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ABSTRACT 

 

 

ZAHRA HOSSEINIMAKAREM. Mid-spatial frequency characterization and 

specification for freeform surfaces. 

(Under the direction of DR. ANGELA D. DAVIES and DR. CHRISTOPHER J. EVANS) 

 

 

Mid-spatial frequency on freeform optical elements induces small-angle scatter and 

affects the optical performance. Fabrication techniques involved in making freeform 

surfaces leave tooling marks on the surface due to the sub-aperture nature of the fabrication 

process. In recent years, there has been a growing need for specification and characterization 

of the mid-spatial frequencies for freeform surfaces. There is a range of methods to consider 

for representing the mid-spatial frequency content: the power spectral density (PSD), the 

structure function (SF), and a polynomial basis representation such as Zernike and Forbes 

polynomials. Using research discussed here and published discussions from the literature, 

we compare a Zernike representation to a PSD representation, and structure-function 

representation in terms of ability to connect to optical performance, ability to connect to the 

fabrication process, and other practical considerations. Our focus is on investigating a 

Zernike polynomial representation for quantifying the mid-spatial frequency content in the 

height maps. We will illustrate how this polynomial representation captures certain 

characteristics of the mid-spatial frequency texture. A filtering aspect of these polynomials 

is also explored and optical performance is predicted based on very large orders of Zernike 

polynomials.  
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Motivation 

Freeform and aspheric optics provide new degrees of freedom for correcting aberrations 

and open the door to the next generation of innovation in the fields of imaging, illumination, 

visualization and sensing [1-4]. Freeform optics can have an arbitrary shape and can be 

described as surfaces with no axis of rotational symmetry [5]. In optical systems, they enable 

designers to obtain better performance such as simultaneously achieving smaller spot size, 

increased depth of field and smaller aberrations with fewer optical components in a smaller 

package [6]. For example, all reflective, off axis, unobscured optics are a class of freeform 

optics and they are key to the future of EUV lithography [7]. 

However, the fabrication techniques involved can leave significant millimeter-scale 

tooling marks, or mid-spatial frequency errors, on the surface because of the sub-aperture 

nature of the fabrication process. This texture may be difficult to remove especially on hard 

ceramic materials such as Silicon Carbide (SiC) [8]. Signatures of these structured errors 

are tool-specific. For example, single point diamond turning leaves rotationally symmetric 

ring-like structures [9] and raster milling tends to leave linear texture. The geometry of the 

grinding or polishing machine is not the only cause for generation of mid-spatial 

frequencies. Overlap in the programmed path of the polishing tool, motion control 

instability, shape of the motion path, direction of the feed, vibration, tool wear instability 

and workpiece deformation are other causes of mid-spatial frequency errors [8].  
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One can view this texture as a disordered diffraction grating on the surface of the optic. 

Figure 1.1 shows examples of mid-spatial frequency (MSF) signatures for a range of 

fabrication processes. Figure 1.1 (a) illustrates the surface map of a germanium sphere that 

was fabricated using precision raster milling. Aside from the low order astigmatism, this 

surface has some arcs that are due to the change of direction of the tool tip and raster patterns 

from the overlap in the programmed tool path. Figure 1.1 (b) shows an aluminum diamond 

turned part where the spokes patterns are associated with the poles in the motor. Figure 1.1 

(c) is a chalcogenide glass IRG 26 sphere that was diamond milled and has some raster-like 

texture and some larger rings due to the thermal cycles of the tool.  

 
 

             
Figure 1.1 Mid-spatial frequency representations on different surfaces. (a) Diamond 

milled germanium part. (b) Diamond turned aluminum part. (c) Diamond milled infrared 

chalcogenide glass (IRG 26). 

 

Mid-spatial frequency error leads to small-angle scatter in the transmitted or reflected 

optical beam [10, 11], and is a concern in many applications. For example, in high power 

solid state laser systems, initial perturbations evolve into filaments under the mechanism 

of small-scale self-focusing and finally can damage the optical element [12]. In NIF 

beamlets, the mid-spatial frequencies on the KDP crystal of the Pockels cell cause small-

angle scatter which in high laser intensities may seed beam break up and lead to damage 

of optical elements due to intensity-dependent part of the refractive index [13]. High-
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performance imaging systems are optical systems with small RMS spot size, low 

aberrations and large Strehl ratio [14]. In high-performance optical systems, MSF error 

affects the quality of the imaging system and degrades the image contrast, causing image 

artifacts such as ghosts and local flare [15, 16]. In lithography tools, flare is a significant 

problem associated with MSF [17]. Flare is wavelength dependent and scales as 21  . For 

the same MSF structure, the flare is 200 times larger for EUV systems (13.5 nm wavelength) 

compared to 193 nm systems [18]. Therefore, it is important to have a clear way of 

specifying and quantifying MSF texture on optical surfaces to facilitate the specification 

and acceptance testing of these components. 

1.2 What is mid-spatial frequency 

The departure of a surface from the design shape can be decomposed into three different 

spatial frequency regions, with different terminology in optical and mechanical 

applications. The low-frequency content of the surface is known as form (optical term) or 

figure (mechanical term) that can be described by low order aberration terms and consist 

of low-frequency errors (few cycles across aperture). The high-frequency content is known 

as finish or roughness. Roughness is typically associated with a process signature (for 

example from grinding or lapping) or uncontrolled sources such as transient seismic 

vibration. The region between figure and roughness is known as mid-spatial frequency 

(sometimes called ripple or waviness). These are typically periodic errors that reflect a 

characteristic of the fabrication technique. For example, in diamond turning machines with 

a leadscrew, straightness errors at the leadscrew pitch appear in the manufactured surface. 

In MRF surfaces (Magnetorheological finishing), there is typically a residual signature 

with a surface wavelength directly related to the size of the removal footprint [19].   



20 

The cut-off frequency for each spatial frequency region is defined by the application. 

For optical elements, this cut-off is defined by the incident wavelength, the size of the 

aperture and the location of the surface from the stop [11].  

A laser Fizeau interferometer can measure spatial periods as small as 100 µm depending 

on the zoom, the objective lens, and size of the sample [17]. The measuring capability of an 

interferometer is limited by its optical transfer function (OTF) as well as the pixel density 

of its CCD. The instrument transfer function (ITF) describes the system’s ability to 

reproduce measurements in terms of spatial frequency. An excellent explanation and 

calculation of ITF for surface profiling interferometers can be found in [20]. ITF is 

commonly used for linear systems and their frequency analysis. In linear systems, we can 

propagate two different frequency components and add the results independently. The 

measurement of height using optical interferometers is a non-linear process. In the limit of 

small surface variations ( 4h  ), the interferometer’s response can be approximated to 

be linear and is the same as the imaging OTF (Optical Transfer Function). Imaging a sharp 

reflectivity step is one of the most convenient ways of measuring OTF [20]. The ratio 

between the Fourier transform of the image and that of the object is the OTF (

,

,

,

( )
( )

( )

x y measured

x y

x y idal

PSD f
ITF f

PSD f
 ) [21]. Figure 1.2 shows the theoretical and experimental ITF 

curves for a range of microscope objectives. This figure shows by using different objectives, 

we can span a wide range of frequencies [20]. The black horizontal dashed line shows 70% 

of the maximum ITF, and indicates the largest frequency accepted by each objective. As the 

frequencies approach the Nyquist frequency, the ITF decreases. The frequency at which the 
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ITF drops to 0.1 of its maximum is the limiting resolution of the system, and a higher 

magnification objective is needed to resolve larger frequencies [22]. 

 

Figure 1.2 The experimental (solid lines) and theoretical (dashed lines) ITF for four 

different objectives in the interferometric microscope [22].  

 

In the measurement in Figure 1.1 (c), the aperture of the test part is 9 mm and the 

number of points in the data is 939  939 pixels. That provides a Nyquist limit of 

152.16
2

Nyquist

N
f

mmD
   , corresponding to a spatial period of 0.019mm . Spatial 

frequencies above Nyquist may be reported with incorrect amplitude in the absence of 

appropriate anti-aliasing filters. 

There are different definitions of mid-spatial frequency in the literature. One definition 

is by the Fresnel length and distance of the surface to the image plane. The Fresnel length 

of a given spatial frequency is 

2

f

a
L


  where a  is the spatial length and   is the 

application wavelength. The Fresnel length (Fresnel distance) provides a coarse criterion 

for separating near field and far field and the limit where geometrical optics is valid. For 

2

1
f

a

L
 or 

2

f

a
L


 geometrical optics approximations are valid. Beyond the Fresnel 
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distance, the divergence of the beam becomes significant and we are in the Fraunhofer 

region.. D. Aikens et al. select the low-frequency limit of the mid-spatial frequency errors 

to be about 5 cycles across the aperture since these errors are associated with low order 

aberration terms and aberration theory can apply [23]. Low order aberrations such as coma 

or astigmatism do not affect local image quality metrics but affect the overall image quality 

metrics such as Strehl ratio. Some authors argue that the selection of the high spatial 

frequency limit for MSF is arbitrary and based on experience [23, 24]. D. Aikens et al. select 

the high-frequency cut-off of the mid-spatial frequency in an imaging application to be 

where the Fresnel lengths of the ripples are less than 1/10 of the optical path distance from 

a given surface to the image plane [23]. Therefore, the high-frequency cut-off can be 

described as  

10

OPD
a


                          ( 1.1)

                
 

whereOPD  is the optical path length to the image plane. J. Tamkin selects a cut-off 

frequency of 1/20 of Nyquist to separate mid-spatial frequencies from roughness [24]. He 

states that this limit places a somewhat arbitrary but useful boundary between MSF errors 

and roughness [24]. This is the same as assuming the point spread function (PSF) has an 

isoplanatic patch diameter of 40 Airy disks. Isoplanatic patches are regions where the 

imaging system is space-invariant and the point source image of the object only changes 

in location and not in the functional form [25]. In many cases for visible wavelengths, the 

mid-spatial frequency region is between a few millimeters and 0.1 millimeters [23, 24]. To 

provide a visual example of different spatial frequency regions of the form (figure), mid-

spatial frequency and roughness errors, we have decomposed the SiC sphere in 1.1 (c) into 

three different spatial frequency bands using Fourier-based filtering capability of the 
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commercial software MetroProX (MX v6.3.0.4). The results are shown in Figure 1.3.  

 

                 

Figure 1.3 Surface error of IRG26 decomposed in three different spatial frequency 

regions. (a) Low spatial frequency region (spatial periods 3mm  ) with RMS= 27.65 

nm. (b) Mid-spatial frequency region (spatial periods 0.1 3mm mm  ) with 

RMS=38.74 nm. (c) High-spatial frequency region (spatial periods 0.1mm  ) with 

RMS=1.87 nm. 

