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ABSTRACT

CHETAN BORSE. Interactive document retrieval. (Under the direction of DR.
WLODEK ZADROZNY)

Traditional Information Retrieval systems present with vast, relevant information as a

response to the user search query, which usually consists of di�erent semantic groups.

It is a tedious task to look through all the retrieved information, and the user is mostly

interested in the post-retrieved documents belonging to one or the other underlying

semantic group.

This problem motivated the researchers to provide an Interactive Document Retrieval

system to narrow down the search and quickly locate the information. The notion is

to identify the semantic groups of documents by clustering the post-retrieved informa-

tion and to provide the summary for each cluster. In this research, we propose a new

approach for document clustering and multi-document summarization. Our new doc-

ument clustering approach clusters the post-retrieved documents into semantic space

of concepts using the document embedding. The document embedding is obtained

by the Doce2Vec training on the conceptualized document collection. The proposed

approach improves the performance of the document clustering approximately by 6%

when compared with the state-of-the-art techniques by considering F-measure. The

proposed multi-document summarization technique extracts sentences from the doc-

ument collection based on the highest importance scores computed using the Lexical

Centrality principle. For power iteration, our algorithm uses the sentence embeddings

obtained with the PV-DM model. This technique improves the multi-document sum-

marization accuracy nearly by 4% as measured in Rouge-1 metrics. Thus, our new

approaches improve the Interactive Document Retrieval framework to the next level.
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CHAPTER 1: INTRODUCTION

1.1 Information Retrieval: State-of-the-art and Challenges

When the Internet was introduced in the early 90s, there were few who could predict

the rapid growth of information. To help the users to search useful information, there

was a server hosted by the European Organization for Nuclear Research (CERN)

which contained a list of available servers on the Internet [1]. But, this centralized

index became unfeasible to use for searching the relevant information for a user's

need. The method of �nding information on the Internet was revolutionized when

the �rst search engines appeared in 1993. By indexing web pages from all over the

world, the users could �nd relevant information by just providing search terms that

they were interested in. As a result, some of the most popular search engines like

Google, Yahoo, etc. have grown into global multi-billion dollar companies.

With the continuous growth of electronic information (or documents), it has become

immensely important to improve existing search techniques for e�cient and e�ective

search in a shorter time. Traditional Informational Retrieval systems retrieve and

rank documents based on maximizing relevance to the user search query. These

systems primarily use term-weighting approaches to retrieve relevant information (or

documents). The retrieved documents are then ranked according to its importance

determined by Page Rank algorithm (used in Google search engine) or HITS algorithm

(used in Teoma, now Ask.com).

The traditional Informational Retrieval systems respond the user query with hundreds

or thousands of relevant documents. It is a tiresome task to search through thousands

of retrieved results to get the desired document. This happens because of the growing

information and the inability of most users to de�ne the appropriate search query.
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As per the user study [2], the highest proportion of the search queries contained one

or two terms, and only less than 4% of the queries contained more than six terms.

Even mobile search queries have 15.5 characters (just over 2 words) as per the Hitwise

report.

Figure 1.1: Average number of search terms for online search queries in the United
States as of July 2017. Credits: statista.com

The voice search has boosted the use of Long Tail keywords, but still average search

query length is slightly improved.

Figure 1.2: Average number of search terms for voice search queries. Credits: moz.com

Further, 77% users looked at one or two pages per search query, which indicates

their low tolerance to navigate through a long list of retrieved information (or doc-

uments). These facts in themselves stress the need of designing the Information Re-
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trieval system in a di�erent way than the systems as practiced to date and bring to

the fore importance of the Interactive Information Retrieval (or Interactive Document

Retrieval) systems.

1.2 Research Aim

The Interactive Document Retrieval framework aids the user by providing a way

to view the search results as the groups of similar documents. The search engines, as

Teoma, Vivisimo, and iBoogie, have proven the e�ectiveness of the search by cluster-

ing the post-retrieved documents. The clustering aggregates the similar documents

based on the topic, term weight, or other criteria. The goal of the clustering is to pro-

vide an overview of the post-retrieved document collection so that a user can quickly

locate the desired document. In addition, the multi-document summary can be pro-

vided for each cluster to highlight the document similarities and its singular aspect.

In this manner, the Interactive Document Retrieval framework reduces the complex-

ity of retrieved information by organizing the retrieved information (or documents)

into groups. Just reading the summary of post-retrieved clusters, a user can choose

the cluster closer to his or her information needs.

1.2.1 Problem Statement

The existing Interactive Document Retrieval frameworks cluster the post-retrieved

documents based on its representation in the vector space using TF-IDF score. TF-

IDF technique is based on the bag of words (BOW) model, therefore it loses the

ordering and the semantics of the words.

The goal of this research is to propose a new approach that dynamically performs

the clustering of the retrieved documents in the semantic space of concepts based on

the document embedding (or paragraph vector). Each document is represented by

a �xed length, dense vector. These document embeddings are obtained by training

the Distributed Memory Model of Paragraph Vectors (PV-DM) [3] on the documents
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represented as a bag of concepts. These paragraph vectors work well for tasks that

do not have enough labeled data, and preserve the ordering and the semantics of the

words. Therefore, the paragraph vectors of the post-retrieved documents boost the

performance of the clustering by bringing semantically similar documents together.

The overall objective of this research is to improve the Interactive Document Retrieval

framework by clustering the post-retrieved documents based on document embeddings

that are obtained from the conceptualized form of the document. Additionally, the

new extractive multi-document summarization approach provides the summary for

each cluster, which ultimately helps the user to locate the expected document in the

short time. In this way, the new document clustering algorithm and multi-document

summary approach described in this research, is the great improvement over existing

Interactive Document Retrieval frameworks.

1.3 Prior Work

Conventional Information Retrieval system with widely known vector space model

was introduced in the early 1970s [4]. With the growth in information (or documents),

the document search became tiresome. Consequently, it pointed out the necessity of

the revolution in the search engine interfaces. To overcome this inadequacy of the

search engine, the researchers in Information Retrieval �eld proposed the need for

an interactive search framework to narrow-down the search and to locate the desired

document in minimal time. The notion was to organize the post-retrieved information

into groups of similar documents [5] and to summarize each group with its unique

aspect [6].

Though the researchers demonstrated the importance of the Interactive Information

Retrieval (or Interactive Document Retrieval) system in the late 1990s, the inde-

pendent research has been started on the document clustering and the document

summarization back in the 1960s. Initially, the document clustering was proposed

as a method of improving the performance of the Information Retrieval system [7].
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In this method, the entire document collection was clustered o�ine, and the search

query was compared with the representation of each cluster. In the late 1990s, the

researchers started to apply document clustering technique to the post-retrieved doc-

uments [5, 8, 9, 10, 11, 12]. The goal of the post-retrieval clustering is to provide

an overview of the retrieved information and to make the document search easier.

This idea is also used by search engines, as Teoma, Northern Light and Vivisimo

(now acquired by IBM). The user study shows almost half (48.26%) of the post-query

records involved displaying result pages that come from clicking on a cluster [13]. It

also increased multitasking sessions about 50% longer than the regular search sessions

[13]. In addition, the researchers proposed the document clustering based on topic

segmentation to identify the cohesive group of segment-based portions of the original

documents [14].

The automated multi-document summary for each cluster adds a new value to the

Interactive Document Retrieval framework. The work in the automated document

summarization dates back in the 1950s, and started at IBM [15]. Some of these single

document summarization approaches have been extended to multi-document sum-

marization problem. In the initial attempt of generating multi-document summaries

in IR settings, informative summaries are generated with highly structured docu-

ments to serve the user's needs in searching [16]. Most summarization techniques

adopt the extraction-based approach which selects some original sentences from the

group of documents based on heuristics, as the centroid, document title, sentence

location, search query [17, 6, 18]. The problem with the extraction-based approach

is overlapping information between the selected sentences. So, some researchers pro-

posed compression-based techniques to apply compression on the selected sentences

by deleting words or phrases [19, 20, 21, 22, 23]. The most recent trend is the

abstraction-based approach which merges the knowledge from di�erent source sen-

tences and mimics the human-written summaries [24, 25].
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Our research techniques revolutionize the Interactive Document Retrieval framework

by improving the performance of the post-retrieval document clustering approxi-

mately by 6%. In addition, we have proposed a new approach based on sentence

embeddings, which improves the multi-document summarization and outperforms a

LexRank algorithm. In this way, our research helps the user to quickly locate the

desired information (or document) just by overlooking the summary of the cluster.



