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ABSTRACT 

 

 

AMR MOHAMED MOHAMED ALI. The influences of urban forms on residential 

energy consumption: a demand-side forecasting method for energy scenarios. (Under 

direction of DR. JEAN-CLAUDE THILL) 

 

Current trends in energy demand impose increasing stress on the socio-ecological 

state of developed countries like the U.S. A major challenge lies in how to efficiently 

manage energy resources in a sustainable way to protect the environment. Various 

forecasting approaches have been developed to predict energy demand trends. These 

approaches have not investigated the influence of urban form on household energy 

consumption. This research combines one of the forecasting methods with sustainable 

development practices to predict possible energy demand based on different spatial 

housing forms (compact and dense, mixed uses, and low density). 

The research has five objectives; the first is to develop a spatial Planning Support 

System (PSS) to forecast residential energy consumption. The PSS is integrated with an 

existing urban simulation model called the Charlotte Land Use and Economic Simulator 

(CLUES). The second objective is to develop a statistical operational model of household 

energy consumption that accounts for socio-economic, geometric, spatial, and 

macroeconomic condition determinants. Inserted in the PSS, this model serves to forecast 

consumption under a series of scenarios that account for various policies in urban 

development, environmental protection, and green technology applications at fine 

(household) through coarse (traffic analysis zone) resolutions, over short- and long-terms.  

The third and fourth objectives assess the contribution of the geometries factors 

and the condition and socio-economic variables, respectively, to various alternatives of 

residential energy consumption. The fifth objective is to assess the consequences of 
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different scenarios on social equity and energy share per household across population 

groups.  

The research is conducted in Mecklenburg County over the 2008-2037 horizon. It 

determines the suitable system architecture of the developed PSS, and finds the drivers 

that have significant impacts on residential energy consumption. In addition, the study 

examines the magnitude of different sustainable policies on household energy 

consumption and population groups. The expected outcome is an enhanced understanding 

of the energy implications of various policy and planning strategies at the local, regional, 

and national scales, in the context of various possible future contexts. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1. Statement of Purpose 

Over the past few years, developed countries, such as the United States, have 

sought to manage energy demand and supply in a way to conserve resources and reduce 

their short and long-term impacts on the environment. Environmental problems at global, 

national, regional and city scales have led to the concept of sustainable development.  

Historically, the growth of city regions has resulted in increasing consumption of 

energy. If this trend continues, it will cause climate change, which is one of the major 

contemporary environmental problems. The management of the consumption of energy 

will improve energy efficiency and reduce carbon monoxide emissions. The challenge is 

to sustain the economic and local progress without causing environmental problems 

(Schrecker et al. 1993). Many practices of sustainable development have been applied in 

energy management and policy. The main goal of these practices is to protect the 

environment and conserve energy resources to meet the urgent needs of an increasingly 

urbanized population. A research question arises: how can we efficiently manage future 

energy consumption in a sustainable way that protects the environment and decreases 

carbon monoxide emissions without compromising standard of living?  

The major contribution of this dissertation is combining sustainable development 

concept with one of energy-demand forecasting methods to introduce a new integrated 

planning support system with assessment capabilities through various policy scenarios.  
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1.2. Energy Consumption and Urban Development 

Urban development and economic growth are vital factors of energy consumption. 

According to the International Energy Agency, by 2030, metropolitan areas are projected 

to consume around 73 percent of the world’s total energy production (IEA 2008). 

Therefore, these areas exert an overwhelming impact on the natural environment at local, 

national and international levels, such as, carbon gas emissions, climate change, and 

global warming (Malyshev 2009). 

Figure 1 shows that China and the U.S. had the highest levels of carbon dioxide 

emissions in 2008. Energy-related carbon emissions and other greenhouse gases are 

expected to escalate the average global temperature by almost 6 Cº in the long run 

(Malyshev 2009). In addition, carbon emissions have negative effects on human health. 

Therefore, action is required to curb the current trends of energy-related carbon emissions 

at international, national, and local levels. 

        

 
 

Figure 1: Top 10 CO2 emitting countries in 2008. 

Source: CO2 Emissions from Fuel Combustion Highlights (IEA 2010).  
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In the United States, major metropolitan areas have high rates of population 

growth. According to the U.S. Census Bureau (2011), the total population of the Charlotte 

metropolitan area is slightly over 1.7 million, which ranks it thirty third among all U.S. 

metropolitan areas. In addition, the population of the Charlotte metropolitan area has 

increased by 31.2% since 2000 (U.S. Census Bureau 2011). 

The U.S. is a developed and post-industrial nation; the country is one of the top 

energy consumers on the globe. The energy consumption market can be decomposed into 

four main sectors; Figure 2 shows the shares of the residential, commercial, industrial, 

and transportation consumptions in the U.S. The overall trend of the energy consumption 

shows that it has nearly tripled over the past five decades from almost 32 Quadrillion 

British thermal unit (Btu) in 1949 to nearly 94.6 Quadrillion Btu in 2009 (EIA 2010b).  

       

 
Figure 2: Share of energy consumed by major sectors in the U.S. Economy in 2009. 

Source: Annual Energy Review 2009 (EIA 2010b). 

 

 

It is important to develop strategies for both the short and long term that meet the 

increasing demand for each sector by maximizing energy efficiency and minimizing 

carbon gas emissions to sustain environmental resources. However, complexity and 
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uncertainty are major obstacles in forecasting future energy demand. It is essential to 

have at our disposal a toolbox of flexible policy assessment techniques that combines 

both sustainable urban development methods and forecasting models of energy demand. 

Therefore, this research will aim to forecast household energy demand based on What-if 

scenarios. In addition, it refines the relationship between residential development patterns 

and energy demand distribution. Moreover, it defines impacts of the spatial 

characteristics of urban geometry on energy consumption for residential use. The 

following section will present the research objectives and questions. 

1.3. Research Objectives, Questions and Tasks 

The foremost goal of this research is to explore the relationships between forms of 

urban development, technology, and socio-economic household profiles, on the one hand, 

and residential energy consumption, on the other hand, in the short- and long-term, as 

well as at multiple spatial resolutions. Various bodies of literature ranging from urban 

planning, energy studies, and geography will inform this study to achieve its objectives.  

The research will perform multiple tasks to accomplish its goals as followed: 

1. Develop an integrated Planning Support System (PSS) capable of forecasting 

household energy consumption that is associated with different patterns of urban form 

emerging in relation to operational user-specified scenarios depicting public policy 

options and possible socio-economic futures. In addition, the PSS will be integrated with 

other existing process-based simulation models of land use and transportation. 

2. Develop an operational disaggregated model of residential energy consumption 

integrated to the PSS, which accounts for socio-economic factors, geometry and spatial 

characteristics of urban development, as well as condition variables recognized as short- 
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and long-term drivers of energy demand as well as drivers operating at fine (household) 

through coarse (national or global) spatial resolutions. 

3. Assess the relative contribution of various factors of residential energy 

consumption at multiple spatial and temporal scales, particularly as far as urban geometry 

parameters are concerned. 

4. Assess the sensitivity of patterns of residential energy consumption to condition 

variables and possible socio-economic futures through scenario analysis. 

5. Assess the equity of consequences of changes in condition variables and 

determining the consequences of possible socio-economic futures on residential energy 

consumption across spatially and/or socially defined population groups. 

The following research questions are formed in the following sequence of work 

tasks; each question is linked to the previous objectives in order: 

Q1.1. What is the system architecture of a spatial PSS that effectively articulates 

tools for residential energy consumption forecasting and various existing process-based 

urban simulation models?  

Q1.2. What are effective data structures, data flows, and data processing models 

to forecast the multi-scalar effects of condition variables on residential energy 

consumption and assess public policy options at multiple scales? 

Q2.1. What are the spatial, urban geometry, and socio-economic drivers that have 

significant impact on residential energy consumption? 

Q2.2. Within the framework of the proposed PSS, what are the data models 

suitable to accommodate diverse spatial and temporal granularities required by the 

simulation and forecasting modules, and imposed by the stated capability of the PSS? 
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Q3.1. What is the magnitude of anticipated changes in household energy 

consumption imputable to changes in energy markets? 

Q3.2. What is the magnitude of the impacts of various green technology 

applications on household energy consumption? 

Q3.3. What is the magnitude of various environmental regulations on household 

energy consumption? 

Q3.4. What is the magnitude of impacts of land use and zoning regulations 

(including housing density) on household energy consumption? 

Q4.1. What is the magnitude of sensitivity to each selected socio-economic and 

condition parameter selected within feasible ranges of variation? 

Q4.2. Among the set of scenarios evaluated, what are the scenarios that appear to 

be more effective at affecting household energy consumption? 

Q5.1. Are the impacts of changes in various condition variables and policy 

scenarios anticipated to be uneven across socio-economic and spatially defined 

population groups, and if so, what are the magnitudes and dimensions of this 

differentiation? 

The study involves multiple tasks to achieve its objectives. To address the first 

and second objectives, the study will explore various bodies of literature ranging from 

urban planning, energy studies, and geography to identify the model’s potential 

predictors. The output of this step will be an integrated PSS model of energy demand. 

The developed model consists of three sets of parameters; the socio-economic, the urban 

geometry and spatial predictors, and finally the condition variables, which are specific 

events that will change the forecast results if they occur. 
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The third objective simulates residential energy consumption under various 

conditions. The study will attempt to isolate the common spatial characteristics of urban 

geometry to determine their impacts on household energy consumption. Afterwards, the 

fourth objective is to perform assessment analysis for each scenario to determine the 

influence of each parameter. The last objective addresses how the social equity and the 

energy share of certain socio-economic groups will be affected under various conditions.  

1.4. Structure of the Dissertation 

The dissertation is organized into five sections respectively, conceptualizing the 

research problem, literature review and theoretical background, research analysis, 

empirical studies and findings, and finally the conclusions and the limitations of the 

study. The second chapter gives the main scope this study fits, the research problem to be 

under investigation, and the significance of the study.  

The third chapter will investigate certain topics that are related to residential 

energy forecasting issues. It will contextualize the relationship between energy, economic 

growth, and sustainable development. Afterwards, it will present the practices of 

sustainable energy, and the methods of energy forecasting used in the literature. Lastly, it 

will introduce the influential predictors that have been found to affect energy 

consumption at the household level. 

The fourth chapter will introduce the research design, the proposed methods, the 

model components, and the data flow. The chapter will go through the details of research 

methodology to develop an energy demand model for housing development. In addition, 

it will present the research tasks to be completed. 

The fifth chapter will perform the econometric estimation of residential energy 
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consumption and forecast energy consumption through the simulation of urban 

development and various energy demand scenarios in the study area of Mecklenburg 

County. In particular, the chapter will test the effects of urban texture on residential 

energy consumption. In addition, the research will discuss how different housing 

development will change the energy consumption pattern in the county. Finally, the last 

chapter, based on the findings, will conclude the study and its limitations. Moreover, it 

will propose recommendations and outline future research.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2: CONCEPTUALIZING HOUSING ENERGY-DEMAND 

 

 

2.1. Factors of Residential Energy Demand 

Energy-demand forecasting is an essential stage to comprehend possible futures 

of any geographical region. The output of demand forecasting is a presentation of 

different scenarios, whose projection will play a central role in the choice of decision 

makers in planning (Hicks 2003). 

Various factors affect the forecasts of energy supply and demand in the residential 

sector. The study will mainly focus on the demand side. Two influential factors shape the 

residential energy-demand; the first is the weather conditions and the second is the price 

of fossil fuels.  

Each location on the earth has different energy climate considerations. Givoni 

(1998) distinguished four climatic regions to achieve the most appropriate urban design 

with respect to energy consumption. The first consists of the hot-dry region, which is 

located in the subtropical latitudes between 15 and 30 degrees north and south of the 

equator. The second is the hot-humid region, which has uncomfortable summer and fall 

between the equator and tropical areas.  

The third is the cold-climate region, which is defined as regions with average 

temperatures during the winter months below freezing and with cool summer conditions. 

The last contains all the regions with cold winters and hot-humid summers, which are 

located between 30°N and 45°N latitudes (Givoni 1998).  
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The last class is a bit more challenging to model than the previous zones because 

it has more complicated climatic conditions through the year. The State of North Carolina 

falls between 33° 50’N and 36° 35’N and belongs to this class; hence, the state has cold 

winters and hot-humid summers. Any area that falls in this climate zone requires different 

urban planning schemes to achieve energy conservation in both warm and cold seasons. 

2.1.1. Classification of the Influencing Factors 

Energy forecasting methods can be applied in different time-periods and scale 

resolutions. In addition, many factors affect the prediction of Housing Energy-Demand 

(HED); hence, understanding the behavior of the energy system is a complicated process. 

Consequently, the determination of the influential factors is a crucial task to increase the 

accuracy of forecasting methods and models (Daly 1976).  

Previous studies have classified and sub-classified the factors of energy demand 

based on type (social – economic – environmental – technological), season-times, and 

geographical scale (macro – meso – micro). Researchers have developed these various 

categories to analyze the impact of each factor more accurately and efficiently. 

Based on this typology, previous studies have recognized three types of factors 

that affect energy consumption: (1) socio-economic variables that relate to the 

demographic features of the population (e.g. age, income, and household size), (2) 

economic environment variables (e.g. economic growth rate, urbanization ratio, and 

energy price), (3) environmental variables (e.g. temperature, and human comfort zones). 

Recently, another factor has been brought into consideration, namely the type of 

technology used by the end users (e.g. the number of electrical appliances) (Barakat and 

Al Rashed 1993). 
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Another important sub-classification is based on seasonal patterns. Some factors 

influence the demand for energy differently according to season. For example, outdoor 

temperature affects the type of energy source used and the behavior of end users in 

cooling and heating their home space.  

The previous two classifications have further been sub-divided on the basis of the 

scale of influences that shape the demand market; energy demand studies split the factors 

that shape the demand market based on geographical scale. Therefore, it is crucial to 

determine the possible macro and micro factors in the forecasting process, otherwise any 

missing factor could lead to major catastrophic energy shortage in the future at various 

geographical resolutions. For instance, the prices of fossil fuels are attached to the world 

market. Therefore, the marginal effect of demand on price is zero. On the other hand, the 

prices of fossil fuels affect energy demand at the international, national, and local levels. 

Many economists draw vague scenarios for the future of oil production. Some economists 

expect that oil production can be increased to meet all future demands for at least 40 

years (Lynch 2001).  

On the other hand, other economists predict that oil production will not meet 

demand in the near future, forcing global energy conservation (Campbell 2002). This 

unclear vision creates many fluctuations in the oil price; hence, security is another goal in 

sustainable energy policies beside the environment protection. In addition, some factors 

have both macro and micro effects on the energy demand; and among others, the climate 

has micro and macro impacts on the trends of energy market. 

Planners, engineers, and decision makers can set certain policies to control the 

influence of the micro factors on energy demand. On the other hand, macro factors are 
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beyond their control, but their influences can dramatically reshape the energy demand 

trends at the micro level. For instance, if there is a global shortage in any type of fossil 

fuel, the demand for the other fossil fuel alternatives would increase at international, 

national, and local levels. Hence, the price of energy production will increase as well.  

These studies have not addressed nor quantified the spatial attributes of the 

development patterns that affect energy consumption. It can be argued that, within any 

city region, different forms of housing developments will produce different patterns of 

energy consumption. Hence, we cannot ignore the spatial impacts of different housing 

patterns on energy consumption (Yu et al. 2000).  

If we extend the existing forecasting methods to explore the impacts of spatial 

patterns of the future residential developments, our understanding of energy consumption 

and our knowledge of the energy system will be enhanced in new dimensions. The 

following section will state the importance of energy demand forecasting in the 

residential sector. 

2.1.2. Residential Development, and Energy Demand Forecasting 

Economists, planners, and geographers determine that the form of urban 

residential development has a direct effect on the consumption rate of any utility. Urban 

geometry affects the total consumption of energy of any metropolitan area. Urban 

geometry refers to the spatial characteristics that shape urban fabric, such as building 

heights, width, size, mass orientation, road widths etc. These characteristics play a major 

role in creating urban microclimate; moreover, they provide the settings for human 

contact with the urban environment, such as the behavior of individuals in household 

energy consumption. Some spatial characteristics cause the urban fabric to gain more 



13 

 

solar energy, while others increase the heating loss of the urban fabric so that energy 

consumption decreases or increases, respectively. Moreover, others affect the city 

ventilation and wind directions. (Ali-Toudert 2009).  

A new concept in sustainable development is to apply appropriate urban geometry 

characteristics of metropolitan areas according to their geographical location to reduce 

energy consumption and gas emissions, which will enhance the living environment. Each 

land use has different spatial characteristics, which are recorded in land use planning 

regulations in any city. Therefore, each land use has a different energy load. For instance, 

residential development has different spatial characteristics in building width and height, 

unit types, lot size, grid size, the distances between the dwellings etc. (Burchell and 

Listokin 1995; Downing and Gustely 1977; Frank 1989; Speir and Stephenson 2002). 

Urban density is one the most important planning measurements used to 

characterize urban geometry. It can be used as a tool by city planners to control the 

characteristics of urban geometry, such as the relationship of buildings height and width, 

measuring floor area ratio, the number of people of any given area, and the number of 

dwellings of any parcel. Urban density can serve to define the spatial characteristics, such 

as building width and height, to utilize passive solar energy and building shading to 

create healthy ventilation for indoors; hence, the reliance on mechanical air conditioning 

will be decreased. Therefore, the efficiency of energy usage will be enhanced, and carbon 

emissions will be decreased.  

Passive solar energy was an emerging concept during the mid-1970s that 

emphasizes low energy building designs. The concept of passive space is to store solar 

energy in the winter and reject solar heat in the summer; moreover, healthy ventilation is 
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created. The concept showed a significant reduction in energy consumption, and it can be 

extended to cover the outdoors within the urban context as to account for shading. 

A spatial planning support system can handle the complexity of urban form. With 

the capabilities of Geographic Information Systems, it will produce appropriate HED 

scenarios. By modeling the impacts of spatial characteristics of urban geometry, such a 

model will support the decision-making process by forecasting the impacts of different 

housing forms on energy consumption. 

Figure 3 presents three different forms of housing use in a given geographical 

area. The first scenario presents four apartment units in one building, the second is two 

duplex units, and the last scenario is four units of single-family housing. A variation in 

energy consumption can be anticipated due to the differences in the spatial characteristics 

of each scenario. Assuming that the total cubic volume is the same in all three scenarios, 

we can summarize some impacts of spatial characteristics on energy consumption as 

follows: 

First, there are differences in the perimeter of the built-up area. Therefore, the 

percentage of solar passive vs. non-passive spaces will be different between the three 

scenarios. Consequently, the consumption will vary because of the differences of the total 

area to be cooled or heated in each scenario. 

The second observation, in each scenario, the roof area is different. The more 

scattered footprint, the more roof space that gains the larger amount of the direct sun heat 

during daytime. This will vary the total amount of energy consumption in each scenario. 

The impact can be insignificant at the unit level; however, it will be notable at larger 

scale, for instance, at city level. 
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Figure 3: Different housing forms scenarios. 
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The third observation, there is variation in building height in each scenario, which 

will cause different impacts on the consumption of the energy because the total area of 

shade will be different; in addition, shadows will be different on each façade. Therefore, 

the percentage of solar passive vs. non-passive spaces will be different. Consequently, 

each scenario will have different energy loads. 

 The fourth observation is that each building façade has various glazing ratio (the 

total area of glasses windows). Therefore, the amount of passive solar energy will differ; 

hence, each scenario will have different consumption patterns. 

Last but not least, landscape elements (natural – man made) create different 

influences on the energy consumption pattern. The total number of trees creates various 

shaded areas, which affects the percentage of solar passive spaces. In addition, water 

bodies create ventilation drafts in the surrounding areas; they also reflect sunbeams on 

the façades.  