 

The most common method to specify the surface form and wavefront error is in terms 

of peak to valley (PV). PV is easy to evaluate but can be highly influenced by outliers [26]. 

Root mean square error (RMS) is another surface metric that corresponds better with optical 

performance. To calculate the RMS, each pixel’s deviation from the best fit surface is 

squared, all values are summed, then the square root of the sum is divided by the number of 

pixels [26]. PVr (Peak to Valley robust) is another metric for optical surface characterization 

introduced by C. Evans [27]. PVr is defined by 36 Zernike 36 Zernike Resid3rPV PV     that is 

the PV of the surface obtained by least-squares fitting to a 36-term Zernike polynomial and 

added to three times the RMS of the residual after fitting and removing the 36 terms [26, 

27]. In rotationally symmetric systems, the wavefront is described by expanding the wave 

aberration function in a power series of field and aperture coordinates , ,H    through  

(a) (b) (c)
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2 4

020 111 040

3 2 2 2

131 222

2 2 3

220 311

( , , ) cos

cos cos

cos (6)

W H W W H W

W H W H

W H W H O

     

   

  

  

 

  
                  ( 1.2)

                
 

where   is the normalized radial aperture coordinate and H  is the normalized image 

height. 2

020 111 cosW W W H    are first-order aberration terms and 

4 3 2 2 2 2 2 3

040 131 222 220 311cos cos cosW W H W H W H W H            are third order 

aberration terms [28]. Their effect on optical performance is assessed by sequential ray 

tracing and aberration theory and well described in the literature [14, 29]. First and third-

order wavefront properties can be obtained from the Zernike polynomials coefficients from 

the first nine Zernike terms in the Fringe set (see Table 2.1) [29]. Zernike polynomials will 

be described in detail in chapter three. 

The high spatial frequency components will cause scattering of light and their effect can 

be simulated based on scattering theory by using non-sequential ray tracing analysis [23].  

For smooth surfaces ( 4 cos )i   , the reflectance and RMS surface roughness are 

related through Eqn. 1.3 [30]. 

2

0 2

(4 cos( ))
,i

sR R
 



 
  

 
                     ( 1.3)

                
 

where 𝑅0 is the reflectance of the smooth surface, 𝑅𝑠 is the specular reflectance, 𝜎 is 

the effective Root Mean Square (RMS) surface roughness, 𝜃𝑖 is the angle of incidence 

relative to the surface normal, and  is the radiation wavelength. Davies assumes if the 

surface is smooth, the surface height distribution is Gaussian and most of the light is 

restricted to the 1st    diffraction orders s i   [30]. He also assumes there are no 

structured patterns in the PSD [30-36]. In summary, if the surface is optically smooth, 
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homogenous, isotropic and reflective, there is a relationship between RMS of the surface 

and area PSD [36].  

These assumptions are not true for surfaces produced using deterministic polishing 

techniques with mid spatial frequencies that are usually structured and have a specific 

direction. Therefore, for MSF texture, RMS is not a sufficient metric for specification. 

Conventionally polished surfaces have different bands of frequencies. ISO 10110-part 8 

(surface texture, roughness, and waviness) provides a mechanism for PSD-based 

specification. The National Ignition Facility (NIF) used ISO 10110 and PSD analysis on 

spatially filtered data to specify the wavefront quality of NIF optics in the MSF region [37-

39]. This is to ensure that the total scatter loss due to MSF texture does not exceed a certain 

value [39].   

1.3 Overview of mathematical representation options for mid-spatial frequency 

Development of freeform optical systems like any other optical system is divided into 

the major stages of design, fabrication, test, and assembly. The first stage (design) and the 

last stage (assembly) require a full system analysis while the intermediate ‘fabrication’ and 

‘test’ stages have a component-level focus. In this section, we introduce methods for 

quantifying mid-spatial frequencies as a single component representation.  

Common methods for representing MSF are power spectral density (PSD), polynomial 

representation (Zernike and Forbes), structure function, autocorrelation function, wavelet 

analysis, and slope analysis techniques. The need for MSF characterization and 

specification is becoming relevant beyond the somewhat narrow field of freeform optics. 

For example, an array of aspheric elements for computational imaging application poses 

many of the same manufacturing problems as a freeform surface, hence a need for clear 
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ways of characterization and specification of their MSF texture. In the next chapter, we 

will discuss aspects in the context of freeform optics and evaluate/compare each of these 

techniques based on our evaluation criteria. 

1.3.1 PSD 

Power spectral density (PSD) is the square magnitude of the Fourier transform of the 

profile over a certain spatial frequency range. It contains information about the lateral spatial 

wavelengths on the surface as well as their magnitude since it describes the amount of error 

in a surface at a particular spatial frequency. PSD is the most common method for 

characterizing the mid-spatial frequency content from a measurement of a surface [40]. One 

of the useful parameters that can be extracted from the PSD is the RMS roughness or the 

RMS over a selected bandwidth. The area under the linear PSD curve within a certain 

frequency range is the RMS of that frequency range, as shown in Eqn. 1.4 [41].  

2

1

( ) .RMS PSD d



                        ( 1.4) 

PSD is also useful to distinguish parts with the same RMS. For example, a periodic 

surface and a random surface may have the same RMS but their PSD will be different. PSD 

of the periodic surface will have a peak at a certain frequency whereas the PSD of the 

random surface will have no peaks. Low spatial frequencies must first be removed from the 

data prior to application of the PSD and there is no agreed upon standard for this high-pass 

filtering step. A rule of thumb is to remove everything at less than five cycles across the 

aperture [42]. De-trending of the profile is to remove low-order form errors prior to 

calculation of PSD to avoid the high-frequency artifacts in the PSD caused by 

discontinuities at the boundaries. The ASME B46.1-2009 standard has expressions to 

calculate the PSD. However, the de-trending step is not addressed [43]. Next, the height 
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data is analyzed with the discrete Fourier transform (DFT) which processes an image as if 

it were part of a periodic vector (or part of a periodic matrix for area PSD) of identical 

images. PSD of a discrete profile is calculated through Discrete Fourier Transform (DFT) 

as  

22
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where fm is the spatial frequency described as 
m

m
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


, x , is the sampling interval of 

the profile measurements and N is the total number of sampling points. When / 2m N  

the sampling frequency is 
1

2
mf

x
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
 which is the Nyquist frequency of the sampled 

measurement [44]. Most surface profiling instruments today such as Phase Shifting 

Interferometer (PSI) and Wite Light Scanning Interferometer (SWALI) can capture 2D 

arrays of surface data. The PSD analysis of linear profiles can be extended to area PSD to 

perform a better characterization of the surface. The area PSD is the 2D version of Eqn. 1.5 

and is defined as  

 

2

2
11

2

0 0

( , ) ( , )

( , ) ,
yx

x x y y

x y

x y x y

x y

NN
i f n x f n y

x y

n nx y

x y
PSD f f DFT f f

N N

x y
e z n x n y

N N




   

 

 


 
   

             ( 1.6) 

where x

x

m
f

N x



 and y

y

n
f

N y



 are the sampling frequency in x and y, x  and y

are the sampling intervals in x and y directions and ( , )x yz n x n y  is the surface height 

data [36]. 
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1.3.2 Zernike polynomials 

Many optical systems in use today employ imaging elements and pupils that have 

circular apertures. Therefore, Zernike polynomials are commonly used to mathematically 

describe optical wavefronts propagating through such systems or components. Zernike 

polynomials have radial and azimuthal variables that are orthogonal and continuous over 

the interior of a unit circle [29]. It should be noted that the Zernike polynomials will not be 

orthogonal over a discrete set of points within a unit circle [45, 46], but are a good 

approximation for low order terms at reasonable sampling. For example, 21x21 uniformly 

spaced points provide reasonable sampling for fitting to 36 terms of Zernike polynomials. 

For more details, please see section 3.5. Zernike polynomials offer distinct advantages over 

other polynomial basis sets for circular apertures. Using the orthonormal Zernike 

expansion to describe aberrations offers the advantage that the coefficient or value of each 

mode is the Root Mean Square (RMS) wavefront error attributable to that mode for a 

specific representation. Ideally, Zernike coefficients used to mathematically describe a 

wavefront are independent of the number of polynomials used in the sequence. This 

condition of independence or orthogonality means that any number of additional terms can 

be added without changing the coefficients already computed. Coefficients of larger 

magnitude indicate the greater contribution of that particular mode to the total RMS 

wavefront error of the system. In chapter three, we will show the results of Zernike analysis 

for mid-spatial frequency representation. There are many different indexing schemes for 

Zernike polynomials; the most common are known as the Fringe set (Table 2.1) [47] and 

the standard set (Table 3.1) [48]. Note that commercial implementations use different 

sequences of Zernike terms, requiring users to beware of such phrases as “the first 36 



29 

Zernikes”.  

1.3.3 Forbes polynomials 

A new set of orthogonal polynomials has been introduced by G. Forbes for 

characterizing the shape of rotationally invariant aspheres and freeform surfaces [49, 50]. 

These polynomials are orthogonal in gradient. Describing a freeform surface using Forbes 

polynomials will require fewer terms and fewer decimal digits compared to standard 

aspheres [49, 51]. Forbes has shown fitting to extreme orders of these polynomials so that 

there is one fitted coefficient for every sample point evaluated within the circular aperture 

and has captured the mid-spatial frequency texture [49].  

The sag of a freeform surface in cylindrical polar coordinates as  z = f(ρ, θ) can be 

expressed in terms of Forbes Q-polynomials as shown in Eqn. 1.7 [49].  
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(1.7) 

where u = ρ ρmax⁄ , max  is the semi-diameter of the cylinder that encloses the surface, c  

is the curvature of the best-fit sphere, and ( )
f

m

nQ x is a polynomial of order fn  and the 

azimuthal order is m . The component within the braces in Eqn. 1.7 shows the departure 

from the best fit sphere. Analysis of a surface using Forbes Q-polynomials gives access to 

RMS gradient. Forbes has developed another set of slope orthogonal polynomials that are 

known as 
conQ  to characterize the shape of rotationally symmetric aspheres based on sag 

deviation from a close-fitting conic [50]. 
conQ   descriptions are suitable for strong 
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aspheres. 
bfsQ  (bfs=best-fit-sphere) is a special case of 

f

m

nQ  in Eqn. 1.7 where 0m   

and is suitable for characterizing mild aspheres [51]. In this dissertation, we refer to the 

slope-orthogonal 
f

m

nQ  polynomials that are developed to characterize freeform surfaces 

(Eqn. 1.7).   

1.3.4 Structure function 

Structure function (SF) is the average height difference squared as a function of 

separation, which can represent the spatial content of precision surfaces and is 

mathematically described by Eqn. 1.8.  

