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ABSTRACT

SUBHRA PAUL. Three-dimensional steady state and transient eddy current modeling
(Under the direction of Dr. JONATHAN BIRD)

Maglev transportation using electrodynamic wheels is a promising new technology
aimed at providing a low cost, high-speed and environmental friendly mode of
transportation. In this technology, Halbach permanent magnet rotors, termed
electrodynamic wheels, are simultaneously rotated and translationally moved above a
conductive non-magnetic guideway. The time-changing magnetic field created in the
airgap between the rotors and guideway induces eddy currents in the guideway which in
turn interact with the magnetic rotor field to produce suspension and propulsion or
braking forces which are required for maglev transportation. This technology offers an
integrated suspension and propulsion system.

In this dissertation the eddy current distribution in the conductive guideway has been
modeled in three-dimension. An approach for the computation of the static magnetic
fields due to the Halbach rotor has been presented using novel magnetic charge sheet
concept. Finite element models have been developed to study the steady state and
transient eddy current field distribution. Three analytic models have been developed to
compute the electromagnetic forces and torque acting on the rotor as well as joule loss in
the guideway. The models include the heave, translational and rotational motion of the
magnetic rotor for dynamic simulation. The developed analytic and finite element models
are highly generic and thus can be applied to any magnetic source. The developed finite
element models have been validated by comparing it with commercial finite element

software and previously developed boundary coupled steady state finite element model.
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Commercial finite element software and two experimental setups have been used to
verify the developed analytic models. Computational efficiency of the presented models
has been compared with the previously developed finite element model and commercial

software. Good performance of the developed models has been achieved.
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CHAPTER 1 : INTRODUCTION AND REVIEW

1.1. Introduction

With a projected population growth of 48 million in the US by 2030 [1, 2], there is an
increasing need for a quick, economic, energy efficient and environmental friendly urban
and intercity transportation system [3]. At this hour of civilization with growing world
pollution and diminishing natural resources, such as oil, it would be wise to investigate
alternative modes of transportation. The Automobile industry is investing heavily in
electric and hybrid cars [4-8]. However, the price of the vehicles may discourage the
majority of the population from using them. In addition, studies have revealed that
building new roads or expanding existing ones to relieve traffic congestion may turn out
to be futile exercise as building new roads simply spurs additional traffic [9-11]. Traffic
often is said to behave more like a gas than a liquid - it expands to fill the available space
[12]. Hence, expanding highways is unlikely to meet the growing demand of quick urban
transportation. With flights not being suitable for daily mode of intercity transportation
for cost and saturation of routing, the only remaining alternatives are high-speed trains.

In the 21" century magnetic levitation (maglev) stand out as an outstanding
technology for high-speed trains. Before discussing its advantages and drawbacks, it
would be helpful to have a brief understanding of maglev technology. Section 1.2
provides a brief literature review of the existing maglev technologies to identify the

advantages and disvantages of such technologies which are summarized in section 1.3.
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The Electrodynamic Wheel (EDW) concept is discussed in Section 1.4 and its

performance is compared with other existing technologies in section 1.5. The recent work
on the EDW technology and the motivation behind this research work is outlined in
section 1.6 which is followed by the research goals and dissertation format in section 1.7
and 1.8 respectively.
1.2. Maglev- How It Works

As the name suggests, the train is suspended above and propelling along the
guideway using magnetic fields. An excellent literature review of different suspension
and propulsion technologies of maglevs is already present in [13-16]. So here repetition
will be avoided. Only the basic operating principle of a maglev train will be discussed in
this section with a purpose of familiarizing the reader with the technology.

1.2.1. Suspension or Levitation System

The levitation system can be broadly categorized into two types depending on the
mechanism used. In the first type, electromagnetic repulsion force between the vehicle
and guideway is used to lift the vehicle and this is called Electrodynamic Suspension
(EDS) [17-22] system. The second type utilizes electromagnetic attraction force between
the vehicle and guideway for levitation and termed as Electromagnetic Suspension
(EMS) [15-17, 19, 22-26] system. There are varieties of ways to achieve this force of
attraction or repulsion between the stationary guideway and moving vehicle as discussed
next.

1.2.1.1. Electrodynamic Suspension System

In the simplest design, permanent magnets (PM) of high coercive material, such as
barium-ferrite, are placed along each side of the vehicle and guideway as shown in Figure

1.1. The repulsion force between the set of magnets provide levitation and guidance force
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[18, 24, 27]. One of the advantages of using ferrite PM is that there are no induced eddy

currents. Thus the problems with drag force due to such currents do not arise and also
high lift force can be achieved with this design [15]. However, the main demerit of this
approach is its inherent instability which can be noted from Earnshaw’s theorem [15, 16,
28]. Active control is required to create stability in this design. In addition, the cost of the
permanent magnet guideway is too much for practical, long distance transport systems

[19].

Vehicle
Opposing
PM pairs

Guideway

Figure 1.1. Magnetic suspension based on the repulsive force between magnets on a vehicle and
guideway [19].

In the second approach, proposed by Danby and Powell in 1966 [29, 30],
superconductive (SC) coils are mounted on the vehicle which moves over a simple
conductive sheet guideway as shown in Figure 1.2. As the vehicle moves, a time
changing magnetic field, due to the SC coils, induces current in the guideway which
repels the vehicle according to Lenz’s law. The drawback of this approach is the induced
currents in the guideway produce power loss in the guideway and large drag force on the

vehicle.



SC loop on

vehicle
/ Repulsion
} T force on
I SC loop
+

 CEECTT ettt ﬂ,\ Conductive
Induced/ I I sheet guideway
guideway

«—»
current \ /

Image SC loop

Figure 1.2. Magnetic suspension based on the repulsive force between superconductive coils on vehicle
and simple conductive guideway [19].

In order to reduce the power loss and drag force on the vehicle, Danby and Powell
proposed to have simple conductor loops on the guideway instead of a conductive sheet

[31] as shown in Figure 1.3.

SC loop on
vehicle Repulsion
T force on
S SC loop
I I Guideway

Induced current | (J*————%[) 4

in multi-turn Vv

guideway loop
Figure 1.3. Magnetic suspension based on the repulsive force between superconductive coils on vehicle
and conductor loops on guideway [19].

To reduce the power loss and drag force further, Danby and Powell proposed a null
flux suspension guideway topology [32, 33]. There are many geometric forms of null flux
loops. But they have the same feature. The null flux loops are wound on the guideway in
such a way that when the vehicle is in an equilibrium position, the net magnetic flux
through the loop is zero which makes the induced current zero [32, 34]. As a result,
induced current in the null flux loop is much smaller than conductive sheet guideway or
simple conductor loops on the guideway. This greatly reduces the power loss and drag
force. One such null flux loop is the “Figure of 8 loop” as shown in Figure 1.4. The loops

#1 and #2 are connected in opposite direction and coupled to form a complete circuit
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[19]. When the SC coil is moved from its equilibrium position, the induced current in the
loop pushes the SC coil towards the equilibrium. When mounted on the vertical side of
the guideway, it provides vertical restoring force to the SC coil. When it is mounted on
the horizontal surface of the guideway, as shown in Figure 1.4 (b), it provides lateral

restoring force.

) SC loop of
1 Gravity l vehicl;e
O
Vertical side of 01 SC loop of
Guideway ‘ 02 vehicle '
—
1 [o) 1 Q0 2 02
Horizontal surface of
o guideway
2 (a) (b)

Figure 1.4. Magnetic suspension based on the repulsive force between superconductive coils on vehicle
and “Figure of 8 loop” on the vertical side of the guideway [19]. (a) Vertical “Figure of 8 loop” for
vertical stability and (b) horizontal “Figure of 8 loop” for lateral stability.

The null flux loop is used for levitation as well as for providing vertical stability for
the Japanese high speed maglev JR MLX 01 as shown in Figure 1.5.

Cross section of
maglev vehicle

?{MM‘%««MW s, Top half of
i . | w#aluminum figure- 8
§ Supercoilductmg - o loop
magnet loops on %% ‘

Aluminum dipole
loop (left)

weee. Aluminum dipole

s

o= yehicle e,

loop (right)

* Bottom half of
aluminum figure- 8
U-shaped reinforced concrete guideway loop
Figure 1.5. Null flux suspension system using “Figure of 8 loop” on guideway used in JR MLX 01[35].
1.2.1.2. Electromagnetic Suspension System

An electromagnetic suspension system (EMS) was first proposed by Graeminger in
1912 [36]. Electromagnetic suspension employs electromagnets on the underside of the
vehicle and ferromagnetic material such as iron plates on the guideway as shown in

Figure 1.6. The vehicle is suspended due to the attraction force between the
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electromagnet and iron plates [15, 17-19]. In Figure 1.6, the arrows show the direction of
the attraction force between iron plate and electromagnets. Unlike EDS, EMS suspension
is inherently unstable because as the electromagnets move closer to the plate, the force of
attraction increases which draws the electromagnets even closer to the plate. To achieve
vertical stability gap sensors and a feedback control scheme is used [37-39]. The
Transrapid of German [40, 41] and HSST of Japan [38] use an EMS suspension and
guidance system. The levitation and guidance system of the Transrapid is shown in
Figure 1.7 while Figure 1.8 shows the feedback control mechanism employed in the

HSST - 100L for air gap regulation.

K

Vehicle body

Iron plate on
444 %uldeway

r / IAirgap
ideway

Electromagnets
on vehicle

-
Figure 1.6. Electromagnetic suspension based on attraction between iron plate on guideway and
electromagnets on vehicle.

Iron rail

Guidance
electromagnet

Support
. electromagnet
Propulsion
force

Suspension
force
Figure 1.7. EMS suspension and guidance system employed in Transrapid [40].




DC280V
Power Supply control signal

Figure 1.8. Feedback control mechanism of HSST-100L to regulate the air gap [42].

1.2.2. Propulsion System
The propulsion systems used in current maglev vehicles can be divided into two main
categories depending on the type of linear motor used: (1) Linear synchronous motor and
(2) linear induction motor. The operating principle of each one will be briefly described
below.

1.2.2.1. Linear Synchronous Motor propulsion

Linear synchronous motor (LSM) propulsion was proposed by Danby and Powell for
maglev applications [43, 44] and since then it has been studied by many researchers [41,
45-49]. Its operating principle is the same as its rotary counterpart. This propulsion
system uses sinusoidally distributed poly-phase windings on the guideway that carry
alternating poly-phase current which can be supplied from the conventional power grid.
When energized, the LSM windings create a travelling magnetic field which moves with
the alternating current frequency or synchronous frequency. The travelling field acts on
the permanent magnets, electromagnets or superconducting magnets onboard the vehicle
to push it forward. The vehicle moves at the same speed as the magnetic wave, that is at

synchronous speed [50]. The speed is continuously regulated only by varying the
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frequency of the alternating current. By reversing the direction of the travelling wave,

non-contact braking is achieved and the braking energy can be fed back to the grid [40].

Energized LSM winding on guideway

—— - — -
y A . 4 2
WS A=y "{ zili

*1 . - L t

- f \ \ -
Upward magnetic field ~ Vehicle Magnetic propulsion force on
from LSM winding magnet vehicle
(a)
Magnetic field Vehicle magnet
\ 4
w}/ Propulsion force in into the
R | screen
,rfffff;;f//z',f'r’ :;QQ —_ -~ Crossover current in
LSM winding
(b)

Figure 1.9. (a) Top view and (b) end view of propulsion mechanism using linear synchronous motor
[19].

The Transrapid (with an operational speed of 400 — 500 km/h) and JR MLX 01 (the
world’s fastest train with maximum speed of 581 km/h) use the LSM propulsion system
[40-42]. Figure 1.10 shows the propulsion system used in the Transrapid. Alternating
poly-phase current fed into 3-phase motor winding attached to the guideway, shown in

Figure 1.10 (a), creates a travelling magnetic field as shown in Figure 1.10 (b).

Slide Plane
Guidance Magnet
Guidance Rail

3-phase Motor Winding
Stator Pack

Support Magnet ®

(a)

Figure 1.10. Propulsion system of German Transrapid [40].



1.2.2.2. Linear Induction Motor propulsion

A linear induction motor (LIM), as shown in Figure 1.11, has been used for maglev
propulsion [38, 42, 51-53]. It works on the same principle as its rotary counterpart. The
stator of the LIM has sinusoidally distributed windings which when supplied with
alternating poly-phase current creates a travelling magnetic wave. The travelling wave
moves with synchronous speed, v,. The rotor is a thin plate made of conductive material
such as aluminum with back iron. The travelling magnetic wave induces eddy currents in
the rotor. The induced eddy currents interact with the travelling field to produce thrust
force and the rotor moves at a speed, vy, less than the synchronous speed, v, [54].

Cut along x-y

X 3-phase ‘
Stator : Wlndlng

« /\Botor ; ?——v‘ix
( OCWCOCU.'.WS g
Aluminum \

Stator.
sheet Travelling
(conductor) magnetic wave

Rotor

Figure 1.11. Operating principle of linear induction motor.

The LIM is used for propulsion in the HSST [38, 42] (operational speed of 100 kmph)
which is shown in Figure 1.12. In the HSST, the poly phase windings are mounted on the
moving vehicle and an aluminum plate with back iron is mounted on the stationary

guideway.
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Linear Induction Motor

Figure 1.12. A vehicle module of HSST showing Linear induction motor and electromagnets [42]. The
LIM is used for propulsion while the electromagnets are used for electromagnetic suspension discussed
before.

1.3. Advantages and Disadvantages of Maglev
1.3.1. Advantages
Understanding basic maglev technology helps one identify the following advantages
over traditional modes of transportation such as automobiles, conventional trains and
flights.

e Maglev is very energy efficient. It does not burn oil but instead consumes
electricity which can be produced using sustainable and renewable energy
sources like wind and solar. At 300 miles per hour (m/h) in the open
atmosphere, it has been calculated that a Maglev train consumes only 0.4
megajoules per passenger mile, compared to 4 megajoules per passenger mile
of oil fuel for a 20-miles-per-gallon auto that carries 1.8 people (the national
average) at 60 miles per hour [35].

e This technology reduces the air pollution as it emits less CO, than other
transportation modes [35]. Figure 1.13 shows CO, emission comparison
among Transrapid, conventional high-speed train German ICE and other

modes of transportation.
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Values in grams per seat-km 190

60

Transrapid
Short-haul Flight

y

300 km/h 400 km/h
185 mph 250 mph

Figure 1.13. CO, emissions for different modes of transportation [40].
Also maglev trains emit less noise due to the non-contact levitation and

propulsion technology. Less noise makes maglev suitable for transportation in

urban areas. At speeds up to 155m/h the Transrapid almost operates soundlessly

in urban areas as shown in Figure 1.14.

Transrapid

Transrapid
Transrapid

80 km/h 200 km/h 300 km/h 400 km/h
(50 mph) (125 mph) (185 mph) (250 mph)

Figure 1.14. Noise level [dB] at a distance of 82 ft [40].

e It almost removes the dependency on oil. The typical oil consumption of

maglev is shown in Figure 1.15 along with other modes of transportation.
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Barrels of Qil/10,000 passenger miles
N
1

NN N N NN N

60 mph 60 mph 30 mph 60mph 500 mph 80 mph 60 mph 40 mph 300 mph
Autos SUVs&Lt | Transit Bus | Intercity Air Intercity | Commuter [ Transit Rail| Maglev
Trucks Bus Rail Rail
1 Series1 7.2 8 84 1.86 7.2 6 6.4 56 0.46

Figure 1.15. Energy efficiency by transport mode in barrels of oil per 10,000 passenger miles

[55].

e Maglev guideways and vehicles last longer than trucks and automobiles with

minimal maintenance because of its non-contact type operation [35].

1.3.2. Disadvantages

In spite of possessing the said advantages, the implementation of maglev trains

throughout the world is very limited. This may be due to the initial investment cost to set

up the infrastructure. The JR MLX 01 and Transrapid have an approximate cost of $60

million per mile [56]. Hence for maglev technology to be implemented throughout the

world, its cost must be greatly reduced. As discussed in section 0, two separate systems

for propulsion and suspension are invariably employed in current operating maglevs. It is

intuitive that integrating the two separate systems into one and using a passive guideway

should lead to a significant reduction in the construction cost.




1.4. Idea of EDW
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Research has been conducted to find an integrated propulsion and suspension system

for maglev and a brief summary of that is provided in Table 1.1.

Table 1.1: Different integrated suspension and propulsion technologies

Technology

Characteristics

Example

Linear induction
synchronous
motor (LISM)

Uses electromagnetic attraction between LSIM field
coil on vehicle and iron rail on guideway for levitation
[57].

Linear induction motor for propulsion [58].

Allows small air gap due to EDS type levitation [22,
59].

Magnibus 01 test
vehicle of Romania
[57, 60]

Self-excited Linear
synchronous motor

Levitation is due to attractive force between the wound
part of the LSM on the vehicle and ferromagnetic rail
on the guideway.

LSM is used for propulsion

Electromagnetic attraction force reduces at high speed
and gradually becomes negative. Hence it is not
suitable for high-speed application [13].

Allows small air gap due to EDS type levitation [22,
59].

ROMAG test
vehicle of US [61]

Electromagnetic
river (ER)

Levitation is due the -electromagnetic repulsion
between the LIM primary winding current on the
guideway (active) and secondary aluminum without
back iron on vehicle (passive) [62].

Propulsion is due to LIM [62, 63].

Suffers from very low power factor [13].

Small scale set-up.

Magnet rotation

Levitation is achieved due to electromagnetic repulsion
between superconducting magnets [64] or rare earth
permanent magnets [65-69] and passive conductive
guideway.

Propulsion is due to the interaction between rotating
magnets and conductive guideway. Braking force
results depending on slip speed.

Eliminates low power factor issue of ER.
Superconductive magnets idea is costly. Rare earth
magnets can be used.

Small scale
experimental set-up

After studying the available options for an integrated propulsion and suspension

maglev system, Bird [13, 70] investigated an Electrodynamic wheel (EDW) concept in

which Halbach rotors would move and rotate above a conductive sheet guideway made of

non-magnetic material such as aluminum as shown in Figure 1.16. A Halbach rotor is a

permanent magnet rotor made of rare-earth alloy neodymium—iron—-boron (NdFeB) and is
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named after late physicist Klaus Halbach of Lawrence Berkeley National Laboratory. The

magnet segments of a Halbach rotor are radially and azimuthally magnetized so as to
focus the entire magnetic field outside the rotor while cancelling it inside as shown in
Figure 1.17. As a result, it can produce strong magnetic field in the air gap and thus is a
suitable choice for maglev applications. By adjusting the number of magnet segments, the

magnetic field can be made sinusoidal in the air gap.

Fy
Magnet (NdF'eB) Air region
material ™ /@\

Vx

—
F;

Conductive guideway Ve
_\ y iAlr gap (g)

[ 7 l
Guideway thickness,' & ' '
Figure 1.16. Translationally moving and rotating EDW above a passive conductive guideway [13].

Conductive | \ij/ / W

id \ e /
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Figure 1.17. Magnetic flux density IB| pattern of a static 32 segment EDW created using JIMAG [71]

Electrodynamic suspension mechanism is used here to levitate the vehicle. As the
rotor rotates, induced eddy current in the conductive sheet guideway interacts with the

source field to repel the rotor according to Lenz’s law and thus the vehicle is suspended.
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As discussed before, this suspension can be inherently stable. In [13] Bird termed the
Halbach rotor as electrodynamic wheel (EDW) because of the levitation mechanism used.

This technology works much like a linear induction motor to generate propulsion
force. When the EDW rotates and moves along the guideway, the time changing
sinusoidal magnetic field induces eddy current in the guideway which then interacts with
the rotor field to produce propulsion or drag depending on slip speed. The difference
between the circumferential velocity and translational velocity of the rotor is called slip

speed (s;). Hence

5 = WyT, — U, (11)

where w,,, v, and r, are the mechanical angular speed [rads’l], translational speed [ms'l]
and outer radius of the rotor [m]. If the slip speed is positive, propulsion force results and
pushes the vehicle ahead. But if it is negative, drag force is generated and slows the

vehicle down. This is illustrated in Figure 1.18.

Fr

Thrust force

Slip speed, s;

Figure 1.18. Thrust or drag force vs. slip speed.

1.5. Comparison of EDW with Existing Operating Maglevs
EDW technology allows propulsion and suspension of the vehicle by using only an

aluminum sheet guideway and Halbach magnetic rotor or EDW. A brief comparative
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analysis between EDW and existing operating maglev technologies is provided in Table

1.2 and Table 1.3.

Table 1.2: Comparison between EDW and existing operating maglev technologies

Name of Maglev Characteristics
e Uses electromagnets attached to the vehicle for suspension which is
inherently unstable. Active control required for vertical stability.
e Allows small air gap (~3/8" - 1/2 inch) [22, 56, 59] which makes guideway
Transrapid maintenance difficult and expensive.
e Uses LSM for propulsion. This makes guideway construction costly and
complex.
¢ Guideway structure is elevated.
® Guideway cost ~$60 million/ mile [56].
e Uses superconducting magnets for suspension. It needs extra cooling system
on board. So expensive [22].
e Can operate at large air gap as it operates on EDS [22, 56, 59, 72] (~6 - 10
JR MLX 01 inch). Guideway maintenance easy.
e [ evitation is inherently stable.
e Uses LSM for propulsion which makes guideway construction costly.
¢ Guideway structure is elevated.
e Guideway cost ~$60 million/ mile [56].
e Uses electromagnets attached to vehicle for levitation which is inherently
unstable. Needs active control for vertical stability.
HSST e Allows small air gap [22, 56]. So guideway maintenance costly.
e Uses LIM for propulsion with 3-phase motor windings on the vehicle and
aluminum plate with back iron on guideway. Vehicle design complex.
e Guideway structure is elevated.
Uses Halbach rotor for suspension as well as propulsion.
Levitation is stable but highly underdamped.
Proposed EDW Allows large air gap [22, 72]. Hence guideway maintenance easy and

inexpensive.

Guideway is made of aluminum which is cheap.

Guideway structure is flat, not elevated. Hence construction cost less than
elevated structure.




Table 1.3: Different integrated suspension and propulsion technologies [13]
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Name of Maglev

Source of loss

Transrapid

Drag force losses.

I’R losses in EMS coils on vehicle.
I’R losses in EMS iron on guideway.
I’R losses in LSM coils on guideway.
I°R losses in LSM iron on guideway.