CHAPTER 2: BACKGROUND

2.1 Information Retrieval

Information retrieval (IR) is the activity of obtaining information resources relevant

to an information need from a collection of information resources [26]. Searches can be

based on full-text or other content-based indexing. Information retrieval is the science

of searching for information in a document, searching for documents themselves, and

also searching for metadata that describes data, and for databases of texts, images

or sounds [26].

The document clustering and document classi�cation are also part of the IR �eld.

Given a document collection, the document clustering is the task to �nd a good

grouping of the documents based on their contents. Given a set of topics, and a

document collection, classi�cation is to assign each document to its most suitable

topics. The IR systems can be classi�ed as below,

1. IR on the web

2. IR on the document collection

3. IR on a personal computer or laptop

An information retrieval process starts with a user search query. A user search query

does not uniquely identify a web page or document. Instead, several web pages or

documents may match the user search query with di�erent degree of relevancy. Then,

the retrieved results are ranked to �nally present it to the user.
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Figure 2.1: The two parts of an inverted index. The dictionary is commonly kept in
memory, with pointers to each posting list stored on disk.

The problem with this technique is that its computational cost at query time is

more, i.e. linear time in relation to the length of the documents. The solution to this

problem is to index the content of the documents like in Figure 2.1. First, an inverted

index is built prior to the searches, which speeds-up the searches. An inverted index

is composed of a dictionary of all unique terms from the documents. Each entry in

the dictionary maps to a list of documents that contain the corresponding term. Such

a list of documents is called as a posting list. This inverted index makes it easy and

fast to know whether a word appears or not into a document [27].

2.2 Information Retrieval Models

For the e�ective information retrieval, the documents are �rst transformed into

appropriate representation. Each retrieval technique incorporates a certain model

for its document representation. The information retrieval models are categorized

based on two aspects, the mathematical basis and the properties of the model. The

information retrieval models based on the mathematical aspect are further classi�ed

into,

1. Set-theoretic models, which represent documents as sets of words or phrases.

The similarities are computed by performing set operations on those sets. e.g.

Boolean Retrieval model.
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2. Algebraic models, which represent documents and queries as vectors. The simi-

larity between a query vector and the document vectors is computed to �nd the

most relevant documents. e.g. Vector Space model, Latent Semantic Indexing.

3. Probabilistic models, which are based on the probabilistic inference. The sim-

ilarities are calculated as probabilities that a document is relevant for a given

query. e.g. Probabilistic Relevance model (BM25), Language models, Latent

Dirichlet Allocation.

4. Feature-based retrieval models, which view documents as the vectors of features

and combine these features using learning to rank methods.

2.2.1 Boolean Retrieval Model

The Boolean Retrieval model is the �rst and most adopted retrieval model. This

model is based on the Boolean Logic and Set Theory. In boolean retrieval, each

document and query are represented as sets of terms. Information retrieval is based

on whether or not the documents contain the provided query terms.

The boolean retrieval model is easy to implement, but it has few disadvantages too.

The boolean logic may retrieve too few or too many documents. In the retrieval, all

terms are equally weighted. Hence, it is more like Data Retrieval than the Information

Retrieval.

2.2.2 Vector Space Model

The Vector Space model is an algebraic model to represent the documents as vec-

tors of terms. It is the base of today's search engines, e.g. Google search engine.

In the vector space model, documents and queries are represented as vectors of

weighted terms [27]. The weights can be calculated using di�erent scoring func-

tions like TF-IDF scoring model. The similarity between a document and a query is

determined by the cosine of the angle between the vectors, called Cosine Similarity

and is calculated as in equation 2.1. The documents that are highly relevant to the
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user query, tops the retrieved list of documents with the highest cosine similarity.

cos(Vd, Vq) =
Vd · Vq

||Vd|| · ||Vq||
(2.1)

The most popular scoring technique in the vector space model is Term Frequency

- Inverse Document Frequency (TF-IDF) [28]. It is a statistical measure of how

important a term is to a document in a corpus. The term importance increases

proportionally to the number of times term appears in the document, but is o�set by

the frequency of a term across a collection [28]. TF-IDF is mathematically represented

as a product of Term Frequency and Inverse Document Frequency. Term Frequency

(TF) is computed as a number of times term occurs in a document and is divided by

the document length for normalization as shown in equation 2.2.

TF (t) =
Number of times term t appears in document d

Total number of terms in document d
(2.2)

While computing TF, all terms are weighted equally. However, the stop words such

as "the", "and", and "an", may appear a lot of times in the document; but in fact,

have less importance. Therefore, it is required to reduce the weight of stop words and

promote the rare terms. This technique is known as the Inverse Document Frequency

(IDF) [28] and is computed as in equation 2.3.

IDF (t) = log
Total number of documents

Number of documents that have term t
(2.3)

The vector space model is a simple model based on linear algebra and overcomes

various disadvantages of the boolean retrieval model. However, the vector space model

cannot associate the documents with similar context but di�erent term vocabulary.

It is a well known bag-of-words model and loses the order in which terms appear.

Hence, the user sometimes may not �nd the desired documents at the top of retrieved
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document list. In order to overcome this problem, a couple of information retrieval

system started to present the semantic grouping of the post-retrieved documents.

2.3 Page Rank Algorithm

The Page Rank is a link analysis algorithm to measure the relevance of hyperlinked

web pages in the World Wide Web (WWW). This algorithm assigns a numerical

weight to each document, called as Page Rank of the document [29]. It is the best-

known algorithm used by Google to order the search engine results.

Figure 2.2: Google Page Rank calculation. Credits: en.wikipedia.org

The random surfer visits a web page with a certain probability. The probability

of clicking a web page is calculated as a sum of probabilities for a random surfer

following links to reach to the page [29]. The surfer does not click on an in�nite

number of links, but gets bored sometimes and randomly jumps to another page. In

order to incorporate this behavior, the page rank algorithm considers the damping

factor (d) to compute the probability of reaching to a certain web page. The surfer
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always clicks on a random web page with probability (1-d).

Tha page rank equation is given as,

PRi =
1− d
n

+ d
∑

j∈{1,...,n}

PRj

cj
(2.4)

Where PRi is the page rank of a web page i, PRj is the page rank contributed by

web pages that link to web page i.

2.4 Case Study: Google Search Engine

The amount of information on the web is growing rapidly, as well as the number of

people sur�ng the web is increasing. To address the necessity of information retrieval,

Google introduced a search engine which e�ciently scales over the large web collection

[30].

Figure 2.3: High level architecture of Google search engine [30].

In Google search engine, the several distributed crawlers collect data from millions
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of web pages. Web pages fetched are sent to the repository that contains the full

HTML pages stored in a particular format i.e. (docID, length, URL, and web page)

and compressed with zlib. Then, indexer reads repository, uncompresses the docu-

ments, and parse them. Each web page is converted into a list of occurrences of terms

within a document, called as a Hit List [30]. This hit list has the information such

as the term, its position in a document, font size, and capitalization. The indexer

stores these hit records into barrels in form of forward index (sorted by termIDs).

The indexer also extracts URLs from web pages and store it into anchor �le. The

URLResolver reads the anchor �le and converts relative URLs into absolute URLs

to crawl the new web pages. The sorter sorts the barrels by docIDs and generates

an inverted index. For every valid termID in an inverted index, lexicon contains a

pointer which points to a collection of docIDs that contain the corresponding term.

