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ABSTRACT 

 

 

FORREST EDWARD SUTER. An Approach To Condition Monitoring And Fault 

Diagnosis Of Induction Machines Using Key Performance Indicators. (Under the 

direction of DR ROBERT COX) 

 

 

One of the great difficulties associated with monitoring the condition of an 

electric motor is that the user must typically possess some degree of expertise to 

distinguish between a normal operating condition and a potential failure.  The typical 

approach is to monitor various electrical and mechanical parameters such as current and 

vibration. Key Performance Indicators (KPI) are extracted from these parameters and are 

monitored for changes. The changes could result from any number of sources, including 

those related to normal operating conditions.  For instance, cyclically varying loads and 

mechanical unbalances can have the same effect on KPIs extracted from the motor 

current spectrum as a broken rotor bar or bent shaft.  These types of issues, in 

combination with the vast amount of available information, make it difficult to determine 

a set of rules for fault detection.  When using hard-and-fast rules, for instance, it is 

possible to omit certain situations out of ignorance or fail to implement rules that deal 

with the dynamic nature of certain conditions.  Without knowing all possible fault 

conditions and symptoms, the developer finds himself in a difficult position. In this 

thesis, a new approach is proposed that does not require a rule based approach but instead 

relies on an unsupervised fault detection algorithm that learns the normal operating 

condition of a particular motor and then monitors for changes that indicate a potential 

fault condition has occurred. 
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1 INTRODUCTION 

 

 

The majority of industrial applications and power generation facilities utilize 

induction motors for the transformation of electrical power to the mechanical form. The 

induction motor is commonly regarded as the workhorse of industry as there are multiple 

applications which generally include pumps, conveyors, machine tools, presses and 

packaging equipment. Some of these applications are in hazardous locations, operating 

under harsh environments, such as the chemical or nuclear power industries. The 

reliability, efficiency and rate of maintenance are the characteristics of the induction 

motor that have led to their widespread use in industrial processes. In addition, the 

production requirements of most industrial processes can be fulfilled by the wide range of 

power ratings, which is from hundreds of watts to megawatts, of the induction motor. A 

growing number of induction motors operate using inverter drives. In this case, the motor 

is not directly connected to the power grid but inverter-fed. The inverter provides voltage 

of variable amplitude and frequency in order to vary the mechanical speed. 

However, the operating conditions for induction motors within the industrial 

applications make motors vulnerable to many types of faults. A fault condition that is not 

detected at an incipient stage may become catastrophic with the induction motor and 

associated equipment suffering severe damage. Left undetected, motor faults cascade into 

motor failure, which in turn contributes to unscheduled production shutdowns. Such 

shutdowns are costly, in terms of production time, maintenance cost, wasted raw 

materials in manufacturing and lost revenue in power generation. Common faults 

occurring in electrical motor drive systems can be classified as follows:  
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• Electrical faults: stator winding short circuit, broken rotor bar, broken end-ring, 

and inverter faults.  

• Mechanical faults: rotor eccentricity, bearing faults, shaft misalignment, load 

faults: unbalance, gearbox fault or general failure in the load part of the drive. 

Several alternatives have been used in industry to prevent severe damage to 

induction motors. Scheduled maintenance is implemented to verify the integrity of the 

motor, lubrication problems, bearing conditions, stator winding and rotor cage integrity. 

However, most maintenance is performed when the motor is de-energized, which implies 

production shutdown. Redundancy is one method to prevent production shutdowns, but 

not induction motor failure. Employing redundancy requires two sets of equipment, 

including the induction motors; the first set operates unless there is failure where the 

second set takes over.  This solution is not feasible in many industrial applications due to 

physical space and high cost limitations.  

Monitoring and fault detection improves the reliability and availability of the 

existing system. Since the various faults degrade relatively slowly, there is a potential for 

fault detection at an early stage. This avoids sudden and total failures, which have serious 

consequences.  In the context of condition monitoring it is important to differentiate fault 

detection from fault diagnosis. Fault detection is the decision if the fault is present or not, 

while fault diagnosis provides more information about the root cause of the failure or 

localization of the failure. This information can be used to minimize downtime and to 

schedule adequate maintenance action. Using a signal analysis approach to condition 

monitoring, no dynamic model of the real process is required with the fault detection 
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being based on measured quantities. The fault detection and diagnosis is only based on 

processing and analysis of the measured signal.   

The studies of induction motor behavior during abnormal conditions due to the 

presence of the fault and the possibility to detect these abnormal conditions have been a 

challenge to Electrical Engineers. There are many condition monitoring techniques 

available including axial flux, temperature, chemical, noise and vibration monitoring; 

although these require expensive sensors or specialized tools. Vibration monitoring is, 

however, the most established and commonly used approach for detecting mechanical 

faults.   

The basic quantities associated with electromechanical plants, such as current and 

voltage are readily measured by tapping into the existing voltage and current transformers 

that are already installed as part of the protection system.  As a result, current monitoring 

is non-invasive and can be implemented in the distribution systems Switchgear or Motor 

Control Centers (MCC) remotely from the motors being monitored [1]. A technique 

called ‘Motor Current Signature Analysis (MCSA) is based on stator current monitoring 

of induction motors; therefore it is not very expensive.   

Both vibration analysis and MCSA are commonly based on Fourier Transform in 

particular the Fast Fourier Transform (FFT) since it easy to implement and represents the 

spectra understandably. However, these have not been combined into a method for 

detecting and diagnosing fault conditions. Some of the methods require the operator or 

maintenance mechanic to physically go out to the motor and take measurements with 

handheld meters. Therefore, there is a need for reliable fault detection strategies for 

electrical and mechanical faults. It is useful to have a means for continuous remote 
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monitoring of induction machines in unmanned/ hazardous locations (such as remote 

mining sites or petroleum processing plants) and in critical applications where the highest 

reliability is required. 

 

1.1 Proposed Idea 

 

The approach proposed in this thesis is a two-step process. The first step is to 

detect faults at an early stage based on comparison of key features of the equipment. The 

second step is to diagnosis the fault by close examination of the extracted features from 

recorded data. During Step 1, features of a healthy system are learned during normal 

operating conditions, and these features are used to create a vector space [2]. During 

operation, measured features are mapped onto this vector space. If a fault develops, the 

associated mapping will change. This approach is based on a modification of a common 

facial-recognition algorithm, and it essentially detects that the feature space no longer 

appears, as it should when healthy. The proposed approach uses a single quantity known 

as the Health Indicator to determine that system behavior has changed. This approach is 

shown to be far more powerful than more simplistic, deterministic rules. Once a change 

has been observed, the underlying indicators can be captured. The corresponding data 

sets can be used immediately for fault detection. In Step 2, individual fault related-

features are investigated to diagnosis the fault condition. This diagnosis could be 

performed by human experts and computerized algorithms.  

The goal of this research is a set of algorithms that are capable of detecting faults 

and diagnosing their causes so that equipment can be repaired before significant damage 

occurs. These algorithms can be operated in real time during equipment operation. At 
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present, automated algorithms are not fully developed and remain a future goal for most 

organizations. This thesis provides an approach that could be a major stepping-stone for 

those goals.  
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2 LITERATURE REVIEW 

 

 

This chapter presents a literature review of condition monitoring for induction 

motors. The basic description of the physical wonders related to induction motors and the 

common faults experienced in induction motors are discussed, as well as the commonly 

monitored parameters in induction motors. 

 

2.1 Induction Motor  

 

Industrial process and power generation, worldwide, utilize induction motors in 

the conversion of electrical energy into mechanical energy. The reliability, efficiency and 

rate of maintenance are the characteristics of the induction motor that have led to their 

widespread use in industrial applications, including pumps, fans, air compressors, mixers, 

and conveyor belts, as well as many other industrial applications. Moreover, induction 

motors may be supplied directly from a constant frequency sinusoidal power supply or by 

an Alternating Current (AC) variable frequency drive. Due to the large range of types and 

applications of induction motors, the focus of this discussion will be on those studied in 

this thesis. In other words, the focus is on the three-phase induction motor, which is a 

type of asynchronous motor.  

Induction motors have uniform air-gaps unlike the Direct Current (DC) motors. 

The stator is constructed of high-grade steel laminations; refer to Figure 2.1.1 [3]. The 

three phase windings are placed in slots cut on the inner surface of the stator frame. The 

rotor windings can either be squirrel cage or wound-rotor type. The squirrel cage rotors 

are embedded with copper or aluminum rods shorted on both ends by copper or 
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aluminum rings. The wound rotors have a similar form of windings as the stator. The 

terminals of the windings are connected to slip-rings [4].The squirrel cage motors are 

more rugged and economical compared to the wound-rotor motors. The windings on the 

stator and rotor (wound-rotor type) are distributed over several slots to improve the 

Magneto Motive Force (MMF) waveform and to create a smooth torque output developed 

by the machine. The MMF is a measure of the strength of the magnetic field, it is 

proportional to the number of turns in the coil and current that flows through this coil. 

The measure of MMF in a coil is ampere-turns. A current flowing in a distributed 

winding results in essentially a sinusoidal space distribution of MMF. If balanced three 

phase currents flow through these three-phase distributed windings, a constant rotating 

magnetic field of constant speed and amplitude is produced in the air-gap and this will 

induce current in the rotor circuit to produce torque [4].  

 

 

Figure 2.1.1: Exploded View of a Three-Phase Induction Motor (Courtesy of Baldor Electric) 

 

The rotor circuit can be left open or closed circuited depending on the mode of operation. 

In standstill, the rotor circuit is considered an open circuit, if the three-phase windings are 



   8 

 

connected to a three-phase supply; a rotating magnetic field is produced in the air gap, 

which rotates at synchronous speed ��. 
 �� = 120� 	
 (2.1) 

Where frequency 	
  is the power supply frequency and � is the number of pole pairs. 

Voltages are induced in both the stator and rotor windings at the same frequency 	
	due 

to the rotating magnetic field. During operation the rotor circuit is closed, the induced 

voltages in rotor produces rotor currents that produce its own field, which interacts with 

that of the air-gap magnetic field to produce a torque. The rotor will rotate in the 

direction of magnetic field in a manner such that the relative speed between the rotor 

windings and rotating decreases. The rotor, under steady state conditions will rotate at 

speed ��, which is less than the synchronous speed ��	of the rotating field in the air-gap 

[4]. The difference in speed between rotor and synchronous speed is referred to as slip 
. 

 
 = �� − ����  (2.2) 

The voltage and current in the rotor circuit are induced at frequency 	�:   
 	� = 
	
 (2.3) 

In conventional squirrel cage motors, at full load conditions the slip and current 

are low but the power factor and the efficiency are high. However, during direct-on line, 

startup conditions the torque and power factor are low but the current is high.  These 

starting currents are in the order of 500 to 800% of the full load current. If the load 

requires a large starting torque, the motor will accelerate slowly. This will cause the 

starting currents to flow for a longer period of time, thereby creating overheating and 
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damage to the insulation. In the Figure 2.1.2, a typical torque speed characteristic curve 

of an induction motor is shown [3]. 

 

Figure 2.1.2: Typical Induction Motor Torque Speed Curve 

 

2.2 Induction Motor Faults 

 

Induction motors are frequently exposed to non-ideal or detrimental operating 

environments. These circumstances include; insufficient lubrication, inadequate cooling, 

frequent start/stop conditions, and overload. During these conditions, the motor is 

subjected to undesirable stresses, which makes the motor susceptible to faults or failure 

[5]. According to surveys by the Electric Power Research Institute (EPRI), the majority 

of the faults in induction motors statistically occur as follows: stator faults (37%), rotor 

cage (10%) failures (broken rotor bars/end-rings), air-gap irregularities and others (12%) 

and bearing failures (41%) [6]. These faults account for more than 90% of the induction 

failures [7], [8], [9], [10]. These common faults can be categorized into two groups: 
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electrical and mechanical faults. Electrical faults include stator and rotor faults, while 

mechanical faults include bearing faults and air-gap eccentricities. 

The stator faults can be classified as lamination or frame fault (ground or 

circulation current) and stator winding faults. According to surveys, stator-winding faults 

account for 30 - 40% of all electrical failures [7], [8], [10]. Stator winding faults can be 

either turn-to-turn (short circuit within the same phase) or other phase combinations 

(phase-to-phase, phase to ground and or three phase faults). Most of the phase faults are 

characterized by high fault currents, which facilitate detecting them, whereas turn-to-turn 

faults (particularly with lower number of faulted windings) are characterized with lower 

fault current levels, which make these faults difficult to detect [20]. Many of these faults 

are caused by a combination of various stresses acting up on the stator, which can be 

categorized as: thermal, electrical, mechanical and environmental [7], [10], [11]. 

Thermal stresses are the most recognized causes for insulation degradation and 

ultimate motor failure. These can be categorized into three types: aging, cycling and 

overloading. As a rule of thumb, for every 10°C increase in temperature, the insulation 

life is halved due to thermal aging. Winding failure will occur irrespective of the degree 

of thermal aging if the other stresses mentioned above increase. The effect of temperature 

on thermal aging can be reduced to prolong thermal life by reducing the operating 

temperature or increasing the insulation class of winding material used. Thermal 

overloading occurs due to variation of the applied voltage, unbalanced phase voltages, 

obstructed ventilation and higher ambient temperature. As a rule of thumb, for every 

3.5% voltage unbalances the winding temperature increases by 25% in phase with the 
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highest current. Cycling gives expansion and contraction in the insulation system 

resulting in a weakening effect [7], [10]. 

Mechanical stresses that accelerate the degradation of insulation include coil 

movement and rotor striking the stator. The current in the stator windings produce a force 

on the coils that is proportional to the square of the current. This force is maximal under 

starting cycle or transient overloads, causing the coils to vibrate at twice the line 

frequency in both the radial and tangential directions. This movement causes damage to 

insulation. The rotor can strike the stator due to a number of reasons, such as shaft 

deflection, air-gap eccentricities and broken rotor bars. If the strike occurs during the 

starting cycle, the force of the rotor can cause the stator laminations to puncture the 

insulation, whereas during full speed steady operation it can cause premature grounding 

of the coil in the stator slots [7], [10]. 

Broken rotor bars account for more than 5% of the electric motor failure of 

induction motors [8], [9], [12]. There are numerous reasons for rotor bars and end rings 

breakages, these include magnetic stresses caused by electromagnetic stresses; thermal 

stresses due to abnormal operating duty including imbalance and overload conditions; 

inadequate casting, fabrication procedures or overloading; contamination and abrasion 

due to poor operating conditions; and lack of maintenance. Because of the reasons 

mentioned above, the rotor bars may be damaged and simultaneously an imbalance 

condition may occur. Rotor asymmetries result in asymmetrical distribution of rotor 

currents. An incipient broken rotor bar aggravates exponentially in time, as excessive 

current flow is concentrated on adjacent bars instead of the broken bar, which propagates 
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electrical stresses to adjacent areas. This progressively deteriorates the rotor part, 

degrades the motor’s overall performance, and shortens its lifetime [8], [13].  

Bearing faults account for 40% of induction motor failures [8], [14]. A majority 

of induction motors use ball or rolling element bearings, which consist of an inner and 

outer ring with a set of rolling elements placed in raceways rotating inside these rings 

[14]. Bearings operate in non-ideal conditions and are subjected to excessive loading 

which usually causes premature failures. Overheating due to temperatures in excess of 

204.4°C can anneal the ball and ring material. The result of loss in hardness reduces the 

bearing capacity causing early failure. In extreme cases, the balls and rings will deform. 

The increase in  temperature can also degrade or destroy the lubricant. Brinelling, which 

occurs when the loads exceed elastic limit of the ring material. Contamination due to 

dirty work areas, tools, fixtures, hands and grinding operations. Corrosion resulting from 

exposure to corrosive fluids or a corrosive atmosphere. Lubrication failures typically 

caused by restricted lubricant flow and excessive temperatures that degrade the lubricant 

properties. Misalignment caused by exceeding the alignment tolerances. The 

misalignment results in rises of temperatures of the bearings. Bearing faults or defects 

can be classified as outer race, inner race, rolling element and cage defects. 