JR MLX 01

Drag force losses.

I’R losses in LSM coils on guideway.
I’R losses in LSM iron on guideway.
I’R losses in EDS coils on guideway.
Magnetic cooling losses.

HSST

Drag force losses.

I’R losses in EMS coils.

I’R losses in EMS guideway.

I’R losses in LIM 3-phase winding on vehicle.
I’R losses in LIM aluminum plate on guideway.
Hysteresis losses in iron on guideway.

Power factor correction losses.

Proposed EDW

Large I°R losses in guideway.
IR losses in wheel motor.
Mechanical losses in wheel.

1.6. Recent Work on EDW Project

Initially Bird proposed a split sheet guideway topology [13, 73-75] as it would

provide lateral restoring force and thus lateral stability. However, studies revealed that,

for the same rotor parameters, this guideway topology reduces the lift force by a large
extent and thrust by lesser extent [13, 74]. As a result, the lift-to-weight ratio is also

reduced compared to single sheet guideway as shown in Figure 1.19. Better performance

can be achieved with split sheet guideway by increasing the rotor width which would

increase the manufacturing cost of the EDWs. Also split sheet topology increases power

loss in the guideway compared to single sheet topology [13, 74]. Hence the idea of split

sheet topology was abandoned.
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Figure 1.19. Lift-to-weight ratio vs. rotor width for split sheet and single sheet guideway topology [13,
75]. EDW dimension is kept same for both guideway topologies.

Bobba has worked on 3-D finite element modeling of a Halbach rotor moving above a
single sheet conductive guideway using JMAG [71]. He developed an analytic model of
the magnetic field created by a Halbach rotor using a Fourier Bessel function approach
[76]. Bobba also studied the performance characteristics such as lift-to-weight ratio,
thrust efficiency, magnetic rolling resistance for wheels in series using a 2-D steady state
finite element model in Comsol developed by Bird [77, 78].

More recently Paudel developed a 2-D analytic steady state and transient model of the
rotational and translational movement of a Halbach rotor above single sheet guideway
[14, 79-82]. He analytically calculated the thrust and lift force acting on the rotor as well
as power loss in the guideway analytically. For experimental verification, Paudel set up a
pendulum model by hanging an EDW near a guideway wheel as shown in Figure 1.20
[81, 82]. Due to the action of the lift force and gravity, the EDW would oscillate and
eventually come to a steady state condition as shown in Figure 1.21 which shows a
comparison between the experimental and 2-D analytic model [79]. The difference

between the two models is clearly noted. It is due to the fact that the 2-D model fails to
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take into account the finite width of the guideway and rotor. Hence there is a clear need

for modeling the Halbach rotor motion in 3-D analytically to achieve a better
performance. In addition, in [14] very small electromagnetic damping was reported for a
maglev vehicle with four EDWs. Hence, the damping and stiffness coefficients need to
be determined in 3-D analytically for better understanding of the contributing factors in
order to improve the dynamic performance of such EDW technology.

Guideway wheel

\

- B 0%
-

Accelerometer and gyro R Totor Motor

controller\‘ !

)

-

Brushless motors™ -

l\

Battery packs

Figure 1.20. Experimental set-up showing EDW, brushless DC motors, batteries pack [14]

T T T

Experimental Data
Analytic 2-D model

Time [s]
Figure 1.21. Air gap profile obtained using 2-D analytic model and experimental setup [14]

The recent work performed on the EDW technology as discussed in this section is

summarized in Table 1.4.
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Table 1.4: Summary of the recent work performed on the EDW technology

Authors Work completed

Bird [13] Proposed the concept of EDW.

2-D and 3-D steady state model in FEA with source modeled using current
sheet.

2-D transient model in FEA with source modeled using current sheet.

Proposed split-sheet and single-sheet guideway topology.

Bobba [71] 3-D analytic permanent magnet rotor field computation using Bessel function.

3-D transient FEA model using JIMAG.

Paudel [14] 2-D analytic steady state model with heave velocity for eddy current force and
power loss calculation. Source field was modeled using current sheet.

2-D analytic transient model for the calculation of force and power loss.
Source field was modeled using current sheet.

2-D stiffness and damping analysis.

Investigation of dynamic behavior of 2-DOF EDW maglev vehicle with 2-D

steady state and transient force equations.

vV V V| VV|H VV VYV

1.7. Research Goal

The above discussion regarding recent work on EDW technology has identified the
need for a new 3-D analytic model to take into account the finite width of the EDW and
guideway. Also the analytic model should be able to compute the electromagnetic fields,
forces, power loss and torque not only when the rotor is at the center but also when it is
laterally offset above the guideway. The analytic model will provide greater insight and
allow control techniques to be examined.

Eddy current induction is used in a variety of applications such as eddy current testing
[83-85], eddy current dampers [86-88] and brakes [89-91] in addition to the maglev
technology. Thus, another goal of the dissertation is to make the developed models
applicable for all the specified applications. With this aim, the finite element and analytic
derivations are performed in such a way that they are valid for any type of magnetic
source such as current coils, electromagnets or permanent magnets. Only for model

validation purposes, a Halbach rotor has been used. The words “plate” instead of
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“guideway” and “magnetic source” instead of “magnetic rotor” have been used to make

the derivation generic.

In order to achieve the stated goals, the following tasks need to be performed:

A computationally efficient method of computing the 3-D magnetic fields due to a
magnetic source is required. The source modeling technique can then be used
throughout the dissertation for source field computation. The existing analytic
method of field calculation of a Halbach rotor using current sheet approach [75] is
computationally expensive. Finite element models need to be developed in
commercial FEA software for validation purposes.

For analytic model validation, computationally efficient 3-D transient and steady
state models using finite element analysis are required to model the interaction
between a moving magnetic source and conductive plate. The models should be
able to include the heave as well as translational and rotational motion of the
source unlike most of the commercial finite element softwares.

Although finite element models can simulate the eddy current distribution due to
the motion of a magnetic source above a conductor, an analytic model is always
advantageous due to its computational efficiency. New 3-D analytic model is
required for this purpose.

Electromagnetic damping and stiffness coefficients need to be calculated from

the analytic model.

Table 1.5 outlines the required tasks and the relevant chapters of this dissertation.



Table 1.5: Summary of the required tasks on the EDW technology
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Model type

Task(s)

Chapter(s)

Analytic

Magnetic source field modeling using magnetic charge sheet

This source modeling technique will be used throughout the research for
source field modeling

Model will be developed in Matlab

2

FEA

Segmented PM rotor modeling using Comsol and JIMAG.
These FEA rotor models will be used to validate the magnetic charge
sheet based magnetic source field computation technique

FEA

3-D transient and steady state models of eddy current distribution in a
conductive plate.

Models will be developed in Comsol.

The FEA models will be used to provide insight into eddy current
distribution in a conductive plate and develop 3-D analytic models.

FEA

Development of transient model of a Halbach rotor rotating above a
conductive plate using Magsoft FEA software.

The source will have only rotational motion

The model will be used to validate the 3-D FEA transient and steady state
models of Comsol.

Analytic

3-D eddy current models for eddy current field computation

5,6,7

Analytic

3-D eddy current models for eddy current force, torque and joule loss
computation

5,6,7

Analytic

3-D Electromagnetic stiffness and damping coefficient calculation

Experimental verification of the developed analytic models

1.8. Organization of Dissertation

This dissertation is organized in the following format.

Chapter 1 outlines the need for new high-speed transportation system for urban area

and why maglev high-speed trains should be considered. The chapter also introduces the

reader to the EDW technology and the recent work performed on this technology till date.

Chapter 1 also identifies the research goal of this dissertation.

Chapter 2 discusses the magnetic source modeling in air using a fictitious magnetic

charge sheet approach.

Chapter 3 presents a finite element modeling technique for a magnetic source moving

over a conductive plate in both transient and steady state conditions.
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Chapter 4 reviews the existing 3-D analytic models to study the interaction between a
moving magnetic source and a nearby conductive medium. The need for new analytic
model is identified.

Chapter 5 presents a computationally fast 3-D analytic model using a second order
vector potential method for infinite plate width problems. The model assumes finite
thickness of the plate and it models vertical, lateral and translational motion of the source.

Chapter 6 presents a 3-D analytic model for finite width conductive plate using
magnetic vector potential. The model assumes that the plate has a finite thickness. Both
vertical and translational motion of the source is considered.

Chapter 7 presents a 3-D analytic model for finite width conductive plate including
edge-effect using the second order vector potential and truncated region eigenfunction
expansion. The model assumes that the plate has a finite thickness. Only rotational
motion of the source is considered.

Chapter 8 qualitatively verifies the developed analytic models with experimental
results.

Chapter 9 presents summarizes the research work presented in this dissertation and

outlines the future direction of research to be performed.



CHAPTER 2 : MAGNETIC SOURCE FIELD MODELING USING MAGNETIC
CHARGE

2.1. Introduction

In a number of applications the magnets operate in regions surrounded by air such as
microactuators [92], diamagnetic levitation devices [93], non-contact type magnetic
torque transmitters [94-97], magnetic latching [98, 99], 3-D force sensors [100] and
torque and position sensors [101, 102]. Fully numerical based calculation methods such
as the finite element analysis (FEA) method or boundary element method are often used
to calculate the magnetic fields created by 3-D magnetic devices. However, such methods
are often not fast enough for real-time analysis and control purposes. Analytical
approaches are of primary importance for the design of many devices [103]. In many of
these applications due to the absence of any other material that can perturb or contribute
to the magnetic field, the problem region typically consists of the magnet itself [104].

Analytic 3-D field solutions for a number of magnet shapes have been derived.
Bancel [105] derived the field equations for a parallelepipedic permanent magnet (PM).
Later Furlani [104] provided a semianalytic field solution for radially polarized magnets
based on amperian model which needs two numerical integrations. Rakotoarison [106]
proposed another semianalytic solution to find the magnetic field created by radially
magnetied segments based on Coulombian approach which reduced the number of

numerical integrations by one. The proposed approach modeled each magnet segment
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using surface and volume magnetic charge. More recently Ravaud presented a fully
analytic model for ring permanent magnets by considering only surface charge using
elliptic integrals of the first kind [103]. Bird derived an analytic model for a Halbach
rotor by modeling the radial and azimuthal magnet segments using current sheet which
required two numerical integrations [13, 75]. The analytic approaches are
computationally expensive for a complicated magnet source such as a magnetic rotor
with many segments since computing the net field involves summing up the field
contribution from each magnet segment. Also the methods proposed are not general
purpose.

Recently the charge simulations method [107] was utilized to model the external
magnetic field due to a set of magnets. Kwon et al. [108] used a spherical distribution of
charges enclosing the magnets to calculate the far-field due to a permanent magnet rotor.
More recently Selvaggi et al. used an analytic based charge simulation approach using
toroidal harmonics employing a cylindrical charge distribution to provide a more accurate
near-field and far-field solution [109]. The idea of the charge simulation approach is to
replace the original magnets by a hypothetical surface of equivalent discrete fictitious
magnetic charges called the ‘charge surface’ [109, 110] as shown in Figure 2.1(b). The
‘charge surface’ reproduces the magnetic field as the original set of magnets in any
region external to the ‘charge surface’. In [108-111] the first step of finding the charge
distribution on the ‘charge surface’ is to find the magnetic scalar potential at another
hypothetical surface, called the ‘potential surface’ and is shown in Figure 2.1(b), external

and concentric to the charge surface using finite element modeling or integral equation
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method. Using these potentials the charge distribution on the ‘charge surface’ is

computed using Coulomb’s law [108, 112].

z This will be the charge
77 eylinder
w,’im’ .

Potential surface
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Figure 2.1 (a) The original set of magnets are enclosed by a hypothetical cylindrical ‘charge surface’. All
the potential and field values external to the charge cylinder can now be calculated using the charges on the
cylinder; (b) the ‘charge surface’ is enclosed by a cylindrical ‘potential surface’ which is used to compute
the charges on the ‘charge surface’ [109].

The use of the charge simulation approach to first find the potential surface and then
charge surface is quite complex [110, 111].

The purpose of this chapter is to demonstrate that a continuous magnetic charge
distribution, rather than discrete charges, can also be used to accurately model the
external field due to an arbitrary magnetic source. The proposed will thus replace the
original complicated source field equations with faster and simpler equivalent magnetic
charge sheet equations. As the concept of the magnetic charge does not exist in reality,
this is only a fictitious model.

In this chapter the source field at an external point will be calculated by using, first a
cylindrical and then a planer charge sheet. The next section introduces the cylindrical
charge sheet concept and determines the charge density from the normal component of

the flux density. It validates the results by comparing with an FEA Halbach rotor model
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and surface mounted PM rotor. In section 2.3, the planar charge sheet concept is
introduced, fields are calculated and finally results are compared with the FEA. The
calculation time of both approaches is compared using a Halbach and surface mounted

PM rotor. A brief summary of this chapter is provided in section 2.4

2.2. Cylindrical Magnetic Charge Sheet
The idea of the charge sheet is first explained using a very simple 2-D diagram of a
bar magnet as shown in Figure 2.2. In Figure 2.2(b) the original bar magnet of Figure
2.2(a) has been replaced with a circular magnetic charge sheet completely enclosing the
magnet. The charge density on the sheet is such that it produces the same field in the
external air region as the original magnet. The charge density on the circular sheet will be

derived in this chapter.

Magnetic charge Air
Air sheet

-

~
Rectangular
magnet

() (b)
Figure 2.2 (a) A rectangular bar magnet is air; (b) the magnet is replaced with an equivalent circular
magnetic charge sheet.

Extending the idea to the 3-D, if one has a PM rotor as in Figure 2.3(a) and need to
know the source field in an external air region, then the PM rotor can be replaced with a
charge sheet as shown in Figure 2.3(b), cylindrical in shape, completely enclosing the
magnet so that it will produce exactly the same field in the external air region as the

original PM rotor.
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Figure 2.3 (a) Schematic of a 3-D permanent magnet rotor; (b) 3-D view of magnetic charge sheet
model with a charge sheet placed on I',,; (c) cross-sectional view of the charge cylinder model.

Referring to Figure 2.3(b) and Figure 2.3(c), the region enclosed by the sheet is Q and
consists of air. The charge sheet is located at r =r, and has a width w,. The outer
cylinder with width w,, is a magnet-free air region and designated as Q,. Also it is
assumed that only the magnetic field outside the sheet i.e. in Q, is of interest.
2.2.1. Derivation of Charge Density
In the presence of a magnetic charge the governing magnetostatic equations for this
problem are [112, 113]
V-B=p, (2.1)
VxH=0 (2.2)

B =y H (2.3)
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where p,, is the fictitious magnetic charge volume density [Wbm™]. As H is curl-free
field, this can be written in terms of gradient of another scalar potential because the curl
of gradient of a scalar is zero [112, 114]

H=-V¢ (2.4)
The scalar potential ¢ is called the magnetic scalar potential. Substituting (2.4) into (2.3)

relates the magnetic flux density, B, with the magnetic scalar potential, ¢, as [112, 114]

B =—u,Vo (2.5)

Substituting (2.5) into (2.1) gives the governing equation that completely describes the

field [112, 114]

V24(r,0,2) = ——p,. 2.6)

Ho

By integrating both sides of (2.1) the integral form of Gauss’s Law is [115]

pB-ds= pp,dv 2.7)
S V

where the closed surface S encloses a volume V with charge density p,,.

Charge sheet with

density p, {r, &)

e e

Moty Qy
Figure 2.4 Small cylinder placed between the magnetic charge sheet with surface As and height Ah.
Consider placing a small cylindrical box on the charge sheet as shown in Figure 2.4.

The field on the surface of the box can be determined by using (2.7). In the limit of

Ah — 0, one finds from (2.7)
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pB-ds = (B -7~ B"-7)AS (2.8)
S
or ﬁB -ds = 7+ (B' — BHAS (2.9)
S

where 7 is the outward normal vector on I,

And from the right hand side of (2.7) in the limit of Ak — 0,

pB-ds = p,AS (2.10)
S

where p, becomes the surface charge density. From (2.9) and (2.10) it is concluded that

B'-B" =) ,onT, Q2.11)

The tangential field components on the boundary are related by

Fx (B - —L B — 0, onT, 2.12)

o okt

All of the flux density in regions € and Qy is due to the charge p, placed on I'; and the

B' and B" fields will emanate from the charge sheet, thus

BYr.,0,,2,)=—Br.,0,,2),0onT, (2.13)
Substituting (2.13) into (2.11) gives
p,, = 2B, onT, (2.14)
or in general,
P, (0 ,2,) =2B:(r,0,,2,),onT, (2.15)

where the superscript ‘s’ indicates flux density due to the original magnet source and

subscript ‘n’ indicates normal component. Hence it is derived that the charge density is
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twice the normal component of flux density created by the original magnet source on I'.
This normal component can be obtained using analytic or FEA methods as discussed
later.

Equation (2.15) can be used to find a charge distribution that will accurately describe
the original source field external to the sheet.

2.2.2. External Field Calculation

The magnetostatic field external to the cylindrical charge sheet can be determined
using either an integral or differential approach. The calculation time for both methods
will be assessed. The differential approach using Bessel functions has been addressed by
Bobba in the past [71]. Here only the integral or Coulombian approach will be presented.

The integral solution to (2.6) for the charge cylinder is [106, 112]

o(z,y, 2 LACALDIPY z,d0, (2.16)
47T'u0 ]o‘—J/Q
where
R = \/(:1: — 1 cosf ) + (y—r sin6 ) + (z — z,)? (2.17)

is the scalar distance between any point of interest M(x, y, z) external to the sheet and
A(ry, 0,, z,) on the sheet as shown in Figure 2.3(b). Utilizing (2.15) the flux density
external to the rotor is

27 w, /2

0
B(z,y,7) — 41 [ P20, g4 49 (2.18)
g 0 —w,/2 R’

where

R:(m—rOCOSH()):ﬁ+(y—rosin00)g)+ (z —2,)2 (2.19)
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If it is further assumed that the radial flux density of the source does not alter along the
axial length of the rotor, which is true for many PM rotors, the charge density remains

constant throughout the z-axis and hence can be represented using step functions as

P (0 ,2,) =28 (1,0 )u(z, +w, /2)—u(z, —w, /2)] (2.20)

0’7o 0’70

where u(z, +w,/2) and u(z, — w,/2) are step functions that ensure that the charge is
uniform across the charge sheet width. In this case the integration along z, can be
performed analytically. Substituting (2.20) into (2.18) and integrating it with respect to

Z,, the magnetic flux density components are determined to be

B ( ) B;(TO,HO)TO?(:B—TO cosf ) 2z +w, 2z —w, "
T T,Y,z2) = - 0
27 r? \/4r2 + (22 + w, )? \/4r2 + (22 —w,)?
(2.21)
B (r,0,)) 7Ty—rsm& 2z +w, 2z —w,
B, (2,y.2) = f 2 - — —— - |,
\/4r + (22 +w,) \/47“ + (22 —w,)
(2.22)
B, (., 2) = Dol O, f L - L 0. (2.23)
& 0 \/4r2 + (22 —w,)? \/47’2 + (22 + w, )
where
r? =2 4yt 41?2 <xcos 0, + ysin 90> (2.24)

is the magnitude of the projection of R on the x-y plane. The integration with respect to 6,

in (2.21)-(2.23) is performed numerically.
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2.2.3. Validation Using Rotor Model

The presented source field modeling approach was validated by creating an
equivalent cylindrical charge sheet for a Halbach and a surface mounted PM rotor.

2.2.3.1. Halbach PM rotor in air

Halbach rotors, as shown in Figure 2.5, focus the magnetic flux only outside of the
rotor while cancelling it inside. It produces almost a perfectly sinusoidal field in the
external air region. The sinusoidal nature of the air gap field depends on the number of
segments of the rotor. With an increase in segment number the unwanted harmonics can
be removed and only the significant Fourier component remains at a frequency equal to

the number of the pole pairs of the rotor.

—1.0338
—0.8747
—0.7156
—0.5565
—0.3975
—0.2384
—0.0793
—4-0.0798
-0.2388
—-0.3979
—-0.557
—-0.7161
—-0.8752
—-1.0342

(b)
Figure 2.5 (a) Segmented 4 pole pair Halbach rotor with radial and shunt magnets; (b) A 2 pole-pair
Halbach rotor B, contour plot with magnetization direction shown

In [116] Xia et al. showed that in 2-D the external field of a Halbach rotor can be

accurately modeled by

B’(r,0) = B" (r) cos(P)i+B" (1) sin(PO)0 (2.25)

where superscript ‘hr’ indicates Halbach rotor field and

P+1 P+1y,.2P
i - 2B POt p ) e (2.26)

1+ P)[A— p Pr2 — 1+ p, Pr20] el

2 o
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and u,, P, r,, r; and B,,, are the relative permeability, pole-pairs, outer radius, inner
radius and remnant flux density of the rotor respectively.

From (2.25) the radial component flux density is rewritten as

B (r,0) = 9B P(L+ )P — P2 cos(PO)
r L+ P = p, 12" = (U4 p, P20 P

2 o

(2.27)

On the rotor surface, at (r, 6, z) = (r,, 8,, 0), B,=0 and therefore in this special location
the 2-D and 3-D fields are the same. Also for Halbach magnetized rotor the
magnetization does not change along the axial direction of the rotor. Hence the charge
distribution remains constant throughout the width of the rotor, w,. These observations
enable the charge density function on the charge sheet to be determined using only 2-D

field information from (2.20) where

B:(r,,0,) = B(r,,0,) (2.28)

Hence substituting (2.27) into (2.21)-(2.23) the flux density components at any external
point in space can be calculated. Utilizing the parameters given in Table 2.1 the
Coulombian and Bessel solution accuracy was compared with the FEA model in Figure

2.6.

Table 2.1: 3-D Halbach Rotor Parameters

Description Value Unit
Outer radius, r, 26 mm
Halbach rotor  Inner radius, r; 9.62 mm
Remnant flux density, B, 1.42 T
Width, w, 52 mm
Pole-pairs, P 2 -

Magnet permeability, u. 1.108 -
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Figure 2.6 (a) Comparison of the B,, B, and B, flux density between JMAG FEA and 3-D magnetic
charge model along the z-axis at (x, y) = (10, -9.5)mm; (b) Comparison of the flux density

components along the x-axis at (y, 7)=(-9.5, 20)mm.