When the user enters a search query, it is tokenized into a list of terms. Then, the

tokenized query is matched against an inverted index and the retrieved documents

are ranked using the Page Rank algorithm. The Google search engine also consid-

ers proximity between terms within a query for improving the search results (phrase

queries) [30]. In addition, the Google search engine collects the click data, relevance

judgment, and feedback. It then uses the machine learning techniques to personalize

the search [30].

2.5 Document Clustering

The Document Clustering is a special �eld of the Information Retrieval. The idea

of document clustering is to assign documents to di�erent topics or topic hierarchies.

It is an unsupervised learning, where topic hierarchies are not known in advance.

When using clustering in information retrieval, the fundamental assumptions is that

the documents in the same cluster behave similarly with respect to relevance to in-

formation needs. [27]

The basis for the document clustering is the document representation. The most
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commonly used document representation is a Vector Space model, which weighs the

terms using TF-IDF scoring function. In Text Mining, the text usually has high di-

mension. So, the text is �rst preprocessed using techniques such as the stop word

removal, dimensionality reduction (PCA, Latent Semantic Analysis). There are two

major categories of the clustering algorithms,

1. Flat Clustering, e.g. K-Means

2. Hierarchical Clustering e.g. Agglomerative, Divisive

2.5.1 Flat Clustering

The Flat Clustering partitions N documents into a set of K clusters that optimizes

the chosen partitioning criterion.

Figure 2.4: K-Means Clustering example. Credits: sherrytowers.com

K-Means is the most popular �at clustering algorithm [31]. Its objective function is

to minimize the average squared Euclidean distance of documents from their cluster
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centroids [32]. K-Means algorithm �rst selects K random documents as initial cluster

centroids. Then, the algorithm iteratively assigns each document to the cluster with

the nearest centroid. It also recomputes the centroid for each cluster based on the

documents belonging to the cluster. This iteration continues until it reaches to the

stopping criterion, such as the Residual Sum of Squares (RSS) falling below the

threshold. The equation for residual sum of squares is shown as below,

RSS =
∑

(y − ŷ)2 (2.5)

2.5.2 Hierarchical Clustering

The Hierarchical Clustering is a cluster analysis technique which builds a hierarchy

of clusters. The hierarchical clustering generally falls into two categories [33],

1. Agglomerative

2. Divisive

Figure 2.5: An example of Hierarchical Clustering.

The Agglomerative Clustering is a bottom-up approach as shown in Figure 2.5.
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Each data point starts as an own cluster and pairs of clusters are merged as algo-

rithm moves up the hierarchy. The time complexity of agglomerative clustering is

O(n2 log(n)), which makes the algorithm very slow for large data corpus.

The Divisive Clustering is a top-down approach as shown in Figure 2.5. This algo-

rithm starts with all data points in one cluster and then splits the cluster recursively

as algorithm moves down the hierarchy. The divisive clustering has even worse time

complexity i.e. O(2n).

2.6 Distributed Representation of Document

Many machine learning algorithms such as document clustering require the input

to be represented as a �xed-length feature vector. The most common feature vector

representation is the bag-of-words or bag-of-n-grams [34]. The popularity of bag-of-

words representation is due to its simplicity and often surprising accuracy. Despite

its popularity, bag-of-words has two major weaknesses. It loses the ordering of words

in a document and also discards the semantics of the words. However, bag-of-n-grams

gives better results than bag-of-words representation, it is su�ered from high dimen-

sionality of the embedding. The better technique is the Distributed Memory Model

of Paragraph Vectors (PV-DM).

PV-DM is an unsupervised algorithm to learn the �xed-length, dense vector repre-

sentation for a document, paragraph or sentence [3]. This dense vector representation

overcomes the weakness of bag-of-words and bag-of-n-grams model. The paragraph

vector is averaged or concatenated with other word vectors to predict the next word

in a context. The paragraph vector can be thought as a memory that remembers

what is missing in the current context. These paragraph vectors perform well and

achieve the great improvement over other feature vector representations.
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Figure 2.6: A framework for learning paragraph vector [3].

In PV-DM, the paragraph vectors and word vectors are trained using stochastic

gradient descent and the gradient is obtained via backpropagation. At every step

of stochastic gradient descent, the algorithm computes the error gradient from the

network in Figure 2.6 and use the gradient to update the parameters in the model [3].

At prediction time, an inference step is performed to generate the paragraph vector

for a new paragraph or document. This is also computed by gradient descent with

the �xed parameters for the rest of the model, the word vectors W and the softmax

weights [3].

Once trained, these dense vectors can be used as features representation for the

paragraphs or documents, and can be fed to conventional machine learning techniques

such as Logistic Regression, Support Vector Machines or K-Means.



CHAPTER 3: INTERACTIVE DOCUMENT RETRIEVAL FRAMEWORK

As per the study [35], the mean number of terms per search query is 2.6. So,

the large proportion of the search queries contains a maximum of two terms. This

is not only due to the broadness of search needs but also because of the inability

of the users not to de�ne the appropriate search query. So usually, the impact of

such shorter queries is a large collection of the retrieved documents, most of them

without any semantic relation to the query. The users also do not have the interest

to look through the entire collection of the retrieved documents. Additionally, such a

retrieved document collection may contain many underlying topics and the user may

be interested only in a certain topic. So, we need an interactive interface to narrow-

down the search as per the user's selection of the post-retrieved document clusters.

Several researchers have proposed and implemented the Interactive Document Re-

trieval framework. The main goal of such an interactive document retrieval framework

is to �nd the groups of similar documents and summarize every group. For e�ective

search, this technique is iteratively applied to the post-retrieved results and then user

picks the relevant cluster/s at each time. Such interactivity in search systems re-

duces the search e�orts and improves the quality of search results. One of the best

examples of such interactive retrieval systems is its application to health domain [36].

People and patients increasingly use the internet to search for health information.

However, they face problems searching the exact medical term in the information

system. Searching the right medical term requires iterative search and query refor-

mulation [37], which may be di�cult for laypersons who do not have much knowledge

about health domain. So, the interactive retrieval system can solve this problem by

clustering post-retrieved results. Then, people can pick cluster/s of their choice just
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by reading the short summary of each cluster. The evaluation of interactive search

system proves its e�cacy. We further leverage this interactive search framework by

proposing the new techniques for document clustering and multi-document summa-

rization. Such improved framework as shown in Figure 3.1 will further reduce the

search e�orts and help the users to locate the expected search results in shorter time.

Figure 3.1: An Interactive Document Retrieval framework.

The proposed Interactive Document Retrieval framework has two major compo-

nents, the Document Clustering, and the Multi-document Summarization. The doc-

ument clustering part of the system �nds the semantic groups of documents within

the post-retrieved results. The basis for such document clustering technique is the

�xed-length document embedding generated for each document o�ine. We boost

the performance of our document clustering technique by conceptualizing the doc-

ument collection even before generating the document embeddings [38]. Then, the

Distributed Memory Model of Paragraph Vector (PV-DM) is trained on the con-

ceptualized document collection to generate the �xed-length feature vector for each

variable-length document. After generating the document embeddings o�ine, we use
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the Bisecting K-Means algorithm to cluster the post-retrieved documents in real-time

[39]. Our proposed document clustering technique improves clustering performance

over the state-of-the-art approaches. Our algorithm achieves the signi�cant gain of

6% in F-measure.

In order to assist the users, the multi-document summary is generated for every

cluster. Our multi-document summarization technique is based on extraction-based

approach and summarizes the contents of every cluster with the �xed number of sen-

tences. The root of the multi-document summarization algorithm is the sentence

embeddings. The PV-DM model is trained on the sentence collection to generate the

sentence embeddings. At runtime, the cosine similarity matrix is created by comput-

ing the similarity between a pair of sentence embeddings. We use the principle of

the Lexical Centrality and run the power iteration over the cosine similarity matrix

[17]. This approach provides the centrality measure for every sentence. Thus, the

algorithm picks the top sentences, compress them using compression techniques to

remove unimportant words and phrases, and generates the �nal synthesized summary.

