξ, y)

∂y2
= ξ2φn(ξ, y) in Ωn (2.57)
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where n =1 and 3. Solving (2.57) and noting that when moving away from the

guideway along the y-axis in Ω1 and Ω3 the field must reduce to zero, one obtains the

solutions

φ1(ξ, y) = X1(ξ)e−ξy in Ω1 (2.58)

φ3(ξ, y) = X3(ξ)eξy in Ω3 (2.59)

2.3.6 Fourier Transformed Boundary Conditions

Fourier transforming the boundary conditions, (2.37) and (2.38), on the top guide-

way surface one obtains

− jξµ0φ1(ξ, b) +Bs
x(ξ, b) =

∂Assz (ξ, y)

∂y

∣∣∣∣
y=b

on Γ12 (2.60)

µ0

φ1(ξ, y)

∂y

∣∣∣∣
y=b

−Bs
y(ξ, b) = jξAssz (ξ, b) on Γ12 (2.61)

Substituting (2.55) and (2.58) into (2.60) and (2.61) one can obtain

− jξµ0X1(ξ)e−ξb +Bs
x(ξ, b) = β1M(ξ)eβ1b + β2N(ξ)eβ2b on Γ12 (2.62)

− µ0ξX1(ξ)e−ξb −Bs
y(ξ, b) = jξ[M(ξ)eβ1b +N(ξ)eβ2b] on Γ12 (2.63)

Now multiplying (2.63) by j and subtracting (2.63) from (2.62) yields

Bs(ξ, b) = (β1 + ξ)M(ξ)eβ1b + (β2 + ξ)N(ξ)eβ2b (2.64)

where Bs(ξ, b) is an arbitrary source at y = b given by

Bs(ξ, b) = Bs
x(ξ, b) + jBs

y(ξ, b) (2.65)
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Fourier transforming the bottom boundary conditions, (2.39) and (2.40), gives

− jξµ0φ3(ξ, 0) =
∂Assz (ξ, y)

∂y

∣∣∣∣
y=0

on Γ23 (2.66)

µ0

φ3(ξ, y)

∂y

∣∣∣∣
y=0

= jξAssz (ξ, 0) on Γ23 (2.67)

Substituting (2.55) and (2.59) into (2.66) and (2.67) one can obtain

− jξµ0X3(ξ) = β1M(ξ) + β2N(ξ) on Γ23 (2.68)

µ0ξX3(ξ) = jξ[M(ξ) +N(ξ)] on Γ23 (2.69)

Now multiplying (2.69) by j and adding (2.68) and (2.69) yields

0 = (β1 − ξ)M(ξ) + (β2 − ξ)N(ξ) (2.70)

The unknowns M(ξ) and N(ξ) can be determined by solving (2.64) and (2.70) as

M(ξ) =
(β2 − ξ)

eβ1b(β2 − ξ)(β1 + ξ)− eβ2b(β1 − ξ)(β2 + ξ)
Bs(ξ, b) (2.71)

N(ξ) = − (β1 − ξ)
eβ1b(β2 − ξ)(β1 + ξ)− eβ2b(β1 − ξ)(β2 + ξ)

Bs(ξ, b) (2.72)

2.3.7 The Vector Potential Solution

The complete steady-state solution of the magnetic vector potential in the con-

ducting region can be obtained by substituting the values of M(ξ) and N(ξ) into

(2.55); one obtains

Assz (ξ, y) =
(β2 − ξ)eβ1y − (β1 − ξ)eβ2y

eβ1b(β2 − ξ)(β1 + ξ)− eβ2b(β1 − ξ)(β2 + ξ)
Bs(ξ, b) (2.73)
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Substituting (2.73) into the Fourier transform of (2.28) gives

Assz (ξ, y, t) = T ss(ξ, y)Bs(ξ, b)ejωet (2.74)

where

T ss(ξ, y) =
(β2 − ξ)eβ1y − (β1 − ξ)eβ2y

eβ1b(β2 − ξ)(β1 + ξ)− eβ2b(β1 − ξ)(β2 + ξ)
(2.75)

can be interpreted as the transmission function for an arbitrary source field, Bs(ξ, b),

imparted on the guideway surface, Γ12. This has a similar form to the reflection

coefficient that is used for non-destructive testing [151, 152]. If the heave velocity is

not included in the model, then the transmission function reduces to

T ss0 (ξ, y) =
(γ + ξ)eγy + (γ − ξ)e−γy

eγb(γ + ξ)
2 − e−γb(γ − ξ)2 (2.76)

This transmission function (2.76) will be used in the next chapter for transient mod-

eling.

The Fourier transformed magnetic flux density within the conductive guideway is

obtained by differentiating (2.74) with respect to x and y. Using (2.23), one obtains

Bss
y (ξ, y) = −∂A

ss
z (ξ, y)

∂x
= −jξT ss(ξ, y)Bs(ξ, b) (2.77)

Bss
x (ξ, y) =

∂Assz (ξ, y)

∂y
=
∂T ss(ξ, y)

∂y
Bs(ξ, b) (2.78)

These steady-state magnetic flux densities will be utilized to calculate the power loss

and forces in section 2.3.9.
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2.3.8 Reflected Field in the Non-Conducting Region

The value of the unknown X1(ξ) in the reflected field for region Ω1 (2.58) can be

obtained by substituting (2.74) and (2.58) into (2.61). After rearranging one obtains

X1(ξ) = − 1

µ0ξ
[Bs

y(ξ, b) + jξT ss(ξ, b)Bs(ξ, b)]eξb (2.79)

The scalar potential equation (2.59) in the non-conducting region is therefore given

by

φ1(ξ, y) = − 1

µ0ξ
[Bs

y(ξ, b) + jξT ss(ξ, b)Bs(ξ, b)]eξ(b−y) (2.80)

The reflected magnetic flux density in Ω1 due to the induced current in Ω2 is then

Br
x(ξ, y) = −µ0

∂φ1(ξ, y)

∂x
= j[Bs

y(ξ, b) + jξT ss(ξ, b)Bs(ξ, b)]eξ(b−y) (2.81)

Br
y(ξ, y) = −µ0

∂φ1(ξ, y)

∂y
= −[Bs

y(ξ, b) + jξT ss(ξ, b)Bs(ξ, b)]eξ(b−y) (2.82)

where the superscript ‘r’ denotes the reflected component. Hence, the x-component

and y-component of the reflected magnetic flux densities are related by

Br
y(ξ, y) = jBr

x(ξ, y) (2.83)

This result is not dependent on the property of the source field. Also from (2.77) and

(2.82), one obtains

Br
y(ξ, y) = [Bss

y (ξ, b)−Bs
y(ξ, b)]e

ξ(b−y) (2.84)

Therefore at y = b, the y-component of the reflected field, Br
y, the source field, Bs

y and

the steady-state flux density, Bss
y , are related by

Br
y(ξ, b) = Bss

y (ξ, b)−Bs
y(ξ, b) (2.85)
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Similarly, the analogous relation for the x-component of the flux density can be ob-

tained as

Br
x(ξ, b) = Bss

x (ξ, b)−Bs
x(ξ, b) (2.86)

2.3.9 Force and Power Equations

The steady-state electric field intensity, Ess
z due to the vector potential, Assz can

be obtained by differentiating (2.74) with respect to time, t. Thus giving

Ess
z (ξ, y) = −dA

ss
z (ξ, y, t)

dt
= −jωeT ss(ξ, y)Bs(ξ, b)ejωet (2.87)

The value of electric field intensity and flux density equations will be utilized to

calculate the power loss and forces in the following sub-sections.

2.3.9.1 Tensor Force Calculation

In 2-D, the normal force, Fy, and tangential force, Fx, per-unit width can be deter-

mined by evaluating Maxwell’s stress tensor [130] over the surface of the conducting

guideway:

F ss
x =

1

2µ0

Re

∞∫
−∞

Bss
x (x, b)Bss

y
∗(x, b)dx on Γ12 (2.88)

F ss
y =

1

4µ0

Re

∞∫
−∞

(
Bss
y
∗(x, b)Bss

y (x, b)− Bss
x
∗(x, b)Bss

x (x, b)
)
dξ on Γ12 (2.89)

where the star superscript denotes complex conjugation. These force equations can

be evaluated in the Fourier domain. Consider the two functions g1(x) and g2(x) which

are limited and integrable across the range x(−∞,+∞). The Fourier transform of

g1(x) and g2(x) is given by

gi(ξ) =

∞∫
−∞

gi(x)e−jξxdx for i = 1, 2 (2.90)
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Parseval’s theorem [150] states that the following integral relation holds

∞∫
−∞

g∗1(x)g2(x)dx =
1

2π

∞∫
−∞

g∗1(ξ)g2(ξ)dξ (2.91)

where g∗1(x) is the complex conjugate of g1(x). Therefore, by utilizing Parseval’s

theorem, (2.91), the normal and tangential forces can be obtained directly within the

Fourier domain, thereby circumventing the need for inverse Fourier transforming [66].

Hence, utilizing (2.91) allows (2.88) and (2.89) to be expressed as

F ss
x =

1

4πµ0

Re

∞∫
−∞

[Bss
x (ξ, b)Bss

y
∗(ξ, b)]dξ on Γ12 (2.92)

F ss
y =

1

8πµ0

Re

∞∫
−∞

[
Bss
y
∗(ξ, b)Bss

y (ξ, b)− Bss
x
∗(ξ, b)Bss

x (ξ, b)
]
dξ on Γ12 (2.93)

where Bss∗
y (ξ, b) and Bss∗

x (ξ, b) are the complex conjugates of (2.77) and (2.78) respec-

tively evaluated at y = b. Substituting (2.85) and (2.86) into (2.92) enables the thrust

force to be written in terms of the reflected and source magnetic flux densities as

F ss
x =

w

4πµ0

Re

∫ ∞
−∞

[Br
xB

s
y
∗+Bs

xB
r
y
∗ +Bs

xB
s
y
∗ +Br

xB
r
y
∗]dξ (2.94)

Each magnetic flux densities term in (2.94) is a function of ξ and b. The detail (ξ, b)

is dropped from each term for convenience. Substituting (2.83) into (2.94) gives

F ss
x =

w

4πµ0

Re

∫ ∞
−∞

[Br
xB

s
y
∗+Bs

xB
r
y
∗ +Bs

xB
s
y
∗ − jBr

xB
r
x
∗]dξ (2.95)

Noting the following two relations

Re[−jBr
xB

r
x
∗] = Re[−j|Br

x|2] = 0 (2.96)
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Re[Bs
xB

r
y
∗] = Re[Bs

x
∗Br

y ] (2.97)

allows the conjugate terms in the thrust equation to be only applied on the source

F ss
x =

w

4πµ0

Re

∫ ∞
−∞

[Br
xB

s
y
∗+Bs

x
∗Br

y +Bs
xB

s
y
∗]dξ (2.98)

Again substituting (2.83) into (2.98) gives

F ss
x =

w

4πµ0

Re

∫ ∞
−∞

[Br
y(B

s
x
∗ − jBs

y
∗) +Bs

xB
s
y
∗]dξ (2.99)

Substituting (2.82) into (2.99) gives

F ss
x =

w

4πµ0

Re

∫ ∞
−∞

[−[Bs
y + jξT ss(ξ, b)Bs](Bs

x
∗ − jBs

y
∗) +Bs

xB
s
y
∗]dξ (2.100)

Noting the fact that

Re[jBs
yB

s
y
∗] = 0 (2.101)

Re[Bs
xB

s
y
∗] = Re[Bs

x
∗Bs

y] (2.102)

enables (2.100) to reduce down to

F ss
x =

w

4πµ0

Re

∫ ∞
−∞
−(jξT ss(ξ, b)Bs)(Bs

x
∗ − jBs

y
∗)dξ (2.103)

where Bs∗ = (Bs
x
∗ − jBs

y
∗) is the complex conjugate of Bs. Therefore, the tangential

force in terms of transmission function and the source magnetic flux density is

F ss
x =

w

4πµ0

Re

∫ ∞
−∞
−jξT ss(ξ, b)|Bs|2dξ (2.104)
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The force equation in terms of vector potential is

F ss
x =

w

4πµ0

Re

∞∫
−∞

−jξAssz (ξ, b)Bs∗dξ (2.105)

The lift force can also be written in terms of the reflected and source field by

substituting (2.85) and (2.86) into (2.93) and rearranging gives

F ss
y =

w

8πµ0

Re

∞∫
−∞

[
Bs∗
y B

r
y +Br∗

y B
s
y −Bs∗

x B
r
x −Br∗

x B
s
x + |Bs

y|2

+|Br
y |2 − |Bs

x|2 − |Br
x|2
]
dξ (2.106)

Using the relation (2.83) it can be noted that

Re[|Br
y |2] = Re[|Br

x|2] (2.107)

and also

Re[Bs
y
∗Br

y ] = Re[Bs
yB

r
y
∗] (2.108)

Re[Bs
x
∗Br

x] = Re[Bs
xB

r
x
∗] (2.109)

these three relations allow the normal force to be written as

F ss
y =

w

8πµ0

Re

∞∫
−∞

[
2(Bs∗

y B
r
y −Br

xB
s
x
∗) + |Bs

y|2 − |Bs
x|2
]
dξ (2.110)

where the conjugate is only applied to the source field terms. Again substituting

(2.83) into (2.110) gives

F ss
y =

w

8πµ0

Re

∞∫
−∞

[
−2Br

x(B
s∗
x − jBs∗

y ) + |Bs
y|2 − |Bs

x|2
]
dξ (2.111)
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Substituting (2.81) into (2.111) the steady-state normal force is

F ss
y =

w

8πµ0

Re

∞∫
−∞

[
2ξT ss(ξ, b)|Bs|2 − 2jBs

yB
s
y
∗ − j2Bs

yB
s
x
∗

−|Bs
y|

2 − |Bs
x|

2
]
dξ (2.112)

Since

Re[(Bs
x + jBs

y)(B
s
x + jBs

y)
∗
] = |Bs

y|2 + |Bs
x|2 + j2Bs

yB
s
x
∗ = |Bs|2 (2.113)

Re[jBs
yB

s∗
y )] = Re[j|Bs

y|2] = 0 (2.114)

the normal force can be written in terms of the transmission function as

F ss
y =

w

8πµ0

Re

∞∫
−∞

(2ξT ss(ξ, b)− 1) |Bs|2dξ (2.115)

From (2.104) and (2.115), it can be concluded that the normal and tangential forces

can be obtained by evaluating the real part and imaginary part respectively using a

single equation.

F ss
y =

w

8πµ0

Re

∞∫
−∞

(2ξT ss(ξ, b)− 1) |Bs(ξ, b)|2dξ (2.116)

F ss
x = − w

8πµ0

Im

∞∫
−∞

(2ξT ss(ξ, b)− 1) |Bs(ξ, b)|2dξ (2.117)

This eliminates the need of evaluating two separate equations for the lift and thrust

force and thus reduces the computational time by half.

The integral term (2ξT ss(ξ, b)− 1) can be simplified further and can be written as

2ξT ss(ξ, b)− 1 =
−µ0σ(s0 + ξvy)(e

αb − e−αb)
(eαb − e−αb)(2ξ2 + µ0σs0) + 2αξ(eαb + e−αb)

(2.118)
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Further simplifying (2.118) one can obtain

2ξT ss(ξ, b)− 1 =
−µ0σ[so + ξvy]

2ξ2 + µ0σso + 2αξ coth(αb)
(2.119)

where

α =
√
λ2 + γ2 (2.120)

so = j(ωeo + ξvxo) (2.121)

and the variables vxo and ωeo are the steady-state velocity and the angular velocity

respectively.

2.3.9.2 Lorentz Force Calculation

The tangential and normal forces can also be evaluated by using the Lorentz

formula [146, 153]. The force density is defined by

F = J×B (2.122)

where J is defined in (2.5) and is re-written here for convenience

J = σ(E + v ×B) (2.123)

In this 2-D formulation the current has only a z-component. The electric field inten-

sity, Ez is given by (2.87) and noting that

v ×B =

∣∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

vx vy 0

Bx By 0

∣∣∣∣∣∣∣∣∣∣∣
= ẑ(vxBy − vyBx) (2.124)
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allows the z-component of the steady-state current density, Jssz , in region Ω2 to be

expressed as

Jssz = σ[vxB
ss
y (ξ, y)− vyBss

x (ξ, y)− Ess
z (ξ, y)] (2.125)

Now substituting (2.85), (2.78) and (2.79) into (2.121) one can obtain the current

density in terms of vector potential as

Jssz = σ

(
−jξvxAssz (ξ, y)− vy

∂Assz (ξ, y)

∂y
− jωeAssz (ξ, y)

)
(2.126)

Simplifying (2.126), current density becomes

Jssz = −σ
(
j(ξvx + ωe)A

ss
z (ξ, y) + vy

∂Assz (ξ, y)

∂y

)
(2.127)

Utilizing Parseval’s theorem, the Lorentz force can be evaluated directly in Fourier

domain and be written as

F ss
x = − w

4π

∞∫
−∞

∫ b

0

Re[Jssz .B
ss
y
∗]dydξ (2.128)

F ss
y =

w

4π

∞∫
−∞

∫ b

0

Re[Jssx .B
ss
x
∗]dydξ (2.129)

The integration of these Lorentz force equations can be evaluated numerically in

Matlab using the ‘quad2d ’ function.

2.3.9.3 Force Calculation Using Magnetic Charge

The thrust and lift forces can also be calculated using the magnetic charge model.

The magnetic field due to the Halbach rotor can be modeled using a magnetic charge

sheet. If the magnetic charge is distributed on a planar sheet at y = b then the charge

can be used to represent the source field. In this case the magnetic charge can be
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defined in terms of magnetic flux density of the Halbach rotor by [154]

ρms(x, b) =
2

µ0

Bs
y(x, b) (2.130)

An expression of the force in terms of the magnetic charge can be written as [155]

F =
1

2
Re

∞∫
−∞

ρms(B
r)∗dx on Γ12 (2.131)

Therefore, the force components are given by

Fx =
1

2
Re

∞∫
−∞

ρms(B
r
x)
∗dx on Γ12 (2.132)

Fy =
1

2
Re

∞∫
−∞

ρms(B
r
y)
∗dx on Γ12 (2.133)

The forces can be directly calculated in Fourier domain by using the Parseval’s theo-

rem. Substituting (2.130) into (2.132) and (2.133) and using Parseval’s theorem, the

force equations in Fourier domain are

Fx =
1

2πµ0

Re

∞∫
−∞

Bs
y(ξ, b)(B

r
x)
∗
dξ on Γ12 (2.134)

Fy =
1

2πµ0

Re

∞∫
−∞

Bs
y(ξ, b)(B

r
y)
∗
dξ on Γ12 (2.135)

Using the relation (2.83), the thrust forces can also be evaluated from the same

integral by

Fx =
1

2πµ0

Im

∞∫
−∞

Bs
y(ξ, b)(B

r
y)
∗
dξ on Γ12 (2.136)
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2.3.10 Power Loss Calculation

In steady-state analysis the power loss within the guideway can be evaluated by

using the Poynting vector [146]. In 2-D the average flow of power per-unit area

through the top surface, Γ12, of the guideway is given by

S =
1

2
E×H∗ =

1

2µ0

E×B∗ =
1

2µ0

Ess
z B

ss
x
∗ŷ (2.137)

where is the unit vector in y-direction. The real power per-unit width transferred

through Γ12 can be directly determined using Parseval’s theorem. Therefore, substi-

tuting (2.87) into (2.137) and integrating along Γ12 one obtains

PTransfered =
1

4πµ0

Re

∞∫
−∞

jωeA
ss
z (ξ, b)Bss∗

x (ξ, b)dξ (2.138)

Taking the conjugate on both side of (2.86) and using (2.81), Bss∗
x (ξ, b) can be ex-

pressed in terms of the source and reflected field as

Bss∗
x (ξ, b) = Bs∗

x (ξ, b) + [jBs
y(ξ, b)− ξT ss(ξ, b)Bs(ξ, b)]

∗ (2.139)

Noting that

Bs∗(ξ, b) = (Bs
x
∗(ξ, b)− jBs

y
∗(ξ, b)) (2.140)

(2.139) can be simplified to

Bss∗
x (ξ, b) = Bs∗(ξ, b)[1− ξT ss∗(ξ, b)] (2.141)



46

Substituting (2.141) and (2.74) into (2.138) the power transfer can be written in terms

of the transmission function and source field as

PTransfered =
1

4πµ0

Re

∞∫
−∞

jωeT
ss(ξ, b)Bs(ξ, b)[Bs∗(ξ, b)(1− ξT ss∗(ξ, b))]dξ (2.142)

Simplifying (2.142) one obtain

PTransfered =
1

4πµ0

Re

∞∫
−∞

[jωeT
ss(ξ, b)|Bs(ξ, b)|2

−jωeξ|T ss(ξ, b))|2|Bs(ξ, b)|2]dξ (2.143)

Noting the fact that the second term of (2.143) is zero one obtain

PTransfered =
1

4πµ0

Re

∞∫
−∞

jωeT
ss(ξ, b)|Bs(ξ, b)|2dξ (2.144)

Consequently, the power loss per-unit width in the conductive region is

PLoss = PTransfered − F ss
x vx (2.145)

Substituting the equation for the thrust force from (2.104) and (2.144) into (2.145)

one obtain the power loss in the guideway in terms of transmission function and the

source magnetic flux density as

PLoss =
1

4πµ0

Re

∞∫
−∞

j(ωe + ξvx)T
ss(ξ, b)|Bs(ξ, b)|2dξ (2.146)

The power loss in terms of the vector potential will be

PLoss =
1

4πµ0

Re

∞∫
−∞

j(ωe + ξvx)A
ss
z (ξ, b)Bs∗(ξ, b)dξ (2.147)
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In 2-D, the power loss can also be calculated using the surface integration (volume

integration in 3D) over the region Ω2 as

PLoss =
σ

2

∫∫
Ω2

|Jssz |2dΩ2 (2.148)

where Jssz is defined in (2.125). The thrust efficiency due to the force produced in the

guideway can be calculated by using [3]

ηThrust =
F ss
x vx

F ss
x vx + PLoss

=
F ss
x vx

PTransfered
(2.149)

Alternatively, the thrust efficiency can be calculated in terms of the rotor torque as

[110]

ηThrust =
F ss
x vx
τωm

(2.150)

where ωm is the rotor mechanical angular velocity and τ is the rotor torque given by

τ =
F ss
x vx + PLoss

ωm
=
PTransfered

ωm
(2.151)

Since the electrical angular velocity, ωe, and mechanical angular velocity, ωm, are

related by

ωe = ωmP (2.152)

where P is the number of pole-pairs, the final expression for the torque can be obtained

by substituting (2.144) and (2.152) into (2.151)

τ =
P

4πµ0

Re

∞∫
−∞

jT ss(ξ, b)|Bs(ξ, b)|2dξ (2.153)
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2.3.11 Halbach Rotor Source Field

The steady-state force and power loss equations were verified by comparing them

with an FEA model in which a Halbach rotor such as shown in Figure 2.1 is both

moved and rotated over a conductive guideway. In the analytic and FEA model the

magnet eddy-current losses are neglected, however since the rotor magnets are highly

segmented, the eddy-current loss within the magnets is relatively low [156, 157]. For

such a problem where the source is moving and/or rotating at the same time the

normal and tangential forces are dependent on a slip speed,sl, defined as

sl = ωmro − vx ms-1 (2.154)

where ro is the rotor outer radius. The 2-D analytical model for calculating the

magnetic field distribution due to an air-cored Halbach rotor has been derived by Xia

et al. [158]. The formulation was developed using the polar coordinate system and

accounts for the relative permeability of the magnets. The equations for the magnetic

flux densities are

Br(r, θ) =

− 2Bm
r P

P+1
(1 + µr)

[
1−

(
ri
ro

)P+1
] (

ro
r

)P+1

(1− µr)2
(
ri
ro

)2P

− (1 + µr)
2

sin(Pθ) (2.155)

Bθ(r, θ) =

2Bm
r P

P+1
(1 + µr)

[
1−

(
ri
ro

)P+1
] (

ro
r

)P+1

(1− µr)2
(
ri
ro

)2P

− (1 + µr)
2

cos(Pθ) (2.156)

where

Bm
r = remanence of the magnet

ri = inner rotor radius

µr= relative permeability of the magnet.
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Defining

C =

(
2Bm

r P

P + 1

)
(1 + µr)r

2P
o (rP+1

o − rP+1
i )

(1− µr)2
r2P
i − (1 + µr)

2
r2P
o

(2.157)

the source magnetic flux densities equations (2.155) and (2.156) becomes

Br(r, θ) = − C

rP+1
sin(Pθ) (2.158)

Bθ(r, θ) =
C

rP+1
cos(Pθ). (2.159)

Noting that the relation between the magnetic flux density and vector potential in

the polar coordinate system is given by

Br(r, θ) =
1

r

∂Asz
∂θ

(2.160)

Bθ(r, θ) = −∂A
s
z

∂r
. (2.161)

The vector potential field exterior to the Halbach rotor source can be determined by

using (2.158) and (2.160) as

Asz(r, θ) =
C

P

cos(Pθ)

rP
. (2.162)

Since the eddy current formulation is steady-state based, the rotor field must be

complex in order to impart the rotational source field information onto the conductor.