 
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,

( , ) ( , )x y
x y

SF z x y z x y    
                 

(1.8) 

where 
,x y

 is the spatial average or expectation value over x and y and ( , )x yz x y    

is the surface error height at a distance ( , )x y   from position ( , )x y .  The linear SF has 

been used in astronomy to calculate atmospheric turbulence [52, 53] and specification of 

large astronomical optics [54, 55]. Linear structure function captures data of all spatial 

scales but it loses the information on anisotropy. Thomas et al. introduced the area structure 

function [56, 57]. However, they did not address the issue of non-stationary surfaces. The 

recently introduced two-quadrant area SF by L. He et al. characterizes surfaces of arbitrary 

aperture over any chosen dynamic range while retaining anisotropic information [58-60]. 

The downside of structure function is that the number of points contributing to the average 

decreases as τ (separation) reaches towards the aperture size. Also, area SF is not an 

orthogonal representation. This is discussed in more detail in section 2.2.  
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1.3.5 Autocorrelation function 

The autocorrelation function (ACF) is another mathematical technique to characterize 

the spatial content of a surface that first has been used in communication theory [61]. The 

autocorrelation function is the autocovariance function of the surface, normalized by the 

surface variance. For calculating the linear ACF, the original profile is duplicated and 

shifted along the original profile with a separation τ, and then the product of the two profiles 

in the overlapped region is obtained. This calculation can be done for every separation τ. 

As the duplicated profile is shifted, the overlap area decreases. There are two types of auto-

correlation functions, biased ACF and unbiased ACF. The unbiased ACV function is 

defined as  
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(1.9) 

and the biased ACV is defined by Eqn. 1.10 [62, 63]. 
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The biased ACF of a sinusoidal profile shows a decay modulated with the oscillations 

whereas the unbiased ACF does not show an overall decay. Area ACF contains more 

information about the surface such as anisotropy and surface texture direction. For 

stationary surfaces, the area SF is related to ACF through Eqn. 1.11 [64]. 

 2( , ) 2 1 ( , ) .x y x ySF ACF     
                 

(1.11) 

1.3.6 Wavelet analysis 

Wavelet analysis provides a multiscale representation of the surface textures. Wavelets 

are band-limited, i.e. they are composed of a limited range of several frequencies. They are 
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localized in both frequency and space (or time). They have variable amplitudes in different 

spatial (or time) periods.  

Wavelet analysis provides a filtering scheme based on localized harmonic analysis using 

short-term signals called mother wavelets. Wavelet filters can be used to decompose a 

surface into different spatial scales. This makes it possible to analyze the surface at a 

particular spatial scale. B. Josso et al. have used frequency normalized wavelet transform 

(FNWT) and applied Daubechies wavelets of order 20 to decompose a surface texture 

profile in form, waviness, and roughness (Figure 1.4) [65]. The Daubechies wavelets are a 

class of orthogonal wavelets discovered by Daubechies [66]. They are characterized by a 

maximal number of vanishing moments for a given support. For each wavelet type of this 

class, there is a scaling function which generates an orthogonal multiresolution analysis. 

They have slightly longer supports compared to other wavelets and they sample more 

values from the signal (or surface depending on application) [67]. 

Unlike Fourier transform that is a global transform, wavelets are a local transform 

method [66, 68, 69]. The localization property of wavelet functions makes them a better 

tool for characterizing local spatial structure compared to Fourier methods such as PSD 

[70]. To describe a local structure or local defect, we need a large number of polynomials 

which will make the ray tracing computationally intensive. Therefore, wavelets are 

advantageous over polynomials for representation of local structures [70].  

Wavelets are not suitable for analysis of figure on freeform surfaces or high slope errors 

due to the assumption that the underlying geometry of the surface is Euclidean or planar 

[71]. H. S. Abdul-Rahman et al. have applied a new generation of wavelets for filtering 

freeform surface that can filter any arbitrary shape described by a triangular mesh [72]. 
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These new wavelets are produced through a lifting scheme. Lifting scheme starts with a 

simple wavelet to split the data, then this simple wavelet is lifted and new wavelets are 

predicted and updated [73]. 

One dimensional wavelet filters are defined in ISO 16610-29 and areal wavelet filters 

are defined in ISO 16610-69 for surfaces. So far, only spline wavelets are defined in the 

standard. In summary, wavelets are preferred over PSD and polynomial methods for 

characterizing localized mid-spatial frequency errors but the first generation of wavelets 

are not ideal for characterizing the shape of high slope freeform surfaces. 

 

Figure 1.4 Form, waviness and roughness decomposition of a surface texture using 

frequency normalized wavelet transform (FNWT) and applying Daubechies wavelet of 

order 20 [65].  
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1.3.7 Slope analysis techniques 

Mid-spatial frequencies are sometimes called ripple, waviness or slope errors. ISO 

10110-8, the International Organization for Standardization of optics and photonics 

drawing standards, has several notations for specifying MSF [74, 75]. Among those, the 

simplest one is RMS waviness, or 
qW . The RMS waviness though is not a suitable metric 

for specifying MSF. A surface produced by small tool computer controlled polishing with 

smooth ripples, a cusp-shaped surface produced by diamond turning and a random isotropic 

surface might have the same RMS waviness but have different effects on performance. The 

simulated effect of cusp-shaped waves vs. sinusoidal waves on optical performance is 

shown in chapter four. The maximum slope error 
max , the maximum deviation amplitude 

maxA  and the maximum sampling length 
maxL  are other parameters defined in ISO 10110 

to calculate the slope error and are illustrated in Figure 1.5 [74, 75]. These values are 

chosen relative to the surface that best fits to the nominal one. The maximum slope error 

max  should be measured at maximum sampling length maxL . Surface slope is the change 

in OPD vs. small transverse shift and is highly relevant to MTF. It also correlates well with 

the optical performance at low spatial frequencies [76].  

 

Figure 1.5 The maximum slope error max , maximum deviation error 
maxA  and 

maximum sampling length 
maxL  are ISO 10110 requirements for mid-spatial frequency 

(waviness) content on a surface [75].  
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1.4 Navigating this dissertation 

So far, we have described mid-spatial frequencies, and why it is important to specify 

and characterize them. In section 1.3, we have listed different mathematical methods for 

characterizing MSF such as PSD, structure function, Zernike and Forbes polynomials. In 

chapter two, using published discussions from the literature along with some data analysis 

on measured surfaces, we compare pros and cons of each analysis for MSF texture based 

on chosen evaluation criteria. Our evaluation criteria are the amount of pre-processing, the 

uniqueness of the results (related to orthogonality), connection to fabrication choices, 

dependence on aperture geometry, generalizable to full frequency range and connection to 

optical performance. The focus of this dissertation is on investigating a Zernike polynomial 

representation for quantifying the mid-spatial frequency content in the height maps. In 

chapter three, we will illustrate how a Zernike polynomial representation captures certain 

characteristics of the mid-spatial frequency texture such as spatial length scale, the 

magnitude of length scale, and type of MSF texture. In section 3.2, we show how recursive 

formulas are essential in the generation of extreme orders of Zernike polynomials. After 

enabling the generation of these orders, in section 3.3, we build up an intuition for 

interpretation of fit coefficient maps by analysis of synthetic data and extend our analysis 

to real measured surfaces with MSF content. Finally, we discuss limits of Zernike analysis 

for finite datasets and convergence of RMS fit residuals. In chapter four, we introduce 

optical performance metrics for MSF such as Strehl ratio and modulation transfer function. 

We will show examples of optical performance degradation in presence of synthetic and 

real measured MSF textures. The effect of PV, incident wavelength, refractive index and 

type of MSF texture on optical performance will be discussed. An ideal analysis method is 
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one that enables data reduction to metrics that have a clear connection to optical 

performance so that designers can incorporate this metric in their tolerancing. In chapter 

five, we extend Zernike polynomial analysis to the prediction of optical performance based 

on the decomposition of the surface into bands of Zernike polynomials. We will show the 

relationship between the Strehl ratio and MTF of the whole surface to the Strehl ratio and 

MTF of individual bands. We will discuss limits of validity of our approximations. In 

chapter six, after summarizing conclusions of this work, we will list assumptions and range 

of validity of our optical performance analysis in the Rayleigh-Sommerfeld regime. Finally, 

in section 6.3, we have included suggestions for future research in extending Zernike 

analysis to combine data captured from multiple instruments.    
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CHAPTER 2 : CRITERIA TO BE CONSIDERED FOR SPECIFICATION AND 

CHARACTERIZATION METHODOLOGY 

 

In this chapter, the evaluation criteria for characterization of mid-spatial frequency will 

be described and the mathematical methods will be evaluated based on each criterion. Our 

evaluation criteria are the amount of pre-processing, the uniqueness of the result (related 

to orthogonality), connection to fabrication choices, dependence on aperture geometry, 

generalization ability to full frequency range, connection to optical performance and 

intuitiveness. Each of these criteria will be described and the mathematical methods will 

be evaluated based on those criteria. 

2.1 Amount of pre-processing 

Preprocessing is processing of the raw data and preparing it for performing the actual 

characterization. We will have the most robust and unambiguous analysis output if this step 

is standardized before the actual process takes place. The results of the analysis will be more 

repeatable and the same for different metrologists. The preprocessing choices mainly 

include filtering, cropping, windowing and padding the data. 

2.1.1 Pre-processing for PSD analysis 

To prepare the data for PSD analysis the first thing we need to do is to remove the low 

order surface figure and rigid body alignment terms. Removal of these surface errors is 

referred to as de-trending [42]. Then, since PSD is a Fourier-based analysis, we need to set 

edges of the raw data to zero by applying a 2D window function. If we do not apply the 

window function, the PSD will have artifacts induced by the edge discontinuities aligned 
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along the x and y directions. By applying a window, PSD will provide a much better 

estimate of the surface roughness. Windowing or apodization is a well-known technique in 

signal processing [77, 78]. Window functions are usually smooth and positive curves that 

have zero values outside a chosen interval. Uniform window means no apodization is 

applied. Han, Hamming and Blackman windows are commonly used in the calculation of 

power spectral density and in signal processing [77-79]. These windows are within cos x  

family that are described by Eqn. 2.1. In this family of windows, changing the parameter  

generates different windows [77].  

  cos ,      0
2

n N
f n n

N

  
   

                        
(2.1) 

In Figure 2.1, P. Z. Takacs shows the un-windowed and windowed area PSDs of the 

surface data. As can be seen in Figure 2.1 (b) the edge discontinuity in un-windowed data 

introduces spurious power along the x and y frequency axes [42]. This artificial oscillation 

is due to Gibbs phenomenon and the inherent difficulty of approximating a discontinuous 

function by a finite series of harmonic functions. 