When the user enters a search query to retrieve the documents of his or her inter-

est, the traditional search engines provides a long list of relevant documents. On

the other hand, the interactive document retrieval framework presents the interactive

view of the post-retrieved document clusters with the individual cluster summary.

Thus, the user makes a choice of cluster/s. If he or she �nds the desired document

in the selected cluster/s, then the algorithm stops. Otherwise, the document cluster-

ing and the multi-document summarization iteratively happen with the user-selected

cluster/s.



CHAPTER 4: DOCUMENT CLUSTERING

The document clustering algorithm produces the groups of cohesive documents,

where each cluster has its unique aspect or topic. One of the well-known examples

of such document clustering systems is the Noggle Knowledge Assistant as shown

in Figure 4.1. In general, the clustering is performed on documents that are repre-

sented using the vector space model. The traditional document clustering methods

use K-Means or Hierarchical clustering techniques to cluster the document feature

vectors. As these document feature vectors are based upon TF-IDF model which a

bag-of-words model, the document representation loses the word ordering and even

semantics. Ultimately, the document clustering does not produce the desired results.

Figure 4.1: An example of Document Clustering system (Noggle Knowledge Assis-
tant). Credits: noggle.online
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4.1 Algorithm

We propose a new document clustering algorithm based on document embeddings.

Each document is represented by the corresponding document embedding. These

document embeddings are obtained by training the Doc2Vec model on the conceptu-

alized document collection. Then, the document clustering is performed on document

embeddings using the Bisecting K-means algorithm [39]. This new approach gener-

ates the document embeddings o�ine and performs the document clustering in a real

time.
Algorithm 1: The Proposed Document Clustering Approach

1 Preprocess the document collection.

2 Conceptualize the document collection.

3 Train Doc2Vec model on the document collection and generate corresponding

document embeddings o�ine.

4 Once the user enters a search query and system retrieves the relevant results,

then get back the corresponding embeddings through database lookup.

5 Perform Bisecting K-Means clustering on retrieved embeddings and �nd the

document clusters n, as speci�ed by the user.

4.2 Document Embedding

The basis for document clustering is the document embedding which is a �xed-

length representation for the variable-length document. The process of generating

the document embedding has three major steps, preprocessing, conceptualization

and Doc2Vec training.

4.2.1 Preprocessing

The terms in documents often have many structural variants. For this reason,

the document preprocessing is required to remove such variants and increase the

e�ectiveness of information retrieval [40].
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Figure 4.2: Steps for preprocessing the documents.

First, the documents are tokenized into individual words. Then, stop words are

removed, as they are less important in information retrieval and make the text heavier.

Removing stop words reduces the dimensionality of term space. In the next step, the

documents are conceptualized with possible concept length up to eight terms. Our

document clustering technique uses the concept embedding model for conceptualizing

the document collection [38].

Additionally, all unigrams are lemmatized based on its part of speech tag. The

lemmatization is the process of removing in�ectional endings by using vocabulary and

morphological analysis of words. It usually provides the dictionary (base) form of a

word, known as the lemma. We prefer the lemmatization over stemming, because the

stemming process is a crude heuristic and often chop o� derivational a�xes too. The

exceptional bene�t of lemmatization is that it selects the appropriate lemma when the

word context is provided. Also, the lemmatization process preserves the meaning of a

word. In our approach, we �rst identify the part-of-speech tag of a word and provides

it as a context to the lemmatizer. In the research, we use nltk's WordNetLemmatizer
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for lemmatization and PerceptronTagger for part-of-speech tagging.

4.2.2 Conceptualization

The idea behind the document conceptualization is to transform the textual struc-

tures in a document into a semantic space of concepts which captures the main topic

of these structures [38]. Our algorithm conceptualizes every document with a dense

bag-of-concepts.

In preprocessing the document collection, the algorithm uses the pre-trained Con-

cept Raw Context (CRC) model. The CRC model jointly learns the embeddings for

words and concepts. By considering both concepts and individual words in the opti-

mization function, the algorithm generates more robust and high-quality embeddings.

Subsequently, these concept embeddings obtained by from the document corpus are

fed to Doc2Vec model. It ultimately boosts the performance of Doc2Vec model and

document clustering in the later steps.

4.2.3 Doc2Vec Training

The document clustering requires the documents to be represented as �xed-length

vectors. The most common document representation is a bag-of-words model or bag-

of-n-grams model [34], because it is simple and often provides surprising accuracy.

Unfortunately, the bag-of-words representation loses the word ordering and semantics

of the text. On the other hand, the bag-of-n-grams model is su�ered from the high

dimensionality of the embedding. The better approach is to use the Distributed Mem-

ory Model of Paragraph Vectors (PV-DM). The PV-DM model learns the continuous

distributed vector representations for pieces of texts [3]. These paragraph vectors

can be used as the feature vector representation for the document collection and can

be fed to the document clustering. The notion of using the paragraph vectors over

bag-of-words model is to preserve the meaning and the order of words. It ultimately

helps to bring the documents with same semantic contents closer. As a result, the
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document clustering yields better grouping of the document collection.

Figure 4.3: Visualization of the Paragraph Vectors. Credits: Colah's blog

The major step in the process of generating document embedding is the Doc2Vec

training. First, the Doc2Vec model is created with a prede�ned set of hyper-parameters.

While setting up hyper-parameters for the Doc2Vec model, the algorithm discards

the words with term frequency less than the minimum term frequency threshold.

In this way, the overall size of the vocabulary can be reduced. The model also

considers the negative sampling to add the noise for generalization. The next step

is to build the vocabulary of unique n-gram concepts from the document collec-

tion. Then, this vocabulary is intersected with the pre-trained concept embedding

[38]. The intersection step merges the input-hidden weight matrix from the pre-

trained concept embedding and initializes the weights of the concepts in vocabulary.
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Algorithm 2: Doc2Vec Training

1 Create a Doc2Vec model with embedding size 500, minimal term frequency 5,

context window size 8, downsampling 1e-5, and negative sampling.

2 Build a vocabulary of concepts from the given document collection.

3 Intersect the vocabulary with pre-trained concept embedding.

4 Train Doc2Vec model with Stochastic Gradient Descent algorithm by shu�ing

the document collection after every pass.

The Doc2Vec model is trained using the Distributed Memory Model of Paragraph

Vectors (PV-DM) technique [3]. Our approach also shu�es the document collection

after every pass for generalizing the trained model. Once the Doc2Vec model is

trained, the document embedding is obtained by transforming the memory-mapped

document vectors (trained). The document embedding for an unseen document is

obtained by performing an inference step with gradient descent on a new, unseen

document.

The goal is to generate the document embeddings for a given document collection.

We generate these document embeddings o�ine and save them into the structured

database. Later, as per the user search query, the embeddings corresponding to the

post-retrieved documents are obtained back by performing the database lookup. Next,

these retrieved embeddings are fed to the clustering algorithm to �nd the inherent

groups in post-retrieved documents.

4.3 Document Clustering Approach

The document clustering algorithm splits the document collection among groups

of similar documents.

According to the nature of clusters it produces, the document clustering has two

di�erent categories, Partitional (Flat) and Hierarchical clustering [41]. The parti-

tional clustering technique such as K-Means clustering simply divides the document

collection into a pre-de�ned number of clusters. Every cluster obtained by K-Means
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clustering is represented with a centroid. The cluster centroid is a representative of

the set of documents within a cluster. On the other hand, the hierarchical clustering

produces a nested set of document partitions that can be visualized as a tree or den-

drogram. The leaves of the tree represent the documents. This tree can be generated

either bottom-up or top-down. Bottom-up (Agglomerative) clustering starts with the

individual documents and groups the most similar document at every step. Top-down

(Divisive) clustering starts with an entire document collection and divides them at

each step to maximize the similarity within the cluster. The advantage of K-Means

clustering is its linear time complexity. However, the bene�t of Hierarchical clustering

is the dendrogram that corresponds to a meaningful taxonomy. Our research uses a

combination of partitional and divisive clustering, called as the Bisecting K-Means

clustering [39].