In order to achieve this the Halbach rotor field’s angular information is made complex

Asz(r, θ) =
C

P

ejPθ

rP
. (2.163)

The expression of the vector potential (2.163) is analogous to using a complex current

sheet [115]. Since the relative permeability of the magnet is included in (2.163), the

field model is more accurate than using a current sheet [41,115]. The magnetic vector
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potential source field can be directly converted into Cartesian coordinates by utilizing

the complex analysis relation

ejPθ

rP
=

1

(x− jy)
P
. (2.164)

Utilizing (2.164) the Cartesian magnetic flux density source field components are then

Bs
y(x, y) = −∂Az

∂x
=

C

(x− jy)
P+1

(2.165)

Bs
x(x, y) =

∂Az
∂y

=
jC

(x− jy)
P+1

. (2.166)

The magnetic flux density in (2.165) and (2.166) are developed for the coordinate

system with the origin being at the center of the rotor. However, the coordinate

system in the 2-D analytic formulation has the origin at the bottom of the guideway

as shown in Figure 2.4. Therefore, a coordinate offset is required for the y-axis in order

to express the magnetic flux density in the guideway coordinate system. Referring to

Figure 2.4 it can be seen that the y-axis offset needs to be

yo = ro + g + b (2.167)

where

g = the air-gap distance between the rotor and conducting guideway

b = the thickness of the guideway.

Figure 2.4: Halbach rotor source fields with y-axis offset.
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The flux densities of the Halbach rotor can now be written as

Bs
y(x, y) =

C

(x− j(y − yo))P+1
(2.168)

Bs
x(x, y) = jBs

y(x, y) (2.169)

and the total source field, Bs(x, y) is given by

Bs(x, y) = Bs
x(x, y) + jBs

y(x, y) =
j2C

(x− j(y − yo))P+1
. (2.170)

2.3.11.1 The Fourier Transform for the Rotor Source Field

Since the 2-D formulation is using the Fourier transform and the source field needs

to be included only at the boundary of the guideway, y = b, the flux densities of the

Halbach rotor source field given by (2.168) and (2.169) must be evaluated at y = b.

The Fourier transformed for the x-component of the source field is [150]

Bs
x(ξ, b) =

∞∫
−∞

Bs
x(x, b)e

−jξxdx. (2.171)

Substituting (2.168) into (2.171), one obtains

Bs
x(ξ, b) =

∞∫
−∞

(
jC

(x− j(−ro − g))
P+1

)
e−jξxdx. (2.172)

Evaluating (2.172) by using the Fourier transform table given in [150] yields

Bs
x(ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro) u(ξ) (2.173)

Similarly, the y-component of a Fourier transformed source magnetic flux density is

Bs
y(ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro) u(ξ). (2.174)
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where u(ξ) is the unit step function [149]. The relation (2.169) is also true in the

Fourier domain as seen from (2.173) and (2.174). The total source field in the Fourier

domain is therefore

Bs(ξ, b) = Bs
x(ξ, b) + jBs

y(ξ, b)= [(−j)P + j(−j)P+1
]

2

P !
CπξP e−ξ(g+ro) u(ξ). (2.175)

The absolute value of the total source field is therefore

|Bs(ξ, b)|2 = |(−j)P + j(−j)P+1|2
(

2

P !

)2

π2C2ξ2P e−2ξ(g+ro) u(ξ). (2.176)

Noting that

|(−j)P + j(−j)P+1|2 = |2(−j)P |2 = 4 (2.177)

the source field (2.176) can be written as

|Bs(ξ, b)|2 =

(
4

P !

)2

π2C2ξ2P e−2ξ(g+ro) u(ξ). (2.178)

2.3.12 Analytic Based Simulation Results and FEA Validations

An analytic eddy-current simulation was performed using a four pole-pair Halbach

rotor as a source. With P = 4 in (2.178) becomes

|Bs(ξ, b)|2 =
π2

36
C2ξ8e−2ξ(g+ro) u(ξ) (2.179)

The power loss and lift and thrust/braking forces have been calculated using (2.147),

(2.116) and (2.117) respectively. The power loss and forces equations were evaluated

by numerical integration using the Gauss-Kronrod quadrature [159] algorithm in Mat-

lab. The simulation parameters are given in Table 2.1. A 2-D FEA model developed

by J. Bird [114] was modified to incorporate the heave velocity, vy, in the guideway.

This model was also modified by replacing the current sheet with the magnetic source
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given by (2.162). The analytical forces and the power loss equations were validated by

comparing the results with the modified 2-D FEA model. A per-unit width force vs

slip comparison at vy = 0ms-1 for different translational velocities is shown in Figure

2.5 and Figure 2.6 and per-unit width power loss vs slip at vy = 0ms-1 comparison for

different translational velocities is shown in Figure 2.7. The error (in percentage) in

force calculations between analytical and FEA based model is shown in Figure 2.8.

The error is less than 1%.

Table 2.1: Simulation parameters for 2-D steady-state model.

Outer radius, ro 70 mm
Inner radius, ri 47.88 mm
Width of rotor, w 1 m

Halbach Rotor Magnet (NdFeB), Br 1.42 T
Magnet relative permeability, µr 1.08
Pole-pairs, P 4

Guideway length (±L) 0.8 m
Thickness, b 10 mm

Conductive guideway Guideway width 100 mm
Air-gap between rotor and guideway, (g) 10 mm
Conductivity, σ (Al) 2.459× 107 Sm−1

Figure 2.5: Lift (normal) force as a function of slip and translational velocity at vy =
0ms-1.



54

Figure 2.6: Thrust (tangential) force as a function of slip and translational velocity at vy
= 0ms-1.

Figure 2.7: Power loss in the conducting guideway as a function of slip and translational
velocity at vy = 0ms-1.
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Figure 2.8: The lift and thrust force percentage error between the FEA and analytical
model as a function of slip for translational velocity, vx = 0ms-1 and 30ms-1 at vy = 0ms-1.

A per-unit width lift force vs slip comparison at vx = 0ms-1 for different rotor heave

velocities is shown in Figure 2.9. While Figure 2.10 illustrates the corresponding

thrust force comparison. These results show that when the rotor is vertically moving

away from the guideway, the lift force as well as thrust force decrease and vice-versa.

Using a Dell T7400 computer the average force calculation time at one operating

point using FEA was 5.22s while using this analytic based approach the calculation

time was reduced to just 1.9ms.
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Figure 2.9: Lift (normal) force in the conducting guideway as a function of slip and rotor
heave velocity, vy at translational velocity, vx = 0ms-1.

Figure 2.10: Thrust (tangential) force in the conducting guideway as a function of slip
and rotor heave velocity, vy at translational speed, vx = 0ms-1.

The 2-D FEA model presented in [114] was created in COMSOL (ver. 3.5) and

solved using the linear stationary solver. The mesh had 154670 triangular elements

and 273729 degrees of freedom. The FEA force calculation method used Maxwell’s

stress tensor method, evaluated along the surface of the guideway, and the FEA
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calculated per-unit width power loss was computed using (2.148). The COMSOL

FEA model showing a surface plot of the vector potential in the guideway and the

contour plot of an x component of the magnetic flux density, Bx, in the non-conducting

region is illustrated in Figure 2.11. An excellent agreement between the FEA and the

analytical model has been obtained.

Figure 2.11: A COMSOL FEA result showing the surface plot of Az in guideway and
the contour plot of Bx in non-conducting region for vx = 20ms-1, slip = 30ms-1 and vy =
0ms-1.

Figure 2.12: A mesh plot of a 2-D steady-state FEA model developed in COMSOL.

2.3.13 Electrodynamic Wheels in Series

The source field due to a single EDW Halbach rotor is derived in section 2.3.11 and

validated in section 2.3.12. Using the spatial Fourier transform technique, the source

field of the number of EDW Halbach rotors in series as shown in Figure 2.13 can be
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derived. It has been found that when the EDWs are placed close to one another in

series, the current induced by the first EDW can be utilized by the second, third and

so on and therefore the Maglev vehicle needs less energy to create the same force [41].

The effect of EDW’s in series has been investigated by Bird using the FEA model

developed in COMSOL using a current sheet approach as shown in Figure 2.14. This

model was later used by D. Bobba to investigate the effect of using multiple EDWs in

series for possible application to a low-speed Maglev [160]. The analytical equations

for the multiple EDW in series will be very fast and can be used for the optimization

and investigation for both low and high-speed Maglev application.

Figure 2.13: Multiple EDWs in series above a conductive guideway.

Figure 2.14: The vector potential contour plot for five EDWs in series using the steady-
state FEA model developed in COMSOL [41].

From section 2.3.11, the flux densities of the first Halbach rotor can now be written

as

BI
y(x, y) =

C

(x− j(y − yo))P+1
(2.180)



59

BI
x(x, y) = jBI

y(x, y) (2.181)

If there are n Halbach rotors in series separated by the distance of xo (center to center)

in x direction, the field due to the corresponding Halbach rotors will be shifted by

the xo as given by

BII
y (x, y) =

C

(x− xo − j(y − yo))P+1
(2.182)

BIII
y (x, y) =

C

(x− 2xo − j(y − yo))P+1
(2.183)

BII
x (x, y) = jBII

y (x, y) (2.184)

BIII
x (x, y) = jBIII

y (x, y) (2.185)

The Halbach rotor’s field along the surface of the conducting plate can thus be ob-

tained by setting y = b.

2.3.13.1 The Fourier Transform of the EDWs in Series

Fourier transform source field for the first Halbach rotor is obtained by using the

Fourier transform given in [150]. Therefore, (2.180) and (2.181) when evaluated at

y = b becomes

BI
y(ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro) u(ξ) (2.186)

BI
x(ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro) u(ξ) (2.187)

Similarly, the Fourier transform fields due to the second and third Halbach rotor is

given by

BII
y (ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro)e−jξxo u(ξ) (2.188)

BII
x (ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro)e−jξxo u(ξ) (2.189)

BIII
y (ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro)e−jξ2xo u(ξ) (2.190)

BIII
x (ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro)e−jξ2xo u(ξ) (2.191)
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Therefore the total field due to the n number of Halbach rotors separated by a

center to center distance of xo is

Bs
x(ξ, b) = BI

x(ξ, b) +BII
x (ξ, b) +BIII

x (ξ, b) + ...+Bn
x (ξ, b) (2.192)

Bs
y(ξ, b) = BI

y(ξ, b) +BII
y (ξ, b) +BIII

y (ξ, b) + ...+Bn
y (ξ, b) (2.193)

Substituting the values from (2.186)-(2.191) into (2.192) and (2.193), one obtains

Bs
x(ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro) u(ξ)[1 + e−jξxo + e−jξ2xo + ....e−jξ(n−1)xo ] (2.194)

Bs
y(ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro) u(ξ)[1 + e−jξxo + e−jξ2xo + ....e−jξ(n−1)xo ] (2.195)

Simplifying (2.194) and (2.195), the source field due to n Halbach rotors in series will

be

Bs
x(ξ, b) = (−j)P 2

P !
CπξP e−ξ(g+ro) u(ξ)

n−1∑
k=0

e−jξkxo (2.196)

Bs
y(ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g+ro) u(ξ)

n−1∑
k=0

e−jξkxo (2.197)

where

xo = 2ro + l (2.198)

and l is the physical gap between the two Halbach rotors.

2.3.13.2 EDWs in Series: FEA and Analytic Comparison

The analytic model with multiple EDW in series has been validated with FEA

COMSOL model. The comparison between these two models is based on the parame-

ters as shown in the Table 2.2. The thrust force, lift force, power loss in the guideway

and the thrust efficiency comparison between the analytic model and FEA COMSOL

model are shown in Figure 2.15 - Figure 2.18. Very good match between FEA and

analytic model has been observed. The peak values of the thrust point as well as the
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minimum lift point are shifting with the increase in the gap-between the EDWs as

observed in Figure 2.15 and Figure 2.16. This EDWs in series model is significantly

faster than the FEA model. For one operating point the FEA took about 14.7452s

whereas the analytic model took only about 20ms.

Table 2.2: Simulation parameters for EDWs in series.

Outer radius, ro 50 mm
Inner radius, ri 34.2 mm
Width of rotor, w 50 mm

Halbach Rotor Magnet (NdFeB), Br 1.42 T
Number of rotors, n 5
Pole-pairs, P 4
Translational velocity, vx 140 ms-1

Thickness, b 10 mm
Conductive guideway Guideway width 50 mm

Air-gap between rotor and guideway, (g) 10 mm
Conductivity, σ (Al) 2.459× 107 Sm-1

Figure 2.15: The thrust force comparison between analytic and FEA for 5-EDWs in series
above a conductive guideway.
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Figure 2.16: The lift force comparison between analytic and FEA for 5-EDWs in series
above a conductive guideway.

Figure 2.17: The power loss comparison between analytic and FEA for 5-EDWs in series
above a conductive guideway.
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Figure 2.18: The thrust efficiency comparison between analytic and FEA for 5-EDWs in
series above a conductive guideway.

2.4 Summary

The most commonly used 2-D eddy-current modeling techniques have been re-

viewed. The spatial Fourier transform method has been selected because the govern-

ing equations as well as the source field were easily Fourier transformable and the

2-D model simplifies in the Fourier domain. The force and power loss equations in

two dimensions due to an arbitrary magnetic source oscillating and moving above a

conductive guideway have been derived. The translational and heave velocity effect

of the source have been included in the formulation. The solution has been verified

by using a single EDW as well as multiple EDWs in series as a magnetic source. Only

the magnitude of the steady-state source field on the top conductor surface needs to

be provided. The calculation time using this analytic based approach is significantly

faster than with FEA. The reflected magnetic flux density in the air region has also

been derived.



CHAPTER 3: A 2-D TRANSIENT ANALYTIC EDDY-CURRENT MODEL

3.1 Introduction

In this chapter the 2-D transient analytic model for a magnetic source simulta-

neously rotating and/or moving above a conductive passive aluminum guideway is

developed and validated. The analytical model is source independent so that any

arbitrary magnetic source can be used. However, in order to validate the results and

evaluate the performance of the developed model, a Halbach rotor has been used as

a magnetic source. A review of the transient eddy-current modeling techniques is

presented in section 3.2. This is followed by the presentation of the transient ana-

lytical model in section 3.3. As with the steady-state model the transient model is

formulated in three different regions; two air regions and one conducting region. The

analytical equations for the forces as well as for the power loss are validated with FEA

models in section 3.4. The transient FEA model developed in COMSOL is presented

in the Appendix A. A summary of the chapter is given in section 3.5.

3.2 A Review of 2-D Transient Eddy-Current Modeling

The transient eddy-current phenomenon has been utilized for a wide variety of ap-

plications such as non-destructive testing (NDT) [151, 152, 161–163], magnetic bear-

ings [164,165], magnetic resonance imaging (MRI) [166,167], structural damping [168]

and magnetic levitation [169–171] to name a few.

Most authors have solved transient eddy-current problems by using the Laplace

transform technique. For instance, Fu and Bowler [152] studied the transient eddy-

current response of a driver pickup probe above a conductive plate using a series

expansion and inverse Laplace transform approach. Sapunov used the Laplace trans-
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form technique to calculate the eddy-current density for the case when a filamentary

circular coil is placed next to a conductive sheet and the excitation current in the

choil has an increasing exponential form [172]. Waidelich examined the case of a long

2-D filamentary coil using the same technique [173]. Similarly, Panas and Kriezis

used the Laplace transform technique to analyze the transient eddy-current distribu-

tion within a conducting plate when the excitation is a circular loop of current in air

perpendicular or parallel to the surface dividing the two media [174]. This analysis

has been done for infinite or finite plate thickness. In addition, they also considered

the transient eddy-current problems in cylindrical shells. Hannakam used the Laplace

transform technique to calculate the transient forces due to an arbitrary shaped coil

[175].

The transient forces produced by eddy-currents have been studied by a variety

of authors primarily for Maglev applications [56, 174, 176]. Davis and Wilkie derived

the transient lift and thrust forces produced by moving a long wire above a thin

conducting plate and analyzed the stability of such a system [56]. Fink and Hobrecht

derived the forces for an infinitely long current loop moving parallel to a conductive

sheet [176]. While, Pannas and Kriezis calculated the transient eddy-current forces

with two current filaments moving above a conducting plate of finite width [174].

A variety of numerical based 2-D transient eddy-current methods have been de-

veloped. For instance, Clemens et al. presents a transient numerical formulation for

transient eddy current calculations with moving conductors based on finite integra-

tion method [177]. Yioultsis et al. developed a time domain eddy-current analysis

method based on the finite difference time domain method [178].

3.3 A 2-D Transient Analytical Modeling

In order to understand the dynamics and design the active control for a maglev

vehicle that contains a number of EDWs an accurate and computationally fast tran-

sient analytic based model is needed. Therefore, a fast transient analytic eddy-current
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model has been developed in this section using the spatial Fourier transform and tem-

poral Laplace transform. The model developed in this chapter will then be utilized

in order to investigate the dynamic suspension behavior of an EDW Maglev vehicle.

In this transient analytical model, the same assumptions as used by the steady-

state model have been made. Namely, the guideway conductor is assumed to be made

up of a linear material, the displacement current has been neglected and the edge-

effect due to the finite width of the source field and the guideway has been neglected.

And lastly, the eddy-current within the magnetic source has been neglected.

The eddy-current forces are often calculated on the magnetic sources. However,

if the magnetic source has a complex geometric configuration, such as, an EDW it is

easier to formulate the problem with respect to the guideway. As with the steady-

state model 2-D equations are derived by utilizing the magnetic scalar potential, φ, in

the non-conducting region and the magnetic vector potential, Az, in the conductive

region.

3.3.1 Governing Subdomain Equations

The model for the 2-D transient analytic based solution is shown in Figure 3.1.

The problem region is divided into one conducting region, Ω2 and two non-conducting

regions Ω1 and Ω3. The magnetic source is not physically modeled in the air region.

Instead the source field is evaluated analytically at the guideway surface and incor-

porated into the conducting boundary conditions.

Figure 3.1: Illustration of the conductive (Ω2) and non-conductive (Ω1 and Ω3) regions
and boundaries used by the analytic based transient eddy-current model.
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3.3.1.1 Conducting Guideway Region

The translational motion of a magnetic source can be modeled by either having

the conductive region moving or magnetic source [179,180]. In the case of 2-D steady-

state modeling, the translational as well as heave motion of the magnetic source were

incorporated into the conductive guideway. However, in this 2-D transient model, only

the translational motion will be included within the rotor field. Since the transient

model explicitly accounts for any change in the airgap with respect to time, the

heave velocity, vy, is not required. The derivation of the source field, including the

translational velocity for a Halbach rotor, is presented in section 3.3.8. The governing

transient guideway equation (2.24) in the conductive region, Ω2, for transient modeling

is modified to

µ0σ
∂Az
∂t
−∇2Az = 0 (3.1)

Expanding (3.1), the guideway governing equation becomes

∂2Az
∂x2

+
∂2Az
∂y2

= µ0σ

(
∂Az
∂t

)
in Ω2 (3.2)

3.3.1.2 Non-Conducting Regions

The governing equation in the non-conducting regions is exactly the same as used

in the steady-state mode and will just be the Laplace equation given by (2.13). This

equation is re-written below for convenience.

∂2φn
∂x2

+
∂2φn
∂y2

= 0 in Ωn for n=1, 3 (3.3)

3.3.1.3 Boundary Conditions

The boundary conditions are the same as derived in the steady-state model except

now the source and the vector potential fields are a function of time, t. The boundary

conditions on the top conductive surface, Γ12, at the Az − φ interface are therefore
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given by [144]

− µ0

∂φ1(x, b, t)

∂x
+Bs1

x (x, b, t) =
∂Az(x, y, t)

∂y

∣∣∣∣
y=b

on Γ12 (3.4)

− µ0

∂φ1(x, y, t)

∂y

∣∣∣∣
y=b

+Bs1
y (x, b, t) = −∂Az(x, b, t)

∂x
on Γ12 (3.5)

where Bs1
x (x, b, t) and Bs1

y (x, b, t) are the x and y components of the magnetic flux

densities of the source at y = b. The boundary conditions on the bottom surface, Γ23,

for the continuity of tangential and normal components are respectively given by

− µ0

∂φ3(x, 0, t)

∂x
=
∂Az(x, y, t)

∂y

∣∣∣∣
y=0

on Γ23 (3.6)

− µ0

∂φ3(x, y, t)

∂y

∣∣∣∣
y=0

= −∂Az(x, 0, t)
∂x

on Γ23 (3.7)

Again like with the steady-state model, the source field is assumed to be centrally

located at x = 0 and the guideway is chosen to be sufficiently long in order to make

the source fields zero at the guideway ends (x = ±L). Therefore,

Bs1
x (±L, y) = 0 on Γ2 (3.8)

Bs1
y (±L, y) = 0 on Γ2 (3.9)

Az(±L, y) = 0 on Γ2 (3.10)

Also, the problem region is large enough so that scalar potentials on the outer non-

conducting boundaries are zeros as

φ1 = 0 on Γ1 (3.11)

φ3 = 0 on Γ3 (3.12)
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3.3.2 Fourier-Laplace Solution for Governing Subdomain Equations

Similar to the steady-state model, the solution to the transient problem has been

obtained by using the spatial Fourier transform on variable-x. The Fourier transform

for the vector and the scalar potentials are defined by [3, 150]

Az(ξ, y, t) =

∞∫
−∞

Az(x, y, t)e
−jξxdx (3.13)

φn(ξ, y) =

∞∫
−∞

φn(ξ, y)e−jξxdξ (3.14)

In addition to the Fourier transform, the transient equation for vector potential (3.13)

is Laplace transformed with respect to time, t. Therefore, the vector potential be-

comes

Az(ξ, y, s) =

∞∫
0

Az(ξ, y, t)e
−stdt (3.15)

3.3.2.1 Fourier and Laplace Transformed Conducting Region

The governing equation for the conducting region, Ω2 given by (3.1) is Fourier

transformed with respect to variable-x utilizing the Fourier definition (3.13). There-

fore, the conducting region governing equation becomes

− ξ2Az(ξ, y, t) +
∂2Az(ξ, y, t)

∂y2
= µ0σ

∂Az(ξ, y, t)

∂t
(3.16)

Now taking the Laplace transform on either side of (3.16) by using the definition

(3.15), the differential equation (3.16) reduces down to

∂2Az(ξ, y, t)

∂y2
= µ0σ[sAz(ξ, y, s)−Az(ξ, y, t0)] + ξ2Az(ξ, y, s) (3.17)

where Az(ξ, y, t0) is an initial value of the vector potential solution at time, t = t0. If

the initial value of the vector potential is the steady-state vector potential solution,
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Assz (ξ, y, t0) given in (2.73) then (3.17) becomes

∂2Az(ξ, y, s)

∂y2
=
(
µ0σs+ ξ2

)
Az(ξ, y, s)− µ0σA

ss
z (ξ, y, t0) (3.18)

Defining

α =
√
ξ2 + µ0σs (3.19)

allows (3.18) to be written as

∂2Az(ξ, y, s)

∂y2
= α2Az(ξ, y, s)− µ0σA

ss
z (ξ, y, t0) (3.20)

If the initial value of the steady-state vector potential is evaluated at translational

velocity, vx0, electrical angular velocity, ωe0, and heave velocity, vy = 0, the vector

potential equation (2.74) at time t = t0 can be rewritten as

Assz (ξ, y, to) = T ss
0

(ξ, y, s0)Bs0(ξ, b, t0) (3.21)

where T ss0 (ξ, y, s0) is defined by (2.76) and γ (2.52) is defined in terms of vx0 and ωe0

as

γ =
√
ξ2 + jµ0σ (ωe0 − vx0ξ) =

√
ξ2 + µ0σs0 (3.22)

s0 = j (ωe0 − vx0ξ) (3.23)

The steady-state time dependence has been included into the source field function.