The parameters of the 16 segment experimental Halbach rotor, as shown in Figure

2.7, are listed in Table 2.2 and a field comparison with the integral and Bessel function

solution method is shown in Figure 2.8. A very good agreement between the

experimental and analytic models was obtained.

Table 2.2: Experimental Halbach Rotor Parameters

Halbach rotor

Description Value Unit
Outer radius, r, 26 mm
Inner radius, r; 10 mm
Remnant flux density, B, 1.42 T
Width, w, 52 mm
Pole-pairs, P 2 -
Magnet permeability, 4. 1.108 -
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Figure 2.8 (a) Comparison of the B, rotor flux density between experimental set-up and analytic
models. Measurement was taken at z= Omm and 6.4mm away from the surface of the rotor
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2.2.3.2. Surface Mounted PM Rotor in Air

The radial flux density, B,, for a surface mounted PM rotor is shown in Figure 2.9(a)

as well as the corresponding harmonic components of B, on the rotor surface (r=r,).

—0.9308 0.4 ‘, : ‘, ‘,
—0.7872 ! ! ! !
—0.6436 ... by
—05 =03 [
= | | | |
0-3564 2 N
—0.2128 202 g
| | | |
—0.0692 ; : : :
HpGaal-I RIEEE (REEEEE EECEEE SRS = &
-0.218 = | | |
03616 E l l l
—-0.5052 % 10 15 20 25 30
—-0.6488 .
07924 Harmonic components
10,936 (b)

Figure 2.9 (a) 2-D B, contour plot of the surface mounted PM rotor. (b) Corresponding B, harmonic
components at r=r,.

Unlike the Halbach rotor the radial field of surface PM rotor is harmonically rich. As

the magnetization is not a function of the z-axis the charge sheet will be uniform across
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the length of the rotor width. Therefore from 2-D FEA the source radial flux density on

the rotor surface can be determined to be

N
Bi(r,0,)) = _ 1 Z ' cos(nd,) (2.29)
T n=0

070

where F" is the magnitude of n™ harmonic. As the magnetization of the rotor does not

change along its axial direction, the charge density function for the surface PM rotor can
be obtained by substituting (2.29) into (2.20). Hence substituting (2.29) into the
Coulombian solution, (2.21)-(2.23), enables the field due to the surface PM rotor to be
accurately reproduced. The accuracy is validated by the comparison shown in Figure 2.9.
Table 2.3 gives the parameters used in this comparison. Very close agreement of results

was obtained.

Table 2.3: Surface Mount PM Rotor Parameters

Description Value Unit

Outer radius, r, 34 mm

Inner radius, r; 26 mm
Surface mount PM rotor Remnant flux density, B,.,, 1.42 T

Width, w,, 52 mm

Pole-pairs, P 4

Magnet permeability, 4, 1.055

0.15 * FEA
= —Bessel solution
E, 0.1 Coulomblan method
g
3 0.05
=
=)
= O

%04 -0.02 0 0.02 0.04
Distance along z-axis [m]

Figure 2.10 Comparison of the B, B, and B, flux density between COMSOL FEA and
cylindrical charge sheet model along the z-axis at (x, y) = (10, -9.5)mm.
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2.3. Planar Charge Sheet

Assume an application where the magnetic source is located near a conductive plate
and the source field interaction with the plate is of primary concern e.g. in eddy current
testing [117, 118] or magnetic levitated vehicle applications [75]. Figure 2.11(a) shows
the side view of a current carrying coil above a conductive quarter space. Figure 2.11(b)
replaces the coil with an equivalent rectangular charge sheet with surface density p,,(x,z)
located in between the original coil and the conductor. The charge sheet is equivalent to
the original coil in the sense that it will project the same amount of magnetic field onto

the conductor as the original coil would do.

4y Ay
Magnetic charge
z
G o X S — sheet /
gl ]
Wy
c J c
N N
(@) (b)

Figure 2.11 (a) Side view of a cylindrical coil above a right angled conductive quarter space of width c; (b)
the coil is replaced with an equivalent rectangular charge sheet of width w;

2.3.1. Derivation of Charge Density
From (2.14) it can be readily seen that the charge density is twice the normal

component of the source flux density incident on the charge sheet. Hence

pu(@.2) = 2 B)(3,y.2)| (2.30)
! y=—b

A perspective view of the sheet with problem regions is shown in Figure 2.12.

y
X
-, £ '

W‘Y 4
/@c charge

Iy
Figure 2.12 Rectangular planer charge sheet centered at y=-b

sheet onI'j>



2.3.2. External Field Calculation
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Assume the charge sheet is sufficiently wide in the x and z-directions that the source

field is zero on the boundary edges i.e.
pm(z’ O) = pTTL(:E7 ws) =0

pm,(()?Z) = pm,(ls7z) = 0
where wy, [; are the width and length of the sheet respectively.

In this case the surface charge density can be expressed as
N M
P (x,2) = Z Z , SIn(E w)sin(y), z) , on T
n=1m=1

where using (2.30) the Fourier coefficients are

o f f BS (z,=b, 2)sin(¢ x)sin(y, z)dxdz
9 5z 02=0
with
nm
g, =21
wS
mm
§nL =

The fields above and below the charge sheet in Q;, €, are governed by

V2 =0

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Using the separation of variable method and noting that the field must decay with

distance from the charge sheet; one obtains

(2,y,2 Z Z C,., sin(y, z)sin(¢ :v)e*X'l'"(y*b) ,in Qq

n=1m=1

(2.38)
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(2,9, 2 Z Z D, sin(y sm(fmm)exm(wb), in Q, (2.39)

n=1m=1

where

v,2 + €2 (2.40)
and C,,, D, are unknowns. Utilizing (2.5) and substituting (2.38) and (2.39) into the

boundary conditions (2.11) and (2.12) the unknowns are determined to be

Dmn = Cmn = 7% (241)
2'“’0an

As one is interested in the field below the charge sheet in €,, substituting (2.41) into

(2.39) and using (2.5) yields

By, = 33 P ose aysin(y, 2t 0+ (2.42)
7 n=1m=1 2an
N M P
By, = 30 30 “asin(g, ) sin(i, 2 (2.43)
n=1m=1
ALY P,
B,, =y > —IMsin(g, o) cos(th, )N (y+0) (2.44)

2.3.3. Validation Using Rotor Model
To illustrate the validity of this concept the external field due to the 2 pole-pair
Halbach rotor as shown in Figure 2.5(b) and defined in Table 2.1 is modeled in Cartesian
coordinates using the planar charge sheet. The surface charge density is obtained using
(2.30) after calculating the B, field due to the Halbach rotor at y= -b from the rotor center

using (2.22).
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Figure 2.13 shows comparisons between the FEA and the planar charge sheet model.

A good match was obtained. Finally the calculation time for different methods has been

compared in Table 2.4.
= 04f-----mo- N B
) =)
>‘ 77777777777 )
£ =
5 E
g < -0.2 »
= -0. 5 S x|
= — Planer charge sheet ‘ £ 04 Planer charge sheet) .~ 5 -~~~ -1
0 0.05 01 0.15 02 0 .0.02 0.04 . 0.06 0.08
Distance along x-axis [m] Distance along z-axis [m]
(a) (b)

Figure 2.13 Field comparison between the FEA and rectangular shape charge sheet model. The planar
charge sheet was placed at Smm below the Halbach PM rotor. (a) along the x-axis at (y, z) = (-9.5mm,
10mm), (b) along the z-axis at (x, y) = (10, -9.5)mm.

Table 2.4: Calculation Time Comparison

Calculation Approach Halbach PM Rotor Surface PM Rotor
Finite element method 481s 348.12 s
Coulombian (integral) method 3x10™s 7.8x107s

Bessel (differential) method 0.3244s 743 s

Planar charge sheet method 1.391x107s 33.32x107s

2.4. Summary

A generalized 3-D magnetic charge sheet method has been presented that enables the
external field due to a magnetic source to be accurately reproduced using an equivalent
magnetic charge sheet. Both cylindrical and planar magnetic charge sheets were used to
demonstrate the applicability of the method. If the magnetic source has a complicated
structure then by representing the magnetic source with an equivalent magnetic charge
sheet the calculation time needed to determine the external field can be greatly reduced.
This approach could also be used to calculate far-fields. The generality of this 3-D model
has been validated by comparing it against commercially available JIMAG, Comsol FEA

software and an experimental Halbach rotor.



CHAPTER 3 : THREE-DIMENSIONAL EDDY CURRENT MODELING USING
FINITE ELEMENT ANALYSIS

3.1. Introduction

In this chapter three-dimensional transient and steady state finite element models are
developed for a magnetic source simultaneously moving and or rotating above a
stationary conductive plate. The model has been developed using the magnetic vector
potential in the conductive region and magnetic scalar potential in the non-conductive
regions. The source field is analytically modeled using magnetic charge sheet and
coupled into the boundary conditions of the interface between the conductive and non-
conductive regions. The developed model is valid for any kind of magnetic source and it
is verified by using a Halbach rotor as the source. Forces acting on the moving source are
indirectly computed by applying Maxwell’s stress tensor on the conductive plate. Forces
and power loss in the plate are compared against commercial finite element analysis
software and an already existing steady state Comsol model [75]. In section 3.2 a brief
review of the existing eddy current modeling techniques involving moving parts is
presented. In section 3.3 the transient modeling technique has been outlined. The steady
state finite element model is presented in section 3.4 and a summary of this chapter is

given in section 3.5.
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3.2. A Review of Numerical Analysis of Eddy Current Distribution of Moving
Parts

Research in numerical computation of eddy current problems involving dynamics of
moving parts began more than three decades ago. It was mainly motivated by the need
for developing an analysis tool to model the dynamic behavior of various electrical
devices [119, 120]. Finite element analysis (FEA) methods or boundary integral method
[121, 122] have been used to obtain the space distribution of electromagnetic fields in
electrical machines with static parts or in static condition. Unlike static machine parts, for
machines with linear or rotational motion it is important to know its key characteristics
such as torque or inductance variation at different positions of the rotor. Hence many
positions of the rotor have to be modeled and solved in FEA. Initially developed 3-D
transient FEA models required the re-meshing of the entire model for each rotor position
which involves extensive pre-processing and was very time consuming [123].

In order to circumvent this issue a significant amount of research has been carried out
in the area of moving grid method also called sliding mesh technique [85, 124-129]. This
typically involves using independent finite element meshes for the moving and stationary
parts that are free to rotate or translate with respect to each other. Thus it eliminates the
need for re-meshing at each rotor position. Several techniques have been proposed to
couple the independent meshes. Special air gap elements were proposed by Razek [125]
while Ratnajeevan applied Delaunay criterion [126] for mesh optimization to make the
mesh adaptive to prevent destruction of mesh while the rotor mesh rotates and stator
mesh stays stationary. The problem of overlapping meshes has been discussed by

Tsukerman [129] and moving band techniques by Demenko [127].
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A more general method to link independent meshes is using Lagrange multipliers.
The method was applied to 2-D [128] and also to 3-D eddy current problems [130]. But
the implementation of this method leads to an ill-conditioned finite element stiffness
matrix making standard iterative solvers either slow or unable to converge to a solution
[131].

A more computationally efficient approach, if possible, would be to avoid sliding
mesh techniques altogether. Also, in the dynamic simulation of a device with linear
motion such as in magnetic levitated vehicle [74, 75, 77, 78] as shown in Figure 3.1,
modeling the translational motion by physically moving the rotor part becomes
impractical for high translational speed as it will require large stator plate length to reach

steady state [74].

Magnetic

\\
g
Conductive >=<
plate o

Figure 3.1 A segmented Halbach rotor with rotational and translational motion above conductive plate.

Previously a 3-D steady state model of magnetic rotor both translationally moving
and rotating above a conductive plate was presented by Bird [74] in which the rotor field
was modeled using a novel fictitious magnetic charge boundary condition while the
conductive and nonconductive regions were modeled using a convective A-¢ steady
state finite element model. Although this approach could model both rotation and
translational motion of the rotor, the modeling of the steady state rotation using a

complex magnetic charge boundary necessitates a large nonconductive region to be
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modeled particularly when the rotor diameter is large. Therefore, in order to reduce
computational burden, another steady state model was presented in which the rotor field
was modeled analytically using a novel complex current sheet approach where each shunt
and radial magnet segment of the magnetic rotor was modeled using an equivalent
current sheet and the analytical source field was coupled to the conductive plate by
including it in the plate boundary conditions [75]. This model had the definite advantage
of reducing the problem region down to only the conductive plate and nonconductive air
region (without magnetic rotor) and also it enabled the rotor position to be changed with
ease without moving the boundary mesh. However as this approach was modeling each
radial and shunt magnet of the rotor by a current sheet, the steady state model was
computationally expensive.

In the proposed finite element model outlined in this chapter, the magnetic rotor has
been modeled analytically using magnetic charge sheet (discussed in Chapter 2). The
applicability of source modeling technique using charge sheet to any kind of magnetic
source makes the proposed finite element model suitable for any source in motion as
well. For further reduction of computation time the conductive and nonconductive
regions have been modeled using a convective A-¢ method. The translational motion of
the rotor is modeling by including equal and opposite velocity term in the plate governing
equation. Forces acting on the moving source and power loss in the conductive plate will
be evaluated and compared against standard FEA software.

The assumptions of the proposed FEA models are listed below:

¢ The conductive plate is linear, homogenous and simply connected

¢ The plate is continuous with constant conductivity and non-magnetic.
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e The magnetic source has translational, heave and lateral motion along with
rotational motion.

e The translational motion of the source is uniform.

e The frequency is sufficiently low in order for the quasi-static approximation to be
valid. Precisely, the wavelength in the free-space is assumed to be large compared
to the dimension of the plate and magnetic source, which is always true for
maglev applications

3.3. Transient Modeling

If the magnetic source’s motion is analytically modeled then the finite element

problem regions will simplify down to conductive, €., and nonconductive regions, €2,

as shown in Figure 3.2. The conductive and nonconductive region normal vectors on the

conductive region boundary I'. have been defined as n_and n, respectively.

Nr, Non-conductive _I’I . 1“07’% Non-conductive yT r,
region, Qe x J\ M. region, (), K
T, Conductive region. Q. ' Ih X/ I — I'.=1Conductive region, Q. I h :\Iﬁr‘"
<—To  Qu Ty E\rg r,—
(a) (b)

Figure 3.2. (a) The x-y and (b) z-y view of the problem region consisting of only conductive and non-
conductive regions. The effect of the magnetic source is taken into account by the boundary conditions on the
boundary I,.

3.3.1. Conductive Region Formulation
Electromagnetic problems can be categorized into two types: low frequency and high
frequency problems. Eddy current modeling falls into the first type. The applicable quasi-
static Maxwell’s equations are (neglecting displacement current in Ampere’s law due to

low frequency) [112]

VXE = —— 3.1
o 3.1
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VxH=1J (3.2)

V-B=0 (3.3)

The conductive region material is assumed to be linear, homogeneous, simply connected
and nonmagnetic such as aluminum. In the presence of a moving conductive medium, the
following constitutive relations relate the field vectors [115]

J =0E (3.4)

B =, H (2.3)

where ¢ and u represent the conductivity [Sm™'] of the plate and permeability [Hm™'] of

free space. Substituting (3.4) and (2.3) into (3.1) gives

Vx B _GE—0 3.5)
Ho

As the divergence of a curl is zero [132], the magnetic flux density can be expressed in
terms of the magnetic vector potential as [112]

B=VxA (3.6)

Using (3.6), the x, y and z-components of the magnetic flux density can be obtained as

0A
BT = % Y 3.7)
v oy 0z
0A  0A
B =—%_-—2 3.8
Y 0z Ox 38)
_04, o4, (39)
‘ oz oy

Substituting (3.6) into (3.1) gives
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4 (v x A) (3.10)

VxE=—-—
dt

Solving (3.10), the electric field intensity E is found to be

dA
E=-— 3.11
7 (3.1D)
If the source is moving, it is noted that
dA(z,y,2,t) _ OA  O0Adx  O0Ady  OAOz (3.12)

===
dt ot Ox dt Oy ot 0Oz Ot

Here it is assumed that the source can have translational, v,, and heave motion, v,. Thus

(3.12) becomes

dA(z,y,2z,t) OA 0A O0A

=—+v,— +v,— 3.13
it ot | "ox Moy G-
Equation (3.13) can also be written as
dA(z,y,z,t) OA
—22 = —— 4+ (v-V)A 3.14
” 5 T V) (3.14)

where v is the velocity vector. Substituting (3.14) into (3.11) yields the electric field

intensity

E=-22 (v.v)a (3.15)

Substituting (3.15) into (3.4) the current density can be obtained in terms of the magnetic

vector potential

0A O0A 0A
J=—0|=—+ + v, —

— 3.16
ot U or Y oy (3-16)



Separating the scalar components, one finds

04, | 04, 04,
v v

ot v Ox Y oy
0A 0A 0A
Y 4 ( Y + / Y
ot "oz oy
04,  0A 0A
+ v 2 40 e

ot Y Ox Y oy

Substituting (3.15) and (3.6) into (3.5), one obtains

Using the identity [114]

VxVxA=V(V-A) - VA

and the Coulomb gauge [114, 115]

(3.20) reduces to

Or,

V-A=0
VA = pyo —+(v-v)A]
O0A 0A O0A
VA = —+v,—+v,—
'uoa[@t e T Dy
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Equation (3.24) is the governing equation for the conductive plate in terms of the

magnetic vector potential.

In order to find a solution of (3.24) numerically, the Galerkin weighted residual method

has been used [133]. The residual or error from (3.24) for the assumed magnetic vector
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potential solutions A,, Ay and A, is
0A 0A 0A

R, = V2AZ. — MOU[ at’ + v, a; + v, ay’ , 1= 1,1, 2 (3.25)

In order to find the numerical solution for A,, A, and A., the integral of the residual

multiplied with a weighting function over the entire domain is set to zero i.e.,

[NRd0, =0, i =2y, (3.26)
Q

4

where, for example, N, is the x-component of the shape function. Substituting (3.25) into

(3.26) gives

Q. =0, i =x,y,2 (3.27)

C

0A. 0A. OA.
VQA. _ hiie + ) 4 )
! MOJ[ ot T ar dy ]

[
Q

4

Using the Green’s first identity [134]

[N V2440, =~ [(VN,-VA)dQ, + [N, (VA -4, )dT,  (3.28)
Q Q r

4 4 c

Substituting (3.28) into (3.27), the governing equation for the conductive region is

obtained in the following weak form [135]

ot * Ox Y 0y
+ frc N,(VA -n,)dl', =0, i=xy,z2

A A A
~ [ VN, vAdQ, o |. Ni[a I T ]JQ
Q, Q, (3.29)

The first two terms of (3.29) are the subdomain equations for the plate region €. while

the last term is the boundary condition on conductive plate boundary I'..
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3.3.2. Nonconductive Region Formulation

The total magnetic flux density in the nonconductive region €2,. is composed of a
field due to the magnetic source (B%) and reflected field (B') in the air region due to the

induced eddy currents in the conductive plate

B =B +B,inQ, (3.30)

Due to the absence of free current in €, the reflected flux density can be expressed in

terms of the magnetic scalar potential, ¢, as

B = —,Vo,in Qe 2.5)

Substituting (2.5) into (3.30), the total flux density in €; is given by

B,, =B — ;,V¢,in Q, (3.31)

nc

After taking divergence on both sides of (3.31) and using (3.3), the governing equation

for the air region is obtained as

1oV = 0, in Q (3.32)

Therefore if the effect of the source magnetic field is accounted for by the boundary
conditions on the air-conductor interfaces I'c, it is not necessary to explicitly model
source’s field within the nonconductive region [136, 137]. Using the Galerkin weighted

residual method [133] and Green’s first identity [134], the weak form of (3.32) will be

tof, VoV, —p [ wVé-i,dr, =0 (3.33)

where w,is the weighting function. Here the first term is the subdomain equation for

nonconductive region €2, and the second one is the boundary condition on the interface
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between the nonconductive and conductive region i.e. I'..
3.3.3. Boundary Condition
The continuity of the normal component of the magnetic flux density and tangential

component of the magnetic field intensity is satisfied on I'; i.e.,

~B,)=0,onT, (3.34)

n.xMH, —H )=0,onl, (3.35)
Utilizing (3.6) and (3.31) and noting that the conductive medium is non-magnetic, (3.34)
and (3.35) can be rewritten as [136, 138]

ﬁ,-(BS —uow):ﬁc.(vXA),onrc (3.36)

Cc

i, % (B = 1)V ) =i, x Vx A, onT. (3.37)

Also in order to ensure uniqueness of the solution

n,-A=0,onl, (3.38)

C

must be enforced [137, 139, 140]. This also sets the normal component of the induced

eddy current on I, to zero i.e.

n, - J= (3.39)

In order to couple conductive and nonconductive regions, the scalar boundary
condition in (3.33) needs to be expressed in terms of the magnetic vector potential terms.

Using (3.36) the boundary term in (3.33) can be written as [137]

o f, V6 AAT, = [ w8 - VX A)qdr onTL (340)

Expanding (3.36) one finds
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0o 04, 04
9 _p %% T 3.41
Ho Ox T Oy 0z (341)

0¢ . 0A 0A
9 _ps %% 94 3.42
Ho oy Y0z Ox (342)

0A A
MO%:BZQ,_@+& (3.43)
oy ox oy

Substituting (3.41)-(3.43) into (3.40) gives the following boundary condition coupling the

scalar potential, ¢ , with the source field and magnetic vector potential for region €2,

fr Y

A~

A 04 A A
[BS_L_F_Z/]?%MI_F[BS_@ z+a 2

n
) Ry P T
' Y : oA ZaA v conT. (3.44)
+ B;‘__y_i__Y Acz drc:o
Ox dy

where, for example, 7, is the x-component normal vector to the conductive plate region.