4.3.1 Bisecting K-Means Clustering

The Bisecting K-Means clustering combines the strengths of both types of cluster-

ing. This type of clustering starts with a single cluster containing all the documents.

In each iteration, a cluster to split is selected based on a certain criterion. The crite-

rion to split the cluster can be the size of the cluster or maximize the overall similarity.

Then, the K-Means clustering (K=2) is applied to selected cluster for splitting it into

two separate groups. This bisecting step is repeated until the desired number of clus-

ters with the highest overall similarity are obtained.

There are di�erent clustering criterion functions such as I2, ε1, and H2. I2 crite-

rion function maximizes the similarity between each document and the centroid of

the cluster to which it is assigned to. ε1 function minimizes the cosine between the

centroid of each cluster and the centroid of the entire document collection. H2 is a

hybrid function of I2 and ε1.

maximize I2 =
k∑

r=1

∑
di∈Sr

cos(di, Cr) (4.1)
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minimize ε1 =
k∑

r=1

nr
Dt

rD

||Dr||
(4.2)

maximize H2 =
I2
ε1

(4.3)

The Bisecting K-Means clustering with the criterion function I2 has better accuracy

than the K-Means and the Hierarchical clustering [6]. Our research uses the Cluto

library for the Bisecting K-Means clustering with the I2 criterion function [42, 43].

The Cluto library is written in C for clustering the high-dimensional data in short

time. Therefore, this library speeds up our algorithm and the document clustering

happens quickly.



CHAPTER 5: MULTI-DOCUMENT SUMMARIZATION

The Multi-document Summarization is an automatic process of extracting infor-

mation from multiple texts (or documents) for the same topic. The users read such

multi-document summary and quickly get familiar with the topic. The goal of multi-

document summarization is to simplify information search and reduce the time by

pointing to the most relevant documents.

The multi-document summarization is more complex than a single document sum-

marization. The main problem with multi-document summarization is the potential

redundancy. Ideally, the multi-document summary should contain both 'central' and

'diverse' information. There are a couple of state-of-the-art techniques that address

this particular requirement. e.g. LexRank [17], Maximal Marginal Relevance (MMR)

[44], GRASSHOPPER [45].

Below are the di�erent ways to generate the multi-document summary,

1. Extraction-based summarization: This approach extracts whole sentences from

the text without modifying them and creates a short summary. e.g. LexRank.

2. Abstraction-based summarization: This approach involves the paraphrasing sec-

tions of the text. It condenses a text more strongly than extraction, but the

application that can do it is hard to develop.
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Figure 5.1: An idea of Multi-document Summarization based on the sentence extrac-
tion.

The majority of multi-document summarization systems are extractive, e.g. Sentence

centrality based techniques, LexRank. The LexRank estimates the sentence impor-

tance using random walks and eigenvector centrality [17]. It constructs a graph by

creating a vertex for each sentence in the document. The edges between sentences are

simply based on semantic similarity. The LexRank creates a cosine similarity matrix

of TF-IDF vectors and applies the power iteration to rank the sentences. Finally, it

forms the summary by combining the top ranking sentences. The LexRank is a part

of the large summarization system, named MEAD [46].

5.1 Algorithm

Our multi-document summarization approach is extraction-based and uses the

LexRank as a base model.

Our approach �rst trains the Sentence2Vec model on the corpus of sentences. The

Sentence2Vec model generates the embeddings for sentences in the document clus-

ters. When the document clustering algorithm clusters the post-retrieved documents,
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our multi-document summarization algorithm tokenizes every document cluster into

sentences and generates the embeddings for them using the Sentence2Vec model. It

then creates a cosine similarity matrix and runs a power iteration over it to compute

the importance scores for the sentences. Finally, it picks the top sentences based on

the ranking score and adds them to the summary. This new approach trains the Sen-

tence2Vec model o�ine and performs the power iteration on cosine similarity matrix

at run-time.

This new multi-document summarization uses the sentence embedding, which is ob-

tained using the Doc2Vec training and is a good semantic representation when com-

pared with TF-IDF representation. Ultimately, the summary obtained through our

algorithm is more meaningful and mimics the human-generated summary.

Algorithm 3: The Proposed Multi-document Summarization Approach

1 Preprocess the document collection.

2 Train the Sentence2Vec model on sentences from the corpus.

3 Use trained Sentence2Vec model to generate sentence embeddings for the

sentences in the post-retrieved documents.

4 Create a cosine similarity matrix for the similarity between a pair of sentences.

5 Use the Lexical Centrality principle and run a power iteration over cosine

similarity matrix to calculate the importance scores for the sentences.

6 Pick the top sentences based on the importance scores and include them in

the summary. (Note: Exclude the duplicate or most similar sentences based

on the similarity socres.) Post-process sentences in summary using Clarke &

Lapata (2008)'s ILP model and generate the �nal compact summary [47].

5.2 Sentence2Vec Model

Traditional extraction-based techniques for multi-document summarization use the

TF-IDF vectors to represent the documents. The TF-IDF model loses the word order-

ing and the semantics. It is a sparse vector representation for sentences. Therefore,
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our approach uses the sentence embeddings obtained by training the Doc2Vec model

on the sentence corpus. These sentence embeddings are smaller in dimension and

preserve the word order. Thus, it is a good representation for computing the sentence

similarity. Our approach �rst trains the Sentence2Vec model. It is a two-step process

that involves the sentence preprocessing and Sentence2Vec training.

1. Sentence Preprocessing: All documents in the cluster are tokenized into sen-

tences. Every sentence is preprocessed by stop-word removal and stemming

the unigrams. We use the similar preprocessing techniques as discussed in the

document clustering approach.

2. Sentence2Vec Training: The Sentence2Vec model is trained on the sentence

collection. We use the Distributed Memory Model of Paragraph Vectors (PV-

DM) algorithm to train the Sentence2Vec model [3].

The idea behind the Sentence2Vec model is to generate the sentence embeddings

that preserves the semantics of sentences. Our approach creates the Sentence2Vec

model with the prede�ned set of hyperparameters, such as embedding size, minimum

term frequency, and negative sampling, etc. It builds the vocabulary of unique words

and intersects with the pre-trained word2vec embedding. Finally, it trains the Sen-

tence2Vec model by shu�ing sentences in the corpus.

The proposed multi-document summarization algorithm uses the trained Sentence2Vec

model to generate the embeddings for sentences at run-time. These embeddings are

further used to produce the multi-document summary for a cluster of documents.

5.3 Sentence Extraction

The next step in our approach is the sentence extraction based on its importance

in the cluster of documents. The importance of sentence is determined by how much

the common information the sentence has.

Our approach uses the graph-based technique to extract sentences from the corpus and
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is inspired by the LexRank algorithm. Initially, the graph of the sentence similarity

is created. It treats the sentences as vertices and the similarity relation between

sentences as edges. The motive of building a graph of sentences is to �nd the most

connected sentence in the set of documents. We achieve this goal using the Lexical

Centrality principle.

Figure 5.2: A graph of sentences with sentences as vertices and cosine similarity
between a pair of sentences as an edge [48].

First, the cosine similarity matrix is created by computing the similarity between

a pair of sentences. Then, the power iteration iteratively computes the sentence

importance score by running the power iteration over a cosine similarity matrix [17].

CentralityMeasure(u) =
d

N
+ (1 − d)

∑
v∈{adj[u]}

CentralityMeasure(v)

degree(v)
(5.1)

Once the convergence happens, then the power iteration terminates with the impor-

tance score for every sentence in the corpus. Finally, the algorithm sorts the sentences

in the decreasing order of its importance scores. The top sentences with the highest
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importance scores are included in the �nal summary. Additionally, the sentences in

summary are sorted as per their order in the sentence corpus, so that the information

remains in an original �ow and does not deviate from the common topic of a cluster

of documents.