Air-gap eccentricities are conditions that occur when there is a non-uniform 

distance between the rotor and stator in the air-gap. Generally, there are three types of 

eccentricity: static, dynamic and mixed. In static eccentricity, the rotor geometrical center 

is identical to the rotational center but displaced with respect to the stator geometrical 

center. The point of minimal gap length is stationary with respect to stator. This type of 

eccentricity is caused by misalignment of the rotor axis within the stator. This condition 
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may be attributed to manufacturing tolerances, an oval stator core, incorrect bearing 

positioning or bearing wear. In dynamic eccentricity, the rotor geometrical center is 

different from the rotational center. The rotational center is identical to the stator 

geometrical center. The point of minimal gap is moving with respect to the stator. This 

type can also be caused by manufacturing tolerances, bearing wear and bent shaft or 

flexible shaft. Mixed eccentricity is a combination of both static and dynamic 

eccentricity. The rotor geometrical center, rotor rotational center and stator geometrical 

center are different. The point of minimal gap is also moving with respect to the stator. 

The major risk of these eccentricities is mechanical contact of the rotor and stator, which 

would result in damage for the machine [8], [15]. 

 

2.3 Condition Monitoring 

 

Condition monitoring is a continuous evaluation process of the health of the 

facilities equipment through its service life. It is essential to detect faults while they are 

still developing; this is referred to as incipient fault detection. The incipient fault 

detection of motor failure provides a safe operating environment. Using a comprehensive 

condition monitoring scheme for continuous assessment of the induction has become 

increasingly important. By condition monitoring induction motors, adequate warning to 

imminent failure can be provided to the operator, which makes it possible to schedule 

future maintenance and repair work. This can reduce down time and optimize the 

maintenance schedule. 

The condition parameters or symptoms for determining various faults in induction 

machines recognized by International Standards Organization are displayed in Table 



   14 

 

2.3.1 [16]. The most prominent parameters used include current, vibration, temperature 

and axial flux [16]. These prominent parameters can be categorized as: invasively (Axial 

flux) and non-invasively (noise, vibration and current) monitored parameters. 

 
Table 2.3.1: Parameters Used to Detect Faults in Induction Motors 

 

 

Axial flux leakage is a result of stator and rotor currents on the machine 

extremities; in the coil ends and the rotor end rings. Axial flux can always be detected 

even with symmetrical supply due to the effect of imperfections in the production 

process. Therefore, the axial flux can be a good indicator of an induction motor’s health. 

However, the measurement is invasive since a search coil is wound around an end-turn in 

front of the machine. The coil is perpendicular to the machine and shaft. The search coil 
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measures the sum of the flux from stator winding and flux from the rotor winding [17], 

[18]. 

Temperature or thermal measurement involves bulk temperature measurement or 

parameter estimation. Researchers have developed two thermal models to categorize 

electric machines: the finite element analysis model and the lumped parameter thermal 

model. The finite element analysis model handles heat conduction problems more 

accurately and is well suited for steady state or transient problems of large machines 

where asymmetries are a common feature but are computationally intensive [7], [19]. The 

lumped parameter thermal model is the most popular for temperature estimation. It is 

composed of different thermal resistors and capacitors [7]. In a turn-to-turn fault, the 

temperature rises in the region of the fault; however, this might be too slow to detect the 

incipient fault before it progresses to a more severe fault [20].  

Vibration analysis is the most established technology and the most tangible. 

Almost all machines vibrate, and the connection between these vibrations and the 

machine condition is that both are easily measured and interpreted. The major benefit of 

vibration monitoring is that different mechanical processes within the machine (eg. 

imbalances, gear-mesh, bearing faults) all produce energies at different frequencies. 

Separating these different frequencies from one another through spectrum analysis 

enables a whole new level of detail to be seen [21]. The monitoring and frequency 

analysis will be discussed later. 

The MCSA is an electric machinery technology developed by the Oak Ridge 

National Laboratory (ORNL). It exploits the intrinsic ability of the electric motors and 

generators to act as transducers by using non-intrusive current clamps. The motor current 
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provides the means of detecting small variations in time dependent loads and speed 

variation generated anywhere within the electro mechanical system, which converts them 

into revealing signatures that can be used to determine equipment degradation and 

incipient failures [22], [23]. There are numerous applications of using MCSA on 

equipment health published among the nuclear-generation, industrial and defense 

industries. In motor applications, the stator current is monitored for detection of different 

faults in induction motors. The monitoring methods and fault frequency analysis will be 

discussed later. 

The most commonly monitored parameters or signals in condition monitoring; 

vibration and current will be discussed further in Sections 2.4 and 2.5 respectively. These 

parameters indicate a fault condition by either an increase or decrease in the overall value 

or by some change in characteristic value. For such parameters, simple measurements of 

overall values may not be sufficient to reveal a fault condition. As a result, spectral and 

phase (in the case of vibration) measurements may be required to reveal changes 

attributed to faults. The accuracy required for condition monitoring parameters is not as 

absolute as the one required for performance measurement. The monitoring methods and 

frequency domain fault characteristics of these types of signals are discussed in the next 

two sections. 

 

2.4 Methods for Monitoring Vibration  

 

All machines under normal operation produce oscillation motion such as 

vibration. There are two types of vibration - benign and serious vibration. Benign 

vibrations are characteristics of regular operating conditions. Examples of benign 
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vibrations are as follows: blade-passing frequency; 120Hz motor hum frequency; pure 

tone from motors driven by VFD; gear mesh frequencies; and broadband turbulence from 

pumps or fans. The amplitude will vary from machine to machine and is a measure of the 

quality of manufacturing and load condition. Increase in normal levels advocates a reason 

for investigation but not for alarm [24]. 

Serious vibration cause accelerated wear and premature failure. The serious 

vibrations can be categorized into two: forced and natural. The corrective actions of these 

two serious vibrations are very different. Forced vibrations are caused by mechanical 

(misalignment, unbalance, worn bearing, bent rotor etc.) and electrical (shorted turns, 

rotor cage faults, etc.) defects. These defects can be corrected by alignment, balancing or 

changing the faulty component, whereas natural vibrations are caused by a structural 

effect, where the structure behaves like a mechanical amplifier to sensitive frequencies. 

Symptoms of natural vibrations are: abnormally high amplitudes of vibrations; strongly 

directional vibrations; variation of vibration amplitude; and rumbles during coast up and 

coast down of motor. There are three main tests used to verify resonance: impact or 

hammer test on the major components to determine their natural frequencies, variable 

shaker, and coast-up and down test. Thus, corrective measures involve changing the 

speed, adding damping, changing the natural frequency of the responding part, dynamic 

absorber and reducing source input [24]. 

The commonly measured vibration signals are displacement, velocity and 

acceleration. Displacement measures the distance that the moving component has moved 

relative to a fixed reference and it indicates stress. It is a predominate factor at low speeds 

1200rpm (below 20Hz). Velocity measures the instantaneous rate of change of the 
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displacement and it indicates fatigue. The amplitude is constant throughout all 

frequencies, and as a result, it is preferred for condition monitoring where the amplitude 

has the same meaning at all frequencies, which simplifies the interpretation of the 

severity and establishing the alarm limits. Velocity is generally used between 10Hz 

(600rpm) and 1kHz (60,000rpm). Acceleration measures the instantaneous rate of change 

of velocity and it indicates force. It is a predominate factor at high speeds 60,000rpm 

(1kHz) [25]. 

In general, there are three categories of vibration sensors based on their electrical 

outputs: displacement sensors, velocity sensors and accelerometers. Each sensor type 

serves a specific purpose and is restricted by inherent constraints [25]. Displacement 

sensors, such as proximity switches and strain gauges are non-contact and measure shaft 

movement or displacement relative to the probes itself. Velocity sensors, such as 

tachogenerators, unlike the displacements sensors, have contact with the moving 

components to measure the motion. Accelerometer sensors are usually classified into 

two: Piezoelectric (PE) and Piezoresistive (PR) accelerometers.   

The PE accelerometers are the most widely used for testing and measurement [26] 

compared to the PR accelerometers since they provide a wide frequency range and are 

available in wide range of sensitivity, size and weight. There are two subdivisions of the 

PE accelerometer: the basic charge mode piezoelectric and the voltage mode Internal 

Electronic Piezoelectric (IEPE) accelerometers. The basic charge mode PE requires use 

of special low noise cables (which tend to be expensive compared to the standard 

commercial coaxial cable and charge amplifiers), thus IEPE type is preferred. These 

vibration sensors need to be attached to the surface of the machines. In the field of 
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vibration monitoring the PE accelerometer is the most commonly used, which permits the 

vibration signal to be converted to either a velocity or displacement signal. 

 

2.5 Methods of Current Monitoring  

 

In the stator current of every induction motor there are two types of frequency 

harmonics that are always present: the Winding Harmonics (WHs) and the Principal Slot 

Harmonics (PSHs). The important ones for a three-phase induction motor are the first 

order WH (also called the fundamental component), the fifth order (WH5), and seventh 

order (WH7). The frequency of the n order is WH (WHn) is proportional to the 

fundamental supply frequency [1].  

It is possible to obtain information about the health and the integrity of an 

induction motor through the monitoring and analysis of the electrical signature, as 

mentioned previously. The instrumentation system usually consists of the following items 

according [1]: a Current Transformer (CT) to sense the signal; resistive shunt across the 

output of the CT; a MCSA instrument to produce the current spectrum or signature. The 

current measurements can be collected by measuring the secondary side of a CT or 

around the motor cable using a clip on current transformer. Usually only one current 

signal of one motor phase is analyzed for its current frequency content. The reason for 

this is that, the rotating flux waves produced by the different faults cut all three stator 

phase windings; thus, the corresponding currents are induced in each of the three phases. 

High frequency response range is required for the CTs to cover the frequency range of 

components that can be induced due to different faults mechanism and to cater for 



   20 

 

inverter-fed induction motor drives. The frequency domain based methods of the line 

current are generally known as MCSA [1]. 

 

2.6 Summary 

 

In summary, the basic concepts of the induction motor have been presented. The 

common types of faults associated with induction motors were identified and categorized 

into electrical and mechanical faults. These common faults have also been described. 

Furthermore, the most prominent parameters used to detect these faults, namely motor 

current and vibration have been identified and discussed briefly. CTs are usually used to 

sense the current signal in current monitoring. Vibration monitoring is more mature and 

established technique for detecting faults. In vibration monitoring, the velocity is the 

preferred signal used to quantify the level of vibration since the amplitude is constant 

throughout all frequencies. The accelerometers are usually used to measure vibration. 

The acceleration can be integrated to obtain the velocity signal. The IEPE accelerometers 

are widely used to measure the accelerations.  

The next chapter discusses the development of an algorithm to extract key 

features from the vibration and current signals for condition monitoring of induction 

machines.  
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3 KEY PERFORMANCE INDICATORS IN INDUCTION MACHINES 

 

A method for the processing of raw sensor signals from induction machines into 

Key Performance Indicators (KPIs) for condition monitoring is presented in this chapter. 

This thesis proposes a condition monitoring approach that is intended to be more 

automated with less dependence on the standard rules based approach. The first step is to 

extract KPIs or features from various raw input signals. Specifically, the input signals are 

the line voltages, phase currents, motor speed, and vibration signals from accelerometers. 

Note that the majority of signals can be taken from existing distribution system 

equipment. As in the case of a power generation facility, the line voltages and phase 

currents can be taken directly from the CTs and Potential Transformers (PTs) that are 

installed in MCCs and Switchgear (SWGR) for relaying purposes. The data can then be 

collected and processed within the facilities existing Distributed Control System (DCS). 

The processing includes steps such as Root-Mean-Squared (RMS) calculations and FFTs. 

The processed data can then be input into an unsupervised fault detection algorithm that 

will alert operators of potential fault conditions. At that point KPIs can then be analyzed 

to determine the specific fault condition. 

Section 3.1 will discuss the basic functions being processed for KPIs. The 

following Section 3.2 and 3.3 will discuss the calculations that are performed for specific 

mechanical and electrical features respectively.  
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3.1 KPI Algorithm Development 

 

MATLAB software was used to develop a function KPIpro2. The KPIpro2 

function implements an algorithm for processing raw input signals, recorded from an 

operating motors, into KPIs. The function will process thirteen input signals in real time. 

However, for the purposes of development, data was recorded and all analysis performed 

off-line. The input signals include the three phase currents; the three line-to-line voltages; 

rotational speed; and the axial, horizontal and vertical and acceleration on two bearing 

blocks. A total of 186 KPIs are extracted from these raw signals, refer to Appendix C for 

a description of the KPI values. The processing includes steps such as RMS calculations 

and FFTs. Since these steps are repeated multiple times on similar signals, the KPI 

algorithm calls other functions to perform these steps. Thirteen additional functions are 

called on by KPIpro2 to extract various KPIs.   

The KPIpro2 takes in the raw signals as an �	 × 13 matrix, where	� is the 

number of samples taken during testing. In addition, the sampling frequency is an input to 

the function. This was necessary early in development as different Data Acquisition 

(DAQ) systems were used that had dissimilar sampling rate capabilities. Note that raw 

signals provided to the feature-extraction algorithm must be sampled at a high rate. The 

discrete signal �[�] is a sampled version of the continuous time signal �[�] when 

acquired through a DAQ. The continuous time signal has to be sampled at a rate greater 

than twice the maximum frequency contained in the signal in order to avoid aliasing 

distortions, a factor called the Nyquist Rate [27], [28]. Higher frequency sampling yields 

a higher number of data points and higher signal resolution. However, the computational 



   23 

 

requirements to analyze this signal will increase with higher signal resolution. Thus, the 

sampling frequency selection should be based on the required resolution of the signal and 

the desired computational accuracy/performance. Therefore, a sampling frequency of 

6000 samples per second is needed to avoid aliasing distortion for analyzing signal 

features up to 3000Hz. The processed features are output at a much lower rate, as 

multiple data samples are typically required for processing. In this implementation, the 

features are calculated at 5Hz.  

The first steps of the algorithm involved the setup of the number of samples to 

process per output-sampling rate, vector for time indication and scaling the raw data. A 

vector vectorref is established for use throughout the KPI processing for the number of 

samples to process per 0.2 seconds. This vector will be used by each additional function 

called by KPIpro2. The � × 187 matrix KPI is then pre-allocated for the � equal to the 

length of vectorref vector with all zeros. This step overwriting with zeros was necessary 

to ensure that data from previous analysis was erased from matrix KPI prior to new data 

being added. The time vector was added as KPI (�,187) for plotting KPIs vs time instead 

of leaving the plots as KPIs vs samples. The final step before calculating KPIs is scaling 

the raw signals. The voltage scaling is based on the voltage transducer used during 

testing; refer to Figure 4.1.7 for details of transducers circuit: 

 ����� = �� �
1!  ���� (3.1) 

 

Where; ��is the raw signal;  � is the measuring resistor (110Ω);  ���� is the primary 

resistor (100kΩ); ! is a multiplying factor of 2.5. The current scaling is based on the 
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current transducer used during testing; refer to Figure 4.1.7 for details of transducers 

circuit: 

 "#$%&� = �� � ! (3.2) 

 

Where; ��is the raw signal;  � is the measuring resistor (110Ω);  ! is a multiplying 

factor of 1000. The acceleration scaling is based on the sensitivity of the accelerometer 

used, 100mV per G:  

 '(()* = 	�� +0.1- 9.80665� 
�⁄+  (3.3) 

 

Where; ��is the raw signal converted to meters per second squared. Once the raw signals 

are scaled and the KPI matrix is allocated, the processing for KPIs is started.  

The RMS of the signals is one of the common features calculated for KPIs. The 

RMS is calculated in both the time domain and the frequency domain. The RMS of the 

phase currents and line voltages are calculated within the time domain using the 

following formula:  

 
( ) ( )∑=

n

RMS tx
N

tx 21
 [27] (3.4) 

The KPIrms2 function was developed to perform the equation (3.4) on the voltage and 

current signals with the results assigned to KPIs (�, 1-6). It should also be noted that 

RMS could be calculated by: 

 �2�&3�4 = 	5

6 7 �3�4�8�99:6  [29], [30] (3.5) 

Where ; is the period of the input signal and � is the input signal. During development of 

KPIpro2 both methods (Equations (3.4) & (3.5)) were used to calculate the RMS of 
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known signals with the results compared. Comparison of known signals showed less than 

a 0.4% difference in the results of both calculations between each other and oscilloscope 

measurements. The deciding factor in method to proceed with was processing time. 

MATLAB function profile on was used to determine the processing time of each method. 

The method using equation (3.4) would take a third of the processing time as the method 

using equation (3.5). Five minutes of data took 15 seconds for RMS (3.4) while RMS 

(3.5) took 45 seconds. An additional note, if statements extend processing time; therefore, 

these statements were reduced or eliminated from functions as much as possible. 

The RMS of the acceleration signals are calculated within the frequency 

domain. From Parseval’s relation:  
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The RMS in the frequency domain was derived to be:  
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 [27] (3.7) 

This derivation is used as part of the bands function to find the RMS of acceleration over 

bands of frequencies. Refer to Section 3.2 for further discussion of the bands function.  