2.2. Significance of the Study 

The study is a part of the Charlotte Land Use and Economic Simulator (CLUES) 

project. The study achieves several major contributions in modeling residential energy 

demand. First, the study attempts to define the impacts of different residential built-up 

forms (compact and dense, mixed uses, and low density) on energy consumption. Second, 

it proposes and develops an integrated Spatial Planning Support System to forecast 

different residential energy consumption scenarios at the household, and city levels. It 

also provides a methodological framework for future energy forecasting studies.  

The study increases the decision makers’ capabilities to explore different energy 

alternatives under various situations, such as natural disaster or global shortage in energy 
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fuels. Finally, the study encourages the application of sustainable energy policies, which 

will positively play a major role in environmental protection and energy conservation at 

the U.S. national and local levels. 

The completion of this study extends the knowledge of how different housing 

forms affect energy consumption. In addition, it identifies how urban geometry can 

contribute to energy conservation and environmental protection. The study covers 

multiple disciplines, such as urban planning, urban economics, urban design, landscape 

architecture, and GI Science. The study offers alternative views to explain how the 

energy consumption varies based on housing patterns. The research fills missing pieces in 

the study of housing development/energy demand forecasting. It integrates a common 

sustainable development tool, namely a Demand Side Management (DSM) system with 

energy-demand forecasting methods to enhance future projections. 

2.3. The Study Area 

2.3.1. The Scope of the Study 

Figure 4 presents the major components of an urban system, two of which are at 

the center of the research concern here, namely housing and energy systems. The first 

component covers the impacts of various characteristics (spatial – socio-economic) of 

housing development, mainly the spatial characteristics of urban geometry. The second 

component addresses only energy demand. 

The study considers residential land use only; there is no intention to cover other 

uses, such as commercial and industrial uses. The research adopts the concept of 

sustainable development by applying a Demand Side Management approach.  

The study will focus on Mecklenburg County, North Carolina, the core of the 
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Charlotte metropolitan area. The analysis will mainly focus on housing development in 

the suburbs, where most new residential developments occur. In addition, the output 

results will be featured at different spatial granularity, but aggregation first to census 

tracts and then to the county level. The study covers the forecast period from 2008 until 

2037 to explore how, and according to what modalities, housing development affects 

energy consumption changes over time. 

 

     

 
Figure 4: Major components of an urban system and components. 

Source: A method to assess the variation of urban canyon geometry from sky view factor 

transects (Bradley et al. 2001). 

 

 

The study area is composed of eight municipalities; in addition, each municipality 

has a sphere of influence as shown in Figure 5. Charlotte is the core city of the county. 

Cornelius, Davidson, and Huntersville are located in north. Mint Hill, Matthews, 

Pineville, and small town of Stallings are located in the south. The built-up forms in the 
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central areas are compact and dense; the dominant urban form in the suburbs is low 

density and sprawled, and the mixed uses built-up forms are mainly located in the spheres 

of the influences of the towns. 

 

 
Figure 5: Municipalities in Mecklenburg and their sphere of influence. 

Source: Charlotte-Mecklenburg Planning Department (charmeck 2011). 

 

 

2.3.2. The Energy Profile of the Study Area 

Mecklenburg County is located in the State of North Carolina (NC), which is 

among the states with the highest electricity consumption in the U.S. In 2008, all sectors 

in NC State consumed almost 125,239,063 Megawatt hours of the produced electricity, 

ranked 11
th

 among the states. Moreover, the total energy consumption of the residential 

sector in North Carolina was around 715.3 Trillion Btu, which is ranked 10
th

 among the 

states (EIA 2010f). In 2010, the average annual electricity consumption per residential 
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customer in NC State is 14,856 kWh, which is ranked 9
th

 among the states (EIA 2010c). 

In 2009, the average annual natural gas consumption per residential customer in NC State 

is 250.6 Trillion Btu, which is ranked 29
th

 among the states (EIA 2009d). 

Table 1 shows energy sources for residential heating in 2000 in North Carolina. 

Approximately 49% of household units used electricity as the dominant energy type in 

space heating, which is higher than the U.S. average. Natural gas is the second highest 

with a share of 24%, which is lower than the U.S. average (EIA 2010e). 

 

Table 1: The percentage of each energy type in home heating. 

Energy Source North Carolina U.S. Avg. Period 

Natural Gas 24% 51.2% 2000 

Fuel Oil 12% 9.0% 2000 

Electricity 49% 30.3% 2000 

Liquefied Petroleum 

Gases 
13% 6.5% 2000 

Other/None 2% 1.8% 2000 

Source: North Carolina State Energy Profile (EIA 2010e) 

 

 

Table 2: Energy price for residential sector. 

Source: North Carolina State Energy Profile (EIA 2010e). 

 

 

Table 2 shows that during 2010, the average retail price of electricity in North 

Carolina was 10.22 cents/kWh, which is lower than the U.S. average price (11.70 

cents/kWh). On the other hand, the average retail price of natural gas was 

$11.99/thousand cubic feet, which is higher than the U.S. average price ($10.74/thousand 

cu ft). The retail price could be one factor that explains why electricity is the dominant 

energy type for home heating in North Carolina. Piedmont Natural Gas is the energy 

Energy Price for Residential 

Use 
North Carolina U.S. Avg. Period 

Natural Gas $11.99/ thousand cu ft $10.24/ thousand cu ft 2010 

Electricity 10.22 cents/kWh 11.70 cents/kWh 2010 
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distributor for natural gas in both North and South Carolina. However, electricity is more 

widely used than natural gas in homes for heating purposes in Mecklenburg County. 

Duke Energy Company is the electricity provider for Mecklenburg County, North 

Carolina.  

2.4. Data Sets and Limitations 

The research will develop a statistical model that can handle various socio-

economic, spatial, geometry, and condition parameters. In addition, the variables will be 

classified based on their spatial (parcel, census groups, city, regional, etc.) and temporal 

(short, mid, and long terms) resolution impacts. 

The first data set contains the property records of Mecklenburg County during the 

period from 2000 until 2008. It presents the spatial and physical characteristics of each 

parcel, including perimeter, area, building height, heated area, and type of AC. However, 

inconsistency has been found in the topology of some polygons. For instance, some 

polygons overlap with others because of digitizing errors. Moreover, some parcels were 

merged, and some others were split. Another limitation, some address locations were 

reported wrong. Therefore, the real property database has been cleaned up to remove the 

majority of potential error sources. 

The second data set retrieves information from another process-based model that 

will be integrated with the developed PSS. The model is the Charlotte Land Use and 

Economic Simulator (CLUES), which forecasts land uses, economic activities, household 

socio-economic characteristics, and transportation development.  

The Residential Energy Consumption Survey (RECS) is the third data set used in 

the research. The RECS consists in a micro-data sample survey that stores energy data for 
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household units. The U.S. Energy Information Administration (EIA) conducted the RECS 

micro-data survey starting in 1978; the latest data is the 2005 version. In 2005, the survey 

collected data from 4,382 households sampled to represent the total U.S. household 

population (EIA 2005). The 2005 RECS micro-data contain demographic, socio-

economic, household characteristics, fuel bills, and appliances information. Sample data 

in Mecklenburg County cannot be isolated from the overall dataset. Instead, a sample of 

household units from the South zone in the RECS dataset will be used, since the study 

area is located in this zone. The assumption is that the study area has similar climate, 

demographic, and energy trends. 

Another raster dataset contains the land cover, which it is extracted from a 

satellite image of Mecklenburg County in 2006, the spatial resolution of this dataset is 30 

by 30 meter for each cell. This dataset will be used to track the influences of the tree 

coverage in each property land on residential energy consumption. 

The study is part of a comprehensive project, which is called the Charlotte Land 

Use and Economic Simulator. The project uses the data from the Charlotte Department of 

Transportation (CDOT) for the travel demand model, and retrieves employment data 

from the North Carolina Employment Security Commission and the infoUSA online data 

(ncesc 2012; infoUSA 2012). In addition, the study takes into account various models of 

future expected prices of crude oil and natural gas from the Annual Energy Outlook 2010. 

The aim of this information is to consider the effects of oil and natural gas prices on 

energy demand; therefore, the output results will achieve forecasts that are more accurate.  



 

 

CHAPTER 3: LITERATURE REVIEW 

 

 

Sustaining energy production is a vital matter for every society; urban 

development and economic growth are related to the efficiency of energy consumption. 

We are facing many future challenges in the field of energy demand forecasting. In the 

United States, the increasing demand of energy in all sectors (residential, industrial, 

commercial, transportation) has led to crucial needs for accurate projection of energy 

demand and for adopting sustainable development approaches. Sustainable development 

has major aims, such as reducing the consumption of energy, decreasing carbon 

monoxide emissions and, protecting the environment in general. 

First, the review critically presents the energy profile of the United States. 

Afterwards, the second section explores the relationship between economic growth, 

energy consumption, and sustainable development. The third section introduces the 

practices of sustainable energy. The fourth section introduces the empirical studies that 

assess the most influential determinants on energy-demand forecasting. It presents how 

the empirical methods quantify the impacts of various factors (spatial and urban 

geometry, socio-economic, and condition) on energy consumption.  

The last section introduces the empirical studies of energy-demand forecasting. In 

addition, it presents various conceptual visions that reconcile conflicts between 

sustainable energy methods to construct the main framework of this study. It is important 

to mention that this literature review mainly focuses on the residential sector. 
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3.1. Residential Energy Profile in the United States 

The United States is one the largest energy consumers in the world. The U.S. 

DOE tracks energy consumption in four sectors. Figure 6 presents how the consumption 

of the industrial sector started to decline from the mid-90s; on the other hand, the 

consumption share of the other three sectors has been growing. The residential sector 

accounts for almost 22% of energy consumption in 2010 (EIA 2010b). 

 

       

 
Figure 6: The U.S. Energy consumption by sector, 1949-2009. 

Source: Annual Energy Review 2009 (EIA 2010b). 

 

 

Figure 7 depicts energy consumption in the U.S. residential sector according to its 

final use: space heating, lighting, and other appliances account for two thirds of total 

residential energy consumption. Global climate changes cause the warmer seasons to 

become longer, and the cold seasons to have more extreme lower temperature. Therefore, 

it is expected that future spending on energy for cooling and heating may significantly 

depart from past patterns. Presently, cooling accounts for almost 8% of the total 

residential energy consumption. The southern regions, where the Charlotte metropolitan 

area is located, have the highest air-conditioning saturation. On the other hand, space 

heating represents almost 41% of the total energy usage in U.S. homes (EIA 2005). 
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Figure 7: Energy Usage in the U.S. homes. 

Source: Residential Energy Consumption Survey (EIA 2005). 

 

 

 
 

Figure 8: The U.S. Energy usage in different types of homes. 

Source: Residential Energy Consumption Survey (EIA 2005). 

 

 

There are diverse types of energy consumed by U.S. households. Figure 8 

presents the distribution of energy usage by housing type. In 2005, single-family housing 

units consumed about 80%, while multi-family dwellings consumed almost 15%, and 
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mobile homes accounted for 5% of the total energy usage. Figure 9 shows that natural gas 

and electricity are the most widely consumed sources. Natural gas is mainly used for 

heating purposes, while electricity may be used in heating, cooling, lighting, and other 

appliances (EIA 2005). 

 

      

 
Figure 9: Types of energy consumed in the U.S. Homes. 

Source: Residential Energy Consumption Survey (EIA 2005). 

 

 

3.1.1. Natural Gas Consumption 

Natural gas represented almost 25% of the U.S. total energy usage in 2009. The 

U.S. households consumed about 22.84 trillion cubic feet (Tcf) of natural gas in 2009. 

Figure 9 indicates that natural gas consumption is 45% of the total used energy in the 

U.S. household units. Figure 10 shows the major consumers of natural gas in the U.S. in 

2009. The residential sector is the third major consumer with 4.8 Tcf, which is almost 

21% of the total consumption. Slightly over half of the households use natural gas as their 

main source of heating fuel (EIA 2010d). 
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There are several factors affecting the demand for natural gas in the market, for 

example, the economic growth, the weather conditions, and crude oil prices. The best 

known household usage of natural gas is for heating purposes. Therefore, the residential 

sector is mainly affected by the winter weather and oil prices; thus, natural gas 

consumption at the housing market is seasonal, and it reaches the highest level during the 

coldest days in the year. The following section will present electricity, the second energy 

source that is consumed in U.S. homes. 

 

       

 
Figure 10: The percentage of natural gas usage per consumer in the U.S. in 2009. 

Source: Natural Gas Annual 2009 (EIA 2010d). 

 

 

3.1.2. Electricity Consumption 

The Energy Information Administration indicates that in 2009, the building sector 

(commercial and residential) consumes almost 75 percent of all generated electricity in 

the U.S, and it is expected to continue to grow at the same level until 2030 (EIA 2009a). 

The U.S. Energy Information Administration (EIA 2009a) predicts that by 2010, the total 

electricity consumption in all sectors (residential, industrial, commercial, transportation) 
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would reach 12.9 Quadrillion Btus, and by 2030, the consumption would be almost 15.7 

Quadrillion Btus.  

The residential sector is a major consumer of the produced electricity in the U.S.  

market. Figure 11 demonstrates that according to EIA forecasts, the residential sector 

would consume almost 36 percent of domestic electricity production in 2030.  

 

       

 
 

 

 

Figure 11: The expected electricity consumption by sector in the U.S. by 2030. 

Source: Annual Energy Outlook (EIA 2009a). 

 

 

Figure 12 presents forecasted electricity consumption of each sector in both years 

2010 and 2030. In the residential sector, the expected electricity consumption in 2010 

will be 4.8 Quadrillion Btu, and it will reach almost 5.69 Quadrillion Btu in 2030 (EIA 

2009a). 

The U.S. government promotes sustainable energy policies at the national, 

regional, and local levels to achieve energy efficiency and decrease air pollution of the 

environment (Menz 2005). 

Residential
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Figure 12: The electricity consumption per sector for years 2010 and 2030 in the U.S.  

Source: Annual Energy Outlook (EIA 2009a). 

 

 

3.2. Energy, Economic Growth, and Sustainable Development 

3.2.1. Economic Growth and Energy Consumption 

Developed countries, such as the U.S., have long considered economic growth 

and energy consumption as indicators of economic success. Many metropolitan areas 

have high economic and population growth rates. Moreover, these growth rates are likely 

to continue; hence, increasing energy consumption (ESDD 2009; EIA 2009a). 

Kraft and Kraft (1978) analyzed the causal relationship between energy 

consumption and economic growth in the U.S. for the period 1947 – 1974. They found a 

strong unidirectional relationship running from GNP (as an indicator of economic 

growth) to energy consumption in the United States. The authors concluded that the 

increase in economic growth would raise energy consumption.  

Yet, other researchers reexamined the findings of the Kraft and Kraft study. 

Akarca and Long (1980), Yu and Choi (1985), and Erol and Yu (1987) found no 
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significant relationship between energy consumption and economic growth. These 

conflicting findings can be ascribed to the differences in the data definition and 

measurement techniques, time frame, and the methodological approaches employed in 

these various empirical studies.  

The earlier studies suffered from a number of statistical and methodological 

shortcomings (Soytas and Sari 2009). More recently, taking advantage of the advances in 

statistical modeling, Glasure and Lee (1997), Cheng and Lai (1997), Asafu-Adjaye 

(2000), Hondroyiannis et al. (2002), and Stern and Cutler (2004) have once again 

revisited the issue and confirmed the strong relationship between energy consumption 

and economic growth. 

The mechanisms of economic growth may affect the environment through many 

portals, such as pollution (contamination of natural resources), and climate change. 

Excessive levels of energy consumption result in the degradation of the environmental 

resources. A considerable number of studies have addressed the relationship among 

environment, economic growth, and energy consumption. Kolstad and Krautkraemer 

(1993) concluded that economic growth yields negative impacts on the environment. 

Later, Shafik (1994), Holtz-Eakin and Selden (1995), Roberts and Grimes (1997), Friedl 

and Getzner (2003), Canas et al. (2003), Stern (2004), Dinda and Coondoo (2006), Soytas 

et al. (2007) and Soytas and Sari (2009) confirmed that energy consumption is the main 

source of carbon emissions. 

The combination of economic and urban development is the major player in 

energy consumption; therefore, the increase in carbon emissions, mainly in metropolitan 

cities. The current pattern of economic growth has caused serious environmental damage 
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in these city regions. On the other hand, developed countries intend to increase energy 

production to meet their growing needs in economic and population growth.  

To deal with these two conflicting matters, economic development and 

environmental protection, the concept of sustainable development appears to be an 

appropriate solution. It maintains the relationship between the growing demand of energy 

and protecting the environment for both present and future needs. 

3.2.2. Sustainable Development and Energy Efficiency 

Sustainable development is commonly conceived to be "development that meets 

the needs of the present without compromising the ability of future generations to meet 

their own needs" (Brundtland 1987). The concept has become popular after the 

recommendations of the Brundtland Commission (also known as the United Nations 

World Commission on Environment and Development) in 1987. The concept implies 

economic growth together with the protection of environmental quality, each reinforcing 

the other. The central role of sustainable development tends to balance the conflicts 

between economy, environment, and social equity as shown in Figure 13. In the U.S., two 

major movements, New Urbanism and Smart Growth are planning principles that 

advocate the practices of sustainable development in land use, energy, and ecological 

planning. However, the practices of sustainable development received major criticism. 

Owens and Cowell (2002) noted that trying to implement the principles into policies, 

decisions, and practices reveal more tensions between the goals rather than resolve the 

conflicts. For instance, the conflict between social equity and environmental protection 

appears when there is competition to improve the living of poor people through economic 

growth while conserving the environment through growth management. 
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Figure 13: The spheres of sustainability 

Source: Sustainability Assessment and Reporting for the University of Michigan's Ann 

Arbor Campus (Rodriguez et al. 2002). 

 

 

Godschalk (2004) introduced the sustainable livability prism to provide a 

comprehensive conceptual method to overcome the shortcomings in sustainable 

development applications. The livability prism demonstrates the state of the art of 

sustainable development. Figure 14 shows the structure of the prism, which consists of 

four primary dimensions, namely equity, economy, ecology, and livability. It deals with 

the dynamics of development over various spatial and temporal resolutions. In addition, 

the prism provides a conceptual structure to assess the conflicts between different 

ecological, economic, social equity, and livability visions. The sustainability/livability 

prism allows researchers to incorporate the strength of sustainable energy practices with 

the assessment in empirical studies, and forecasting models. The following sections will 

present the practices of sustainable energy, the assessment of the most influential 

determinants on energy consumption, and the forecasting approaches, respectively.  
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Figure 14: The sustainability/livability prism. 

Source: Land Use Planning Challenges: Coping with Conflicts in Visions of Sustainable 

Development and Livable Communities (Godschalk 2004). 

 

 

3.3. Sustainable Energy and Demand-Side Management 

In first world countries, due to high rates of economic growth and urbanization, 

the major metropolitan areas, such as the Charlotte metropolitan area, play a major role in 

energy matters, such as climate change. The application of sustainable development 

concepts will support using energy more efficiently and decreasing energy consumption; 

hence, benefiting the environment by reducing carbon emissions. Demand-Side 

Management (DSM) is one of the most applied concepts of sustainable development in 

energy conservation; it has been used to enhance energy systems and reduce the 

consumption of end users. Hence, global warming, climate change and carbon monoxide 

emissions can be curbed (IIEC 2006; Cheng 2005).  

DSM refers to the end-user planning and strategies implementation to enhance 

energy efficiency, decrease energy costs, optimize the time of usage, or endorse the use of 

different energy sources. DSM targets the actions that influence the patterns of use of 

energy consumed by end users (IIEC 2006). 
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Demand-Side Management (DSM) was first applied in the U.S. in response to the 

energy crisis of the 1970s (IIEC 2006; EIA 1995). The crisis created high inflation in the 

U.S. energy market that brought up devastating impacts on all development sectors. 