Similarly the vector potential boundary conditions in (3.29) must be replaced with the
scalar potential terms. For instance, for i=x the boundary condition in (3.29) together with

(3.38) gives

dl', =0,onT, (3.45)

J .
r

c

[8A ] OA. 0A.

z v y ¢ 0z

Using (3.41)-(3.43) enables (3.45) to be expressed in terms of the magnetic scalar

potential, ¢, and source field as

0A 0A
fF N.’t v ay_aaAZ e T 'U’O%—’_ 8y Bj AC’!J
. Yy z o Za L ,onT. (3.46)
¢ R
£ — + B? dal', =0
[ or Ho P Y cz c

Similar relations are obtained for the y and z-components of the vector potential
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0A
‘ y ? o4 ) v Y ,onT, (3.47)
¢ .
+ 2+ py,— — B? dl'. =0
8@/ 'U’O 8$ T ]n(’z c
0A 0
f NZ Z+IU’O@_ y A(’7+ y_lu’(]%—i_ch Ar
T, 0z oy v 0 ox T
9A o4 ,onI, (3.48)
+ z — - . A(‘z drc =0
oy 0z | °©

The Dirichlet boundary condition has been applied on all of the remaining non-
conductive boundaries

¢ =0,onl, (3.49)

The inclusion of the translational source field effect into the plate requires that the
conductive plate must be very long. The model with a finite plate length can result in the
field not being zero at the ends of the plate. This can result in non-physical field
reflections, leading to the solver failing to converge. To avoid this, the Neumann
boundary condition has been applied in the direction of the field translation, on boundary
I

04, =0, i=u2x9z2,0nl, (3.50)
Ox

Using the subdomain equations given by (3.29) and (3.33) within the conductive and
nonconductive regions as well as the boundary conditions (3.44), (3.46)-(3.50) enables
the convective finite element A-¢ model to be defined.

The source field appears only in the boundary conditions (3.46)-(3.48) which can be

easily evaluated using the magnetic charge sheet technique discussed in chapter 2 making
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the proposed method applicable for any kind of magnetic source with linear and/or
rotational motion.

It must be noted that depending on the source location and relative size of the source
and plate, the source field is added on the side and bottom surfaces of the plate. If the
source is located at the center above the plate and the plate width is much larger than the
source, the source field only needs to be added only on the top I'.. Otherwise one has to
include it on all the interface boundaries.

If the source is located at the center of the plate, induced eddy currents in the plate
flow parallel to the top surface of the plate that is the currents flow in the x-z plane.
Hence the y-component of the current, Jy, is negligible [141]. Due to the small thickness
of the plate, this current component is very small even when the source is laterally shifted
from the center of the plate along z-axis. As the induced current density Jy is related to
the magnetic vector potential A, by (3.16), the y-component vector potential is also very
small compared to the x and z-components. This will be illustrated later in Figure 3.16
and Figure 3.17.

3.3.4. Initial Condition, Meshing and Solver Settings
The initial condition for the unknown parameters in the conductive and

nonconductive medium are set as zero i.e.

Sz, 2t)|_ =0, i=my,2 (3.51)

t=0

A(z,y, z,t)‘tzo =0, i=uz,7v,2 (3.52)

In finite element analysis the accuracy of the solution depends highly on the size of
the meshes. It is desired to have fine mesh in the conductive medium whereas the mesh in

the non-conductive region can be comparatively larger. The different mesh size used in
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different parts of the finite element model is outlined in Table 3.1 below. The mesh plot

of the model is shown in Figure 3.3.

Table 3.1: Mesh size for different regions of the finite element model

Region Maximum mesh size [mm]
Conductive plate 2
Non-conductive air region 20

Air region Air region

~Conducting
e region
©* Alr region

Figure 3.3. Perspective view of mesh plot of different subdomains in the transient finite element model.

Choosing the correct solver is another important factor while solving numerical
problems. There are two main types of solvers in numerical computing: direct and
indirect. The finite element analysis breaks down the entire problem region into meshes
of selected sizes and shapes with unknown parameters assigned to each vertex of the
geometrical shape of the mesh. For example, a triangular mesh (used in the current
model) is shown in Figure 3.4 with three vertices a, b and c each associated with a set of

unknown parameters ¢, A,, A, and A" for i =1, 2, 3. These unknowns are known as

degrees of freedoms (DOFs).
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(QD(Z),Ax(Z)Ely(Z),Az(Z))

Figure 3.4. Triangular finite element mesh

The finite element analysis program reformulates the original problem into the

following linear equation

AT =b, T=[¢p" A A AT (3.53)

where the coefficient matrix A and the right hand side vector b are known quantities from
the governing equations (3.29)-(3.33) and boundary conditions (3.40), (3.46)-(3.50) and
initial condition setting and 7 is the unknown vector to solve. Superscript ‘T’ stands for
transpose.

In the direct methods, (3.53) is solved using direct factorization of the A matrix such
as the Cholesky, Lower-Upper triangular (LU) decomposition or Singular Value
Decomposition (SVD) techniques whereas in the indirect methods, (3.53) is solved using
iterative methods like Generalized Minimal Residual (GMRES), Conjugate gradients or
Geometric Multigrid [142]. Also, if matrix A is ill-conditioned or close to being ill-
conditioned, the iterative solver does not converge or converges very slowly. For better
performance it is recommended to smooth the matrix using preconditioner before trying
to factorize it [135].

If the dimension of matrix A is m x n, a direct solver usually needs O(m’) floating
point operations (FLOPs) whereas an iterative one takes only O(m?). Hence the memory

requirement for the latter is much less [142]. The direct solvers are very efficient for
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problems involving upto 100,000 DOFs depending on the available memory, but for

larger DOFs iterative solvers are recommended [135]. For the present transient
simulation with the mesh size outlined in Table 3.1 the generated DOFs is approximately
330,000 and A is positive definite. So the chosen solver is time-dependent GMRES with
Symmetric Successive Over-Relaxation (SSOR) preconditioner.
3.3.5. Model Validation

For validation purpose, a segmented Halbach rotor has been used as the source. The
accuracy of this boundary coupled finite element 3-D transient model is highly dependent
on the accuracy of the Halbach rotor field model. The 3-D transient model was validated
by comparing it with JMAG and Magsoft flux 3-D transient models when there is no
translational motion and also with a previously developed 3-D finite element steady state
model [75] in which both translational and rotational motion are present. No translational
motion was used by JMAG and Magsoft flux because the current version cannot
simultaneously model 3-D translational and rotational motion.

Despite (3.29) containing both convective and diffusive terms, no spurious oscillatory
behavior has been observed in this formulation and therefore upwinding technique
discussed in [13] was not used.

3.3.5.1. Comparison with Commercial Transient 3-D Finite Element Model (Zero
Translational Velocity)

Using the parameters given in Table 3.2, the transient boundary coupled A-¢ model
was compared with a JMAG 3-D transient model as shown in Figure 3.5. The Field
comparison of a Halbach rotor along the surface of the conductive plate created by
JMAG FEA and the analytic 3-D model, discussed in chapter 2, is shown in Figure 3.6. A

close agreement was obtained.
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Table 3.2 : Simulation parameters for zero translational velocity

Description Value Unit
Outer radius, ry 26 mm
Inner radius, r; 10 mm
Width, w, 52 mm
Rotor . .
Remnant magnetic flux density, B, 1.42 T
Relative permeability, i 1.108 -
Pole pairs, P 2 -
Conductivity, o 2.459x107 Sm’
Width, w 77 mm
Conductive plate Length, [ 200 mm
Thickness, h 6.3 mm
Air-gap between rotor and plate, g 5 mm

<
w

—FEA

0.2 —Analytic
s o i s e S N TR
2
7 0 =
1 R e e N A e
e
EO.I ,,,,,,,,,,,,,,,,,,,,,,,,,,
=

041 0.05 0 0.05 0.1
Distance along x-axis [m]

Figure 3.5. Example of the mesh used by Figure 3.6. B,, B, and B, magnetic flux density comparison

the transient JMAG 3-D model in which between a JMAG FEA model and the magnetic charge

Halbach rotor is rotated over a conductive analytic model along the plate surface at (y, z) = (-10, 30)mm

plate from center of the Halbach rotor.

In the developed transient model the forces were evaluated using the Lorentz method

[112, 143]. The thrust, lift and lateral forces are calculated, respectively, by

F, = [(,B,. ~J.B, ), (3.54)
QC

F, = [(J.B., = J,B,.)d, (3.55)
Q()

F,= [(J,B,,—J,B,,)d, (3.56)

2

c

The power loss in the plate is calculated using
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P

Loss

S CARS R TN (3.57)
JQ ‘

c

where, for example, B., and J, are the x-component of the magnetic flux density and
eddy current density in the conductive medium. In (3.54)-(3.57) the integration is
performed over the entire conductive plate domain €.

The presented finite element model was formulated using Comsol. Comparison of the
thrust, lift and lateral forces calculated using the presented Comsol model as well as
JMAG and Magsoft flux 3-D transient models is shown in Figure 3.7 when the rotor or
source is laterally offset along the z-axis by 10 and 25 mm and rotating at a speed of 4000
RPM. Figure 3.8 shows power loss comparison for the mentioned lateral offset values
and rotational speed of 4000 and 8000 RPM. Excellent match of results among different
models especially between JIMAG and the developed model has been achieved.

As can be seen from Figure 3.7 and Figure 3.8, Magsoft flux FEA and the presented
Comsol model produce high overshoot in the lift force and power loss results as soon as
the simulation starts. This is due to the fact that at the start of the simulation, the field in
the conductive plate is initially set to zero (refer to (3.52)) and therefore the conductive
plate suddenly experiences a flux change due to the source field. As a result, this
produces a ‘non-physical’ lift force. It happened only in simulation. On the other hand,
JMAG assumes that the initial field in the conductive region is defined as the source

field. As a result, IMAG does not produce any sudden peak in the lift force.
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Figure 3.7. (a)Thrust, (b) Lift and (c) lateral force comparison for 4000 RPM and zero translational velocity

among Comsol finite element model, JMAG and Magsoft flux 3-D finite element models for different

lateral offsets of the rotor
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Figure 3.8. Power loss comparison among Comsol finite element model and commercial JIMAG and
Magsoft flux 3-D finite element models for (a) lateral offset of 10mm and (b) lateral offset of 25mm.
Translational velocity of the rotor is zero.
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It is generally preferred to start the rotational and translational motion of the rotor

only after the field in the air and conductive region have become equal to each other or in

other words, the lift force and power loss has decayed to zero from the initial spike. From

Figure 3.7 and Figure 3.8, it is noticed that this decay takes approximately 30ms for

Comsol and 10ms for Magsoft flux FEA. Hence rotation of the rotor was initiated in

Comsol and Magsoft accordingly. As in JMAG FEA this initial spike was not present, the

simulation results do not have this time lag.

Force comparison among different finite element models also showed that the

proposed model using Comsol is computationally more efficient than other two
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counterparts. The average computation time for the transient simulation for 4000 and
8000 RPM of the rotor for different FEA models is outlined in Table 3.3. A Dell
workstation with an Intel Xeon-E5520 dual core processor with 22GB RAM was used.
The Comsol and Magsoft computation time results are shown for the period after the
decay of the initial peak. All the computation times are for 12ms of transient simulation

as shown in Figure 3.7 and Figure 3.8.

Table 3.3 : Computation time for different finite element transient models

Model type Computation time
Magnetic charge based transient model using Comsol v3.5a 54 min

JMAG transient 5 hr 40 min
Magsoft flux transient 5 hr 21 min

The accuracy of the developed Comsol based FEA transient model has been calculated
with respect to the JIMAG and Magsoft transient models for thrust, lift, lateral force and

joule loss at lateral offset of 25mm and shown in Table 3.4

Table 3.4 : Accuracy of the developed Comsol based transient FEA model

Force Error with JMAG transient [%]  Error with Magsoft transient [%]
Thrust 1.22 6.54

Lift 4.1 2.72

Lateral 1 3

Power loss 0.9 6.5

3.3.5.2. Comparison with 3-D Finite Element Steady State Model (Non-zero
Translational Velocity)

The JMAG and Magsoft finite element software cannot simulate translation and
rotation simultaneously, so they are not used to simulate non-zero translational velocity
transients. Hence, a previously developed 3-D boundary coupled A-¢ steady state model
using a novel current sheet approach [75] is used to compare the lift and thrust with the

developed transient model. A comparison is made over a range of slip values for 15ms™
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translational velocity and when the rotor is at center of the plate. The slip speed is defined
by (1.1) and rewritten here for convenience
-, (1.1)

m

where w,, is mechanical angular speed [rads"l] and r, is outer radius [m] of the rotor.

The force and power loss comparison between the two models highly depends on the
accuracy of the static rotor field modeling. The magnetic flux density created by the
Halbach rotor has been compared on the surface of the plate between the two models, as

shown in Figure 3.9 and Figure 3.10, using the parameters listed in Table 3.5.

Table 3.5 : Simulation parameters for non-zero translational velocity

Description Value Unit
Rotor Outer radius, ry 50 mm
Inner radius, r; 34.2 mm
Width, w, 50 mm
Remnant magnetic flux density, B, 1.42 T
Relative permeability, i 1.055 -
Pole pairs, P 4 -
Conductive plate Conductivity, & 2.459x10’ Sm’'
Width, w 77 mm
Length, / 200 mm
Thickness, & 6.3 mm
Air-gap between rotor and plate, g 9.5 mm

Flux density [T]

—— Magnetic Charge sheet
03F-—--7----- e r/ff———— — Current sheet &

| | | | | T T T T
a0 B
-0.1  -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Distance along x-axis [m]
Figure 3.9. Source magnetic flux density comparison between current sheet approach and magnetic
charge method for (y, z)= (-9.5, 20)mm from the center of the rotor
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| |
| | | |
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o4l L e S | Cu‘rrentsheet‘
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

0.04

Distance along z-axis [m]
Figure 3.10. Source magnetic flux density comparison between current sheet approach and magnetic
charge method for (x, y)= (10, -9.5)mm from the center of the rotor
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Using the parameters given in Table 3.5, the force comparison between the A-¢

steady state model using current sheet [75] and developed transient model is shown in

Figure 3.12. In the comparison, only the steady state values from the transient simulation

have been compared with the steady state model results which is illustrated in Figure

3.11.
T T
200~ - —— Thrust |
! ! — Lift
150 ff - RRRREEEEEEEE R R RREREEEEEEES
| | Steady state value
z. ‘ l
£ 100 AN Y A A Y ANIYA Y A YA W e
S \/ A4 \/ N vV \./ \/ VS Vv
o \ \
B 5o o —— Pe—————— SSESSEREEEEEE
O L L
0 5 10 15

Time [ms]

Figure 3.11. Thrust and lift force plot vs. time obtained using the developed 3-D finite element transient

model for 15ms™ translational velocity and 14ms™ slip speed.

It is seen that for negative slip speeds the x-directional force is the drag force (which

creates braking on the rotor) and for positive slip speeds it becomes a thrust force (moves

the source forward). Figure 3.13 shows the power loss comparison between the two

models. An excellent match of results is obtained.
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Figure 3.12. Thrust and lift force comparison between 3-D boundary coupled A-¢ transient model based
on magnetic charge sheet and steady state model based on current sheet for 15ms™ translational velocity.
The magnetic rotor is located at the center of the conductive plate.
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Figure 3.13. Power loss comparison between three-dimensional boundary coupled A-¢ transient model
based on magnetic charge sheet and steady state model based on current sheet for 15ms™ translational
velocity. The magnetic rotor is located at the center of the conductive plate. Both the models are written
in Matlab and Comsol v3.5a

3.4. Steady State Modeling
3.4.1. Governing Equation Formulation
The steady state model satisfies the same governing equations for the subdomains and
boundaries as the transient counterpart with the only exception being the absence of time-

dependent terms from the subdomain equation.
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If the rotor’s angular electrical frequency is w, [rads™], at steady state the vector

potential in the conductive plate can be written as

A(x,y,z,t) = A<x,y,z)ej“ﬁt (3.58)

Substituting (3.58) into (3.29), the governing equation for subdomain €2, in steady state

condition becomes

c

0A, . B -
_ch VN, VA dQ, — ,uOJfQ N, [UZE + jw, A, ]dQC =0, n=ua7yz2 (3.59)

and the boundary conditions are given by (3.46)-(3.48). The subdomain equations and
boundary conditions are given by (3.33). Additionally (3.49) is satisfied on I',. Also for
translational motion simulation the conductive region vector potential must satisfy (3.50)
onIbs.
3.4.2. Meshing and Solver Settings
The mesh size is kept the same as the transient simulation and given by Table 3.1. For the
solver, stationary GMRES was chosen along with SSOR preconditioner.
3.4.3. Model Validation

The z-component magnetic vector potential field in the conductive plate and x-

component induced eddy current obtained from the developed steady state FEA model

are shown in Figure 3.14 and Figure 3.15 respectively.
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Figure 3.14. The A, magnetic vector potential field due to the induced eddy current in the conductive plate
region is shown for 20ms™ translational velocity and 20ms™ slip speed. The magnetic rotor is (a) located
at the center of the conductive plate and (b) shifted from the center of the conductive plate by 20mm. The
model is written in Matlab and Comsol v3.5a.
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Figure 3.15. The J, induced eddy current in the conductive plate region is shown for 20ms
translational velocity and 20ms™ slip speed. The magnetic rotor is (a) located at the center of the
conductive plate and (b) shifted from the center of the conductive plate by 20mm.

Figure 3.16 and Figure 3.17 illustrate the A, field in the plate. It is evident that it is

very small and only significant near the edges of the plate.

Max: 1.323e-4

x1074

1 Subdomain 4,
0.5
0
-0.5
-1
Min: -1.327e-4

[Wb/m]

Figure 3.16. The FEA calculated A, magnetic vector potential field in the conductive plate is shown when
the rotor is at the center of the plate.
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Max: 4.787e-4

Subdomain 4,

Min: -4.777e-4
[Wb/m]
Figure 3.17. The FEA calculated A, magnetic vector potential field in the conductive plate is shown
when the rotor is shifted from the center by 20mm along the z-axis.

Like the transient model, the developed steady state FEA model is formulated using
Comsol. For validation purposes, a segmented Halbach rotor has been used as the source.
The steady state model was validated by comparing it with the JMAG and Magsoft flux
3-D transient model when there is no translational motion and also with a previously
developed steady state model [75] in the presence of translational motion of the source.

3.4.3.1. Comparison with Commercial Transient 3-D Finite Element Model (Zero
Translational Velocity)

Using the parameters given in Table 3.2, the presented steady state model was
compared with the final steady state results from the JMAG and Magsoft flux transient
FEA models. The force comparison is shown in Figure 3.18. Figure 3.19 shows the

power loss comparison for a rotor lateral offset of 10 and 25mm.
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Figure 3.18. Thrust, Lift and lateral force comparison for zero translational velocity among Comsol finite
element model and commercial JIMAG and Magsoft flux 3-D finite element models when (a) the lateral
offset of the rotor is 25mm and (b) the lateral offset is 10mm.
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The accuracy of the developed Comsol based FEA steady state model has been calculated
with respect to the JIMAG and Magsoft transient models for thrust, lift, lateral force and

joule loss at lateral offset value of 10mm and shown in Table 3.6.

Table 3.6 : Accuracy of the developed Comsol based steady state FEA model

Force Error with JMAG transient [%]  Error with Magsoft transient [%]
Thrust 2.36 9.65

Lift 5.4 4.87

Lateral 0.1 1

Power loss 3.48 1.84

3.4.3.2. Comparison with 3-D Finite Element Steady State Model (Non-Zero
Translational Velocity)

The force and power loss comparisons between the developed magnetic charge based
steady state model and previously developed current sheet based steady state model [75]
are shown in Figure 3.20 and Figure 3.21 respectively for 25mm lateral offset of the rotor

and 15ms™ translational velocity. The parameters used are listed in Table 3.5.
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Figure 3.20. (a) Thrust/drag and lift force, (b) lateral force comparison for 15ms™ translational velocity and
25mm lateral offset between magnetic charge and current sheet models.
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Figure 3.21. power loss comparison for 15 ms™ translational velocity and 25mm lateral offset
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Table 3.7 shows a comparison of the computation time taken by the current sheet and
magnetic charge based steady state models to simulate one slip speed of Figure 3.20 and
Figure 3.21. It is seen that charge sheet based approach is almost 4 times faster. This is
due to the fact that source modeling technique using charge sheet is much faster than the

current sheet approach.

Table 3.7 : Computation time comparison between Magnetic charge and Current sheet based steady
state finite element models

Model type Calculation time
Magnetic charge based steady state model 1 min 40 s
Current sheet based steady state model [75] 8 min

3.5. Summary

This chapter has presented 3-D transient and steady state finite element models to
simulate the forces acting on a magnetic source when it is rotating and/or translationally
moving above a conductive plate. A brief summary of the developed FEA transient and
steady state models is presented in Table 3.8. The presented model was validated by
comparing it with standard finite element software (JMAG and Magsoft Flux) and
already existing Comsol steady state model for zero and non-zero translational velocity
respectively. Overall very good performance of the presented finite element models has

been achieved.
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Table 3.8 : Summary of the presented FEA transient and steady state models

Model assumptions

Model characteristics

Conductive plate is linear, simply
connected and homogenous

Conductive plate has constant
conductivity and is non-magnetic

The source has uniform motion

Frequency is low

Does not physically model the magnetic source; instead
applies the source field in boundary conditions which
leads to reduced simulation time

Can be applicable for any magnetic source

Computes the source field using magnetic charge sheet
which helps reduce the simulation time

Models translational as well as rotational motion of the
source

Model has been developed in Comsol v3.5a.




CHAPTER 4 : A BRIEF SURVEY OF ANALYTIC EDDY CURRENT MODELING IN
THREE DIMENSION

4.1. Introduction

When a magnetic source moves in the vicinity of a conductive material, time varying
magnetic fields induce eddy currents in the conductor which in turn interacts with the
source magnetic field to create velocity dependent drag or thrust force and/or lift force. In
magnetic levitated vehicles (maglev) the thrust and lift force are utilized while the drag
force is an impairing factor [13, 74, 75]. But the later can be utilized in applications like
eddy current damping [86-88, 144] and braking [89-91, 145-147]. Also eddy current
interaction with conductive material is utilized in eddy current testing (ECT) to detect
flaws or cracks in the conductive material [83, 84, 117, 118, 148-152]. In ECT a probe
coil is moved over the conductor. In the presence of any crack in the conductor, the
impedance of the eddy current path changes due to discontinuity in the conductivity. This
change is measured by the probe coil.