The variable Bs0(ξ, b, t0) is the complex source field value at t = t0 and is evaluated at

the surface of the guideway, i.e. y = b

Bs0(ξ, b, t0) = [Bs0
x (ξ, b) + jBs0

y (ξ, b)]ejωe0t0 (3.24)
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Substituting (3.21) into (3.20) gives

∂2Az(ξ, y, s)

∂y2
= α2Az(ξ, y, s)− µ0σT

ss
o (ξ, y, s0)Bs0(ξ, b, t0) (3.25)

The solution to (3.25) is given by

Az(ξ, y, s) =
µ0σ

(α2 − γ2)
Assz (ξ, y, s0) +Da(ξ, s)e

αy +Db(ξ, s)e
−αy (3.26)

Note that to obtain the solution to (3.25) the derivative of both Az and Assz must

be considered. Substituting (3.22) and (3.19) into the denominator of (3.26) allows

(3.26) to be expressed in compact form as

Az(ξ, y, s) =
Assz (ξ, y, s0)

s− s0

+Da(ξ, s)e
αy +Db(ξ, s)e

−αy (3.27)

where the unknown constants Da(ξ, s) and Db(ξ, s) still need to be determined. They

will be evaluated by solving the Fourier and Laplace transformed boundary conditions

in section 3.3.3.

3.3.2.2 Fourier Transformed Non-Conducting Region

The governing equation for the non-conducting regions in the Fourier domain is

the same as determined in the steady-state model and is given by

∂2φn(ξ, t)

∂y2
= ξ2φn(y, t) on Γn for n = 1, 3 (3.28)

The solution of the differential equation (3.28) is given by

φ1(ξ, y, t) = ψ1(ξ, t)e−ξy in Ω1 (3.29)

φ3(ξ, y, t) = ψ3(ξ, t)eξy in Ω3 (3.30)
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where ψ1 and ψ3 are unknowns. As with the steady-state model, the solution of the

scalar potentials in regions Ω1 and Ω3 are satisfying the fact that when moving away

from the guideway along the y-axis in the field must reduce to zero. The change in

φ1 and φ3 with respect to time will come from the boundary interface conditions.

3.3.2.3 Fourier and Laplace Transformed Boundary Conditions

The boundary condition equations along the top conducting surface given by (3.4)

and (3.5) are Fourier transformed with respect to x and later Laplace transformed

with respect to time, t, to yield

− jµ0ξφ1(ξ, b, s) +Bs1
x (ξ, b, s) =

∂Az(ξ, y, s)

∂y

∣∣∣∣
y=b

on Γ12 (3.31)

− µ0

∂φ1(ξ, y, s)

∂y

∣∣∣∣
y=b

+Bs1
y (ξ, b, s) = −jξAz(ξ, b, s) on Γ12 (3.32)

Substituting the value of the vector potential, Az(ξ, y, s), from (3.27) and scalar po-

tential solution, φ1(ξ, y), from (3.29) into the boundary condition equations (3.31)

and (3.32) yields

− jµ0ξψ1(ξ, s)e−ξb +Bs1
x (ξ, b, s) =

Bss
x (ξ, b, s0)

s− s0

+ α
(
Da(ξ, s)e

αb −Db(ξ, s)e
−αb) (3.33)

µ0ξψ1(ξ, s)e−ξb +Bs1
y (ξ, b, s) =

Bss
y (ξ, b, s0)

s− s0

+ jξ
(
Da(ξ, s)e

αb +Db(ξ, s)e
−αb) (3.34)

Multiplying (3.34) by j and adding the above boundary conditions (3.33) and (3.34)

will eliminate ψ1(ξ) from (3.33) and (3.34). Therefore, the combined boundary con-

dition equation for the top conducting surface is given by

Bs1(ξ, b, s) =
Bs0(ξ, b, s0)

s− s0

+Da(ξ, s)(α+ ξ)eαb +Db(ξ, s)(ξ − α)e−αb (3.35)

where

Bs1(ξ, b, s) = Bs1
x (ξ, b, s) + jBs1

y (ξ, b, s) (3.36)
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Rearranging (3.35), one can obtain

Bs1(ξ, b, s)− Bs0(ξ, b, s0)

s− s0

= Da(ξ, s)(α+ ξ)eαb +Db(ξ, s)(ξ − α)e−αb (3.37)

Similarly, the bottom boundary condition given by (3.6) and (3.7) are Fourier trans-

formed with respect to x to yield

− jµ0ξφ3(ξ, 0, s) =
∂Az(ξ, y, s)

∂y

∣∣∣∣
y=0

on Γ23 (3.38)

− µ0

∂φ3(ξ, y, s)

∂y

∣∣∣∣
y=0

= −jξAz(ξ, 0, s) on Γ23 (3.39)

Substituting the value of the vector potential, Az(ξ, y, s), from (3.27) and scalar po-

tential solution, φ3(ξ, y), from (3.30) into boundary condition equations (3.38) and

(3.39) yields

− jµ0ξψ3(ξ, s) = α (Da(ξ, s)−Db(ξ, s)) on Γ23 (3.40)

− µ0ξψ3(ξ, s) = −jξ (Da(ξ, s) +Db(ξ, s)) on Γ23 (3.41)

Now combining (3.40) and (3.41) one can eliminate ψ3(ξ) to yield a combined bound-

ary condition equation

0 = Da(ξ, s)(α− ξ)−Db(ξ, s)(ξ + α) (3.42)

Therefore, Da(ξ, s) can be expressed in terms of Db(ξ, s) as

Da(ξ, s) = Db(ξ, s)
ξ + α

α− ξ
(3.43)
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3.3.3 Solution to Governing Equation

The top and bottom boundary conditions (3.37) and (3.43) are now solved for the

two unknowns Da(ξ, s) and Db(ξ, s). Substituting (3.43) into (3.37) gives

Da(ξ, s) =
α+ ξ

eαb(α+ ξ)
2 − e−αb(α− ξ)2

(
Bs1(ξ, b, s)− Bs0(ξ, b, s0)

s− s0

)
(3.44)

Db(ξ, s) =
α− ξ

eαb(α+ ξ)
2 − e−αb(α− ξ)2

(
Bs1(ξ, b, s)− Bs0(ξ, b, s0)

s− s0

)
(3.45)

Substituting (3.44) and (3.45) into (3.27) finally gives the vector potential solution as

Az(ξ, y, s) =
Assz (ξ, y, s0)

s− s0

+

[
Bs1(ξ, b, s)− Bs0(ξ, b, s0)

s− s0

]
T t(ξ, y, s) (3.46)

where

T t(ξ, y, s) =
(α+ ξ)eαy + (α− ξ)e−αy

eαb(α+ ξ)
2 − e−αb(α− ξ)2 (3.47)

can be thought of as the source field transmission function and has the same form

as obtained for the steady-state solution given by (2.76) where the superscript ‘t’ in

(3.47) refers to transient. The first term in (3.46) is the initial steady-state solution

and the second term is the transient solution due to the change in the source field.

The time term in the source field can be separated from the rest of the variables by

noting that

Bs1(ξ, b, t) = Bs1(ξ, b)es1t (3.48)

where

s1 = j(ωe1 + vx1ξ) (3.49)

The Laplace transform of (3.48) gives

Bs1(ξ, b, s) =
Bs1(ξ, b)

s− s1

(3.50)
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Substituting (3.50) into the vector potential solution (3.46) yields

Az(ξ, y, s) =
Assz (ξ, y, s0)

s− s0

+

[
Bs1(ξ, b)

s− s1

− Bs0(ξ, b)

s− s0

]
T t(ξ, y, s) (3.51)

Here the translational motion of the magnetic source has been accounted for by

moving the magnetic source. While the steady-state model accounts for the motion

of the source by including the velocity term within the transmission function. Either

approach is possible when modeling the problem transiently [179, 180].

3.3.4 Transient Reflected Flux Density

The transient reflected eddy-current field can be determined by solving for un-

known, ψ1(ξ, s) in Ω1. This can be achieved by substituting (3.29) into (3.32). The

unknown, ψ1(ξ, s) can be written in terms of the vector potential, Az(ξ, b, s), and

source field, Bs1
y (ξ, b, s) as

ψ1(ξ, s) =
−1

µ0ξ
[jξAz(ξ, b, s) +Bs1

y (ξ, b, s)]eξb (3.52)

The scalar potential, φ1(ξ, y, s), in region Ω1 is obtained by substituting (3.52) into

(3.29)

φ1(ξ, y, s) =
−1

µ0ξ
[jξAz(ξ, b, s) +Bs1

y (ξ, b, s)]eξ(b−y) (3.53)

From (3.53) it can be noted that the reflected flux density values Br
x(ξ, y, s) and

Br
y(ξ, y, s) are given by

Br
x(ξ, y, s) = −µ0

∂φ1(ξ, y, s)

∂x
= j[jξAz(ξ, b, s) +Bs1

y (ξ, b, s)]eξ(b−y) (3.54)

Br
y(ξ, y, s) = −µ0

∂φ1(ξ, y, s)

∂y
= −[jξAz(ξ, b, s) +Bs1

y (ξ, b, s)]eξ(b−y) (3.55)



76

Thus, as with the steady-state model the x and y components of the reflected flux

densities in region, Ω1 are related by

Br
y(ξ, y, s) = jBr

x(ξ, y, s) (3.56)

Taking the inverse Laplace transform of (3.54) and (3.55) enables the transient re-

flected flux density components at y = b to be obtain

Br
x(ξ, b, t) = j[jξAz(ξ, b, t) +Bs1

y (ξ, b, t)] (3.57)

Br
y(ξ, b, t) = −[jξAz(ξ, b, t) +Bs1

y (ξ, b, t)] (3.58)

The transient vector potential, Az(ξ, b, t) is derived in the next section and Bs1
y (ξ, b, t)

is the y-component of the magnetic source in the time domain.

3.3.5 Time Domain Solution

The time domain solution of the vector potential (3.51) can be obtained by deter-

mining the inverse Laplace transform of the transmission function (3.47). The inverse

Laplace transforms of (3.47) could not be found in any known Laplace transform ta-

ble. However, the inverse Laplace transform of complicated equations, such as (3.47),

are possible by using the Heaviside expansion theorem [150, 151]. The transmission

function is rearranged in order to facilitate this. Assuming a new variable h, such

that, b = 2h, the transmission function (3.47) becomes

T t(ξ, y, s) =
(α+ ξ)eαy + (α− ξ)e−αy

e2αh(α+ ξ)
2 − e−2αh(α− ξ)2 (3.59)

Simplifying the denominator of (3.59) one obtains

T t(ξ, y, s) =
(α+ ξ)eαy + (α− ξ)e−αy

[eαh(α+ ξ)]
2 − [e−αh(α− ξ)]2

(3.60)
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Further simplifying (3.60), the transmission function becomes

T t(ξ, y, s) =
α(eαy + e−αy) + ξ(eαy − e−αy)

[α(eαh + e−αh) + ξ(eαh − e−αh)][α(eαh − e−αh) + ξ(eαh + e−αh)]
(3.61)

Now using the trigonometric hyperbolic functions (3.61) can be written as

T t(ξ, y, s) =
2α cosh(αy) + 2ξ sinh(αy)

[2α cosh(αh) + 2ξ sinh(αh)][2α sinh(αh) + 2ξ cosh(αh)]
(3.62)

Dividing the numerator and denominator by cosh(αh) sinh(αh) i.e. by 0.5 sinh(2αh)

gives

T t(ξ, y, s) =

(
α

ξ2

cosh(αy)

sin(2αh)
+

1

ξ

sinh(αy)

sin(2αh)

)
(
α

ξ
+ tanh(αh)

)(
α

ξ
+ coth(αh)

) (3.63)

Let

ν = αh and λ = 1/(ξh) (3.64)

Therefore,

νλ = α/ξ (3.65)

Substituting (3.64) and (3.65) into the denominator of (3.63) gives

T t(ξ, y, s) =

(
α

ξ2

cosh(αy)

sin(2αh)
+

1

ξ

sinh(αy)

sin(2αh)

)
(λν + tanh(ν)) (λν + coth(ν))

(3.66)

For further simplification, let ν = jk. Now substituting the value of ν = jk into (3.66)

and using the trigonometric relations

tanh(jk) = j tan(k)

coth(jk) = −j cot(k)

(3.67)
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one obtains

T t(ξ, y, s) =

(
2k cos(2ky/b)

bξ2 sin(2k)
+

sin(2ky/b)

ξ sin(2k)

)
(−λk + cot(k)) (λk + tan(k))

(3.68)

Setting y = b (3.47) can be algebraic manipulated to yield

T t(ξ, b, s) =
2k · cot(2k) + bξ

bξ2 (−λk + cot(k)) (λk + tan(k))
(3.69)

The advantage of using (3.69) rather than (3.47) is that the roots in the denominator

can be easily determined. They are given by

tan(k) = −λk (3.70)

cot(k) = λk (3.71)

The roots of (3.70) and (3.71) are calculated numerically by using the ‘FindRoot ’

command in Mathematica software. The script used for the calculation of the roots

for the guideway thickness of 6.3mm and is given below in Table 3.1 [151]. Only the

first ten significant roots of (3.74) have been used. The sample plots of the tan and

cot roots for ξ = 250 and b = 6.3mm is illustrated in Figure 3.2.

Table 3.1: Mathematica code for tan and cot root calculations.
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Figure 3.2: The sample tan and cot roots calculation for ξ = 250 and b = 6.3mm.

The nth root of (3.70) is denoted by knt and it lies between nπ + π/2 and nπ + π.

The nth root of (3.71) denoted by knc , lie between nπ and nπ + π/2. The poles

corresponding to the roots and both are purely located at negative values, and are

given by

s =
[
α2 − ξ2

] 1

µoσ
(3.72)

snm = −

[(
2knm
b

)2

+ ξ2

]
1

µoσ
(3.73)

where the subscript m = t or c referring to tan(k) or cot(k) roots. With the roots of

(3.69) identified the expression for the field transmission coefficient for the nth root

can be written as

T tk(ξ, b, knm) =
2knm · cot(2knm) + bξ

bξ2 (−λknm + cot(knm)) (λknm + tan(knm))
(3.74)
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Substituting (3.74) into (3.51) allows the vector potential, Az(ξ, y, s), to be written as

Az(ξ, y, s) =
Assz (ξ, y, s0)

s− s0

+

[
Bs1(ξ, b)

s− s1

− Bs0(ξ, s)

s− s0

]
×
(

(2knm · cot(2knm) + bξ)

bξ2 (−λknm + cot(knm)) (λknm + tan(knm))

)
(3.75)

The inverse Laplace transform of (3.75) is evaluated by using the Heaviside ex-

pansion theorem [150,151]. The Heaviside expansion theorem states that ‘if P (s) and

Q(s) are to be the polynomials of degree m and n respectively such that n > m and

Q(s) has n distinct simple zeros at points s1, s2,...., sn, then P (s)/Q(s) is the Laplace

transform of the function g(t)’ [150] where the time domain solution g(t) is given by

g(t) = L−1

(
P (s)

Q(s)

)
=

n∑
k=1

P (sk)

Q′(sk)
eskt (3.76)

Utilizing (3.76), the inverse Laplace transform of the vector potential, (3.75) can be

obtained. The resulting transient vector potential solution is

Az(ξ, b, t) = Bs0(ξ, b)
[
T sso (ξ, b, s0)es0t0 +A1(ξ)es0t0

]
+Bs1(ξ, b)

[
A2(ξ)es1t +

9∑
n=0

(
Ant (ξ)es

n
t t +Anc (ξ)es

n
c t
)]

(3.77)

where, snt and snc are given by (3.73); the other constants in (3.77) are given as

A1 (ξ) = −T sso (ξ, b, s0) (3.78)

A2(ξ) = T sso (ξ, b, s1) (3.79)

Ant (ξ) =

− 8knt
µ0σb2

(
2knt cos(2knt y/b)

bξ2 sin(2knt )
+

sin(2knt y/b)

ξ sin(2knt )

)
Qn
t

(cot(knt ) − λknt )(λ+ sec2(knt ))(snt − s1)(snt − s0)
(3.80)

Qn
t = Bs1(snt − s0)−Bs0(snt − s1) (3.81)
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Anc (ξ) =

8knc
µ0σb2

(
2knc cos(2knc y/b)

bξ2 sin(2knc )
+

sin(2knc y/b)

ξ sin(2knc )

)
Qn
c

(cot(knc ) − λknc )(λ+ sec2(knc ))(snc − s1)(snc − s0)
(3.82)

Qn
c = Bs1(snc − s0)−Bs0(snc − s1) (3.83)

The vector potential solution (3.77) can be further simplified since substituting (3.78)

into (3.77) results in the first two terms of (3.77) canceling each other out. Thus,

(3.77) reduces down to

Az(ξ, y, t) = Bs1(ξ)
[
T ssnew(ξ, b, s1)es1t +

9∑
m=0

(
Ant (ξ)es

n
t t +Anc (ξ)es

n
c t
)]

(3.84)

This is the transient solution of the vector potential for a step change in translational

velocity from vx0 to vx1, a step change in the electrical angular frequency from ωe0 to

ωe1 or a step change in air-gap. The variable air-gap is embedded in the source field

function Bs1(ξ) and Bs1(ξ) as shown in section 3.3.8. More than one of these inputs

can change at the same time. The first term in (3.84) is the steady-state solution

of the vector potential at vx1, ωe1 and air-gap, g1. The following two terms are the

transient decaying response terms due to a step change. Only the first ten roots

are used because for the application studied in this thesis values for n > 10 leads to

poles and that have very high negative values. As it can be noted from (3.84) the

higher the negative values of snt and snt , the faster is the transient decay. Therefore,

the fast decaying transient roots and their corresponding poles are neglected in this

formulation.

3.3.6 Electric Field Intensity and Magnetic Flux Densities

The transient solution for the electric field intensity, Ez(ξ, y, t), can be obtained

from the vector potential, Az(ξ, y, t) by differentiating the vector potential with respect
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to the time, t. Therefore, the electric field intensity, Ez(ξ, y, t) is

Ez(ξ, y, t) = −dAz(ξ, y, t)
dt

= −Bs1(ξ)[s1T
ss
new(ξ, y, s1)es1t

+

9∑
m=0

(sntA
n
t (ξ)es

n
t t + snc A

n
c (ξ)es

n
c t)] (3.85)

The x and y components of the magnetic flux density developed on the conducting re-

gion Ω2 can be obtained by differentiating the vector potential, Az(ξ, y, t) with respect

to variables y and x respectively as

Bx(ξ, y, t) =
∂Az(ξ, y, t)

∂y
(3.86)

By(ξ, y, t) = −∂Az(ξ, y, t)
∂x

= −jξAz(ξ, y, t) (3.87)

The transient equation for Bx(ξ, y, t) can be obtained by substituting the vector po-

tential solution (3.84) into (3.86). Therefore, Bx(ξ, y, t) is given by

Bx(ξ, y, t) = Bs1(ξ)

[
C1(ξ)es1t +

9∑
n=0

(
Cn
t (ξ)es

n
t t +Cn

c (ξ)es
n
c t
)]

(3.88)

where the constants in (3.88) have been determined to be

C1(ξ) =

(
−4k1

2 sin(2k1y/b)

b2ξ2 sin(2k1)
+

2k1 cos(2k1y/b)

bξ sin(2k1)

)
(cot(k1)− λk1) (tan(k1) + λk1)

(3.89)

Cn
t (ξ) =

(
4(knt )

2
sin(2knt y/b)

b2ξ2 sin(2knt )
− 2knt cos(2knt y/b)

bξ sin(2knt )

)
Qn
t 8knt
µ0σb2

(cot(knt )− λknt )(λ+ sec2(knt ))(snt − s0)(snt − s1)
(3.90)

Cn
c (ξ) = −

(
4(knc )

2
sin(2knc y/b)

b2ξ2 sin(2knc )
− 2knc cos(2knc y/b)

bξ sin(2knc )

)
Qn
c 8knc
µ0σb2

(λ+ csc2(knc ))(λknc + tan(knc ))(snc − s0)(snc − s1)
(3.91)

k1 = j0.5b
√
ξ2 + µ0σs1 (3.92)
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The transient solution of the vector potential, electric field intensity and the magnetic

flux densities can be evaluated on the surface of the guideway by substituting y = b in

their respective equations. This will be used to calculate the transient forces on the

guideway surface and the total power loss in the guideway in the following section.

3.3.7 Force and Power Loss Calculations

The thrust or braking force, Fx, and lift force, Fy, can be determined by either

evaluating the stress tensor equations along the guideway surface (y = b) or by using

the Lorenz equation. In 2-D, the stress tensor force calculation is a line integral

whereas the Lorenz methods required a surface integral. In this section, the force

equations for both the methods will be presented.

3.3.7.1 Tensor Fore Calculation

As for the steady-state the transient normal and tangential force on the surface

of the guideway (y = b) using Maxwell’s stress tensor method are given by

F t
x =

w

2µ0

Re

∞∫
−∞

[B∗x(x, b, t)By(x, b, t)] dξ on Γ12 (3.93)

F t
y =

w

4µ0

Re

∞∫
−∞

[
B∗y(x, b, t)By(x, b, t)− B∗x(x, b, t)Bx(x, b, t)

]
dξ on Γ12 (3.94)

The transient thrust and lift force equations evaluated directly in the Fourier trans-

form domain are

F t
x =

w

4πµ0

Re

∞∫
−∞

[B∗x(ξ, b, t)By(ξ, b, t)] dξ on Γ12 (3.95)

F t
y =

w

8πµ0

Re

∞∫
−∞

[
B∗y(ξ, b, t)By(ξ, b, t)− B∗x(ξ, b, t)Bx(ξ, b, t)

]
dξ on Γ12 (3.96)

where B∗y(ξ, b, t) and B∗x(ξ, b, t) are the complex conjugates of (3.87) and (3.86) respec-

tively evaluated at y = b. The transient 2-D forces, Fx and Fy can also be written
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directly in terms of the vector potential and source field components. These force

equations are in the same form as for the steady-state model derived in section 2.3.9.1

except the vector potential and source fields are the function of time. The transient

thrust and lift forces are given by

F t
x =

w

4πµ0

Re

∫ ∞
−∞

[(jξAz(ξ, b, t)B
s∗(ξ, b, t)]dξ (3.97)

F t
y =

w

8πµ0

Re

∞∫
−∞

[
2ξAz(ξ, b, t)B

s∗(ξ, b, t)− |Bs(ξ, b, t)|2
]
dξ (3.98)

The thrust and lift forces are evaluated by substituting the vector potential (3.84)

and the Fourier transformed source magnetic flux densities into (3.97) and (3.98)

respectively.

3.3.7.2 Lorentz Force Calculation

The tangential force and normal force can also be evaluated by using the Lorentz

formula [146,153]. The force density in 2-D formulation where the current is assumed

to have only z-components can be directly evaluated in the Fourier domain using the

Parseval’s theorem as

F t
x = − w

4π

∞∫
−∞

∫ b

0

Re[Jz(ξ, y, t).By
∗(ξ, y, t)]dydξ (3.99)

F t
y =

w

4π

∞∫
−∞

∫ b

0

Re[Jz(ξ, y, t).Bx
∗(ξ, y, t)]dydξ (3.100)

where w is the width of the guideway and the current density, Jz(ξ, y, t) is given by

Jz(ξ, y, t) = σ[vxBy(ξ, y, t)− Ez(ξ, y, t)] (3.101)



85

3.3.7.3 Power Loss Calculation

The work done per unit time per unit volume which is the power delivered per

unit volume is given by [153]

dW

dt
=

∫
v

(E · J)dV (3.102)

Expanding (3.102), one can obtain [153]

dW

dt
= − d

dt

∫
v

1

2

(
ε0E

2 +
1

µ0

B2

)
dV − 1

µ0

∮
s

(E×B) · dS (3.103)

where E and B are the resultant electric and magnetic fields, V is the volume, ε0 is

the permittivity of free space and S is the close surface bounding V .