Additional fault features extracted are located within the vibration and current 

spectrum. As discussed in Chapter 2, an increase in magnitude of certain harmonic 

frequencies will indicate a mechanical and/or electrical fault. The Fourier Transform 

allows periodic and non-periodic continuous time signals to be described in terms of 

frequency content given by sinusoidal components [8]. The Fourier Transform has the 

discrete counterpart, the Discrete-Time Fourier Transform (DTFT). The DTFT is of a 
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discrete time signal �[�] is a function of a continuum of frequencies, and unlike the 

continuous case, the DTFT is always periodic with a period of 2π [28]. A transform of a 

discrete-time signal that is a function of a finite number of frequencies is called a 

Discrete Fourier Transform (DFT). The DFT can be viewed as “discretization in 

frequency” of the DTFT. The various harmonic frequencies were monitored in the 

vibration and current spectrum by performing discreet Fourier Transforms on the scaled 

signals [30]:  

 <= = > +?):@=ΩB?
�B:


?CD
 (3.8) 

With the inverse formula: 

 +? = 1ED > <=)@?ΩB=
�B:


=CD
 (3.9) 

Where: 

 +? = ;�+3F;�4										<	= = <3G	D4 
2H	D = �I

6B 																				2H	� = �I
6J 			        

ED = ;D;� =
	�	D	 					 			ΩD = 2H	D;� = 2HED 								 

(3.10) 

Equation (3.8) was implemented using the FFT algorithm within MATLAB while 

Equation (3.9) was implemented using the Inverse Fast Fourier Transform (IFFT). The 

functions harmagloc3 and vibharmmech2 were developed to perform the FFT on the 

current and vibration signals respectively. After the signals are transformed to the 

frequency domain, a find function is used to call in the specific vibration frequencies 

associated with fault conditions. The harmagloc3 and vibharmmech2 functions will then 
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return the max amplitude at ±1Hz of the specific frequency. The search is done around 

the specified frequency to reduce chance of error. During development phase of the codes 

it was observed that the peak may not occur exactly at the frequency but within ±0.5Hz. 

The specific frequencies looked at are discussed in Sections 3.2 and 3.3.  

When performing the FFT, windowing was used on the signal to reduce spectral 

leakage. Spectral leakage is an undesired phenomenon when the power of the original 

signal data leaks out over the entire frequency spectrum instead of being concentrated at 

the points of interest. Spectral leakage produces amplitude bias (the difference between 

the true value and the expected value) and may conceal the presence of weak signals and 

prevent their detection. The quality of a signal can be improved by multiplying the signal 

data with a suitable window function. The simplest window is called the rectangular 

window; however, other window functions have been developed to achieve better 

sidelobe levels [30]. Decreasing the sidelobe levels reduces the amplitude bias, although 

this can be achieved only by broadening the window’s mainlobe frequency response thus 

leading to a reduction in spectral resolution.  A Chebyshev window is suitable for close 

and distant interferences. A rapidly decaying sidelobe window such as the Hann is 

suitable for distant strong interference as show. A window with low adjacent sidelobes 

such as the Hamming is suitable for very close interference and increasing sidelobes. In 

the field of fault detection of induction motors via motor current and vibration signals, 

the most popular is the Hann also known as the Hanning window [31], [32]. 

  



   28 

 

3.2 Mechanical Feature Calculations 

 

The mechanical features that are used for KPIs are extracted from the vibration 

signals. The features include the velocity RMS, acceleration RMS over bands of 

frequencies, and the magnitude of specific harmonic frequencies.  

The KPI for velocity was calculated by taking integrating the acceleration. A 

direct integration of the scaled integration was not possible. The low frequency or DC 

content of the signal causes an effect, which throws off the conversion process. The 

integration cannot account for this DC content [33]. This error builds during the 

integration giving a growing or decreasing error effect as shown by Figure 3.2.1. 

Therefore, the DC portion, from the signal conditioner, needs to be removed before 

integration. The function velrms initial steps are to perform a FFT, as described in 

Section 3.1, on the acceleration signals. The DC value is then set to zero to remove the 

DC Component. An IFFT is performed to convert the acceleration back to the time 

domain. The velrms then computes the velocity, -, by doing the cumulative trapezoidal 

numerical integration of the acceleration, K, and is defined as: 

 - = 1L� M>K
�

NC

3O4 − K314 + K3E42 Q (3.11) 

Where L� is the sampling frequency. Figure 3.2.2 shows the velocity (��/
) verses time 

(seconds) after the integration. The velocity waveform observed is as expected based on 

research [21], [34], [35]. The magnitude of the velocity, 2mm/s, is less than 80% of the 

NEMA standard vibration limits of 3.8mm/s [35]. 
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Figure 3.2.1: Integration of Acceleration with DC Component 

 

The final step is to find the RMS of the velocity. The velrms function calls the 

KPIrms2 function to calculate the RMS of the velocity as described in Section 3.1. The 

resultant velocity RMS is output to the KPI matrix. The complete function was validated 

by measuring known signals with the setup shown in Figure 3.2.3. A function generator 

was used to input various signals to a shaker table. The accelerometers, refer to Section 

4.1, were connected to an oscilloscope to observe the recorded vibration. The signal 

conditioner gain was adjusted for each accelerometer to within a 1% error tolerance with 

the known input and measurements with handheld vibration meter (Extech 407860) [36] 

for calibration of the accelerometers and signal conditioner. The vibration signals were 
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then input into the data acquisition system for processing. Comparison of the calculated 

velocity RMS to the handheld meter showed results with less than 1% error when the 

vibration peak to peak input was greater than approximately 25mV. When signal was less 

than 25mV, the calculated and measured velocities were within 5%.  

 

 

Figure 3.2.2: Integration of Acceleration Without DC Component 
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Figure 3.2.3:Shaker and Accelerometer Calibration Setup 

 

KPIs were also calculated for the vibration RMS over bands of frequencies by the 

bands function. Banding is a method of dividing the frequency range into frequency 

bands and applying a vibration limit to each band. Banding recognizes that the vibration 

level at various frequencies is a function of the source of excitation (bearings, for 

example) [21], [35], [37]. Changes in the bands RMS will indicate a general fault 

condition. Since the KPI data is output at 5 Hz, the FFT was performed over a 0.2-second 

window of the accelerometer data. Three bands are then pulled out and assigned as 

variables. The frequency bands are defined as: 

• Low frequency band from 10 to 200 Hz 
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• Middle frequency band from 200 to 2000 Hz 

• High frequency band greater than 2000 Hz 

The bands were selected based on preliminary work that was done with motor fault 

detection with Converteam Naval Systems [2]. With the three bands extracted from the 

FFT data, a RMS calculation is performed in the frequency domain to determine each of 

the three bands. Each vibration signal is processed through the algorithm as some fault 

vibration signatures can be more prevalent either axial or radial.   

In addition to the vibration RMS, the magnitudes of specific vibration frequencies 

associated with fault conditions were located by spectral analyses. As discussed in 

Section 3.1, the vibharmmech2 functions will output the magnitude of the frequencies 

within the accelerometer signals. Vibration frequencies at one, two, and six times the 

electrical frequencies were monitored. Twice the electrical frequency (Torque Pulse 

Frequency) vibration will increase when the air gap is not symmetrical between the stator 

and rotor. This condition results an unbalanced magnetic pull being greater in the 

direction of the smaller air gap. The stator is pulled in one direction, while the rotor gets 

pulled in the opposite direction to the side with the minimum air gap causing higher shaft 

vibration. [38]. In addition, problems in a motor such as a rub, loose parts, a bent shaft 

extension or elliptical bearing journals can cause vibration at 2 times rotational frequency 

[20]. One times the electrical frequency vibration can exist, although it is not nearly as 

prevalent as twice the electrical frequency vibration. This line frequency vibration is 

normally very small or non-existent, but if the stator or rotor system has a resonance at, 

or near, line frequency, the vibration may be large. The sixth harmonic is an indication 

that there is looseness in machine parts and can also be generated by a loose rotor. 
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Vibration frequencies at half, one, two, three and four times the rotational 

frequencies were monitored. An eccentric rotor, which means the rotor core outer 

diameter is not concentric with the bearing journals, creates a point of minimum air gap 

which rotates with the rotor at one times rotational frequency. A bent shaft typically 

produces spectra that have misalignment type characteristics with a higher than normal 

one and two times the rotational frequency. Rotating frequency harmonics or half, two, 

three and four times the rotating frequency harmonics at abnormally high amplitudes 

generally characterizes mechanical looseness, or an improper fit between components 

[35], [37], [38].  

 

 
Figure 3.2.4: Geometry of a Rolling-Element Bearing [39] 
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There are four categories of ball bearing defects: outer raceway defect, inner 

raceway defect, ball defect, train defect. The faults can be detected at vibration 

frequencies specified by [39], [40]: 
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Ball Defect: 
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Train Defect: 
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Where: 

• 
vf  is the vibration frequency in Hz 

• N is the number of balls  

• 
bD  is the ball diameter  

• 
cD  is the pitch or cage diameter 

• β  is the contact angle of the ball with the races 

Due to the harmonic frequencies being based on the mechanical speed, the speed 

is also calculated and output as a KPI.  The mechanical speed is a voltage signal input to 

the KPIpro2 function as channel 7 as shown by Appendix B. The signal input is taken 

from a frequency to voltage converter as discussed in Section 4.1. Based on the LM2907 

converter (Figure 4.1.11), the run_speed function calculates the mechanical speed based 

on the following formula:  
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 	 = �NS�TT × U
 ×  
 × F (3.16) 

Where: 

• 	 is the mechanical frequency 

• �NS is the input voltage signal 

• �TT 	is the control voltage (15V) 

• U
 is the capacitor on Pin 2 (0.01µF) 

•  
 is resistor on Pin 3 (100kΩ) 

• F is the chip gain (1 typically) 

The mechanical speed is output in hertz for use in additional calculations. The code was 

validated by comparing with the digital display on the fault simulator, handheld meter 

and oscilloscope measurements of the LM2907 output voltage. When the typical values 

where used for capacitor, resistor, and gain, the speed was out of calibration by 

approximately 3Hz. It was determined that the actual values should be used instead of the 

typical values for capacitor and resistor.  Additionally the gain would vary due to a 

thermal factor. When initially energized the gain would be greater than one, 

approximately 1.3. After approximately 10mins, the LM2907 reaches a steady state and 

the gain leveled at 0.9942. These values where used for the variables.  
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3.3 Electrical Feature Calculations 

 

The electrical features that are used for KPIs are extracted from the voltage and 

current signals. The features include the electrical frequency, total harmonic distortion, 

and the magnitude of specific harmonic frequencies in addition to the voltage RMS and 

current RMS previously discussed in Section 3.1.  

The electrical frequency was determined by analyzing one of the phase currents. 

The KPIpro2 function locates the zero crossings of the current waveform. The distances 

between crossings are then used to determine the electrical frequency. During code 

development, it was observed that zero crossings would occur in between samples. The 

code would return the nearest sample resulting in errors in frequency. To correct this 

issue the function Crossing was used to locate the index of the zero crossings with 

interpolation when the zero crossing occurred between samples. This corrected the error 

of spikes below 60Hz during steady state; however, spikes still occurred reaching to 

4000Hz. This occurred significantly during startup. This was determined to be caused by 

noise that caused the current signal to spike and cross zero.  This was corrected by using 

the MATLAB SP tool to develop an Equiripple Lowpass filter for the current signal. 

Using the filtfilt command applied the filter and corrected the 180° phase shift that 

occurred when using the filt command. The filter was effective in removing the noise 

spikes from the signal without attenuation that would influence the frequency calculation.  

In addition to the RMS of electrical signals, the magnitudes of specific vibration 

frequencies associated with fault conditions were located within the current spectrum. As 

discussed in Section 3.1, the function harmagloc3 will output the magnitude of the 
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frequencies within the current spectrum. The magnitudes of current at 1st, 3rd, 5th, 7th, 

9th, 11th, 13th harmonics were monitored by KPIpro2 due to the increase in variable 

frequency drives (VFDs).  With an increase in VFDs, the use of that power electric 

motors, the voltages and currents originating from a VFD are strong with harmonic 

frequency components. Voltage supplied to a motor sets up magnetic fields in the core, 

which create iron losses in the magnetic frame of the motor. Therefore, higher frequency 

voltage components produce additional losses in the core of AC motors, which in turn, 

increase the operating temperature of the core and the windings surrounding in the core 

damaging the motor [41]. Additionally there is the phenomenon of torsional oscillation of 

the motor shaft due to harmonics. When a motor is supplied non-sinusoidal voltages and 

currents, the air gap magnetic fields and the rotor currents contain harmonic frequency 

components. The interaction between the positive and negative sequence magnetic fields 

and currents produces torsional oscillations of the motor shaft. These oscillations result in 

shaft vibrations. If the frequency of oscillations coincides with the natural mechanical 

frequency of the shaft, the vibrations are amplified and severe damage to the motor shaft 

may occur. It is important that for large VFD motor installations, harmonic analyses be 

performed to determine the levels of harmonic distortions and assess their impact on the 

motor [41]. 

Based on the impact of the current harmonics on the induction motor, KPIs were 

also developed for the monitoring of Total Harmonic Distortion (THD). The THD was 

calculated using both the IEEE and IEC method. Where the IEEE method uses the 

formula [41]:  
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 ;VW���� =	X"�� + "Y� + "Z� + "[�…"
  (3.17) 

For coding purposes, this formula was simplified to: 

 ;VW���� =	X"6� − "
�"
  (3.18) 

Where  

• "6 is the total measured current 

• "Sis the magnitude of the current at nth harmonic 

The IEC method uses the formula [42]: 

 ;VW��T =	X"�� + "Y� + "Z� + "[�…X"6�  (3.19) 

 

Simplified for coding as 

 ;VW��T =	X"6� − "
�X"6�  (3.20) 

 

Broken rotor bars can be detected by performing spectrum analysis of the motor 

current. As discussed in Chapter 2, the harmonic frequencies relating to broken rotor bars 

can be predicted using the formula [43], [44]:  

 ( ) fksfbr 21±=  (3.21) 

Where: 

	]� = the harmonic frequencies of the broken rotor bars 

 F = harmonic index (1, 2, 3…) 

 
  = the slip ratio 
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 	  = the fundamental frequency of the electrical current 

The function rotorbarsidebands was developed to calculate the coefficients to be 

multiplied with the fundamental electrical frequency. The calculated slip and vectorref 

are inputs to the algorithm. The algorithm determines the coefficients using only the 

harmonic indexes of one, two and three as prior research [44] has shown that the 

magnitudes of the lower and upper sidebands above the third index were minimal. The 

output is an m × 6 matrix (rotorbar) that is an input to the harmagloc3 function for 

locating the harmonic frequencies of the broken rotor bars.  

Rotating eccentricities can occur due to bearing faults, which can lead to 

variations in the machine inductances. This produces frequencies in the stator current that 

can be used to detect bearing faults [39], [40]. The frequencies can be calculated using: 

 
vbng kfff ±= 1  (3.22) 

Where 

 	]S^ Vibration frequencies reflected in the current spectrum 

 	
 the electrical supply frequency 

 F = 1, 2, 3… 

 
vf  is the vibration frequency in Hz as discussed in Section 

The vibration frequencies are those discussed under Section 3.2. As shown by research in 

[39] and [45], the bearing faults produce harmonic frequencies in both the current and 

vibration spectrums.  
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3.4 Condition Monitoring With KPIs 

 

The greatest diffculty associated with condition monitoring of induction motors is 

that an operator must possess some degree of expertise in order to distinguish the normal 

operation from a potential failure. This is because monitored spectral components can be 

produced from any number of sources, including those related to normal operation. 

Combine this with the extensive research available makes it diffcult to determine a 

simple and complete set of rules for fault detection. When using hard-and-fast rules, for 

instance, the developer is likely to omit certain situations out of ignorance or fail to 

implement rules that deal with the dynamic nature of certain conditions. Without 

knowing all possible fault conditions and symptoms, the rules based approach to 

condition monitoring is difficult. 

An unsupervised approach has been developed to detect fault conditions, without 

a set of rules, that learns KPIs that are specific to the system and monitors for changes 

that may indicate a potential fault condition [2]. The fault detection algorithm is provided 

the KPIs extracted from collected data as discussed in Sections 3.1-3.3. The relevant 

information is extracted from the KPI vectors and then the encoded results are compared 

to a database of healthy features encoded in a similar manner. Any differences indicate 

that the motor may be faulted. This approach is patterned after the facial recognition 

scheme presented in [46]. 