Therefore, U.S. energy organizations had to promote energy conservation, and changing 

the level of energy consumption by increasing the accuracy of demand projections. DSM 

was first applied in conserving electricity consumption. Nowadays, DSM has become 

part of the efforts to achieve energy sustainability; it is extended to cover both electricity 

and natural gas consumption.  

The benefits of DSM initiatives are diverse. It is commonly known as a major 

planning/policy method in decreasing global warming and climate change since energy 

consumption is reduced. Table 3 shows the common benefits of DSM, which 

significantly contribute in increasing the efficiency of the whole electricity system at the 

end user, utility and production system, and society as a whole (IIEC 2006).  

 

Table 3: Demand-Side Management benefits in energy usage. 

Source: International institute for Energy Conservation (IIEC 2006). 

 

 

Gellings and Chamberlin (1993) discussed six traditional DSM strategies. The 

authors described each strategy by an energy-load curve (shape) that plots the future 

demand over the time of occurrence. The load shape is a generic presentation of an aimed 

End-user benefits Societal benefits 
Utility and production system 

benefits 

Satisfy energy demands 
Reduce environmental 

degradation 
Lower power-plant capacity 

Reduce / stabilize costs Reduce carbon gases emissions Lower the cost of service 

Improve value of service Conserve resources 
Improve operating efficiency and 

flexibility 

Maintain/improve lifestyle Protect global environment Reduce capital needs 

productivity Maximize customer welfare Improve customer service 
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energy strategy that achieves certain goals from demand or/and supply side. The six 

strategies can be described as follows (Figure 15): 

 

 
Figure 15: Demand-Side Management load shape objectives. 

Source: Demand-Side Management: concepts and methods (Gellings and Chamberlin 

1993). 

 

 

(1) Peak-clipping is the strategy that aims to reduce the system-peak by means of 

direct load control; peak-clipping reduces the need to operate energy when the 

maximum system-peaks are not sufficient to meet the demand.  

(2) Valley-filling is the form that increases the off-peak loads.  

(3) Load-shifting is a method that shifts the loads from peak to off-peak periods.  

(4) Strategic-conservation is a concept that reduces utility loads, for instance, 

improving the efficiency of the appliances and building energy conservation.  

(5) Strategic-load growth aims to increase energy production beyond the impulsive 

effects of the economic growth.  
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(6) Flexible-load shape refers to the programs that offer many options to the end 

users in exchange for other benefits on a needs basis. The program can involve 

variations of integrated energy management systems, or load control devices 

that offer real time-of-use constraints for the customer. For example, some tools 

can help the end user control the residential water heater and AC systems 

(Gellings and Chamberlin 1993). 

The first three strategies are considered traditional load management approaches 

promoted by the utilities to alter the total energy consumption. The major goal of these 

strategies is to alter the peak and off-peak structures. On the other hand, the last three 

strategies provide more systematic and larger-scale controlling methods than the first 

three; they cover the previous goal and extend it to change the patterns of energy 

consumption. 

DSM provides planners, engineers, and decision makers the advantage of 

increasing energy efficiency and decreasing energy consumption. However, DSM has 

received some criticisms: Katz (1992) argued that DSM increased the utility (electricity, 

and natural gas) costs for consumers, while decreasing the profit for the utility 

companies. Another criticism is that DSM mainly deals with the customer behavior at the 

household level. To avoid these major shortcomings, many researchers have combined 

DSM methods with other energy conservation practices to achieve a sustainable 

framework for residential energy demand.  

DSM Energy conservation is a sustainable development concept that refers to the 

methods used to reduce energy consumption. Mitigation strategies apply energy 

conservation to eliminate unnecessary usage. Therefore, practices of energy conservation 
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increase environmental quality, financial capital, national security, and human comfort by 

promoting green energy policies at the macro and micro levels. 

Figure 16 shows the two major fields in energy conservation. The first is the green 

technology applications, and the second is the passive energy methods. Green 

technologies combine environmental protection practices with new technologies and 

techniques to take into account the positive and negative impacts on the environment, 

mainly in the field of energy conservation (Kuehr 2007). It integrates the green 

applications within the urban context to enhance energy efficiency, and consequently, 

reduce greenhouse and carbon dioxide gas emissions.  

Passive energy policies address the planning and building design considerations to 

reduce the energy consumption passively. Both of the fields apply solutions at the micro 

and macro levels. The following sections will explore DSM fields, the green technology 

applications, and the passive energy policies, respectively. 

 

       

 
 

Figure 16: The various policies of DSM energy conservation. 

Source: Author’s consideration based on the literature. 
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3.3.1. Green Energy Technology Applications in Urban Context 

3.3.1.1. Energy Conservation and Cogeneration Green Applications (CHP) 

Cogeneration is one of the most famous green applications in energy conservation 

and recycling. Cogeneration is also known as Combined Heat and Power technology 

(CHP). In any power plant, the turbines and engines always release residual thermal heat, 

which is a wasted form of energy; the CHP units exploit the residual heat from any 

thermal power source to generate electricity and heating energy (Griffiths 1995). 

The mechanism of the CHP system extracts hot exhaust gases from any power 

facility; these exhaust gases are transported to a boiler that feeds water to the CHP unit to 

produce both electricity and heating energy. The steam and exhaust gases are transported 

from the turbines to the CHP unit in the case of power plants, or from Stirling heat engine 

into the micro-CHP units (Wegener 1995). The CHP units produce clean energy that 

could be effectively applied to achieve energy efficiency and reduce carbon monoxide 

emissions. They can be used in industrial, commercial, and residential uses; they differ by 

size, technology, and capacity. The CHP technology could be applied to serve the whole 

city region in the location of the power plants or at the district or the neighborhood levels 

or on-site of each residential parcel. 

The CHP units that are used in residential applications share common installation 

guidelines; the spatial, the technological, and the economical installing considerations. 

The spatial considerations to install the CHP units concern the characteristics of the 

parcel or the neighborhood or the district. The first is that the thermal residual heat cannot 

be transported over long distances; therefore, to operate efficiently, the CHP unit must be 

installed close to the main thermal source in any dwelling or the thermal facility in any 
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parcel or neighborhood or district. The second spatial consideration is that the site 

location should have the minimum adequate space to install the CHP unit. The third 

consideration, it is recommended to deploy the CHP units in mixed uses and high-density 

areas (OECD 1993; GBP 2007). The CHP units with larger capacity are more sensitive to 

the spatial scale than the micro-CHP units.  

The technological considerations: first, to avoid any possible contamination, the 

boiler that feeds water to the CHP unit at the scale of cogeneration power plants must be 

completely oxygen free and de-mineralized (Bernstein and Griffin 2006). 

The CHP units have two major economic considerations; the first is the amount of 

residual thermal energy demand in the household units or residential districts. From the 

economic point of view, areas with large annual thermal consumption are appropriate 

candidates for installing the CHP units compared with areas that have low annual 

consumption. The second consideration is that CHP units are very expensive both to 

install and to maintain (Manning et al. 2008; Hawkes and Leach 2007). At present, the 

price of the unit is one of the major economic obstacles in spreading CHP application in 

residential areas; there are many efforts to overcome this obstacle and make the CHP 

units available at lower cost in the future (Dijkstra 2009). The micro-CHP units with 

smaller capacity at the parcel level are more subjected to the economical requirements 

than the CHP units at larger scale, such as neighborhood and district levels. 

In 2004, an EU Directive asked member states to determine their national 

potentials and standards for high-efficiency CHP, to achieve the integration in the electric 

grid across all members and to overcome any barrier to the expansion of the CHP 

technology (Froning and Constantinescu 2007). The EU Commission established 
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promotional schemes to encourage its members to integrate CHP applications in the 

urban development at neighborhood and district levels in all European Union countries. 

Recently, cogeneration produces almost 11% of the total generated electricity in the 

European Union (COGEN Europe 2008).  

The U.S. Department of Energy started a national program to integrate CHP 

technology in the U.S. electric grid in 2009, and the work is still in progress. At present, 

CHP technology produces almost 8 percent in the U.S. total electricity market. The U.S. 

DOE aimed to generate almost 20 percent of the electricity by applying CHP technology 

over the whole country by 2030 (Shipley et al. 2008). 

 

      

 
Figure 17: States with renewable portfolio standards that include CHP as of April 2008. 

Source: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future 

(Shipley et al. 2008). 

 

 

Figure 17 shows that North Carolina is one of fourteen U.S. states that have 

portfolio standards that include CHP green technology in their energy programs. The 

application of CHP in the U.S. energy market could play a potential role in energy 

conservation, environmental protection, and electricity regeneration. The efficiency of the 
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energy system could be enhanced by connecting the CHP units with the electric grid; 

however, the traditional grids are not efficient enough to reach the optimum performance 

of the CHP units. Smart grid is a widespread network that will replace the traditional grid 

in the U.S. The smart grid allows the integration of all green technology applications such 

as CHP; the following section will present the concept of smart grid. 

3.3.1.2. Smart Grid 

Smart gird is an advanced electric network that utilizes digital technology that can 

sense any shortage or malfunction in any segment in the network infrastructure. The 

concept of smart grid is based on a comprehensive solution to achieve energy 

sustainability. Most of the U.S. electric networks use a traditional grid. There is a big 

difference between the traditional and smart grids in delivering the service to the end-

users and businesses. 

The traditional grid is a centralized one-way flow; the large power plants generate 

and distribute the electricity through the network to the end users. One the other hand, a 

smart grid is a decentralized two-way power flow of communications from suppliers to 

consumers and vice-versa through meter devices in the network production, transmission, 

distribution, and consumption (Kannberg et al. 2003). Electricity transformation in the 

smart grid depends on the availability of information and communication technologies 

(ICT); the network will communicate through smart meters and sensors to exchange real-

time information of the network performance.  

Figure 18 illustrates a comparison sketch between both the traditional and smart 

grid. Smart grid has embedded digital sensors and meters to gather real-time information 

on suppliers and consumers to improve the efficiency of the electricity service (NETL 
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2007). Figure 19 presents a sketch for the characteristics of the smart grid. In case of any 

failure, the self-healing feature enables the smart grid to isolate any affected area and 

redirect the power around damaged facilities. The distributed sensors exchange real-time 

information on the type, place, and area of the outage in the network, and then the smart 

grid analyzes the network behavior to assess the performance. The smart grid determines 

the required reinforcements through the network by responding back to the sensors. 

Therefore, the smart grid is capable to mitigate network failures. The smart grid improves 

the quality of the service by reducing network losses and shortages time. The grid 

accommodates various generations’ alternatives, such as wind and solar  powers, and fuel 

cells, which allows all customers to self-generate the power (NETL 2007). 

 

   

 
Figure 18: Comparison between the concepts of traditional and smart grids. 

Source: What Will an Electric Vehicle-Ready Smart Grid Infrastructure Look Like? 

(Schwartz 2010). 

 

 

A smart grid incorporates smart indoor appliances to enhance energy 

management. In addition, a smart grid enables consumers to compensate their energy 

saving, for instance, if consumers store the energy through solar panels, they can sell 

power to their neighbors or back to the grid. The smart grid increases the capacity of the 
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electricity network; hence, this will create an open marketplace to invest in alternative 

energy resources. Through intelligent sensors, the smart grid can optimize the 

performance and network assets to minimize the operations and maintenance costs. 

Therefore, the energy efficiency will increase. The smart grid is flexible to integrate 

different renewable green energy resources with the network, such as micro-CHP; hence, 

decreasing the amount of carbon dioxide and greenhouse gases (NETL 2007). 

 

 
Figure 19: The characteristics of the smart grid. 

Source: A Vision for the Modern Grid (NETL 2007). 

 

 

In the U.S., the city of Austin, Texas, has started to build its smart grid since 2003. 

Almost 1/3 of its manual meters were replaced with smart meters that communicate via a 

wireless network (wikipedia 2010). Duke Energy, in the city of Charlotte, started to 

replace the old network with full-scale smart grid in the middle of 2008 (McNamara and 

Smith 2007). The main challenges in building the smart grid is the amount of required 

investment, a long time to replace the traditional network with the smart grid, and a 

commitment by all stakeholders.  
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As mentioned before, green technology applications address energy efficiency to 

reduce the consumption and the greenhouse gases. In this approach, the function of the 

technology is to utilize the new inventions for both indoor and outdoor activities. On the 

other hand, passive energy policies address the problem in the other direction by 

optimizing the urban form to reduce energy consumption. The urban entities, such as 

buildings, streets, open spaces, and landscape are involved passively in the energy 

conservation for any metropolitan area.  

3.3.2. Urban Geometry and Energy Conservation  

The characteristics of urban geometry, such as buildings height, size, density, 

landscape coverage, and orientation affect indoor energy consumption. These spatial 

characteristics can be involved in the reduction or increase of total energy consumption of 

any MSA. 

Researchers have recognized four classes of factors of residential energy demand, 

namely, urban geometry, building design, systems efficiency, and occupant behavior. 

These factors have been analyzed by different groups of researchers, including urban 

planners and designers, architects, and system engineers (Ratti et al. 2005).  

 

       

 
Figure 20: Factors that affect energy consumption in buildings. 

Source: Energy and Environment in Architecture (Baker and Steemers 2000). 

 

 

Baker and Steemers (2000) quantified the contribution of each of the four classes 

of factors to the total energy consumption of households. In their model (Figure 20), 

“building design” may affect energy consumption by a factor 2.5; “system efficiency” 
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accounts for a ~2x variation, and “occupant behavior” accounts for ~2x variation. These 

factors can lead to a total 10 – 20-fold variation in energy consumption of residential 

buildings. 

It should be noted that Baker and Steemers (2000) did not quantify the 

contribution of the urban geometry (context) due to the complexity of its components. 

Regardless of the clear relationship between urban geometry and energy consumption, 

researchers generally neglect this link due to the complexity of the environmental 

processes involved. In addition, urban geometry dynamically changes through time by 

horizontal and vertical development, which makes it more difficult to estimate the effects 

of urban texture. 

3.3.2.1. Buildings, Passive Solar Space, and Energy Conservation  

According to the Baker and Steemers model (Figure 20), there are two factors 

related to spatial characteristics that affect energy consumption, namely building design 

and urban geometry (context). This section focuses on DSM practices to generate energy 

savings at the building level. It will highlight the variables that relate to urban geometry. 

Discussion on the materials used in building structures is out of the scope in this research.  

Energy storage is an important DSM method to control either the quantity or the 

delivery characteristics of energy input (Gellings and Chamberlin 1993). The total 

building volume is a thermal energy-storage that consists of both passive and 

conventional non-passive spaces. Passive Solar space is a common sustainable 

application in energy conservation. It aims to use solar energy saving without use of 

mechanical systems.  

Passive solar applications have many advantages, such as, increasing solar gain 
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for heating/cooling storage, enhancing natural ventilation, and conserving the usage of 

artificial lighting. Figure 21 shows that passive areas are closer to the exterior walls of a 

building, where the exposure to solar radiation is high, while non-passive zones are far 

from outer solar gain (Baker and Steemers 1996).  

 

    

 
Figure 21: Passive zones (white) and non-passive zones (hatched) on a sketch plan. 

Source: Energy and Environment in Architecture (Baker and Steemers 2000). 

 

 

From a sustainable development perspective, we can enhance space heating, 

cooling storage, and lighting loads by increasing the percentage of passive solar space to 

conventional space. Cool storage or air conditioning relies on the percentage of passive 

solar space to conventional non-passive spaces. The more natural ventilation, the less 

energy loads from artificial air conditioning. Figure 22 presents both heating and cooling 

flows through passive space in a room unit. Moreover, the figure demonstrates how the 

ratio of passive zone affects the usage of artificial lighting. However, in some cases, 

passives spaces require more energy than conventional non-passive spaces. Mainly, if 

there are many windows in the building, facades become vulnerable to overheating 

during the summer and heat losses during the winter (Ratti et al. 2005). 
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Figure 22: Energy heating and cooling flows within a unit. 

Source: Energy and Environment in Architecture (Baker and Steemers 2000). 

 

 

3.4. The Assessment of Influential Determinants of Energy Consumption 

Many empirical studies have assessed the most significant factors of household 

energy consumption. To cover all sustainable energy spheres, this section will 

comprehensively present various spatial and urban geometry parameters, socio-economic 

factors, and finally the condition drivers. 

3.4.1. Spatial and Urban Geometry Predictors 

Many studies have developed quantitative methods and programs to estimate the 

effects of building design on energy consumption. In their guidance study, Howard et al. 

(1994) reviewed various computer-based applications that estimate energy consumption. 

Few applications consider obstructions and overshadowing in urban areas. Ratti et al. 

(2005) concluded that the developed applications tended to neglect the effects of urban 

geometry on energy consumption. 

March (1972) developed a mathematical method to determine the optimum shape 

of a building to reduce heat losses. The author promoted the advantages of compact 
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shapes on energy saving. March’s study inspired many researchers to develop variant 

energy prediction models in many fields.  

Ratti et al. (2005) proposed using a Digital Elevation Model (DEM) to predict the 

effects of urban geometry on energy consumption. In addition, the authors attempted to 

understand how the spatial characteristics of the urban areas affect energy consumption. 

Ratti et al. (2005) developed an integrated standalone computer model, which is called 

the Lighting and Thermal (LT) model. The integrated software estimates in heating, 

lighting, ventilation, and cooling energy, it sums all these forms to calculate total energy 

consumption per each office building.  

Ratti et al. (2005) standardized the parameters in raster DEM format, to simulate 

total energy consumption. The authors used the LT model to calculate the impacts of each 

parameter on energy consumption individually; afterwards, the outputs of each parameter 

were overlaid onto an integrated raster DEM to present the total annual energy 

consumption for the study area. 

Ratti et al. (2005) quantified the impacts of shading, sunlight, obstruction angles, 

and buildings orientation, separately. With the LT model, the authors calculated the total 

energy consumption of CBD office buildings in the three cities of London, Toulouse, and 

Berlin. The results showed the effects of both passive and non-passive zones. Ratti et al. 

(2005) determined a significant reduction in energy consumption in passive zones 

(almost 50%) compared to the non-passive ones. Their model incorporates four urban 

geometry parameters: 

 Distance from the façade (passive zone); 

 Orientation of the façade; 



49 

 

 Urban horizon angle (UHA); 

 Sky View Factor (SVF). 

Distance from the façade is the interior buffer space along the perimeter of a 

building’s footprint; this space encompasses the passive zone that is mostly affected by 

outdoors climate conditions, such as solar radiation and shade. The researchers assume 

the value of distance from the façade falls between 3-6 meters from a building’s 

perimeter, this value is fixed in LT model for all buildings. The orientation of the façade 

equals the angle between the North and the axis of the façade. Urban horizon angle 

presents the exposure of the buildings to the shades.  

Steemers (1992) introduced the UHA parameter, which is used to calculate the 

effects of the shades on building energy consumption. The sky view factor presents the 

exposure of the buildings to solar radiation from the sky. Oke (1981) introduced the SVF 

concept to estimate the solar radiation received by any building’s surface. Some 

researchers use another term for SVF, namely the obstruction sky view. The roofs and 

walls of the buildings discharge most of the radiation. For instance, larger values for SVF 

enable more solar radiation to penetrate through building roofs and façades; thus, causing 

higher indoors temperature (Givoni 1998). 

Small but influential empirical studies have addressed the impacts of the sky view 

factor (SVF) and urban horizon angle (UHA) on household energy consumption. Both 

concepts have been addressed in the literature starting with Oke (1981; 1982; 1987), 

Givoni (1998), Baker et al. (1999), Grimmond et al. (2001), Ratti and Baker (2003), 

Souza et al. (2003), Ratti and Richens (2004), Ratti et al. (2005; 2006), Holmer et al. 