The steady-state power loss in the conductive guideway was evaluated in Chapter

2 by using the Poynting vector method and line integration. However, the same is not

possible for the transient model because the total energy stored in the system which

is given by the first integral on the right hand side of (3.103) is not constant during

the transient. Unlike the steady-state model, the power transferred in the transient

case is given by (3.103). Once the power transferred is known the power loss can be

calculated using (2.145). However, the transient real power loss in the guideway in

2-D is not evaluated in this case using (3.103) instead it is evaluated using the surface

integration (volume integration in 3D) over the conductive guideway region Ω2 by

using the following expression

P t
Loss =

σ

2

∫∫
Ω2

|Jz(x, y, t)|2dΩ2 (3.104)

The transient power loss can be directly evaluated in the Fourier domain using the
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Parseval’s theorem as

P t
Loss =

wσ

4π

∞∫
−∞

∫ b

0

Re[Jz(ξ, y, t)Jz
∗(ξ, y, t)]dydξ (3.105)

3.3.8 Magnetic Source Field-A Halbach Rotor

The external rotor field created by the 2-D Halbach rotor for the steady-state

modeling derived in section 2.3.11 is now modified by including the translational

speed term into the rotor source field. Therefore, the time dependent magnetic flux

densities of the Halbach rotor (2.168) and (2.169) becomes

Bs1
y (x, y, t) =

C

(x− vx1t− j(y − yo))P+1
ejωe1t (3.106)

Bs1
x (x, y, t) =

jC

(x− vx1t− j(y − yo))P+1
ejωe1t (3.107)

If the magnetic source is located at air-gap = g1, the y-axis offset given by (2.167)

becomes

yo = ro + g1 + b (3.108)

then, the magnetic flux densities at y = b (3.106) and (3.107) becomes

Bs1
y (x, b, t) =

C

(x− vx1t+ j(ro + g1))
P+1

ejωe1t (3.109)

Bs1
x (x, b, t) =

jC

(x− vx1t+ j(ro + g1))
P+1

ejωe1t (3.110)

3.3.8.1 Fourier and Laplace Transform for Rotor Source Field

The Fourier transform for the source field (3.109) and (3.110) is obtained by using

the Fourier transform table given in [150]

Bs
x(ξ, b) = (−j)P 2

P !
CπξP e−ξ(g1+ro)ej(ωe1−ξvx1)t u(ξ) (3.111)
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Bs
y(ξ, b) = (−j)P+1 2

P !
CπξP e−ξ(g1+ro)ej(ωe1−ξvx1)t u(ξ) (3.112)

where u(ξ) is the step function [149]. Laplace transforming (3.111) and (3.112) one

can obtain

Bs1
x (ξ, b, s) =

1

2

Bs1(ξ, b)

s− s1

(3.113)

Bs1
y (ξ, b, s) = −jBs1

x (ξ, b, s) (3.114)

where

Bs1(ξ, b) = Bs1
x (ξ, b) + jBs1

y (ξ, b)= 2(−j)P 2

P !
CπξP e−ξ(g1+ro)ej(ωe1−ξvx1)t u(ξ) (3.115)

s1 = j(ωe1 − ξvx1) (3.116)

Similarly, the source function at t = t0 at air-gap = g0 can be written in the same

format as (3.115) by

Bs0(ξ, b) =
π

6
Cξ4e−(ro+g0)ξ u(ξ) (3.117)

3.4 Simulation Results and FEA Validations

In this section the results obtained by the analytic model derived in section 3.3

have been compared with the COMSOL FEA model developed in Appendix A and

with a transient JMAG FEA model [160]. The vector potential field for this transient

FEA model is illustrated in Figure 3.3. The JMAG model can only model the rota-

tional or the translational motion but not simultaneously. In this transient model,

only the rotational speed has been included. The parameters shown in Table 3.2 have

been used to make these comparisons. Figure 3.4 shows the comparison for the lift

and thrust forces when vx = 0ms-1 and a step change in angular velocity from 0 RPM

to 3000 RPM occurs at time t = 0s; this is then followed by a second step change in

velocity from 0 ms-1 to 10 ms-1 at 15ms with the angular velocity being kept constant

at 3000 RPM. The reduction in lift and thrust force after 15ms corresponds to the
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decrease in slip value. Figure 3.5 shows the force comparison for the case when vx

= 0ms-1 and a step change in angular speed from 0 to 1000 RPM occurs followed by

a step change to 2000 RPM at t = 15ms. The FEA result in this comparison was

obtained using the transient JMAG FEA model.

A power loss comparison for the case when vx = 0ms-1 and a step change in angular

speed from 0 to 3000 RPM occurs followed by a step change to 5000 RPM at t =

15ms is shown in Figure 3.6. Excellent agreement between the analytic and the FEA

results has been achieved. The air-gap between the rotor and conductive guideway

is held constant in these simulations. The integral in (3.95), (3.96) and (3.105) were

evaluated using the Simpson’s integration algorithm in Matlab numerically. The

integration over ξ is carried out from ξ = 0 to 250 because the source field is negligible

for ξ > 250 and is zero for ξ < 0 due to the step function in (3.117).

The lift and thrust force comparison for a step change in air-gap at t = 15ms for

ωm = 1000RPM and vx = 0ms-1 is illustrated in Figure 3.7. Similarly, the lift and

thrust force comparison for a step change in air-gap at t = 15ms for ωm = 0RPM and

vx = 10ms-1 is illustrated in Figure 3.8.

Table 3.2: Simulation parameters for 2-D transient model.

Outer radius, ro 50 mm
Inner radius, ri 34.20 mm
Width of rotor, w 100 mm

Halbach Rotor Magnet (NdFeB), Br 1.42 T
Magnet relative permeability 1.08
Pole-pairs, P 4

Guideway length (±L) 0.3 m
Thickness, b 10 mm

Conductive guideway Guideway width 100 mm
Air-gap between rotor and guideway, (g) 10 mm
Conductivity, σ (Al) 2.459×107 Sm-1
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Figure 3.3: Vector potential fields for the transient JMAG model. The JMAG model could
not model both rotational and translational motion of the rotor simultaneously. This model
was used to verify the results in Figure 3.5.

Figure 3.4: A comparison for the transient lift and thrust forces for a step change in
angular velocity from 0 RPM to 3000 RPM with velocity 0 ms-1 at t = 0ms and a second
step change of velocity from vx = 0ms-1 to vx = 10ms-1 at t = 15ms with angular velocity
= 3000 RPM.
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Figure 3.5: A comparison for the transient lift and thrust forces for a step change in
angular speed from 0 RPM to 1000 RPM at t = 0ms and step change from 1000 RPM to
2000 RPM at t = 15ms at Velocity = 0ms-1.

Figure 3.6: A comparison for the transient power loss for a step change in angular speed
from 0 RPM to 3000 RPM at t = 0ms and step change from 3000 RPM to 5000 RPM at t
= 15ms. Velocity = 0ms-1.
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Figure 3.7: A comparison for the transient lift and thrust forces for a step change in air-gap
from 10 mm to 15mm at t = 15 ms with ωm = 1000RPM, vx = 0ms-1.

Figure 3.8: A comparison for the transient lift and thrust forces for a step change in
air-gap from 10 mm to 15mm at t = 15ms with ωm = 0RPM, vx = 10ms-1.

The COMSOL FEA surface plots of the vector potential, Az in the guideway and
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the contour plots of the magnetic flux density, Bx in non-conducting region for a step

change in velocity, vx from 0ms-1 to 10ms-1 while keeping the angular speed, ωm =

0RPM are shown in Figure 3.9 and Figure 3.10. These results has been obtained

with g = 10mm at time 1ms and 5ms. The vector potential distribution as well as the

magnetic flux distribution is different in these figures. The maximum value of vector

potential and the magnetic flux density are higher in Figure 3.9 compared to Figure

3.10 showing that high current is induced during the step change.

Figure 3.9: COMSOL FEA plot showing the surface plot of Az in the guideway and contour
plot of Bx in the air-region for a step change in vx from 0ms-1 to 10ms-1 after 1ms. The
angular speed is kept at 0RPM and g = 10mm.

Figure 3.10: COMSOL FEA plot showing the surface plot of Az in the guideway and
contour plot of Bx in the air-region for a step change in vx from 0ms-1 to 10ms-1 after 5ms.
The angular speed is kept at 0RPM and g = 10mm.
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3.4.1 FEA Model in Magsoft/Flux 2D

The 2D transient model of an EDW rotating above a conducting guideway has

been created in a FEA software called Magsoft/Flux2D (v 10.4) in order to validate

the analytic equations developed in section 3.3. In the analytic model, the Halbach

rotor source field is consider as a smoothly varying sinusoidal waveform (refer section

3.3.8). However, in order to obtain an ideal sinusoidal waveform, a large number

of magnet segments are required. In this section, three different configurations have

been investigated. The 16 segments, 32 segments and 64 segments transient model

of a 4 pole-pairs EDW as shown in Figures 3.11 - Figure 3.13 has been studied. The

sample mesh plot of these EDW models has been illustrated in Figure 3.14. Since, the

Magsoft can model only one motion either rotation or translational at a time, only

the rotational motion has been modeled. The model has been compared with the

analytic model for step change in angular velocity of the EDW at constant air-gap

and translational velocity, vx = 0ms-1. The material properties and the geometric

properties of this model has been provided in the Table 3.3.

Figure 3.11: 2D FEA Magsoft model for a 16-segments 4 pole-pairs Halbach rotor rotating
above an aluminum sheet guideway. The surface plot of the vector potential on the guideway
region and the contour plot of the magnetic flux density, By in air and magnet region is
shown in this figure.
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Figure 3.12: FEA Magsoft model for a 32-segments 4 pole-pairs Halbach rotor rotating
above an aluminum sheet guideway. The surface plot of vector potential in guideway region
and the contour plot of the same on the air and magnet region is shown in this figure.

Figure 3.13: FEA Magsoft model for a 64-segments 4 pole-pairs Halbach rotor rotating
above an aluminum sheet guideway. The surface plot of vector potential in guideway region
and the contour plot of the same on the air and magnet region is shown in this figure.
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Figure 3.14: The problem regions of the 2D transient Magsoft model with the mesh.

Table 3.3: Simulation Parameters for Magsoft Model.

Outer radius, ro 50 mm
Inner radius, ri 34.20 mm
Width of rotor, w 50 mm

Halbach Rotor Magnet (NdFeB), Br 1.42 T
Magnet relative permeability 1.055
Pole-pairs, P 4

Guideway length (±L) 0.4 m
Thickness, b 10 mm

Conductive guideway Guideway width 50 mm
Air-gap between rotor and guideway, (g) 9.5 mm
Conductivity, σ (Al) 2.459×107 Sm-1

The comparison between the force and power loss in the guideway between these

three models has been done with the analytic model as well as COMSOL model. The

16 segments model is the most inaccurate model among the three Magsoft models.

The 32 segments model is better than the 16 segments model. However, the 64 seg-

ments model is very close with the analytic model and COMSOL model because the

source fields produced by this model are very smooth like an analytic fields equations
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given by (3.113) and (3.114). In analytic model the Halbach rotor source filed is

modelled using only the fundamental component. With the 64 segments rotor, the

fundamental components of the source field is very close to the fundamental compo-

nent used in the analytic source fields. However, in the 16 segments and 32 segments

rotors, the fundamental component is less compared with the analytic source fields.

Therefore, these two models is giving less force compared with the 64 segments rotor.

Figure 3.15: The thrust force comparison between the Magsoft models, analytic model and
COMSOL model for a step change in ωm from 0 to 3000RPM at t = 0s followed by the
second step change in ωm from 3000RPM to 5000RPM at t = 15ms.

Figure 3.16: The lift force comparison between the Magsoft models, analytic model and
COMSOL model for a step change in ωm from 0 to 3000RPM at t = 0s followed by the
second step change in ωm from 3000RPM to 5000RPM at t = 15ms.
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Figure 3.17: The power loss in the guideway comparison between the Magsoft models,
analytic model and COMSOL model for a step change in ωm from 0 to 3000RPM at t = 0s
followed by the second step change in ωm from 3000RPM to 5000RPM at t = 15ms.

The comparison of the thrust force, lift force and the power loss in the guideway

between the Magsoft models, Comsol model and the analytic model are illustrated in

Figure 3.15 - Figure 3.17. These comparison plots were obtained for the case when

air-gap is held constant at 9.5mm. The step change in ωm from 0RPM to 3000RPM is

applied at t = 0s followed by the step change in the ωm from 3000RPM to 5000RPM

at t = 15ms and vx = 0ms-1.

3.5 Summary

A 2-D transient formulation for a translationally moving and/or rotating Halbach

rotor above a passive aluminum sheet guideway has been obtained by using the spatial

Fourier transform and temporal Laplace transform method. The conductive region

was solved for the vector potential whereas the air region was solved for the magnetic

scalar potential. The time domain solution was obtained by utilizing the Heaviside

expansion theorem to find the inverse Laplace transform.

The transient solution for the normal and tangential forces along the surface of the

guideway was calculated by using Maxwell’s stress tensor as well as Lorentz method.

The force calculations were performed directly in the spatial Fourier domain by using
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Parseval’s theorem. This eliminates the need for inverse Fourier transforming. The

performance of the derived equations were validated by comparing them with two

different 2-D FEA transient models developed using COMSOL, JMAG and Magsoft

softwares.

The eddy-current field equations are written in a general form so that other mag-

netic sources can be used. The computational time using this analytic model has

been significantly reduced compared with the FEA model. Using a quad-core Dell

precision T7400 PC the average force calculation time at one operating point using

a COMSOL FEA was about 2.8522s while using the analytic based transient model

the time was reduced to only 0.1026s. The developed transient model will be used to

investigate the dynamic electromechanical simulation behavior of the EDW maglev

vehicle.



CHAPTER 4: ELECTROMECHANICAL DYNAMIC SUSPENSION MODEL

4.1 Introduction

In this chapter, the dynamic behavior of the electromechanical model using EDW

is presented. The electromagnetic part, the EDW model, is coupled with the me-

chanical part, the vehicle model, in order to investigate the dynamic behavior of the

complete EDW Maglev vehicle. The steady-state and transient models of the EDW

developed in Chapter 2 and Chapter 3 have been separately coupled to the mechanical

vehicle model. The mechanical model has been developed in Matlab/Simulink using

SimMechanicsTM and the analytical based wheel models are integrated in Simulink

using s-functions. Both the steady-state as well as the transient coupled mechanical

models have been studied for the step change in weight and the angular speed of the

EDW.

In section 4.2 a brief review of the dynamic modeling for various maglev technolo-

gies published in different literature is presented. In section 4.3 a review of magnetic

damping and stiffness is presented. The dynamic behavior of an EDW Maglev using

the steady-state model is investigated in section 4.4. Similarly, the dynamic behavior

of an EDW Maglev using the transient model is presented in section 4.5. The mag-

netic damping and stiffness of the EDW is evaluated analytically and investigated for

a wide range of velocity, air-gap and RPM values in section 4.6. Finally, a summary

of the chapter is presented in section 4.7.

4.2 Review on Dynamic Maglev Modeling

A comprehensive understanding of the vehicle dynamics is a crucial first step

towards the design of an effective suspension system. It is also essential for the
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development of the control laws for the successful operation of a Maglev system.

Maglev system needs to satisfy the passenger safety and the ride quality requirements

in order to be commercially viable. Therefore, it is essential to consider the dynamic

as well as static stability as an integral part of Maglev design even for the concept

development. The dynamic stability of EDS Maglev suspension systems have been

investigated on large-scale vehicles, on linear test tracks, as well as on laboratory-scale

setups. An excellent review of dynamic stability for EDS Maglev suspension systems

is presented by Rote and Cai [63]. The dynamics and ride quality is often the last

things that is considered in the design of a Maglev vehicle. If judiciously designed

EDS Maglev systems are generally stable in steady-state operation; however, this is

not true under the influence of nonsteady-state conditions. Therefore, various forms

of active and passive damping mechanisms must be incorporated into the design to

make the nonsteady-state operation stable.

The EDS Maglev as shown in Figure 4.1 used superconducting magnets and a

continuous guideway. It was experimentally tested in 1970’s by Coffey et al. [9] and

it was determined to be stable within the operation velocity of 15ms-1 (three times

the lift-off speed). Coffey also conducted experiments to compare the performance

using active and passing damping coils and discovered that the active damping is

more effective than passing damping and suggested that the passive damping could

be used as a backup system in case of emergency when the active damping failed.

Several tests were performed by Iwahana et al. in 1980 [181] using the test vehicle

with inverted-T cross-section guideway as shown in Figure 4.2. The vehicle contained

4 SCMs for propulsion and guidance and 4 SCMs for suspension. The vertically

mounted coils for propulsion and null-flux for guidance were also included in the

guideway. The vehicle was tested with a profile consisting of acceleration to a constant

speed, running at constant speed and deceleration to rest. No instabilities were

reported for the speed range of 38, 50 and 58ms-1 during these tests.
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Figure 4.1: The EDS Maglev using SCMs used by Coffey et al. [9].

Figure 4.2: Test vehicle using SCMs over a inverted-T test guideway [181].

In the late 1970s, a 10-metric-ton test vehicle, ML-500 as shown in Figure 4.3, was

tested over a discrete-coil guideway at the Miyazaki test track, Japan, in the speed

range of 21ms-1 to 83ms-1 and no instabilities was observed. The Miyazaki test system

was modified several times; different vehicle models such as MLU-001, MLU-002 and

MLU-002N with additional passive damping were tested for guideway discontinuities
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[182] as well. No instabilities were reported during these tests. The topologies and

the pictures of these test vehicles are shown in Figure 4.4 - Figure 4.6.

Figure 4.3: Cross-section of ML-500 test vehicle with inverted-T-shaped guideway config-
uration [14].

Figure 4.4: Cross-section of MLU001 test vehicle with a U-shaped guideway configuration,
levitation coils on the ground, and combined propulsion and guidance coils on the side wall
[14].

Figure 4.5: Cross-section of MLU002 test vehicle with side wall null-flux levitation system
[14].
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Figure 4.6: MLU002N test vehicle photo [14].

The full-scale passenger test Maglev vehicle, MLX01 (as shown in Figure 4.7

located at the Yamanashi test track was reported to have a coupled roll-lateral insta-

bility at low-speed. The authors defined this instability as a static instability and is

due to the fact that guideway force is not sufficiently stiff to limit the coupled roll-

lateral instability at low-speed. However, this kind of instability was not observed at

high-speed [183].

Figure 4.7: Photo of MLX01 test vehicle at Yamanashi test track [65].

A coupled lateral roll-yaw instability was reported by Moon when the experimental

vehicle as shown in Figure 4.8 modeled with 3-degree of freedom was leviated above

a V-shaped rotating aluminum guideway [170, 184]. This instability was caused by a

coupling of the lateral and roll motions to yaw through the magnetic drag.

The laboratory Maglev vehicle consisting of a segmented inverted T-shaped alu-

minum track and PMs moving above an adjustable speed guideway as shown in Figure

4.9 was investigated by Chu and Moon [186]. The authors found a coupled yaw-lateral
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Figure 4.8: Sketch and a picture of a PM levitated Maglev in a V-shaped guideway [185].

vibration resulting in both divergence and flutter. The divergence lead to two sta-

ble equilibrium yaw positions where as the flutter instability lead to a limit cycle

oscillation coupling yaw and lateral motion around the drag-peak.

Figure 4.9: Sketch of Maglev model used by Chu and Moon [186].

The study of laboratory scale EDS Maglev at Argonne National Laboratory (ANL)

in the 1990’s demonstrated a variety of complex motions and instabilities experi-

mentally [186–188]. Divergence and flutter motion was obtained analytically and

numerically for coupled vibration of a 3-DOF Maglev vehicle shown in Figure 4.10.

In addition, instabilities in five directions were observed when the 5-DOF (vertical

heave, lateral slip, pitch, yaw and roll) vehicle system as shown in Figure 4.11 was

translationally moved above a double L-shaped continuous aluminum guideway. In
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this experiment, the system parameters such as system damping, vehicle geometry

and the coupling effects between degrees of freedom were identified as key factors that

caused the dynamic instabilities in the EDS Maglev [189].

Figure 4.10: A 3-DOF Maglev system on a double L-shaped aluminum guideway [190].

Figure 4.11: Maglev vehicle on double L-shaped aluminum sheet guideway: (a) Front view;
(b) Side view.

Han theoretically investigated the dynamics of the EDS Maglev system using a

linear permanent magnet Halbach array and proposed a control system to effectively

stabilize the system [191, 192].

4.3 Magnetic Damping and Stiffness

Magnetic damping is one of the important parameters that determines the dy-

namic response and the stability of the Maglev system. The damping can be active
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and passive. The magnetic damping inherent in a magnet-moving EDS or EMS sys-

tem in the absence of any external damping is called intrinsic magnetic damping.

A number of studies have found that the intrinsic magnetic damping decreases with

increases in the translational velocity and it has been found to sometimes become

negative for speeds greater than a characteristic velocity; resulting in self-excited

vehicle oscillations [56, 59, 60, 184]. For example, Iwamoto et al. [59] theoretically

examined the intrinsic magnetic damping between SCMs and a loop-guideway for a

full scale EDS Maglev. The analysis was performed for both constant current and

constant flux modes of the SCMs. The authors found that the damping was only not

negative at extremely low velocities and suggested that the negative damping could

be overcome by the addition of passive damper coils placed inside the cryostats [59].

Yamada et al. investigated the damping of superconducting coils aboard a Maglev

vehicle and short-circuited coils arranged along a guideway [60]. The authors also

demonstrated the existence of negative intrinsic damping using the experimental

setup shown in Figure 4.12. This pendulum setup was comprised of a magnet ar-

ray supported by a string that was free to move normal to the surface of the rotating

aluminum guideway.

Figure 4.12: Pendulum experimental setup to determine a magnetic damping [60].

A similar pendulum setup used by Moon to investigated magnetic damping is

illustrated in Figure 4.13-(a) [170, 184]. In this experiment a magnet was mounted to

a stiff cantilevered bean of natural frequency 22Hz in order to keep the air-gap small
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even when the normal force is developed. The aerodynamic as well as structural

damping was also measured to accurately estimate the magnetic damping. Moon

found that negative intrinsic damping existed at speeds higher than a critical velocity.

Although the calculated critical velocity was less than the measured one, yet the

result clearly showed the measured damping decreased and become negative with

an increase in speed. The calculated result for damping vs speed showing negative

intrinsic damping is illustrated in Figure 4.13-(b).

Figure 4.13: Magnetic damping measurement (a) Experimental setup (b) Magnetic damp-
ing vs velocity [184].

In these above mention investigations, the dynamic response of the system sup-

ported by or subjected to magnetic force were either measured or analyzed. The

magnetic damping was calculated from the system response. This is called the in-

direct method of measuring magnetic damping [193]. The method to calculate the

magnetic damping by using the eddy-current losses [194] or magnetic force due to an

arbitrary motion [56] is a direct method based on quasi-steady motion.

The method used to measure the magnetic damping and stiffness at ANL is a

direct method based on the unsteady-motion theory [187, 193, 195]. This method is

capable of measuring the self and mutual magnetic damping. A series of tests were

conducted in the 1990’s at ANL to determine the effect of various parameters such as

conductivity, air-gap, excitation amplitude and frequency on the magnetic damping
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and stiffness. The experimental setup shown in Figure 4.14 consisted of a rotating

drum, shaker, force transducer and magnet. The experiments again demonstrated

that negative intrinsic damping for velocity greater than a characteristic velocity

existed. It was suggested that the measured magnetic damping and stiffness could be

used to investigate Maglev vehicle dynamics.

Figure 4.14: Magnetic damping and stiffness calculation setup at ANL (a) Schematic
diagram (b) Force transducer and magnet support [193].

The magnetic damping forces and vehicle dynamic computer simulation model of

a 1-D discrete coil has been developed [196]. The negative damping behavior has

been reported in this computer simulation. The magnetic damping of a figure-eight-

shaped null-flux coil was analytically studied by He and Coffey in 1997 [197]. The

close form expression of the magnetic damping as a function of heave-and-sway was

derived using dynamic circuit theory. The authors found that the vertical intrinsic

magnetic damping existed and was maximum at the null-flux position and decreased

with the heave velocity.