Once the summary that has a common information for the cluster of documents is

extracted, then it is further post-processed using techniques such as the sentence

compression, CSIS, etc. to generate the human-like summary.

5.4 Summary Post-processing

The post-processing is performed on the extracted sentences in order to get the

compact, diverse, and well-formed summary.

1. Remove Duplicate Sentences: The duplicate or most similar sentences are re-

moved from the summary for synthesizing diverse multi-document summary

that covers multiple documents in the cluster. Our approach computes the

cosine similarity between a new sentence to be added to summary and the

sentences that already exist in the summary. It adds a new sentence in the

summary only if the cosine similarity is less than the threshold 0.98. Thus,

this technique formulates the multi-document summary that covers diversive

knowledge from the document cluster.

2. Sentence Compression: This algorithm optionally post-process the multi-document

summary by sentence-level compressions via deletion. It uses the implementa-

tion based on the ILP model as described in [47].



CHAPTER 6: EXPERIMENT

The experiments conducted in this research are presented in this chapter. The

experiments are performed to better understand the behavior of the proposed doc-

ument clustering and multi-document summarization techniques. The motive of the

experimental setup is to evaluate the proposed techniques. It analyses how the

post-retrieved document clustering and multi-document summarization algorithms

increase the user's ability to narrow-down search and his or her understanding about

the di�erent aspects of post-retrieved information.

6.1 Dataset

The experiments are conducted primarily on the 20 NewsGroups dataset and

Opinosis dataset. The 20 NewsGroups dataset is a state-of-the-art dataset for the

document clustering [49]. The Opinosis dataset is widely used for evaluating the sum-

marization algorithm [50]. Few experiments are also performed on BBC news articles

hosted in the University College Dublin [51] and Patent dataset hosted by United

States Patent and Trademark O�ce (USPTO).

6.1.1 20 NewsGroups

The 20 NewsGroups dataset is a collection of approximately 20,000 newsgroup

documents and constitutes twenty di�erent categories as described in Figure 6.1. It

also has six di�erent high-level categories, namely religion, politics, science, computer

science, sport, and sales ads. The document collection in the 20 NewsGroups dataset

is highly unstructured and di�ers signi�cantly in lengths. This dataset contains some

HTML meta tags and requires the data cleaning. The dataset can be downloaded at

http://qwone.com/ jason/20Newsgroups/.
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Figure 6.1: The 20 News Groups dataset.

6.1.2 Opinosis - Topic related review sentences

The Opinosis dataset contains sentences extracted from user reviews (from various

sources like Tripadvisor, Edmunds.com, and Amazon.com).

It consists of 51 di�erent topics with each topic having approximately 100 sentences.

Example topics are "battery-life of iPod nano" and "sound quality of iPod nano",

etc. This dataset also comes with gold standard summaries (∼ �ve per topic) which

can be used to evaluate the summarization algorithm.

6.1.3 BBC News Articles

The BBC News Articles are the original articles owned by the BBC. It consists of

2225 documents from the BBC news website corresponding to stories in �ve topical

areas from 2004-2005.

It covers topical areas like business, entertainment, politics, sport, tech, etc.

6.1.4 Patent Collection

The Patent data set is a huge collection of nearly 7.5 million patent documents from

the United States Patent and Trademark O�ce (USPTO). This document collection

is in the unstructured format, but every document has a set of known �elds, such as

title, abstract, description, claims, etc.
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6.2 Experimental Setup

The experiments are performed on dataset mentioned above in di�erent phases.

The independent and combined experiments for the document clustering and multi-

document summarization are performed.

6.2.1 Document Clustering

For the document clustering experiments, we �rst preprocess the 20 NewsGroups

data collection and then generate the embeddings o�ine. The 20 NewsGroups dataset

is clustered among 20 document clusters for evaluating our document clustering tech-

nique. The document clustering algorithm is run on the document embeddings of

di�erent dimensions, such as 150, 200, 500. We also perform experiments with and

without the document embedding. Finally, the top clustering accuracy is compared

with the other state-of-the-art techniques.

6.2.2 Multi-document Summarization

For the multi-document summarization, we preprocess the Opinosis dataset and

train the Sentence2Vec model using the collection of sentences from the dataset.

When summarizing the articles, we �rst tokenize the collection into sentences and

generate corresponding sentence embeddings. Then, the cosine similarity matrix is

built using the similarity between every pair of sentences. Next, the power iteration

is run on the cosine similarity matrix and the sentence importance score is computed

for each sentence. According to the summary length required, the algorithm picks

top sentences with highest scores.

While adding sentences into the �nal summary, it also removes duplicate or highly

similar sentences based on the similarity threshold. It also post-processes the sum-

mary to compress the sentences and to generate the compact summary.

We perform experiments on the Opinosis dataset and evaluate our multi-document

summarization approach using di�erent metrics such as cosine similarity, rouge, etc.
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We also compare our multi-document summarization algorithm with other state-of-

the-art extraction-based techniques.

6.2.3 Interactive Document Retrieval

For experimenting the document clustering and the multi-document summariza-

tion together, we �rst create an inverted index over BBC News Articles. We also

generate the document embeddings for BBC News Articles o�ine and store it in the

database. Additionally, Sentence2Vec model is trained o�ine on the sentence corpus

to generate the embeddings for sentences.

At run-time, when the user enters a search query, the relevant articles are retrieved

using traditional TF-IDF approach. These retrieved results are fed to the document

clustering algorithm, which identi�es the groups among the retrieved results. Ev-

ery cluster is also summarized using the extraction-based algorithm. For generating

the multi-document summary, we pick 25 documents from each document cluster

and generate the multi-document summary. The document selection for the multi-

document summary is accomplished based on the fact how close the documents are to

the cluster centroid. The reason for generating the multi-document summary using

the selective documents is to reduce the computation time and to quickly present the

cluster summary.

Thus, the user is provided with these document clusters along with their summaries.

Then, the user makes a choice of the desired cluster. The documents within chosen

clusters again re-clustered to get the new groups and summaries. In this way, the

search results are optimized in every iteration and the user can �nd the documents

of their exact requirements.

For verifying the e�ectiveness of the interactive search system, we ran a couple of

search queries and manually assessed whether the desired documents are retrieved or

not.
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6.3 Evaluation Metrics

Di�erent evaluation metrics are used to assess the proposed algorithm for document

clustering and multi-document summarization. The proposed techniques are indepen-

dently evaluated and compared with the respective state-of-the-art techniques.

The quality of the document clusters can be inspected by using either internal quality

measure or external quality measure. The internal quality measure allows comparing

di�erent document clusters without reference to external knowledge. The external

quality measure evaluates the document clustering approach by comparing the pro-

duced clusters to known classes. We use three di�erent external measures, Purity,

Entropy [52], and F-measure [53].

Precision, Recall, Cosine Similarity, and ROUGE are some of the metrics which are

used to evaluate the multi-document summaries.

6.3.1 Precision

Precision is the fraction of the documents retrieved that are relevant to the user's

information requirement.

Precision =
|Relevant documents ∩Retrieved documents|

|Retrieved documents|
(6.1)

6.3.2 Recall

Recall is the fraction of the documents that are relevant to the query and success-

fully retrieved.

Recall =
|Relevant documents ∩Retrieved documents|

|Relevant documents|
(6.2)



40

6.3.3 Entropy

The entropy provides a measure of the quality of clustering for �at clusters or the

clusters at one level of the hierarchical clustering.

For each cluster, �rst, the class distribution is computed as Pij i.e. the probability

that a document in cluster j belongs to class i. Then, the entropy of each cluster j is

calculated by summing over all classes as shown in equation 6.1.