 

Figure 2.1 (a) Wavefront map of a lens from Fizeau interferometer. Area PSD of the 

dashed selection in the map after de-trending 4th order polynomial, (b) when there is no 

window and (c) with an application of a 2D Blackman window [42]. 
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There are different window functions available and depending on the choice of the 

window the statistics derived from the PSD vary [42]. Figures 2.2 and 2.3 show that the 

type of window can affect the results by an order of magnitude. Figure 2.2 (a) is the residual 

surface of SiC sphere in Figure 1.1 (c) after removing the first 36 terms of Zernike 

polynomials in the standard set (shown in Table 3.1). We have de-trended our data using 

Zernike polynomials due to its circular aperture. P. Z. Takacs has removed least square fits 

of 4th order polynomial in x and y to de-trend the rectangular data [42].  Please refer to 

section 3.1 for a detailed description of Zernike polynomials and Table 3.1 for mathematical 

representation of the first 36 terms in the standard set. In Figure 2.2, a linear PSD calculation 

is carried out to a linear profile perpendicular to the direction of the raster patterns on the 

surface. Figure 2.3 is the non-directional PSD of the same data with a choice of different 

windows. Non-directional PSD is calculated by summing the 2D PSD for every frequency 

in all directions. This is performed by adding all the PSD values on a circle that have the 

same frequency (Eqn. 2.2) [80]. 
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 
  

                      
(2.2) 

where f  is the frequency and f   is the azimuthal angle at each frequency. Figures 2.2 

and 2.3 show that depending on the type of window, the PSD results can change by an order 

of magnitude for both directional and non-directional PSDs. In directional PSD in Figure 

2.2 (c), the PSD value for the spatial period of 0.7 mm (1.4 1 mm ) is 0.01 for a case of the 

uniform window. The PSD value at the same spatial period is 0.1 when we apply a Hanning 

window. In non-directional PSD, in addition to PSD peaks with different values at 0.7 mm 

(1.4 1 mm ) and 1.6 mm (0.6 1 mm ), the overall PSD with the uniform window is smoother 
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and higher at high spatial frequencies compared to PSD when Blackman and Hanning 

windows are applied. 

 

Figure 2.2 (a) SiC sphere residual map after de-trending the first 36 terms Zernike 

polynomials in the standard set. (b) Selected surface profile perpendicular to raster 

patterns. (c) PSD of the linear profile with the application of different windows.  

 

 

 

Figure 2.3 Non-directional PSD of the de-trended SiC sphere (map on Figure 2.2 (a)) 

with the application of different windows.  
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Figure 2.4 shows how different de-trending choices affect results of the PSD. We have 

obtained linear PSD of the profile shown in Figure 2.2 on surface data of SiC sphere using 

the MetroProx software. At the spatial period of 2.1 mm (0.47 1 mm ), the PSD value for 

different de-trending choices is different by orders of magnitude. For example, for removal 

of seven orders of Zernike polynomials in the standard set, (the first 36 terms in Table 3.1, 

i.e. terms up to 
7 sin(7 )  ), the PSD value is 0.22 

3m and for removal of four orders of 

the Fringe set, the PSD magnitude is 0.077 
3m . The Fringe set has a different ordering 

than the standard set. Table 2.1 shows the first four orders of Zernike polynomials in the 

Fringe set. For spatial periods larger than 2.85 mm (frequencies smaller than 0.35 1 mm ), 

the PSD of Fourier filtered data is the same as PSD of data after removal of 7th orders of the 

standard set. At the spatial period of 2.1 mm (0.47 1 mm ) PSD of Fourier filtered data is 

closer to the PSD of the data where we have removed 4th orders of the Fringe set. The PSD 

of all the data for all three de-trending choices are the same for spatial periods smaller than 

1.2 mm (frequencies larger than 0.83 1 mm ) which is not surprising since de-trending 

affects low spatial frequencies and keeps the high-frequency content unchanged. The 

analysis for Figure 2.2 to 2.4 was performed using MetroProX (Mx) software (v6.3.0.4). So 

far, we observed examples of how choices of windowing and de-trending can change the 

result of PSD calculation which can cause an economic loss if a good part does not meet the 

specification defined by the customer or designer or a bad part is shipped as good.   
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Figure 2.4 SiC sphere residual map after removing (a) Seven orders of Zernike 

polynomials in standard set, (b) Four orders of Zernike polynomials in Fringe set, and (c) 

spatial periods greater than 3 mm using Fourier filter (d) PSD of the linear profile with 

the application of different de-trending choices in part a-c. 

 

Table 2.1 Zernike polynomials in polar coordinates (the Fringe set) [29, 47].  

ZFR nz m  Sets RMS Orthogonal 

polynomials 

Aberration names 

0 0 0 0

0Z 
 2  1 piston 

1 
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1 1 1

1Z  2 cos   x-tilt 

2 1 -1 1

1Z 

 
 2 sin   y-tilt 

3 2 0 0

2Z  3   
21 2    focus 

4 2 2 2

2Z  6   
2 cos(2 )    Astigmatism 0 & 

focus 5 2 -2 2

2Z   6   
2 sin(2 )    Astigmatism 45 & 

focus 6 3 1 1
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3( 2 3 )cos( )      Coma & x-tilt 

7 3 -1 1
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8 4 0 0
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2 41 6 6     Spherical & focus 
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2.1.2 Pre-processing for Zernike polynomial analysis  

Zernike polynomials are orthogonal over a circular aperture and their fit coefficients 

show the amount of each aberration term present on the surface. To analyze the circular 

aperture data with Zernike polynomials, there is usually no need to pre-process the data. 

Gram-Schmidt methods can be applied to make Zernike polynomials orthogonal over non-

circular apertures and for discrete data sets [81]. For rectangular or square apertures, using 

Chebyshev and Legendre polynomials is also recommended [82, 83]. More details on 

Zernike analysis for different aperture geometries are discussed in section 2.4. 

2.1.3 Pre-processing for Forbes polynomial analysis  

In order to fit data to Forbes Q-polynomials, removing the high-frequency content of 

surface data is required since the number of selected data points from the surface should 

match the number of fitted coefficients to avoid aliasing. Additionally, using a non-uniform 

grid will minimize the effects of aliasing. Figure 2.5 shows the sample locations for 

describing an example freeform surface from the patent literature (discussed in Section 2.2 

of reference [51]) using 
f

m

nQ  polynomials [49]. Note that so far, Forbes analysis has been 

shown for circular apertures. More general and less efficient versions of Forbes polynomials 

exist that can fit to non-circular aperture shapes [84].  
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Figure 2.5 Selected data points on six rings and eleven spokes for describing an example 

freeform surface (discussed in Section 2.2 of reference [51]) [49]. 

 

2.1.4 Pre-processing for structure function analysis  

Structure function is a direct calculation that does not involve additional processing such 

as windowing, but it is sensitive to background removal (excluding piston) because it is the 

expectation of the squared height difference as a function of separation. As a result, for 

surfaces containing low order form errors, we will have a non-zero SF for small separations. 

Figure 2.10 in reference [64] shows the SF result for a sinusoidal profile with both low and 

high-frequency content. Extracting useful information from the SF in presence of low order 

errors is difficult [64]. Therefore, L. He recommends removal of low-order polynomials (or 

low-frequency errors) before the structure function calculation for characterizing mid-

spatial frequency. 

2.1.5 Pre-processing for ACF analysis  

This calculation does not involve windowing, but ACF is sensitive to background 

removal choices including piston and tilt due to its definition. Again, removal of piston and 

tilt for flat surfaces and piston, tilt, and power for spherical surfaces should be considered 
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before the ACF calculation to avoid this sensitivity. Additionally, to calculate ACF, profiles 

should be measured from the same mean plane to avoid singularities [57].  

2.2 Uniqueness of the result (related to orthogonality) 

If a mathematical representation is orthogonal, the results are unique regardless of 

whether or not the whole surface is processed or an arbitrary summation of bands within 

the surface is processed. In orthogonal basis sets, the fit coefficients are unique and 

impendent of the particular subset of the basis elements used for the fit. The benefits of 

having an orthogonal representation are that the analysis results are not impacted by user-

defined choices. For example, the results of an orthogonal representation will not be 

impacted by choices of the different spatial filter in the pre-processing step.   

2.2.1 Orthogonality of PSD analysis  

Harmonic functions are the basis set for PSD analysis that are orthogonal over an 

infinite domain. Real datasets though are usually discrete and truncated. From Plancherel’s 

theorem, we can calculate the energy distribution over a frequency range for a filtered 

signal of interest. Plancherel’s theorem states that the integral of a function's squared 

modulus is equal to the integral of the squared modulus of its frequency spectrum [85]. 

Since these harmonic functions are orthogonal over an infinite domain, the PSD calculation 

of a finite dataset is not an orthogonal representation, which is why the results are not 

unique – they depend on the use of a window, the type of window and de-trending choices. 

The results can vary by an order of magnitude and this will impact the RMS extracted from 

the PSD (Eqn. 1.4). Examples of pre-processing choices and their effect on the PSD results 

are shown in the previous section (section 2.1).   
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2.2.2 Orthogonality of Zernike polynomials  

Zernike polynomials are an orthogonal basis set over a continuous unit circle. These 

polynomials are not orthogonal over discrete datasets. The problem of orthogonality 

associated with the discrete dataset is more obvious when fitting to large orders of these 

polynomials. If we use the orthonormal Zernike functions to represent the surface error, 

the coefficient of each mode (polynomial of order n and m) is the contribution of that mode 

to the RMS wavefront of the dataset and the fitted coefficients are unique. Moreover, the 

RMS of a surface constructed from a sum of orthonormal Zernike polynomials can be 

obtained when the coefficients are added in quadrature (root sum square of the coefficients). 

When fitting to large orders of Zernike polynomials using discrete datasets and 

conventional fitting methods, the approximation to orthogonality degrades. Kintner has 

shown recurrence relations for Zernike polynomials through their relation to Jacobi 

polynomials [86]. G. Forbes has used this recurrence relation to numerically generate large 

orders of Zernike polynomials [87]. Limits of Zernike polynomials for a description of 

mid-spatial frequency and concerns about orthogonality of these polynomials at very large 

orders will be described in chapter three.   

2.2.3 Orthogonality of Forbes polynomials  

Forbes polynomials are orthogonal in slope. Fitting or projection onto 
f

m

nQ polynomials 

gives a direct representation of the RMS gradient. The RMS gradient is connected to the 

ray spot diagram [49]. The RMS slope is related to transverse ray error described in section 

2.6. Spot diagram shows the location of transverse ray errors. The RMS spot size is a 

common image quality metric and is the center of gravity of transverse ray errors [14, 28]. 