From the above review it is clear that the lift, drag and the guidance forces

produced in EDS Maglev system are highly dependent on position and velocities.

Therefore, it is very important to derive the forces equations in terms of the position
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and velocity in order to investigate the motion-dependent force i.e. the intrinsic

magnetic damping force. The motion-dependent forces of the EDW derived in earlier

chapters are now coupled with the mechanical vehicle models in order to investigate

the dynamic behavior of an EDS Maglev using EDWs.

4.4 Dynamic Modeling Using Steady-State Force Equations

The steady-state thrust and lift force equations developed in Chapter 2 will be

utilized in this section in order to investigate the dynamic behavior of an EDW

Maglev. An electromechanical model using four EDWs has been created in the Matlab

Simulink environment. Each EDW is connected to the vehicle through a drive shaft.

The traction motors have not been included in this model. However, the torque is

directly applied to the drive shafts. The basic configuration of the vehicle is shown

in Figure 4.15. The block diagram for the integration of the EDW model and vehicle

model is shown in Figure 4.16. Since, the model is simulated using only 2-DOF,

only the variation in the vehicle gap, g in the y-axis, and variation in x-direction

is considered. The vehicle’s y-axis motion acts like an electromechanical nonlinear

spring mass system [198]

m
d2g(t)

dt2
= Fy(t)− Fg (4.1)

where

Fg = gravitational force

m = mass of vehicle and the rotor magnets.

The equation of motion in the x-direction is given by

m
d2x(t)

dt2
= Fx(t)− Fd(t) (4.2)

where Fx(t) is the thrust force and Fd is the aerodynamic drag force. The aerodynamic

drag force is proportional to the square of translational velocity and frontal area as
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Figure 4.15: (a) The maglev vehicle used for simulation, where Bv, Hv and Lv are the
breadth, height and length of the vehicle. (b) Simulink SimMechanicsTM EDW Maglev
vehicle.

Figure 4.16: The block diagram showing EDW steady-state model coupled with the me-
chanical vehicle model. The heave velocity is also included in this model.

given by [198]

Fd = 0.5ρCdAvx(t)
2 (4.3)

where

ρ = density of air,

Cd = aerodynamic drag coefficient,

A = frontal area of the vehicle.

The aerodynamic and structural damping is not included in this model. The

parameters used for the vehicle model and EDW model are given in Table 4.1. The

steady-state thrust, (2.104), and lift, (2.115) are written as a s-function in Matlab and

incorporated into Simulink. The Fx and Fy outputs from the EDW model have been
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coupled to the Maglev vehicle model along with the aerodynamic drag. The vehicle

outputs, vx, vy, g and ωm are feed back into the EDW model block. Thus, the EDW

model utilizes these parameters to calculate the forces, Fx and Fy at the next time

step. In this way, a close loop is formed between the vehicle and the electromagnetic

EDW model for each simulation time step.

Table 4.1: Parameters for 2-DOF Maglev vehicle dynamic simulation.

Length of the vehicle, LV 40 cm
Breadth of the vehicle, BV 20 cm
Height of the vehicle, HV 10 cm
Thickness of vehicle, TV 4 cm
Frontal area of the vehicle. A 0.0476 m2

Vehicle Density of iron, ρFe 7.93 gm-cm−3

Length of drive shaft, LDS 4 cm
Radius of drive shaft, RDS 1cm
Total Weight of vehicle of Figure 4.15 21.38 kg
Aerodynamic drag coefficient, Cd 0.25 kgs−1

Outer radius, ro 50 mm
Inner radius, ri 34.20 mm
Width, w 50 mm

Halbach rotor Magnet (NdFeB), Br 1.42 T
Magnet relative permeability 1.08
Pole-pairs, P 4

Conductivity (Al) 2.459× 107 Sm−1

Conducting plate Single sheet width 50 mm
Thickness, b 10 mm
Air-gap between rotor and plate, g 10 mm

The dynamic simulation has been performed for two different step change distur-

bances. The first one is for a step change in angular speed and later for a step change

in the weight of the vehicle. The simulation results obtained will be compared with

the transient model in the following section.

4.5 Dynamic Modeling Using Transient Force Equations

In section 3.3 the 2-D transient eddy-current forces due to a step change in angular

velocity, translational velocity or air-gap of a source field were derived. In order to

form the dynamic electromechanical model the transient eddy-current model must
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be coupled to the transient mechanical model. Therefore, the transient eddy-current

model must be capable of predicting forces for continuous changes in the operating

inputs such as ωm, vx or g from non-steady state initial conditions. In this section the

transient model presented in section 3.3 will be extended so that it can account for

continuous changes in the source input rather than just a single step change in the

source input parameters.

Referring to section 3.3.2 it can be noted that the Fourier and Laplace transformed

vector potential differential equation (3.20) in region Ω2, for the case when initially

no field is present in the guideway, Assz (ξ, y, t0) = 0 at t = 0s, will be

∂2Az(ξ, y, s)

∂y2
= α2Az(ξ, y, s) (4.4)

Following the same procedure as undertaken to derive the solution from (3.20) to

(3.46), the solution of the vector potential in the Fourier-Laplace domain can be

obtained for Assz (ξ, y, t0) = 0 as

Atz(ξ, y, s) = T t(ξ, y, s)Bs(ξ, b, s) (4.5)

where the transmission function T t(ξ, y, s) is defined in (3.47). The solution (4.5) is

the vector potential solution for any arbitrary source Bs(ξ, b, s). The step response

of unity vector potential can therefore be obtained by making Bs(ξ, b, s) a unit step

input. The step response as well as impulse response of the vector potentials is derived

in the following section.

4.5.1 Vector Potential Step and Impulse Response

If the source field is a unit-step

Bs(ξ, b, s) =
1

s
(4.6)
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then by using (4.5) and following the derivation method given in section 3.3.5 the

vector potential field at y = b is

Astepz (ξ, b, t) = A1u(t) +

9∑
n=0

(
Ant e

snt t +Anc e
snc t
)

(4.7)

where

A1 = T (ξ, b, 0) = 1/(2ξ) (4.8)

Ant = − 8knt
µoσb3ξ2

(2knt cot(2knt ) + bξ)

snt (−λknt + cot(knt )) (λ+ sec2(knt ))
(4.9)

Anc =
8knc

µoσb3ξ2

(2knc cot(2knc ) + bξ)

snc (λ+ csc2(knc )) (λknc + tan(knc ))
(4.10)

and the time constants are

snq = −

[(
2knq
b

)2

+ ξ2

]
1

µoσ
(4.11)

the subscript q = t or c denoted for tan or cot. The impulse response can be obtained

from the step response solution. Inverse Laplace transforming (4.7) and multiplying

through by s gives

Aimpz (ξ, b, s) = A1 +

9∑
n=0

(
Ant s

s− snt
+

Anc s

s− snc

)
(4.12)

inverse Laplace transforming (4.12) using the Heaviside expansion theorem, one ob-

tains

Aimpz (ξ, b, t) = A1δ(t) +
9∑

n=0

(Ant +Anc ) δ(t) +
9∑

n=0

Ant s
n
t e
snt t +Anc s

n
c e
snc t (4.13)

The transient response due to an arbitrary source change ∆Bs(ξ, b, τ) at any point

in time can be obtained by utilizing the convolution integral of the impulse response
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[150]

Az(ξ, b, t) =

t∫
0

∆Bs(ξ, b, τ)Aimpz (ξ, b, t− τ)dτ (4.14)

Substituting (4.13) into (4.14) gives

Az(ξ, b, t) =

t∫
0

∆Bs(ξ, b, τ)

(
(A1 +

9∑
m=0

(Ant +Anc ))δ(t− τ)

+
9∑

n=0

(Ant s
n
t e
snt (t−τ) +Anc s

n
c e
snc (t−τ))

)
dτ (4.15)

The y-component flux density transient response on the conducting plate for an ar-

bitrary input on Γ12 is obtained by using (2.77), this gives

By (ξ, b, t) = −∂Az (ξ, b, t)

∂x
= −jξAz (ξ, b, t) (4.16)

To find Bx(ξ, b, t) for an arbitrary input on Γ12 the impulse response for Bx must first

be obtained; it is given by

Bimp
x (ξ, b, t) =

∂Aimpz (ξ, y, t)

∂y

∣∣∣∣
y=b

=
δ(t)

2
+

9∑
m=0

(Cn
t + Cn

c )δ(t) + Cn
t s

n
t e
snt t + Cn

c s
n
c e
snc t (4.17)

where

Cn
t =

−8knt
µoσb2

(2knt /bξ)
2 − (2knt /bξ) cot(2knt )

snt [−λknt + cot(knt )][λ+ sec2(knt )]
(4.18)

Cn
c =

8knc
µoσb2

(2knc /bξ)
2 − (2knc /bξ) cot(2knc )

snc [−λknc + cot(knc )][λ+ sec2(knc )]
(4.19)

Using (4.17) the transient response for the x-component of the magnetic flux density

due to any arbitrary input, ∆Bs(ξ, b, τ) can be obtained by utilizing the convolution
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integral of the impulse response as

Bx(ξ, b, t) =

t∫
0

∆Bs(ξ, b, τ)Bimp
x (ξ, b, t− τ)dτ (4.20)

Substituting (4.17) into (4.20) gives

Bx(ξ, b, t) =

t∫
0

∆Bs(ξ, b, τ)

(
δ(t− τ)

2
+

9∑
m=0

(Cn
t + Cn

c )δ(t− τ)

+
9∑

m=0

(Cn
t s

n
t e
snt (t−τ) + Cn

c s
n
c e
snc (t−τ))

)
dτ (4.21)

The transient forces are calculated from the equations derived in section 3.3.7.1 by

using the vector magnetic flux densities given by (4.16) and (4.21).

4.5.2 Validation of Transient Analytic Model Using FEA

An electromechanical model used to investigate the dynamic suspension behavior

of an EDW Maglev using 2-D transient analytic force is illustrated in Figure 4.17. As

in the steady-state case (section 4.4) the vehicle is modeled using SimMechanicsTM

whereas the EDW is modeled as an s-function. All the other modeling assumptions

are the same as for the steady-state case except that the heave velocity is not included

in the transient EDW model and of course time, t, is included in the transient EDW

model. This model is also investigated for a step change in weight as well as for a

step change in angular velocity. The simulation results are presented in section 4.5.3

and section 4.5.4.

The transient model developed in section 4.5.1 for continuous changes in input

conditions was validated by comparing it with an analogous FEA transient model.

The FEA model developed in Appendix A has been modified to account for the

continuous change in input conditions of vx, g and ωm. This modified FEA model was

then integrated to the mechanical vehicle model developed in SimMechanicsTM. This

FEA model developed in COMSOL V3.5 is integrated with the Matlab/Simulink in
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Figure 4.17: The block diagram showing EDW transient model coupled with the mechanical
vehicle model.

the form of an s-function.

The following initial conditions have been used during the starting of the sim-

ulation. The vehicle initial airgap, go, is 10mm, initial velocity, vxo, is 10ms-1 and

initial angular velocity, ωmo, is 400rads-1. These initial conditions result in a pos-

itive slip sl = 10ms-1. The comparison is made by using the parameters given in

Table 4.1 except that the equivalent current sheet of value 1.1814×106 Am-1 is used

as for the source [114]. The comparison between the lift force, thrust force and the

air-gap are illustrated in Figure 4.18, Figure 4.19 and Figure 4.20 respectively. An

excellent agreement between the FEA model and the analytic based transient model

for a continuously changing input condition was obtained. The integrated simulation

between the transient FEA model and vehicle SimMechanicsTM model is extremely

time intensive. For instance, to obtain the result shown in Figure 4.18 to Figure 4.20,

the FEA integrated with the vehicle model took about 2 weeks. However, the com-

putational time using the analytic based transient model could be completed within

a few minutes.

4.5.3 Dynamic Simulation for Step Change in Weight of the Vehicle

This simulation was performed using the initial airgap, go = 10mm, initial velocity,

vxo = 10ms-1 and initial angular velocity, ωmo = 400rads-1. Therefore, with the initial

positive slip, sl = 10ms-1. The dynamic response when using these initial conditions
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Figure 4.18: The lift force plot comparison between the FEA transient model and analytical
transient model when integrated with the Simulink SimMechanicsTM vehicle model.

Figure 4.19: The thrust force plot comparison between the FEA transient model and ana-
lytical transient model when integrated with the Simulink SimMechanicsTM vehicle model.

Figure 4.20: The airgap plot comparison between the FEA transient model and analytical
transient model when integrated with the Simulink SimMechanicsTM vehicle model.

with the steady-state model (discussed in section 4.4) and transient model (derived

in section 4.5) are compared in Figure 4.22 to Figure 4.28. The mechanical vehicle

model is the same for both models. The parameters given in Table 4.1 were used. The

large initial transient is due to the positive slip of the vehicle creating a thrust and lift

force and consequently the vehicle accelerates in both the x and y directions at t = 0s.
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The results showed that the steady-state model tracks the transient response quite

closely. This is because of the presence of the heave velocity term vy in the steady-

state EDW model. The sudden change in lift force creates a mechanical acceleration

and consequently this is captured by the vy term, without the feedback created by vy

the steady-state model cannot account for the dynamic variation in the airgap. As

the the system mechanical time constant is much larger than the eddy-current time

constants the resulting error in force estimation is relatively small, as shown in Figure

4.28. The dynamic simulation showed that the electromagnetic damping is clearly

present. The vehicle stabilizes at the air-gap of 10mm after about 4s. However,

the oscillation of the Maglev for 4s is not acceptable for ride quality. Therefore, an

appropriate control laws has to be implemented to bring Maglev system in stable

operation quickly. The lift and thrust forces are highly coupled. The translational

velocity is smoothly increasing until the thrust and drag forces becomes constant.

At time t = 5s a step change in mass of 50N is applied resulting in a second

transient phase. Since the mass is increased, the vehicle now stabilizes at an air-

gap of 8mm (lower than the previous stable air-gap). Therefore, more lift force

is produced. The translational velocity is decreased slightly and this results in a

decrease in the aerodynamic drag force. The electromechanical system using steady-

state EDW calculated forces very closesly tracks the transient eddy-current based

model. The oscillation response to the second step change show that even for about

30% change in lift force the resulting error obtained when using the steady-state based

force method is under 2%.
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Figure 4.21: The weight as a step input. The step change of 50N weight is applied at
t = 5s.
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Figure 4.22: Airgap comparison between the steady-state and transient dynamic model for
a step change in weight of the vehicle.
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Figure 4.23: Aerodynamic drag force comparison between the steady-state and transient
dynamic model for a step change in weight of the vehicle.
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Figure 4.24: Lift force comparison between the steady-state and transient dynamic model
for a step change in weight of the vehicle.
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Figure 4.25: Thrust force comparison between the steady-state and transient dynamic
model for a step change in weight of the vehicle.
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Figure 4.26: Heave velocity comparison between the steady-state and transient dynamic
model for a step change in weight of the vehicle.
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Figure 4.27: Translational velocity comparison between the steady-state and transient
dynamic model for a step change in weight of the vehicle.
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Figure 4.28: The percentage error of lift force between the steady-state and transient
dynamic model for a step change in weight of the vehicle.

4.5.4 Dynamic Simulation for Step Change in Angular Speed of EDWs

The two models (as shown in Figure 4.16 and Figure 4.17) are simulated for

a step change in angular velocity, ωm. The comparison of various parameters for

the step change in angular velocity is shown in Figure 4.30 to Figure 4.35. Both

models start in a steady-state condition (i.e. the steady-state operation condition

of the earlier simulation just before t = 5s) and then a step change in ωm from

400rads-1 to 600rads-1 as shown in Figure 4.29 occurs at t = 1s. This results in an

increased slip and consequently an increase in translational velocity. As the velocity is

greater the new steady-state air-gap value increases (Figure 4.30). However, the new

steady-state lift negligibly changes. This is because the increase in angular speed
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is compensated by the increase in air-gap resulting in an almost equal amount of

steady-state lift production. The thrust force, aerodynamic drag force are constantly

increased until the vehicle reach the steady-state operation. The steady-state model

again closely tracks the eddy-current based transient electromechanical model. The

error in percentage between the two models is relatively small as illustrated in Figure

4.36.

Figure 4.29: Step change in the angular speed from 400rads-1 to 600rads-1 at t = 1s

Figure 4.30: Air-gap comparison between the steady-state and transient dynamic model
for a step change in ωm of the EDWs.
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Figure 4.31: Aerodynamic drag force comparison between the steady-state and transient
dynamic model for a step change in ωm of the EDWs.

Figure 4.32: Lift force comparison between the steady-state and transient dynamic model
for a step change in ωm of the EDWs.

Figure 4.33: Air-gap comparison between the steady-state and transient dynamic model
for a step change in ωm of the EDWs.
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Figure 4.34: Translational velocity comparison between the steady-state and transient
dynamic model for a step change in ωm of the EDWs.

Figure 4.35: Heave velocity comparison between the steady-state and transient dynamic
model for a step change in ωm of the EDWs.

Figure 4.36: The percentage error of lift force between the steady-state and transient
dynamic model for a step change in ωm of the EDWs.
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4.6 Magnetic Stiffness and Damping of an EDW

The one degree of freedom vehicle simulation results indicate that the eddy-current

damping and stiffness characteristics of the electromechanical system can be relatively

accurately predicted by using only the steady-state eddy-current force model (with

vy) [199]. The steady-state equations are significantly simpler to understand and less

computationally expensive. Therefore, they have been used to study the stiffness and

damping characteristics for this EDW Maglev system. The thrust and lift stiffness

equations along the y-axis are dependent on the source location and therefore obtained

by differentiating (2.104) and (2.116) with respect to the airgap, g. The thrust and

lift force equations derived in section 2.3.9.1 are re-written here for convenience.

Fx =
w

4πµ0

Re

∫ ∞
−∞

jξT ss(ξ, b)|Bs(ξ, b)|2dξ (4.22)

Fy =
w

8πµ0

Re

∞∫
−∞

(2ξT ss(ξ, b)− 1)|Bs(ξ, b)|2dξ (4.23)

The only term that is a function of airgap, g, is the source term, |Bs(ξ, b)|2. The source

term for a Halbach rotor is given by (2.175) and is also re-written for convenience

|Bs(ξ, b)|2 =

(
4

P !

)2

π2C2ξ2P e−2ξ(g+ro) u(ξ) (4.24)

Differentiating the thrust force equation (4.22) with respect to air-gap gives

kxy =
∂Fx
∂g

=
w

4πµ0

Re

∞∫
−∞

jξT (ξ, b)
∂|Bs(ξ, b)|2

∂g
dξ (4.25)

The differentiation of magnetic flux density with respect to air-gap is

∂|Bs(ξ, b)|2

∂g
=

(
4

P !

)2

C2π2ξ2P u(ξ)
∂e−2ξ(g+ro)

∂g
(4.26)
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or simply

∂|Bs(ξ, b)|2

∂g
= −2

(
4

P !

)2

C2π2ξ2P+1e−2ξ(g+ro) u(ξ) (4.27)

Substituting (4.24) into (4.25) and noting (4.27) one obtains

kxy = −8w

µ0

C2π

(P !)
2 Re

∞∫
0

jT ss(ξ, b)ξ2P+1e−2ξ(g+ro)dξ (4.28)

Similarly, the lift stiffness coefficient, kyy, can be obtained by differentiating (4.23)

with respect to the air-gap, g as

kyy =
∂Fy
∂g

=
w

8πµ0

Re

∞∫
−∞

(2ξT ss(ξ, b)− 1)
∂|Bs(ξ, b)|2

∂g
dξ (4.29)

Substituting (4.24) into (4.29), and noting (4.26), the expression for the stiffness

coefficient, kyy becomes

kyy = − w

8πµ0

Re

∞∫
0

2ξ[(2ξT (ξ, b)− 1)

(
4

P !

)2

C2π2ξ2P e−2ξ(g+ro)]dξ (4.30)

Rearranging (4.30), the stiffness coefficient kyy is

kyy = − w
µ0

4C2π

(P !)
2 Re

∞∫
0

[(2ξT (ξ, b)− 1)ξ2P+1e−2ξ(g+ro)]dξ (4.31)

As the conducting guideway is assumed to be infinitely long and uniform, the forces

will not change with spatial motion along the x-axis. Therefore, the stiffness coeffi-

cients kxx and kyx are both zero.

kxx =
∂Fx
∂x

= 0 (4.32)

kyx =
∂Fy
∂x

= 0 (4.33)
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The magnetic damping coefficients are dependent on the transmission functions.

The thrust force damping coefficients can be determined by differentiating (4.22) with

respect to velocities in the x and y direction, one obtains

Dxx =
∂Fx
∂vx

=
w

4πµ0

Re

∫ ∞
−∞

(jξ)
∂T ss(ξ, b)

∂vx
|Bs(ξ, b)|2dξ (4.34)

Dxy =
∂Fx
∂vy

=
w

4πµ0

Re

∫ ∞
−∞

(jξ)
∂T ss(ξ, b)

∂vy
|Bs(ξ, b)|2dξ (4.35)

where the derivative of the transmission function with respect to vx and vy is respec-

tively

∂T ss(ξ, b)

∂vx
=
µ0σξ

4χ

 − 2j ((λ− ξ + 2bλξ)χ) + σµ (2bχ+ sinh(2bχ)) (ωe + ξvx)

− 2j
(
(λ2 − λξ + ξ2) sinh(2bχ) + χ(ξ − λ) cosh(2bχ)

)


[2ξχ cosh(bχ) + (γ2 + ξ2) sinh(bχ)]
2 (4.36)

∂T ss(ξ, b)

∂vy
=
µ0σ

4χ

 2bλ(γ2 + (2λ− ξ)ξ)χ+ 2(γ2 + ξ2)χ sinh (bχ)
2

+ (λξ2 − γ2(λ− 2ξ)) sinh(2bχ)


[2ξχ cosh(bχ) + (γ2 + ξ2) sinh(bχ)]

2 (4.37)

and

χ2 = γ2 + λ2 (4.38)

Similarly, damping associated with the lift force can be determined by differentiating

(4.23) with respect to velocities vx and vy as

Dyx =
∂Fy
∂vx

= − w

8πµ0

Re

∫ ∞
−∞

∂(2ξT ss(ξ, b)− 1)

∂vx
|Bs(ξ, b)|2dξ (4.39)

Dyy =
∂Fy
∂vy

= − 1

8πµ0

Re

∫ ∞
−∞

∂(2ξT (ξ, b)− 1)

∂vy
|Bs(ξ, b)|2dξ (4.40)

Since the derivative of constant term is zero, (4.39) and (4.40) can be further simplified
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to

Dyx = − w

8πµ0

Re

∫ ∞
−∞

(2ξ)
∂T ss(ξ, b)

∂vx
|Bs(ξ, b)|2dξ (4.41)

Dyy = − 1

8πµ0

Re

∫ ∞
−∞

(2ξ)
∂T (ξ, b)

∂vy
|Bs(ξ, b)|2dξ (4.42)

where the derivative of the transmission function with respect to vx and vy are already

defined by (4.36) and (4.37).

The stiffness and damping coefficients are the slopes of the force-displacement and

force-velocity curves respectively. This is similar to the concept of the torsional spring

stiffness and damping coefficients in synchronous machines in which the torsional

spring stiffness is the slope of the torque-angle curve and the damping coefficient

is the slope of the torque-speed curve [200]. The parameters used to perform the

simulations in this section are specified in Table 4.2. The numerical correlation of

the stiffness constants with the gradients of the force-displacement curves is shown

in Figure 4.37 - Figure 4.42. The stiffness coefficients, kxy and kyy are calculated

numerically using (4.28) and (4.31) respectively. Whilst the forces are evaluated

using (4.22) and (4.23). The variation of the stiffness coefficients with airgap in these

results clearly indicate that the vehicle is more stable at small airgap values. This

type of stiffness characteristic has been observed by other authors [200]. The lift force

and stiffness coefficient, kyy are almost unchanged with the change in heave velocity

at high angular velocity and translational velocity as illustrated in Figure 4.40 and

Figure 4.42 respectively. However, the thrust and the stiffness coefficient, kxy are

still affected by the change in heave velocity at both high and low rotational and

translational velocities.