The unsupervised fault detection algorithm is provided with a feature vector of 

KPIs. As in many pattern-recognition problems, there is a large number of feature vectors 

of KPIs (186 proposed by this thesis). From the rules-based approach, each feature would 
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be considered for how useful it would be for the detection of one or more faults. This is 

not necessarily the case as features are not independent. Therefore, classification 

accuracy does not improve as one includes more features. As discussed in [2], there is 

actually a diminishing point of returns that stems from the fact that as more features are 

included a situation develops that can lead to errors. An approach is needed combines 

features in such a way that it reduces the size of the data set, and reveals trends that best 

separate various data sets.  

The heart of the fault detection algorithm proposed in [2] is the principal 

component analysis (PCA) block. This algorithm provides information about meaningful 

trends within the monitored data. The PCA projects high-dimensional data onto a lower 

dimensional space, thereby performing a transformation that best represents the 

information in the overall data set. The PCA is essentially providing information about 

the relevant trends without having to develop a set of rules. The basic approach of the 

principal-component-based algorithm is to compare each measurement to an expected 

vector. This expected vector is computed by projecting onto a vector space created using 

“healthy” features. These healthy values are learned during a training phase in which the 

motor is assumed to be fault-free. The algorithm computes a health indicator which 

represents the error between the measured features and the expected value for a healthy 

motor. If the error is small, the system is operating under normal conditions or is 

“healthy”. If the error grows, a problem may be developing. 
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3.5 Summary 

 

In summary, the concept of the KPI extraction algorithm for induction motors has 

been presented. The common types of mechanical and electrical faults associated with 

induction motors were identified along with the features to detect these faults. The 

formulas for RMS and FFT are presented as used for KPI development. Additionally the 

harmonic frequencies within the current and vibration spectrum associated with the 

common faults are identified. The final output of the KPI extraction algorithm is 187-

vector matrix that can be used for condition monitoring.  

Additionally the unsupervised approach has been developed [2] to detect fault 

conditions without a set of rules is briefly discussed. KPI features from a training phase, 

in which the motor is assumed fault-free, are compared to KPI features that need to be 

analyzed. The algorithm computes a health indicator which represents the error between 

the measured features and the expected value for a healthy motor.  

The next chapter discusses the experimental setup and results. 
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4 EXPERIMENTAL METHODOLOGY 

 

 

During the normal operation of an induction machine, a variety of faults can occur 

which can lead to a catastrophic failures if undetected. The need to be able to plan 

equipment maintenance ahead of time, limit the extent of equipment damage and 

minimize the downtime for repairs has motivated the development of condition 

monitoring methods to detect machine faults at an earlier stage. The detection of common 

faults of an induction motor with help of signal processing techniques is the focus of this 

research. This chapter describes the development of an experimental setup, which allows 

for the introduction of various faults, individually or jointly, in a controlled environment. 

The setup includes instrumentation and data acquisition hardware to perform accurate 

repeated online monitoring of the induction machine. In addition, the testing of the 

proposed methodology to process the signals into KPIs and train and monitor health 

indicators for fault identification and diagnosis are discussed.  
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4.1 Overview of System 

 

The experimental setup centered on a fault simulator designed by SpectraQuest as 

shown by the block diagram in Figure 4.1.1. Sensors for current, voltage, speed, and 

vibration measurements were added and wired to a data acquisition system for online 

monitoring. The collected data was saved as data arrays for processing in MATLAB into 

KPIs for condition monitoring and fault diagnosis analysis.   

 

Figure 4.1.1: System Block Diagram 
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The machine fault simulator was developed for providing a basic setup for 

performing experiments and learning vibration signatures of different machine faults. It is 

assembled with a motor, split bracket bearing housing, bearings, shaft, rotor disks with 

split collar ends, couplings, pulleys, a multiple belt tensioning and a load of either a 

gearbox or centrifugal pump [47], refer to Figure 4.1.2.  The fault simulator includes a 

machined mounting pad and alignment system with calibrated reference dials and jack 

bolts that facilitates the quick exchange of parts and aligning the equipment.  This 

enables the introduction of controlled faults while limiting conflicting vibrations from 

misalignments or equipment vibration due to unreliable mounting.    

 

 
Figure 4.1.2: Machine Fault Simulator  
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Figure 4.1.3: Induction Motor Nameplate 

 

The experiments performed on the fault simulator involved a three-phase, half 

horsepower (HP) induction motor; refer to nameplate displayed in Figure 4.1.3. Six 

motors with identical specifications, as listed in Table 4.1.1, were used in testing. One 

motor was healthy while the other five each had a built-in fault. The built-in faults 

included:   

• A motor with an inner race defect in both bearings 

• A motor with ten percent of rotor bars broken 

• A motor with an unbalanced rotor 

• A motor with bowed armature shaft, 0.0085 thousandths TIR 

• A motor with an adjustable air gap with misalignment 

The normal configuration of the fault simulator would have the motor powered by 

the 1 HP variable frequency AC drive. However, connections were made to allow the 

motor to be plugged in and powered off the wall, simulating a common industrial setup. 
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Table 4.1.1: Typical Motor Performance Data [48] 

Parameter Value 

Output Hp 0.5 Hp 

Full Load Efficiency  66% 

Full Load Power Factor 69.7% 

KVA Code P 

Output kW 0.37 kW 

Full Load Amps 2-2.1A 

No Load Amps 1.4A 

Locked Rotor Amps 16A 

Full Load Torque 0.76 lb-ft 

Poles 2 

Drive End Bearing Ball (6203) 

Rotor WK
2 

1.5 lb-ft
2 

 

 

Two different load types were used to load the induction motor: a centrifugal 

pump and a gearbox. The pump, as shown in Figure 4.1.4, was connected to a 35-gallon 

tank containing water. Valves on the input and output of the tank were used for throttling 

during experiments. The pump could be exchanged with another worn centrifugal pump 

that had a built in fault of simulated cavitation damage to the head and impeller. The 

gearbox was loaded by a magnetic clutch (brake) mounted at the rear of the gearbox. The 

Precision Tork magnetic clutch, MC4 series, could be adjusted to provide 0.5 to 10 lb.-in 
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of torque. These load types were used to simulate the common loads perceived by 

induction motors.  

 

 
Figure 4.1.4: Fault Simulator with Pump Load 

 

The drive train system comprised of a three-quarters shaft, bearings, sheaves and 

v-belts to the loads, refer to Figure 4.1.1. The shaft is a TGP straight steel shaft and can 

be used to simulate a fault by replacing with a shaft that is centrally bent. Two split-

bracket bearing housings with bearings are used to support the shaft. The bearings are 

rolling element ball bearings with eight balls of 0.3125-inch diameter and a 1.3175-inch 

ball pitch in the bearing [49]. The bearings can be replaced with bearings with built-in 

faults: ball spin fault; inner ring defect; outer ring defect; combination defect. For 
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additional faults on the drive train, two balanced rotor disks can be placed on the shaft as 

shown in Figure 4.1.2 . These rotors have two rows of tapped holes that can be used to 

create an imbalance by placing weight on the rotor at different locations, demonstrated by 

Figure 4.1.5. The rotors can also be replaced with faulted rotors; eccentric rotor, cocked 

rotor. 

 

 
Figure 4.1.5: Rotor Disk with Imbalance 

 

The measuring instrumentation along with signal conditioning hardware, data 

acquisition hardware and software required for collecting the relevant signals; current, 

voltage, vibration, and speed, was designed and added to the fault simulator. The fault 

simulator includes a speed sensor with digital display.  However, the setup does not allow 

for current measurement required for motor current signature analysis, as discussed in the 
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previous chapter. To understand the motor current signatures attributed to different faults, 

a method of collecting the current and voltage seen at the induction motor is needed.    

 

 
Figure 4.1.6: Data Collection Setup 

 

The current and voltage of the motor are measured using a circuit board design 

used in other experiments for Non-Intrusive Load Monitoring (NILM). LEM modules 

were used for the measurements, a LA 55-P current transducer is used for current 

measurement and the LV 20-P voltage transducer is used for voltage, refer to Figure 4.1.8 

for NILM enclosure internals. Isolation from the power circuit is provided by using these 

types of transducers. The current (LA 55-P) and voltage (LV 20-P) transducers were 

selected due to the following features: good range of linear operation with linearity better 
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than 0.2%, the response time for the sensors is less than 1µs and 40µs for current [50] 

and voltage [51] transducer respectively, which provides the response time necessary to 

acquire transients. The frequency bandwidth, 0 to 200 kHz, of the current transducer was 

good for applications for inverter-fed motors to allow for the high switching frequencies. 

The locked rotor current of the induction motors can be in the order of 500 to 800% of 

the rated current. Motor performance data (Table 4.1.1) for the fault simulator motor 

shows the locked rotor current is 16A, approximately 728% of Full Load Amps (FLA), 

which is well within the current transducers primary current measuring range (0 to ±50A 

[50]). The voltage transducer has a measuring range of 10 to 500 V; therefore, it is 

capable of measuring the supply voltage of the induction motor as indicated in Table 

4.1.1. The LEM modules are connected as shown in Figure 4.1.7. The measuring resistors 

(RM) were selected as 110Ω for both types of transducers based on datasheet. The 

primary resistor (R1) was sized to be 100kΩ to provide the desired primary nominal 

current. The output of the transducers was connected to the DAQ system to record the 

three line current measurements and the three line-to-line voltage measurements.  

 

 
Figure 4.1.7: LV 20 and LA 55 Transducer Connections  
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Figure 4.1.8: Non-Intrusive Load Monitoring  

 

Accelerometers were selected to measure vibration for the reasons discussed in 

Chapter 2. Vibration measurements at the bearing blocks are obtained by using Integrated 

Circuit Piezoelectric (ICP) accelerometers. Three accelerometers were placed on each 

bearing block (Figure 4.1.9) to obtain vibration acceleration in three directions X 

(tangential), Y (radial) and Z (axial) as described in ISO standards for mechanical 

vibration [37]. The Model 308B accelerometers were used for the X and Y-axis while 

Model 353B33 accelerometers were used for the Z-Axis. Ideally, all six of the 

accelerometers would have been identical models; however, six identical models were 

not available in the lab. For that reason, the models used for the Z-axis were different but 

have similar characteristics, refer to Table 4.1.2. The model with the higher resonant 

frequency is used for the tangential and radial measurements to avoid distorted 

measurements. The bearing blocks were drilled and tapped for stud mounting of the 
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accelerometers, as this method is ideal for obtaining high frequencies as discussed in 

Reference [52] and [37].  

 

 
Figure 4.1.9: Accelerometer Mounting Locations 

 

The ICP sensors used require a constant current excitation for proper operation. For this 

reason, the model 483A07 amplifying power unit was used as the constant current source 

for the accelerometers. The coaxial cables are routed from the sensor to the amplifier and 

then to the DAQ system.  
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Table 4.1.2: Accelerometer Specifications 

Parameter Model 308B [53] Model 353B33 [52] 

Resonant Frequency 25kHz 22kHz 

Sensitivity 100mV/g 100mV/g 

Measurement Range ±50 g pk ±50 g pk 

Frequency Range  0.7 to 6000 Hz 0.7 to 6500 Hz 

 

 
Figure 4.1.10: Speed Sensor 

 

The fault simulator includes a built-in tachometer with LCD display and one pulse 

per revolution analog output (Figure 4.1.10). A LM2907N frequency to voltage converter 

was added to the output to convert the frequency of the pulses in the signal to a voltage 

that is linear with input frequency (Figure 4.1.11). The voltage output can then be fed into 

the DAQ. 
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Figure 4.1.11: Frequency to Voltage Converter 

 

 

Figure 4.1.12: DAQ Input Connection Card 

 

The thirteen sensor signals were input into the DAQ for recording and processing, 

refer to for list of signal input connections. The DAQ used for the system, UE9 LabJack, 

has a DB37 connector for input. Therefore, a Printed Circuit Board (PCB) board, Figure 

4.1.12, was made to interface all signals from the sensors with the DAQ. The ribbon 

cable is used for the signals from the NILM, while BNC connectors are used for the 

speed and accelerometer signals. Refer to Appendix B for a list of signal connections to 

LabJack analog inputs. The PC board is also used for the mechanical speed LM2907 
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circuit. During preliminary testing and calibration of the system, significant noise was 

observed in the speed signal as demonstrated in Figure 4.1.13. A 4N33 optocoupler was 

added to the input of the LM 2907 to provide isolation between the speed sensor and the 

DAQ; as a result, the noise observed in the signal was reduced. Figure 4.1.14 displays the 

speed signal with a reduction in noise after the optocoupler was added to the circuit.  

 

 

Figure 4.1.13: Noise in the Speed Signal 
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Figure 4.1.14: Speed Signal with Optocoupler 

 

4.2 Results 

 

Several experiments similar to typical motor operating conditions have been 

considered. This section describes the results of those tests. 

4.2.1 Introducing faults in an off-line pump/motor setup 

Many power plant systems use off-line motors to drive centrifugal turbo 

machines such as pumps and fans. Examples include Reactor Coolant Pumps (RCP), 

High Pressure Injection (HPI) pumps or Auxiliary Feedwater (AFW) pumps. To simulate 

these common systems, the motor was coupled to a centrifugal pump as shown in Figure 

4.1.4. The pump drives fluid throughout a small distribution system that includes a large 

reservoir and several throttling valves. 

1.8395 1.84 1.8405 1.841 1.8415 1.842 1.8425

x 10
5

0.75

0.8

0.85

0.9

0.95

1

1.05



  58 

 

Several different faults were inserted into the system as an initial test condition. 

The faults included the following: 

• Bearing with inner-race damage (BPFI) 

• Bearing with outer-race damage (BPFO) 

• Bearing with a ball-spin fault (BSF) 

• Bearing with a combination of the above faults (COMB) 

• An unbalanced mechanical load 

• An eccentric rotor disk 

• A cocked rotor disk 

• A faulted pump (with rubbing) 

• A centrally bent shaft 

• Motor with a broken rotor bar 

• Motor with an unbalanced rotor 

• Motor with a faulted machine bearing 

• Motor with a bowed armature 

• Motor with highly eccentric air gap 

Figure 4.2.1, Figure 4.2.2, and Figure 4.2.3 shows the results of various tests. 

Each plot shows the Health Indicator (HI) value as a function of time for both normal and 

faulted conditions. The indicator value generally increases by a relatively large amount 

for each of these relatively early-stage fault conditions. 
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Figure 4.2.1: HI vs. time for bearing block faults  

 

Under the proposed condition monitoring, data is recorded and collected by a 

power generation facilities DCS during normal operation. The DCS would perform the 

KPI extraction algorithm in real time. The condition monitoring algorithm initially learns 

an appropriate set of vectors once the motor has reached a steady-state operating 

condition. This condition can be determined by using the motors thermal time constant 

[54]. In general, most induction motors are operating continuously and are in a steady 

state over most of their operating lifetime. Once a fault develops, various KPI values will 

change, and the HI value will change as well. However, the HI value indicates only the 

existence of a fault and does not diagnosis the fault condition. Once the existence of a 

fault condition is identified, analysis of individual KPIs can be performed to diagnosis the 

fault condition. This step can be performed automatically or manually. During 

experimentation, it was found to be extremely helpful manually analyzing the data. With 

the data saved within the DCS network, operators, engineers or maintenance personnel 
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could analyze the data at any workstation. 

 

Figure 4.2.2: HI value vs time for faulted motors 

 

Figure 4.2.3: HI value vs time for faulted rotor disks 

 



  61 

 

4.2.2 Effects of loading in the off-line pump/motor setup 

In many systems, a pump will be operated at one speed while the flow rate is 

controlled by throttling a cutoff valve. This scenario was simulated in the setup by 

throttling the valves from fully open to 50% or 75% closed.  

 

Figure 4.2.4: HI value vs. time for valve setting no fault and faults with valve open 

 

As the valve was throttled, the mechanical speed KPI increased from 3448.2 RPM 

(fully open), to 3462.6 RPM (50% closed), to 3466.2 RPM (75% closed). Figure 4.2.4 

shows the Health Indicator for a healthy system with the valve throttled and the system 

with faults and the valve opened. At first observation, it appears that the Health Indicator 

was indicating potential faults when the valve was throttled.  The Health Indicator value 

clearly increases as the valve is being throttled. According to a power-law relationship 

[55], [2], the motor torque _� is related to flow rate `:  

 _� = a
`� (4.1) 
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Where a
 is an empirical constant. So as the valve is throttled, the flow rate drops and so 

does the required torque. As a result, the motor speed increases closer to synchronous and 

the motor sees a change in loading. Even though the Health Indicator value is lower 

during throttling than when faults are introduced, this scenario demonstrates the diffculty 

in distinguishing load changes from early-stage faults. The condition monitoring 

algorithm can be retrained if it is known that the load has changed. In this case, the 

change in speed is a clear indicator that the load setting has changed and that a re-training 

is needed. Such a retraining is relatively easy to perform on-the-fly and has been tested in 

real-time.  