The approximation to orthogonality degrades when fitting discrete datasets with uniform 
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pixel spacing to extreme orders of these polynomials. 

2.2.4 Orthogonality of structure function  

The discussion of orthogonality for structure function is irrelevant since orthogonality 

is a characteristic of basis set and structure function is a calculation. A basis set is orthogonal 

when the inner product of two basis elements is defined by the delta function. L. He has 

compared the SF of Zernike polynomials individually with the SF of a surface described by 

a combination of multiple Zernike polynomials. The total linear SF of the sum of Zernike 

polynomials is the sum of the individual linear SFs of each of the Zernike polynomials with 

different azimuthal frequencies [64]. Therefore, the linear SF is a linear operator over 

Zernike polynomials. This property is not valid for area SF. Since area SF is not a linear 

operator, combining and representing data from multiple instruments requires additional 

steps besides plotting the data on the same scale [59].   

2.2.5 Orthogonality of ACF  

Like the structure function, the discussion of orthogonality for autocorrelation is 

irrelevant. Furthermore, the total ACF of the sum of Zernike polynomials is not the sum of 

the individual ACF of each of the Zernike polynomials. The ACF also depends on the mean 

plane.  

2.3 Connection to fabrication choices 

This feature of the analysis is about connecting the result of the analysis to a fabrication 

detail and how the analysis can be used for optical specification. This connection could 

also be made between the analyses of data within a specific band. An ideal representation 

will allow the fabricator to determine the length scale, the orientation and type of the texture 

(e.g. raster, spokes or ring-like texture), as well as the magnitude of each length scale.  
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2.3.1 PSD and connection to fabrication  

It is possible to set a maximum allowable PSD for a specific frequency range or limited 

spatial bandwidth. The PSD of the fabricated element should not exceed that line. The area 

under the linear PSD curve within a certain frequency range is the RMS of that frequency 

range which is a useful parameter that can be considered in the specification. For example, 

in reference [39] one can see a list of PSD related parameters that the national ignition 

facility (NIF) used for glass optics. These parameters include PV, RMS gradient, 
qr  (RMS 

height) and the amplitude parameter of the PSD not-to-exceed line. In Figure 2.6, the mid-

spatial frequency region is categorized in PSD-2 (spatial length scales between 2.5 mm to 

0.12mm). For this spatial bandwidth, the RMS should not exceed 1.6 nm and the amplitude 

A should not be above 21nm mm . A peak in the PSD that is above the specification line can 

be converted into length scale and the fabricator knows what length scale on the surface 

needs to be removed.  PSD is effective at highlighting specific spatial frequencies that 

result from the machining process. This can be useful in providing feedback to improve 

fabrication and change fabrication parameters such that the part will meet the specification. 

An example of this is changing the programmed tool path in diamond turning machine or 

choice of the tool footprint in the magnetorheological finishing (MRF) process. The PSD 

analysis can quantify the surface so that periodic structure in the part can be minimized 

during manufacture. To speculate on the effectiveness of PSD in retrieving surface finish 

information (length scale, type, magnitude) we have calculated the PSD of a linear trace 

from the surfaces shown in Figures 2.7 (a) and 2.7 (b). Figure 2.7 (a) is a linear sinusoidal 

pattern with 25 cycles across aperture and PV of 2 µm and Figure 2.7 (b) consists of 25 

sinusoidal concentric rings with PV of 2 µm. The linear PSDs from both surfaces are 
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identical and is shown in Figure 2.7 (c). We see there is a peak at 
1

12.5xf
mm

  that is 

equal to the spatial period of  0.08mm  . PSD provides information on the magnitude 

of length scales through the calculation of RMS surface height and integral under the PSD 

curve. The RMS of the surface for surfaces in Figures 2.7 (a) and (b) are 0.71 µm that 

matches with the theoretical RMS of a sinusoidal surface with a PV of 2 µm. So far, we 

observed that PSD provides information on the length scale and magnitude of texture.  

Extracting information about length scale, magnitude, and type of mid-spatial 

frequencies involves slicing through the two-dimensional PSD or integrating the two-

dimensional PSD into a one-dimensional PSD. In order to do so, prior insight into the 

direction of MSF texture is required. For example, selecting a horizontal slice of two-

dimensional PSD is suitable for linear MSF texture but will not provide information on the 

spokes patterns present in the surface. The fact that PSD of both surfaces in Figures 2.7 (a) 

and (b) are the same confirms that PSD is not an ideal representation for identifying the 

type of the texture, especially for anisotropic texture.  

 

Figure 2.6 PSD specification for an NIF optic [39]. 
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Figure 2.7 (a) Height map of sinusoidal raster pattern with 25 cycles within aperture and 

PV of 2 µm. (b) Radial sinusoidal pattern with 25 cycles across aperture and PV of 2 µm. 

(c) PSD of the linear trace from data in (a) and (b). 

 

2.3.2 Zernike analysis and connection to fabrication 

Optical surface or wavefront specifications can include descriptions in terms of Zernike 

polynomials. Commercial software in modern interferometers frequently provide an 

interface to fit the wavefront or surface figure error to a set of Zernike polynomials. For 

example, the form application in MetroProX 6.3.0.4 software provides options to fit and 

remove Zernike polynomials. The software provides 37 terms of Zernike Fringe set and 91 

terms of Zernike polynomials in the standard set. Opticians frequently use the Zernike 

polynomials both in testing, analysis, and diagnosis of optical components. C. J. Evans et 

al. have shown visual representations of Zernike coefficients in a form that helps optical 
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fabricators decide how to improve their process [88]. For example, the coefficients m

na  

and m

na  for 0m    are added in quadrature to provide the aberrations of those orders 

independent of the angular orientation [88]. In the next chapter, we will show how large 

orders of Zernike polynomials can be used to capture and quantify the MSF texture. In 

section 3.3.1, we will show that location and orientation of the peak of the fit coefficients 

and RSS (Root Sum Square) of the Zernike fit coefficients can be used to retrieve 

information about length scale, orientation (type) and magnitude of the MSF texture. We 

will also showcase filtering of height maps based on symmetry property of Zernike 

polynomials. This unique filtering capability has potential in identifying and separating 

different sources of error during the fabrication process. For example, the tool tip could 

leave raster-like texture on the part and errors in the motor could lead to spokes fingerprint.   

2.3.3 Forbes analysis and connection to fabrication  

Forbes polynomials can be used to specify nominal shape as well as mid-spatial 

frequency components in freeform surfaces [49]. They can also show signatures of 

different tooling marks on the surface in MSF region. MSF patterns can be raster-like or 

rotationally invariant texture. Forbes analysis provides RMS gradient of the surface that 

may be used for specification. Q-polynomial representation and Zernike polynomials 

behave the same in retrieving information about the length scale and type of the MSF 

texture. The location of the peak of coefficients happens at specific Cartesian orders t  

that is related to the number of cycles across aperture (length scale) through t C  where 

C  is the number of cycles across aperture [49]. The Cartesian order t  is indicative of 

degrees of freedom when describing a surface using Zernike or Forbes polynomials, i.e. it 

is the maximum power of u  in Eqn. 1.7 [49]. Orientation and location of the peak of Q-
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spectra provide information on the type of MSF texture. E.g. the raster MSF texture will 

show a diagonal peak in the Q-spectra. The sum of the squares of the coefficients along t   

is the weighted mean square gradient of the fitted Q-polynomials. i.e. the RSS of the Q-

spectra along the Cartesian order t  provides the RMS gradient [49].  

2.3.4 Structure function and connection to fabrication  

Structure function can have potential application in the specification of general optical 

surfaces. A connection has been made between SF and RMS gradient of the surface in [64].  

2
2( 0) ( ) .

2
RMS

r
SF r z  

                      
(2.3) 

where 1 2r P P   and 1p  and 2p are two different points on the surface. For fractal 

surfaces (self-affine surfaces), the SF is a function of fractal parameters, the fractal 

dimension D and the topothesy . 

2 2 2(2 )( ) .D DSF    
                      

(2.4) 

Topothesy is indicative of the magnitude of the fractal dimension. The fractal dimension 

and topothesy are determined by measuring the slope and intercept of a logarithmic plot of 

SF [56]. Machined surfaces with multiple length scales, produced by more than one 

finishing process, are called multifractal and their SF has two or more straight lines of 

different slopes meeting at a more or less sharp discontinuity [56].  For a stationary surface, 

the SF does not have advantages over ACF. To speculate the effectiveness of structure 

function in providing information on length scale, magnitude, and direction of MSF texture, 

it is helpful to look at the SF of a sinusoidal pattern. L. He has simulated the linear SF of a 

sinusoidal profile and the SF is also a periodic function. The periodic minima of the SF are 

separated by the spatial period of the height profile since the SF is zero when the separation 
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values are exact multiples of the spatial wavelength. However, the distance between the 

consecutive maxima is not exactly equal to the spatial wavelength of the profile since SF is 

the average of the squared height differences. There is also a relationship between the PSD 

and linear SF for stationary surfaces: 

2 1
( ) [ ( )] [ ( )].

2
F FPSD f ACV SF       

            
(2.5) 

This relationship can be useful in retrieving the amplitude of a specific length scale. 

The area SF has information on the anisotropy of the surface and the direction of MSF 

(sometimes referred to as ripples). The direction of MSF texture in the surface data is the 

same as the direction of oscillations in the area ASF as shown in Figures 10 and 11 of 

reference [58]. 

2.3.5 ACF and connection to fabrication  

Autocorrelation length is the distance at which the ACF drops to 1 e  of its initial value. 

The autocorrelation length is a useful metric in capturing hidden periodicity in random 

surfaces. For sinusoidal structures, the ACF has the same spatial period as the surface 

profile. The value of the ACV at the origin is the variance of the surface ( 2 ) or 2

qR .  

Linear ACF can be used to analyze mechanically ground surfaces and fabrication processes. 

Whitehouse indicates that information like the randomness of the process, the efficiency of 

the cutting, the hardness of the workpiece material and subsurface damage can be revealed 

from the ACF [61]. Based on the Wiener–Khinchin theorem for a well behaved random 

stationary process, there is a relationship between the PSD and ACV [89]. The PSD is the 

product of   and Fourier transform of the autocovariance function.  

( ) [ ( )].PSD f ACV   F
                      

(2.6) 
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Therefore, we can also indirectly calculate the length scale and magnitude of the length 

scale from the PSD obtained from ACV for a random and stationary process.   

 

 

                 

Figure 2.8 Relationship between ACF shape and grinding [61]. 