Similarly the numerical correlation of the damping coefficients with the gradient

of the force-velocity curves is shown in Figure 4.43 - Figure 4.46. The damping coef-

ficients, Dxx, Dxy, Dyx and Dyy are evaluated numerically using (4.34), (4.35), (4.41)

and (4.42) respectively. The damping coefficients are decreased with the increase in
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translational speed as shown in Figure 4.43 and Figure 4.44.

Table 4.2: Simulation parameters for stiffness and damping.

Outer radius, ro 50 mm

Inner radius, ri 34.20 mm

width, w 1 m

Halbach rotor Magnet (NdFeB), Br 1.42 T

Magnet relative permeability 1.08

Pole-pairs, P 4

Conductivity (Al) 2.459×107 Sm−1

Conducting plate Single sheet width 1 m

Thickness, b 10 mm

Air-gap between rotor and plate, g 10 mm

Figure 4.37: The thrust, lift and stiffness coefficients as a function of airgap for different
rotational velocities at vy = 0ms-1, ωm varied.
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Figure 4.38: The thrust, lift and stiffness coefficients as a function of airgap for different
translational velocities at vy = 0ms-1, ωm = 0RPM, vx varied.

Figure 4.39: The thrust, lift and stiffness coefficients as a function of airgap for different
heave velocities at vx = 0ms-1, ωm = 1000RPM, vy varied.
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Figure 4.40: The thrust, lift and stiffness coefficients as a function of airgap for different
heave velocities at vx = 0ms-1, ωm = 6000RPM, vy varied.

Figure 4.41: The thrust, lift and stiffness coefficients as a function of airgap for different
heave velocities at vx = 20ms-1, ωm = 0RPM, vy varied.
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Figure 4.42: The thrust, lift and stiffness coefficients as a function of airgap for different
heave velocities at vx = 100ms-1, ωm = 0RPM, vy varied.

Figure 4.43: The thrust, lift and damping coefficients as a function of translational velocity
for different angular velocities at vy = 0ms-1, g = 10mm, ωm varied.
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Figure 4.44: The thrust, lift and damping coefficients as a function of translational velocity
for different heave velocities at ωm = 0RPM, g = 10mm, vy varied.

Figure 4.45: The thrust, lift and damping coefficients as a function of heave velocity for
different translational velocities at ωm = 0RPM, g = 10mm, vx varied.
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Figure 4.46: The thrust, lift and damping coefficients as a function of heave velocity for
different angular velocities at vx = 0ms-1, g = 10mm, ωm varied.

Using the parameters given in Table 4.2 the stiffness and damping contour plots

shown in Figure 4.47 and Figure 4.48 were obtained. The plots indicate that the

damping values for the system are particularly low, becoming extremely low at high

velocities. Negative damping is clearly present under many conditions. The stiffness

increases somewhat with increased velocity. Figure 4.49 and Figure 4.50 illustrate

how the stiffness coefficients relate to thrust and lift force as a function of slip for

different translational and heave velocities respectively. The variation of the damping

coefficients as a function of the translational velocity for the variation of heave velocity,

angular velocity and airgap are more clearly illustrated in Figure 4.51, Figure 4.52 and

Figure 4.53 respectively. Similarly, the variation of damping coefficient as a function

of slip for different translational velocities and heave velocities are shown in Figure

4.54 - Figure 4.56. The low damping indicates that active control of the EDWs using

ωm will be essential.
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Figure 4.47: The contour plot for (a) Lift stiffness kyy (∂F ss
y /∂g) and (b) thrust stiffness

kxy (∂F ss
x /∂g) as a function of slip and translational velocity at g = 10mm and vy = 0ms-1.
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Figure 4.48: (a) Damping coefficient Dyy (b) damping coefficient Dxx, (c) damping coeffi-
cient Dxy and (d) damping coefficient Dyx all as a function of slip and translational velocity
at g = 10mm and vy = 0ms-1.
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Figure 4.49: The thrust, lift and stiffness coefficients as a function of slip for different
translational velocities at vy = 0ms-1, g = 10mm.

Figure 4.50: The thrust, lift and stiffness coefficients as a function of slip for different
heave velocities at vx = 0ms-1, g = 10mm.
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Figure 4.51: The damping coefficients as a function of translational velocity for different
heave velocities at ωm = 0RPM, g = 10mm.

Figure 4.52: The damping coefficients as a function of translational velocity for different
rotational velocities at vy = 0ms-1, g = 10mm.
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Figure 4.53: The damping coefficients as a function of translational velocity for different
airgap at vy = 0ms-1 and ωm = 0RPM.

Figure 4.54: The damping coefficients as a function of slip for different translational
velocities at vy = 0ms-1, g = 10mm.
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Figure 4.55: The damping coefficients as a function of slip for different heave velocities at
vx = 0ms-1, g = 10mm.

Figure 4.56: The damping coefficients as a function of slip for different heave velocities at
vx = 100ms-1, g = 10mm.

4.7 Summary

The dynamic modeling of various EDS Maglev systems has been reviewed. A

review of magnetic damping and stiffness is presented. The dynamics of an EDW

Maglev has been investigated using an analytic steady-state EDW model including
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a heave velocity and a fully transient EDW model. The transient analytic model

developed in Chapter 3 has been modified to account for a continuous change in

input conditions. This modified transient analytic model has been validated us-

ing a transient FEA model when integrated with a mechanical vehicle developed in

SimMechanicsTM. A close match between the dynamics of the steady-state with vy

and transient analytic models has been observed for both step changes in the weight

of vehicle and angular velocity of the EDWs. The simulation results indicate that the

inclusion of the heave velocity, vy, in the steady-state model creates a means for feed-

back in the electromechanical system and thereby enables the steady-state based force

calculations to quite accurately track the dynamic behavior. The electromechanical

simulation time is greatly reduced when the forces are computed using steady-state

equations. These results indicate that under the conditions studied the steady state

model can be used for dynamic electromechanical analysis.

The steady-state force equations (with vy) have been used to obtain the analytic

equations for magnetic stiffness and damping for the EDW Maglev system. The de-

rived, magnetic damping and stiffness equations for this EDW Maglev are investigated

for a wide range of velocities, air-gaps and RPMs. During this study it is confirmed

that active control is essential for the successful operation of an EDW Maglev.



CHAPTER 5: EXPERIMENTAL VERIFICATION AND RESULTS

5.1 Introduction

In this chapter the dynamics of an EDW has been investigated using a 1-degree

of freedom single EDW experimental pendulum setup. The dynamic equation of

motion for a 1-DOF pendulum has been derived. The several dynamic tests has

been performed. The damping due to the viscous as well as sliding friction has been

experimentally determined from the free oscillation of the pendulum. The steady-

state force equations for the lift and thrust force derived in Chapter 2 have been used

to derive the dynamic nonlinear equation of motion for a forced EDW pendulum.

This nonlinear dynamic equation of the forced pendulum is used to verify that the

steady-state eddy-current force equations including the heave velocity can accurately

predict the transient behavior of an eddy-current device such as an EDW.

The details of the experimental setup are presented in section 5.2. The damping

coefficient due to air resistance and friction is experimentally evaluated in section

5.3. The experimental results from the dynamic test of a single EDW pendulum

setup are presented in section 5.4. The comparison between the analytic model and

the experimental results are also presented in this section. Finally, a summary of the

chapter is provided in section 5.5.

5.2 Experimental Setup

In this experimental setup both the translational as well as rotational motion is

considered. In order to make measurements more easily, a circular aluminum guide-

way is considered instead of a flat aluminum guideway. The circular wheel guideway

as shown in Figure 5.1 is 1.2m in diameter and has two continuous aluminum (6061-
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T06) rings affixed onto its outer surface. The width and thickness of these aluminum

rings are 77mm and 6.7mm respectively. This guideway wheel was originally used at

Argonne National Laboratory during the 1990’s and later used by Bird at the Uni-

versity of Wisconsin-Madison and was brought to UNC Charlotte by Bird. Only one

aluminum guideway is used for the pendulum setup.

Figure 5.1: The photograph of the experimental setup of a single EDW pendulum setup.

The 16-segment 4 pole-pair EDW Halbach rotor is used in this experimental setup

as shown in Figure 5.2. This rotor was assembled by Bird. The magnetization

direction of the rotor assembly is shown in Figure 5.3. The outer and inner radius of

the EDW is 50mm and 34.2mm respectively. The parameters for both the guideway

and the EDW are given in Table 5.1. The experimental setup, as shown in Figure

5.1, has been constructed with the help from W. Bomela. The aluminum guideway,
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Table 5.1: Guideway and EDW parameters of the experimental setup.

Outer radius, ro 50 mm ± 0.58 mm

Inner radius, ri 34.20 mm

Width of rotor, w 50 m

Sleeve thickness 2.6 mm ± 0.1 mm

EDW rotor parameters Magnet (NdFeB), Br 1.42 (T)

Magnet relative permeability 1.08

Pole-pairs, P 4

Outer radius (Ro) 600 mm ± 0.58 mm

Guideway parameters Guideway width 77 mm

Thickness, b 6.3 mm

Conductivity (Al) 2.459× 107 Sm−1

Figure 5.2: Picture of experimental four pole-pair EDW using 16 segmented NdFeB mag-
nets [41].

EDW, Brushless DC (BLDC) motors as well as air-gap sensor are shown in this figure.

The schematic diagram of this setup is shown in Figure 5.4. The EDW is rotated

by two Axi-5330/24 BLDC motors rotating in the same direction. The parameters

of these BLDC motor are given in Table 5.2. The two BLDC motors are used to get

sufficient torque to rotate the EDW even at very small air-gap from the guideway.
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Figure 5.3: Halbach rotor magnet assembly showing magnetization direction [41].

The power is supplied by the battery pack onboard the pendulum as shown in Figure

5.5. The schematic of this EDW and BLDC motor configuration is shown in Figure

5.6. Turnigy 4.5Ah 6cell 19.8V batteries are used to drive the BLDC motors. The

BLDC motors are driven by HobbyKing 150A Brushless Electronic Speed Controllers

(ESC). The speed of the motors is controlled by varying the 5V pulse width to the

ESC. The guideway is rotated by a separately excited DC motor. The parameters

of this DC motor supplied by the manufacturer as well as parameters measured in

the lab are given in Table 5.3. The RPM of the separately excited DC motor and

EDW or (BLDC) motors has been measured using a rotary encoder sensor and Hall

effect sensors respectively. These sensors output were connected to Matlab/Simulink

Real Time Window (RTW) through a National Instrument (NI) PCIe-2659 board.

The oscillation of the pendulum was measured using a Panasonic laser displacement

sensor. The analog output of this displacement sensor was also connected to Matlab

RTW through the same NI board.

The step change in the RPM of an EDW is achieved by a step change in the
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duty cycle of the pulse width modulation (that is required for ESC) via the function

generator. The field and armature of the guideway motor is powered using an Agilent

Technologies DC power supply and a Chroma DC power supply respectively.

Table 5.2: Axi-5330/24 brushless PM DC motor parameters.

Measured parameters using RLC meter Parameter supplied by manufacturer

Per-phase inductances RPM/V = 197

Lp−p = 30.17µH Max. efficiency = 97%

Per-phase resistance Max. efficiency current = 15-38A (> 85%)

Rp−p = 0.0181Ohms Current Capacity = 65A/30s

No load current = 1.5A

Table 5.3: ABB separately excited DC motor parameters.

Armature Winding Field Winding

Va = 440V Vf = 340V

Ia = 69A If = 2.44A

Ra = 0.71Ohms Rf = 139.34Ohms

La = 10.5mH

Measured values (RLC-meter) Measured values (RLC meter)

La = 5.884mH Lf = 10.8H

Ra = 1.0Ohms Rf = 111.5Ohms

Torque rating = 132Nm RPM rating = 1895RPM

Power rating= 26.1KW J = 0.12Kgm−2
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Figure 5.5: Experimental setup showing EDW, BLDC motors and batteries pack.

Figure 5.6: The schematic drawing for Figure 5.5. Both front-view and top-view are
shown.
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5.2.1 Measurement of guideway irregularities

The guideway irregularities were measured by using a Panasonic laser displace-

ment sensor. The guideway was rotated at a speed of 1.631ms-1 and the air-gap was

measured from a fixed position. It was observed that the guideway was not perfectly

a circle. The plot of this is illustrated in Figure 5.7. The error was found to be

±0.29mm (the peak to peak of this oscillation was 0.5875mm).

Figure 5.7: The diameter error plot of the circular guideway when rotated at the transla-
tional speed of 1.631ms-1 for 10 seconds of time.

5.3 Calculation of Air and Friction Damping Coefficients

Several tests have been performed in order to determine the damping characteris-

tics of the EDW pendulum setup when there is no rotation of the EDW. In this case

the damping is purely due to the air resistance and sliding friction at the pendulum

pivot. A sample plot for the free oscillation of the EDW pendulum is shown in Figure

5.8.

If the angle of the pendulum is very small, the equation of motion for the free

oscillation in the presence of a viscous force can be modeled using the well-known

mass spring damper equation as [201, 202]

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t) = 0 (5.1)
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where

m = mass of the pendulum (kg)

c = viscous damping coefficient (Ns2m-1)

k = stiffness coefficient (Nm-1)

Figure 5.8: A sample plot of air-gap as a function of time from a free oscillation test.

Similarly, the equation of motion for the free oscillation in the presence of sliding

(dry) friction is given by [201]

m
d2y(t)

dt2
+ sgn

[
dy(t)

dt

]
µmG+ ky(t) = 0 (5.2)

where

µ = sliding friction coefficient (Ns2m-1)

G = acceleration due to gravity (ms-2)

sgn(x) =


+1 for x > 0 ;

−1 for x < 0 ;

0 for x = 0 .

In the pendulum setup of the EDW the viscous damping is present due to the

air-resistance and the sliding friction is present at the pivot (bearing) where the

pendulum is oscillating. Therefore, the equation free motion of the EDW pendulum
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in the presence of both viscous as well as sliding friction can be modeled by combining

(5.1) and (5.2) to get

m
d2y(t)

dt2
+ c

dy(t)

dt
+ sgn

[
dy(t)

dt

]
µmG+ ky(t) = 0 (5.3)

The damping coefficient due to air resistance, c, the damping coefficient due to

friction, µ and the stiffness coefficient, k, are determined by using a least square error

estimation technique on (5.3) in Matlab. A plot showing the comparision between the

free oscillation experimental data air-gap variation and estimated air-gap variation

when using (5.3) is shown in Figure 5.9 and Figure 5.10. Several other tests have

been performed to obtain a good estimate of the parameters in (5.3). The estimated

air-gap plot is matching very closely with the measured air-gap values until about

30s. However, the estimated air-gap is damping quickly after 30s compared with the

measured air-gap. Since, the nonlinearities due to the vibrations are not included in

this estimation, the small oscillation after 30s is not obtained in the estimated air-gap.

The estimates of the parameters c, k and µ for various tests is shown in Table 5.4.

The average of these parameters obtained in Table 5.4 is used in (5.3) to represent

the dynamic equation of motion for the forced EDW pendulum.

Table 5.4: Damping and stiffness coefficients from free oscillations.

Test No. Viscous Damping Sliding Friction Stiffness Coefficient

(Ns2m-1) (Ns2m-1) (Nm-1)

Test-I 0.277 1.988x10-4 76.0697

Test-II 0.409 1.909x10-4 76.9649

Test-III 0.399 1.8408x10-4 76.7980

Test-IV 0.3223 2.1262x10-4 76.6677

Test-V 0.395 1.9345x10-4 77.5035

Average 0.361 1.9599x10-4 76.8008
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Figure 5.9: A comparison between the experimental and estimated air-gap for a free oscil-
lation test of an EDW pendulum setup-Test-I.

Figure 5.10: A comparison between the experimental and estimated air-gap for a free
oscillation test of an EDW pendulum setup-Test-II.

5.4 Dynamics of the Forced Pendulum

In order to investigate the dynamic behavior of the EDW pendulum, the guideway

wheel is moved (rotated in this experiment) by the separately excited DC motor as

shown in Figure 5.1 and the EDW is rotated by the two BLDC motors as shown in

Figure 5.5. When the rotational motion of the EDW and the guideway is added to

the pendulum setup, the equation of motion becomes a forced pendulum motion. The

equation of this forced pendulum system can be written as

m
d2y(t)

dt2
+ c

dy(t)

dt
+

[
dy(t)

dt

]
µmG+ ky(t) = FEDW

y (vx, vy, ωm, y) (5.4)
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where, the force term FEDW
y (vx, vy, ωm, y) on the right hand side of (5.4) is the lift

force produced by the rotating EDW while interacting with the moving guideway.

This lift force is a function of velocity (vx and vy), angular velocity (ωm) and the air-

gap (g or y in this case since the oscillation is only in y-direction). The steady-state

and the transient equations for this lift force has already been derived in Chapter 2

and Chapter 3 respectively. The parameters g, vx and ωm are contineously measured

using the laser displacement, rotary encoder and hall effect sensors respectively. The

velocity, vy has been obtained by differentiating the air-gap data with respect to time

in Matlab.

In order to acqurately model the dynamic behaviour of the EDW pendulum,

the effect of the translational force has also been included in the model. In this

experimental setup, the translational force is acting vertically downward. The thrust

force’s effect can be included as the addition of an equivalent mass to the pendulum

setup. Therefore, the effective mass of the pendulum becomes

m′ = m+ FEDW
x /G (5.5)

where FEDW
x is the thrust force due to the EDW.

The dynamic equation of motion when including both the translational and lift

force is therefore given by

m′
d2y(t)

dt2
+ c

dy(t)

dt
+

[
dy(t)

dt

]
µm′G+ ky(t) = FEDW

y (vx, vy, ωm, y) (5.6)

Table 5.5: Pendulum setup parameters.

Mass of setup without batteries 7.04 (kg)

Mass of two Turnigy batteries 1.810 (kg)

Length of the pendulum 1.307 (m)
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Using the steady-state lift force equations derived in Chapter 2 and the parameters

given in Table 5.4 and Table 5.5, the dynamic equation given by (5.4) has been solve

using the Matlab ode45 function. The measured air-gap, g, velocity, vx, heave velocity,

vy and EDW angular velocity, ωm has been used as input parameters to calculate the

lift force, FEDW
y in (5.6). Only the initial value (at t = 0s) of the air-gap and the

heave velocity has been used in order to solve (5.6) using ode45. Since the equation

is solved for two state variables: air-gap and heave velocity, the air-gap and heave

velocity required to evaluate FEDW
y for the next time step will be obtained from the

proceeding ode45 solution. However, the ode45 will be supplied with the measured vx

and ωm for the entire solution time. In this way, the air-gap and vy profile is obtained

from ode45. This air-gap profile (obtained analytically solving (5.6)) is compared

with the measured air-gap profile. Several tests have been performed and validated

in this section.

5.4.1 Test-A

In this test case, the pendulum is initially at an equilibrium position such that the

air-gap between the EDW and the guideway is 11.95mm. The guideway is fixed in this

test (vx = 0ms-1). The EDW is initially at rest. The EDW is now rotated by a step

change (at t = 0s) in angular velocity as shown in Figure 5.11. The pendulum starts

to oscillate and settles at the steady-state position of 23.33mm. The experimental

(measured) vy and air-gap are shown in Figure 5.12 - Figure 5.13. The lift and thrust

forces calculated using the steady-state analytic equations (2.116) and (2.117) for the

corresponding parameters is shown in Figure 5.14 and Figure 5.15. With the initial

air-gap (11.95mm), initial vy = 0ms-1 and measured ωm, the dynamical equation (5.6)

is solved via ode45. The air-gap profile obtained is compared with the experimental

in Figure 5.14. The analytical air-gap profile is very high (32.34mm) compared with

the experimental one. This is a consequence of the 2-D steady-state lift and thrust

forces being very high compared with the actual experimental values because they
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did not account for the finite width of the guideway as well as finite rotor source

width. The 2-D model was based on the assumption that the rotor source as well as

guideway is extended to infinite length in the z-direction. However, this is not true

for the experimental setup. Therefore, in order to make a realistic comparison, the

experimental results will be compared with the 3-D EDW force model which have been

developed by S. Paul [203]. In this 3-D eddy-current model, the effect of the finite

width of the rotor source as well as the guideway has been taken into account. Since,

in the experimental setup, the rotor width (50mm) as well as guideway width (77mm)

are finite, the 3-D force on the right side of (5.6) should be capable of predicting the

dynamics of the experimental setup more accurately.

Figure 5.11: The measured ωm of EDW for Test-A.

Figure 5.12: The measured vy of the EDW for Test-A.
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Figure 5.13: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-A.

Figure 5.14: 2-D and 3-D lift force at the operating points of Test-A.

Figure 5.15: 2-D and 3-D thrust force at the operating points of Test-A.

The lift and thrust forces from the 3-D model is compared with the corresponding

2-D model forces in Figure 5.14 and Figure 5.15. The 3-D forces are almost three

times smaller than the 2-D forces. The dynamic equation (5.6) is solved using ode45

by replacing 2-D forces with the 3-D forces (developed by S. Paul). The air-gap

profile obtained is compared with the experimental as well as the air-gap profile from
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(5.6) with 2-D forces on Figure 5.13. The air-gap value using 3-D forces settled down

to 24.1mm; slightly greater than the experimental values (23.33mm). The analytical

3-D air-gap profile is higher than the experimental one because the analytic force

equations developed by S. Paul is based on the assumption that the guideway is flat.

However, the guideway is circular in the experimental setup. This curved guideway

setup produces less force compared with the flat guideway as investigated by J. Bird

in [41]. The second reason for the difference between the measured and calculated

air-gap using 3-D forces is because the steady-state force model (with vy) has been

used instead of transient model. As discussed in Chapter 4, there will be an error of

about 5% while using steady-state force model instead of transient force model when

integrated with the Maglev vehicle. The similar experimental test performed at vx =

0ms-1 (Test-F) is included in Appendix B.

5.4.2 Test-B

The pendulum equilibrium position and the initial conditions of the steady-state

operation at t = 0s are shown in Table 5.6. The EDW is now rotated by a step

change (at t = 0s) in ωm from 94.7rads-1 to 48.7rads-1 as shown in Figure 5.16. Since,

the value of ωm and slip is decreases the lift force also decreases. Therefore, the

pendulum air-gap decreases and reaches to a new steady-state at g = 17.86mm. The

experimental (measured) vx, vy and air-gap, g are shown in Figure 5.17 - Figure 5.19.

The steady-state lift and thrust forces calculated using the corresponding parameters

are shown in Figure 5.20 and Figure 5.21. With the initial air-gap (26.15mm), initial

vy =0ms-1 and measured ωm and vx, the dynamic equation (5.6) is solved via ode45.

The air-gap value obtained from ode45 is compared with the experimental in Figure

5.19. The steady-state air-gap value using 2-D forces and 3-D forces are 23.87mm

and 18.21mm respectively. As in the Test-A, the value of air-gap using 2-D forces is

very high compared with experimental but the calculated air-gap using 3-D forces is

close to the measured one. The results in this test is consistent with Test-A.
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Table 5.6: Initial conditions for Test-B at t = 0s.

Parameters Values

Pendulum equilibrium position g = 11.95mm

Initial air-gap g = 26.15mm

Initial translational velocity vx = 2.46ms-1

Initial angular velocity ωm = 94.7rads-1

Initial heave velocity vy = 0ms-1

Initial slip velocity sl = 2.275ms-1

Figure 5.16: The measured ωm of EDW for Test-B.

Figure 5.17: The measured vx of the guideway for Test-B.

Figure 5.18: The measured vy of the EDW for Test-B.
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Figure 5.19: An air-gap profile using 2-D-forces, 3-D-forces and experimental results for
Test-B.

Figure 5.20: 2-D and 3-D lift forces at the operating points of Test-B.

Figure 5.21: 2-D and 3-D thrust forces at the operating points of Test-B.