(2007), and Unger (2009). These empirical studies have indicated strong negative 
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relationship between SVF and solar radiation gain in the urban areas, which means the 

more SVF, the faster escape of solar radiation energy from household units. Urban areas 

with low density have high values of SVF, and the household units have more exposure 

to solar radiation, which could contribute in heating energy savings during cold seasons. 

However, low density will increase the cooling energy during hot seasons. 

On the other hand, the situation is reversed in the case of urban horizon angle, 

UHA estimates the contribution of buildings shades and shadows in energy saving. 

Determine the magnitudes of both SVF and UHA will be challenging with a small 

number of empirical studies that addressed the contribution of the two spatial predictors 

on household energy consumption. 

Two of the proposed spatial parameters in the LT model by Ratti et al. (2005) can 

be applied to estimate the housing energy-demand (HED) at urban geometry level. The 

UHA and SVF parameters can represent the passive energy at urban context as well as at 

buildings design level to achieve energy conservation. The basic concepts encapsulated 

by the UHA and SVF indicators demonstrate the effects of building heights and urban 

density on the amount of shades and solar radiation based on the sun’s obstruction angle, 

respectively. The amount of solar energy gain and shades differ for each building in any 

given city. Figure 23 shows the geometrical arrangement to calculate the UHA and SVF 

indices. The basic equation to calculate UHA for a building is as followed: 

UHA =  tan−1(H W⁄ )       (1) 

 β =  (H W⁄ )         (2) 

Therefore: 

 UHA =  tan−1(β)       (3) 
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Where H is the height of any building, W is the width between the façade and the 

shading elements, β is the sun’s elevation angle, and θ is the sun’s obstruction angle with 

the perpendicular axis. Oke (1987) proposed a simplified model to calculate the SVF 

parameter for the buildings footprints in any urban area as followed:  

SVF = cos2(β) =  sin2(θ)      (4) 

 

 
 

Figure 23: Geometrical definitions for the sky view factor. 

Source: Boundary layer climates (Oke 1987). 

 

 

However, one major criticism is that Ratti et al. (2005) did not explain if they 

validate their results. In addition, the LT model has fixed parameters and the user cannot 

customize the mathematical methods in the software; therefore, is hard to validate the LT 

model with other energy models. The spatial variables SVF and UHA from LT model can 

be combined with any given forecasting methods to develop a new integrated statistical 

forecasting method. 

Many ecological studies assessed the effects of landscape, mainly tree shading, on 

energy conservation. This research will focus on the conducted empirical studies in hot 

climate zones in the U.S. A group of researchers has attempted to quantify urban tree 

shading effects in the U.S. cities, mainly in the State of California. The collective 

findings of these studies observed that the tree coverage percentage of a parcel area in a 
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typical American city ranges between 68%-71% in the case of single-family homes, and 

6%-8% for multi-family housing. Therefore, single-family use will have the maximum 

cooling energy savings during summertime (Akbari et al. 1990; Akbari et al. 1997; 

McPherson and Simpson 2003; Simpson and McPherson 1998; Simpson 2002; Akbari 

2002; Parker and Barkaszi Jr 1997; Akbari and Konopacki 2005). 

Pandit and Laband (2010) conducted an empirical study in Auburn, Alabama, to 

determine the annual energy saving from tree shades. The relationship between tree shade 

and household energy consumption is sensitive to climate season and tree coverage 

percentage on the residential parcel. The authors identified three classes of tree shades; 

the first class is light shade with 10% or less of tree coverage, the second class is 

moderate shade with 10%-25% of tree coverage, and the third class is heavy shade with 

25% of tree coverage of the parcel land area. The more tree coverage in winter the greater 

the increase in heating energy, and vise-versa the more tree coverage in summer the more 

saving in air-conditioning energy (Pandit and Laband 2010). 

Trees adjacent to the building footprints are most likely to have a greater impact 

on the energy consumption pattern. Huang et al. (1987), Akbari et al. (1990; 1997), 

Simpson and McPherson (1998), Simpson (2002), Akbari (2002), McPherson and 

Simpson (2003), Akbari and Konopacki (2005), King (2007), Hardin (2007), Donovan 

and Butry (2009; 2011), and McPherson et al. (2011) observed that within U.S. hot 

regions, tree planting reduces annual cooling energy in warm seasons by 3% for the units 

with low tree coverage and up to 8% for homes with high tree coverage. On the other 

hand, during cold seasons, adjacent tree planting increases energy demand for space 

heating, the previous studies stated that the annual heating ratio increases by 113-344 
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Mj/tree. However, the increasing in heating energy demand due to adjacent tree coverage 

is negligible compared with cooling energy savings in hot climate regions. 

3.4.2. Socio-economic Predictors 

The relationship between energy consumption and socio-economic characteristics 

of the population is one of the important topics at various scales (national – local – 

household). The research will focus on the empirical studies at the household level. One 

of the most important studies at high-resolution scale is the empirical study by EIA 

(1999; 2001; 2005; 2009). The study used the high-resolution data of the Residential 

Energy Consumption Survey (RECS), which is a sample survey that is conducted by 

Energy Information Administration of U.S. Department of Energy. The RECS micro-data 

provide various cross-sectional tables at the household level, such as the household 

characteristics (income, housing type, size, age, the home’s square footage, etc.), energy 

consumption, the usage type at housing units (space heating, air-conditioning, etc.), and 

energy sources available in the household (electricity, natural gas, etc.).  

EIA (1981) developed a nonlinear regression model based on the RECS micro-

data to estimate the annual consumption for each household unit and each energy source 

used. The high quality of RECS micro-data encouraged many researchers to apply the 

data and EIA’s model to forecast the predominant socio-economic predictors on 

household energy consumption. The majority of researchers mainly focused on income, 

household population size, and housing type (single family, multi-family apartments). 

O’Neill and Chen (2002) also used the RECS micro-data in their study. The 

authors applied the EIA’s model to identify the demographic factors of household energy 

consumption in the U.S. during 1993-94. They concluded there is a high positive 
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relationship between household income and energy consumption. However, 

multicollinearity commonly appears in the results when dealing with variables that are 

likely correlated, such as income and household size. Using the RECS micro-data of 

2005, Min et al. (2010) found that the relationship between energy consumption and 

household income is significant and positive. The model can be formulated as: 

ln Ej = βj0 + ∑i βij ∗  Xi      (5) 

Where E is the estimated annual energy consumption for j used energy source, 

and β is the coefficient of variable Xi.  

Various studies focused on household size as another important socio-economic 

predictor of energy consumption. Various studies have concluded that energy 

consumption rises when household size increases (Ironmonger et al. 1995; O'Neill and 

Chen 2002; Min et al. 2010). Table 4 presents the percentage increases in energy 

consumption in relation with number of people in a household unit in the U.S. during 

1993-1994. Min et al. (2010) confirmed that the relationship between energy 

consumption and household size is significant and positive. It is important to mention that 

the square footage of the housing unit is important predictor; it reflects the human 

occupancy and activities in any household. 

 

Table 4: Energy consumption per capita in household in the U.S. 1993-94. 

Source: Extracted by the researcher from Demographic Determinants of Household 

Energy Use in the United States (O'Neill and Chen 2002). 

Capita per Household Energy Usage per capita M. Btu Increment Percentage 

1 120 100% 

2 82 137% 

3 69 173% 

4 57 190% 

5 47 196% 

6 43 215% 

7 41 239% 
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Energy studies analyzed housing type as one of the major predictors of household 

energy consumption. Household type, income, and household size create a socio-

economic composite index to establish appropriate forecasting methods at high-resolution 

scale at the end-user level (O'Neill and Chen 2002). After controlling for other socio-

economic factors, EIA (2001; 2005), Brown and Wolfe (2007), EPC (2008;2009), Min et 

al. (2010), and Hernandez et al. (2011) concluded that single-family units consume more 

energy than multi-family apartments. Min et al. (2010) concluded that the relationship 

between energy consumption and housing type is significant and positive. 

3.4.3. Condition Predictors 

The condition parameters will account for the events that may happen and would 

influence total energy consumption forecasted at various scales (household – national – 

global). These predictors will have significant impacts under certain conditions. One of 

the most important predictors in the energy market is the price of crude oil, which affects 

both the price of natural gas and the coal in the energy market. Crude oil acts as a proxy 

for energy demand (Wood 2010). The price of crude oil is very sensitive to the market 

conditions, in case of global energy crisis; the price of crude oil will rise and affect all 

energy markets at the macro and micro levels. 

The second condition driver is the price of natural gas; natural gas sales for the 

residential sector in the study area is almost 24% (EIA 2010e). There is a positive relation 

between the prices of crude oil and natural gas. If the price of crude oil increases, it is 

most likely that the natural gas price will also rise, and vice-versa. Weather conditions 

play a role in the ratio between the price of both crude oil and natural gas. When the 

demand increases for natural gas during the cold seasons, the ratio between crude oil and 
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natural gas prices is most likely to be 6:1, while in the warm seasons the demand for 

natural gas decreases and the ratio is most likely to be 10:1 as shown in Figure 24 (Brown 

and Yücel 2007). 

 

 
Figure 24: Actual and implied natural gas prices. 

Source: What drives natural gas prices? (Brown and Yücel 2007). 

 

 

Recently, various empirical studies have addressed the implications of green 

technologies on household energy savings, such as the micro-CHP units and solar panel 

roofs. According to Shipley et al. (2008), the U.S. Department of Energy started to 

encourage energy companies to replace the existing electric grid with a new smart one in 

the whole country to achieve energy reduction between 8% to 20% according to U.S. 

DOE goal by 2030 (Shipley et al. 2008). The planned smart gird will apply CHP and 

other green technologies at household and neighborhoods levels. Therefore, it is 

important to take into account the impacts of green technology applications in the study 

area.  

3.5. Energy Demand Forecast Modeling 

3.5.1. The Definition of Energy Demand Forecasting 

Energy demand forecasting has become a vital input to micro economic growth 
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and sustainable development of any society. The term of Energy Demand Forecasting 

consists of two terms; the first is energy demand, and the second is the demand forecast. 

The Energy Information Administration (EIA) defines energy demand as "the 

requirement for energy as an input to provide products and/or services" (EIA 2009b). 

Another definition is common among economists: energy demand is a relationship 

between the price of a commodity and the quantity purchased at that price over some 

time period (Daly 1976).  

According to Business Dictionary (2009), demand forecasting is defined as the 

activity of estimating the expected demand of a certain product or service over a specified 

future period. Energy demand forecasting is used in different decision-making processes. 

The major concern of these methods and models is how to predict energy demand 

scenarios. There are various modeling approaches in energy demand forecasting. These 

approaches have been applied in different time (e.g. hourly – daily – monthly) and scale 

(e.g. household unit – neighborhood – city) resolutions. 

3.5.2. Energy Demand Forecasting  

3.5.2.1. Cross-Sectional Econometric Approach 

The basic concept of this approach combines economic theory with statistical 

analyses to produce a system of equations for forecasting energy demand. It establishes a 

relationship between energy demand and other economic variables. The dependent 

variable, demand for energy, is expressed as a function of various economic factors. We 

can apply different predictors, such as population, income per capita (in residential, 

industrial, or commercial sectors), price of providing the service, and the total 

consumption of appliances in the study area (Bohr 2009). To account for the dynamic 
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characteristics of energy demand, a lagged dependent variable is often used as a 

regression variable in the model. It aims to distinguish between short-run and long-run 

demand elasticity in econometric models (Bohr 2009; Pillai N 2008). 

With the recent development in computer and GI-Science, researchers have 

developed econometric methods that deal with spatial problems (e.g. spatial dependence 

and spatial heterogeneity); this collection is defined as spatial econometric modeling. The 

use of spatial econometric approaches is growing fast among different disciplines such as 

geography and economics (Qingmin 2008; Lin et al. 2005). In the econometric approach, 

the most common type of formulation used in energy studies is based on the following 

demand function: 

E = aY∝ ∗ P−β       (6) 

Where E is energy demand per capita, Y is income, P is energy price, a is a 

coefficient, α is income elasticity of energy demand, and β is price elasticity of energy 

demand. In addition, a generalization and extension of this model is formulated as: 

 E = f(Y, Pi , Pj, POP, T)       (7) 

Where Pi is energy price, Pj is price of related fuels, POP is population, and T is 

technology. Income and price elasticity parameters indicate the changes in energy 

demand in relation with price and income. Thereby, income elasticity α and price 

elasticity β of energy demand are calculated as followed, respectively: 

 α =  (Δ E E⁄ ) (Δ Y Y⁄ )⁄       (8) 

 β =  (Δ E E⁄ ) (Δ P P⁄ )⁄       (9) 

The practice of the cross-sectional econometric approach has made substantial 

progress over the last four decades. It has proven substantial success in energy demand 
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forecasting because of its ability to distinct the factors that influence energy consumption 

(Fisher 1999, p 411).  

Many achievements have been made by researchers to give general understanding 

in the modeling tools. During the 1960s, the major goal was to have better understanding 

of the relationship between energy demand and various economic variables. Later, Griffin 

(1993) recognized three major achievements during the period of 1970-90 in cross-

sectional econometric modeling. The first is the application of the trans-log function. Wirl 

and Szirucsek (1990) observed that the researchers preferred to apply the trans-log 

function in energy demand forecasting due to its flexible properties. Many cross-sectional 

econometric models, since the 1970s, have applied the trans-log model at the aggregated 

and disaggregated levels, for instance, Brendt and Wood (1979), Pindyck (1979), Uri 

(1979a and 1979b), Saicheua (1987), Siddayao et al. (1987), Carlevaro et al. (1992), 

Christopoulos (2000), Dahl and Erdogan (2000), and Buranakunaporn and Oczkowsky 

(2007).  

The second achievement is the usage of panel data, which allowed researchers to 

capture the interregional impacts (short and long terms) of the economy on the energy 

demand. Panel data are two-dimensional data, while time series and cross-sectional data 

are both one-dimensional. Panel data combine cross-sectional and time-series data. Thus, 

panel data follow the same cross sectional units (households, firms, cities) over time.  

The third achievement is the discrete choice method, which it is used to analyze 

energy demand between different types of energy along with consumed quantity, such as 

electricity and natural gas. The method is used in predicting the choices made by people 

among a set of alternatives, such as the choice of fuel type for space heating. 
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Fisher and Kaysen (1962) conducted a pioneering study to analyze and estimate 

the electricity demand in the U.S. market at the national level. The authors were the first 

who recognized the importance of econometric analysis in energy demand forecasting. 

Fisher and Kaysen (1962) developed an integrated model of electrical residential 

consumption using cross-sectional state data during the period of 1951-1967. First, the 

model estimates the short-run demand for residential electricity by expressing the 

complementary link between energy needs and the stocks of appliances. Fisher-Kaysen’s 

model predicts the long-run demand by accounting for the changes of the stock of 

equipment under different assumptions, such as the partial adjustment to an equilibrium 

stock, or through the appliances penetration of a market (Fisher and Kaysen 1962). 

Due to data limitations, Fisher and Kaysen (1962) were unable to reach reliable 

results of the residential electricity consumption model. The researchers subsequently 

neglected electricity estimation based on direct estimates of equipment stocks. Another 

major critique to Fisher-Kaysen demand model is that the authors considered the demand 

as static. Fisher–Kaysen’s model failed to consider properly the income effect and 

assumed that all incomes are equal. Another source of bias is that the utilization rates of 

different appliances were assumed to have the same price and income effects. Therefore, 

the model used the average energy price to estimate market price elasticities, which 

causes an aggregation bias (Kamerschen and Porter 2004). Also, Bohi (1984) noted that 

the formulation of Fisher-Kaysen’s model results in an aggregation bias. Finally, Bohi 

(1984) claimed that the demand elasticity for each appliance will not be the same for each 

individual household unit. 

Balestra and Nerlove (1966) applied Fisher-Kaysen’s model to calculate the 
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demand for natural gas in the U.S. for both residential and commercial markets. The 

authors developed a dynamic model to avoid the shortcomings in Fisher-Kaysen’s model. 

Balestra and Nerlove (1966) addressed the changes in the behavior of the consumers. In 

addition, the authors presented new specifications in the long-run demand model to 

explain the accumulation of the appliance retrofits. 

Halvorsen (1975) applied two-stage least squares (2SLS) to estimate the dynamic 

energy demand to avoid the shortcomings in Fisher-Kaysen model. Halvorsen’s model 

covered both electricity and natural gas sales for the residential sector. The model 

converts the average prices into marginal prices by modeling the price as a function of 

quantity as shown in the following equation: 

 Q = b0 + b1Pm + b2Y + b3G + b4A + b5D + b6J + b7R + b8M + b9H +

b10T + u           (10) 

Where Q is the average annual residential electricity sales per customer, Pm is 

marginal real price of residential electricity, Y is average real income per capita, G is 

average real price per therm for residential natural gas, A is the index of real wholesale 

prices of electrical equipment, D is heating degree days, J is the average July 

temperature, R is the percentage of population living in rural areas, M is the percentage 

of housing units in multi-unit structures, H is the average size of households, T is time, 

and u is a disturbance term.  

Until the 1970s, the practices of cross-sectional econometric approach received 

some critiques. Pindyck (1979) stated that the literature during this period had poor 

understanding of the long-term impacts of prices and income on the energy demand. This 

situation created difficulty to forecast energy demand and choose the proper energy and 
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economic policies. Pindyck (1979) proposed to develop cross-sectional econometric 

models by using international data. The author argued that this step could increase the 

understanding of the long-term impacts on energy demand to their relationship to the 

economic growth. In addition, Hartman (1979) observed that most of the early cross-

sectional econometric models in all sectors (residential, commercial, and industrial) 

focused on a single type of fuel, which is crude oil. Therefore, these models limited the 

decision variable to the fuel price only. Hartman (1979) noticed that the literature during 

the 1970s paid little attention to other economic variables, such as the type of fuel-

burning equipment, gross domestic income, and long-run and short-run demand of 

energy. 

Taylor et al. (1984) attempted to solve the major drawbacks in the previous cross-

sectional econometric models. The authors covered the impacts of socio-economic factors 

on the energy demand more efficiently. They developed a comprehensive model to 

forecast the residential demand for electricity in the U.S. market. The authors applied the 

model at the national level during the period of 1950-1980. In their approach, a stock-

utilization sub-model is used to determine the short-run electricity demand by the 

appliance stock. The authors claimed it is difficult to isolate the impacts of variables that 

affect the behavior of residential customers at the household unit level, such as the prices 

of natural gas and fuel oil, and appliance ownership. 

Nowadays, the fluctuations in oil price, urbanization, and energy efficiency 

motivate researchers to extend the academic interest in energy demand studies. 

Kamerschen and Porter (2004) developed a model based on Halvorsen’s equation to 

estimate the demand for residential, industrial and total electricity in the U.S. market at 
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the national level during the period 1973-1998. Kamerschen and Porter (2004) attempted 

to determine the sensitivity of sectoral energy price to weather fluctuations. The authors 

included some major findings; such as, the weather has the greatest impact on residential 

energy consumption. 

Holtedahl and Joutz (2004) examined the residential demand for electricity in 

Taiwan, over the period 1955-1995. The authors studied Taiwan as an example of 

developing countries. They mainly aimed to measure how urbanization and economic 

development impact on electricity demand. The authors measured urbanization by the 

proportion of the population in cities over 100,000 people. Using a cross-sectional 

econometric model, they found that urbanization had positive long-run and short-run 

effects on consumption. Urbanization is an indirect measure of electricity consumption 

using appliances stock. Holtedahl and Joutz (2004) adopted the Fisher–Kaysen’s model to 

derive economic development characteristics and electricity by using capital stocks not 

explained by income. Their model explains both short-run and long-run electricity 

demand. The authors concluded that electricity consumption and urbanization are strong 

predictors of economic development. 