Ej = −
m∑
i=1

PijlogPij (6.3)

Finally, overall entropy is calculated as the sum of each cluster's entropy weighted by

the size of each cluster.

E =
m∑
j=1

nj ∗ Ej

n
(6.4)

Where nj is the size of cluster j, m is the number of clusters, and n is the total number

of documents.

6.3.4 F-Measure

The F-Measure is helpful to measure the e�ectiveness of hierarchical clustering or

multi-level clustering. It combines the precision and recall ideas from the information

retrieval [54].

We �rst compute the precision and recall for each given class, such as for cluster j

and class i,

Precision(i, j) =
nij

nj

(6.5)

Recall(i, j) =
nij

ni

(6.6)

Where nij is the total documents for class i in cluster j, nj is the total documents in

cluster j, and ni is the total documents with class i.
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Then, the F-Measure for cluster j and class i is calculated as,

F (i, j) =
2 ∗ Precision(i, j) ∗Recall(i, j)
Precision(i, j) +Recall(i, j)

(6.7)

Overall F-Measure is calculated by taking the weighted average over all values of the

F-Measure as in equation 6.6.

F =
m∑
i=1

ni

n
max[F (i, j)] (6.8)

Where max is taken over all clusters at all levels, and n is the total number of

documents.

6.3.5 Cosine Similarity

The Cosine Similarity between two document/sentence vectors is a measure that

calculates the cosine of the angle between them. This metric is a measurement of

orientation and not magnitude. It can be seen as a comparison between documents

on a normalized space.

The cosine similarity equation is described as below,

cos(x, y) =
x · y

||x|| · ||y||
(6.9)

6.3.6 ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation [55]. It is

essentially a set of metrics for evaluating automatic summarization of texts. It works

by comparing an automatically produced summary with a human-produced reference

summary.

Below is the list of ROUGE metrics used to evaluate the automatic summaries,

1. ROUGE-N: Overlap of N-grams between the automatic and reference summaries
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[56].

2. ROUGE-1: Overlap of unigram between the automatic and reference sum-

maries.

3. ROUGE-2: Overlap of bigrams between the automatic and reference summaries.

4. ROUGE-L: Longest Common Subsequence (LCS) based statistics [57]. LCS

problem takes into account sentence level structure similarity and identi�es the

longest co-occurring in sequence n-grams.



CHAPTER 7: RESULTS AND DISCUSSION

In this chapter, we present and discuss the results of experiments, which are

independently (or combinedly) performed for the document clustering and multi-

document summarization.

7.1 Document Clustering

In all document clustering experiments, we use the Bisecting K-Means algorithm

with I2 criterion.

In the �rst experiment, each document in the 20 Newsgroups dataset is conceptual-

ized. For every document, the document vector is generated by averaging the concept

embeddings of the concepts that are present in the document. Then, the document

clustering is performed on such document representation. The performance of such

document clustering approach is very poor (Purity: 0.367, Entropy: 0.639) as shown

in Figure 7.1. The reason for such bad performance is the loss of word ordering and

semantics which happens due to averaging the document vectors.

Figure 7.1: The performance of Document Clustering algorithm with AvgPatent2Vec
model.

In the next experiment, each document in the 20 NewsGroups dataset is represented
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with a paragraph vector. The bene�t of using the paragraph vectors is to preserve

the word ordering and its semantics. For generating these paragraph vectors, the

Doc2Vec model is trained on the document collection using the Distributed Memory

Model of Paragraph Vectors (PV-DM) algorithm. In addition, all the words with the

frequency less than 5 are removed from the vocabulary. The context window size

is kept to 8, and the noise is added to the input data by negative sampling. The

Doc2Vec training is performed with 10 passes to produce the embedding with size

equal to 300. Then, the document clustering is performed on these paragraph vectors.

This approach improves the cluster quality approximately by 6%.

Next, the word vocabulary from Doc2Vec model is intersected with the pre-trained

Word2Vec embedding [58]. Additionally, the document collection is shu�ed after

every pass during the Doc2Vec training. This approach signi�cantly improves the

document clustering performance (Purity: 0.617, Entropy: 0.417) as described in

Figure 7.2.

Figure 7.2: The performance of Document Clustering algorithm with Doc2Vec model.
Here, the Doc2Vec vocabulary is intersected with the pre-trained Word2Vec embed-
ding.

In further document clustering experiments, the 20 NewsGroups document collec-

tion is �rst conceptualized with the pre-trained concept embedding model [38]. So,

each document can be viewed as an n-gram bag-of-concepts (n <= 8). Then, the

Doc2Vec model is created with the vocabulary of unique n-gram concepts and in-
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tersected with the pre-trained concept embedding. For the Doc2Vec training, the

similar setting is used as described in the previous experiment. Finally, it generates

the document embeddings with dimension equal to 500. This approach boosts the

document clustering performance by additional 7%.

Figure 7.3: The performance of Document Clustering algorithm with Doc2Vec model.
Here, the Doc2Vec vocabulary is intersected with the pre-trained concept embedding.

In the last experiment, the document preprocessing step additionally performs the

lemmatization on unigrams. In this way, all di�erent word forms with the same lemma

are reduced to the same dictionary form and will not be treated di�erently during the

Doc2Vec training. This preprocessing step further increases the document clustering

performance approximately by 1%.

Figure 7.4: The performance of Document Clustering algorithm with Doc2Vec model.
Here, the Doc2Vec vocabulary is intersected with the pre-trained concept embedding.
Additionally, the preprocessing step performs lemmatization.
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Table 7.1: An overview of the document clustering experiments.

Document clustering experiment Purity Entropy

1 Averaging the concept vectors for concepts within a

document

0.367 0.639

2 Bisecting K-Means on document embeddings

obtained by the Doc2Vec training

0.425 0.646

3 Bisecting K-Means on document embeddings

obtained by intersecting the Doc2Vec model with

pre-trained Word2Vec embedding

0.617 0.417

4 Bisecting K-Means on document embeddings

obtained by intersecting the Doc2Vec model with

pre-trained concept embedding

0.697 0.352

5 Bisecting K-Means on document embeddings

obtained by intersecting the Doc2Vec model with

pre-trained concept embedding (+ lemmatization)

0.709 0.344

Additionally, the experiments are performed for the document embeddings with

di�erent dimensions. The comparison of these experiments is shown in Table 7.2.

The document embedding with dimension 500 yields better clustering performance.

Table 7.2: The document clustering experiments with di�erent dimensions.

Document embedding dimension Purity

1 500 70.9%

2 200 69.3%

3 150 68.9%

The best F-Measure for our document clustering experiment on 20 NewsGroups

dataset is 79.34%. The 20 NewsGroups dataset has six high-level categories and 20
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sub-categories. So, the F-Measure is calculated by �rst computing the cluster purity

for high-level and sub-level clusters (High-level cluster purity: 0.8781 and Sub-level

cluster purity: 0.7087).

Finally, we compared our document clustering approach with other state-of-the-art

techniques [59, 60]. And our approach outperforms the existing techniques approxi-

mately by 6% as shown in Table 7.3.
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Table 7.3: A comparison of di�erent state-of-the-art document clustering techniques
using F-Measure.

Document clustering

technique

Document representation F-Measure

1 K-Means TF-IDF 0.55

2 Hierarchical Agglomerative

Clustering

TF-IDF 0.56

3 Expectation-Maximization

with Mixture Model

TF-IDF 0.60

4 Principle Direction Divisive

Partitioning

TF-IDF 0.66

5 Constructive-Competition

Clustering

TF-IDF 0.69

6 Dataless Hierarchical

Classi�cation

Category Embedding [60] 0.709

7 Dataless Hierarchical

Classi�cation

TransE2 Embedding based on entities

and relations [61]

0.710

8 Dataless Hierarchical

Classi�cation

Word Embedding [58] 0.717

9 Dataless Hierarchical

Classi�cation

Hierarchical Entity Embedding [62] 0.718

10 Dataless Hierarchical

Classi�cation

Hierarchical Category Embedding [60] 0.731

11 Bisecting K-Means Document embedding obtained by

intersecting the Doc2Vec model with

pre-trained concept embedding

0.793
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7.2 Multi-document Summarization

For evaluating multi-document summarization approach, we picked 10 di�erent

topics randomly from the Opinosis dataset. We computed Rouge-1, Rouge-2, and

Cosine Similarity for the summaries generated by our approach as shown in Table

7.4. We also performed the same evaluation for the summaries produced by the

LexRank algorithm as in Table 7.5. Finally, both techniques are compared by taking

the mean over all topics (see Table 7.6).