Another option that can be used in the field instead of retraining would be a long-

term observation of the HI. If the load were known to vary, closer observations over time 

would show the HI would have a maximum range based on the load change. On the other 

hand, the HI would be steadily increasing as the fault condition worsened. The fault 

condition still could be distinguished from a load change and be corrected before 

significant failure of equipment occurred.  

Even though this scenario demonstrates a diffculty with the algorithm, it does not 

indicate rules based approach is better. It is expected that individual KPI values also 

change with loading. Therefore, even a rules-based monitoring scheme would need to 

account for such activities if it were to be appropriately robust [2]. The proposed 

algorithm uses a single indicator to track changes and is thus potentially better in this 

regard.  
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4.3 Faults Detected  
 

During the course of testing, a couple unexpected instances occurred that showed 

the potential of the proposed KPI and condition monitoring algorithms.  

The first instance developed accidentally during the course of laboratory tests. 

Over the years of use, the bearing set screw had been overtightened and caused the shaft 

to bur up. As the configuration of the setup was being changed, one of the “healthy” 

bearings was stuck on the shaft and could not easily be removed. It was taken to the 

machine shop lab to try to remove the bearing without causing damage. It was placed 

such that even pressure could be applied to the bearing while force was used to remove 

the shaft. After the bearing was removed, a laboratory assistant dropped the bearing on 

the shop floor. No visible damage was detected, and the bearing seemed completely 

normal. As the bearing was spun, no indication of damage could be felt. However, during 

the subsequent test, which was believed to be a healthy, the Health Indicator jumped as 

shown in Figure 4.3.1. At first indication of the fault, it was believed that it might have 

been due to misalignment during the setup. The system was thoroughly checked for 

alignment and all bolts tightened. Additional tests were then run as shown in Figure 4.3.1.  
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Figure 4.3.1: HI value versus time for the normal bearing before and after it was damaged in the 

laboratory 

A comprehensive examination of the KPI values recorded before and after this 

fault provides strong support for the use of the proposed algorithm over a rules-based 

approach. Figure 4.3.2 shows the KPI for the velocity signal recorded from the y-axis 

accelerometer on the bearing housing. The plot clearly shows that a change has occurred 

in the bearings condition.  

An examination of other fault indicators demonstrates how diffcult the fault-

detection process can be and how powerful the proposed method is for isolating changes. 

Figure 4.3.3 shows two examples, the amplitude of the ball-defect signal recorded by the 

y-axis accelerometer and the amplitude of the inner-race signal recorded by the x-axis 

accelerometer, respectively. In the case of the former, there is a clear change in mean; in 

the case of the latter, all of the data appears to be about the same. A change in steady-

state speed was also observed before and after the maintenance was performed, and this 

is likely due to increased rolling friction [2]. The flow rate, however, was unchanged. 
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Figure 4.3.2: Velocity versus time for the normal bearing before and after it was damaged in the 

laboratory. 

This example demonstrates the potential benefits of the proposed fault-detection 

algorithm. The changes in the various fault indicators were subtle and it is unlikely that a 

set of automated rules would have noticed. From the figure, it is clear that changes have 

occurred in the KPIs. However, in a rules based system it is unlikely that the changes are 

significant enough to be observed as a fault especially if data is collected by simple 

handheld meters.  However, the proposed method using HI shows that there has been a 

change in the bearings condition. This HI could easily alert facility personnel of the need 

to perform a more detailed investigation of the individual KPIs.  

This occurrence resembles a plant outage scenario. Prior to the plant outage, 

normal KPIs would be recorded. Post outage, the equipment can be operated and the HI 

would show if any change in condition has occurred the health of the equipment.  

 



  66 

 

 

Figure 4.3.3: Amplitude of the ball-defect signal recorded by the vertical accelerometer and the 

inner-race signal recorded by the horizontal accelerometer before and after the normal bearing 

was damaged. 

The second occurrence was during relocation of the setup. Originally, the setup 

was located within lab space in the Cameron building on campus. After the Energy 

Production and Infrastructure Center (EPIC) building was opened, the setup was 

relocated to the new lab space in EPIC. A short “normal” test was performed to validate 

the setup. The Figure 4.3.4 displays the THD for the setup when it was located within the 

Cameron Lab versus the THD after the setup was relocated to EPIC. The relocated THD 
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shows that a change has occurred in the quality of the power supply. Additionally the 

spikes indicated problems with the setup.   

 

Figure 4.3.4: IEEE THD for Cameron Lab vs. EPIC Lab 

A closer look at the no load voltages for each building before processing, Figure 4.3.5, 

shows a difference in the quality of voltage supplied.  

 

Figure 4.3.5: Unscaled voltage in Cameron Lab vs. EPIC Lab 
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5 CONCLUSION 

 

5.1 Summary 

 

This thesis proposes an approach for robust condition monitoring for power 

generation facilities that can detect faults and be used for fault diagnosis. This thesis 

develops a method for the online measurement of KPI in induction motors that was used 

in combination with a condition monitoring algorithm. The condition monitoring 

algorithm was developed based on a concept from facial recognition. The algorithm is 

used for fault detection in electric motors. Online methods for early stage fault detection 

will become essential as systems become more heavily dependent on power electronics. 

This thesis has demonstrated the potential of a robust, automated condition monitoring 

algorithm for electric motors and their loads. This method is demonstrated to be sensitive 

to very small changes in load behavior and that those changes can be correlated with the 

underlying KPI data, as well as maintenance records and other process-variable 

measurements. 

5.2 Potential for Future Work 

 

The approach for condition monitoring proposed in this thesis has several 

opportunities for future work. Ongoing work focuses on the inclusion of additional 

features and the completion of more testing for the motor condition monitoring. These 

tests include building a larger training set of normal motor and drive features. There is 

particular interest in testing with variations in load and looking into the effects of changes 

in ambient temperature. 



  69 

 

Future testing to improve the fault detection scheme proposed in this thesis is to 

collect more data across a wide range of operating conditions. This can be done in the 

laboratory by using the adjustable magnetic brake attached the machinery fault simulator. 

A larger training set could be recorded to create a better and more extensive feature set 

with additional features added into the feature set. Some additional measurements include 

adding more accelerometers mounted onto the motor for additional vibration 

measurements. Another feature could be added is max volts per hertz to determine if 

damage is occurring during plant scenarios where a fast bus transfer is implemented. 

Other possibilities are to work with local companies to obtain small motors that are being 

replaced. A training set could be recorded for the new motor before installation. Then the 

old motor could be obtained and tested to see if the fault could be determined. 
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APPENDIX A: MATLAB CODE 

 

 

APPENDIX A.1: Function “KPIpro2” 

 

Function [ KPI ] = KPIpro2( rawdata,f_sample ) 

% KPIpro2 finds the 187 key performance indicators from 13 input signals 

%   rawdata is the 13 column matrix of recorded data from induction motor 

%   rawdata(:,1) Line AB voltage  

%   rawdata(:,2) phase A current  

%   rawdata(:,3) Line BC voltage 

%   rawdata(:,4) phase B current  

%   rawdata(:,5) Line CA voltage  

%   rawdata(:,6) phase C current  

%   rawdata(:,7) speed  

%   rawdata(:,8) block 1-x accelerometer data  

%   rawdata(:,9) block 1-y accelerometer data  

%   rawdata(:,10) block 1-z accelerometer data  

%   rawdata(:,11) block 2-x accelerometer data  

%   rawdata(:,12) block 2-y accelerometer data  

%   rawdata(:,13) block 2-z accelerometer data 

%   f_sample is the sampling frequency used when collecting the data 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com 

 

%%  

%Setting up the output KPI matrix 

%KPI data is given for every 0.2sec of operation 

numsamples = length(rawdata(:,1)); %determining the number of samples taken during 

testing 

KPIsampling = f_sample/5; %defines number of samples during a 0.2 sec period  

vectorref = 1:KPIsampling:numsamples; %creates a reference vector for number of 

samples every 0.2sec 

time = 0:0.2:numsamples/f_sample; %creates a time vector for plots of KPI vs time 

 

%pre-allocating the KPI matrix length and writes zeros to all positions 

KPI = zeros(length(vectorref),187); 

KPI (:,187) = time; %assigns time vector to KPI vector 187 

% 

%Scaling the raw data from Labjack 

scaled = zeros(length(rawdata),13); %initializes scaled matrix length and 13 columns, 

writes zeros to all positions 
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%scale raw line voltage data 

scaled(:,1) = ((rawdata(:,1)*(100000/110)*(1/2.5))); %Line AB voltage with Labjack 

outputting in voltage 

scaled(:,2) = ((rawdata(:,3)*(100000/110)*(1/2.5))); %Line BC voltage with Labjack 

outputting in voltage 

scaled(:,3) = ((rawdata(:,5)*(100000/110)*(1/2.5))); %Line CA voltage with Labjack 

outputting in voltage 

 

%scale raw current data 

scaled(:,4) = (1000*(rawdata(:,2))/110); %phase A current with Labjack outputting in 

voltage 

scaled(:,5) = (1000*(rawdata(:,4))/110); %phase B current with Labjack outputting in 

voltage 

scaled(:,6) = (1000*(rawdata(:,6))/110); %phase C current with Labjack outputting in 

voltage 

 

%scale raw mechanical speed data 

scaled(:,7) = (rawdata(:,7)); %scaling not needed if using labjack and use -v -c in code 

saving data 

%scale raw accelerometer data 

scaled(:,8) = rawdata(:,8)*(9.80665/0.1); %converts the block 1-x accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

scaled(:,9) = rawdata(:,9)*(9.80665/0.1); %converts the block 1-y accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

scaled(:,10) = rawdata(:,10)*(9.80665/0.1); %converts the block 1-z accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

scaled(:,11) = rawdata(:,11)*(9.80665/0.1); %converts the block 2-x accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

scaled(:,12) = rawdata(:,12)*(9.80665/0.1); %converts the block 2-y accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

scaled(:,13) = rawdata(:,13)*(9.80665/0.1); %converts the block 2-z accelerometer data 

from V to m/s^2 based on use of 100mv/g accelerometers 

   

%% 

%Electrical frequency is determined  

%filter current before  finding zero crossing locations 

Num = get(FIRfilter3,'Numerator'); %gets filter data from FIR filter design 

filtcurrent = filtfilt (Num,1,scaled(:,5)); %filters the noise out of the current signal 

  

%determine electrical frequency by zero crossing 

zercrs = crossing(filtcurrent); % finds and returns index of locations of zero crossings  

  

%frequency calculation 

frqcal = zeros (1,length(zercrs)); 
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for d = 1:length (frqcal) 

     if d == 1 

         frqcal (d) = 0; 

     else 

         deltazercrs = zercrs(d) - zercrs (d-1); %determine number of samples between zero 

crossings 

         if deltazercrs == 1 

             frqcal(d) = 0; 

         else 

             frqcal(d)= (1/(deltazercrs/f_sample))/2; %first converts samples to sec, then 

period length in sec to frequency 

         end 

     end 

end 

  

%create a frequency vector the length of the scaled vectors 

frequency = zeros (length(scaled(:,4)),1); %sets up the size of the vector and writes zeros 

to all locations 

for m = 1:length (frqcal) 

    if m == 1 

         frequency (m:zercrs(m)) = 0; 

    else 

         frequency(zercrs(m-1)+1:zercrs(m))=frqcal(m); %writes the calculated frequency to 

frequency vector index matching zercrossing index 

    end 

end 

   

%% 

%RMS voltage calculation using KPIrms2 function 

KPI(:,4) = KPIrms2( scaled(:,1),vectorref,f_sample ); %Line AB rms voltage 

 

KPI(:,5) = KPIrms2( scaled(:,2),vectorref,f_sample ); %Line BC rms voltage 

 

KPI(:,6) = KPIrms2( scaled(:,3),vectorref,f_sample ); %Line CA rms voltage 

  

%% 

%RMS current calculation using KPIrms2 function 

KPI(:,1) = KPIrms2( scaled(:,4),vectorref,f_sample ); %phase A rms current 

 

KPI(:,2) = KPIrms2( scaled(:,5),vectorref,f_sample ); %phase B rms current 

 

KPI(:,3) = KPIrms2( scaled(:,6),vectorref,f_sample ); %phase C rms current 

  

%% 
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%time scaling frequency for KPI vector using KPItscaling 

KPI(:,34) = KPItscaling( frequency,vectorref); 

 

%% 

% rotational speed in HZ using the run_speed function 

KPI(:,41) = run_speed(scaled(:,7),f_sample); 

 

%% 

%slip frequency calculated using slipratio function 

slip  = slipratio( KPI(:,34),KPI(:,41),vectorref ); 

KPI(:,108) = slip; %slip assigned to KPI vector 

 

%% 

%broken rotor bar side band frequency calculated using rotorbarsidebands function 

rotorbar = rotorbarsidebands( slip, vectorref ); 

 

%% 

%bearing fault harmonics in vibration spectrum calculated using bearingfreqs  

bearingvibfreq = bearingfreqs( KPI(:,41), vectorref ); 

 

%% 

% bearing fault harmonics in current spectrum calculated using bearingcurrent 

bearingcurfreq = bearingcurrent(KPI(:,34),bearingvibfreq, vectorref); 

 

%% 

%Current Spectrum 

%Find the magnitude of current at the 1st, 3rd, 5th, 7th, 9th, 11th, 13th Harmonics  

%Find the magnitude of the rotor bar side band freq 

%Find the magnitude of the bearing faults 

 

%phase A current harmonics 

rmsharmonA = scaled(:,4)/sqrt(2); %calculate RMS  

[RMSharmonmagA,RMSharmonmagAb,RMSharmonmagAc] = 

harmagloc3(rmsharmonA,f_sample,vectorref,KPI(:,34),rotorbar, bearingcurfreq); 

KPI(:,9:15) = RMSharmonmagA;% current harmonics 

KPI(:,109:114) = RMSharmonmagAb;% Broken rotor bar side band  

KPI(:,157:166) = RMSharmonmagAc;% Faulted Bearing 

  

%phase B current harmonics 

rmsharmonB = scaled(:,5)/sqrt(2); %calculate RMS 

[RMSharmonmagB,RMSharmonmagBb,RMSharmonmagBc] = 

harmagloc3(rmsharmonB,f_sample,vectorref,KPI(:,34),rotorbar, bearingcurfreq); 

KPI(:,18:24) = RMSharmonmagB; % current harmonics 

KPI(:,115:120) = RMSharmonmagBb; % Broken rotor bar side band 

KPI(:,167:176) = RMSharmonmagBc; % Faulted Bearing 
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%phase C current harmonics 

rmsharmonC = scaled(:,6)/sqrt(2); %calculate RMS 

[RMSharmonmagC,RMSharmonmagCb,RMSharmonmagCc] = 

harmagloc3(rmsharmonC,f_sample,vectorref,KPI(:,34),rotorbar, bearingcurfreq); 

KPI(:,27:33) = RMSharmonmagC; % current harmonics 

KPI(:,121:126) = RMSharmonmagCb; % Broken rotor bar side band 

KPI(:,177:186) = RMSharmonmagCc; % Faulted Bearing 

  

%% 

%IEEE total harmonic distortion Phase A 

IEEETHDA = zeros (length(vectorref),1); 

for ha = 1:length(vectorref) 

    IEEETHDA(ha) =(sqrt((KPI(ha,1)^2)-(KPI(ha,9)^2)))/KPI(ha,9); 

end 

KPI(:,7) = real(IEEETHDA)*100; 

  

%IEEE total harmonic distortion Phase B 

IEEETHDB = zeros (length(vectorref),1); 

for hb = 1:length(vectorref) 

    IEEETHDB(hb) =(sqrt((KPI(hb,2)^2)-(KPI(hb,18)^2)))/KPI(hb,18); 

end 

KPI(:,16) = real(IEEETHDB)*100; 

  

%IEEE total harmonic distortion Phase C 

IEEETHDC = zeros (length(vectorref),1); 

for hc = 1:length(vectorref) 