The cross-sectional econometric approach is still facing bias in forecasting the 

short-run energy demand or dealing with micro-data. Harvey (1997) mentioned that the 

majority of cross-sectional econometric models consider the economic variables are static 

over time. The author argued that would eliminate vital forecasting procedures, which 

may affect the quality of the output results because some economic variables do change 

over time. Harvey (1997) suggested another forecasting concept, which is called the 

structural time series models. 
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3.5.2.2. Structural Time-Series Approach 

Another forecasting approach is structural time-series (time trend) analysis. The 

basic concept of this approach consists of plotting a variable over time and discerning the 

pattern of this variable. The approach is used to predict the future path and seasonal 

(hourly – daily – monthly – yearly) behavior of the system based on past observations. 

A structural time-series is defined as an ordered set of values of a certain variable. 

It is used to predict the future behavior of variables based on their past values. The 

difference between the cross-sectional econometric and time-series approaches lies in the 

explanatory variables used. In other words, the explanatory variables are used as causal 

factors in the cross-sectional econometric approach, while in time-series only previous 

values of the same variable are used in the forecast process (Bohr 2009; Pillai N 2008). 

The main advantage of the structural time-series models is that they are relatively 

easy to interpret because of the simplicity of their structure. On the other hand, the major 

disadvantage is that they do not describe the causality of the relationship. Thus, a 

structural time-series model does not describe why changes occurred in the variable 

under investigation (Bohr 2009). 

The basic principle of the structural time series approach in energy systems 

modeling can be described as a single freedom degree of the system. Autoregressive 

moving average (ARMAX) models are the most widely used in energy demand forecasts. 

ARMAX models are capable of incorporating the external inputs, such as weather or 

energy price. In addition, they are sufficient for short-term energy demand forecasting 

(Yang et al. 1995). The ARMAX model is formulated as followed: 

 A(q)E(t) = B(q) ∗ u(t) + C(q) ∗ e(t)     (11) 
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Where E(t) is energy demand load at time t, u(t) is weather temperature input at 

time t, e(t) is white noise at time t, A(q) is autoregressive parameter, and C(q) is moving 

average parameter. White noise refers to the absence of autocorrelation between the 

variables at different times and the mean equals zero. ARMAX models have time lag 

predictors that transform any observations at any given time to the previous one. Some 

modifications have been applied to these models to enhance the prediction, for instance, 

applying log function to some variables, such as log[E(t)] for energy demand. 

Harvey (1997) introduced the first concept of structural time-series approach. The 

author introduced the theoretical framework of the structural time-series approach based 

on the vector error-correction method (VECM). Johansen (1988) introduced the VMCM 

method to support a better understanding of the nature of any non-stationarity among the 

different time-series components. In addition, the method can improve long-term demand 

forecasting. Harvey’s work has been very influential to various researchers, and his new 

proposed approach has been extensively used in energy demand as an alternative 

forecasting approach. For instance, Hunt et al. (2003), Hunt and Ninomiya (2005), 

Adeyemi and Hunt (2006). 

Hunt et al. (2003) demonstrated a structural time-series study to determine the 

trends and seasonal energy demand for the whole economy and each sector in the UK. 

The authors used quarterly data during the 1971-1997 periods. They analyzed the impacts 

of price, income, and temperature on energy demand. The authors claimed that their 

model presented significant results to estimate the trends of the whole economy, the 

transportation, and industrial sectors; however, their model did not show clear results in 

the case of the residential sector. 



66 

 

Later, Hunt and Ninomiya (2005) examined the long-run relationship between 

energy demand, GNP and the energy price in Japan. The authors used annual data for 

primary energy consumption per capita in Japan from 1887 to 2001. The authors 

attempted to determine the relationship between the rapid economic growth and the 

increase of CO2 emissions. They developed a model to utilize four scenarios for future 

primary energy demand and the amount of CO2 emissions. The first case is a low GNP 

growth (where the economy grows by an average of only 0.1% p.a. over the next 10 

years). The second case is a medium GNP growth (where the economy grows on average 

by just under 1% p.a.). The third case is a high GNP growth (where the economy grows 

on average by just under 2.2 % p.a.). The last case is the Japanese Government plan 

(where the economy grows on average by just under 2% p.a.). 

Hunt and Ninomiya (2005) concluded that there is a significant amount of 

uncertainty whether Japan will or will not be able to reduce CO2 emissions in 2008–2012. 

The authors pointed that the uncertainty depends primarily on how slowly or fast the 

Japanese economy grows over the next ten years. In addition, there are other contributors, 

such as the fluctuations in energy prices over the next ten years.  

The structural time-series approach lacks the ability of calibration to identify the 

turning points in a series. The approach cannot be used to compare the original data under 

investigation from the same period in each year (Bidwell 2005). Moreover, time-series 

models are not intuitive and no simple physical interpretation could be attached to their 

components. Hence, they do not permit engineers and planners to achieve better 

understanding for the energy system behavior (Rafal and Adam 2005). 
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3.5.2.3. Engineering End-use Approach 

The end-use approach or engineering-economy approach is another commonly 

used energy demand forecasting technique. It identifies patterns of energy usage based on 

design energy inputs of various devices and systems. In other words, this approach 

addresses the final needs of the energy demand at a disaggregated micro level. Chateau 

and Lapillonne (1978) are the first researchers who applied this approach (Bhattacharyya 

and Timilsina 2009).  

The principle of the approach is to disaggregate the total energy demand into 

relevant homogenous end-use categories in all sectors (residential, commercial, 

agriculture and industrial). For instance, in the residential sector, the energy can be used 

in the form of electricity for appliances for heating, cooling, refrigeration, cooking, etc. 

(Bohr 2009; Bhattacharyya and Timilsina 2009). 

When any conducted study lacks sufficient cross-sectional econometric and time 

series data, the end-use approach is an alternative. The end-use approach is effectively 

used to capture structural changes, different development projections, the influences of 

alternative policies, and new technological developments (Bhattacharyya and Timilsina 

2009).  

A major criticism to this approach is the ineffectiveness of calculating certain 

energy policies. It disregards the variation in consumption patterns/behaviors due to the 

difference in socio-economic factors; thus, reducing the accuracy of forecasting results. 

Moreover, the approach requires a high level of details of data on each target end-use. 

Engineering end-use models assume that energy demand for each activity consists 

of two factors; the first is the quantity of energy service. Energy service is the magnitude 
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of the physical amenity provided by energy-using appliance or equipment, for instance 

cooking, lighting, thermal heating, air conditioning or refrigeration (Swisher et al. 1997). 

The second factor is the energy intensity (energy consumption per unit of energy service). 

Energy intensity is a measure of energy efficiency of a nation's economy (EIA 2009b). 

The basic model is formulated as followed (Swisher et al. 1997): 

 E =  ∑ Qi ∗  Ii
i=n
i=l        (12) 

Where E is the energy demand per household, Qi is the quantity of energy service 

i, and Ii is the intensity of energy use for energy service i. The parameter Qi is calculated 

as followed: 

 Qi =  Ni ∗  Pi ∗  Mi       (13) 

Where Ni is the number of customers eligible for end-use i, Pi is the penetration 

(total units/total customers) of end-use service i (can be > 100%), and Mi is the 

magnitude or extent of use of end-use service i. Population parameter Ni can be the 

number of households, commercial, or industrial customers. This parameter can be 

defined differently for each sector. For instance, it could be calculated as the total number 

of household units in the residential sector. The definition of Ni must be consistent with 

the units in the denominator of the penetration variable Pi. 

Parameter Pi is the share of customers who use a given electric end-use service. In 

the residential sector, the penetration is the number of appliances per household. This 

parameter captures the count of appliances, such as electric stoves, washing machines, 

lamps, or television sets. In certain cases, the penetration value for some appliances, such 

as TVs and refrigerators, can be calculated as a saturation level where electricity 

consumption is expected to be constant. However, it should not be assumed that this 
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value is 100%. Some households can install more than one TV or refrigerator, therefore, 

penetration value will score greater than 100% (Swisher et al. 1997). 

Magnitude Mi depends on the amount of delivered end-use service. In the 

residential sector, the magnitude indicates the frequency of appliance usage (e.g. kg of 

clothes washed) or the fraction of maximum usage (e.g. usage hours of television) for a 

given end-use. For heating and cooling appliances, Mi value is the difference between the 

indoor and outdoor temperatures ΔT that is needed for the air-conditioning. Magnitude Mi 

is measured separately for the heating and cooling seasons (Swisher et al. 1997). The 

following case of residential end-user presents how to calculate the energy demand using 

engineering end-use model: 

In a community of 100 homes Ni, 80% Pi own a TV. The average TV consumes 

200 W Ii of electricity and is turned on for an average of 2 hours per day Mi. Therefore, 

on an annual basis, Qi = Ni * Pi * Mi = 100 homes * 80% * 2 hr/day * 365 days/yr = 58,400 

home-hr/yr. As a result, the community’s annual TV energy demand =  Qi * Ii = 58,400 

home-hr/yr * 200 W/home = 11,680 kWh/yr. 

Chateau and Lapillonne (1978) presented the first attempt to apply the 

engineering end-use approach in energy demand forecasting. The authors were motivated 

to apply a new approach (at a disaggregated level) to analyze the set of interrelationships 

that exist between a country's economic growth pattern and its energy demand.  

Chateau and Lapillonne (1978) developed their model for developed countries as 

a reaction to the 1973-74 oil crisis. The authors named their model MEDEE (Model 

Demand Energy Europe). The MEDEE model identifies the main macro and micro socio-

economic, political, and technological factors (as determinants of energy demand). The 
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model was applied to the National French economy to project the energy demand in each 

5-year interval during the period of 1975-2000. 

 

       

 
Figure 25: Structural schema of the socio-economic system. 

Source: Long term energy demand forecasting: A new approach (Chateau and Lapillonne 

1978). 

 

 

Figure 25 presents the Chateau and Lapillonne model. The MEDEE model 

analyzes the socio-economic system into three hierarchical steps; the first analytical step 

partitions the socio-economic system into a set of sub-systems based on the types of 

energy needs. The second step investigates the direct and indirect factors that affect the 

energy demand projection. The analysis identifies whether these factors form either 

deterministic or causal relationships, and then organizes the output into a logical structure 

to present their interactions into a simplified structure that is used to set up a simulation 

model. The third step constructs simulation sub-models of the growth rate of the energy 

demand, and then organizes each sub-model into an overall simulation model. The 

simulation model runs different scenarios of energy demand based on political, economic, 

and technological factors, for instance the change in oil price and how it affects the 

energy demand and price (Chateau and Lapillonne 1978). 
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Chateau and Lapillonne (1978) conclude that their method may appear complex 

and it requires many variables and large data collection. However, they claim their new 

approach organizes the variables into hierarchical subsets, which allows the researchers 

to analysis the energy demand at any disaggregated level.  

Later, the authors applied the MEDEE model to other industrialized countries in 

North America, Western Europe, and Japan at the national economy scale as well. Their 

approach gained reputation through the works at the International Institute of Applied 

Systems Analysis (IIASA) (Lapillonne 1980, 1978) at the International Atomic Energy 

Agency (IAEA) (Lapillonne and Chateau 1981), and the Lawrence Berkeley Laboratory 

(LBL) (Finon and Lapillonne 1983). 

 Wilson and Swisher (1993) applied the MEDEE model to determine the U.S. 

national primary energy demand using 5-year intervals during the period of 1950-1990. 

They suggested that the motivation for the “bottom-up” approach arose from the high 

energy demand forecasts in the 1970s that raised the attention of researchers to achieve 

energy efficiency and sustainability. Wilson and Swisher (1993) aimed to investigation 

the direct cost of energy consumption on the climate change; they attempt to analyze the 

factors that maintain economic growth and high quality of life with lesser energy 

supplies. 

To achieve their goal, Wilson and Swisher (1993) explored the gap between top-

down (cross-sectional econometric) and bottom-up (engineering end-use) methods to 

decrease any conflicts between the two approaches. The end-use modeling system is 

particularly important in modeling the changes in the market shares of various energy 

services that will not necessarily be reflected in the econometric energy price. 
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For example, any increase in the consumption of gas hot water heaters in the 

residential sector will probably raise both the domestic natural gas and/or electricity 

consumption. This change in the market might not be precisely determined in the 

econometric models. Therefore, it is important to merge the results of both the cross-

sectional econometric and end-use forecasting systems. This merging process allows both 

modeling systems to be updated to display the changes in technological and economic 

parameters through time.  

Each of the two modeling approaches has advantages and disadvantages, and by 

combining the two approaches, the credibility of model outputs. However, Wilson and 

Swisher (1993) concluded that each approach represents different methods and models 

and it is hard to produce compatible results for both modeling systems.  

Swisher et al. (1997) conducted a wide study that collected powerful and practical 

tools for designing energy demand model for electricity in Brazil. Bahn et al. (2004) 

showed in detail the advantages of the MEDEE model over mathematical modeling when 

dealing with actual problems.  

Liao and Cheng (2002) analyzed both space and water heating demands by the 

aged people in the U.S. The study was conducted at the national level. They used data 

from the 1996 Residential Energy Consumption Survey from the Department of Energy 

(DOE), which is rich in demographic, building characteristics, and appliances 

information in each household. The authors implemented a continuous method to reveal 

the energy consumption behavior of the aged. They claimed that the aged people 

compared to the younger groups consume more electricity in the residential sector. Liao 

and Cheng (2002) found that the aged use more natural gas and fuel oil but less electricity 
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for space heating except for those household heads older than 80. In addition, they 

claimed that the aged people use less water heating than younger groups. 

However, end-use energy demand models have been only used in energy policy 

studies and have not extensively been utilized for forecasting energy demand. To achieve 

accurate results in engineering end-use models, we need to have detailed information on 

stocks of appliances, equipment, and end-use consumption data in any country.  

3.5.2.4. Hybrid-Integrated Approach 

Various empirical studies have attempted to develop approaches to combine the 

forecasting methods discussed above; the new approach is known as a hybrid approach. 

The main objective of this approach is to increase the efficiency of future prediction by 

combining the advantage of each approach. It attempts to overcome the limitations of 

individual approaches (Bhattacharyya and Timilsina 2009). These models have become 

very widespread now; it is difficult to classify any particular model into a specific 

category.  

The hybrid-integrated approach of end-use and econometric methods allows 

integration of physical and behavioral factors in a common framework. For instance, the 

econometric method will estimate the influence of price, income, and policy effects. 

While the engineering end-use approach will account for the new end-uses, alternative 

fuel mixes, market penetration of appliances and technologies, growth pattern of physical 

or value of output, population and its distribution amongst income class. The combination 

of time series and cross-sectional econometric approaches improves the accuracy of 

determining both the causality and dependency relationships. This combination joins 

several functional methods to capture the existing trends in the data. 
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In principle, the hybrid-integrated approaches have capabilities to develop 

comprehensive urban energy models. Many developed hybrid energy models are 

embedded within integrated land use transportation models to evolve the simulation of 

any urban region and forecast its future energy demand in a way that ensure 

micro/macro-economic consistency (Chingcuanco and Miller 2012). 

Almeida et al. (2009) developed the iTEAM (Integrated Transportation and 

Energy Activity-Based Model), which is a hybrid energy model to evaluate green 

policies. The authors aimed to enhance the sustainability of the urban systems by 

assessing the effects of energy green policies on urban systems. The authors applied their 

model in the Lisbon metropolitan area, Portugal. Almeida et al. (2009) integrated a 

household location choice sub-model namely UrbanSim, which is an open source 

simulation land use package that applies agent-base simulation method (Waddell et al. 

2003). Hence, the iTEAM model simulates household agents at micro level and 

aggregates the results to forecast the impacts of various energy policies on urban land use 

dynamics (Almeida et al. 2009). 

Chingcuanco and Miller (2012) developed a hybrid-integrated energy model that 

combine socio-economic and technological factors. The authors estimated space-heating 

demand for Toronto-Hamilton region. The authors combined two open sources packages, 

the HOT2000 software and the Integrated Land Use, Transportation, Environment 

(ILUTE) modeling system. The HOT2000 calculates the individual space heating per 

household unit and fuel choices for North America housing market (CanmetENERGY 

2011). The ILUTE is an agent-based platform system, which is designed to forecast and 

project the growth of demographics, land use and travel behavior for any given urban 
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region over time (Chingcuanco and Miller 2012).  

From previous examples, the hybrid-integrated models represent households and 

other non-residential uses (the agents), simulate their decisions, convert these decisions to 

their respective energy demands, and draw the projections of energy consumption of an 

urban region.  

Hybrid-integrated models have strengths and weaknesses; the major advantages 

that these models combine top-down and bottom-up methods, capture the socio-economic 

macro and technological end-user variables. On the other hand, the practical 

implementation of hybrid models depends on the objectives. The implementation of 

hybrid approach is mostly data-driven, which requires a lot of computational skills, large 

data-samples, and resources (Lith et al. 2002; Bhattacharyya and Timilsina 2009). The 

study will apply the hybrid-integrated approach, which is more appropriate and 

comprehensive to achieve the research objectives. 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4: INTEGRATED PLANNING SUPPORT SYSTEM DESIGN  

 

 

4.1. Methodology 

This section introduces the research methodology. In addition, the section 

demonstrates the design of the proposed Housing Energy-Demand model, and it will be 

integrated with a comprehensive urban model called the Charlotte Land Use and 

Economic Simulator (CLUES). The construction and the specifications of the proposed 

model will be introduced. 

Figure 26 shows the research methodology modules, processes, and the structure 

of the developed integrated PSS that entails four components: (1) the scenario builder, (2) 

the CLUES simulator, (3) the developed eCLUES extension, and (4) the geo-database 

storage.  

The scenario builder is an interface toolbox that allows the user to choose 

different “What-if” scenarios based on various perspectives. Each perspective presents a 

certain policy situation and its possible implications on household energy consumption. 

The scenario builder consists of four major perspectives, the Urban Geometry, the Green 

Technologies, the Environmental Implications, and the Macroscopic Energy trends. The 

variety exhibited by the perspectives provides decision makers with great flexibility to 

design different “What-if” scenarios. Each perspective is a collection of “What-if” 

scenarios that have similar policy trends. Each scenario has different impacts on the 

CLUES simulator or the developed energy module (eCLUES). Once the policy 
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perspective is provided through the scenario builder, the data input flows to two modules 

namely the CLUES simulator and the eCLUES extension. These three modules form the 

structure of the operational disaggregated model. 

 

       

 
 

Figure 26: The research methodology and the integrated PSS. 
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The CLUES module is a simulation system that incorporates the interactions 

between land use, transportation, and the economy. The module predicts urban 

development and the characteristics of residential and non-residential land uses. Results 

generated by the CLUES simulator are fed into the eCLUES module with the socio-

economic variables, the income, household size, and housing type. 

The eCLUES module is the tool in the integrated PSS that forecasts residential 

energy consumption at the household level. The module has two components, the 

empirical model to predict annual residential energy consumption, and an interface that 

allows the user to assign the independent variables. If the user has a valid statistical HED 

model, it can used to apply a new desired policy. The units of energy forecasts are in 

British thermal units (Btu). 

The geo-database storage is the last component that contains all the forecasting 

and analyses outputs in tabular and spatial formats. The outputs of the forecasting process 

are the annual residential energy consumption at the household level starting from the 

year 2008 to 2037. For each energy scenario, the user can perform a sensitivity analysis 

to assess the significance of the geometry and socio-economic characteristics of housing 

patterns on energy consumption by varying the values of each parameter in the eCLUES 

module. In addition, the user assesses the effects of energy costs under various scenarios 

on the social equity for predefined population groups, which is known as energy poverty.  

4.2. Model Design 

The design scheme of the operational model is composed of the scenario builder, 

the Charlotte Land Use and Economic Simulator (CLUES) and the developed housing 

energy demand model (eCLUES) as shown in Figure 27. The scenario builder is an 
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interface that allows the user to customize various “What-if” energy scenarios. The user 

modifies only the condition parameters to introduce certain events that are anticipated to 

have an impact on residential energy demand. For instance, the user can establish CHP 

applications for a specific social group or the whole community.  