 

 
2.4 Dependence on aperture geometry 

An ideal analysis method for freeform optics and MSF would be a method that could 

analyze any arbitrary aperture geometry efficiently and effectively. It is a matter of 

discussion whether or not the analysis will be correct and effective if applied to an arbitrary 

aperture shape. In this section, we will discuss the consequences of applying the analysis 

to a dataset within an aperture for which the calculation is not well suited.  

2.4.1 Arbitrary aperture for PSD analysis  

Since PSD is a Fourier-based analysis and makes use of DFT, calculation of area PSD 

only applies to rectangular datasets. For circular data sets, one has to set the corners to zero 

or use inscribed squares of rectangles [42].Setting corners to zero will have an effect on 

the overall RMS values and will reduce the magnitude for higher frequencies. By using 
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inscribed squares or rectangles, we will lose some of the real data points on the surface. An 

alternate approach to avoid this problem is to calculate the PSD based on radial slices 

through the circular dataset. P. Takacs has integrated over all azimuthal angles in 2D PSD 

data to generate an equivalent radial PSD [42].  

2.4.2 Arbitrary aperture for Zernike analysis  

Zernike polynomials can be defined for circular, annular, and elliptical apertures [81, 

90]. W. Swantner and W. Chow have shown that Gram-Schmidt method can be used not 

only on circular or annular apertures but also on any aperture shape [81]- see also ISO 

14999-2. For a basis set of arbitrary shape defined by  1 1..... nV V  , the Gram-Schmidt 

method is represented by 

1

1

,
n

n n nm m

m

V Z D V




  
                      

(2.7) 

where  1 1..... nV V 
  are the new set of orthogonal but not orthonormal basis of arbitrary 

shape,  1 1..... nZ Z   are Zernike circular polynomials, and n nV V V   and nmD  can be 

calculated by ,nm n mD Z V    [91]. 

If Zernike circle polynomials are used for non-circular apertures, the orthogonality 

condition is violated and the coefficients can no longer be added in quadrature to provide 

the RMS wavefront. In order to make them orthogonal again, the Gram-Schmidt 

orthogonalization described above should be applied. 

2.4.3 Arbitrary aperture for Forbes analysis  

Forbes Q-polynomials can be applied to circular aperture shapes very efficiently where 

they provide almost one fitted coefficient for every sample point evaluated within the 
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circular aperture. [49]. For non-circular apertures, there are modifications based on least-

squares methods that can be applied to Forbes polynomials for non-circular apertures which 

make the computation less efficient [49].  

2.4.4 Arbitrary aperture for structure function 

Structure function is a direct calculation without a basis set and is computationally 

correct for any arbitrary aperture shape without extra processing and this is one of the main 

advantages of this analysis [64].  

2.4.5 Arbitrary aperture for ACF analysis:  

ACF is a direct calculation and can be applied to any type of aperture geometry [62]. 
 

2.5 Generalizable to full frequency range  

This characteristic of the characterization method is whether or not the analysis can be 

applied to multiple length scales of the surface in the regions of the form (figure), mid-

spatial frequency and finish (roughness). Not all analysis methods are capable of 

characterizing all length scales of the data. For example, PSD is not capable of 

characterizing low order form errors. The presence of low order errors on the profile will 

impact the analysis in other frequency regions by introducing frequency leakage. Another 

aspect of this feature is representing combined data from multiple instruments with 

different length scales. Usually, one instrument is not capable of capturing all the surface 

characteristics all the way from form to waviness and finish. Properly combining the data 

in an analysis of different mathematical representations has unique issues for each 

mathematical method that we will discuss in this section.  

2.5.1 PSD analysis for full frequency range  

Different linear PSDs from measurements of multiple instruments can be combined 
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and plotted on the same representation. However, since PSD uses fast Fourier transform 

(FFT) method, for the analysis to be correct, low order terms should be removed. Therefore, 

PSD analysis is not applicable for representation of form errors. E. Sidick has shown the 

effect of low-order figure error on PSD results. He has shown that it is necessary to remove 

all of the low-order figure errors from the surface height map before carrying out the PSD 

calculation since they can leak into all frequency components in PSD domain and make 

the results inaccurate [92].  

2.5.2 Zernike analysis for full frequency range 

Theoretically, any circular surface can be expanded based on an infinite number of 

Zernike polynomials which can cover all spatial frequencies on a surface. Large orders of 

Zernike polynomials can be generated using recurrence relation to avoid numerical round-

off errors associated with explicit equations. As the order of Zernike polynomials increases, 

denser sampling is needed to capture all the oscillations within the polynomial. Therefore, 

the surface data has to have a minimum number of pixels to be able to correctly fit to large 

orders of Zernike polynomials. I. Kaya et al. have shown that in order to fit to a Zernike 

polynomial set 29k  number of samples is needed where k  is the largest order of those 

polynomials [93]. In interferometers, the instrument transfer function (ITF) shows a 

decreasing response as surface frequencies approach Nyquist. Contact profilers, 

microscopes, CCDs and almost all other surface measuring instruments provide pixel 

limited datasets that have a cut-off frequency associated with them. In order to cover a 

larger range of frequencies from figure to finish, measurements from different instruments 

should be combined. Thunen et al. [94] and Chow and Lawrence [95] have developed 

analytical methods based on Zernike polynomials for reconstructing full aperture 
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wavefront from sub-aperture measurements.  

2.5.3 Forbes analysis for full frequency range  

Forbes Q-polynomials can be applied to all length scales available in the data. Fitting 

can be carried out to extreme orders as long as the number of fit coefficients and number 

of the sampling points match [84]. This capability makes Q-polynomials suitable for MSF 

characterization on freeform surfaces [49]. Forbes Q-polynomials also have the same 

problem as Zernike polynomials when fitting to surface data of limited size.  

2.5.4 Structure function analysis for full frequency range  

Structure function is not an orthogonal representation and combining data from 

multiple instruments is challenging especially for non-stationary surfaces such as ones with 

MSF. This is due to the fact that a surface with form error will have a non-zero SF for small 

separations. Usually, the tilt is the main form error that is unknown in sub-aperture 

measurements. Therefore, tilt in the raw sub-aperture data must be replaced by the correct 

tilt in the full aperture data [59]. L. He et al. have gathered data from multiple instruments 

and presented SF interpretation of the combined data [64]. L. He recommends removing 

low-order form errors to extract useful information from the structure function [64]. 

2.5.5 ACF analysis for full frequency range  

Since ACF is not an orthogonal representation, we expect that combining data from 

different instruments in one representation will be non- intuitive. Like SF, representing data 

from multiple instruments requires additional steps such as correcting the tilt in the sub-

aperture data.  

2.6 Connection to optical performance 

This feature of the analysis model enables us to draw some connection between features 
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of the surface and the optical performance. The performance metrics are application 

specific and include performance in illumination or imaging systems. Common image 

quality metrics are RMS spot size, encircled energy and Strehl ratio. MTF can also be used 

in quantifying image performance. These metrics and connection of MSF characteristics to 

optical performance will be described in detail in chapters four and five.  

2.6.1 PSD and connection to optical performance  

J. E. Harvey et al. have shown how different regions of the PSD curve have different 

scattering characteristics [96]. Low spatial figure errors scatter the energy from the image 

core to the first few diffraction orders reducing the Strehl ratio without significantly 

broadening the central image peak. Surface finish or high spatial frequency errors scatter 

the light from the central peak and result in reducing the peak but without significantly 

broadening the image core and changing the resolution. It is the mid-spatial frequency 

region which broadens the image core and significantly reduces the resolution. Therefore, 

he argues the surface PSD is particularly a relevant statistical quantity relating scattering 

behavior to surface topographic features [96]. The RMS of the whole surface (that includes 

all length scales) is not an appropriate metric for specification since different length scales 

have a different impact on the point spread function and MTF. For optical performance 

prediction, form and mid-spatial frequency regions should be separated since the MTF 

behavior for low order terms and MSF region with the same RMS is different [24]. During 

the de-trending pre-processing step for PSD calculation, most of the low order form errors 

are removed in order for the PSD results to be accurate for higher frequency regions. 

Therefore, PSD analysis cannot be connected to image quality and optical performance for 

low order form errors and aberration terms. 
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Figure 2.9 Effect of different spatial frequencies on the point spread function (PSF) [96]. 

 

2.6.2 Zernike polynomials and connection to optical performance  

The metrics of image quality such as RMS, Strehl ratio and the area under the MTF 

curve can be extracted from the fit coefficients of Zernike polynomials [14, 29]. This 

connection has been made between low order Zernike polynomials (form errors). The low 

order Zernike polynomials are directly related to first order and third order aberration terms 

(important in many imaging systems) and can be calculated for any image point (Eqn. 1.2). 

For small aberrations, the Strehl ratio is equal to 
2 2exp( )S k     where k   is the 

wavenumber and    is the RSS of the Zernike fit coefficients for an orthonormal 

representation [97].We will discuss the connection between optical performance and large 

order Zernike polynomials that describe MSF texture in chapters four and five.  

2.6.3 Forbes polynomials and connection to optical performance  

The RSS of the fit coefficients of Q-polynomials along Cartesian order t   is equal to 

the wavefront’s RMS slope. The RMS slope is related to image quality metrics such as RMS 

spot size [28]. The slope of the wavefront is related to transverse ray error through Eqn. 2.8.  
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where 'n  and 'u  are the image space index and marginal ray angle respectively, R is the 

image distance (radius of reference sphere), 
pr  is the physical pupil radius, 
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x




 are the wavefront’s slope in x and y [28].   

The RMS spot size is a common metric for the quality of an image point. The RMS spot 

size is the square root of the sum of the squares of each ray’s distance (in the transverse ray 

error) from the center of gravity of rays, divided by the total number of rays. The spot 

centroid relative to the reference image location is determined by averaging the ray errors. 
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A good measure of spot size is the RMS spot size where the rays’ locations relative to 

the spot centroid are summed over the pupil [28]. 
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(2.10) 

And the radial RMS spot size is 

2 2 2

R X YRMS RMS RMS 
                      

(2.11) 
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2.6.4 Structure function and connection to optical performance  

Atmospheric turbulence is usually characterized by structure function. The errors on 

telescope’s optics should be smaller than the atmospheric effects. Analyzing optical 

surfaces with SF provides means of comparing optical surfaces to atmospheric turbulence 

at all spatial length scales [55]. 

Structure function is also a complementary method for characterizing and representing 

the spatial content of the optical surface. Unlike PSD, SF does not require the pre-

processing steps of windowing and de-trending. Area SF provides a better visualization of 

the spatial content of the surface as a function of   (separation) compared to ACF [60]. 

For statistically stationary surfaces, SF can be connected to optical performance since SF 

is connected to PSD for such surfaces (Eqn. 2.4) and length scale measures can be obtained 

[64]. Stationary surfaces are constant in their statistical parameters over space. 