    IEEETHDC(hc) =(sqrt((KPI(hc,3)^2)-(KPI(hc,27)^2)))/KPI(hc,27); 

end 

KPI(:,25) = real(IEEETHDC)*100; 

  

%% 

% IEC total harmonic distortion Phase A 

IECTHDA = zeros (length(vectorref),1); 

for ga = 1:length(vectorref) 

    IECTHDA(ga) =(sqrt((KPI(ga,1)^2)-(KPI(ga,9)^2)))/(sqrt(KPI(ga,1)^2)); 

end 

KPI(:,8) = real(IECTHDA)*100; 

  

% IEC total harmonic distortion Phase B 

IECTHDB = zeros (length(vectorref),1); 

for gb = 1:length(vectorref) 

    IECTHDB(gb) =(sqrt((KPI(gb,2)^2)-(KPI(gb,18)^2)))/(sqrt(KPI(gb,2)^2)); 

end 

KPI(:,17) = real(IECTHDB)*100; 
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% IEC total harmonic distortion Phase C 

IECTHDC = zeros (length(vectorref),1); 

for gc = 1:length(vectorref) 

    IECTHDC(gc) =(sqrt((KPI(gc,3)^2)-(KPI(gc,27)^2)))/(sqrt(KPI(gc,3)^2)); 

end 

KPI(:,26) = real(IECTHDC)*100; 

  

%% 

%velocity calculated with velrms function 

 

%Accelerometer 1 

KPI(:,35) = velrms( scaled(:,8),vectorref,f_sample ); 

 

%Accelerometer 2 

KPI(:,36) = velrms( scaled(:,9),vectorref,f_sample ); 

 

%Accelerometer 3 

KPI(:,37) = velrms( scaled(:,10),vectorref,f_sample ); 

  

%Accelerometer 4 

KPI(:,38) = velrms( scaled(:,11),vectorref,f_sample ); 

  

%Accelerometer 5 

KPI(:,39) = velrms( scaled(:,12),vectorref,f_sample ); 

  

%Accelerometer 6 

KPI(:,40) = velrms(scaled(:,13),vectorref,f_sample ); 

  

%% 

%rms band lf,mf,hf 

%lf band 10 to 200 hz 

%mf band 200 to 2000 hz 

%hf band 2000+ hz 

KPI(:,42:44) = bands( scaled(:,8),f_sample,vectorref ); %Accelerometer 1 

KPI(:,53:55) = bands( scaled(:,9),f_sample,vectorref ); %Accelerometer 2 

KPI(:,64:66) = bands( scaled(:,10),f_sample,vectorref ); %Accelerometer 3 

KPI(:,75:77) = bands( scaled(:,11),f_sample,vectorref ); %Accelerometer 4 

KPI(:,86:88) = bands( scaled(:,12),f_sample,vectorref ); %Accelerometer 5 

KPI(:,97:99) = bands( scaled(:,13),f_sample,vectorref ); %Accelerometer 6 

%% 

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 x axis 

[ vibmag1x,vibelec1x, bearingvib1x] = 

Vibharmmech2(scaled(:,8),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,45:49) = vibmag1x; %vibration harmonic multiples of rotational speed  
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KPI(:,50:52) = vibelec1x; %vibration harmonic multiples of electrical frequency 

KPI(:,127:131) = bearingvib1x; %vibration harmonic at bearing frequencies 

  

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 y axis 

[ vibmag1y,vibelec1y, bearingvib1y] = 

Vibharmmech2(scaled(:,9),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,56:60) = vibmag1y; %vibration harmonic multiples of rotational speed 

KPI(:,61:63) = vibelec1y; %vibration harmonic multiples of electrical frequency 

KPI(:,132:136) = bearingvib1y; %vibration harmonic at bearing frequencies 

  

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 z axis 

[ vibmag1z,vibelec1z, bearingvib1z] = 

Vibharmmech2(scaled(:,10),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,67:71) = vibmag1z; %vibration harmonic multiples of rotational speed 

KPI(:,72:74) = vibelec1z; %vibration harmonic multiples of electrical frequency 

KPI(:,137:141) = bearingvib1z; %vibration harmonic at bearing frequencies 

  

%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 x axis 

[ vibmag2x,vibelec2x, bearingvib2x] = 

Vibharmmech2(scaled(:,11),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,78:82) = vibmag2x; %vibration harmonic multiples of rotational speed 

KPI(:,83:85) = vibelec2x; %vibration harmonic multiples of electrical frequency 

KPI(:,142:146) = bearingvib2x; %vibration harmonic at bearing frequencies 

  

%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 y axis 

[ vibmag2y,vibelec2y ,bearingvib2y] = 

Vibharmmech2(scaled(:,12),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,89:93) = vibmag2y; %vibration harmonic multiples of rotational speed 

KPI(:,94:96) = vibelec2y; %vibration harmonic multiples of electrical frequency 

KPI(:,147:151) = bearingvib2y; %vibration harmonic at bearing frequencies 

  

%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 z axis 

[ vibmag2z,vibelec2z ,bearingvib2z] = 

Vibharmmech2(scaled(:,13),f_sample,vectorref,KPI(:,41),KPI(:,34),bearingvibfreq); 

KPI(:,100:104) = vibmag2z; %vibration harmonic multiples of rotational speed 

KPI(:,105:107) = vibelec2z; %vibration harmonic multiples of electrical frequency 

KPI(:,152:156) = bearingvib2z; %vibration harmonic at bearing frequencies 

  

%% 

end 
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APPENDIX A.2: Function “CROSSING”  

 

 

function [ind,t0,s0,t0close,s0close] = crossing(S,t,level,imeth) 

% CROSSING find the crossings of a given level of a signal 

%   ind = CROSSING(S) returns an index vector ind, the signal 

%   S crosses zero at ind or at between ind and ind+1 

%   [ind,t0] = CROSSING(S,t) additionally returns a time 

%   vector t0 of the zero crossings of the signal S. The crossing 

%   times are linearly interpolated between the given times t 

%   [ind,t0] = CROSSING(S,t,level) returns the crossings of the 

%   given level instead of the zero crossings 

%   ind = CROSSING(S,[],level) as above but without time interpolation 

%   [ind,t0] = CROSSING(S,t,level,par) allows additional parameters 

%   par = {'none'|'linear'}. 

%   With interpolation turned off (par = 'none') this function always 

%   returns the value left of the zero (the data point thats nearest 

%   to the zero AND smaller than the zero crossing). 

% 

%   [ind,t0,s0] = ... also returns the data vector corresponding to  

%   the t0 values. 

% 

%   [ind,t0,s0,t0close,s0close] additionally returns the data points 

%   closest to a zero crossing in the arrays t0close and s0close. 

% 

%   This version has been revised incorporating the good and valuable 

%   bugfixes given by users on Matlabcentral. Special thanks to 

%   Howard Fishman, Christian Rothleitner, Jonathan Kellogg, and 

%   Zach Lewis for their input.  

  

% Steffen Brueckner, 2002-09-25 

% Steffen Brueckner, 2007-08-27     revised version 

  

% Copyright (c) Steffen Brueckner, 2002-2007 

% brueckner@sbrs.net 

  

% check the number of input arguments 

error(nargchk(1,4,nargin)); 

  

% check the time vector input for consistency 

if nargin < 2 || isempty(t) 

    % if no time vector is given, use the index vector as time 

    t = 1:length(S); 

elseif length(t) ~= length(S) 

    % if S and t are not of the same length, throw an error 
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    error('t and S must be of identical length!');     

end 

  

% check the level input 

if nargin < 3 

    % set standard value 0, if level is not given 

    level = 0; 

end 

  

% check interpolation method input 

if nargin < 4 

    imeth = 'linear'; 

end 

  

% make row vectors 

t = t(:)'; 

S = S(:)'; 

  

% always search for zeros. So if we want the crossing of  

% any other threshold value "level", we subtract it from 

% the values and search for zeros. 

S   = S - level; 

  

% first look for exact zeros 

ind0 = find( S == 0 );  

  

% then look for zero crossings between data points 

S1 = S(1:end-1) .* S(2:end); 

ind1 = find( S1 < 0 ); 

  

% bring exact zeros and "in-between" zeros together  

ind = sort([ind0 ind1]); 

  

% and pick the associated time values 

t0 = t(ind);  

s0 = S(ind); 

  

if strcmp(imeth,'linear') 

    % linear interpolation of crossing 

    for ii=1:length(t0) 

        if abs(S(ind(ii))) > eps(S(ind(ii))) 

            % interpolate only when data point is not already zero 

            NUM = (t(ind(ii)+1) - t(ind(ii))); 

            DEN = (S(ind(ii)+1) - S(ind(ii))); 

            DELTA =  NUM / DEN; 
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            t0(ii) = t0(ii) - S(ind(ii)) * DELTA; 

            % I'm a bad person, so I simply set the value to zero 

            % instead of calculating the perfect number ;) 

            s0(ii) = 0; 

        end 

    end 

end 

  

% Addition: 

% Some people like to get the data points closest to the zero crossing, 

% so we return these as well 

%[CC,II] = min(abs([S(ind-1) ; S(ind) ; S(ind+1)]),[],1);  

%ind2 = ind + (II-2); %update indices  

  

%t0close = t(ind2); 

%s0close = S(ind2);  
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APPENDIX A.3: Function “KPIrms2”  

 

 

function [ rms_signal ] = KPIrms2( signal,vectorref,f_sample ) 

%UNTITLED Summary of this function goes here 

%   Detailed explanation goes here 

rms_signal = zeros(length(vectorref),1); 

start_ind = f_sample*3 * ones(1,length(vectorref)); 

temp = find(vectorref < f_sample*3); 

start_ind(temp) = vectorref(temp) - 1; 

  

for xx = 1:length(vectorref) 

    if xx == 1  

        rms_signal(xx) = 0; 

    else 

        rms_signal (xx,1) = sqrt(sum(signal(vectorref(1,xx)-start_ind(xx):vectorref(1,xx)-

1).^2)/start_ind(xx)); 

    end 

end 

  

end 
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APPENDIX A.4: Function “KPItscaling”  

 

 

function [ KPIscaled ] = KPItscaling( signal,vectorref ) 

% KPItscaling converts scaled data to a 0.2sec period for KPI output 

%   signal is the vector being converted  

%   vectorref provides the number of samples per 0.2sec 

 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com 

 

KPIscaled = zeros(length(vectorref),1); 

  

for p = 1:length(vectorref) 

  

     if p == 1 

         KPIscaled (p,1) = 0; 

     else 

         KPIscaled (p,1) = median(signal(vectorref(p-1):vectorref(p)-1)); 

     end 

end 

  

end 
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APPENDIX A.5: Function “run_speed”  

 

 

Function [ speedmag ] = run_speed( speeddata, f_sample ) 

% run_speed converts raw speed signal to a rotational frequency in Hz 

%   speeddata is the recorded speed signal  

%   f_sample the number of samples signal recorded 

 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com 

 

signal = speeddata; 

vectorref = 1:f_sample/5:length(signal); 

speed = zeros (length(vectorref),1); 

run = zeros (length(vectorref),1); 

speedmag = zeros (length(vectorref),1); 

start_ind = f_sample*3 * ones(1,length(vectorref)); 

temp = find(vectorref < f_sample*3); 

start_ind(temp) = vectorref(temp) - 1; 

for xx = 1:length(vectorref) 

   if xx == 1 

       speed (xx) = 0; 

   else 

       run (xx) = mean(signal(vectorref(1,xx)-start_ind(xx):vectorref(xx)-1)); 

       speed (xx) = run (xx)/(15*(0.0097*10^-6)*99200*0.9942); 

   end 

   speedmag (xx) = speed (xx);%*60; % speed magnitude in RPM 

    

end 

  

end 
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APPENDIX A.6: Function “slipratio”  

 

 

function [ slipr ] = slipratio( elecfreq , mechfreq , vectorref  ) 

% slipratio calculates the slip ratio from the electrical frequency and the mechanical 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com slipr = zeros(length(vectorref),1); 

for yy = 1:length(vectorref) 

    if yy == 1 

        slipr(yy,:) = 0; 

    else 

        slipr(yy) = (elecfreq(yy) - mechfreq(yy))/elecfreq(yy); 

    end 

end 

  

end 
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APPENDIX A.7: Function “rotorbarsidebands” 

 

 

function [ rotorfreq ] = rotorbarsidebands( slip, vectorref ) 

% rotorbarsidebands calculates the frequencies related to broken rotor bars 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com 

rotorfreq = zeros(length(vectorref),6); 

for xx = 1:length(vectorref) 

        rotorfreq(xx,1) = (1 - 2*3*slip(xx)); 

        rotorfreq(xx,2) = (1 - 2*2*slip(xx)); 

        rotorfreq(xx,3) = (1 - 2*1*slip(xx)); 

        rotorfreq(xx,4) = (1 + 2*1*slip(xx)); 

        rotorfreq(xx,5) = (1 + 2*2*slip(xx)); 

        rotorfreq(xx,6) = (1 + 2*3*slip(xx)); 

    end 

    

for yy = 1:length(vectorref) 

    for rr=1:1:6 

        if rotorfreq(yy,rr)<0 

            rotorfreq(yy,rr) = abs(rotorfreq(yy,rr)) ; 

        end 

    end 

end 

  

end 
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APPENDIX A.8: Function “bearingfreqs” 

 

 

function [ bearingfreq ] = bearingfreqs( Mechspeed, vectorref ) 

% bearingfreqs calculates the bearing fault harmonics in vibration 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com 

bearingfreq = zeros(length(vectorref),5); 

for xx = 1:length(vectorref) 

        bearingfreq(xx,1) = (0.0332*60*Mechspeed(xx)); %Ball spin bearing fault 

        bearingfreq(xx,2) = (0.0063*60*Mechspeed(xx)); %Fundamental Train fault 

        bearingfreq(xx,3) = (0.0825*60*Mechspeed(xx)); %Inner ring defect fault 

        bearingfreq(xx,4) = (0.0508*60*Mechspeed(xx)); %Outer ring defect fault 

        bearingfreq(xx,5) = (0.0663*60*Mechspeed(xx)); %Ball defect fault 

        %end 

end 

 for yy = 1:length(vectorref) 

    for rr=1:1:5 

        if bearingfreq(yy,rr)<0 

            bearingfreq(yy,rr) = abs(bearingfreq(yy,rr)) ; 

        end 

    end 

 end   

   

end 
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APPENDIX A.9: Function “bearingcurrent”  

 

 

function [ fbng ] = bearingcurrent( elecfrq, bearingfreq, vectorref ) 

% bearingcurrent calculates the bearing fault harmonics in current spectrum 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com  

fbng = zeros(length(vectorref),10); 

fbnga = zeros(length(vectorref),5); 

fbngb = zeros(length(vectorref),5); 

for xx = 1:length(vectorref) 

    for yy = 1:1:5 

        fbnga(xx,yy) = abs(elecfrq(xx) - 1*bearingfreq(xx,yy)); 

        fbngb(xx,yy) = abs(elecfrq(xx) + 1*bearingfreq(xx,yy)); 

    end 

    fbng(xx,1:5) = fbnga(xx,:); 

    fbng(xx,6:10) = fbngb(xx,:); 

end  

   

end 
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APPENDIX A.10: Function “harmagloc3”  

 

 

function  [harmonmag] = harmagloc(signal,f_sample,vectorref,KPI) 

%harmagloc locates and outputs the Harmonic magnitudes 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com  

max_Y = zeros (1,7); 

harmonmag = zeros(length(vectorref),7); 

start_ind = f_sample*3 * ones(1,length(vectorref)); 

temp = find(vectorref < f_sample*3); 

start_ind(temp) = vectorref(temp) - 1; 

  

for s = 1:length(vectorref) 

    if s == 1  

        for r=1:2:13 

            max_Y((r+1)/2) = 0; 

        end 

    else if KPI(s) == 0 

            for r=1:2:13 

                max_Y((r+1)/2) = 0; 

            end 

    else 

        y = (signal(vectorref(1,s)-start_ind(s):vectorref(1,s)-1)); 

        N=length (y); 

        f=[0:1:N/2-1]*(f_sample/N); 

        har=4/length(y)*fft(y.*hann(length(y)),N); 

        harmag = abs(har); 

  

        for r=1:2:13 

            ind_vec = find(f>r*KPI(s)-2 & f<r*KPI(s)+2); 

            [~, ind] = max(harmag(ind_vec)); 

            ind = ind_vec(ind); 

            max_Y((r+1)/2) = harmag(ind); 

        end 

        end 

    end 

        harmonmag(s,:) = max_Y; 

            

end 

end 
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APPENDIX A.11: Function “velrms”  