 

       

 
 

Figure 27: The operational disaggregated model. 
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The eCLUES extension forecasts residential energy demand under certain 

scenarios at multiple geographic scales. The study predicts the energy consumption at the 

household units, and then the outputs are aggregated to suitable levels of geographic 

granularity, namely traffic analysis zones (TAZ). The eCLUES extension retrieves the 

socio-economic and housing variables from the CLUES simulator, such as income and 

household size. 

The CLUES model is a customized suite of UrbanSim application, supplemented 

by the Charlotte Mecklenburg Long-term Economic Impact Scenarios Analysis model 

(CM-LEISA), and a transportation demand model. The CLUES model is an open source 

urban simulator model. It applies python scripting language because of its simplicity; in 

addition, python is an open source scripting language.  

 

 
Figure 28: The Components and Data Flow in UrbanSim Model. 

Source: Introduction to urban simulation: design and development of operational models 

(Waddell and Ulfarsson 2004). 
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UrbanSim aims to simulate land use and development types over periods ranging 

from less than 5 years to 30 years. Figure 28 presents the components and data flow of 

UrbanSim. The model consists of sub-models that perform different tasks to simulate 

household location choice, the demographic transition, the economic transition, 

employment location choice, land price, and travel demand choices. UrbanSim performs 

the simulation at the parcel level. The outcomes are stored in tabular data format 

(Waddell and Ulfarsson 2004). 

 

       

 
Figure 29: The components of CLUES simulator (CM-LEISA, and travel demand 

model). 

Source: CLUES poster (Thill et al. 2011b). 

 

 

Figure 29 shows the integration between CM-LEISA and the travel demand 

model. The Charlotte Mecklenburg Long-term Economic Impact Scenarios Analysis 

(CM-LEISA) predicts the future employment for the entire study area. In addition, the 

CM-LEISA model allocates jobs and economic activities (Thill et al. 2011a). The travel 
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demand model produces an accessibility matrix to predict the travel behavior between the 

locations of residential and non-residential activities, jobs, and employments.  

The CLUES simulator predicts the total population and other potential 

information, such as household size, and income. Afterwards, the model analyzes all 

population growth to redistribute the population over the housing market. Finally, it 

predicts development types, determines its characteristics, and forecasts residential and 

nonresidential square footage that would take place. Moreover, the CLUES simulator 

retrieves the demographic characteristics from the U.S. census data, such as income and 

housing type. It assumes that income and household type remain static unless the user 

defines the local demographic trends in the data inputs to CLUES before performing the 

simulation. The simulator classifies household units into three types (single – multi-

family apartments – condominiums) and distributes the income groups into each 

residential (Waddell and Ulfarsson 2004). The Python language is used in the CLUES 

simulator, and will be used to model the eCLUES extension as well. 

4.3. Model Specifications  

4.3.1. Overall Structure  

The statistical model is composed of three sets of independent variables; the first 

is the socio-economic set, which includes income, household size, housing type, and the 

residential square footage. The second is the spatial and urban geometry set, which 

includes the sky view factor, urban horizon angle, and the landscape coverage index. 

Finally, the condition variables are the application of green energy technology, the growth 

ratio of crude oil price, and the growth ratio of natural gas price. Residential energy 

consumption is calculated for each parcel based on the following statistical model: 
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 ln(E) = ƒ[(socio-economic variables set), (urban geometry variables set), 

(condition variables set)]        (14) 

Where E is household energy consumption. Because the property dataset does not 

contain any energy consumption information and the RECS dataset has limited locational 

information, a multistep procedure is used to integrate these datasets. This is presented 

later in this section. Spatial/urban geometry variables and condition variables are 

discussed in the next two sections, in turn.  

Since the property records dataset has no information on energy consumption, 

which is the dependent variable in the developed statistical model. It was attempted to 

obtain household energy consumption from the utility providers in the study area; 

however, this attempt was not successful because one of the utility providers (Duke 

Energy) did not release the information because of the confidentiality restrictions. The 

research attempted to collect a sample of residential customers in Mecklenburg County 

by conducting a survey to acquire information on household energy consumption. 

However, this idea was constrained by the sample size to present equitably all social 

groups and housing types in the study area, which required long time. Moreover, the 

confidentiality was required for the collected data. 

After an intensive search, it was found that the U.S. Energy Information 

Administration (EIA) collected the RECS dataset in 2005 to report the information on 

household energy consumption, climatic zone, socio-economic, and housing 

characteristics. Therefore, the 2005 RECS dataset is used to retrieve household energy 

consumption for the study area. However, the RECS dataset does not report the location 

of respondents at the county or sub-county level. The survey manager of the RECS 
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dataset was contacted to request the release of each respondent address, but the request 

was denied due to confidentiality restrictions. Hence, any RECS sample record that 

would be in the study area of Mecklenburg County cannot be identified and extracted 

from the complete RECS dataset.  

Residential energy consumption profile for the study area is crucial to build the 

statistical HED forecasting model. The previous data limitations drive the research to 

choose between two methods to identify the information of household energy 

consumption. The first is to build a synthetic dataset from the scratch. However, there is 

no available information to build a consistent synthetic dataset and to achieve reliable 

results; therefore, this proposed solution is discarded.  

The second method is to match the property records and the RECS datasets 

through some steps and assumptions. The aim of the matching process is to create a 

combined sample of the two datasets; the combined sample contains energy consumption 

for each residential parcel, which is the dependent variable. To match both datasets, a 

random sample is selected from the Mecklenburg County property records to be joined 

with the RECS dataset. The steps are presented as follows (Figure 30):  

(1) First, it should be noted that Mecklenburg County is urbanized and located in 

the South climatic region of the United States. The climate conditions are one of the most 

factors influencing residential energy consumption. The observations are located in the 

same climatic zone share similar consumption pattern. Therefore, only RECS sample 

units that are located in urban areas and in the Southern region are retained for further 

use. The state of Florida is excluded because of its different climatic characteristics. The 

chosen sample has 719 out of the total of 4,383 RECS records.  
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(2) Identify the independent variables of housing characteristics (the square 

footage of the unit, and number of floors), and socio-economic (income, and household 

size) variables that are present in both the RECS dataset and the property records dataset. 

A set of over 170 thousands property records in Mecklenburg County shares the same 

characteristics of the independent variables mentioned above as the selected 719 records 

of the RECS sample. 

(3) A sub-sample of 719 cases is selected from the 170 thousands property records 

and combined with the selected RECS sample on the basis of one to one relationship on 

the basis of the variables singled under point (2) above. This will enable us to account for 

the spatial and urban geometry factors that are not recorded in the RECS dataset. 

(4) Once the combined sample is created, building height is retrieved from the 

property records to calculate SVF and UHA, which is explained in section ‎4.3.3. The 

SVF and UHA values are assigned to the combined sample of 719 records. 

(5) Finally, an HED regression model is estimated based on the combined sample; 

the natural log value of energy consumption is the dependent variable, and it will be 

correlated with the socio-economic and housing characteristics, as well as, the assigned 

spatial variables as shown in Equation 15. The HED model is used in the operational 

disaggregated model to forecast residential energy demand. 

 ln E = f [∝1 v1 + ∝2 v2 + ∝3 v3 … + ∝m vm]    (15) 

Where E is household energy consumption from RECS data, v1, v2, v3, and vm are 

the independent variables present in the RECS dataset and the property records dataset 

that are mentioned in the second step. The RECS regression model is used to estimate 

energy consumption for the property records that match with the RECS sample. 
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Figure 30: The matching process of the RECS dataset and the property records. 

 

 

4.3.2. The Socio-Economic Variables Set  

The forecasting HED model has four socio-economic variables, income, 

household size, housing type, and residential square footage. The four variables are 

retrieved from the data storage of the CLUES simulator, which contains the outputs of the 

simulation process as presented in the research methodology. The CLUES simulator 

retrieves income and population size of each household unit from the U.S. census, while 

it reclaims the housing type from the property records dataset of Mecklenburg County for 

the existing property records in 2008. The simulator assumes that these values are 

constants for each simulation year. Afterwards, the CLUES simulator forecasts the values 

of these socio-economic variables to be provided as data inputs for the followings years. 
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The CLUES simulator recognizes there housing types (single – multi-family 

apartments – condominiums). Forecasting energy consumption for single-family unit is 

straightforward because there is a one-to-one relationship between each household and 

housing unit and a property record. The eCLUES model sums the energy consumption of 

any condominiums or multi-family units that are located on the same parcel. The 

eCLUES extension categorizes household incomes based on the median income. Table 5 

shows the annual median income of North Carolina in 2008 and the income group 

classifications. The U.S. Department of Housing and Urban Development defines low 

income as up to 80 percent of the median; middle income is between 80 and 120 percent 

of the median, and high income is more than 120 percent of the median (EPC 2008). It is 

important to mention that income in the RECS dataset and the property records is 

reported as a continuous variable. 

 

Table 5: NC State median income and household income groups in 2008. 

 

NC median income $ Low-income $ 80% Middle-income $ 80-120% High-income $ 120% 

42930 34344 or less 34344 – 57516 57516 or more 

Source: The 2009 Statistical Abstract of the United States: Income, Expenditures, 

Poverty, and Wealth (U.S. Census Bureau 2009). 

 

 

The eCLUES extension creates various “What-if” statements that can be 

translated in the pseudo-code in python language as the followed example: 

While socio-economic is true: 

  If Y = “high-income” and; 

   R = “3” and; 

   I = “owned single family 2000 sq ft”, 
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  then ln(E) = “calculated value based on the model in Btu” 

  else if …  

4.3.3. The Spatial and Urban Geometry Variables Set 

Each variable in the spatial and urban geometry set is calculated through different 

methods. The first parameter is a reduction ratio for energy saving based on tree coverage 

percentage on the parcel. The reduction ratio varies between 8% energy saving for homes 

with 25% of tree coverage of the parcel land area, 5% for the units with 10%-25% of tree 

coverage, and 3% for the units with 10% or less of tree coverage. The existing percentage 

of tree coverage per each land parcel is retrieved from a raster data for land cover, which 

it is extracted from a satellite image of Mecklenburg County in 2006 with a spatial 

resolution of 30 by 30 meter for each cell. For new parcels, the tree coverage is calculated 

in two steps; the building footprint area is subtracted from the total new land area. 

Afterwards, an average value of the tree coverage is assigned for the subtraction result, 

which equals the total tree coverage for all surrounding parcels divided by their count 

number. The CLUES simulator predicts the future square footage of residential and non-

residential land use. The methods discussed in section ‎3.4.1 are applied to forecast the 

other two urban geometry parameters for each parcel under each scenario (Urban Horizon 

Angle, and Sky View Factor) as followed: 

UHA =  tan−1(H W⁄ )       (16) 

 β =  (H W⁄ )         (17) 

Therefore: 

 UHA =  tan−1(β)       (18) 

SVF = cos2(β) =  sin2(θ)      (19) 



89 

 

Where H is building height, W is the width between the façade and the shading 

elements, β is the sun’s elevation angle, and θ is the sun’s obstruction angle with the 

perpendicular axis.  

The property record in the shapefile reports the exact height of each building as of 

2008 up to 2.5 stories, while other heights are classified as three or more stories as one 

class. To identify the exact height for 3-stories or more buildings, 3D-Google maps were 

used to identify the exact height for most of the existing high-rise buildings. For new 

residential buildings, building height is estimated based on the story of the existing 

surroundings buildings, and the ratio of building square footage. 

The solar obstruction angle changes on a daily basis for each building; for 

simplicity, the HED model applies the average solar obstruction angle of the study area of 

Mecklenburg County computed by the US Navy, which provides the altitude, and 

azimuth of the Sun angle for each location in the United States (The U.S. Navy 2012). 

Afterwards, the Urban Horizon Angle and Sky View Factor are computed through the 

eCLUES extension. The pseudo code for these variables is translated as followed: 

While development is true: 

  If SVA = “high-rise apartments” and; 

   UHA = “±43.5º” and; 

   Landscape = “moderate tree shade 25%”; 

  then ln(E) = “calculated value based on the model in Btu” 

  else if …  

4.3.4. The Condition Variables Set 

Three condition variables are anticipated to have significant impact on energy 
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consumption. Each variable presents a certain event to be true or false. The first variable 

is the growth ratio of the price of crude oil on the basis of annual projections of the U.S. 

Energy Information Administration between 2009 till 2035. EIA (2011) predicted three 

projection scenarios for oil prices (high – reference – low) as shown in Figure 31. The 

HED model applies the high oil price projection in energy-crisis “What-if” scenario, as 

EIA (2011) forecasts that oil prices increase from 146$ in 2015 to 210$ in 2035 per barrel 

with an average increasing rate of 5.7 percent per year from 2008 to 2020 and 1.4 percent 

from 2020 to 2035. On the other hand, the reference oil price is applied in other “What-

if” scenarios: the reference oil price case projects an annual increasing rate of 

approximately 0.7 percent from 2008 to 2020 and 1.4 percent from 2020 to 2035.  

The second variable is the annual growth ratio of the residential price per therm 

for natural gas is also provided from EIA annual energy outlook report in 2011. The 

annual growth of natural gas price is linked with the annual growth of crude oil price; 

therefore, it has equivalent growth ratio with the target oil price projection case.  

 

 

 
Figure 31: Average annual world oil prices in three cases during 1980-2035. 

Source: Annual Energy Outlook 2010: With Projections to 2035 (EIA 2010a). 
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The third condition variable presents the implementation of Combined Heat 

Power. The contribution of the application of green technologies in energy conservation 

will be tested in the future HED scenarios. Based on the installation considerations in 

section ‎3.3.1.1, some assumptions will be developed to distribute the CHP units during 

the forecasting process. The first scenario assumes an implementation of the CHP units in 

certain housing types and income groups only; it will allocate the CHP units in the high-

income groups that live in multi-family and condominiums units.  

In the second scenario, the CHP technologies will be implemented marketwide at 

low cost in the mid-term and the whole study area will be served by the CHP technology. 

Therefore, contrary to the first scenario, the CHP units will be distributed in mid and low 

income groups that live in single-family, multi-family, and condominiums units after 10 

years from the present. In other words, the usage of the CHP units will be available in 

single-family, multi-family, and condominiums units first to the high-income group, and 

after 10 years to mid and low income groups as well.  

The eCLUES forecasting model is formulated as followed: 

 ln(E) =  ƒ[(Y, R, I, A), (L, UHA, SVF), (CHP, P ∝, G ∝)]   (20) 

Where Y is the income per household, R is the household size, I is the housing 

type, and A is the residential square footage in the socio-economic set; L is the reduction 

energy ratio based on the tree coverage percentage in each parcel, UHA is the urban 

horizon angle of residential buildings, and SVF is the sky view factor in the spatial and 

urban geometry set; CHP is the utilization factor for green energy technology (Combined 

Heat and Power), P is the annual growth ratio of crude oil price, and G is the annual 

growth ratio of the residential price per therm for natural gas in the condition set. Where 
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α is price elasticity for the correspondent energy source (crude oil or nature gas). Price 

elasticity is given from the report of Bernstein and Griffin (2006). 

4.4. eCLUES Execution and The Forecasts Outcomes 

The eCLUES extension runs in vector data format. The expected outputs are in 

tabular format. Afterwards, the tabular outputs are joined with the property records of 

Mecklenburg County to visualize the results in the form of thematic maps. The outputs of 

the forecasts are in tabular format to determine the effects of urban geometry parameters 

on residential energy demand.  

 

 
Figure 32: An operational framework for one iteration for the developed eCLUES model.  

 

 

Figure 32 shows an operational framework for one annual iteration in the 

eCLUES model. The aim of the first forecasting iteration is to estimate the existing 

residential energy consumption for the base year for each housing unit. The eCLUES 

model forecasts future residential energy demand under each specific scenario in the 

study area during the 2008-2037 period. It is important to mention that the aim of the 
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spatial planning model is to forecast a series of future HED scenarios; it is not meant to 

decide which scenario is the best solution. 

The model allows the adoption of various perspectives of residential energy 

demand. The emphasis of the first group of perspectives is on urban geometry as a 

strategy to enhance energy savings, such as applying low or high urban densities. The 

second group of perspectives adopts the CHP applications of green technologies 

according to the two scenarios discussed in section ‎4.3.4. The third group of perspectives 

monitors the energy demand implications of residential landscapes; the applied scenario 

assesses the contribution of tree coverage in each property records to energy savings. 

Finally, the fourth group of perspectives simulates various perspectives under possible 

macroeconomic conditions consistent with an energy crisis leading to a spike in energy 

prices. Assuming great global volatility rate in oil price, this will affect the price of other 

fossil energy fuels, such as natural gas. It is expected that this solution will have macro 

impacts. Therefore, the eCLUES model will simulate the impacts of the worst situation in 

case we face an energy shortage at the national and the global levels. 

The forecasts outputs of the first year will feedback in the CLUES simulator to 

predict the transportation, employment, and the housing development for the following 

year. Afterwards new development values will be derived from CLUES to forecast the 

following year.  

The toolbox of the eCLUES model is developed using Arcpython programming 

language, which is under the application suite of ArcGIS v10 as shown in Figure 33. 

Each scenario in the toolbox is customizable. Any text editor can be used to write or 

modify the code for any provided scenario with programming experience at a beginner 



94 

 

level. In addition, the toolbox provides an optional customized What-if scenario 

according to the user interest. 

 

 
Figure 33: The toolbox of eCLUES module. 

 

 

The research also has three other objectives to assess the contribution of various 

factors for the forecasts of household energy consumption. The following chapter will 

demonstrate the results of the last three objectives.  

 

 



 

 

CHAPTER 5: FORECASTING RESULTS 

 

 

5.1. Sample Preparation 

Data sample preparation is an important step for building the HED regression 

model; the quality of the sample affects the reliability of the developed energy demand 

model and its forecasts. After the matching process of the two data sets and developing 

the regression model as mentioned in section ‎4.3, it is important to test if the combined 

sample of 719 records is randomly selected and there is no clustering that could bias 

regression results.  

 

       

 
Figure 34: Spatial autocorrelation Moran’s I of the residuals.  
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Figure 34 shows that the Moran’s I statistic for the residuals generated by the 

developed regression model equals 0.0198; it is significant at 5%, this indicates a random 

spatial pattern of the residuals. In addition, the spatial distribution of the sample indicates 

no clustering between the residuals in the sample that could affect the prediction process 

as demonstrated in Figure 35. 

 

       

 
Figure 35: A significance map of the residuals of the transformed log values of household 

energy consumption. 

 

 

The first HED model uses the untransformed values of energy consumption in 

KBtu. The coefficient of determination (R-square) equals 0.378, which indicates that 

about 38 percent of the variance is explained by the independent variables as shown in 

Table 6. Inspection of residuals reveals the presence of heteroskedasticity. A natural log 

transform of the values of energy consumption is used instead to restore 

homoskedasticity. The new coefficient of determination of the transformed log equals 
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0.4437, which enhances the prediction by almost 7 percent about the regression on the 

untransformed values as shown in Table 7. 

 

Table 6: The HED regression model of energy consumption (KBtu).  

Model R R Square 
Adjusted R 

Square 
F Stat. F Signif. Durbin-Watson Test 

  1 0.615 0.378 0.372 61.778 0.0001 0.288 

 

 

Table 7: The transformed HED regression model of natural log of energy consumption 

(KBtu). 

Model R R Square 
Adjusted R 

Square 
F Stat. F Signif. Durbin-Watson Test 

  2 0.666 0.4437 0.438 80.551 0.0001 0.002 

 

 

The variance inflation factor (VIF) test is performed to determine if the predictors 

in the regression are highly correlated or not. All predictors score a VIF value less than 5, 

which indicates no multicollinearity problem as shown in Table 8. The scatter plot of 

standardized residuals, in the transformed regression, falls within ±3 of the standard 

deviation, which demonstrates no skewness in the distribution of the residuals as shown 

in Figure 36.  