Finite element analysis (FEA) methods have been a hugely successful tool for
analyzing eddy current distributions in conductive medium. An enormous amount of
research has been conducted in this field in the past. The beauty of FEA is its ability to
accurately model field distribution in simply connected [136, 153-158] or multiply
connected conductor [140, 159-164] of complicated geometry with constant or varying

conductivity. However analytic modeling techniques are more appealing because of their
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computational efficiency compared to FEA. There is a considerable amount of
publications on the 3-D analytic modeling of eddy currents in linear conductive medium.
Hence it is considered appropriate to devote a chapter to study the existing analytical
modeling techniques in order to fully appreciate the need for further research
contributions in this field.

In the next section a brief survey will be presented and in section 4.3 the need for new
methods will be discussed.

4.2. Review of Existing 3-D Analytical Methods

Depending on the geometry of the conductive medium the existing analytical
methods can be categorized into two main groups: models for conductive half-space and
conductive domain with finite dimensions.

4.2.1. Conductive Half-Space

The induced eddy current distribution in a conductive half-space due to a current
carrying coil has been studied extensively [165-176]. The magnetic scalar potential
cannot be used inside the conductor due to the presence of current and therefore the

magnetic vector potential (MVP) has been mainly used to formulate the fields which is

defined as
B=VxA (3.6)
The governing equations are
V?A = 0, in nonconductive region (3.60)
VA = uo %, in conductive region (3.61)

where u, o are the permeability and conductivity of the conductive medium.
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Hammond [177] calculated the eddy current field in a conductive medium due to the
presence of a circular current loop, as shown in Figure 4.1, using magnetic vector

potential in the conductive and nonconductive current free regions.

/
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Figure 4.1. Circular current coil parallel to conductive half-space [177]

Dodd and Deeds in their classic work extended the ideas of Hammond by calculating
the induced eddy current field in a two-conductor rod [166] and layers of conductive
media [178] due to a circular coil of rectangular cross section. Like the work by
Hammond, due to the axisymmetric nature of the coil, the cylindrical coordinate system
was used and hence the obtained field solution was in terms of Bessel functions.

Hannakam [165] calculated the force on two parallel wires carrying current in
opposite directions near a very thin conductor. Later Reitz [167] extended the work done
by Hannakam by calculating the forces on magnetic monopole, dipole and rectangular
current coil when they move near a conductor using the magnetic vector potential in
cartesian coordinate system. Hannakam [165] and Reitz [167] assumed the conductive
plate thickness to be smaller than the skin depth for the dominant frequencies in the
excitation field. With this assumption, the eddy current variation along the thickness of
the plate was neglected. Beissner and Sablik generalized the work by Dodd and Deeds
[166] to model the eddy current in a conductive half-space due to a nonsymmetric coil
[168]. The eddy current distribution in a conductive plate of finite thickness was modeled

due to moving rectangular current filament [169], circular current loop [179] and also
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elliptic current excitation [171] while Rao [170] used a perturbation technique to study
the field induced due to a moving current filament above a conductor with finite
thickness using a power series approach.

In the models discussed above, the total magnetic vector potential in the
nonconductive region, for example in region 1 of Figure 4.1, is composed of the potential
due to induced eddy current in the conductor and due to the current coil. But deriving the
latter can be complicated and time consuming procedure depending on the coil geometry
as one needs to apply the Ampere’s current law on the coil to derive the magnetic vector

potential [112, 168, 170, 177, 178] as given by

A(z,y,2) = if,]i(x',y',z',)ldv (3.62)
47 T

where A; and J; are respectively the i-th component of the magnetic vector potential and

source current in the coil respectively and

r=@—aP + -y +-27 (3.63)

is the distance between the current element (S) and point of observation (M) as shown in
Figure 4.1. In (3.62) integration is performed over the entire distribution of source
current.

However, the derivation of the magnetic vector potential of the source field can be
avoided for simple geometrical shape of the exciter. Panas [169, 171] applied the source
current field only in the interface boundary conditions for rectangular and elliptic current
excitation.

In addition to the magnetic vector potential, the second order vector potential (SOVP)

has also been successfully used to solve problems in the cylindrical [180], spherical [181]
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and cartesian [182] coordinate systems. Since A field is solenoidal (due to Coulomb
gauge given by (3.22)), the SOVP, which is denoted as W, can be defined as [182, 183]

A=VxW (3.64)

where W can be decomposed into two scalar potentials, one transverse to the electric
field and called as transverse electric (TE) potential and another transverse to the
magnetic field and called as transverse magnetic (TM) potential as follows [141, 173,

182-184]

W =alW, +ax VW, (3.65)

where n 1is the unit vector along any of the three directions of 3-D space, W, is the TE
potential and W, is the TM potential. Hence, in the SOVP approach only two components
need to be solved instead of three components in the magnetic vector potential approach.
That reduces computational complexity and computation time. The choice of n depends
on the application. For example, in the study of eddy current fields in a planar conductive
half-space [182], as shown in Figure 4.2, n is chosen to be a unit vector along the z-
direction. This choice was due to the fact that in a conductive half-space eddy current
flows parallel to the plane at z=0 irrespective of the position and shape of the inducing
coil [141, 171, 182, 185]. Hence this selection of 7 eliminates the need for TM potential,
W,. The entire problem can then be formulated only in terms of a single scalar potential,

W, [182].
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Figure 4.2. Circular current coil of arbitrary shape above a conductive half-space [182]

The magnetic flux density, B, has also been used to model the eddy current induced
in a conductive medium due to different excitation types [150, 186, 187]. Sadhegai and
Salemi [185, 188] generalized the field modeling technique using the magnetic field
intensity as they stated that the source field is required to be known only at the air-
conductor interface in the absence of the latter to find eddy current distribution inside the
conductive medium. For example, in Figure 4.3 the source field is required to be known
only at the z=0 plane in the absence of the plate. The source field is then included in the
boundary conditions satisfying the continuity of the normal component of the magnetic
flux density and tangential component of the magnetic field intensity. Sadhegai and
Salemi considered straight current wire, solenoid exciter, elliptic loop exciter to validate
their model [185, 188].

Exciter

H1,01
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Conductive
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h U202

H3,03
Figure 4.3. Circular current coil of arbitrary shape above a conductive medium of finite thickness [185]
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4.2.2. Conductive Domain with Finite Dimensions

The conductive half-space modeling techniques can be applicable when the conductor
plate is large enough for the field to decay at its boundaries. Otherwise finite domain
length has to be considered as the presence of domain boundary restricts eddy current
path and modifies the field inside the conductive region. Field analysis in a finite width
conductive medium is of immense interest for magnetic levitation [13, 74, 75, 189, 190].
Also in eddy current testing, the cracks can often occur near the edges of a conductive
plate, therefore consideration of the edge effect of such a plate is essential for eddy
current testing [118, 149]. In all these applications the models outlined in the last section
will fail to model the eddy current distribution due to the assumption of infinite domain
length.

Urankar [191] presented a semi-analytic integral solution for the force acting on a
conductive medium of arbitrary shape and finite width using the magnetic vector
potential. However, in order to compute the force the integral equations need to be
evaluated over the conductive domain as well as the exciter domain. This does not seem
to be a computationally efficient approach.

The eddy current distribution due to the edge effect of a finite width conductive plate
or conductive plate with a hole has been considered using second order vector potential
[117, 118, 149, 151, 192] and magnetic vector potential [148]. In these publications, the
modal solutions to eddy current problems in conductive regions of the finite dimension
was achieved by truncating the originally infinite problem domain using appropriate
boundary condition on the truncation boundaries. This method is known as the truncated

region eigenfunction expansion (TREE) [141]. The main challenge in this approach is the
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numerical computation of the complex valued eigenvalues for the conductive region
[192]. Although the recent publications using TREE approach considered the finite width
of the plate with hole/ crack for impedance variation calculation, it has not considered
finite thickness plate for force calculation [117, 148, 192].

Recently Pluk et al. [144] used a mirroring technique [193, 194] to consider the finite
length and width of the conductive plate and provided a semi-analytic solution for the
induced current density. Also the authors calculated the damping force using numerical
integration.

4.3. Need for New Method

In this dissertation a computationally efficient analytic method is sought that is
capable of calculating the induced field in a conductive plate of finite thickness and width
due to the presence of an arbitrary magnetic source. The computation time should be as
small as possible in order to offer the potential for real time computing. Hence the present
challenge is to, first, find a general source field modeling technique which does not
depend on the geometry of the source; second, take into account the finite thickness and
width of the conductive plate and third, make the method computationally fast.

Out of the discussed methods in this chapter, the one presented by Sadhegi and
Salemi [185, 188] helps one generalize the source field, but this method does not take
into account the finite width of the plate. Also the proposed method used the magnetic
field intensity which requires one to solve for nine unknowns in the conductive region.
On the other hand, Panas and Kriezis [169] provided a decoupled set of equations for the

magnetic vector potential leading to an easier computation but did not consider the finite
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domain length. A new method thus calls for the combination of the previous two. This
idea will be investigated in chapter 6.

Also the research completed by Theodoulidis and Kriezis [182] will be generalized
for any magnetic source using SOVP in the conductive and nonconductive regions in
chapter 5.

In chapter 7 the TREE formulation using the second order vector potential will be
applied to a conductive plate of finite thickness to include its edge effect. Computation
time for different modeling approaches will be discussed.

4.4. Conclusion

A brief survey of the analytic modeling techniques was presented in this chapter. As
the determination of the quasi-static electromagnetic field of a magnetic source,
especially current coil, in the presence of an electrical conductor is well researched topic
in the literature, the brief survey would avoid any duplication of the previous work and
also would guide to the right direction in finding new method. Next few chapters will

discuss on the new proposed methods.



CHAPTER 5 : 3-D ANALYTIC EDDY CURRENT MODELING FOR A
CONDUCTIVE PLATE OF INFINITE DIMENSION
5.1. Introduction

As mentioned in chapter 4, this chapter will discuss eddy current modeling in a large
conductive plate due to any magnetic source moving above the plate at any arbitrary
position. The second order vector potential (SOVP) will be used to formulate the
conductive and nonconductive regions. This, in some sense, will provide a generalization
of the work presented by Theodoulidis and Kriezis [182] who computed induced field
distributions due to a current coil of arbitrary shape. In dynamic simulation the magnetic
source may have vertical oscillatory motion under the influence of lift force and its own
weight. Therefore in order to study dynamic behavior of such a magnetic source moving
above a conductive plate, one should incorporate the vertical and lateral motion along
with the principle velocity of the source. Not many authors have included vertical and
lateral motion in studying dynamics. There are few exceptions like Rodgers considered
the heave motion in 2-D analytic and finite element model to study dynamic performance
of a linear induction machine in steady state condition [195]. Paudel er al. modeled the
heave velocity in steady state model to study magnetic stiffness and damping
characteristics of a magnetic levitated vehicle [81, 82]. In [150] Itaya et al. the authors
studied the effect of forward and lateral motion of the magnetic source on the induced

eddy current density in a conductive plate.
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In this chapter, forces acting on the magnetic source will be computed using two different
approaches: Maxwell’s stress tensor and magnetic charge. It will be shown that both
methods produce the same result, as expected. Also the torque acting on the source and
power loss in the conductive plate will be computed. The results will be compared
against a previously developed finite element steady state model using magnetic charge,
discussed in chapter 3, and also current sheet based steady state finite element model
[75].

The rest of the chapter is arranged as follows: section 5.2 describes the governing
equations for all the problem regions outlined above. Section 5.3 describes the boundary
conditions which will be followed by the derivation of general solutions in section 5.4.
Section 5.5 will talk about the source field modeling; solutions for the electromagnetic
fields will be provided in section 5.6; electromagnetic forces will be computed using
Maxwell’s stress tensor and magnetic charge approach in section 5.7 which will be
followed by total power transfer, electromagnetic torque and power loss calculations in
sections 5.8, 5.9 and 5.10 respectively; electromagnetic stiffness and damping constants
will be calculated in section 5.11 and 5.12 respectively; model validation will be
performed in section 5.13; stiffness and damping characteristics will be discussed in 5.14
and a brief summary of this chapter will be provided in section 5.15.

5.2. Governing Equation Formulation

Consider an application of maglev transportation [13, 74, 75] where a magnetic rotor

is moved above a conductive plate, as shown in Figure 5.1. The linear motion of the

center of mass of the rotor due to its rotational motion is v..
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Aluminum plate

Figure 5.1. The x-y view of a 2 pole pair Halbach rotor moving and rotating over a conductive aluminum
plate. The figure shows isoline plot of the radial component magnetic flux density in air region and
isosurface plot of the current density in the conductive plate. The model was created in Magsoft flux 3-D..

The schematic of the problem region is shown in Figure 5.2 with the source located at
height g above the conductive plate surface with /, w and % being the length, width and
thickness of the conductive plate. Also the source velocities in x, y and z -directions as
well as mechanical angular velocity w,, are shown in the figure. It must be noted here that
although the schematic of Figure 5.2 displays a magnetic rotor as the source, the

proposed analytic model is applicable to any kind of magnetic source.
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Figure 5.2. The (a) x-y and (b) z-y view of the problem region with magnetic source located at height g
above the conductive plate surface.

The assumptions of this analytic model are listed below:
e The plate has infinitely large width, w, and length, I.
e The plate has finite thickness, A.
e The plate is continuous with constant conductivity and non-magnetic.

e The plate is linear and homogenous.
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The magnetic source has translational, heave and lateral motion along with
rotational motion.

The frequency is sufficiently low in order for the quasi-static approximation to be
valid. Precisely, the wavelength in the free-space is assumed to be large compared
to the dimension of the plate and magnetic source, which is always true for

maglev applications.

The conductive medium is located at y=0 of the Cartesian coordinate system which

creates three regions as shown in Figure 5.2:

Region I (€)) is the air or nonconductive region between the magnetic source and

conductive plate located at 0 <y < ¢
Region II (€y) is the conductive region located at —h < y < 0

Region III () is the air or nonconductive region below the conductive plate

located at y < —h.

5.2.1. Conductive Region ()

In the presence of the eddy current in the conductive region, the magnetic vector

potential is an obvious choice for modeling the region. However this analytic approach

requires one to solve for three unknowns in the conductive region. Instead a formulation

using the second order vector potential (SOVP) reduces the number of unknowns by one.

Therefore, SOVP has been utilized in the proposed analytic model which is denoted as W

and defined as [141, 182, 183]

A=VxW (3.64)

where A is the magnetic vector potential. As discussed in chapter 4, W can be split into

TE and TM potentials with y preferred direction as follows [117, 141, 182-184, 196]
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W =W, +§xVW, (5.1)

Here g is the unit vector along the y-direction while W, and W,, are the TE and TM

potential respectively. In this chapter a steady state solution for the scalar TE and TM

potentials is assumed as given by [74, 79]

W, (z,y,2,t) = W(z,y, 2)e i = a,b (5.2)
where w, is the electrical angular frequency of the source in rads”. w, can be due to
excitation current frequency or the angular speed of the rotor. A clockwise rotation of the
rotor, ., induces a linear motion, v, at its center of mass in the positive x-direction as
shown in Figure 5.1 and Figure 5.2. However, as in this dissertation the rotor is assumed
fixed in space and plate in movable state, the positive clockwise rotational motion of the
rotor can be simulated by inducing a linear motion in the plate in the negative x-direction.
As a result, the exponential term of the TE potential given by (5.2) is taken as negative.
In (5.2) superscript ‘II’ indicates region II. The governing equation of the conductive

region in terms of the magnetic vector potential has already been derived in chapter 3 and

rewritten below for convenience

(3.24)

VQA_M[aA OA OA aA]
- 0

— Y — =y — — v, —
ot  “oxr Yoy 7oz

where o is the conductivity (Sm'l) of the plate and v,, vy, v, are velocity of the rotor in the

x, y and z directions respectively (ms™). Substituting (3.64) into (3.24) gives

0 0 0 0
—y =

V2(V x W) = =y = -, —
( )= o\ 5 T s oy oz

(V x W) (5.3)

Substituting (5.1) into (5.3) gives
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VAV X (GW, +§x VI,)) =

0 %) %) 0 (5.4)
——v ——v,——v,— |(VX@W +gx VW,
“Ua[at o oy ”Zaz]( X (IW, +5x V)
Rearranging terms yields
VXQV2WG—[LOU£—UT£—U£—UZ£ W, |+
ot "oxr Yoy 0z (5.5)

0 0 0 0
- 2
yxV[V W, ,uoa[ ; v, v, v, z]Wb]IO

Equation (5.5) is satisfied if the TE and TM scalar potentials satisfy the following 3-D

scalar Helmholtz equation

82I/ViH 82I/ViH 82W.H

owl own own amll]
U - -0 ,

ot o2 02 N Tar  ar oy o (5.6)
i=a,b
Substituting (5.2) into (5.6) yields the governing equation for €y in steady state
2wl 2wl §2wh . oW oWl awl
[ [ i o W, i i i
922 + 8y2 + 5.2 Hoo | Jw W5 + v, o + v, ay + v, —82 ], 5.7)
1= a,b

There is a freedom in choosing the unit vector of (5.1). Here it is chosen along the y-
direction, but could have been selected along the x or z-direction [141]. But the choice is
not only a matter of preference but also a matter of convenience as shall be shown
shortly.

Utilizing (3.64) and (5.1) the components of the magnetic vector potential are related

to W, and W, as follows

i _owhow!

5.8
v 0z 0x0y (5:8)
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11

Ay o2 07 5.9

Al — % - % (5.10)
‘ oz 020y

From (5.9) it is noticed that the A, component is a function of W, only. This is because
the unit vector of (5.1) has been chosen along the y direction. As eddy current flows
parallel to top conductive surface at y=0 for a large conductive plate [141, 182, 185, 188],
the A, component is zero. As a result, W;, has to be zero. The conductive medium can thus

be represented only in terms of W,. This is illustrated in Figure 5.3.

Exciter
yt current coil
Ho
Conductive W‘ /X
plate z

h Mo, O

nduced eddy
current, J

Ho
Figure 5.3. Diagram of the induced eddy current and TE potential (W,) in a conductive plate of infinitely
large width and length, but finite thickness.

Noting the relationship between the magnetic flux density and magnetic vector
potential [115]
B=VxA (3.6)
yields
B=VxVxW (5.11)
Substituting (5.1) into (5.11) and ignoring W,, the relationship between the flux density

and W, potential within the conductive region is obtained as follows

21711
I _ 0 Wa

= 5.12
N 0x0y (5-12)
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2wl 2w

Bl — (5.13)
Y dz? 97
Substituting (5.6) into (5.13) B! can also be written as
82wﬂ a WH a WH a WH
m _ a - 11 a a a
B = P + poo | jw W, + v, 52 + v, 3y + v, s (5.14)
and
277l
pr = OV (5.15)
020y

5.2.2. Nonconductive Regions (€2 and Q)
In the nonconductive or air regions, the conductivity term is zero and thus the

magnetic flux density equations defined by (5.12), (5.14) and (5.15) are related to W, by

oWl otwl . OPW)

B = z 7 2, =110 (5.16)
Ozxoy dy? 020y

which can also be written as

OW!
dy

B =V

], i = L1 (5.17)

The relationship between the magnetic flux density, B, and magnetic scalar potential, ¢,
is given by [115]

B = —y,V¢ (2.5)
Comparing (5.17) with (2.5) the following can be written relating the magnetic scalar

potential, ¢ , with the TE potential, W,, for air regions I and III

qSi _ _L(?W,,, . i=LII (5.18)
Ly 9y
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In region I, the total TE potential is composed of the source field, W* and reflected
field, W, due to the induced eddy currents in the region II as given by

Wl =wks + whr (5.19)

where W'* and W™ are the potential due to the source and reflected field respectively.

In region III, the total TE potential is the transmitted field due to the induced eddy
currents in the conductive region. The source, reflected and transmitted TE potentials

within regions I, II and III are illustrated in Figure 5.4.

W, y Conductive

WdLr I F Z plate
WGH l T WaH
WaIII l

Figure 5.4. Diagram illustrating the source, reflected and transmitted TE potentials.

As the conductivity is zero in the nonconductive regions, from (5.7) the TE potentials are

seen to satisfy the following Laplace’s equations in regions [ and IIT [117, 118, 141]

VAW =0 (5.20)
21 7Lr

VAW =0 (5.21)

viwit =0 (5.22)

5.3. Boundary Conditions
The continuity of the tangential components of the magnetic field intensity and
normal component of the magnetic flux density must be satisfied across the interface y=0
and y= -h. As the relative permeability of the conductive medium is unity, the boundary

conditions are
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B + B =B aty=0 (5.23)
B + B =B, aty=0 (5.24)
B + B =B aty=0 (5.25)
B = BM Jaty=-h (5.26)
Bf = B;]H’t, aty=-h (5.27)
B = B aty=-h (5.28)

However, it is found that (5.23) - (5.28) hold true if the continuity of the TE potential and

its normal derivative is satisfied across the interface or saying mathematically [181]

whe 4+ wh =wl aty=0 (5.29)
Is ILr 11
oW, oW, _ oW, ,aty=0 (5.30)
oy oy oy
wi = wil aty=-h (5.31)

o WH o WIH

= , at =-h 5.32
oy oy aty (5.32)

Thus instead of solving six boundary conditions (5.23) - (5.28), only four (5.29) - (5.32)
are required at the air-conductor interfaces in the SOVP model.

In addition, at the domain outer boundaries, as shown in Figure 5.2, at = £/ / 2 and
z = tw / 2 the Dirichlet boundary condition is satisfied i.e. all the scalar TE potentials

are set to zero at these boundaries.