2.6.5 ACF and connection to optical performance  

For smooth and statistically stationary surfaces, ACF contains similar information as 

SF but since ACF depends on the mean-plane (piston), it is not a suitable representation for 

non-stationary surfaces where the statistical characteristics of any sub-aperture are position 

dependent [57]. For stationary surfaces that have the same sub-aperture statistical 

characteristics, the ACF is related to both SF and PSD (Eqn. 2.5). For stationary surfaces, 

a PSD can be obtained from ACF that is identical to the PSD from the profile.  

The Fourier transform of the autocovariance function provides the angular properties 

of scattered light from the surface [98]. The point spread function that is the image of a 

point source through the aperture, is the inverse Fourier transform of the optical transfer 

function. The optical transfer function is the autocorrelation of the aperture function that 
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contains the optical surface error information [25, 99]. The ACF is an important tool to 

characterize rough surfaces [63]. It is especially a useful representation for spatial variation 

in surfaces. 

2.7 Intuitiveness 

This feature of the mathematical analysis is very important. If the analysis is intuitive, 

the results can be easily interpreted by fabrication engineers and shop floor operators 

without requiring extensive training. Also, they will help the fabricator decide how to 

converge to specification by relating the characterization results to fabrication parameters 

such as tool radius and feed rate in diamond turning process, the tool size, and overlap in 

the programmed path of the polishing tool or size of the removal footprint in the MRF 

machine. Intuitiveness of the characterization method will make it more feasible to correct 

the fabrication process based on the analysis of the measured surface. If the analysis is 

intuitive, information about the length scale, magnitude, and type of the MSF texture will 

be easily obtained and extracted from the analysis. 

2.7.1 Intuitiveness of PSD 

PSD is the most common analysis for MSF texture due to its intuitiveness. PSD is 

intuitive in separating different spatial bandwidths of the surface and extracting the RMS 

of the surface through different spatial frequencies. It is also relevant to the surface 

scattering behavior and its optical performance [11, 96].  

2.7.2 Intuitiveness of Zernike polynomials analysis 

Zernike analysis is not currently intuitive for analysis of MSF texture without prior 

training for the shop floor engineers. However, Zernike analysis is readily intuitive for 

analysis of figure (form) errors and easily interpreted by fabricators. Additionally, the fit 
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coefficients of these polynomials can be added in quadrature to present the overall RMS of 

the surface. This condition is true if the polynomials are RMS normalized (orthonormal). 

C. J. Evans et al. have shown an intuitive way of representing the surface aberration in 

terms of Zernike polynomials. They have shown a part’s Zernike coefficients according to 

their radial and azimuthal orders. Then the non-rotationally symmetric terms are added in 

quadrature to give the amplitude of the aberration independently of its angular orientation. 

The same grouping is performed on azimuthal orders to provide angular frequency [88]. In 

the next chapter, we will show results of Zernike analysis on synthesized data in order to 

build some intuition to interpret Zernike analysis for MSF textures. We will show how it is 

possible to intuitively extract information about orientation, length scale and amplitude of 

the MSF texture. 

2.7.3 Intuitiveness of Forbes polynomial analysis  

Similar to Zernike analysis, Forbes polynomials for MSF analysis are not readily 

intuitive for fabricators without training on how to extract the relative information from the 

Q-spectra. Forbes has analyzed synthetic structures with the spectral method fitting to Q-

polynomials. The diagonal banding in the Q-spectra indicates a raster-like pattern. The 

highest ridge of the distribution happens at t=πC where C is the number of cycles across 

aperture [49, 100]. The Q-spectra can be filtered in terms of m  and t  for separation of 

angular and raster frequency respectively [49].  

2.7.4 Intuitiveness of structure function  

Since the SF is a direct statistical measure of the average height difference on the surface 

as a function of separation, its interpretation is more intuitive compared to the ACF. 
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However, for analysis of MSF texture, the structure function is less intuitive than PSD and 

polynomial analysis. The connection between SF and RMS gradient has been made in [64].  

2
2( 0) ( ) ,

2
RMS

r
SF r z  

                      
(2.12) 

Where 1 2r P P   and 1p  and 2p  are two different points on the surface. SF provides 

a better visualization of the spatial content of the surface as a function of separation and 

directionality compared to ACF. For stationary surfaces, the ASF and ACF are closely 

related. For non-stationary surfaces, there is no simple relationship between ASF and ACF. 

Therefore, a comparison of ACF and ASF can be used to differentiate a stationary and non-

stationary surface.  

2.7.5 Intuitiveness of ACF 

An intuitive and important parameter of ACF is the correlation length. The correlation 

length is the shift distance at which the ACF is equal to a fixed value typically 1/e (natural 

logarithm), 0.1 or zero [62]. In periodic structures, ACF reflects the same period as the input 

surface profile. Area ACF is the sum of terms each of which is the product of two amplitudes 

and as R. S. Sayles et al. pointed out is difficult to understand and not intuitive [57]. Area 

ACF is strongly dependent on the mean plane and computationally more intensive 

compared to area SF.  



66 

CHAPTER 3 : ZERNIKE POLYNOMIAL REPRESENTATION FOR SPATIAL 

FREQUENCY CONTENT OF OPTICAL SURFACES 

 

In this chapter, we investigate a Zernike polynomial representation for quantifying the 

mid-spatial frequency content of the surface. The chapter is organized into several sections. 

Section 3.1 is complementary to 1.3.2 and introduces Zernike polynomials in more detail.  

Section 3.2 includes a discussion on the recursive formulas for stable generation of high 

order Zernike polynomials. In section 3.3.1, we show the results of least square fitting to 

synthetic maps to build intuition on how to interpret coefficient plots. Zernike fits to data 

from measured surfaces with certain characteristics are shown in section 3.3.2. We will 

show the filtering capability of Zernike polynomials and present examples of filtered bands 

based on symmetry properties of Zernike polynomials. In 3.4, we will look at the phase 

between different filtered bands and their effect on the overall height map. In 3.5, there will 

be a discussion about the convergence of RMS fit residual to investigate the effectiveness 

of a Zernike polynomial representation for quantifying MSF and we will discuss limits of 

least square fitting.  

3.1 Zernike polynomials 

Any wavefront within a circular aperture can be described as a weighted sum of Zernike 

polynomials such as [101] 

( , ),
z z

z

m m

n n

n m

W Z   
                    

(3.1) 

and 
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where zn   are nonnegative integers and ( ( ) 0zn m   and even). In order to avoid 

confusion with Forbes polynomials, the Zernike radial orders are indicated with the 

parameter zn . The parameter m is related to the azimuthal frequency and the index zn  is 

the radial degree or the order of the polynomial because it indicates the highest power of 

 in the polynomial [102].  is the radial distance ( 0 1  ), and is the azimuthal 

angle between 0 and 2π. The radial polynomials ( )
z

m

nR  are defined as  
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(3.3) 

The normalization constant 
z

m

nN  is defined as  

1/2

0

1

,2( 1)
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n z

m
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N n
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where 

0

0, if 0
.

1, if 0
m

m

m



 


                         (3.5) 

The normalization constant makes the radial polynomials ( )
z

m

nR   normalized such that 

(1) 1
z

m

nR    for all values of zn   and m  . In RMS normalization, the polynomials are 

orthonormal, and the sum in quadrature of the fit coefficients is equal to the RMS of the 

surface. Expressed differently, the RMS of the fitted surface after subtraction of a specific 
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fitted term is given by the difference in quadrature of the fitted surface and the specific 

term. An orthonormal set of functions 0 1( ),  ( ),  ..., ( ) lx x x   is defined by the relation 

,  ( ) ( ) d (x) ,  
  

,  0,  1,  2,  ..., .

b

n m n m nm

a

x x

n m l

      




                      

(3.6) 

Here, the functions ( )n x  are real valued and linearly independent [103].  

There are different indexing schemes for Zernike polynomials, single indexing and double 

indexing [104]. The most common double indexing schemes are given by Born and Wolf 

(sometimes referred to as standard ordering) and by Loomis (referred to as Fringe ordering) 

[47, 48]. In this dissertation, we use the standard Born and Wolf double indexing scheme 

unless stated otherwise. Describing a surface using the RMS normalized Zernike 

polynomials, has the advantage that each coefficient represents the contribution of that 

specific polynomial.  Table 3.1 shows the Zernike polynomial sequence, orders one 

through seven using standard ordering. Please note that the azimuthal order m  in Table 

3.1 is indicative of sin( )m   and the RMS column is indicative of the normalization factor 

in Eqn. 3.4. 

 

 

 

 

 

 

 



69 

Table 3.1 Zernike polynomials in Polar coordinates (the standard set) [45]  

nz m  Sets RMS Orthogonal polynomials Aberration 

names 

0 0 0

0Z  2  1 piston 

1 -1 1

1Z 

  2 sin    tip 

1 1 1

1Z  2 cos    tilt 

2 -2 2

2Z 

  6   
2 sin 2    astigmatism 

2 0 0

2Z  3   
22 1    Power (defocus) 

2 2 2

2Z  6   
2 cos2    astigmatism 

3 -3 3

3Z 

  2 2   
3 sin3    trefoil 

3 -1 1

3Z   2 2   
3(3 2 )sin     coma 

3 1 1

3Z  2 2   
3(3 2 )cos     coma 

3 3 3

3Z  2 2   
3 cos3    trefoil 

4 -4 4

4Z 

  10   
4 sin 4     

4 -2 2

4Z 

  10   
4 2(4 3 )sin 2      

4 0 0

4Z  5   
4 26 6 1      

4 2 2

4Z  10   
4 2(4 3 )cos2      

4 4 4

4Z  10   
4 cos4     

5 -5 5

5Z 

  2 3   
5 sin5     

5 -3 3

5Z 

  2 3   
5 3(5 4 )sin3      

5 -1 1

5Z 

  2 3   
5 3(10 12 3 )sin        

5 1 1

5Z  2 3   
5 3(10 12 3 )cos        

5 3 3

5Z  2 3   
5 3(5 4 )cos3      

5 5 5

5Z  2 3   
5 cos5     

6 -6 6

6Z 

  14   
6 sin 6     

6 -4 4

6Z 

  14   
6 4(6 5 )sin 4      

6 -2 2

6Z 

  14   
6 4 2(15 20 6 )sin 2        

6 0 0

6Z  7   
6 4 220 30 12 1        

6 2 2

6Z  

 

 

14   
6 4 2(15 20 6 )cos2        

 

 

 

 

 

 

6 4 

 

 

 

4

6Z  14   
6 4(6 5 )cos4      

6 6 6

6Z  14   
6 cos6     

7 -7 7

7Z 

  4 7 sin 7     

7 -5 

 

 

 

5

7Z 

  4 7 5(7 6 )sin5      

7 -3 3

7Z 

  4 7 5 3(2 30 10 )sin3        

7 -1 1

7Z 

  4 7 5 3(35 60 30 4 )sin          

7 1 1

7Z  4 7 5 3(35 60 30 4 )cos          

7 3 3

7Z  4 7 5 3(2 30 10 )cos3        

7 5 5

7Z  4 7 5(7 6 )cos5      

7 7 7

7Z  4 7 cos7     
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Figure 3.1 Zernike polynomials (standard set) (n≤7, m≤7) [45]. 