 

Table 8: Parameter estimates and multicollinearity test for the predictors. 

Dependent 

Variable: 

logKBTU 

Unstandardized Coefficients 
Standardized 

Coefficients 
Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 11.202 0.152 
   

Annual_inc 0.002 0.001 0.109 0.693 1.444 

SqFtperHH 0.077 0.012 0.217 0.675 1.482 

SnglFam_du 0.562 0.056 0.388 0.520 1.923 

Condo_dummy -0.277 0.105 -0.084 0.761 1.315 

HH_01 -0.426 0.057 -0.334 0.387 2.585 

HH_02_04 -0.125 0.050 -0.110 0.411 2.435 

SVF -0.505 0.185 -0.105 0.532 1.881 
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Figure 36: The scatter plot of standardized residuals versus predicted values. 

 

 

Table 9 reports on the significance of all independent variables; the spatial 

variable Sky View Factor (SVF) is negatively significant at 0.6% with a t-value equal to -

2.731. The negative significance is consistent with the literature findings in the negative 

significance of SVF. Urban Horizon Angle is omitted in the final specification of the 

model because it is highly correlated with SVF; hence, it can be concluded that UHA is 

positively associated with household energy consumption. Housing characteristics are 

significant predictors. For household type, the dummy variable of single-family unit is 

highly positive, significant at 0.01% with a t-value equal to 10.002. The dummy variable 

of condo-unit is significant; however, it is less than single-family with a t-value equal to -

2.362 and significant at 0.9%. Residential square footage is positively significant at 

0.01% with t-value equals 6.355. The socio-economic variables are significant. The 

income variable is positively significant at 0.1% with a t-value equal to 3.236. For 

household size, the dummy variable of unit with one person is negatively significant at 

0.01% with a t-value equal to -7.431. The unit with two to four persons is negatively 

significant as well at 1.2% with a t-value equal to -2.522.  
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Table 9: t-value significance test for the independent variables. 

  t-value Sig. 
95.0% Confidence Interval for B 

Lower Bound Upper Bound 

Annual_inc 3.236 0.001 0.0001 0.0001 

SqFtperHH 6.355 0.0001 0.0001 0.0001 

SnglFam_du 10.002 0.0001 0.452 0.672 

Condo_dummy -2.632 0.009 -0.484 -0.070 

HH_01 -7.431 0.0001 -0.538 -0.313 

HH_02_04 -2.522 0.012 -0.223 -0.028 

SVF -2.731 0.006 -0.867 -0.142 

 

 

To accomplish the third and fourth objectives, the following sections present a 

comprehensive assessment for energy demand forecasts at multiple scales through 

various “What-if” policy scenarios. The first measurement is total energy demand per 

TAZ to provide the assessment at the macro level. The second measurement is at the 

micro level, which is the average household energy demand in TAZs; it is used to track 

the influences of housing characteristics on energy consumption over time. The third 

measurement is also at the micro level, which is the average energy demand per capita in 

TAZs. It is very similar to the second measurement, but it is used to identify which socio-

economic groups benefit from energy savings or involve in increasing energy 

consumption over time.  

There are three main types of built-up urban forms in Mecklenburg County. The 

first is dense compact, which is located around the center of Charlotte and the area 

around it. The second is the low density built-up form, which is located in the suburbs. 

The third is the mixed land use built-up form, which is mainly located in the spheres of 

influences of each town in Mecklenburg County (section ‎2.3.1).  

5.2. The Neutral Scenario  

The aim of this scenario is to forecast energy consumption without applying any 

policy, or application. It uses the inputs from the CLUES simulator, where the annual 
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population growth rate of 2.7 percent according to the U.S. 2011 census, and simply 

extrapolated current trends through the 2037 horizon. The neutral scenario is used as a 

comparative reference for the assessment process for the designed scenarios. The HED 

model for the neutral scenario is shown as followed: 

 ln(E) = 11.202 + (incomeHH ∗ 0.002) + (Square Ft.HH∗ 0.077) +

(SingleFamdummy ∗ 0.562) + (Condodummy ∗ −0.277) + (HH01dummy ∗ −0.426) +

(HH0204dummy ∗ −0.125) + (SVF ∗ −0.505)     (21) 

 (HEDneutral)n = ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − L)  (22) 

Where: 

n = the annual population growth as rate of 2.7 percent, 

P = the annual growth ratio of crude oil price as a rate of 0.7 percent from 2008 to 

2020 and 1.4 percent from 2020 to 2035, 

G = the annual growth ratio of natural gas price in the residential sector as a rate 

of 0.7 percent from 2008 to 2020 and 1.4 percent from 2020 to 2035, 

L = the reduction energy ratio based on the tree coverage percentage as a rate of 3 

percent if the tree coverage is 10 percent of less and as a rate of 5 percent if the 

tree coverage is 10 to 25 percent of the land parcel area, 

α = price elasticity for the study area at North Carolina State level as rate of –0.31 

percent, which is given from the report of Bernstein and Griffin (2006).  

In the neutral scenario, total energy consumption per TAZ increases during the 

period 2008-2037 with an average annual rate of 1.52 percent. Most of the demand 

growth is concentrated the northern side of Mecklenburg County, specifically, Cornelius 

and Huntersville; there is also a concentration in Matthews and southern suburbs of 
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Charlotte as shown in Figure 37. The average household energy consumption equals 

52,543 KBtu in 2010, and it declines to reach 50,183 KBtu in 2035. As time goes on, 

forecasted household energy consumption notably decreases by an average annual rate of 

3.3 percent. Figure 38 demonstrates that northern areas have the highest reduction rate in 

household energy consumption in TAZs. The average forecasted energy consumption per 

capita is almost around 22,418 KBtu in 2010, and it declines to reach 20,183 KBtu in 

2035. It decreases by an annual rate of 3.1 percent. The reduction is mainly at the borders 

of the county in Davidson in the northeast, and can also be noticed in the far southwest of 

Charlotte and a few areas in Matthews as shown in Figure 39. 

 

 
Figure 37: Total forecasted energy demand in TAZs (the neutral scenario). 

 

 

 
Figure 38: Forecasted household energy consumption in TAZs (the neutral scenario). 
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Figure 39: Forecasted energy consumption per capita in TAZs (the neutral scenario). 

 

 

Even though total energy demand per TAZ increases over time, the two micro 

measurements indicate drops in energy demand per household and per capita levels. The 

declines are mainly concentrated in the northern and southern low-density suburbs. By 

looking at the changes in the population growth in Mecklenburg County from 2000 to 

2010, the highest population growth rate occurs in these suburbs, and it is higher than the 

average growth rate of Mecklenburg County as shown in Figure 40.  

 

 
Figure 40: Absolute population change in Mecklenburg County from 2000 to 2010. 

Source: Charlotte-Mecklenburg Planning Department (charmeck 2011). 
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In addition, high-income groups mainly live in these areas, where household 

square footage is higher than other areas in Mecklenburg County. Therefore, average 

energy demand per household and per capita over time reflects mainly the relative 

declines in the low-density suburbs. On the other hand, the population growth decreases 

in the central dense areas, and the growth rates in these areas are lower than the county 

average. 

 

Table 10: The parameterization of “What-if” policy scenarios. 

Scenario 

Parameterization  

Annual 

Population 

Growth Rate 

Energy Prices 

Projections 
Tree Plantation Regulations 

Target 

Social 

Groups 

Neutral Scenario  
2.70% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

All Social 

Groups 

Low Urban 

Development 

1.80% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

All Social 

Groups 

High Urban 

Development 

3.60% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

All Social 

Groups 

Energy Crisis 
2.70% in 

CLUES 

D.O.E. High Oil 

Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

All Social 

Groups 

Tree Coverage 
2.70% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Maximizing Tree Coverage to 

25% or more of the Property 

Area 

All Social 

Groups 

Limited CHP 
2.70% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

High-

income 

Groups 

Market-wide 

CHP 

2.70% in 

CLUES 

D.O.E. Reference 

Oil Prices Scenario 

Tree Coverage is 10% or less 

Tree Coverage is 10-25% 

All Social 

Groups 

 

 

The assessment procedures are performed for the following “What-if” scenarios; 

each policy has a unique parameterization as shown in Table 10. The assessment of the 

forecasts demonstrates energy savings or increasing in energy demand at multiple scales 

(TAZ, household, and capita) in relative percentage values to the neutral scenario.  

5.3. Urban Development Scenarios  

Urban development scenarios assess various population growth rates and their 

implications on the development in Mecklenburg County. The low urban development 
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scenario assumes a decrease in the population growth by an annual rate of 1.8 percent. 

Total energy consumption per TAZ slowly increases during the period 2008-2037 with 

average annual ratio equals to 1.72 percent. Most of energy savings are concentrated in 

the suburbs of Cornelius and Davidson in the northern part of the county, and the suburbs 

of Mint Hill and other southern suburbs of Charlotte as shown in Figure 41. The 

parameterization changes in the two HED models for urban scenarios are shown as 

followed: 

 (HEDLowDev)nlow
= ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − L) (23) 

 (HEDHighDev)nhigh
= ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − L) (24) 

Where: 

nlow = the annual population growth as rate of 1.8 percent, 

nhigh = the annual population growth as rate of 3.6 percent. 

The high urban development scenario examines what if the population growth 

increases more rapidly than projected, and it tracks the implications on the housing 

development and the economic growth in Mecklenburg County. Total forecasted energy 

demand in TAZs increases during the period 2008-2037 by an annual rate equal to 3.82 

percent countywide. The major observation is the distribution of energy savings is 

reversed, maximum energy savings are located in mixed uses built-up forms in the 

spheres of influence. On the other hand, the main increase in energy demand is traced in 

the suburbs that achieve highest savings in the previous low development scenario as 

shown in Figure 42.  

By observing the distribution of household type from 2000 to 2010 in 

Mecklenburg County, the highest growth of single-family units is located in northern and 



105 

 

southern suburbs as shown in Figure 43. This explains the forecasting results of the two 

scenarios at TAZ level in relation with the HED regression model, where single family is 

the most significant independent variable. In addition, high-income groups are mostly 

located in these suburbs; these social groups usually tend to live in single-family units. 

The low and high development scenarios tend to decline or increase the growth of high-

income groups in these suburbs, respectively. Moreover, the percentage of the tree 

coverage declines more in the high development, which leads to increase in the carbon 

footprint larger than in the low development scenario. 

      

 
Figure 41: Total forecasted energy demand in TAZs (low urban development). 

 

 

 
Figure 42: Total forecasted energy demand in TAZs (high urban development). 
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Figure 43: Approved residential units by Planning Department from 2000 to 2010. 

Source: Charlotte-Mecklenburg Planning Department (charmeck 2011). 

 

 

The previous measurement examines the policy implications at the TAZ macro 

level. To provide a comprehensive assessment for the decision makers, two micro 

measurements are used to assess the consequences at the household and capita levels, 

respectively.  

The most interesting observation in Figure 44 and Figure 45 is that the spatial 

patterns in low development demonstrate larger average household energy demand than 

the high development scenario over time. In both scenarios, most of the increase in 

household energy demand is found in the northern suburbs of Cornelius and Davidson, 

and the suburbs of Mint Hill and other southern suburbs of Charlotte. Another major 

observation is that mixed-use built-up forms achieve maximum household energy 

savings, specifically at the spheres of the influences along road I-485. Households in the 

central compact form achieve the second highest energy savings over time in both urban 

scenarios.  

By monitoring the changes in the population growth from 2000 to 2010, the 

highest growth rate occurs in the northern and the southern suburbs, and it decreases in 
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the mixed uses and the central compact areas. Therefore, average household size 

relatively decreases in the low development, while it increases in the high development 

scenario. In the HED regression model, the two independent variables of household size 

are negatively significant with energy consumption. 

 

 
Figure 44: Forecasted household energy consumption in TAZs (low urban development). 

 

 

 
Figure 45: Forecasted household energy consumption in TAZs (high urban development). 

 

 

The spatial patterns of average energy demand per capita are almost similar to 

energy consumption patterns at the household level for both urban scenarios as shown in 

Figure 46 and Figure 47. As time goes on, the largest energy savings occur in the 

population groups who live in mixed-use areas in the spheres of the influences along road 
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I-485. The new development in Mecklenburg is planned to be located in the spheres of 

influences, mainly, the west side of road I-485; therefore, the new households consume 

less energy than old buildings. In addition, social groups that live in the central compact 

areas gain the second savings in energy demand at capita level in both urban scenarios. 

 

 
Figure 46: Forecasted energy consumption per capita in TAZs (low urban development). 

 

 

 
Figure 47: Forecasted energy consumption per capita in TAZs (high urban development). 

 

 

The overall assessment for both urban scenarios indicates that the spatial patterns 

of the three measurements of energy consumption demonstrate distinct savings along the 

southern corridor of highway 77, the southern areas adjacent to corridor I-485 road, and 

in the east section of highway 85. As time continues, there is a high concentration of 
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energy savings in the mixed uses built-up forms adjacent to the western side of corridor I-

485. The suburbs in Cornelius and Davidson and the southern areas of Charlotte are 

subjected to the high increasing in energy demand over time; mainly because of these 

areas have the highest concentration of high-income groups and single-family units 

countywide. The high-density areas around the center of Charlotte experience a slightly 

consistent energy savings at the micro level. 

5.4. Energy Trend Scenario 

The purpose of this scenario is to observe the impacts of a global crisis in world 

oil prices, which increase residential energy prices in Mecklenburg County by 30 percent. 

Total energy consumption in TAZs increases by 2.53 percent annually.  

The primary observation is that maximum energy savings at TAZ level are 

concentrated in the mixed-use urban forms and the high-density central areas as shown in 

Figure 48. On the other hand, the northern suburbs of Cornelius and Davidson, and the 

southern suburbs of Mint Hill and Matthews experience an increase in energy demand 

over time. The parameterization changes in the HED model for energy scenario are 

formulated as followed: 

 (HEDEnergy)n = ln(E) ∗ (1 − Phighα) ∗ (1 − Ghighα) ∗ (1 − L) (25) 

Where: 

n = the annual population growth as rate of 2.7 percent, 

Phigh = the annual growth ratio of crude oil price as a rate of 5.7 percent from 2008 

to 2020 and 1.4 percent from 2020 to 2035, 

Ghigh = the annual growth ratio of natural gas price in the residential sector as a 

rate of 5.7 percent from 2008 to 2020 and 1.4 percent from 2020 to 2035, 



110 

 

α = price elasticity for the study area at North Carolina State level as rate of –0.31 

percent, which is given from the report of Bernstein and Griffin (2006).  

 

 
Figure 48: Total forecasted energy demand in TAZs (energy crisis trend). 

 

 

The spatial distribution of forecasted energy consumption at household and capita 

levels demonstrates similar energy savings in the mixed-use and the central areas as 

shown in Figure 49 and Figure 50. The suburbs in the north and the south reveal a slight 

increasing in household energy demand compared with the forecasts at the TAZ level. 

The overall assessment for the spatial distribution of energy trend scenario 

through the three measurements demonstrates distinct a high concentration of energy 

savings along the mixed uses built-up areas adjacent to corridor I-485 road, and the 

central areas. As time progresses, the northern and the southern suburbs experience a 

consistent energy increasing at the macro and the micro levels. On the other hands, the 

areas in the spheres of influences and the areas around the center of Charlotte experience 

a consistent energy savings at all scales. By overlaying the forecasts with the income 

profile for Mecklenburg County, it reveals that low and middle-income groups are more 

sensitive to energy prices than high-income groups as shown in Figure 51. 
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Figure 49: Forecasted household energy consumption in TAZs (energy crisis trend). 

 

 

 
Figure 50: Forecasted energy consumption per capita in TAZs (energy crisis trend). 

 

 

 
Figure 51: Mecklenburg income per capita by census tracts in 2008. 

Source: Charlotte-Mecklenburg Planning Department (charmeck 2011). 
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5.5. Environmental Scenario 

The environmental scenario applies one of passive energy policies to assess the 

influences of maximizing the tree coverage in the property lands on energy consumption 

and conservation, specifically the newly developed parcels.  

Total forecasted energy consumption in TAZs moderately increases by average 

annual rate equals 2.43 percent. The spatial patterns present significant energy savings in 

the mixed uses around road I-485 road and its intersection with highway 77 as shown in 

Figure 52. On the other hand, there is a remarkable increasing in energy demand at the 

suburbs, while the central high-density areas demonstrate a marginal increasing. The 

parameterization changes in the HED model for environmental scenario are formulated as 

followed:  

 (HEDenvi)n = ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − LmaxTree) (26) 

Where: 

n = the annual population growth as rate of 2.7 percent, 

LmaxTree = the reduction energy ratio based on the tree coverage percentage as a 

rate of 8 percent if the tree coverage is 25 percent or more of the land parcel area.  

 

 
Figure 52: Total forecasted energy demand in TAZs (maximize tree coverage). 
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The spatial distribution of forecasted energy demand at the household and capita 

levels demonstrates similar energy savings in the mixed uses areas as shown in Figure 53 

and Figure 54. Energy savings are observed in the mixed-use areas along the western 

section of road I-485. On the other hand, the suburbs experience a slight increasing in 

energy demand. The results reflect the new development that occurs in the spheres of 

influences. The new developed areas have high percentage of the tree coverage and high 

vacancy rates, while expanding new households in the existing suburbs involve in 

decreasing the tree coverage, which raises carbon footprint causing more energy demand. 

 

 
Figure 53: Forecasted household energy consumption in TAZs (maximize tree coverage). 

 

 

 
Figure 54: Forecasted energy consumption per capita in TAZs (maximize tree coverage). 
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The overall assessment of maximizing tree coverage scenario reveals linear 

spatial pattern of energy savings around the western section of road I-485 road and its 

intersection with highway 77. As the time progresses, the central compact areas 

experience a marginal increasing in energy demand, and the northern and the southern 

suburbs experience a consistent energy increasing at the macro and the micro levels. The 

assessment reflects the differences between housing expansions in the new versus the 

existing areas. Middle-income groups who live in mixed uses areas social receive the 

highest savings in energy demand at micro levels.  

5.6. Green Technologies Scenarios 

Green technologies scenarios assess the contribution of the two CHP applications 

as mentioned in section ‎4.3.4. Limited CHP scenario only targets high-income groups, 

and market-wide CHP scenario covers the whole county. Both scenarios will be presented 

simultaneously. Total forecasted energy consumption increases by annual rate of 2.7 

percent for limited case, and increases by rate of 2.1 percent for the market-wide case. 

Most of energy savings at TAZ level is concentrated in the mixed used areas around the 

western section of road I-485, and in the dense compact central areas as shown in Figure 

55 and Figure 56. Both scenarios expose an increasing in energy consumption in low-

density areas. They reveal similar spatial patterns in the suburbs at TAZ level. Other two 

measurements could reveal more findings. 

 (HEDlimitedCHP)n = ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − L) ∗ (1 −

CHPincome<57516)         (27) 

 (HEDmarketCHP)n = ln(E) ∗ (1 − Pα) ∗ (1 − Gα) ∗ (1 − L) ∗ (1 −

CHPallincome
)          (28) 
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Where: 

n = the annual population growth as rate of 2.7 percent, 

CHPincome<57516 = the utilization saving factor for green energy technology as a rate 

of 10 percent for high-income groups with annual income 57516$ or more, 

CHPallincome = the utilization saving factor for green energy technology as a rate of 

10 percent for all income groups starting from 2018 to 2037. 

     

 
Figure 55: Total forecasted energy demand in TAZs (limited CHP). 

 

 

 
Figure 56: Total forecasted energy demand in TAZs (market-wide CHP). 