5.4. Derivation of General Solutions

5.4.1. Conductive Region ()
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Using the separation of variables method [132], the TE potential in j; can be written

as

Wi (2,9,2) = X(@)Y(4)2(2)

(5.33)

Substituting (5.33) into (5.6) and dividing both sides by X(z)Y(y)Z(z) (assuming they are

non-zero functions of spatial variables) yields

1 1 1

Y A

£+Y—"+Z—"—— o| jw +v£+v—+v—
X 'y g T MO e T hTy

VY 7

where the superscript prime indicates differentiation.
Let, X(z) = e/n®

and Z(z) = el

where the spatial frequencies are defined as

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

Here it is assumed that / and w are large enough to decay the TE potential to zero at

x ==+l /2andz = +w / 2. Hence, complex Fourier series has been used to represent the

x and z dependency in (5.35) and (5.36) instead of sine series. Substituting (5.35) and

(5.36) into (5.34) gives for all m, n
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n 1

£ 2+ Y7 — k= —pyo| jw, + v & + juk, + vy% (5.39)
or, Y7 + pyov, % — (&2 4k = jno(w, + 0,6, + vk, )) =0 (540
or, Y7” + ,Lboavy% — Wan =0 (5.41)
where
an? = §m2 + k:n2 — j,uoa(u)(3 +uv, & + vzkn> (5.42)
The roots of (5.41) are
A = 05(— 900, + y (1y00, ) + 47,,2) (5.43)
B = 0.5(~11900, — (g0, > + 47,,%) (5.44)
Hence the general solution for Y(y) is
Y(y) = CN ¥ 4 DI oPmy (5.45)

Substituting (5.35), (5.36) and (5.45) into (5.33) the general solution for the W, potential
within the conductive region is obtained as
M N

Wiy = 5 3 el (aneamny + DI By )’ —h<y<0 (546)
m=—M n=—N

The Fourier series is assumed to have M and N harmonics in the x and z directions

respectively. The error introduced by this series truncation can be minimized by

increasing the number of harmonics. C1, and D" = are unknowns and will be determined
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by applying boundary conditions. It must be noted that only the real part of (5.46) must

be considered when evaluating the physical field.
5.4.2. Nonconductive Regions (€2 and Q)
Applying the separation of variables method [132] to (5.21), the following general

solution can be derived for the TE potential within air region I

M N
W (2,y, 2 Z S ettt el 0 <y < g (5.47)
—M n=—N

where
Bypm = \ gm + k 2 (548)

Only the negative exponential of y is used since the reflected field decays with distance
away from the conductive plate. Only the real part of (5.47) is meaningful when
calculating the physical field. The source field formulation will be discussed in section
5.5.

Similarly from (5.22) the following general solution can be obtained for the TE

potential of region III
M N
Wz, y, 2 Z Z eJen® gk, som (VD) < (5.49)
—M n=—N
In (5.49) the positive exponential of y ensures that the field decays with distance away

from the conductive plate. It must be noted that only the real part of (5.49) has any

physical significance.
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5.5. Source Field Modeling

In the proposed model, the TE potential within region I due to the magnetic source,
Wal"g, is calculated from the knowledge of the source magnetic flux density using planar

magnetic charge sheet [76] as outlined below.
It is assumed that a planar charge sheet is placed at height y=g above the plate surface
parallel to it as shown in Figure 5.5. Using (2.30) which is rewritten below for

convenience

P (7,2) = 2B (7,9, 2) (2.30)

y=g

and (2.43) the y-component magnetic flux density of the source in region I can be

obtained as follows

M N
BIs 33 Y, 2 E E eJm® Jkﬂ7€nmﬂ y—9) S{v/m ,0<y<yg (5.50)
—M n=

The exponential term of y makes sure that the source field increases with distance

towards the original magnetic source.

Magnetic rotor

‘ Planar magnetic

charge sheet

................................................... \ y
g | X g O
Conducting plate z h  Qn Conducting plate z h  Qu
[ Qm / Qu
(@) (b)

Figure 5.5. (a) x-y view of the magnetic source. The source is located at (x.,y..z.) = (0, r,+g, 0).; (b) the
source is replaced by an equivalent planar magnetic charge sheet located at y = g above the conductive
plate surface.
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In order to determine the Fourier series coefficients, SY, , the source y-component flux

density is first computed on the charge sheet surface at discrete sampling points along the
x and z axes using (2.22). Shifting the coordinate of the center of the source from (0,0,0)

to (0,y.,0), the source B, field is calculated using

o Bi(r 0 zﬂ(g_yc —r sinf ) 2z +w, 2z —w, "
v o 21 f r2 \/4 2 y \/ 2 2| ©
0 e+ (22 +w,) 4r° + (22 —w,)
(5.51)
where, =2+ (g—-vy) +r?-2n (x cosf, + (g —y,.)sin 00) (5.52)
Noting that
y, =1 +g (5.53)
substituting (5.53) into (5.52) gives
r? =g1% + 27”02 -2, <xcos 0 —r sin 00) (5.54)

Two dimensional discrete Fourier transform (2-D DFT) is applied on the source B, field
computed using (5.51). The resulting discrete Fourier sequence is converted into a

continuous exponential Fourier series as discussed in Appendix A to obtain the
coefficients SY . The original By source field and reconstructed field using (A.22) on the

charge sheet surface are shown in Figure 5.6 and Figure 5.7.
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B, flux density [T]

B, flux density [T]

x-axis [m] 0.1 z-axis [m]

(b)
Figure 5.6. (a) Original B, source field and (b) reconstructed B, field using (A.19) on the charge sheet kept
at Smm above the conductive plate.

0.6 ; ; ;
| gl
; — Original
E 04— L *  Reconstructed |
> | | |
a | | |
: : : :
ko] 0,2 77777777777 B A T\ - - - -~ T - - - - - - -0~ -
x 1 1 1
é | | |
ERP S S I S é
! ]
1 1 1
| | |
-0.2 ‘ : ‘
-0.1 -0.05 0 0.05 0.1

Distance along x-axis [m]
Figure 5.7. Comparison of the original and reconstructed B, source field along x-axis at z = 0.

Equation (5.16) relates the TE potential with the y-component magnetic flux density

due to the source as

B:I""’ (5.55)
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Y

or, Whe = f j"deydy (5.56)

Thus integrating (5.50) twice with respect to y gives the source TE potential in region |

I/I/GLS — Z Z ejnge-]l‘nZSw e Fmn J 9)7 0 S y < g (5.57)
—M n=—N

W Y
where Syo= S

mn’?

0<y<y (5.58)

mn

Using (5.16) and (5.57) the x and z components of the source flux density in region I

are determined to be

Bhs = Z Z elontehije g SU e U9 0 <y < g (5.59)

m" 'mn™m
—M n=—N

Bi’s = Z Z eIon®ehi? e g QU e o (9= 9), 0<y<yg (5.60)

n"Vmn™ mn
—M n=—N

Substituting (5.58) into (5.59)-(5.60), BY* and B* can be rewritten as

Bl = z z eIEn® gk, 28 e Fonn (Y=9) gm’ 0<y<yg (5.61)
—M n=—N Konn
¢ ‘k
Bl = z z eTenTe a7 Y ghmn(y=9) L g<y<yg (5.62)
—M n=—N Hmn

Equations (5.61), (5.62) express the x and z flux density components due to the source in

terms of the y-component and will be useful for force and power loss calculation.
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5.6. Field Solution

5.6.1. Solution for the TE Potential
Substituting (5.47), (5.46) and (5.57) into (5.29) and cancelling out common terms

gives for each m, n

Sv e fmd ol = ¢l 4 DU aty=0 (5.63)
Substituting (5.47), (5.46) and (5.57) into (5.30) yields
Ii’fﬂn (S;;;ne_’i"”lg - CTITLTL ) = a’"LTLCTI)iTL + /BTTLTLDTIIILTL 4 at y = 0 (5.64)

Similarly substituting TE potentials for regions II and III from (5.46) and (5.49) into

(5.31) at y = -h gives

cll = ol emomht 4 DI =Pl aty = -h (5.65)

Finally substituting (5.46) and (5.49) into (5.32) gives

Kk CM — o ol o=l + 8 DU e*ﬂmnh’ aty=-h (5.66)

mn - mn mn - mn mn-—— mn

Eliminating C}nn from (5.63) and (5.64) one has

(o, + ”mn)CrIrIm + (8, + mmn)D}rIm =2k __SY ¢ Fmnd (5.67)

mn— mn

and eliminating C' from (5.65) and (5.66) gives

mn

(@ — ) " CL (3 — K, Je Pm"DI =0 (5.68)

mn mn mn mn

Equations (5.67) and (5.68) can be in the following matrix form

(@ +r ) B+ ) N[O ] _[ 2™ | g
o B - '
(@ = K e " (B, = i, )e " || DI
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From (5.69) unknowns C and DI can be obtained using Cramer’s rule [132]. The

solutions are

an = QRmnS;l;ne_Kmng(ﬂmn - "an)e_ﬂmnh / an (570)
Dgn = _QRmnS;l;ne_Hmng(amn - Rmn)e_amnh /an (571)

where
an = (amn + Hmn)(/an - Hmn,)eiﬁmlh - (/an + 'k';mn)(amn - ﬁmn)eia"m}]’ (572)

is the determinant of the coefficient matrix in (5.69). Substituting (5.70) and (5.71) back
into (5.46) gives the TE potential for conductive plate region in terms of the source TE

field as

M N
wh= 5 % oI GU TR IV (y) —h <y <0 (5.73)
m=—M n=—N

where

_ (Qpy=Bnh) B (Bn¥—%mnh)
(ﬁ mn, KTI’LTL)G " " (amn Knn )6 " i

Q’"LTL

Ton(y) = 26, (5.74)

can be regarded as the transmission function relating the TE potential of the source to the
transmitted potential in the conductive plate. It is worth noting that as the transmission
function is source independent, this solution is valid for any magnetic source located at
any location above the conductive region.

Using (5.63) the reflected TE potential coefficients are

cl,=Ch + DN — 8 e"mI aty=0 (5.75)

Substituting (5.70) and (5.71) into (5.75) yields
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o —Bnh o —a, h
Cl — SV e Fmnd (6 mn Kmn )6 " (amn Rmn )6 "
mn

mn mn Q
mn

—§U eI (5.76)

Using the transmission function definition given by (5.74), (5.76) can be written as

Cl, = 8 e "mIT™ (0) — S e " (5.77)

or, Ch,, = 80w (T2, (0) ~ 1) (5.78)

where T (0) is the transmission function T (y) evaluated at y=0. Substituting (5.78)

mn mn

into (5.47) the reflected TE potential for region I can be obtained

WaLr _ z Z ejgmqejknze mnySw 7I<mn9( (0) — 1)’ 0<y<yg (579)
—M n=—N

or, Wl = Z Z ST GU e TRmIRY (4) 0 <y < g (5.80)

—M n=—N

mn mn

where R (y) = e " [ T2 (0) — 1] (5.81)

can be thought of as reflection function that relates the incident TE potential of the source

to the reflected potential in region I. At y=0, one finds

R, (0) = T,,(0) =1 (5.82)

This is the same relationship that applies to high-frequency plane waves.

Substituting (5.72) and (5.74) into (5.82) yields

R" (0) = 2k

mn mn

—B,..F —a, |
(amn + Kmn)(ﬁmn - Kmn)e Ol — (6mn + Kmn)(amn - K;mn)e o

(5.83)



—a,_ h —B_h
(6 mn___ K’nm)(amn — K'mn)(e G — e P L)
a h

RY,(0) = ae -
(amn + HTILTL)(IB"WL - HTTLTL )6 mn'’ — (57”” + K'/TILTL)(aTILTL - HTTLTL )6 "

Now defining,

Sy = 0.5\/(u00vy)2 + 4, 2

(5.84) can be written as

RY (()) = (Oémn - Iimﬂ)(ﬁmn — ’%mn)(eignmh . egmnh)

mn

S h h

mn

Using (5.43), (5.44) the following relations are derived

(amn - Hmn)(ﬁmn - Hmn) =Ry — B (amn + ﬁmn> + amnﬁmn

— _ 2
= Kpn Vmn + Hmnuﬂavy

Substituting (5.42) and (5.48) into (5.87) gives
(amn - Hmn)(ﬂmn - Hmn) = 'U’OO—(UyHmn + j(we + szm + ,Uzkn))
Then,

— 2
(amn + "imn)(ﬁmn B Hmn) o amnﬂmn B '%mn(amn B 5mn) ~ Fmn

= _r}/an o /{an o ijn\/(IU’OO”U_I/)2 + 4’ymn2

Substituting (5.42) and (5.48) into (5.89) gives

(amn + /{mn)(ﬂmn - K‘mn) = _2/{mn2 + j'UJOO-(we + ,Uavgm + Uzkn) B 2/{mngmn

And then,

_ 2
(amn o K‘mn)(ﬂ mn + K‘mn) - amnﬂ mn + K‘mn(amn - 6 mn) ~ B

2 2 2 2
= Von ~ B T '%mn\/('u’oo—vy) + 4’7mn

105

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)
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Substituting (5.42) and (5.48) into (5.91) gives

(amn - K‘mn)(ﬁmn + K‘mn) = _2/{mn2 + jIUJOO-(we + ,Uzgm + Uzkn ) + 2/{mngmn (5.92)
Substituting (5.88), (5.90) and (5.92) into (5.86) gives

. - o
_'Uloo-(v?/limn + ](we + UT§m + 'Uzkn)>(egan —e §an)

2,0 =
2 _ W g momt w4 e
_[2Hmn - ]MOU(Wg + ngm + vzkn )] (egmn —e tm ) - 2"<Lmngmn (egmn +etm )
(5.93)
o Mog(vy’%mn + j(we + U_q;gm + ’Uzkn))Sinh(gmnh) (594)

RY (0) = |

2k, % — j,uoo*(we +v,§, + Uz/{?n) sinh(s,, h) + 2x,,.¢,.. cosh(s, h)

Equation (5.94) can be written as (assuming sinh(g,,,1)#0)

MOU(&mnvy + ](w(’ + gmv:t + knvz))

T (5.95)
2k, ° — jpgo(w, + & v, +kv,)+ 2k ¢ coth(s, h)

Ry (0) =

5.6.2. Solution for the Magnetic Vector Potential
Substituting (5.73) into (5.8) and (5.10) the x and z-components of the magnetic
vector potential in the conductive plate are obtained as (noting that the TM potential is
ZEero)
M N

A;I(a:, Y,2) = —J Z E knejgmzejk"zSﬁnef“m"gTﬁn(y), —h<y<O0 (5.96)
m=—M n=—N

M N
Allwy2) =7 3 D &S e ™ITi (y), —h<y<0 (597)
m=—M n=—N
5.6.3. Solution for the Magnetic Flux Density

5.6.3.1. Solution for the transmitted flux density

Using (5.12), (5.13), (5.15), (5.58) and (5.73), the transmitted magnetic flux density
components in the conductive plate region can be expressed in terms of the incident y-

component source flux density as follows
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M N

dT"
Blayz)= 3 3 eeegy e o Tl oy <o (50
m=—M n=—N K:mn2 dy
B, (z,y.2 E Z eSSy eI (y), —h <y <0 (5.99)
m=—M n=—N
k, dT?
BY(z,y,2 Z Z elne /M GY e~hmd L J . sz( >, —h <y <0 (5.100)
m=—M n=—N 'I{mn Yy

where from (5.74) the derivative of the transmission function with respect to y can be

easily obtained as

aTs, )

- (A y=Bph) _ . (B y—a_h)
mn — 2,{ a7n,77, (ﬁﬂ]/ﬂ, I{'/Tn/nl )e mn mn ﬁnq,n/ (O{”Ln I{‘/Tn/nl )e mn mn

i (5.101)
dy Qo

5.6.3.2. Solution for the reflected flux density

Similarly using (5.16), (5.58) and (5.80)-(5.81) the reflected flux density components
of region I can be written in terms of the incident source y-component magnetic flux

density as given below

BY (2, 2 Z Z eiatelie gy ot Lo pu () 0 <y < g (5.102)
m=—M n=—N K;mn
M N
B} (x,y,2) = Z > enTehEGy eTmIRY (y), 0 <y < g (5.103)
—M n=—N
M N jk
Bl (z,y,2 Z D ety efmd S RY () 0 <y < g (5.104)
—M n=—N K“mn

Using (5.50), (5.61) and (5.62) and defining the source flux density at y=0 as

SIS j€
B (2,0,2) = Y > elnTeMhigy emHmd om (5.105)

Lmn
m=—M n=—N mn
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BYs (2,0,2) = e/ eli 5y e (5.106)
M N 4 ik

Bl (2,0.2) = > D7 efTelg] entmd (5.107)
m=—M n=—N mn

The reflected flux density components (5.102)-(5.104) can also be written in terms of the

respective source flux density components as follows

M
B (z,y,2) =— > Z B (2,0,2)RY (y), 0<y<g (5.108)
m=—M n=—N
Bl (x,y,2) Z Bjjmx()sz (), 0<y<g (5109
—M n=—N
and B (z,y,2) Z Z B (2,0,2)R" (y), 0<y<g (5110)
—M n=—N

The reflected flux density given by (5.108)-(5.110) can also be written in a more compact

form using (5.106) as

, "
Z ZB“ szR?"()—&£+g—hé,ogygg (5.111)

Jmn

m=—M n=—N Hmn mn
Z ijrmesz [ jcosgox—l—y—jsmgoz] 0<y<g (5112)
—M n=—N
where o =tan"'(k /&) (5.113)

5.7. Calculation of Electromagnetic Force
The electromagnetic forces acting on the magnetic source will be calculated using

two approaches. The first approach uses Maxwell’s stress tensor [112, 115, 143] using
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the reflected field of region I whereas the second approach is based on fictitious magnetic

charge [197].
5.7.1. Calculation using Maxwell’s Stress Tensor
Maxwell’s stress tensor method [112, 115, 143] will be used to calculate the thrust,

lift and lateral forces acting on the conductive plate using

_ 1 1T I« _
F o Re [[BZBy drdz | aty=0 (5.114)
_ 1 I pIIx I RIIx I RIIx _
Fy_%Re [[(ByBy — B"B™ — B"B"™ )dxdz | aty=0 (5.115)
_ 1 I Rk _
F = Re L[L[Bsz dodz ! aty=0 (5.116)

where the integration is performed over the entire top surface of the conductive plate at
y=0 and ‘*’ denotes complex conjugate. The limits of integration with respect to x and z
are —1/2 to [/2 and —w/2 to w/2. It must be noted that (5.114)-(5.116) produce the force
acting on the plate. Hence in order to find the force acting on the magnetic source, a
negative sign should be added in front of the force equations.

Using (5.23) and (5.24) the thrust tensor given by (5.114) becomes

F :%Re ff(BI +BY)(BY + BY ) dadz { aty=0 (5.117)

Adding the x-component of the reflected and source flux density of region I given by

(5.61) and (5.102) at y=0 and using (5.81) gives
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o (2_T’;U"(O)>,aty:0(5.118)

m=—M n=—N Hmn

Bglj,s +B_7I;7 _ Z Z eJem® gy ZSJ ~Fond

Evaluating (5.99) at y=0 gives the total y-component magnetic flux density on the top

surface of the conductive plate as

B;’S + B;’T - E E eyfmaze]k 7SJ TR W (0), aty =0 (5.119)

mn€ mn
m=—M n=—N

Substituting (5.118) and complex conjugate of (5.119) into (5.117) and performing the

double integral, the thrust force is easily evaluated to be

F = Z Z ‘S 2“mff&T,gn*(O)(Q ~ T2 (0)) (5.120)

2/J“O —M n=—N mn

Since,

Re{ 5T *(0)T%,(0) } = 0 (5.121)

the thrust force becomes

mn

el 30 s

M n=—N /imn

e~ 2bmnd & Tv *(0)} (5.122)

On further simplification, the thrust force acting on the source can be written as

F = ——Im{ S Z ‘s %mgg—ngn(O)} (5.123)

—M n=—N ,{mn

Using the relation between the reflection and transmission coefficient given by (5.82),

(5.123) can be written as
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F = ——1 Z Z ‘S 2”rwff’f—mR%(O) (5.124)

—M n=— ,{mn

Equation (5.124) obtains the thrust force from the y-component of the source magnetic
flux density.
Similarly substituting (5.24) and (5.25) into (5.116) the lateral stress tensor can be
written in terms of the reflected and source magnetic flux density as follows
_ 1 Is Lr Is ILr * —_
F = %Re f[(BZ + B )(BY + B ) dadz L aty=0 (5.125)
Adding (5.62) and (5.104) at y=0 gives the total z-component magnetic flux density on

the top surface of the conductive plate

k (2-=T" (0
B 4+ BV = Z Z eIont et Gy g™l / ( i )>,aty:0 (5.126)

m=—M n=—N K‘mn

Substituting (5.126) and complex conjugate of (5.119) into (5.125) and integrating with

respect to x and z yields

mn mn

M N
P =—Re{ 3 s,

k
o 29 Ion_puw *(0)(2 _w (0)) (5.127)
2:“[) m=—M n=—N R

Using (5.121), the lateral force acting on the source becomes

lw A > . . gk
P, =—=Rei > Y [sy,[ e Zann i@ (5.128)

/J“O m=—M n=—N ,{mn

lw A > . ok
or, F =—=Tm{ > > |sv[e>m =21 (0) (5.129)

m=—M n=—N /imn

Using (5.82), the lateral force can be written as
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M N

F, = ——1 Z > |su.f et Fu_pu (q) (5.130)

—M n=—N ,{mn

Substituting (5.23)-(5.25) into the expression of the lift tensor given by (5.115) and
splitting the integrand into three parts with each part due to a separate flux density

component, (5.115) can be written as

F =F —F,-F, (5.131)

where
F, :4—;(]Re [ [(Bl + B )(Bl* + B ) dadz |, aty=0 (5.132)
F,= ﬁR@ [ (B + B )(B + BY ) dadz f,aty=0 (5.133)
F, = 4—;0Re f [(BY + B )(BY + BY ) dadz | aty=0 (5.134)

Substituting (5.119) and its complex conjugate into (5.132) and integrating yields

e 2t |7 (0) (5.135)

Fo= kel 3 30 s

4lu[) m=—M n=—N

7777L

On substitution of (5.118) and its complex conjugate into (5.133) and integrating one

obtains

(2 -T2 (0)) (2~ T2, (0)) (5.136)

mn mn

> oy S

4,&0 m=—M n=—N 'L{mn

y2 m n

Further rearranging gives
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Z Z ‘S e 29 [4 — 2T *(0)

4,u0 Y S— N”‘mn (5.137)
— 212 (0) + | T2, (0)

y2

Finally substituting (5.126) and its complex conjugate into (5.134) and integrating one

finds

SY —2h'mn_(] [4 —_OTW *(O)

: : : : 7777L mn

4% M K, (5.138)
2
_oTv (O) + Tw (0>‘ }

mn mn

y3

Substituting (5.135), (5.137) and (5.138) into (5.131) and using (5.48) gives the lift force
acting on the magnetic source as
N

h-tn 3 3 s

m=—M n=—N

mn

o2 (T%L(O) _ 1)] (5.139)

Using (5.82), the lift force can be written as

F = ——Re{ 3 Z EA

—M n=—N

2&,,17L9R$n (0) } (5.140)

In the next subsection electromagnetic force calculation using magnetic charge will be
discussed.
5.7.2. Calculation using Fictitious Magnetic Charge
In electrostatics, the work done to bring a surface charge distribution, p,, from infinity

to an existing electric field of potential V is given by [115]

U, = [ pVis (5.141)
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Extending the concept to magnetostatics, assuming a fictitious magnetic charge
distribution (due to the magnetic source) on the surface at y=0 in the presence of the
reflected magnetic scalar potential, the work done or the total energy of the system is
given by

/2 w/2

:—Re f f P @M dwdz |, at y=0 (5.142)
—1/2—w/2

The charge density is twice the normal component of the flux density [76]. Hence from

(5.50)

pfn(xa% ‘ =2 E Z elfmielk Znge_Hmng (5143)

m=—M n=—N

Using (2.5) the reflected scalar potential can be obtained from the reflected y-component

flux density given by (5.103) as

= = 13 R, (y)
AV (2,y,2) = Z Z elntelht Gl T ML) <y < g (5.144)

Om— M n=—N Kmn

The electromagnetic forces acting on the magnetic source are given by

F=VU (5.145)

M lp? =constant

Substituting (5.142) into (5.145), the force components are obtained as

[ /2 w/2

Lr

F_T:%Re [/ pfn*%dxdz»,aty=0 (5.146)
S22 r
/2 w/2 Ir

Fylee f f pfn*%dxdz , at y=0 (5.147)
2 —1/2 —w/2 83/
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/2 w/2
= —Re f f e 997 Judz |, at y=0 (5.148)
—1/2 —w/2
Utilizing (2.5), the forces can be written in a more compact form as [197]
/2 w/2
F=—— Re f f p: *BYdwdz |, at y=0 (5.149)
2“0 —1/2 —w/2

Substituting the charge density given by (5.143) and the reflected scalar field given by

(5.144) into (5.146) and integrating with respect to x and z gives

M N . w
= —Re1 > > s, %nmgw} (5.150)
—M n=—N ,{mn
M N 5
or, F = ——Imi >y \S 2”mnff—mRgn(())} (5.151)
—M n=—N ,{mn

which is same as (5.124).
Similarly substituting (5.143) and (5.144) into (5.147) and (5.148) yields respectively

the normal and lateral force as given by

M N
F = ——Re{ >3 sl 2”’"”L9R$n(0)} (5.152)
—M n=—N
M N k
and F = ——Im1 >y \S %mg—nRgn(O)} (5.153)
—M n=—N Kon

which are same as (5.140) and (5.130) respectively.