 

 

function [ KPI ] = velrms( acceldata,vectorref,f_sample ) 

% velrms calculates the rms velocity of vibration 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com  

Num = get(Highpass1,'Numerator'); 

filtaccel = filtfilt (Num,1,acceldata); 

temp1 = fft(filtaccel); 

temp1(1) = 0; 

integ1 = 1/6000*cumtrapz(real(ifft(temp1))); 

KPI = KPIrms2( integ1,vectorref,f_sample ); 

end 
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APPENDIX A.12: Function “bands” 

 

 

unction [ band_rms ] = bands( signal,f_sample,vectorref ) 

% bands calculates the rms vibration in bands of frequencies 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com  

lfband_rms = zeros(length(vectorref),1); 

mfband_rms = zeros(length(vectorref),1); 

hfband_rms = zeros(length(vectorref),1); 

band_rms = zeros(length(vectorref),3); 

%start_ind = zeros(length(vectorref)); 

start_ind = f_sample*3 * ones(1,length(vectorref)); 

temp = find(vectorref < f_sample*3); 

start_ind(temp) = vectorref(temp) - 1; 

for xx = 1:length(vectorref) 

    if xx == 1  

        lfband_rms(xx) = 0; 

        mfband_rms(xx) = 0; 

        hfband_rms(xx) = 0; 

    else 

        y = signal(vectorref(1,xx)-start_ind(xx):vectorref(1,xx)-1); 

        N = length (y); 

        NumUniquePts = ceil((N+1)/2); 

        freq = (0:NumUniquePts-2)*f_sample/(N-1); 

        accelfft = fft(y); 

        accelmag = abs (accelfft); 

        ind_vec = find(freq>10 & freq<200); 

        lfband = (accelmag(ind_vec)); 

        lfband_rms (xx) = sqrt(sum((abs(lfband)/(N)).^2));  

        ind_vec2 = find(freq>200 & freq<2000); 

        mfband = (accelmag(ind_vec2)); 

        mfband_rms (xx) = sqrt(sum((abs(mfband)/(N)).^2)); 

        ind_vec3 = find(freq>2000); 

        hfband = (accelmag(ind_vec3)); 

        hfband_rms (xx) = sqrt(sum((abs(hfband)/(N)).^2)); 

             end 

    band_rms(xx,1)= lfband_rms (xx); 

    band_rms(xx,2)= mfband_rms (xx); 

    band_rms(xx,3)= hfband_rms (xx); 

    end 

 end 
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APPENDIX A.13: Function “Vibharmmech2” 

 

 

function [ vibharmonmag,vibharelec,vibharbearing  ] = 

Vibharmmech2(signal,f_sample,vectorref,KPI,elecfq,bearingvibfq ) 

% Vibharmmech2 calculates the magnitude of harmonics in vibration spectrum 

 

% Forrest Suter, 2012-04-26 

  

% Copyright (c) Forrest Suter, 2012-2017 

% forrestsuter@gmail.com N=2^16; 

f=[0:1:N/2-1]*(f_sample/N); 

max_Y = zeros (1,5); 

max_YY = zeros (1,5); 

max_YX = zeros (1,3); 

vibharmonmag = zeros(length(vectorref),5); 

vibharbearing = zeros(length(vectorref),5); 

vibharelec = zeros(length(vectorref),3); 

h = [1,0.5,2,3,4]; 

hh = [1,2,6]; 

start_ind = f_sample*3 * ones(1,length(vectorref)); 

temp = find(vectorref < f_sample*3); 

start_ind(temp) = vectorref(temp) - 1; 

for s = 1:length(vectorref) 

    if s == 1  

        for r=1:1:5 

            max_Y(r) = 0; 

            max_YY(r) = 0; 

        end 

        for rr=1:1:3 

            max_YX(rr) = 0; 

        end 

    else if KPI(s) == 0 

            for r=1:1:5 

                max_Y(r) = 0; 

                max_YY(r) = 0; 

            end 

            for rr=1:1:3 

                max_Y(rr) = 0; 

            end 

    else 

        y = (signal(vectorref(1,s)-start_ind(s):vectorref(1,s)-1)); 

        har=4/length(y)*fft(y.*hann(length(y)),N); 

        harmag = abs(har); 
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        for r=1:1:5 

            ind_vec = find(f>h(r)*KPI(s)-0.5 & f<h(r)*KPI(s)+0.5); 

            [~, ind] = max(harmag(ind_vec)); 

            ind = ind_vec(ind); 

            max_Y(r) = harmag(ind); 

        end 

         for rr=1:1:5 

            ind_vec = find(f>bearingvibfq(s,rr)-1 & f<bearingvibfq(s,rr)+1); 

            [~, ind] = max(harmag(ind_vec)); 

            ind = ind_vec(ind); 

            max_YY(rr) = harmag(ind); 

        end 

        for rf=1:1:3 

            ind_vec = find(f>hh(rf)*elecfq(s)-0.5 & f<hh(rf)*elecfq(s)+0.5); 

            [~, ind] = max(harmag(ind_vec)); 

            ind = ind_vec(ind); 

            max_YX(rf) = harmag(ind); 

        end 

        end 

    end 

     

    vibharmonmag(s,:) = max_Y; 

    vibharbearing(s,:) = max_YY; 

    vibharelec(s,:) = max_YX; 

             

end 

  

end 
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APPENDIX A.14: Function “FIRFilter” 

 

function Hd = FIRfilter3 

%FIRFILTER3 Returns a discrete-time filter object. 

  

% 

% M-File generated by MATLAB(R) 7.9 and the Signal Processing Toolbox 6.12. 

% 

% Generated on: 07-Mar-2012 16:31:12 

% 

  

% Equiripple Lowpass filter designed using the FIRPM function. 

  

% All frequency values are in Hz. 

Fs = 6000;  % Sampling Frequency 

  

Fpass = 70;              % Passband Frequency 

Fstop = 400;             % Stopband Frequency 

Dpass = 0.057501127785;  % Passband Ripple 

Dstop = 0.01;            % Stopband Attenuation 

dens  = 20;              % Density Factor 

  

% Calculate the order from the parameters using FIRPMORD. 

[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]); 

  

% Calculate the coefficients using the FIRPM function. 

b  = firpm(N, Fo, Ao, W, {dens}); 

Hd = dfilt.dffir(b); 

  

% [EOF] 
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APPENDIX A.15: Function “Highpass1” 
 

function Hd = Highpass1 

%HIGHPASS1 Returns a discrete-time filter object. 

  

% 

% M-File generated by MATLAB(R) 7.9 and the Signal Processing Toolbox 6.12. 

% 

% Generated on: 26-Mar-2012 19:04:27 

% 

  

% Equiripple Highpass filter designed using the FIRPM function. 

  

% All frequency values are in Hz. 

Fs = 6000;  % Sampling Frequency 

  

Fstop = 3;               % Stopband Frequency 

Fpass = 55;              % Passband Frequency 

Dstop = 1e-007;          % Stopband Attenuation 

Dpass = 0.057501127785;  % Passband Ripple 

dens  = 20;              % Density Factor 

  

% Calculate the order from the parameters using FIRPMORD. 

[N, Fo, Ao, W] = firpmord([Fstop, Fpass]/(Fs/2), [0 1], [Dstop, Dpass]); 

  

% Calculate the coefficients using the FIRPM function. 

b  = firpm(N, Fo, Ao, W, {dens}); 

Hd = dfilt.dffir(b); 

  

% [EOF] 
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APPENDIX B: DAQ INPUT  

 

Channel DB37 Pin Labjack Input Description 

1 37 AIN0 Line AB Voltage  

2 18 AIN1 Phase A Current 

3 36 AIN2 Line BC Voltage 

4 17 AIN3 Phase B Current 

5 35 AIN4 Line CA Voltage 

6 16 AIN5 Phase C Current 

7 34 AIN6 Mechanical Speed 

8 15 AIN7 Block 1 Accelerometer X 

9 33 AIN8 Block 1 Accelerometer Y 

10 14 AIN9 Block 1 Accelerometer Z 

11 32 AIN10 Block 2 Accelerometer X 

12 13 AIN11 Block 2 Accelerometer Y 

13 31 AIN12 Block 2 Accelerometer Z 
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APPENDIX C: KPI PRO OUTPUT KEY 

 

  KPI Description 

1 CurrentA.RMSCalc.Amps Phase A RMS Current  

2 CurrentB.RMSCalc.Amps Phase B RMS Current  

3 CurrentC.RMSCalc.Amps Phase C RMS Current  

4 Voltage_ab.RMSCalc.Volts Line AB RMS Voltage 

5 Voltage_bc.RMSCalc.Volts Line BC RMS Voltage 

6 Voltage_ca.RMSCalc.Volts Line CA RMS Voltage 

7 THD.CurrentA.IEEE Phase A Current THD using IEEE Method   

8 THD.CurrentA.IEC Phase A Current THD using IEC Method   

9 CurharidA.OneE.Mag Phase A Current 1
st

 harmonic of electrical freq 

10 CurharidA.ThreeE.Mag Phase A Current 3rd harmonic of electrical freq 

11 CurharidA.FiveE.Mag Phase A Current 5th harmonic of electrical freq 

12 CurharidA.SevenE.Mag Phase A Current 7th harmonic of electrical freq 

13 CurharidA.NineE.Mag Phase A Current 9th harmonic of electrical freq 

14 CurharidA.ElevenE.Mag Phase A Current 11th harmonic of electrical freq 

15 CurharidA.ThirteenE.Mag Phase A Current 13th harmonic of electrical freq 

16 THD.CurrentB.IEEE Phase B Current THD using IEEE Method   

17 THD.CurrentB.IEC Phase B Current THD using IEC Method   

18 CurharidB.OneE.Mag Phase B Current 1
st

 harmonic of electrical freq 

19 CurharidB.ThreeE.Mag Phase B Current 3rd harmonic of electrical freq 

20 CurharidB.FiveE.Mag Phase B Current 5th harmonic of electrical freq 

21 CurharidB.SevenE.Mag Phase B Current 7th harmonic of electrical freq 

22 CurharidB.NineE.Mag Phase B Current 9th harmonic of electrical freq 

23 CurharidB.ElevenE.Mag Phase B Current 11th harmonic of electrical freq 

24 CurharidB.ThirteenE.Mag Phase B Current 13th harmonic of electrical freq 

25 THD.CurrentC.IEEE Phase C Current THD using IEEE Method   

26 THD.CurrentC.IEC Phase C Current THD using IEC Method   

27 CurharidC.OneE.Mag Phase C Current 1
st

 harmonic of electrical freq 

28 CurharidC.ThreeE.Mag Phase C Current 3rd harmonic of electrical freq 

29 CurharidC.FiveE.Mag Phase C Current 5th harmonic of electrical freq 

30 CurharidC.SevenE.Mag Phase C Current 7th harmonic of electrical freq 

31 CurharidC.NineE.Mag Phase C Current 9th harmonic of electrical freq 

32 CurharidC.ElevenE.Mag Phase C Current 11th harmonic of electrical freq 

33 CurharidC.ThirteenE.Mag Phase C Current 13th harmonic of electrical freq 

34 Run.Speed.Frequency Electrical Frequency  

35 AccMeter_1.VelRMS.Calc Accelerometer 1 RMS Velocity 

36 AccMeter_2.VelRMS.Calc Accelerometer 2 RMS Velocity 

37 AccMeter_3.VelRMS.Calc Accelerometer 3 RMS Velocity 
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  KPI Description 

38 AccMeter_4.VelRMS.Calc Accelerometer 4 RMS Velocity 

39 AccMeter_5.VelRMS.Calc Accelerometer 5 RMS Velocity 

40 AccMeter_6.VelRMS.Calc Accelerometer 6 RMS Velocity 

41 Run.Speed.Magnitude Rotational Speed 

42 RMS_Band1.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-1 

43 RMS_Band1.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-1 

44 RMS_Band1.HF.RMS RMS of Higher freq band >2000 Hz Accel-1 

45 Vibtonid.OneR1.Mag Vibration magnitude at 1*rotational speed Accel-1 

46 Vibtonid.HalfR1.Mag Vibration magnitude at .5*rotational speed Accel-1 

47 Vibtonid.TwoR1.Mag Vibration magnitude at 2*rotational speed Accel-1 

48 Vibtonid.ThreeR1.Mag Vibration magnitude at 3*rotational speed Accel-1 

49 Vibtonid.FourR1.Mag Vibration magnitude at 4*rotational speed Accel-1 

50 Vibtonid.OneE1.Mag Vibration magnitude at 1*electrical freq Accel-1 

51 Vibtonid.TwoE1.Mag Vibration magnitude at 2* electrical freq Accel-1 

52 Vibtonid.SixE1.Mag Vibration magnitude at 6* electrical freq Accel-1 

53 RMS_Band2.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-2 

54 RMS_Band2.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-2 

55 RMS_Band2.HF.RMS RMS of Higher freq band >2000 Hz Accel-2 

56 Vibtonid.OneR2.Mag Vibration magnitude at 1*rotational speed Accel-2 

57 Vibtonid.HalfR2.Mag Vibration magnitude at .5*rotational speed Accel-2 

58 Vibtonid.TwoR2.Mag Vibration magnitude at 2*rotational speed Accel-2 

59 Vibtonid.ThreeR2.Mag Vibration magnitude at 3*rotational speed Accel-2 

60 Vibtonid.FourR2.Mag Vibration magnitude at 4*rotational speed Accel-2 

61 Vibtonid.OneE2.Mag Vibration magnitude at 1*electrical freq Accel-2 

62 Vibtonid.TwoE2.Mag Vibration magnitude at 2* electrical freq Accel-2 

63 Vibtonid.SixE2.Mag Vibration magnitude at 6* electrical freq Accel-2 

64 RMS_Band3.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-3 

65 RMS_Band3.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-3 

66 RMS_Band3.HF.RMS RMS of Higher freq band >2000 Hz Accel-3 

67 Vibtonid.OneR3.Mag Vibration magnitude at 1*rotational speed Accel-3 

68 Vibtonid.HalfR3.Mag Vibration magnitude at .5*rotational speed Accel-3 

69 Vibtonid.TwoR3.Mag Vibration magnitude at 2*rotational speed Accel-3 

70 Vibtonid.ThreeR3.Mag Vibration magnitude at 3*rotational speed Accel-3 

71 Vibtonid.FourR3.Mag Vibration magnitude at 4*rotational speed Accel-3 

72 Vibtonid.OneE3.Mag Vibration magnitude at 1*electrical freq Accel-3 

73 Vibtonid.TwoE3.Mag Vibration magnitude at 2* electrical freq Accel-3 

74 Vibtonid.SixE3.Mag Vibration magnitude at 6* electrical freq Accel-3 

75 RMS_Band4.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-4 

76 RMS_Band4.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-4 



  104 

 