 

 

The spatial distribution of household energy consumption in the limited CHP 

scenario only reveals minor energy savings in the suburbs of Cornelius and Davidson in 
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the northern part of the county, and the suburbs of Mint Hill and other southern suburbs 

of Charlotte as shown in Figure 57. The forecasts of the limited CHP scenario at 

household are driven by the income profile of Mecklenburg County, high-income areas 

experience maximum energy savings in this scenario. On the other hand, the market-wide 

CHP scenario presents better energy savings at household level and most of the savings 

are distributed in the mixed used and the central compact areas as shown in Figure 58.  

 

 
Figure 57: Forecasted household energy consumption in TAZs (limited CHP). 

 

 

 
Figure 58: Forecasted household energy consumption in TAZs (market-wide CHP). 

 

 

In the limited CHP scenario, forecasted energy consumption per capita reveals 

marginal energy savings that are concentrated in the northern and the southern suburbs as 
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shown in Figure 59. The market-wide scenario demonstrates distinguishing energy 

savings that occur countywide, mainly in the mixed used along the western section of 

road I-485 and the central compact areas as shown in Figure 60.  

 

 
Figure 59: Forecasted energy consumption per capita in TAZs (limited CHP). 

 

 

 
Figure 60: Forecasted energy consumption per capita in TAZs (market-wide CHP). 

 

 

The overall assessment of the limited CHP scenario displays no distinctive spatial 

pattern that is affected by the application of the green technology. As time progresses, 

minor energy savings occur in high-income areas that are concentrated in the northern 

and the southern suburbs. On the other hand, there is a significant energy savings in the 

market-wide CHP scenario; the overall spatial distribution shows that most of TAZs 
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benefit from the application of CHP countywide. As time progresses, a consistent saving 

in energy consumption happens at all levels the mixed uses areas in the spheres of 

influences, specifically around the western section of road I-485 road and its intersection 

with highway 77. In addition, energy savings are observed around the central areas. The 

forecast results for the market-wide CHP scenario support the planning guidelines, as it is 

recommended to install the CHP units in the mixed uses and the dense compact built-up 

forms to achieve maximum energy efficiency (see section ‎3.3.1.1). In general, High-

income groups gain the highest savings in energy demand at micro levels because they 

can afford the prices of the new green technologies.  

The assessment process for all designed policy scenarios covers the economic and 

the environmental of sustainable energy concept at multiple scales over time. However, it 

is important to examine the social dimension to provide a comprehensive multi-

dimensional assessment for the decision makers.  

5.7. Energy Poverty  

The research’s fifth objective assesses the implications of the proposed scenarios 

on social equity in energy expenditures for predefined social groups. Energy poverty is a 

known indicator, which refers to the percentage of people in low-income groups that pay 

10 percent or more of their income for energy expenditures. The assessment tracks the 

poverty in three steps; first, it presents energy poverty in the neutral scenario. The Second 

step tracks the impacts of the first three designed scenarios on social equity. The third 

step presents energy poverty for the last three designed scenarios, which apply 

sustainable energy policies. Energy poverty is classified into two groups, poor (10-15%), 

and very poor (15% or more) of the income is paid for energy expenditures. In addition, 
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the assessment addresses the enhancement of the service quality, it determines whether 

each policy scenario involves in decreasing or increasing energy poverty over time. 

The spatial distribution of energy poverty in the neutral scenario demonstrates a 

concentration pattern in the central areas around the center of Charlotte. Few TAZs are 

distributed in the northern suburbs of Davidson and Huntersville, and the southern 

suburbs of Charlotte as shown in Figure 61.  

 

 
Figure 61: Energy poverty in low-income groups in TAZs (the neutral scenario). 

 

 

 
Figure 62: Poverty rates for Mecklenburg County from 2005 to 2009. 

Source: Charlotte-Mecklenburg Planning Department (charmeck 2011). 
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By observing the poverty profile for Mecklenburg County from 2005 to 2009, the 

spatial distribution of energy poverty is very similar to the poverty rates in the county. 

However, it is surprising that some of high-income TAZs experience energy poverty 

problem as shown in Figure 62. The few errors that are found in address locations in the 

property records affect the quality of energy poverty forecasts in the neutral scenario, and 

it is expected that the same error will occur in the other scenarios. 

Figure 63, Figure 64, and Figure 65 present a comparison between the spatial 

distributions of energy poverty in the first three designed scenarios. The low urban 

development policy causes more poverty among low-income groups, mainly in the 

central areas.  

By contrast, energy poverty marginally declines when high development policy is 

applied. This difference between the two urban scenarios reflects the capita share of 

energy expenses per household, which it decreases in low urban development and low-

income groups spend more in utilities expenditure. On the contrary, the capita share per 

household increases in high urban development, which splits energy expenses between 

more customers. 

 

 
Figure 63: Energy poverty in low-income groups in TAZs (low urban development). 
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Figure 64: Energy poverty in low-income groups in TAZs (high urban development). 

 

 

In the case of global energy crisis, the spatial patterns demonstrate a distinct 

increasing in energy poverty over time. The results of energy scenario reveal that low-

income groups are more sensitive to price elasticity than middle and high-income classes. 

It is remarkable that the same error appears in the high-income suburbs in the urban and 

energy scenarios as shown in Figure 65.  

 

 
Figure 65: Energy poverty in low-income groups in TAZs (energy crisis trend). 

 

 

Sustainable energy polices contribute to in subsidizing some of the expenditures 

through energy savings and enhancing the quality of the service as well. Table 11 presents 

the contribution of the three green policy scenarios. Both tree coverage and market-wide 
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CHP scenarios reduce average energy poverty by almost 25 percent. On the other hand, 

the limited CHP scenario has no distinctive improvement in energy poverty, even though 

it is involved in energy savings countywide, this result is expected since the limited CHP 

scenario only focuses on high-income groups.  

 

Table 11: The changes over time in the average of energy poverty (2010 – 2035). 

  
Maximize tree 

coverage 
Limited CHP Market-wide CHP 

2010 9.59% 9.97% 9.97% 

2035 8.34% 9.97% 8.69% 

Improvement percentage 25% 0 28% 

 

 

 
Figure 66: Energy poverty in low-income groups in TAZs (maximize tree coverage). 

 

 

 
Figure 67: Energy poverty in low-income groups in TAZs (market-wide CHP). 
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The spatial patterns of energy poverty in the tree coverage scenario reveal  

distinctive declines over time as shown in Figure 66. The highest drop in energy poverty 

values is located in the spheres of influences along road I-485. The high percentage of 

plantation coverage per parcel in these areas not only involves in energy savings but also 

in decreasing the poverty. 

The distribution of energy poverty in the market-wide CHP scenario demonstrates 

significant reduction over time as shown in Figure 67. The compact central and mixed 

uses areas experience the maximum drops in energy poverty, respectively. The major 

concentration of low-income groups is around the compact central areas. 

Both green policies scenarios decrease energy poverty and enhance the quality of 

the service. Maximizing tree coverage policy is more effective in mixed uses built-up 

forms. On the other hand, the CHP application decreases energy poverty more efficiently 

in the dense central areas, where the tree coverage is the lowest value in Mecklenburg 

County. The limited CHP scenario only targets high-income groups; hence, it reveals 

same distribution as the neutral scenario, it has no effects on energy poverty. 

5.8. Summary of the Findings 

 From 2008-2015, the growth of total energy demand is slow and the slope is 

almost horizontal in all scenarios. After 2015, the growth trend is increased 

faster as presented in Figure 68. 

 The energy scenario yields the most significant reduction in the future demand 

from the economic point of view. However, it increases energy poverty over 

time and it demonstrates the highest negative impacts from a social 

perspective. 
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Figure 68: The forecasts of energy demand trends in all scenarios (2008-2037).  

 

 

 The low development scenario yields lower total energy consumption than the 

high development scenario. On the other hand, the high development scenario 

yields better energy savings at micro (household, and capita) levels.  

 The scenario of tree coverage maximization yields favorable energy savings at 

the county, household, and capita levels. However, the effectiveness of 

applying any passive energy policy, such as tree coverage, is more relevant to 

new developed lands than to existing developments. 

 From 2008-2015, the scenario of limited CHP application, which targets high-

income groups, yields minor overall energy savings. From 2020-2035, it is 

clear that energy consumption slightly drops. 

 The market-wide CHP application scenario yields the most significant energy 

efficiency in the multi-dimensional assessment among all scenarios. From 

2008-2015, energy consumption slowly drops. From 2020-2035, a clear 

decline in energy consumption is anticipated. 

 The highest concentration of energy savings in all scenarios is located in 

mixed-use built-up forms, which is located in the spheres of the influences in 
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Mecklenburg County. Mixed-use built-up forms achieve the best energy 

efficiency compared to the dense compact and suburban built forms. 

 Both passive energy (tree coverage) and CHP application scenarios reduce 

energy poverty and improve the service quality for low-income groups. 

However, passive energy policies are more efficient in areas with high 

percentage of vegetation cover. On the other hand, the CHP technologies 

achieve the highest efficiency in mixed-use and compact urban forms. 

Combining both methods will introduce new comprehensive policy, which 

might lead to more improvements in energy savings and social equity. 

 The sky view factor is negatively significant with energy consumption. The 

residential areas with higher values of sky view factor are concentrated in 

suburbs, where there is low density and the common housing type is single-

family unit. The sky view factor yields marginal influences in energy savings, 

specifically in mixed uses areas where the new development occurs. New 

developed areas are more adaptable than the existing areas to green energy 

installations (passive solutions and technologies applications).  

 As the forecasting time goes on until 2035, housing characteristics (the 

housing unit square footage and household type) and the spatial variable (the 

sky view factor) are more significant with urban policies driven scenarios. On 

the other hand, socio-economic variables (household income and household 

size) are more significant with market economy driven scenarios (energy 

crisis in oil price, and the price of green technologies applications).  

 High-income groups can afford the new green applications, and they will not 
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be affected by the increase in energy prices as low and middle-income groups. 

On the other hand, low-income classes are the most sensitive social group to 

any increasing in the prices in energy market. 

 

 



 

 

CHAPTER 6: CONCLUSIONS  

 

 

This research opened with a general question: what are the influences of urban 

form on residential energy demand? The dissertation addressed a topic, which contains 

many potential conflicts between economic, environmental, and social aspects. It adopted 

a comprehensive methodology to examine the contributions of spatial characteristics and 

socio-economic factors on residential energy consumption.  

The research formulated five objectives; each objective was assorted with a group 

of questions. The first group of questions investigated the system architecture that  could 

efficiently articulate factors, forecasting methods, and assessment tools to develop a 

comprehensive spatial planning support system (PSS). The second group of questions 

inquired which suitable data models could accommodate various spatial and temporal 

resolutions for the developed PSS. The third group dealt with how to quantify the 

magnitude of various spatial, socio-economic, and condition factors, which affect 

residential energy consumption. The fourth group of questions asked a series of what-if 

scenarios to explore how various policies could affect forecasted energy consumption at 

various micro and macro levels. The final group raised the question on whether the 

anticipated policy scenarios caused uneven equity across the socio-economic population 

groups as far as energy consumption is concerned.  

To address these questions, the main methodology was to develop a spatial 

support system, which is integrated with a process-based simulation model of land use 
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and transportation. The first predominant objective of this dissertation was to develop an 

integrated spatial planning support system to forecast household energy consumption. 

While prior studies have looked at the influence of urban form, this has seldom been done 

in an integrated fashion as in this dissertation. A challenge was identify the suitable 

analytical approaches to build the integrated framework model, which combines the 

capabilities of forecasting methods, sustainable development concept, and the strengths 

of empirical energy demand models. 

The dissertation fulfilled the first objective and its questions by combining one of 

sustainable development framework concepts with an energy forecasting approach 

(hybrid approach). The aim of adopting a sustainable energy concept was to balance the 

conflicts between economic, environmental, and social equity to ensure the livability of 

urban communities in the forecasted scenarios. In addition, it provides assessment 

capabilities over time for the integrated PSS. 

The integrated developed PSS covered various conflicting dimensions in energy 

demand forecasting, the economic, the environmental, and the social equity. This 

dissertation adopted the framework concept of the livability/sustainability prism. The 

concept extended the capabilities of the developed PSS to assess the conflicts between 

the applied policies in energy forecasts, mainly to assess the social equity of energy 

poverty. Empirical studies of urban forms and energy consumption typically rely less on 

the influences of the spatial characteristics within an urban context. This dissertation 

applied two spatial drivers on household energy consumption, the sky view factor, and 

urban horizon angle.  

The second main objective was to develop an empirical operational model for use 
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in the energy module. To accomplish this objective and its questions, the dissertation 

integrated a scenario builder interface, Charlotte Land Use and Economic Simulator 

(CLUES), and the developed empirical energy demand module (eCLUES). The CLUES 

simulator provided the developed energy module with the socio-economic and housing 

characteristics parameters. The energy module applied a regression model that consists of 

three broad sets of predictors, namely the socio-economic, urban geometry, and condition 

predictors. The CLUES simulator and the energy module were built using python 

language, which is an open source scripting language. However, the full integration 

between the eCLUES module and the CLUES simulator could not be established, which 

affected the quality of some of the energy forecasts. 

Data on Mecklenburg County household energy consumption could not be 

secured to build the housing-energy demand (HED) model. A combined sample was 

created using the property records dataset of Mecklenburg County and the Residential 

Energy Consumption Survey (RECS) dataset.  

The coefficient of determination, the variance inflation factor, and t-value 

significance tests were performed to check that the conditions of the model were met and 

statistically accepted. The regression t-value test for the combined sample demonstrated 

negative significant relationship between the spatial SVF variable with energy 

consumption, which was consistent with the literature findings. Both spatial variables 

SVS and UHA were highly and negatively correlated, therefore, the UHA spatial variable 

was omitted from the regression model. Other socio-economic variables revealed strong 

significance with household energy consumption.  

The HED model did not show any sign of multicollinearity, however a 



130 

 

heteroskedasticity problem was presented in the HED model, which could bias the 

forecasting outputs. To restore homoscedasticity, a natural log was applied to transform 

the values of energy consumption. 

The standardized beta coefficients test was carried out to identify which of the 

independent variables have a greater effect on the dependent variable. The dummy 

variable of single-family unit has the greatest relative effect on household energy 

consumption. Both of the dummy variable of household with one occupant and the square 

footage of the residential unit have the second highest effect on the consumption, 

respectively. This result indicates that housing characteristics have the greatest effect on 

the trends of household energy consumption. On the other hand, the sky view factor has 

the lowest relative effect on the consumption. Unpredictably, household income has the 

second lowest effect. In the literature, some studies reported that the relationship between 

energy consumption and household income is an inverted-U shape relationship not a linear 

in some cases, which may explain the low beta coefficient value for household income 

(Foster et al. 2000; Eraso 2010).  

The other three objectives assessed the impacts of urban geometry and socio-

economic factors on the spatial, non-spatial, and social-equity patterns of household 

energy consumption, respectively. The third and fourth objectives and their related 

questions were fulfilled by applying a comprehensive multi-dimensional assessment for 

various policy scenarios, respectively. 

The dissertation predicted various scenarios of household energy consumption in 

Mecklenburg County during the period of 2008-2037. A comprehensive assessment was 

applied for four main scenarios, urban development policies, energy market trends, 
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environmental policies, and green technology applications. It was found that the spatial 

variables were more significant with urban policies driven scenarios. On the other hand, 

socio-economic variables were more sensitive to market economy driven scenarios. 

The fifth objective and its related question were answered by adopting a social 

equity indicator, which is energy poverty. The fifth objective revealed that even though 

the energy policy scenario achieved the highest energy savings from the economic 

viewpoint, it increased energy poverty over time. On the other hand, green policy 

scenarios were the most efficient scenarios in decreasing energy poverty over time in the 

study area. However, the spatial distribution of some areas reveals unexpected results. 

The property records dataset had some errors in the reported address locations for some 

observations. The dissertation could not solve this problem, which affected the quality 

forecasting outputs and the assessment process. 

One major finding in this dissertation is that any decline in total energy 

consumption at macro (national, regional, etc.) scale can create positive or negative 

effects at micro level. These impacts must be assessed at multiple dimensions 

comprehensively to determine if the quality of energy service is improved or decreased.  

6.1. Limitations of the Study and Future Work 

One of the main objectives of this dissertation was to develop an integrated 

planning support system to forecast household energy consumption scenarios; it was not 

intended to decide which scenario is the most efficient among other scenarios. A second 

limitation is that the study is constrained to a single case study of Mecklenburg County. 

Moreover, there is a need for the model calibration process to extend the usage of the 

developed energy demand model on different case studies. It is important to mention that 
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this dissertation addressed residential energy from the demand side only; it did not cover 

the whole concept of demand/supply equilibrium.  

One major aim in this dissertation was to build an open source extension model. 

The eCLUES energy extension is developed under Arcpython language. The basic python 

script is open source, on the other hand; the sophisticated GIS functions in Arcpython, 

such as reading the geodatabase and creating automated thematic maps, are based on 

ArcGIS, which is a commercial GIS software package.  

For instance, the developed eCLUES toolbox under ArcGIS provides an easy 

visual interface for any user; otherwise, the user must type the command lines using the 

basic python, which requires more programing skills. In addition, the built-in functions in 

Arcpython save a lot of computing time instead if they are only developed using the 

available functions in the basic python. Another example, there is no equivalent python 

package yet to be developed that creates automated thematic maps other than Arcpython 

under ArcGIS.  

One major limitation was the lack of available data on household energy 

consumption to build a real sample for the case study. A combined sample was created 

based on matching the property records of the study area with the RECS dataset from the 

U.S. department of energy. A real local sample would improve the regression outputs and 

other measurements. 

Another limitation is that the feedback loop between the CLUES simulator and 

the eCLUES energy extension could not be fully integrated because the output formats of 

the CLUES model have unique file extension. The conversion of the CLUES output 

formats to database file extension could not be automated; it was done interactively 
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before running the eCLUES extension. Moreover, this shortcoming caused no account for 

the effect of energy price on transportation in the CLUES simulator to feedback the 

eCLUES energy module. In addition, the developed system was not integrated in the last 

step of creating the thematic maps. It did not provide predefined legends for the produced 

maps, and the desired map legend was done interactively.  

The proposed future development for this study is to transform the integrated PSS 

into an integrated decision support system (DSS), which will provide an on-screen and an 

interactive comparison between the scenarios through various options, such as the 

thematic maps, and spatial and non-spatial statistics. Moreover, the DSS will be emerged 

into a web-based application; hence, any user may provide the data and the inputs of the 

variables to generate the forecasts of residential energy consumption.  

The eCLUES module will be extended to cover other land uses (commercial, and 

industrial). Last but not least, future work will move towards complete open source to 

avoid the association of the eCLUES usage with the commercial GIS software.  
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APPENDIX A: GLOSSARY OF TERMS  

 

 

Combined Heat and Power (CHP): A generator unit is designed to produce both 

electricity and heating energy by using the residual heat from one heat source.  

Energy Poverty: A factor is used to estimate the percentage of low-income 

customers that pay 10 percent or more of their income for energy expenditures to the total 

population of the area under consideration. 

HED: An abbreviation refers to Housing-Energy Demand.  

Residential Energy Expenditure: The amount of money spent for energy usage in 

a housing unit during a given period (e.g., month). 

The Sky View Factor (SVF): A ratio is used to calculate the received solar 

radiation (or emitted) for a proportion of the elevation of an urban surface (e.g., 

residential building) under consideration. The ratio is ranged between zero (no exposure 

to solar radiation) to one (fully exposed to solar radiation) (Watson and Johnson 1987). 

Urban Horizon Angle (UHA): The observed average elevation of an urban surface 

(e.g., residential building) that falls in the shades. The area is calculated from the center 

of the considered surface’s façade (Baker and Steemers 2000).  

Urban Geometry: A term refers to the spatial characteristics that shape urban 

fabric, such as building heights, width, size, mass orientation, road widths etc. 
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