In the following tests the air-gap between the EDW and guideway at the equilib-

rium point is increased to g = 21.5mm. The comparison between the experimental

result and solution using the 3-D forces will be included in this chapter. However,

the comparison with the corresponding 2-D is included in the Appendix B.
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5.4.3 Test-C

The pendulum equilibrium position and the initial conditions for this test are

given in Table 5.7. The velocity of the guideway is kept zero in this test case. The

EDW is now rotated by a step change (at t = 0s) in ωm from 0 rads-1 to 51.50rads-1

(steady-state) as shown in Figure 5.22. The pendulum starts to oscillate due to the lift

force between the EDW and guideway. The pendulum air-gap increases and reaches

to a steady-state air-gap of g = 28.56mm. The measured vy and air-gap are shown in

Figure 5.23 and Figure 5.24. The lift and thrust force calculated using the 3-D steady-

state equations for the corresponding parameters is shown in Figure 5.25 and Figure

5.26. The air-gap value obtained from ode45 is compared with the experimental in

Figure 5.24. The comparison of the air-gap for 2-D, 3-D and experimental is included

in Appendix B (Figure B.1). The steady-state air-gap value using 2-D forces and 3-D

forces are 36.8mm and 29.13mm respectively. As in the above test cases, the value of

the air-gap using 2-D forces is very high compared with experimental values but the

air-gap using 3-D forces is close to the measured values. The small oscillation that

is present in the measured air-gap (refer Figure 5.24) is due to the vibration of the

pendulum setup. This vibration is caused by the rotation of the EDW. Since, this

vibration is not included in the dynamic equation of motion, the small oscillation is

not obtained in the estimated air-gap values.

Table 5.7: Initial conditions for Test-C at t = 0s.

Parameters Values

Pendulum equilibrium position g = 21.5mm

Initial air-gap g = 21.5mm

Initial translational velocity vx = 0ms-1

Initial angular velocity ωm = 0rads-1

Initial heave velocity vy = 0ms-1

Initial slip velocity sl = 0ms-1
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Figure 5.22: The measured ωm of EDW for Test-C.

Figure 5.23: The measured vy of the EDW for Test-C.

Figure 5.24: An air-gap profile using 3D forces and experimental results for Test-C.

Figure 5.25: 2-D and 3-D lift forces at the operating points of Test-C.
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Figure 5.26: 2-D and 3-D thrust forces at the operating points of Test-C.

5.4.4 Test-D

The pendulum equilibrium position and the initial steady-state operating condi-

tions for this test are shown in Table 5.8. The ωm of EDW is steped down (at t =

0s) from 77.21 rads-1 to 31.54 rads-1 (steady-state) as shown in Figure 5.27. Since,

the value of ωm and slip is decreasing the lift force also decreases. Therefore, the

pendulum air-gap decreases and reaches a new steady-state at g = 22.8mm. The

experimental vx, vy and air-gap is shown in Figure 5.28 - Figure 5.30. With the initial

air-gap (26.79mm), initial vy = 0ms-1 and measured ωm and vx, the dynamic equation

(5.6) is solved via ode45 for both 2-D and 3-D cases. The air-gap value obtained from

ode45 using 3-D is compared with the experimental in Figure 5.29. The air-gap com-

parison for the 2-D case is included in Appendix B (Figure B.2). The lift and thrust

forces calculated using the steady-state analytical equations for these parameters vx,

vy, g and ωm are shown in Figure B.3 and Figure B.4. The steady-state air-gap value

using 2-D forces and 3-D forces are 25.34mm and 23.22mm respectively. The value

of air-gap 3-D forces is close to the measured one.
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Table 5.8: Initial conditions for Test-D at t = 0s.

Parameters Values

Pendulum equilibrium position g = 21.5mm

Initial air-gap g = 26.79mm

Initial translational velocity vx = 3.5ms-1

Initial angular velocity ωm = 77.21rads-1

Initial heave velocity vy = 0ms-1

Initial slip velocity sl = 0.3605ms-1

Figure 5.27: The measured ωm of EDW for Test-D.

Figure 5.28: The measured vx of the guideway for Test-D.

Figure 5.29: The measured vy of the EDW for Test-D.
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Figure 5.30: An air-gap profile using 3-D forces and experimental results for Test-D.

5.4.5 Test-E

The pendulum equilibrium position and the initial conditions of the parameters

for this test are listed in Table 5.9. The step change in ωm from 10.62 rads-1 to

75.47 rads-1 as shown in Figure 5.31 is applied at t = 0s. The value of ωm and slip

is increases, therefore, the lift force also increases. The pendulum air-gap increases

and reaches to a new steady-state air-gap at g = 28.65mm. The experimental vx, vy

and air-gap are shown in Figure 5.32 - Figure 5.34. The dynamic equation (5.6) for

both 2-D and 3-D cases with the initial air-gap (22.10mm), initial vy = 0ms-1 and

measured ωm and vx. The air-gap value obtained from (5.6) using 3-D is compared

with the experimental in Figure 5.33. The air-gap comparison for 2-D case is included

in Appendix B (Figure B.5). The lift and thrust force calculated using the steady-

state analytic equations for these parameters vx, vy, g and ωm are shown in Figure

B.6 and Figure B.7. The steady-state air-gap value using 2-D forces and 3-D forces

are 37.0mm and 29.18mm respectively. The value of air-gap 3-D forces is close to the

measured one. Several other tests are included in the Appendix ??.
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Table 5.9: Initial conditions for Test-E at t = 0s.

Parameters Values

Pendulum equilibrium position g = 21.5mm

Initial air-gap g = 22.10mm

Initial translational velocity vx = 1.55ms-1

Initial angular velocity ωm = 10.62rads-1

Initial heave velocity vy = 0ms-1

Initial slip velocity sl = -1.019ms-1

Figure 5.31: The measured ωm of EDW for Test-E.

Figure 5.32: The measured vx of the guideway for Test-E.

Figure 5.33: The measured vy of the EDW for Test-E.
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Figure 5.34: An air-gap profile using 3-D forces and experimental results for Test-E.

5.5 Summary

The 1-degree of freedom EDW pendulum setup has been constructed and tested.

The irregularities of the circular guideway have been identified. The damping due to

air resistance and friction has been experimentally evaluated. The dynamic equations

of motion for the EDW pendulum setup have been developed. The experimental

results showed that the 2-D model is predicting higher forces and therefore giving more

oscillation compared to the experimentally measured one. However, the comparision

of the measured air-gap of the 1-DOF pendulum during the forced oscillation using

EDW with the analytic dynamic equations using the 3-D steady-state force equation is

very closely matching. This experimental validates the simulation results in Chapter 4

that the steady-state force with vy included model can accurately predict the transient

behavior of the EDW Maglev.



CHAPTER 6: DYNAMICS OF MULTI-DOF EDW MAGLEV

6.1 Introduction

In this chapter the dynamics of a multi-degree of freedom sub-scale EDW Maglev

vehicle has been investigated. A 6-DOF Maglev model has been simulated in Matlab

Simulink/SimMechanicsTM. The experimental setup of a sub-scale Maglev vehicle has

been built using 4-EDWs. This experiment setup has been simulated to investigate

the dynamics in 6-DOFs (translational, x, heave, y, lateral, z, roll, θx, yaw, θy and

pitch, θz).

The experimental setup of the multi-DOF sub-scale Maglev vehicle is described

in detail in section 6.2. The Simulink model of the experimental EDW Maglev is

presented in section 6.3. The 6-DOF simulation results of the EDW Maglev setup

is included in section 6.4. The experimental results of EDW Maglev with lateral

stability is presented in section 6.5. A summary of the chapter is presented in section

6.6.

6.2 Multi-DOF Maglev Experimental Setup

In order to investigate the dynamics of the EDW Maglev system in multi-DOF,

an experimental setup as shown in the Figure 6.1 has been used. The guideway used

for this setup is the same one as described in Chapter 5. The only difference is that

in Chapter 5, only one sheet of the aluminum guideway was used. However, in this

setup, both the sheets will be used.

A Maglev vehicle with four EDWs as shown in Figure 6.2 has been constructed.

The EDW Halbach rotor has 16-magnets, is 52mm in diameter with 2 pole-pairs.

This diameter was chosen so that the EDW torque could be met by the motor torque
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while also having a greater diameter than the motor drive. The detail parameters of

the Halbach rotor and guideway are presented in Table 6.1. The magnetization of the

Halbach rotor is shown in Figure 6.3. The axial length of the rotor at the inner radius

is 53.5mm whereas it is 52mm at the outer radius. This difference in the length was

chosen such that the magnets could be held by the end plates more easily and give

more mechanical strength to the rotor. The rotor yoke is made up of aluminum. The

rotor was assembled by using the fixture as shown in Figure 6.4-(a). A Kevlar fiber

was wrapped around the rotor to retain the magnet pieces in the EDW rotor. The

assembled Halbach rotor with endplates and shaft is shown in Figure 6.5.

Figure 6.1: Complete setup of a multi-DOF EDW Maglev system.
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Figure 6.2: Maglev vehicle. (a) Photograph of Maglev. (b) Autocad bottom view of Maglev.

Table 6.1: Guideway and EDW parameters for the 4-wheel Maglev setup.

Outer radius, ro 52 mm ± 0.58 mm

Inner radius, ri 20 mm

Width of rotor, w 52 m

Sleeve thickness 0.75 mm ± 0.1 mm

EDW Halbach rotor Magnet (NdFeB), Br 1.42T

parameters Magnet relative permeability 1.08

Pole-pairs, P 2

Outer radius, Ro 600 mm ± 0.58 mm

Guideway parameters Guideway width, w 77 mm

Thickness, b 6.3 mm

Conductivity (Al), σ 2.459×107 Sm-1

Sheets separation 101 mm

Figure 6.3: Experimental 2 pole-pair Halbach rotor: (a) Magnetization direction. (b) The
side view of the Halbach rotor.
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Figure 6.4: (a) Halbach rotor assembly fixture. (b) Scorpion brushless DC motor.

Figure 6.5: Assembled 16-segment 2 pole-pairs Halbach rotor.

Each EDW Halbach rotor is rotated by a Scorpion S-4035-250KV brushless DC

motor as shown in Figure 6.4-(b). The parameters of this motor are given in Table

6.2. These motors are selected based on the torque and outer diameter requirement

study performed using 3-D magnetic forces. The brushless motors are coupled with

the Halbach rotors by flexible shaft couplers. The motors are rotated by Phoenix ICE

HV 120 Brushless Speed Controller as shown in Figure 6.6. The parameters of this

controller are given in Table 6.3. The speed of the brushless DC motors is controlled

by changing the 5V pulse width to the ICE HV controller. The speed of each Halbach

rotor is separately measured using a Hall effect sensor (part AH1751-PG-B-A).
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Figure 6.6: Phoenix ICE HV 120 brushless speed controller.

Table 6.2: Scorpion S-4035-250KV BLDC motor parameters.

Motor parameters Parameters values

Rotor Outer Diameter 48.9 mm

Stator Diameter 40.0 mm (1.575 in)

Stator Thickness 35.0 mm (1.024 in)

No. of Stator Arms 12

Magnet Poles 14

Motor Wind 15 Turn Delta

Motor Wire 19-Strand 0.25mm

Motor Kv 250 RPM / Volt

No-Load Current (Io) @ 10 v 0.69 Amps

Motor Resistance (Rm) 0.037 Ohms

Max Continuous Current 65 Amps

Max Continuous Power 2700 Watts

Weight 465 Grams (16.40 oz)

Max Lipo Cell 12s

Motor Timing 5deg

Drive Frequency 8kHz

Table 6.3: Phoenix ICE HV 120 parameters.

Controller parameters Parameter values

Dimensions 79×35.5×25.4mm

Weight 107.5g

Max. Amps. 120A

Max. Volts 50V

12s LiPo

36 cells NiCad/NiMh

The 6-DOF Silicon Sensing DMU02 inertial measurement unit (IMU) as shown
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in Figure 6.7 is used to measure the rotation as well as acceleration in all the three

axes. The data from this IMU are collected into the PC via a USB connection.

Figure 6.7: Silicon Sensing DMU02 IMU sensor.

The bottom view of the 4 wheeled Maglev vehicle is shown in Figure 6.8. Each

EDW is rotated by the corresponding BLDC motor and the speed is measured by the

Hall effect sensors. The top view of the Maglev vehicle is shown in Figure 6.9. The

vehicle consists of 4 batteries, 4 controllers, laser sensors and one inertial measurement

unit sensor on the top.

Figure 6.8: The bottom view of an EDW Maglev vehicle.
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Figure 6.9: The top view of an EDW Maglev vehicle.

The magnetic flux density of the each of the constructed rotors are measured

and compared with the analytic models developed by S. Paul [204] and D. Bobba

[160]. The 3-D analytic source models are based on the Columbian integral [204]

and the Bessel solution [160]. The rotors were rotated at a constant RPM and the

y-component of the magnetic flux density, By was measured using a 5180 Gauss/Tesla

meter. The comparison between the measured and the calculated magnetic flux

density at a distance of 7.8mm away from the surface of the rotor are shown in

the Figure 6.10 to Figure 6.13. The slight distortion in the plots are because the

RPM of the rotor was not constant while measuring the field. The rotor RPM values

were also measured while measuring the magnetic flux density. The RPM values were

used to calculate the magnetic flux density by the analytic models. Therefore, the

analytic models are also matching with the experimental even at distored points. The

sinusodial magnetic field at 7.8 mm away has the peak values of ± 0.4T for all of the

rotors.
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Figure 6.10: Magnetic flux density, By campasison of front left rotor.

Figure 6.11: Magnetic flux density, By campasison of front right rotor.

Figure 6.12: Magnetic flux density, By campasison of rear left rotor.
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Figure 6.13: Magnetic flux density, By campasison of rear right rotor.

6.3 A 6-DOF Simulink Maglev Model

The experimental setup was replicated in Simulink SimMechanicsTM software. The

mass and dimensions of each part of the experimental Maglev setup were measured.

The density of the material of each part was assumed to be uniform throughout the

parts. The center of gravity (CG) of each part is identified. The moment of inertia of

each part along all the three axes is calculated at their respective CGs. Finally, this

information of CG and moment of inertia about the respective CG is used to develop

the complete Maglev setup in SimMechanicsTM. The world coordinate system (CS)

is selected to be at the midpoint of the vehicle on the ground. The moment of

inertia of the complete vehicle in all three axes is calculated. Similarly, the CG of

the vehicle is determined. The center of gravity and moment of inertia of each part

of the SimMechanicsTM Maglev vehicle is presented in the Table 6.4. The moment of

inertia of the vehicle about world CG was calculated to be [0.0836, 0.1381, 0.0683]

kg-m2.

Using the values of the dimensions, mass, CG and moment of inertia from Table

6.4, the vehicle was modeled using the SimMechanicsTM software. The convex hull

picture of this vehicle using the experimental Maglev parameters is shown in Figure

6.14. The detailed simulink block diagrams are included in Appendix C. The magnetic

force of the EDW is calculated using the 3-D method developed by S. Paul. The 3-D
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Table 6.4: The parameters of the experimental Maglev vehicle.

Name of the parts Moment of inertia (kg-m2) Centre of Gravity (m)

[Ixx, Iyy, Izz] [x, y, z]

Main Plate [0.0332, 0.0479, 0.0147] [0, 0.0667, 0]

FR* Battery [0.3, 1.4, 1.3]× 10−3 [0.0799, 0.0923, 0.0800]

FL Battery [0.3, 1.4, 1.3]× 10−3 [0.0799, 0.0923,−0.0800]

RR Battery [0.3, 1.4, 1.3]× 10−3 [−0.0799, 0.0923, 0.0800]

RL Battery [0.3, 1.4, 1.3]× 10−3 [0.0799, 0.0923,−0.0800]

FR Controller [0.0852, 0.1093, 0.0369]× 10−3 [0.0303, 0.0814, 0.1780]

FL Controller [0.0852, 0.1093, 0.0369]× 10−3 [0.0303, 0.0814,−0.1780]

RR Controller [0.0852, 0.1093, 0.0369]× 10−3 [−0.0303, 0.0814, 0.1780]

RL Controller [0.0852, 0.1093, 0.0369]× 10−3 [−0.0303, 0.0814,−0.1780]

FR Laser Sensor Holder [0.1580, 0.0628, 0.0957]× 10−4 [0.1508, 0.1007, 0.2036]

FL Laser Sensor Holder [0.1580, 0.0628, 0.0957]× 10−4 [0.1508, 0.1007,−0.2036]

RR Laser Sensor Holder [0.1580, 0.0628, 0.0957]× 10−4 [−0.1508, 0.1007, 0.2036]

RR Laser Sensor Holder [0.1580, 0.0628, 0.0957]× 10−4 [−0.1508, 0.1007,−0.2036]

FR Laser Sensor [0.4321, 0.2054, 0.2833]× 10−4 [0.1624, 0.0998, 0.2036]

FL Laser Sensor [0.4321, 0.2054, 0.2833]× 10−4 [0.1624, 0.0998,−0.2036]

RR Laser Sensor [0.4321, 0.2054, 0.2833]× 10−4 [−0.1624, 0.0998, 0.2036]

RR Laser Sensor [0.4321, 0.2054, 0.2833]× 10−4 [−0.1624, 0.0998,−0.2036]

FR Motor Holder [0.3563, 0.4121, 0.4121]× 10−4 [0.0959, 0.0464, 0.2115]

FL Motor Holder [0.3563, 0.4121, 0.4121]× 10−4 [0.0959, 0.0464,−0.2115]

RR Motor Holder [0.3563, 0.4121, 0.4121]× 10−4 [−0.0959, 0.0464, 0.2115]

RR Motor Holder [0.3563, 0.4121, 0.4121]× 10−4 [−0.0959, 0.0464,−0.2115]

FR BLDC Motor [0.1936, 0.1936, 0.1390]× 10−3 [0.0959, 0.0303, 0.1931]

FL BLDC Motor [0.1936, 0.1936, 0.1390]× 10−3 [0.0959, 0.0303,−0.1931]

RR BLDC Motor [0.1936, 0.1936, 0.1390]× 10−3 [−0.0959, 0.0303, 0.1931]

RR BLDC Motor [0.1936, 0.1936, 0.1390]× 10−3 [−0.0959, 0.0303,−0.1931]

FR Shaft Coupling [0.3422, 0.3422, 0.2344]× 10−5 [0.0959, 0.0303, 0.1422]

FL Shaft Coupling [0.3422, 0.3422, 0.2344]× 10−5 [0.0959, 0.0303,−0.1422]

RR Shaft Coupling [0.3422, 0.3422, 0.2344]× 10−5 [−0.0959, 0.0303, 0.1422]

RR Shaft Coupling [0.3422, 0.3422, 0.2344]× 10−5 [−0.0959, 0.0303,−0.1422]

FR EDW Rotor [0.4609, 0.4609, 0.2839]× 10−3 [0.0959, 0.0303, 0.0873]

FL EDW Rotor [0.4609, 0.4609, 0.2839]× 10−3 [0.0959, 0.0303,−0.0873]

RR EDW Rotor [0.4609, 0.4609, 0.2839]× 10−3 [−0.0959, 0.0303, 0.0873]

RR EDW Rotor [0.4609, 0.4609, 0.2839]× 10−3 [−0.0959, 0.0303,−0.0873]

Total Maglev Vehicle [0.0462, 0.1381, 0.0309] [0, 0.0575, 0]

Weight of vehicle 11.315 kg

*FR = Front Right, FL = Front Left, RR = Rear Right and RL = Rear Left.
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forces of the EDWs are stored as a lookup table subsystem as shown in Figure C.9.

The input to this subsystem are the z-axis offset, air-gap, vx, vy and ωm and the

outputs are the forces Fx, Fy and Fz. The Maglev vehicle (convex hull) developed in

Simulink is illustrated in Figure 6.14.

Figure 6.14: The SimMechanicsTM Maglev vehicle (Convex hull).

The co-ordinate system used for this simulation is shown in Figure 6.15. The

direction of the 3-D forces as well as the directional convention of roll, yaw and pitch

in three axes: x, y and z respectively are shown in this figure. The lift and thrust

forces produced by each experimental EDWs at an air-gap of 5mm, z-offset of 0mm

and vy = 0ms-1 are shown in Figure 6.16 and Figure 6.17. The total weight of the

vehicle is 11.315kg (110.89N). In order to lift the vehicle the force produced by four

EDWs has to be equal to the total weight of the vehicle. Therefore, the lift force

by each EDWs should be 27.72N. If the vehicle is to be lifted at an air-gap, g =

5mm, the velocity vx = 0ms-1, the RPM of each EDWs should be about 2K (refer

Figure 6.16). Significient amount of thrust is produced at this operating conditions

as shown in Figure 6.17. The contour plot of the 3-D lift force as a function of RPM

and translational velocity, vx at an air-gap of 4mm and 5mm are shown in Figure 6.18

and Figure 6.19.
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Figure 6.15: The Maglev co-ordinate system and force directions.

Figure 6.16: The 3-D lift force for one experimental EDW.

Figure 6.17: The 3-D thrust force for one experimental EDW.
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Figure 6.18: The 3-D lift force contour plot for one experimental EDW at g = 4mm.

Figure 6.19: The 3-D lift force contour plot for one experimental EDW at g = 5mm.

The 3-D lift, thrust and lateral forces for one experimental EDW as a function of

z-offset and translational velocity are shown in Figure 6.20 - Figure 6.22. Similarly,

the 3-D lift, thrust and lateral forces as a function of z-offset and RPM are shown in

Figure 6.23 - Figure 6.25. The lateral force increases with the increase in z-offset and

decreases with further increase in z-offset values. This behavior of the lateral force

causes the instability in lateral direction. This type of instability is observed during

the 6-DOF Maglev simulation and is included in section 6.4.
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Figure 6.20: The 3-D lift force as a function of z-offset at 4000RPM and g = 5mm.

Figure 6.21: The 3-D thrust force as a function of z-offset at 4000RPM and g = 5mm.

Figure 6.22: The 3-D lateral force as a function of z-offset at 4000RPM and g = 5mm.
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Figure 6.23: The 3-D lift force as a function of z-offset at vx = 5ms−1 and g = 5mm.

Figure 6.24: The 3-D thrust force as a function of z-offset at vx = 5ms−1 and g = 5mm.

Figure 6.25: The 3-D lateral force as a function of z-offset at vx = 5ms−1 and g = 5mm.

6.4 6-DOF Simulation of the EDW Maglev

The experimental Maglev vehicle has been simulated with 3-D thrust, lift and

lateral force. The side view and the front view of the Maglev are shown in Figure
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6.26 and Figure 6.27 respectively. The simulation has been performed with the initial

conditions: go = 5mm, vx = 0ms-1, ωm = 4000RPM. The moment in pitch angle is

created about the CG of the Maglev vehicle due to the thrust forces. The vehicle

starts to move oscillating in pitch and heave with different air-gap on the front wheels

and rear wheels. The moment about the CG created by the thrust forces as shown in

Figure 6.26 is responsible for the huge oscillation in the pitch angle. The simulation

results are shown in Figure 6.28 - Figure 6.38.

Figure 6.26: Maglev sketch showing the pitch.

Figure 6.27: Maglev sketch front view with z-offset = 0mm.
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Figure 6.28: The vehicle air-gap for zero z-offset simulation.

Figure 6.29: The translational velocity of the front and the rear rotors for zero z-offset
simulation.

Figure 6.30: The pitch angle of the Maglev for zero z-offset simulation.
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Figure 6.31: The yaw angle of the Maglev for zero z-offset simulation.

Figure 6.32: The roll angle of the Maglev for zero z-offset simulation.

The lift, thrust and lateral forces produced by 4 EDWs are shown in the Figure

6.33 - Figure 6.35. Similarly, the air-gap, the heave velocity and lateral motion of

the 4 EDWs from the guideway surface is illustrated in Figure 6.36 - Figure 6.38.

The Maglev vehicle is unstable in lateral direction after t = 2.2s. This lateral motion

of the vehicle caused the significant decrease in the lift force. Therefore, the vehicle

touched the guideway at about t = 2.4s (refer Figure 6.28).
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Figure 6.33: The lift force of the front and rear rotors for zero z-offset simulation.

Figure 6.34: The thrust force of the front and rear rotors for zero z-offset simulation.

Figure 6.35: The lateral force of the front and rear rotors for zero z-offset simulation.
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Figure 6.36: The airgap plot of the front and rear rotors for zero z-offset simulation.

Figure 6.37: The vy plot of the front and rear rotors for zero z-offset simulation.

Figure 6.38: The z-offset of the front and rear rotors for zero z-offset simulation.