  KPI Description 

77 RMS_Band4.HF.RMS RMS of Higher freq band >2000 Hz Accel-4 

78 Vibtonid.OneR4.Mag Vibration magnitude at 1*rotational speed Accel-4 

79 Vibtonid.HalfR4.Mag Vibration magnitude at .5*rotational speed Accel-4 

80 Vibtonid.TwoR4.Mag Vibration magnitude at 2*rotational speed Accel-4 

81 Vibtonid.ThreeR4.Mag Vibration magnitude at 3*rotational speed Accel-4 

82 Vibtonid.FourR4.Mag Vibration magnitude at 4*rotational speed Accel-4 

83 Vibtonid.OneE4.Mag Vibration magnitude at 1*electrical freq Accel-4 

84 Vibtonid.TwoE4.Mag Vibration magnitude at 2* electrical freq Accel-4 

85 Vibtonid.SixE4.Mag Vibration magnitude at 6* electrical freq Accel-4 

86 RMS_Band5.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-5 

87 RMS_Band5.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-5 

88 RMS_Band5.HF.RMS RMS of Higher freq band >2000 Hz Accel-5 

89 Vibtonid.OneR5.Mag Vibration magnitude at 1*rotational speed Accel-5 

90 Vibtonid.HalfR5.Mag Vibration magnitude at .5*rotational speed Accel-5 

91 Vibtonid.TwoR5.Mag Vibration magnitude at 2*rotational speed Accel-5 

92 Vibtonid.ThreeR5.Mag Vibration magnitude at 3*rotational speed Accel-5 

93 Vibtonid.FourR5.Mag Vibration magnitude at 4*rotational speed Accel-5 

94 Vibtonid.OneE5.Mag Vibration magnitude at 1*electrical freq Accel-5 

95 Vibtonid.TwoE5.Mag Vibration magnitude at 2* electrical freq Accel-5 

96 Vibtonid.SixE5.Mag Vibration magnitude at 6* electrical freq Accel-5 

97 RMS_Band6.LF.RMS RMS of Lower freq band 10 to 200 Hz Accel-6 

98 RMS_Band6.MF.RMS RMS of Med freq band 200 to 2000 Hz Accel-6 

99 RMS_Band6.HF.RMS RMS of Higher freq band >2000 Hz Accel-6 

100 Vibtonid.OneR6.Mag Vibration magnitude at 1*rotational speed Accel-6 

101 Vibtonid.HalfR6.Mag Vibration magnitude at .5*rotational speed Accel-6 

102 Vibtonid.TwoR6.Mag Vibration magnitude at 2*rotational speed Accel-6 

103 Vibtonid.ThreeR6.Mag Vibration magnitude at 3*rotational speed Accel-6 

104 Vibtonid.FourR6.Mag Vibration magnitude at 4*rotational speed Accel-6 

105 Vibtonid.OneE6.Mag Vibration magnitude at 1*electrical freq Accel-6 

106 Vibtonid.TwoE6.Mag Vibration magnitude at 2* electrical freq Accel-6 

107 Vibtonid.SixE6.Mag Vibration magnitude at 6* electrical freq Accel-6 

108 Slip  Slip 

109 Broken rotor bars.A -3*s Phase A Current rotor bar at -3*slip 

110 Broken rotor bars.A -2*s Phase A Current rotor bar at -2*slip 

111 Broken rotor bars.A -1*s Phase A Current rotor bar at -1*slip 

112 Broken rotor bars.A +1*s Phase A Current rotor bar at 1*slip 

113 Broken rotor bars.A +2*s Phase A Current rotor bar at 2*slip 

114 Broken rotor bars.A +3*s Phase A Current rotor bar at 3*slip 

115 Broken rotor bars.B -3*s Phase B Current rotor bar at -3*slip 
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  KPI Description 

116 Broken rotor bars.B -2*s Phase B Current rotor bar at -2*slip 

117 Broken rotor bars.B -1*s Phase B Current rotor bar at -1*slip 

118 Broken rotor bars.B +1*s Phase B Current rotor bar at 1*slip 

119 Broken rotor bars.B +2*s Phase B Current rotor bar at 2*slip 

120 Broken rotor bars.B +3*s Phase B Current rotor bar at 3*slip 

121 Broken rotor bars.C -3*s Phase C Current rotor bar at -3*slip 

122 Broken rotor bars.C -2*s Phase C Current rotor bar at -2*slip 

123 Broken rotor bars.C -1*s Phase C Current rotor bar at -1*slip 

124 Broken rotor bars.C +1*s Phase C Current rotor bar at 1*slip 

125 Broken rotor bars.C +2*s Phase C Current rotor bar at 2*slip 

126 Broken rotor bars.C +3*s Phase C Current rotor bar at 3*slip 

127 bearing.vib.Ball spin.1 Ball spin frequency Accel-1  

128 bearing.vib.Fund Train.1 Fundamental train frequency Accel-1 

129 bearing.vib.Inner ring.1 Inner Ring frequency Accel-1   

130 bearing.vib.Outer ring.1 Outer Ring frequency Accel-1  

131 bearing.vib.Ball defect.1 Ball Defect frequency Accel-1 

132 bearing.vib.Ball spin.2 Ball spin frequency Accel-2  

133 bearing.vib.Fund Train.2 Fundamental train frequency Accel-2 

134 bearing.vib.Inner ring.2 Inner Ring frequency Accel-2 

135 bearing.vib.Outer ring.2 Outer Ring frequency Accel-2  

136 bearing.vib.Ball defect.2 Ball Defect frequency Accel-2 

137 bearing.vib.Ball spin.3 Ball spin frequency Accel-3 

138 bearing.vib.Fund Train.3 Fundamental train frequency Accel-3 

139 bearing.vib.Inner ring.3 Inner Ring frequency Accel-3 

140 bearing.vib.Outer ring.3 Outer Ring frequency Accel-3 

141 bearing.vib.Ball defect.3 Ball Defect frequency Accel-3 

142 bearing.vib.Ball spin.4 Ball spin frequency Accel-4 

143 bearing.vib.Fund Train.4 Fundamental train frequency Accel-4 

144 bearing.vib.Inner ring.4 Inner Ring frequency Accel-4 

145 bearing.vib.Outer ring.4 Outer Ring frequency Accel-4 

146 bearing.vib.Ball defect.4 Ball Defect frequency Accel-4 

147 bearing.vib.Ball spin.5 Ball spin frequency Accel-5 

148 bearing.vib.Fund Train.5 Fundamental train frequency Accel-5 

149 bearing.vib.Inner ring.5 Inner Ring frequency Accel-5   

150 bearing.vib.Outer ring.5 Outer Ring frequency Accel-5 

151 bearing.vib.Ball defect.5 Ball Defect frequency Accel-5 

152 bearing.vib.Ball spin.6 Ball spin frequency Accel-6 

153 bearing.vib.Fund Train.6 Fundamental train frequency Accel-6 

154 bearing.vib.Inner ring.6 Inner Ring frequency Accel-6 
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  KPI Description 

155 bearing.vib.Outer ring.6 Outer Ring frequency Accel-6 

156 bearing.vib.Ball defect.6 Ball Defect frequency Accel-6 

157 Cur.bearing.-Ball spin.A Phase A Current Lower Ball Spin freq 

158 Cur.bearing.-Fund Train.A Phase A Current Lower Fundamental Train freq 

159 Cur.bearing.-Inner ring.A Phase A Current Lower Inner Ring freq 

160 Cur.bearing.-Outer ring.A Phase A Current Lower Outer Ring freq  

161 Cur.bearing.-Ball defect.A Phase A Current Lower Ball Defect freq 

162 Cur.bearing.+Ball spin.A Phase A Current Upper Ball Spin freq 

163 Cur.bearing.+Fund Train.A Phase A Current Upper Fundamental Train freq 

164 Cur.bearing.+Inner ring.A Phase A Current Upper Inner Ring freq 

165 Cur.bearing.+Outer ring.A Phase A Current Upper Outer Ring freq  

166 Cur.bearing.+Ball defect.A Phase A Current Upper Ball Defect freq 

167 Cur.bearing.-Ball spin.B Phase B Current Lower Ball Spin freq 

168 Cur.bearing.-Fund Train.B Phase B Current Lower Fundamental Train freq 

169 Cur.bearing.-Inner ring.B Phase B Current Lower Inner Ring freq 

170 Cur.bearing.-Outer ring.B Phase B Current Lower Outer Ring freq  

171 Cur.bearing.-Ball defect.B Phase B Current Lower Ball Defect freq 

172 Cur.bearing.+Ball spin.B Phase B Current Upper Ball Spin freq 

173 Cur.bearing.+Fund Train.B Phase B Current Upper Fundamental Train freq 

174 Cur.bearing.+Inner ring.B Phase B Current Upper Inner Ring freq 

175 Cur.bearing.+Outer ring.B Phase B Current Upper Outer Ring freq  

176 Cur.bearing.+Ball defect.B Phase B Current Upper Ball Defect freq 

177 Cur.bearing.-Ball spin.C Phase C Current Lower Ball Spin freq 

178 Cur.bearing.-Fund Train.C Phase C Current Lower Fundamental Train freq 

179 Cur.bearing.-Inner ring.C Phase C Current Lower Inner Ring freq 

180 Cur.bearing.-Outer ring.C Phase C Current Lower Outer Ring freq  

181 Cur.bearing.-Ball defect.C Phase C Current Lower Ball Defect freq 

182 Cur.bearing.+Ball spin.C Phase C Current Upper Ball Spin freq 

183 Cur.bearing.+Fund Train.C Phase C Current Upper Fundamental Train freq 

184 Cur.bearing.+Inner ring.C Phase C Current Upper Inner Ring freq 

185 Cur.bearing.+Outer ring.C Phase C Current Upper Outer Ring freq  

186 Cur.bearing.+Ball defect.C Phase C Current Upper Ball Defect freq 

187 Time Testing Time in Seconds 
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APPENDIX D: HEALTH MONITORING ALGORITHM 

 

KPI Classifier Code 

%’filename’ is used as generic filename in this example of  

%the KPI classifier 

data = filename(:,:); 

[Ureduced ,psi,lambda] = defineEigenSpace2(data ’);  

[E_filename , E2_filename] = KPI2E(data28, Ureduced , psi, lambda); 

 

Function Used to Calculate Error from KPIs 

function[E,E2] = KPI2E(data, Ureduced , psi, lambda)  

omegaMatrix = eigenParams2(data ’,0,Ureduced ,psi,lambda);  

data_hat = bsxfun(@plus ,omegaMatrix*Ureduced ’,psi ’);  

e = data-data_hat;  

E = zeros(size(e,1),1);  

E2 = zeros(size(e,1) ,1);  

for ii = 1:size(e,1)  

vec = e(ii ,:);   

E(ii) = norm(vec);  

E2(ii) = norm(vec)/norm(data(ii,:));  

End 

 End 
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Function Loads or Calculates Eigenspace Basis Vectors, Ureduced, and the Mean Vector 

% This fuction loads or calculates the eigenspace basis  

% vectors, Ureduced , and also the mean vector, psi. Psi  

% must be subtracted from evt transients before being  

% projected into the eigenspace defined by Ureduced.  

%  

% If no inputs are given the function will lookfor and  

% load Ureduced and psi from a EIGEN_SPACE.mat file in  

% the current directory.  

%  

% [Ureduced,psi,lambda] = defineEigenSpace();  

%  

% If inputs are given , Ureduced and psi will be  

% calculated and then saved to EIGEN_SPACE.mat in the  

% current directory. This will write over any existing  

% EIGEN_SPACE_2.mat file.  

%  

%* USE ’eigenParams.m’ for projecting evts into eigenspace.*  

%  

% function [Ureduced,psi,lambda] = defineEigenSpace2(gammaMatrix)  

%  

% Inputs:  

% gammaMarrix , a the complete set of test sample features  

% in a DxM matrix. Where D is the dimensions of the 

% feature vectors, and M is the number of sample vectors.  

%  

% D = number of pts in vector  

% M = number of training Vectors  

% Ufull , Dx(D or M) matrix of eigenvectors , min(D,M)  

% lambda, (D or M)x1 vector of corresponding eigenvalues , min(D,M)  

% psi, a Dx1 image mean vector  

%  

% Nt = number of test vectors  

% K = reduced dimensions from D (K<D) % PhiMatrix , DxM zero-mean traing vectors 

% Ureduced, DxK matrix of eigenvectors  

% omegaMatrix is MxK matrix, K reduced dimensions ,  

% projected training vectors => the features for  

% each training vector 

function [Ureduced ,psi,lambda] = defineEigenSpace2(gammaMatrix) 

 

if ~exist(’gammaMatrix’,’var’)  

disp(’Loaded current EIGEN_SPACE_2.mat’)  

load(’EIGEN_SPACE_2.mat’); % this loads Ureduced and psi  

return 
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 end 

% Setting Full Space 

[Ufull , lambda, psi] = computeFullEigenSpace(gammaMatrix);  

PhiMatrix = bsxfun(@minus,gammaMatrix ,psi); % zero mean image ց  →vectors 

[omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda,PhiMatrix); 

%%% note: omegaMatrix = PhiMatrix1 ’*Ureduced; 

% Saving 

save(’EIGEN_SPACE_2.mat’,’Ureduced’,’psi’,’lambda’);  

disp(’Saved new EIGEN_SPACE_2.mat’)  

end 

function [Ufull , lambda, psi] = computeFullEigenSpace(gammaMatrix)  

% Computes the Eigenspace vectors/values, and the mean  

% input vector for a set of M training vectors with D  

% dimensions.  

%  

% [Ufull , lambda, psi] = computeFullEigenSpace(gammaMatrix)  

%  

% Input ,  

% gammaMarrix , a the complete set of test images in a  

% DxM matrix.  

% Where D is the dimensions of the image vectors, and  

% M is the number of image vectors.  

%  

% Output,  

% Ufull , a DxM matrix of eigenvectors of the full eigenspace ( ||ց  →Ufull(:,i)|| = 1 ).  

% lambda, a Mx1 vector of eigenvalues (in descending order).  

% psi, a Dx1 image mean vector. 

[D,M]=size(gammaMatrix);  

% average the image vectors (2nd dim)  

psi = (1/M)*sum(gammaMatrix ,2); 

% zero mean image vectors  

PhiMatrix = bsxfun(@minus,gammaMatrix ,psi); 

if D>M  

C = (1/M)*PhiMatrix ’*PhiMatrix; % if D>M  

else  

C = (1/M)*PhiMatrix*PhiMatrix ’; % do it this way for M>D  

end 

[vec,d]=eig(C);  

[lambda,index] = sort(diag(d),’descend’);  

% sorting eigenvectors to correspond with sorted eigenvalues  

U= vec(:,index);  

% if eigenvalue is <= 0 set corresponding eignevector to zero(ց  →numerical instability)  

U(:,lambda <=0)=0; 

if D>M 
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%if D>M also makes ||Ufull(:,i)|| = 1  

Ufull = bsxfun(@times ,((1./(M*lambda)).^0.5) ’,PhiMatrix*U); 

else 

% do it this way for M>D  

Ufull = U; 

end  

end 

function [omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda,ց  →PhiMatrix)  

% Reduces the Eigenspace dimensions from M to K (K<M<D);  

% eigenvectors are D dimensions.  

%  

% [omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda,PhiMatrixց  →)  

% Input ,  

% Ufull , DxM matrix of eigenvectors for the full eigenspace.  

% lambda, Mx1 vector of corresponding eigenvalues.  

% PhiMatrix , DxM zero-mean traing vectors, M vectors of D dimensionց  →.  

%  

% Output,  

% omegaMatrix , MxK matrix of reduced eigenspace training  

% vectors (K coordinates for each training vector M).  

% Ureduced, DxK matrix of eigenvectors associated with  

% the K dimensional eigenspace. 

 

[D,M] = size(Ufull); avgVal = (1./M).*sum(lambda); Ureduced = 

Ufull(:,lambda>avgVal) 

% must have at least 2 dimensions.  

if size(Ureduced ,2)<2  

Ureduced = Ufull(:,1:2);  

end 

% projecting each training vector into reduced eigenspace.  

omegaMatrix = PhiMatrix ’*Ureduced; 

end 
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Function Projects Measurements Into Eigenspace Defined by Ureduced and the 

Mean Vector 

 

% This function projects measurements into an eigenspace  

% defined by Ureduced and the mean vector psi. Psi is  

% subtracted from evt transients to make them zero-mean  

% before being projected into Ureduced.  

%  

%* USE ’defineEigenSpace.m’ to define Ureduced and psi *  

%  

% If Ureduced and psi not inputted, will load them from  

% EIGENSPACE.mat  

% 

% function omegaMatrix = eigenParams(evtlist,white ,Ureduced ,psi,ց  →lambda)  

%  

% white = 1/0, 1 if you want the eigenvector to undergo  

% a whitening transform , this makes each of the  

% cordinates to have similar values. Otherwise the  

% omegaMatrix would be heavily weighted to the first  

% few eigenvectors. If white is not given will be set % to 0.  

%  

% D = number of pts in vector  

% M = number of training Vectors  

% Ufull ,Dx(D or M) matrix of eigenvectors , min(D,M)  

% lambda,(D or M)x1 vector of corresponding eigenvalues , min(D,M)  

% psi, a Dx1 image mean vector  

%  

% Nt = number of test vectors  

% K = reduced dimensions from D (K<D)  

% PhiMatrix , DxM zero-mean traing vectors  

% Ureduced, DxK matrix of eigenvectors  

% omegaMatrix is MxK matrix, K reduced dimensions ,  

% projected training vectors => the features  

%for each training vector 

 

function omegaMatrix = eigenParams2(gammaMatrix ,white ,Ureduced ,psi,ց  →lambda) 

if ~exist(’Ureduced’,’var’)  

load(’EIGEN_SPACE_2.mat’);  

% this loads Ureduced , psi, and lambda end 

if ~exist(’white’,’var’)  

white = 0;  

end  

% zero mean image vectors  

PhiMatrix = bsxfun(@minus,gammaMatrix ,psi);  

omegaMatrix = PhiMatrix ’*Ureduced; 
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if white == 1  

unweight_lambda = lambda(1:size(omegaMatrix ,2)).^-0.5;  

omegaMatrix = bsxfun(@times,omegaMatrix ,unweight_lambda ’);  

end  

end 