Noting the similarity among the force expressions given by (5.151)-(5.153) and defining

SJ

mn

? e 2mI R (0) (5.154)

mn

fmn -

:“0
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then the electromagnetic forces can be written in a more compact form as

1 }M: zNj fmn} (5.155)

—M n=—N

M N
F = 1m1 > > Sn mn} (5.156)

M N
F, :Im1 >y ut fm} (5.157)

Taking divergence on both sides of (5.149) and noting (3.3), it is observed that

V-F=0 (5.158)

5.8. Power Transfer Calculation
Differentiating the energy given by (5.142) with respect to time, the total power

transfer from the magnetic source to the conductive plate can be calculated as follows

_ 9 Um
transfer ot

, at y=0 (5.159)

py, =cons tant

It is noted from (5.159) that the power absorbed by the plate is designated as positive.
Substituting (5.142) into (5.159) gives

/2 w/2

f f .00 da:dz] at y=0 (5.160)

—1/2 —w/2

trans fm“ -

In steady state (5.160) can be written as

= ——Re

transfer

/2 w/2
Jw, f f p"’*qb”dxdz] at y=0 (5.161)

—1/2 —w/2
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Substituting (5.143) and (5.144) into (5.161) and integrating gives

Ptransfer == lu}—w Re 1 J Z Z ‘ QHW"g w} (5.162)
M —M n=—N mn
M N w
or, Py = s Im{ POEDIREM —Rm”m)} (5.163)
—M n=—N /imn

5.9. Electromagnetic Torque Calculation
The electromagnetic torque acting on the source is another useful parameter which

can be derived using

P P
_ transfer _ transfer (5164)

T
em w (w() / P)

m

where ,, is the mechanical angular speed [rads™'] and P is number of pole-pairs of the

source. Substituting (5.163) into (5.164), the torque is calculated to be

e—2h Rmn (0)

(5.165)

7, =L Z Z\m

—M n=—N Iimn

5.10. Power Loss Calculation
One part of the transferred power to the conductive plate is lost as heat and the other
part contributes to moving the source with velocity vy, v, and v,. Therefore the power loss

can be obtained as

P

loss

=P Fu, —Fuv —Fu, (5.166)

transfer ~ Tz

Substituting thrust, lift and lateral force from (5.150), (5.152) and (5.153) respectively

and power transfer from (5.162) into (5.166) and noting that
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~Im{R2,(0)} = Re{jRy,(0)} (5.167)

mn

the following is obtained

2 eiQﬂmng w

lw M N
B, =-=—Ref > > |57,

/1“0 m=—M n=—N Kmn

(Jw, + €, v, + jkv, — kK, v, )

mn "y

(5.168)

There is a striking similarity between the analytic force, power transfer, torque and power

loss expressions derived in this chapter with the ones obtained in the 2-D analytic based

steady state analysis conducted by Paudel [14]. This should be expected as this current

chapter discusses eddy current modeling for a large conductive plate which, in many
respects, resembles the 2-D model developed by Paudel [14].

Figure 5.8 shows a flowchart of the developed SOVP based steady state analytic

model to compute the eddy current forces, torque and power transfer.

Compute source
magnetic field using
Magnetic charge

Take DFT to
convert to double
Fourier series

Source field
coefficients

Airgap, g —

Rotational speed, w,——
Use analytic SOVP
model

F, X F:L F z T em P transfer
Figure 5.8. Flowchart of the presented analytic SOVP model to compute forces, torque and power transfer

Steady state  _| Translational velocity, vy——

operating conditions Heave velocity, v,
, Y, ——>

Lateral velocity, v,
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5.11. Electromagnetic Stiffness Constant Calculation
The stiffness constant is defined as the negative of the derivative of the force with
respect to the displacement [198]. The stiffness matrix for a 3-D model can be obtained
by taking derivatives of the thrust, lift and lateral forces acting on the source with respect

to x, y and z-axis displacements respectively.

dr dF_ dF
dv dy dz
k_k_ k
A dF dF, dF
k., k., k. |=—|—2 ! Y (5.169)
k"" /{:JJ /{:J de  dy dz
2r 2y 2z dF’z d}l dF’z
dr dy dz

Observing the force expressions given by (5.146)-(5.148), it can be noticed that

d& = dﬂ (5.170)
dy dx

dr; = ﬂ (5.171)
dz dx

dF dF

4=z (5.172)
dz dy

Differentiating the thrust force given by (5.146) with respect to y and substituting

(5.143) and (5.144) into it and integrating with respect to x and z at y=0 yields for k,, as

Iw M N 9 5
by = ——Tml 33 &, |Sh, [ e T mIRE, ) (5.173)

Ho m=—Mn=—N

Similarly differentiating (5.146) with respect to z and substituting (5.143) and (5.144)

into it and then integrating at y=0 yields for k,; as
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M
l _ RY (0
k,, = —Re P> Z &[5 [ 2o Ban D (5194
Ho —Mn=—N Kmm

Differentiating (5.147) with respect to z and substituting (5.143) and (5.144) into it and

then integrating at y=0 yields for k. as

2
by = 2 m Z e IRy ()b (5.175)

Ko Mn=_N

For the diagonal elements of the stiffness matrix the thrust, lift and lateral forces are

differentiated with respect to x, y and z —displacements respectively and are given by

W | sm e o2 Lo o B(0)
by = “Rel 30 Y0 g2|sh, [ e mo Sm - (s.176)
Ho m=—M n=—N Kmn
" M N
by, =——Rel > e HmnIRY (0)t  (5.177)
Fo m=—M n=—N
2 RY (0
k., :lﬂRe Z E k: e—Q’fmngL() (5.178)
Ko Mn=—N Kmn
From (5.176)-(5.178) it is noted that
gy + Ky by =0 (5.179)

This is another consequence of (5.158).

5.12. Electromagnetic Damping Constant Calculation
The damping constant is defined as the negative derivative of force with respect to the
velocity [199]. Unlike the stiffness constants, the electromagnetic damping constants

depend on the transmission function. The damping coefficients matrix for the 3-D model
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can be determined by differentiating (5.155)-(5.157) with respect to the source velocities

along the x, y and z- directions as given by

de de de
n n n dvm dvy dvz
T zy rz dFf  dF dF
b, D, D,|l=--—*% —+4% 1
yr.o oYy oy dv. dv, dv
D D D - Y c
= %4 # dF, dF, dF,
dvm dvy dvz
0 15)
Imzz 5m fmn Imzz 5m fmn
T K 8% T B Ovy
0 0
= R Y Y Ry Y Y
ov ov
m n T m n Y
k. 0 k. O
Imzz n fmn Imzz n fmn
T K, ov, T K, avy

(5.180)

Observing the expression of f,, given by (5.154), it is noticed that only the reflection

coefficient, R’ (0), depends on the velocity. Its derivative with respect to vy, v, and v,

can be calculated analytically. Substituting (5.154), the damping matrix, D,,, can be

written as

[ ] Rezz‘ mng
B §m OR;,(0)  j&, OR;,(0)  j§, OR, (0)
Kpmn 8% Komn Ovy Kmn, 81}2
ORI ORLO)  ORY,(0)
v, av v,
jk oR> (0) jk: 8Rw »(0) jk: oR? (0)
K 8% Komn, Ovy Komn, 81}2

(5.181)



The followings are defined

Tmn = Kmnvy + J(we + gmvm + k’I’LUZ)

L 2Kmn2 o jMOU(we + &l knvz> + 2Kmngmn00th(gmnh)

Differentiating R

mn

(0) given by (5.95) with respect to v, yields

dRY (0) 0 10 (K, + (w, + &0, + k,v,))

ov, ov, |2k, % — jugo(w, + & v, +kv)+ 2k, ¢ coth(s, h

mn

m T n- -z

Using (5.183), (5.184) can be written as

OR® (0) IF —If — I3 —1I?

mn

avI N dmn2
where,
) ) .
Il = dmn 8_[IMOU<'L€mn,Uy + j(we + gmvz + knvz))]
Uy
IIT = jluoa-gmdmn
) o
Then, Iy = peor, 8—[—juoa(we + & v, + k‘nvz)]
Uy
or, ]QT = _j/“LOQUQSmen
. 9
Then’ I3 = QMOO-THLTLKJmnCOth(gmnh) e
ov,
Differentiating (5.85) with respect to v, yields
agmn _ jMOOfm

ov

v Jlgow, P +4(6,7 + K2 — o, + 0,6, + vk,
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(5.182)

(5.183)

(5.184)

(5.185)

(5.186)

(5.187)

(5.188)

(5.189)

(5.190)

(5.191)
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Using (5.85), above can be written as

agmn - _ Jﬂo"gm

(5.192)
8/01' 2§mn
Substituting (5.192) into (5.190) yields
I; = _'7/ILOQO-27—7”7LH7H7L§WLCOth(gnLnh) / gmn (5'193)
Ocoth(s_h
Finally, = opor x o 20MEmN) (5.194)
4 4 LT 8/{)7:
Applying chain rule of differentiation,
I7 = jujlo’r, k& hcosech®(s h) (5.195)
Substituting (5.187), (5.189), (5.193) and (5.195) into (5.185) gives
le’OOfm [dmn + MOO-TmnEmnCOth(gmnh) / gmn
OR" (0 + w0, — 1oT, K, hcosech*(s )
aUJT dmn2

Similarly, derivative of the reflection function with respect to v, can be obtained as

jHOO'Z{:n dmn + HOO—Tmn/{mnCOth(gmnh) / gmn
OR™ (0 + WoT,, — 1OT, K, hcosech*(s, h
o, d >

mn

The derivative of the reflection function with respect to v, can be obtained using

OR" (0) 8 100 (Ko, + J(w, + &0, + k,v,)) (5.198)
81}1/ 81}1/ 2"€mn2 o jlu[)o-(we + gmfuz + knvz) + QKmvzgmnCOth(gmnh) '

Using (5.183), above can be written as



1 2 3

OR (0) Iy — Iy — I

8U’JJ dmn2
Where’ [111 = dmn a [MO <"€nmvy + j(w + £va + kv )
]11/ = K OO-Kmndmn
s,
Then, IZU = 2MOUTmnHmnC0th(g h) anm

Y

Differentiating (5.85) with respect to v, and using (5.42) produces

1 oYy

Ov, 2 \/(,uogfuy)Q +4(6,2 + k2 — jpgo (w, +v,6,, + vzkn))

Using (5.85), above can be written as

OS,m Mooy
ov 4g

mn

Substituting (5.204) into (5.202)

Iy = 0.5p,°0%v,T, K, coth(s, h)/s,

Yy mn “mn

Finally,
Ocoth(s__h
Ié[)/ = QMOO-TUHL/{UHLgUHL (gmn )
ov
or, I§ = 0.5, K,,,v,hcosech? (s,

Substituting (5.201), (5.205) and (5.207) into (5.199) gives
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(5.199)

(5.200)

(5.201)

(5.202)

(5.203)

(5.204)

(5.205)

(5.206)

(5.207)
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OR" (0)  HoOhpy |y — 0511900, 7, (coth(g‘mnh) | S — hcosechQ(gmnh))}
ov B d,.’

Y mn

(5.208)

Substituting (5.196), (5.197) and (5.208) into (5.181) the electromagnetic damping
coefficients can be computed.

In order to calculate torque damping, the electromagnetic torque acting on the source
given by (5.165) is differentiated with respect to mechanical rotational speed, ,,, of the

source to yield

0T oT., 0 0T
Dtorque __Y9%em _ _Ytem 9% _ _pﬂ(.. w, = Pwm> (5.209)
&Um 8006 8wm 8w€

Substituting (5.165) into (5.209) gives

torque

2 M N —2K,,,! w
P Im{ AL oaRmn(())} 5210,

'LLO m=—M n=—N Kmn awe

Differentiating R

mn

(0) given by (5.95) with respect to w, yields

8R77;Zun(0) o 0 ,LLOO'(I’%any + j(we + gmvx + knvz)) (5 211)
ow, ow, |2k, > — juo(w, +& v, +kv,)+2k, ¢, coth(s, h) '
or, using (5.183),
w IT _ IT _ IT _ IT
aRmn(O) " 2 3 4 (5212)
awﬁ dmn2
where,
’ 9 ,
II = dmna—[,uoa(/{mnvy + j(w, + & v, + k‘nvz))] (5.213)
W,

or, Il = jpyod, | (5.214)



Then, 12T = 0T, —[—j,uoa(we +&,v, + knvz)]
ow, ’

or, IQT = _jlu020-27_mn

Then,

0
I] =2p,0r, K, coth(s, h) Lomn
LT 4 4 aw8

Differentiating (5.85) with respect to w, yields

agmn _ j,LLOCT

Again using (5.85), above equation can be rewritten as

agmn — quO'
8w€ 2§mn
Substituting (5.219) into (5.217) gives
I =_; 22 Tn
3 = Ky O coth(s, h)
Ocoth(s,h
Finally’ II = QMOOTTTLTLK’UL’!LgTﬂn Coa(gmn )
w

Applying chain rule of differentiation,

Il = juSo’hs, 7, cosech®(s, h)

mn - mn mn

Substituting (5.214), (5.216), (5.220) and (5.222) into (5.212) yields

e \/(,uoavy)2 + 4(§m2 + an — Jugo(w, + 0,6 +v.k)
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(5.215)

(5.216)

(5.217)

(5.218)

(5.219)

(5.220)

(5.221)

(5.222)
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dR" (0) j,uoa[dmn + poT,,, + 10K, T (coth(gmnh) | S — hcosechQ(gmnh))}

8(4}6 N dmn2
(5.223)
Substituting (5.223) into (5.210) the electromagnetic torque damping is obtained
le M mngjl/l/
Dtorque = Z Z ‘ —0[ mn + /J’OUTmn
—M n=-N mn-~ mn
18, T (€O, 1) / ., — heosech(s,,, ) )|
(5.224)
m'ng
mque = —lwoP? Re Z Z ‘ [d + 1yOT 0
—M n=-N mn mn
+ ok, T, (coth(gmnh) /S — hcoseChQ(gmnh))]
(5.225)

5.13. Model Validation

For validation purpose a segmented Halbach rotor moving over a conductive plate, as
shown in Figure 5.1, has been considered. The accuracy of this analytic model highly
depends on the source field modeling of the Halbach rotor. But as already discussed in
chapter 2 the source field can be accurately, for engineering purposes, modeled using
planar magnetic charge sheet. Hence in this chapter the Halbach rotor field will not be
validated.

In this section, the magnetic fields in the conductive region will be compared with a
previously developed steady state FEA model where the Halbach rotor was modeled
using a novel current sheet approach [75]. In addition to this FEA model, the FEA model

based on a magnetic charge source modeling approach, as discussed in chapter 3, will be
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used for force and power loss comparison. Results for different plate width will be
compared and it will be shown that as the plate width reduces the analytic model fails to
calculate the correct result.
5.13.1. Field Validation
The simulation parameters used for the field validation are given in Table 5.1. Figure
5.9 shows the subdomain plots of the induced magnetic flux density in the conductive
plate obtained from the FEA model [75]. The field comparisons are performed at 15 ms™
translational velocity and 25ms™ slip speed. The slip speed is defined as
5 = Wty =Y, (1.1)
Figure 5.10 illustrates a comparison between the analytically computed (using (5.96) and
(5.97)) and FEA calculated x and z components of the magnetic vector potential. The
induced magnetic flux density components are compared in Figure 5.11. A relatively

close match has been obtained.

Table 5.1 : Parameters for simulation without heave velocity and large plate width

Description Value Unit
Outer radius, r, 50 mm
Inner radius, r; 34.2 mm
Magnetic Rotor Width, w, . . 50 mm
Remnant magnetic flux density, B, 1.42 T
Relative permeability, i 1.055 -
Pole pairs, P 4 -
Conductivity, o 2.459x10 Sm’
Width, w 150 mm
Conductive plate Length, / 200 mm
Thickness, & 6.3 mm

Air-gap between rotor and plate, g 9.5 mm




Subdomain plot: B, /// /L\

(a)

(b)
Subdomain plot: B.
~ .//

(©

Max: 0.416
0.4

0.3
0.2
0.1
0
-0.1
-0.2
-0.3

-0.4
Min: -0.403
Max: 0.151
0.15

0.1
0.05
0
-0.05

-0.1
-0.15

Min: -0.197
Max: 0.217
0.2

0.15
0.1
0.05
0
-0.05
-0.1
-0.15

-0.2
Min: -0.216

129

Figure 5.9. Plots of (a) B,, (b) B, and (c) B, magnetic flux density components induced in the conductive
plate due to a Halbach rotor moving at 15ms™ translational velocity and 25 ms™ slip speed above the plate.
The plots are obtained from FEA steady state model with current sheet based Halbach rotor field modeling
approach. The model was written using Comsol v3.5a and Matlab. The rotor is located at the center of the

plate
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Magnetic vector potential
[Wb/m]

(a)
x 10
=5 157 A oo B S ;
g | | | P | FEA r
‘gHm —————— - ‘ ,,,,, Analytlcfe
S E : |
SR AR TN |
Q ! |
© N ;
ED 0 T e [ e e —i
< | | |
= 1 ‘ o
008 006 004 -002 0 0.02 004 006 008

Distance along z-axis[m]
(b)
Figure 5.10. Comparison of the x and z components of the magnetic vector potential on the top surface of
the conductive plate between the analytic and current sheet based Comsol finite element model (a) across x-
axis for z = -10mm; (b) across z-axis for x = 20mm. The rotor is located at the center of the plate
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Figure 5.11. Comparison of the x, y and z components of the magnetic flux density on the top surface of the
conductive plate between the analytic and current sheet based Comsol finite element model (a) across x-
axis for z = 20mm; (b) across z-axis for x = 10mm. The rotor is located at the center of the plate

5.13.2. Force and Power Loss Validation
Using the parameters given in Table 5.1, the force and power loss comparison as a

function of slip speed for the analytic and FEA models are illustrated in Figure 5.12.
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Figure 5.12. (a) Force and (b) power loss comparison among analytic and FEA models based on current
sheet and magnetic charge source modeling techniques for (v,, v,) = (15, 0) ms™". The rotor is located at the

center of the plate

The average computation time involved in calculating the force and power loss results

for a single slip speed value by the FEA and analytic models are listed in Table 5.2. As

expected, the analytic model reduces the computation time by approximately an order of

1000.
Table 5.2. : Computation time for analytic and finite element steady state models
Model type Computation time Unit
Magnetic charge based steady state model using Comsol v3.5a 160 s
Current sheet based steady state model using Comsol v3.5a 440 s
Analytic SOVP model 0.038 S

The Comsol finite element model using current sheet approach does not include the

heave velocity in the formulation [75]. Thus for comparisons in the presence of the heave

velocity of the rotor, the FEA model with magnetic charge based source modeling
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approach (discussed in chapter 3) has been used. Table 5.3 lists the parameters used for

the comparison and Figure 5.13 shows the force and power loss comparison between the

analytic and FEA model. Again a very good match was obtained.

Table 5.3. : Parameters for simulation with heave velocity and large plate width

Description Value Unit
Outer radius, r, 26 mm
Inner radius, r; 9.62 mm
Magnetic Rotor Width, w, . . 52 mm
Remnant magnetic flux density, B, 1.42 T
Relative permeability, i 1.108 -
Pole pairs, P 2 -
Conductivity, o 2.459x10’ Sm’'
Width, w 150 mm
Conductive plate Length, / 200 mm
Thickness, & 6.3 mm
Air-gap between rotor and plate, g 9.5 mm
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Power loss [W

Slip speed [ms™']
(b)
Figure 5.13. (a) Force and (b) power loss comparison between analytic and FEA model based on magnetic
charge source modeling techniques for (v,, v,) = (20, 2) ms™'. The rotor is located at the center of the plate.
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In the following comparisons, the plate width has been reduced to 77mm to study the

performance of the analytic model when a reduced conductive plate width is used. A
width of 77mm is chosen as this is the width of the experimental guideway wheel that is
being used (shown in Figure 1.20). Figure 5.14 shows excellent results from the analytic
model even for the reduced plate width when the rotor is located at the center of the plate
(laterally). Also, in the presence of the heave velocity the analytic model performs
extremely well for reduced plate width as is evident from Figure 5.15. Table 5.4
compares the average accuracy of the developed SOVP based steady state analytic model
with respect to the Comsol based steady state FEA models for 77 mm guideway width,

15ms™ translational velocity and zero heave velocity.
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Figure 5.14. (a) Force and (b) power loss comparison among analytic and FEA models based on current
sheet and magnetic charge source modeling techniques for (v,, v,) = (15, 0) ms™". The rotor is located at the
center of the plate.