In order to check the influence of the lateral force on the system dynamics, the

vehicle as shown in Figure 6.26 was simulated without including the lateral force

(Fz = 0) in Simulink/SimMechanicsTM. Unlike the simulation result in Figure 6.38,
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the vehicle was found stable in lateral direction. The pitch angle oscillation is still

presented. However, this oscillation in pitch is not causing the lateral instability.

From this simulation, it was found that the lateral instablity was purely due to the

unstable lateral forces.

The lift, thrust and lateral forces are highly coupled for the EDW Maglev setup.

In the experimental setup the forward motion of the Maglev vehicle is kept fixed

allowing the guideway to move. The vehicle is fixed in x-direction by holding the rear

part of the vehicle with a tether. The pitch angle oscillation can be minimized for

the experimental setup by placing the tether at an appropirate position. It was found

that the best position of the tether to hold the experimental Maglev vehicle is along

the line of Fx force as shown in Figure 6.39. The thrust force is being balanced by

the oposite force on the tether. Therefore, there will be a no moment on the pitch.

Figure 6.39: The Maglev sketch with the tether along the thrust axis.

The 4-wheeled EDW Maglev setup was hung above the guideway using four flexible

string of Kevlar thread at the four cornors as shown in Figure 6.40. The vehicle

was positioned such that all the EDWs were at center of guideway. The air-gap

between each EDWs was adjusted manually. The vehicle was fixed in the x-direction

by the Kevlar thread as shown in Figure 6.40. However, the guideway was freely

rotating. The air-gap sensors were used to measure the distance of each cornor from

the guideway. The cooling fans were used to cool the BLDC motor controllors. As

soon as the EDWs started rotating, the lift, lateral and thrust force was produced.

Since, the vehicle was fixed in the x-direction, the thrust force tried to rotate the
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guideway in opposite direction.

Figure 6.40: A 4-wheeled EDW Maglev hanging setup with adjustable hight mechanism.

Several tests were performed to operate the experimental Maglev. The first test

was with the single tether that fixed the forward motion of the vehicle. The tether was

fixed at the mid-point of the rear part of the vehicle. The x-axis of tether was aligned

with the direction of the thrust force (refer Figure 6.39). The vehicle was pushed

to the sides depending on the position of z-offset. In addition, it was not possible

to lift the vehilce at center. The vehicle was moving completely off the guideway.

Secondly, the vehicle forward motion was fixed by two tether on either side of the

rear part of the vehicle. During this test, the vehicle was again pushed completely

off the guideway. It was not possible to lift the vehicle at the center. The centering

force was not enough to bring the vehicle back to the guideway.

The following reasons could be the source of instability that have been encountered

during the operation of the setup as shown in Figure 6.40.

• The guideway is not perfectly circular. The guideway section on the left side is

more irregular compared with the one on the right side. The guideway irregu-

larities could be the reason for the instability of the vehicle.

• Since the guideway is a curve, it is very difficult to adjust the position of each

rotors at the same air-gap. The slight mismatch between the air-gap will cause
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the mismatch in force production, therefore, cause the instability problem.

• The speed of each wheels were not perfectly matched. This mismatch results in

the production of different forces. Which was the another cause of the instabil-

ity.

• The vehicle was not optimally designed interms of stability. The position of

the motors are outside to the EDW rotors. This selection was done because of

the space limitation of the guideway. However, the vehicle stability could be

improved by placing the EDW outside and motor inside.

6.5 An EDW Maglev Experiment with z-offset

The lateral stability of the EDW Maglev can be achieved by placing the EDWs

above the guideway with z-offset. The experimental Maglev vehicle has been modified

to achieve the lateral stability. The bottom view of this experimental Maglev vehicle

is shown in Figure 6.41. The lateral configuration of the EDWs and the guideway

is shown in Figure 6.42. The center of the EDW was off from the center of the

guideway by 31.5mm (z-offset = 31.5mm). Therefore, only 33.5mm axial length of

the rotor was overlapping with the guideway. The lift and thrust forces produced by

the experimental EDWs at z-offset = 31.5mm are shown in Figure 6.43 and Figure

6.44 respectively. The lateral force as a function of z-offset for 4000RPM and g = 5mm

is shown in Figure 6.45. The operation region is also highlighted in this figure. With

the z-offset of 31.5mm, the vehicle has been stablized in lateral direction. However,

the lift and thrust forces were decreased. Since, the centering force is increasing with

the increase in z-offset and the value of centering force is higher compared with the off-

centering force on the opposite side, the vehicle is always stable in this configuration.
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Figure 6.41: The bottom view of the experimental Maglev vehicle with lateral stability.

Figure 6.42: The EDW and guideway lateral configuration for lateral stability.

Figure 6.43: The lift force of an experimental EDWs at g = 5mm and z-offset = 31.5mm.
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Figure 6.44: The thrust force of an experimental EDWs at g = 5mm and z-offset =
31.5mm.

Figure 6.45: The lateral force as a function of z-offset at 4000RPM and g = 5mm.

The vehicle was initially hung at g = 4mm. The angular speed of the EDWs was

increased upto 5000RPM and the vehicle was lifted. The lifted air-gap of each of the

EDWs were measured. The air-gap measurements are shown in Figure 6.46 - Figure

6.49. The rear right side of the vehicle was lifted by only about 1mm. Whereas other

sides were lifted upto 6mm. The uneven lift could be due to the vehicle not being

properly aligned above the guideway and due to the misalignment on the position of

the kevlar thread holding the vehicle. These results could be improved by placing the

vehicle properly above the guideway. This setup could be used to study the dynamics

in 5-DOF.
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Figure 6.46: The rear left EDW air-gap measurement from initial g = 4mm.

Figure 6.47: The rear right EDW air-gap measurement from initial g = 4mm.

Figure 6.48: The front left EDW air-gap measurement from initial g = 4mm.
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Figure 6.49: The front right EDW air-gap measurement from initial g = 4mm.

6.6 Summary

The multi-DOF EDW Maglev setup has been constructed. The SimMechanicsTM

model of this experimental setup has been developed in Matlab/Simulink. The dy-

namic simulation of the vehicle has been performed for 6-DOF. The vehicle was found

unstable in all degree of freedom when placed at zero z-offset and simulated for 6-DOF.

The experimental setup was also found unstable. The vehicle was moved completely

off the guideway during the experimental tests. Several sources of instability of this

Maglev setup were identified. The setup was modified to achieve the lateral stability

by placing the EDW above the guideway with z-offset. The vehicle was successfully

lifted with lateral stability. This setup could be used for the study of the dynamics

in multi-degree of freedom.



CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Introduction

The focus of this research was to develop an analytic model of an eddy-current

device such as an electrodynamic wheel for Maglev application and investigate it’s

dynamic behavior. The main conclusion of the research is summarized in section 7.2.

The key contributions of this thesis is discussed in section 7.3. The suggestions and

the recommendations for the future direction of this research is given in section 7.4.

7.2 Conclusion

The electromagnetic model of an eddy-current device such as an EDW Halbach

rotor above a conductive guideway has been developed analytically and the dynamic

behavior of EDW Halbach rotor has been validated experimentally.

The 2D analytic steady-state model of an eddy-current device which is simul-

taneously rotating as well as translationally and normally moving above a linear

conductive passive guideway was developed. The force and power loss equations were

derived for the case when an arbitrary magnetic source is rotated and moved in two

directions above a conductive guideway using a spatial Fourier transform technique.

The problem was formulated using both the magnetic vector potential, A, and scalar

potential, φ. Using this novel A-φ approach the rotor field needs to be incorporated

only in the boundary conditions of the guideway and only the magnitude of the source

field along the guideway surface is required in order to compute the forces and power

loss. This analytic based eddy-current model was validated by comparing it with

a 2-D FEA model using a single Halbach rotor as well as multiple Halbach rotors

in series. The computational time was significantly reduced compared to the FEA



195

model. This model could be used for optimization of the parameters of the EDW for

future high-speed ground transportation.

2-D analytic transient eddy-current force and power loss equations were derived

for the case when an arbitrary magnetic source is moving and oscillating above a

conductive guideway. These general equations for force and power loss are derived

using a spatial Fourier transform and temporal Laplace transform approach. The

derived equations are capable of accounting for a step change in the input parameters

or continuous changes in input conditions. The equations are validated for both step

change as well as continuous changes in input conditions using the 2-D transient

finite-element model.

The analytic equations for the self as well as mutual damping and stiffness coef-

ficients of an EDW Maglev are derived using 2-D analytic steady-state eddy-current

force equations. The dynamics of an EDW Maglev was investigated by using both

steady-state and transient eddy-current models. The steady-state eddy-current model

when including a heave velocity was determined to accurately predict the dynamic

behavior of the 2-degree of freedom EDW Maglev vehicle built in SimMechanicsTM.

The 1-DOF pendulum setup of an EDW Maglev was built using a single Halbach

rotor of 50mm diameter and 50mm axial length. This pendulum setup was hung

next to a rotating aluminum guideway in order to investigate the dynamics of the

EDW Maglev. The dynamic model of an EDW Maglev was validated using this

pendulum setup when calculating the forces using the 2-D and 3-D electromagnetic

EDW force models. Several dynamic tests were performed to validate the dynamics

of the developed model.

The multi-DOF Maglev vehicle prototype setup was constructed using four 2

pole-pair EDWs placed over a split aluminum guideway. The setup can be used to

investigate the dynamic behavior of EDW Maglev in the future.
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7.3 Research Contributions

The main technical achievements and contributions of this research are:

• A 2-D analytic based steady-state eddy-current model has been developed. The

general force and power equations are derived for a arbitrary magnetic source

rotating and/or moving above a conductive guideway. These equations have

been validated using a steady-state FEA model with a Halbach rotor as a source.

• A 2-D analytic based transient eddy-current model has been developed to calcu-

late the force and power loss for arbitrary magnetic source rotating and moving

above a linear conductive guideway. This model has been validated using a

Halbach rotor as a source using the transient FEA model.

• The analytic equations for the magnetic stiffness and damping of an EDW

Maglev have been derived using the steady-state force equations and investi-

gated for a wide range of velocities, air-gaps and RPMs.

• The dynamic behavior of an EDW Maglev has been investigated using a 2-DOF

vehicle model with the 2-D steady-state as well as transient force equations. The

heave velocity has been included into the steady-state force equations. It was

determined that the transient electromechanical simulation of EDW Maglev

vehicle closely matched the steady-state.

• A 1-DOF pendulum experimental setup has been constructed in order to exper-

imentally investigate the dynamic behavior of the EDW Maglev and validate

the analytic model.

• A multi-DOF EDW Maglev experimental setup has been constructed in order

to experimentally investigate the dynamic behavior of the EDW Maglev vehicle.

This setup could be used for future research in the area of dynamics and control

of multi-DOF EDW Maglev.
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7.4 Future Research Works

During the course of this dissertation, it was found that this research could be

extended further in several different aspects.

• The 2-D model developed in this research could be used to quickly optimize the

parameters of the EDWs for the initial design phase.

• The fast analytic 3-D model of an EDW could be developed so that the force

could be calculated in real time which is essential to develop an appropriate

control system. The 3-D force model could be extended to include the roll, yaw

and pitch.

• The multi-DOF EDW Maglev setup could be further improved to study the

dynamics of this Maglev system for wide range of operating conditions such as

step changes in the RPM of an EDWs, guideway irregularities, and for other

disturbances such as sudden change in the weight at different locations, wind

and gusts conditions etc.

• The control system could be developed based on the steady-state force equa-

tions. It is highly likely that the traditional control system will not work for

this complicated problem because the only control parameter in this system is

an angular velocity of the EDWs. Therefore, multi-input multi-output (MIMO)

adaptive control algorithms could be developed for the successful control of this

Maglev system.

• Similar study could be done on a flat guideway structure using multiple EDWs

in series and develop an appropriate control system for it.
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APPENDIX A: A 2-D TRANSIENT FINITE-ELEMENT MODEL

A 2-D transient FEA model has been developed by S. Paul. This is capable of

simultaneously modeling both translational and rotational motion. For completeness

this derived model is presented here. If the source in the non-conducting region is

analytically modeled then the problem region will simplify down to a conducting

region, Ω2 , and non-conducting regions, Ωn (n = 1, 3) as shown in Figure 3.1.

A.1 Non-Conducting Regions

The governing equation (2.12) is used for the non-conducting regions in this model.

The weighted residual formulation of (2.12) will be [41]

∫
Ωn

wn∇2φndΩn = 0 for n = 1 and 3 (A.1)

where wn (n = 1, 3) is the weighting function. The necessary boundary conditions in

(A.1) can be explicitly introduced by using the Green’s first identity

wn∇2φn = ∇ · (wn∇φn)−∇wn · ∇φn (A.2)

Hence, the weak form of (A.1) will be

−
∫

Ωn

∇φn · ∇wndΩn +

∫
Γc

wn(∇φn · nnc)dΓc = 0 for n = 1 and 3 (A.3)

where nnc is the unit outward normal vector on Γc for conducting region

A.2 Conducting Guideway Region

The governing equation for the conducting guideway region (2.27) is modified by

setting vy = 0 for this FEA model. Unlike the 2-D transient analytical model, the
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translational speed, vx is included in the guideway equation as given by

∂2Az
∂x2

+
∂2Az
∂y2

= µ0σ

(
∂Az
∂t

+ vx
∂Az
∂x

)
on Ω2 (A.4)

Using the Galerkin weighted residual method, (A.4) can be written in the weak form,

using Green’s first identity (A.2) to yield [205]

0 = −
∫
Ω2

∇Nz·∇AzdΩ2 − µ0σ

∫
Ω2

Nz

(
vx
∂Az
∂x

+
∂Az
∂t

)
dΩ2

+

∫
Γc

Nz(∇Az·nc)dΓc (A.5)

where Γc = Γ12,Γ23 and Nz is the shape function and nc is the unit outward normal

vector on Γc for conducting region.

A.3 Boundary Conditions

The effect of the source field on the conductive region is accounted for by incorpo-

rated it into the interface between the conductive and non-conductive regions. The

normal and tangential field components on the conductive boundary, Γc are given by

− µ0∇φ1 · nnc + Bs · nnc = ∇×A · nnc on Γc (A.6)

− nc × µ0∇φ+ nc ×Bs = nc ×∇×A on Γc (A.7)

In order to couple the conducting and non-conducting regions, the scalar boundary

condition in (A.3) needs to be expressed in terms of vector potential terms. Using

(A.6), the boundary term in (A.3) can be written as

∫
Γ12

w1∇φ1 · nncdΓ12 =

∫
Γ12

w1

µ0

(Bs −∇×A) · nncdΓ12 (A.8)

∫
Γ23

w3∇φ3 · nncdΓ23 =

∫
Γ23

w3

µ0

(−∇×A) · nncdΓ23 (A.9)
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Similarly the vector potential boundary conditions in (A.5) must be replaced with

scalar potential terms. The boundary condition in (A.5) is

∫
Γc

Nz[
∂Az
∂x

ncx +
∂Az
∂y

ncy]dΓc = 0 (A.10)

Expanding (A.6) enables (A.10) to be expressed in terms of scalar potential terms

and source field as

∫
Γ12

Nz

[
(µ0

∂φ1

∂y
−Bs

y)ncx + (−µ0

∂φ1

∂x
+Bs

x)ncy

]
dΓ12 = 0 (A.11)

∫
Γ23

Nz

[
(µ0

∂φ1

∂y
)ncx + (−µ0

∂φ1

∂x
)ncy

]
dΓ23 = 0 (A.12)

The Dirichlet boundary condition has been applied on all of the remaining non-

conducting and conducting boundaries

φ = 0 on Γ1 and Γ3 (A.13)

Az = 0 on Γ2 (A.14)

Using (A.5) and (A.3) within conducting and non-conducting regions as well as bound-

ary conditions (A.8) and (A.13), enables the convective finite element Az − φ model

to be developed.

A.4 Rotor Magnetic Field

In the FEA transient model, the vector potential source rotor field (2.163) only

has a real component. Thus one obtains

Asz(r, θ, t) =
C

PrP
cos(Pθ − ωet) (A.15)
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The radial and azimuthal magnetic flux densities are then

Bs
r(r, θ, t) =

1

r

∂Asz
∂θ

= −C sin(Pθ − wet)
2rP+1

(A.16)

Bs
θ(r, θ, t) = −∂A

s
z

∂r
=
C cos(Pθ − wet)

2rP+1
(A.17)

Converting (A.16) and (A.17) into Cartesian coordinates gives

Bs
x(x, y, t) = − C sin(Pθ − ωet)

(x2 + (y − yo)2
)

(P+1)
2

cos(θ)− C cos(Pθ − ωet)

(x2 + (y − yo)2
)

(P+1)
2

sin(θ) (A.18)

Bs
y(x, y, t) = − C sin(Pθ − ωet)

(x2 + (y − yo)2
)

(P+1)
2

sin(θ) +
C cos(Pθ − ωet)

(x2 + (y − yo)2
)

(P+1)
2

cos(θ) (A.19)

where

θ = tan−1

(
y − yo
x

)
(A.20)

The equations (A.18) and (A.19) have been used in the boundary condition equations

(A.11).
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APPENDIX B: ADDITIONAL EXPERIMENTAL RESULTS

The additional experimental test cases performed in order to investigate the dy-

namics of the EDW pendulum setup are included in this Appendix.

• Test-C :

Figure B.1: An air-gap profile using 2-D and 3-D forces and experimental results for
Test-C.

• Test-D :

Figure B.2: An air-gap profile usign 2-D and 3-D forces and experimental results for
Test-D.
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Figure B.3: 2-D and 3-D lift forces at the operating points of Test-D.

Figure B.4: 2-D and 3-D thrust forces at the operating points of Test-D.

• Test-E :

Figure B.5: An air-gap profile usign 2-D and 3-D forces and experimental results for
Test-E.
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Figure B.6: 2-D and 3-D lift forces at the operating points of Test-E.

Figure B.7: 2-D and 3-D thrust forces at the operating points of Test-E.

• Test-F : This test is very similar to the Test-A in Chapter 5. The transla-

tional velocity of the guideway is zero. The air-gap value at equilibrium state

is 11.95mm. The step change in ωm is applied at t = 0s and the dynamics be-

tween the measured and the analytic (both using 2-D and 3-D forces) has been

compared.

Figure B.8: The measured ωm of the EDW for Test-F.
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Figure B.9: The measured vy of the EDW for Test-F.

Figure B.10: An air-gap profile using 2-D-forces, 3-D forces and experimental results for
Test-F.

Figure B.11: 2-D and 3-D lift forces at the operating points of Test-F.



221

Figure B.12: 2-D and 3-D thrust forces at the operating points of Test-F.

• Test-G : The translational velocity of the guideway is zero in this test. The

air-gap value at equilibrium state is 21.5mm. Before time t = 0s the pendulum

is in steady-state at g = 34mm and ωm = 103.8 rads-1. The step down to 50.29

rads-1 in ωm applied at t = 0s and the dynamics between the measured and the

analytic (both using 2-D and 3-D forces) has been compared. The air-gap using

3-D forces reached the steady-state at 28.82mm whilst the experimental one at

28.51mm.

Figure B.13: The measured ωm of the EDW for Test-G.

Figure B.14: The measured vy of the EDW for Test-G.
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Figure B.15: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-G.

Figure B.16: 2-D and 3-D lift forces at the operating points of Test-G.

Figure B.17: 2-D and 3-D thrust forces at the operating points of Test-G.

• Test-H : The translational velocity of the guideway is varying in this test. The

air-gap value at equilibrium state is 21.5mm. Before time, t = 0s the pendulum

is in steady-state at g = 22.13mm, vx = 1.977ms-1 and ωm = 15.27 rads-1. The

step change in ωm is applied at t = 0s from 15.27rads-1 to 77.72rads-1 and the
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dynamics between the measured and the analytic (both using 2-D and 3-D

forces) has been compared. The air-gap using 3-D forces reached the steady-

state at 29.31mm whereas the experimental measured value is 28.75mm.

Figure B.18: The measured ωm of the EDW for Test-H.

Figure B.19: The measured vy of the EDW for Test-H.

Figure B.20: The measured vx of the guideway for Test-H.
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Figure B.21: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-H.

Figure B.22: 2-D and 3-D lift forces at the operating points of Test-H.

Figure B.23: 2-D and 3-D thrust forces at the operating points of Test-H.

• Test-I : This test is very similar to Test-H. The air-gap value at equilibrium

state is 21.5mm. Before time, t = 0s the pendulum is in steady-state at g =

22.41mm, vx = 1.983ms-1 and ωm = 28.52 rads-1. The step change in ωm is

applied at t = 0s from 28.52rads-1 to 76.41rads-1 and the dynamics between the

measured and the analytic (both using 2-D and 3-D forces) has been compared.

The air-gap using 3-D forces reached the steady-state at 29.85mm whereas the

experimental one at 29.35mm.
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Figure B.24: The measured ωm of the EDW for Test-I.

Figure B.25: The measured vy of the EDW for Test-I.

Figure B.26: The measured vx of the guideway for Test-I.
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Figure B.27: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-I.

Figure B.28: 2-D and 3-D lift forces at the operating points of Test-I.

Figure B.29: 2-D and 3-D thrust forces at the operating points of Test-I.

• Test-J : The translational very similar to Test-D. The air-gap value at equi-

librium state is 21.5mm. Before time, t = 0s the pendulum is in steady-state

at g = 31.2mm, vx = 2.31ms-1 and ωm = 102.3rads-1. The step change in ωm is

applied at t = 0s from 102.3rads-1 to 52.65rads-1 and the dynamics between the

measured and the analytic (both using 2-D and 3-D forces) has been compared.
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The air-gap using 3-D forces reached the steady-state at 24.8mm whereas the

experimental one at 24.7mm.

Figure B.30: The measured ωm of the EDW for Test-J.

Figure B.31: The measured vy of the EDW for Test-J.

Figure B.32: The measured vx of the guideway for Test-J.
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Figure B.33: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-J.

Figure B.34: 2-D and 3-D lift forces at the operating points of Test-J.

Figure B.35: 2-D and 3-D thrust forces at the operating points of Test-J.

• Test-K : This test is very similar to Test-J. The air-gap value at equilibrium

state is 21.5mm. Before time, t = 0s the pendulum is in steady-state at g

= 30mm, vx = 3.492ms-1 and ωm = 102.3rads-1. The step change in ωm is

applied at t = 0s from 102.3rads-1 to 27.96rads-1 and the dynamics between the
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measured and the analytic (both using 2-D and 3-D forces) has been compared.

The air-gap using 3-D forces reached the steady-state at 24.08mm whereas the

experimental one at 23.54mm.

Figure B.36: The measured ωm of the EDW for Test-K.

Figure B.37: The measured vy of the EDW for Test-K.

Figure B.38: The measured vx of the guideway for Test-K.
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Figure B.39: An air-gap profile using 2-D forces, 3-D forces and experimental results for
Test-K.

Figure B.40: 2-D and 3-D lift forces at the operating points of Test-K.

Figure B.41: 2-D and 3-D thrust forces at the operating points of Test-K.
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APPENDIX C: SIMULINK MAGLEV VEHICLE

The detailed simulink block diagrams of EDW Maglev are included in this Ap-

pendix. Figure C.1 is the main block diagram consisting of several subsystems. The

torque subsystem includes the torque applied to all of the four BLDC motors during

the operation. The maglev vehicle subsystem is given in detail in Figure C.2. The

several subsystems of the maglev vehicle subsystems are included in Figure C.3 to

Figure C.7. The only the force calculation subsystem for front right EDW is shown

in Figure C.8. However, the similar subsystems were adapted for other EDWs.

Figure C.1: Simulink block diagram of the Maglev vehicle with experimental setup
paramters.
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Figure C.2: Simulink diagram of the Maglev Vehicle Subsystem.

Figure C.3: Simulink block diagram of the batteries, controllers, laser sensor holders and
sensors subsystems.
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Figure C.4: Simulink block diagram of the bottom front right section subsystem.

Figure C.5: Simulink block diagram of the bottom front left section subsystem.

Figure C.6: Simulink block diagram of the bottom rear right section subsystem.

Figure C.7: Simulink block diagram of the bottom rear left section subsystem.

Figure C.8: Simulink block diagram of the front right force calculation subsystem.
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Figure C.9: Simulink block diagram of the 3-D forces calculation lookup table subsystem.
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