Table 7.4: The summary evaluation for our approach (Rouge-1, Rouge-2, and Cosine
Similarity).

Topic Rouge-1 Rouge-2 Cosine

Similarity

1 Video ipod nano 8gb 0.50 0.09 0.45

2 Speed windows7 0.47 0.08 0.36

3 Eyesight-issues amazon kindle 0.47 0.18 0.38

4 Fonts amazon kindle 0.55 0.16 0.41

5 Battery-life netbook 1005ha 0.39 0.13 0.38

6 Quality toyota camry 2007 0.48 0.19 0.44

7 Accuracy garmin nuvi 255W 0.52 0.11 0.34

8 Screen netbook 1005ha 0.48 0.16 0.54

9 Comfort honda accord 2008 0.45 0.13 0.44

10 Interior toyota camry 2007 0.53 0.19 0.45
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Table 7.5: The summary evaluation for LexRank (Rouge-1, Rouge-2, and Cosine
Similarity).

Topic Rouge-1 Rouge-2 Cosine

Similarity

1 Video ipod nano 8gb 0.41 0.11 0.45

2 Speed windows7 0.46 0.11 0.39

3 Eyesight-issues amazon kindle 0.40 0.17 0.45

4 Fonts amazon kindle 0.43 0.09 0.38

5 Battery-life netbook 1005ha 0.25 0.11 0.37

6 Quality toyota camry 2007 0.48 0.18 0.46

7 Accuracy garmin nuvi 255W 0.53 0.09 0.32

8 Screen netbook 1005ha 0.49 0.17 0.49

9 Comfort honda accord 2008 0.48 0.15 0.41

10 Interior toyota camry 2007 0.55 0.22 0.47

Table 7.6: The comparison between our multi-document summarization approach
and LexRank (Rouge-1, Rouge-2, and Cosine Similarity).

Algorithm Rouge-1 Rouge-2 Cosine

Similarity

1 Proposed Algorithm 0.4835 0.1417 0.4179

2 LexRank 0.4468 0.1401 0.4207

As per the comparison shown in Table 7.6, our multi-document summarization

approach outperforms the well-known LexRank algorithm approximately by 4%.

Below is one of the summarization example generated for the Toyota Camry 2007

review,
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Figure 7.5: The original review of the Toyota Camry 2007.

Figure 7.6: The summary of the Toyota Camry 2007 review.

7.3 Interactive Document Retrieval

In the Interactive Document Retrieval experiments, we used the BBC News Arti-

cles dataset. We performed an interactive search using proposed document clustering

and multi-document summarization algorithms as shown in Figure 3.1.

In this experiment, we developed a command-line interactive search system. As a

prerequisite, we �rst build an inverted index on BBC News articles using the tra-



52

ditional TF-IDF technique. Then, each article in BBC dataset is preprocessed and

conceptualized. We train the PV-DM model on the conceptualized collection of BBC

news articles, which we later use to generate the document embeddings. We also store

the trained document embeddings in the database. Additionally, the Sentence2Vec

model is trained on the sentence collection from the BBC News Articles.

Once the pre-requisites for an interactive search system are ready, we assess the sys-

tem by providing it with the random search queries. First, the system loads the

trained Sentence2Vec and Doc2Vec model in memory. Then, it prompts and asks the

user to enter a search query as shown in Figure 7.7.

Figure 7.7: The user prompt to enter a search query in the interactive search system.

Suppose, the user enters a search query "mobile media player". Then, the inter-

active search system �rst retrieves the relevant results using the traditional TF-IDF

search and feeds it to the document clustering algorithm. The document clustering

algorithm identi�es the groups among the retrieved results and presents the user with

the document clusters and their summaries. The below Figure 7.8 shows the interac-

tive view. As shown in Figure 7.8, each document cluster has its unique aspect, such

as business, sport, tech, etc.
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Figure 7.8: The interactive view of retrieved document clusters and their summaries.

Next, the user is asked for their choice of document clusters and the interactive

search will be continued with the user-selected document clusters, as in Figure 7.9.

Thus, the user can read the provided summary and pick the right cluster or clusters.

Figure 7.9: The interactive prompt for providing the choice of retrieved document
clusters.
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Figure 7.10: The interactive view of new document clusters and their summaries as
per the user-selected document clusters.

The user optionally can view a collection of documents within each retrieved doc-

ument cluster as in Figure 7.11 and pick the desired document as in Figure 7.12.

Figure 7.11: The interactive prompt for viewing the document list within retrieved
clusters.



55

Figure 7.12: The interactive prompt for viewing a speci�c document within the re-
trieved clusters.

We performed a couple of experiments by running the ad-hoc search queries on

the interactive search system. The experiments show that the interactive search sys-

tem very accurately identi�es the semantic groups of documents in the post-retrieved

search results. Based on the user's interactions to provide a cluster choice, it ulti-

mately helps the user to narrow down the search and to retrieve the desired document

or documents.

We also performed few experiments with the ambiguous search queries. Our system

successfully creates the separate document clusters as per the contexts in the retrieved

documents. Such separation helps the user to �lter out the unrelated documents and

�nd the required results even if the ambiguous search query is provided.



CHAPTER 8: CONCLUSIONS

8.1 Conclusion

In this research, we have leveraged the Interactive Document Retrieval framework

that �nds the semantic groups of documents among the post-retrieved search results.

The document clustering and the multi-document summarization are an integral part

of the Interactive Document Retrieval framework. We have proposed a new approach

for the document clustering and the multi-document summarization, and have im-

provised the framework to the next level.

We have proposed a new approach for the document clustering, which performs the

clustering on document embeddings, known as paragraph vectors. These document

embeddings are obtained by the Doc2Vec training on the conceptualized document

collection. Our experiments on the 20 NewsGroups dataset show that the proposed

document clustering approach outperforms the state-of-the-art techniques. The pro-

posed algorithm improves the post-retrieved document clustering quality approxi-

mately by 6%.

We also proposed a new extraction-based multi-document summarization technique.

Our technique extracts sentences from the document collection based on the high-

est importance scores computed using the Lexical Centrality principle. For power

iteration, it builds the cosine similarity matrix using the sentence embeddings ob-

tained with the PV-DM model. Additionally, the algorithm removes duplicate or

most similar sentences from the multi-document summary by considering the similar-

ity threshold 0.98. Thus, it generated the compact and diverse multi-document sum-

mary. This technique improves the multi-document summarization accuracy nearly

by 4% as measured in Rouge-1 metrics.
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In this way, our new document clustering and multi-document summarization ap-

proach improve the Interactive Document Retrieval framework. The improvised sys-

tem helps the users to search the desired information easily and quickly. Thus, the

proposed approach will add a new value to the interactive document retrieval and en-

gage the users. Though our research focuses on the document retrieval, the proposed

approach can be applied to other types of information retrieval systems such as the

web search engine.

8.2 Future Scope

Our multi-document summarization technique generates the summary by perform-

ing a lot of computations run-time. So, it takes more time than the expectation to

retrieve the desired results. The sentence embeddings generation, the cosine simi-

larity matrix construction may be done o�ine. In this way, it will reduce the time

required to generate the multi-document summary.

In future, the experiments can be performed to apply these interactive search tech-

niques to the real-time search engine. Even though this research focuses on document

retrieval, it will be interesting to see how it works for other retrieval domains.
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