Table 5.4 : Accuracy of the developed SOVP based analytic steady state model

Parameter Error with FEA magnetic ~ Error with FEA current sheet
charge [%] [%]
Thrust force 2.92 1.35
Lift force 0.42 0.48
Power loss 0.22 2.08
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Figure 5.15. (a) Force and (b) power loss comparison between analytic and FEA model based on magnetic
charge source modeling techniques for (v,, v,) = (15, 2) ms™". The rotor is located at the center of the plate.

The analytical model performs very well for a reduced plate width in which the plate

is wider than the rotor, however, when the rotor is laterally offset (along z-axis), the

model fails to calculate the correct result. Figure 5.16 (a) and (b) show that the analytic

thrust force and power loss values are different from the FEA counterparts by a large
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margin for a lateral offset of 25mm. The main shortcoming of the presented analytic

model is in the calculation of the lateral force which is compared in Figure 5.16 (c).
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Figure 5.16. (a) Thrust/ drag and lift force; (b) power loss and (c) lateral force comparison among the
analytic and FEA models based on current sheet and magnetic charge source modeling techniques for (v,,
vy) = (15, 0) ms™'. The rotor is laterally offset from the center of the plate by 25mm.

5.14. Stiffness and Damping Coefficients Results

Using the parameters given in Table 5.3, the lift and drag force as a function of

translational velocity for the case when w.= Orads™ and (v, vy)=(0,0)ms'1 is shown in
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Figure 5.17. The lateral force, F_, is insignificant at v,=0 and without lateral offset of the

rotor, thus F is not shown in Figure 5.17.
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Figure 5.17. Electrodynamic F, and F, as a function of translational velocity for (w,, v, v,) = (0 rads™,
Oms ™, Oms'l). As w,=0 rads™ the F, force is a drag force.

The stiffness coefficients as functions of translational velocity, v,, are shown in
Figure 5.18. The lateral force, F_, is insignificant at v,=0 and without lateral offset of the
rotor, thus F; is not shown in Figure 5.18. The stiffness coefficients k,, is positive for
increase in translational velocity. It implies that when the rotor comes close to the
conductive plate, it will be pushed back because of a positive stiffness which is a
necessary condition for stability. The stability exists in the direction of positive stiffness
if the reaction force acts to oppose perturbation in displacements [200]. Also Figure
5.18(a) proves the validity of (5.158). The negative stiffness k., results as the drag force
decreases with height. The off-diagonal stiffness terms with respect to the z-direction i.e.
ky; (or k) and k. (or k,,) are negligibly small for large plate width assumption and zero

lateral offset of the rotor and hence not shown.
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Figure 5.18. The electrodynamic stiffness coefficients as a function of translational velocity for (w,, vy,
vy=(0 rads’l,Oms'l, Oms’l).

Figure 5.19 shows linear variation in the lift and drag forces for small change in the
heave velocity, v,. As the lateral force, F,, is insignificant at the chosen operating
condition, it is not shown in Figure 5.19. Figure 5.20 and Figure 5.21 show the horizontal
and vertical damping constants calculated using (5.181), (5.196)-(5.208). The damping
coefficient Dy, is positive at v,=0m/s and becomes zero when the drag force reaches its
peak value (as shown in Figure 5.17) and becomes negative with further increase in the
translational velocity, v, resulting in decreasing drag force. From the perspective of
energy, positive damping means energy is taken away from the system whereas negative
damping implies adding energy to the system [201]. The damping coefficient Dy, as

shown in Figure 5.20 can be understood from the slope of the lift force vs. v, curve
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shown in Figure 5.17. Since the lift force increases with increase in v, (see Figure 5.17),

energy is being added to the system, hence, the damping coefficient D,, is negative.
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Figure 5.19 Lift, F, and drag force, F, vs. heave velocity, v, for o, =Orads™' and vy, v) =(10, 0) ms’
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Figure 5.22 The electrodynamic damping term D._,.

Both drag and lift force decrease with increase in heave velocity (see Figure 5.19),
thus the energy is being taken away from the system. Therefore, the damping coefficients
D,, and Dy, are both positive. The vertical damping coefficient, Dy, decreases and
becomes almost zero with increase in translational velocity. However, the damping
coefficient Dy, is initially zero and increases to its maximum value and decreases with
further increase in translational speed. These damping characteristics shown in Figure
5.21 agree with the calculations performed by Yoshida [202], Urankar [203] and Ooi
[204] in which no negative vertical damping was calculated. Figure 5.22 shows that D,
damping term is significant only at low translational velocity and at high-speed it
practically becomes negligible. The remaining off-diagonal damping terms are negligibly
small for large plate width assumption and zero lateral offset of the rotor and hence not
shown.

For the case when w, 0, a slip will be present as defined by (1.1). Depending on the
slip value the F, can be either a thrust or a drag force as shown in Figure 5.23. The F, and
F, as function of slip and translational speed are shown in Figure 5.24 while Figure 5.25
shows the stiffness contour plots. From Figure 5.25 it is observed that k,, and k,, are

almost always negative and thus leads to instability whereas k,, is always positive and the
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coupling term k,, is positive for positive slip values and changes sign with negative slip
speeds. Hence, judging from the stiffness constants it can be stated that the Halbach rotor
moving above a conductive plate is stable along the y-direction but unstable along the

forward x lateral z-directions.
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Figure 5.23 F, and F, force as function of slip when (v,, v, v,) =(20, 0, 0) ms’!
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Figure 5.24 (a) Thrust force and (b) lift force function of slip and translational velocity at (v, ,v,)=(0,0) ms™.
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Figure 5.25 The stiffness coefficients (a) k., (b) k,,, (c) k.. and (d) k,, (or k,,) as a function of slip and
translational velocity at (v, ,v,)=(0,0) ms™.
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The damping constants are shown in Figure 5.26 and Figure 5.27. Unlike in Figure
5.20, the horizontal damping coefficient, D,,, becomes positive when both the
translational and rotational speed are included. The magnitude of D,, however decreases
with increase in slip value as shown in Figure 5.26(a). It can be noted that the vertical
damping, D,,, is always positive but decreases with slip value. Lateral damping D,
decreases with increasing slip speed and translational velocity. The off-diagonal
damping term D, is positive for positive slip values whereas the other off-diagonal
damping term D,y is negative in that slip region and therefore this term is likely to create
instabilities at positive slip condition. The decrease of the magnetic damping values at
positive slip values suggests that the inherent magnetic damping is insufficient and

therefore active control of an electrodynamic maglev system is essential.
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Figure 5.26 Damping coefficient (a) Dy, (b) D,, and (c) D, as a function of slip and translational
velocity at g=5mm and (v, ,v.)=(0,0)ms ™.
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Figure 5.27 Damping coefficient (a) D,, and (b) D,, as a function of slip and translational velocity at
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5.15. Summary

An analytic steady state modeling approach to study the eddy current distributions,
force and power loss in a conductive plate of infinite dimension has been presented. The
key points of the developed model are outlined in Table 5.5. The model is based on the
SOVP and thus only one scalar potential namely the TE potential is required to formulate
the entire problem region and thus it is computationally very fast. Computation time has
been compared with FEA models. Also an electromagnetic force and power loss
comparison has been made to suggest that the model can be very useful for plate width of
at least one and half times that of the source.

However, the proposed analytic approach fails to model the eddy current distribution

when the source is laterally offset towards the edge of the plate. Therefore there is clearly
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a need for finding a new model to account for the edge effect of the finite width

conductive plate. This will be discussed in the next chapter.

Table 5.5 : Summary of the presented 3-D analytic steady state model using SOVP

Model assumptions

Model characteristics

Conductive plate is linear, simply
connected and homogenous

Conductive plate has constant
conductivity and is non-magnetic

Frequency is low

Conductive plate is infinitely long and
wide, but has finite thickness

Models the conductive and nonconductive domains using
TE potential of the SOVP.

Can be applicable for any magnetic source
Computes the source field using magnetic charge sheet

Models translational, heave, lateral as well as rotational
motion of the source

Computationally very fast

Accurate when the plate dimension is large compared to
the source dimension. In other words, it is accurate when
the induced eddy currents do not see the edge of the

plate.

Model has been developed in Matlab




CHAPTER 6 : 3-D ANALYTIC EDDY CURRENT MODELING FOR FINITE
WIDTH CONDUCTIVE PLATE
6.1. Introduction

As pointed out in the previous chapter, the assumption of an infinitely large width for
the conductive plate fails to model the eddy current distribution when the source is
moved towards the edge of the plate. This chapter will present two 3-D analytic eddy
current modeling techniques using magnetic vector potential (MVP) for a conductive
plate of finite width and thickness. In the first analytic model only two-components of the
magnetic vector potential will be used with the assumption of small plate thickness
whereas the second model does not assume small thickness and uses all three components
of the magnetic vector potential. The length of the plate will be assumed to be large. The
models will include the translational and heave motion of the magnetic source. This
chapter will compare the fields induced in the plate and forces acting on the source for
different lateral positions of the source with finite element models.

Consider a maglev application [13, 74, 75] where the magnetic source, which is a
special type of magnetic rotor called a Halbach, as shown in Figure 6.1, is moved and
rotated over a plate made of conductive and non-magnetic material, such as aluminum.
Figure 6.2 shows the x-y and z-y view of the problem regions. The conductive plate,
region Qy, has a length /, width, w, and height, 2 and the magnetic rotor is located at a

distance g above the conductive plate. Also the source velocities in the x and y-directions
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as well as rotational speed w,, are shown in the figure. It must be noted here that although

Figure 6.1 and Figure 6.2 display a magnetic rotor as the source, the field and force

equations derived in the proposed model are applicable to any kind of magnetic source.

Magnetic
- Totor

Figure 6.1. 3-D schematic of a magnetic rotor rotating and translationally moving over a conductive,
non-magnetic plate.
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Figure 6.2. (a) x-y view and (b) z-y view of the problem regions. The rotor is at the center of the
conductive region located at (x,y.,z.) = (0,7,+g,c+w/2).

The conductive medium is located at y=0 of the Cartesian coordinate system which
creates five regions as shown in Figure 6.2:
e Region I (Q)) is the air or nonconductive region between the magnetic source and

conductive plate locatedat 0 <y < g, 0<z<2c+w
e Region II (Qy) is the conductive region located at —h <y <0, c <z < c+w

e Region IIT (Qyy) is the air or nonconductive region below the conductive plate

located at y < —h, 0 < z < 2¢ + w.

e Region IV (Qpy) is the air or nonconductive region to the side of the conductive

plate locatedat —h <y <0, 0 < z<¢
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e Region V (Qy) is the air or nonconductive region to the side of the conductive
plate locatedat —h <y <0, c+w <2< 2c+w
The assumptions of the analytic models presented in this chapter are:

e The plate length, /, is infinite but width, w, is finite

e The plate has finite thickness, A.

e For 2-component vector potential model it is assumed that the plate thickness, A,

is small. Thus fields in regions Qpy and Qy are not modeled. However, in 3-
component vector potential model this assumption is alleviated and fields in Qv
and Qv are modeled.

¢ The plate is continuous with constant conductivity and non-magnetic.

e The magnetic source has translational and heave motion along with rotational

motion.

¢ The frequency is sufficiently low in order for the quasi-static approximation to be

valid.

This chapter presents a two-component analytic MVP model in section 6.3-section
6.9 and an improved three-component model in section 6.10. The chapter is organized as
follows: section 6.2 will describe the governing equations for all the problem regions
outlined above and section 6.3 will discuss the boundary conditions; section 6.4 will
derive the general solution for different problem regions; section 6.5 will talk about the
source field modeling; electromagnetic fields will be calculated in section 6.6;
electromagnetic forces will be derived in section 6.7 which will be followed by power
loss and electromagnetic torque calculation in section 6.8; model validation will be

performed in section 6.9; the limitations of the developed two-component MVP model
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will be discussed and a three-component analytic MVP model will be presented in
section 6.10 and finally a summary of the chapter will be provided in section 6.11.
6.2. Governing Equation Formulation
In the proposed model the conductive and nonconductive regions will be modeled
using the magnetic vector potential. The finite width of the conductive plate will be taken
into account by choosing appropriate Fourier series expansion for the vector potentials
and source fields. The governing equation modeling in terms of the magnetic vector

potential is given by (3.23) in chapter 3 and here it is reproduced for convenience

OA
V2AIMOU[E+(V~V)A] (3.23)

where o is the permeability [Hm™] of the free-space, o is conductivity [Sm™'] of the
conductive plate and v is the velocity [ms™] of the source. In the steady state the vector

potential can be assumed to have the following solution

Az, y,2,t) = A(z,y,2)e ! (3.58)

where o, is the electrical angular frequency [rads™] of the source. It can be due to
excitation current frequency or angular speed of the rotor.
6.2.1. Conductive Region ()
As the induced eddy current flows parallel to the plate when the source is at the center
of the plate, the y-component of the induced eddy current is negligible [141, 182, 185].
Also as the thickness is assumed to be small, the y-component of the eddy current and
also the magnetic vector potential is assumed to be negligible even when the source

moves towards the edge of the plate (refer to Figure 3.16 and Figure 3.17). With this
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assumption, the magnetic vector potential can be written in terms of only the x and z-

components as follows

AY(z,y,2) = ANz, y,2)8 + ANz, y,2)2 6.1)

where 7 and Z are the normal vectors along the x and z directions respectively and
superscript ‘II’ indicates region II. Assuming the source has velocities along the x and y-

directions, (3.23) can be decomposed into the following scalar equations

. dA! dA
VA = —pyo| jw, A + v, 8:; + v, ay” ,

i=1I,2 (6.2)

6.2.2. Nonconductive Regions I and III (€2; and Q)

In the nonconductive region I the total vector potential is composed of the source
field and reflected field due to induced eddy currents in the plate. Also if the lateral
dimension of the plate is almost equal to that of the source or if source is laterally shifted
towards the edge, the total vector potential in region III is composed of the source field

and transmitted field due to induced eddy current in the plate. Hence
Al = Als L ALY (6.3)

Al AlLs | AT (6.4)

In (6.3) and (6.4) superscripts ‘s’, ‘r’ and ‘¢’ indicate the source, reflected and transmitted
fields respectively. Equation (6.4) does not have the source term if the source is located at
the center of the plate and its lateral dimension is much smaller than that of the plate.

However, unlike [166, 167, 169-171] the computation of the source fields in terms of

the vector potential A" and A™* in the nonconductive regions can be avoided by noting

that only knowledge of the source field on the conductive plate surface is required in
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order to calculate the eddy current field within the conductive region [185, 188]. Hence
the governing equation within the nonconductive regions I and III only needs to be
formulated in terms of the reflected and transmitted magnetic vector potential

respectively which follow the following Laplace’s equation
VAL =0 (6.5)

VZAIL =0 (6.6)

6.2.3. Nonconductive Regions IV and V (Qjy and Qv)

It is assumed that the vector potential, A,, does not exist within nonconductive side
regions Qv and Qv [141]. Also due to the small thickness of the conductive plate it is
reasonable to assume that the A, vector potential is zero in these regions. This thereby
eliminates the need to formulate the vector potential in the side regions Qv and Qy.

6.3. Boundary Conditions

The boundary conditions will be written assuming the lateral dimension of the source
is comparable to that of the plate or the source is located near the edge of the plate. Based
on these assumptions, the source field will be included in the boundary conditions for the
top and bottom conductive region boundaries at y = 0 and y = -& respectively. In order to
obtain the field and force solutions when the aforementioned assumptions do not hold
true, the source term on the bottom conductive surface can simply be neglected.

From the continuity of the tangential magnetic field and the normal component of the
magnetic flux density at y=0 and y = -h and noting the fact that the conductive material is

non-magnetic, the following must hold true at the interfaces at y=0 and y=-h

B} = By + B ,aty=0 (6.7)
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B;I = B;S + B;”, aty=0 (6.8)
B =B + B aty=0 (6.9)
and
B = s 4 B aty=-h (6.10)
B' = B"™* + B Jaty=-h (6.11)
B = B + B aty=-h (6.12)

Using (3.7), (3.9) and ignoring the y-component magnetic vector potential, (5.23) and

(5.25) become

AH ALr

oy oy "
QAT oAl

oy oy

where, for example, B’is the x-component of the source magnetic flux density.

Substituting (3.8) into (5.24), the continuity of the normal component flux density at y =

0 becomes

oAl _ o
0z 0z

oA 94l

Z

ox ozr

= B aty=0 (6.15)

It is seen that the normal boundary condition (6.15) couples the Ax and A, field terms
together which can significantly complicate the solution. However, the Ax and A, field

terms can be decoupled by noting that the Coulomb gauge [112]

V-Al =0 (6.16)
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applies on the boundary [112, 140, 169]. Therefore the Coulomb gauge boundary

condition at y=0 is

8AZH 8A;”
0z 0z

—0,aty=0 6.17)

6A;I 8A;”’
oz oz

By taking the partial derivative of (6.15) with respect to x and subtracting it from the

partial derivative of (6.17) with respect to z, one obtains

S

2 0B
O [ qu _ ] = - Loaty=0 (6.18)

AZH _ AZI,T] 4+ =
dz?

82

92>

Following the same procedure, for A, yields at y=0

B

2 OB
0 — 2 aty=0 (6.19)
0z

AH _ AL’V‘ 4+ =
9.2t " ! dz?

82

)i Lr
Aav - Az

The coupled boundary condition (6.15) can now be replaced with the two decoupled
boundary conditions (6.18) and (6.19) thereby enabling equations for A, and A, to be
solved separately [169]. Analogous decoupled equations at y = -h can be obtained such

that:

o AH o AIII,t

+ B, aty= -h 6.20
oy dy St ( :
8AH 8AHI’t
T x B:, aty:—h (621)
oy Jy ’
2 2 oB;
97 AT A;II,t] 4 9 Al AZHI,t] =——Y aty=-h (6.22)
822 8$2 ox
2 2 0B’
o AL _ A?Lt} i a_[AiI _ Aill,t} =—Y aty=-h (6.23)
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In order to ensure the uniqueness of the solution

Ay - AT =0 (6.24)

must also be enforced on the conductive region boundaries [139, 140] where 7 is the
unit normal vector on the conductive boundary as shown in Figure 6.2(a). Equation (6.24)
implies the following boundary conditions

A =0,onx=0,/ (6.25)

A =0,onz=c,c+w (6.26)

The outer nonconductive boundaries are assumed to be sufficiently large that the

following holds true

ALT — AIII,t =0 , on 1"0 (627)

6.4. Derivation of General Solutions
6.4.1. Conductive Region ()
Using the separation of variables method [132], the x and z-components of the

magnetic vector potential in Q can be written as

Al(z,y,2) = X,(2)Y,(9)Z,(2), i = 2,2 (6.28)

2

For the conductive region, substituting (6.28) into (6.2) and dividing both sides by

X, (z)Y,(y)Z,(2) (assuming they are non-zero functions of spatial variables) yields

n n n X‘l ‘l
= —pyo| jw, +v,—-+v, |, i =12 (6.29)
e e y Y;

1 2

where the superscript prime indicates differentiation.
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Let

X () =" i=uz,2 (6.30)

gm:—, —o0o < m< o (6.31)

As the conductive medium is assumed to have a large length, the field is not forced to

zero at x = 0 and [/ boundaries. Substituting (6.30) into (6.29) gives for all m

" " 1

Y. 7. Y
2 . . .
— + 4+t =y ol jw + v +U—Z’ 1=1I,2 6.32
& v "7 MO | Je + Joply £ vy 7 (6.32)
Rearranging (6.32)
Z_” . -u Y_' .
?:me — ingo (, +%§m>—?_ﬂo‘”y72’ PEnE (6.33)

2 1

In (6.33) derivatives of two independent functions are equal to each other. Hence both

sides must be equal to a constant. Say each side of (6.33) is equal to —k,”. Hence from

(6.33)
&0 — o (w, +v,8,,) Y Yo pr e (6.34)
. IO (W, vwm—Yi—,anva —K,", 1=12,2 .
and ZZ—’ = —kn2, i =,z (6.35)

The general solution of (6.35) is

]

Z(z) = AjL sin(k"z) + BjL cos(k"z), i=1z,2 (6.36)
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However, in order to satisfy (6.26) the A, field should have only sine term whereas the A,

field should have only cosine terms of (6.36) as written below

Z (2) = Assin<kn(z—c)), 1<n<oo,forA; (6.37)

z

Z (2) =AY cos(kn(z—c)>, 0 <n < oo, forA, (6.38)

and the spatial frequency, k,, can be defined as

k =— (6.39)

From (6.34)
};—7” + Hoov, YVZI - me — kn2 + juoa(we + vzfm) = 1=,z (6.40)
Or, }%jt ,uoavy%‘ — 2 =0, i=um2 (6.41)
where
Vo® = & + k2 = dgo (w, +v,8,,) (6.42)
The roots of (6.41) are
Q= 05(—p1900, + | (y00, ) + 47,,2) (6.43)
Brn = 0.5(~ 11900, — (1w, > + 47,,.%) (6.44)

Hence the general solution for Y;(y) is

H’: mn H" mn ] —
Y (y) = CLie®m¥ 4 pLichmt j = g ; (6.45)
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Substituting (6.30), (6.38) and (6.45) into (6.28) for i = x the general solution for the A,

vector potential in the conductive region is obtained as

M N
A;I _ Z Z ejgm:z COS (kn(z o C)) (C'E;feam"y +D£,T.L7:eﬂmny ) (646)
m=—M n=0

Similarly substituting (6.30), (6.37) and (6.45) into (6.28) for i = z the general 