 

3.2 Recursive generation of high order Zernike polynomials 

The radial part of Zernike polynomials is described mathematically by explicit formulas 

as in Eqn. 3.3. However, these explicit formulas will result in numerical instability for 

higher orders [87]. Even with using double precision calculations, the results become 

extremely large especially for values of 1  [87]. This is due to the fact that for 1     

the significant digits get lost due to cancellation in the explicit method. There are about 16 
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significant digits in a double precision floating point number that occupies 64 bits in 

computing memory. On the other hand, when using recursive formulas, the rounding error 

introduced in the thn  step only contributes an error n np  to the final result which does 

not increase the errors in the following steps. This is because the error introduced during the 

calculation of each term follows the same recurrence relation as the polynomials itself [105]. 

In order to describe a freefrom surface completely through low order out beyond the mid-

spatial frequency region, very large orders of polynomials are required. To achieve 

numerical stability, recurrence relations should be applied to avoid round-off errors. G. W. 

Forbes and I. Kaya et al. have taken this approach to fit to high orders of polynomials [49, 

93].  Zernike polynomials are related to Jacobi polynomials as described in Eqn. 3.7 [86]. 

Jacobi polynomials can be derived using a three-term recurrence relation shown in Eqn. 3.8. 

The first two terms in the recurrence relation can be found in Eqn. 3.9. The coefficients 

, ,n n na b c are described in Eqns. 3.10 to 3.12 [106]. Using recursive Jacobi polynomials for 

generation of robust and large order Zernike polynomials was first introduced by G. Forbes 

[87].   

(0, ) 2
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( ) (2 1)
z z

m m m

n n mR P                          (3.7) 

1 1( ) ( ) ( ) ( )n n n n n nP x a b x P x c P x                     (3.8)  
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
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   
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  
                     (3.11) 



72 

( )(2 2)

( 1)( 1)(2 )
n

n n m n m
c

n n m n m

  


   
                   (3.12) 

The radial order n (shown as zn ) in Zernike polynomials is related to the radial order 

in Forbes’ representations, 
fn through the relation 

2

z
f

n m
n


  [107]. The consequences 

of not using recurrence relations for high-order Zernike polynomials are illustrated in 

Figure 3.2 of reference [87] and Figure 2 of reference [107]. Figure 3.2 shows plots of high 

order rotationally invariant Zernike polynomial 0

25( )Z x  in the range of 0.95 1x   [87].   

 

                 

Figure 3.2 Plots of high order rotationally symmetric Zernike polynomial 0

25( )Z x in the 

range of 0.95 1x  . The red curve on the left shows the correct plot of 0

25( )Z x and the 

green curve is 1014 times the errors produced by recursive formulas. The blue curve on 

the right shows the catastrophic error when using explicit equations [87].    

 

Figure 3.3 (a) is an example of a high-order Zernike polynomial generated using the 

recursion formulas. In Figure 3.3 (b) we show the difference in the peak to valley (PV) 

amplitude of Zernike maps generated using explicit formulas vs. recursive formulas such 

that 
( ) ( )

( )

z z

z

z

m m

n explicit n recursivem

n m

n recursive

PV Z Z
h

PV Z

  
 
 

. This map represents the fractional error in the PV 

normalized by the recursive value. It also represents the extent to which the explicit method 

is valid. The explicit formulas start to become unstable from 40zn  . The areas where the 

maximum amplitude of explicitly generated polynomials are more than 10 times larger than 
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the maximum amplitude of recursively generated polynomials (the correct values) are set 

to the same dark red color to show a clear boundary where the explicit generation method 

is invalid.  

 

                 

Figure 3.3 (a) Illustration of high- order Zernike polynomial 4

50 ( , )Z    using the 

recursive generation approach. (b) Each data point in this map is the difference in the PV 

amplitude between the explicit and recursive generated Zernike polynomials of radial 

order zn  and azimuthal order m . 

 

We have used least-square fitting methods to calculate the fit coefficients of Zernike 

polynomials. Fitting to large order Zernike polynomials here is carried out in a sequential 

manner to minimize error. i.e., each polynomial term multiplied by its fit coefficient is 

subtracted from the map before performing the next fit. The results of mid-spatial frequency 

characterization using Zernike polynomials are presented in section 3.3.  

                

3.3 Mid-spatial frequency representation using Zernike polynomials  

Using large order Q-polynomials for capturing mid-spatial frequency was first reported 

by G. Forbes [49, 84]. In this section, pure sinusoidal patterns are fit to high orders of 

Zernike polynomials. These synthetic maps resemble mid-spatial frequency patterns left as 

a result of different freeform fabrication processes. Raster, ring-like and spokes patterns 
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410

510
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can be generated as a result of different manufacturing processes. The intent of our analysis 

is to find out how Zernike polynomials describe a different aspect of MSF structure such 

as type (raster, ring-like, etc.), orientation, length scale of the period, magnitude of different 

length scales and their relative phase. When possible, we will also compare Zernike 

analysis of MSF with Forbes Q-polynomials.  

As mentioned earlier, surface errors within circular apertures can be described by Eqn. 

3.1 that can also be written as 

( ) cos( ) sin( ) .
z z z

z

m m m

n n n

n m

W R m m       
                

(3.13) 

 The coefficients 
z

m

n  and 
z

m

n  are calculated for high orders of Zernike polynomials for 

a range of signature specific surfaces. The result of the fit can be displayed with a 

coefficient map. The root sum square (RSS) of the corresponding α and β coefficients are 

calculated.    
2 2

z z

m m

n n    of different orders are plotted using Forbes indexing 

scheme, i.e. the coefficients are shown for 
fn  and m  [49]. 

z

m

n  is related to cos terms 

( 0m  ) and 
z

m

n  is related to sine terms ( 0m  ). The Cartesian order associated with 

these coefficients is described by [51, 84]:.  

2 4, 0,

2 , 0.

n m
t

n m m

 
 

                           
(3.14) 

The Cartesian order t  is indicative of degrees of freedom for describing a freeform 

surface using polynomials of those order. The RSS of α and β coefficients is the same as 

z

m

n  in Eqn. 3.1 and it shows the amount of each Zernike term in the wavefront for both 

( m ) terms. All 
z

m

n  can be added in quadrature to provide the total RMS of the surface. 
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Fit coefficients of synthetic and real maps are calculated for 300 orders of Zernike 

polynomials (45451polynomial terms). Fit coefficients that are smaller than 0.001 

nanometers are not displayed in the maps.  

3.3.1. Synthetic data, pure periodic maps 

The first synthetic map we discuss is a vertical linear sinusoidal pattern with 25 cycles 

across the aperture with the height map 
max

25
sin( )

x
z





    where the initial phase  is 

4 . For vertical or horizontal sinusoidal patterns, the values of 
fn  and m  where the 

coefficients are largest happen at unique values corresponding to the length-scale of the 

periodicity. For 25 cycles over the aperture, the peak value corresponds to Cartesian order 

t ≈ 75. This is along a diagonal in the 
fn  and m  map as shown in Figure 3.4. G. Forbes 

calculated the Q-spectra of the same sinusoidal map to compare the efficiency of Q-

polynomials for describing MSF to Fourier methods [49]. He observed that the highest 

ridge of Q-spectra occurs near t C   where C  is the number of cycles across the 

aperture [49]. The Zernike polynomial representation shows the same peak characteristics 

at the same Cartesian order. This is not surprising, given the similarities between these two 

polynomial descriptions. The PV of the height error in Figure 3.4 (a) is 2 µm with the RMS 

of 0.71 µm. We have calculated the root sum square (RSS) of the coefficients for different 

values of t  diagonally. Figure 3.4 (c) shows that the RSS of the fit coefficients peaks at a 

thick band around 75t  . It is interesting to notice that the RSS plot shows that the RSS 

drastically drops after the peak but not before the peak at 75t  . 
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Figure 3.4 (a) Height map of sinusoidal raster pattern with 25 cycles within the aperture. 

(b) Fit coefficient plot resulted from fitting the map on the left to 120 orders of Zernike 

polynomials (7381 terms of basis elements). The peak of the coefficients occurs at 

Cartesian order 75t  . (c) The highlight of the peak of diagonal band. 

 

To calculate the magnitude of the 25C  , we have calculated the RSS along the thick 

band of 73 78t   shown in Figure 3.5 (a). The amplitude of this band is 0.47 µm which 

is about 67% of the total RMS of the surface. The thick band in the coefficient map (rather 

than a sharp band/peak) is a sign that the polynomials are not a particularly natural basis 

set for a periodic-like structure such as raster-like patterns. For comparison with Q-spectra 

please refer to Figure 3 in reference [49]. 

In order to speculate on the effectiveness of this method in providing information on 

the length scale and amplitude of the structures on the surface, we can compare this analysis 

to PSD that is the most common approach in retrieving the surface finish parameters. 

Looking at the PSD of a linear trace across Figure 3.4 (a), we see a peak at 
1

12.5xf
mm

  

that is equal to the spatial period of 0.08mm  . The area under the PSD curve is equal 
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to the square of the RMS of the surface ( 2 ) and can be computed numerically [62]. An 

alternative approach to finding RMS of the surface at a specific frequency band is applying 

a band-pass Fourier filter to the surface and calculating the RMS of the results.  

 

                 

Figure 3.5 (a) RSS of diagonal bands along Cartesian order t  of the coefficient map of 

sinusoidal raster pattern with 25 cycles across the aperture. (b) Linear PSD of the same 

sinusoidal raster pattern.  

 

The coefficients of Zernike polynomials are also calculated for a radial sinusoidal pattern 
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a sharp one and the values at  34fn   and 37fn   are very close to 38fn  . As 

expected, calculating the RSS of the coefficients for rotationally invariant terms i.e. along 

0m   provides a value of 0.71 µm that is the same as the directly calculating the RMS of 

the surface with a PV of 2 µm.  

                 

Figure 3.6 (a) Radial sinusoidal pattern with 26 cycles across the aperture. (b) The 

peak of the coefficients happens at rotationally invariant terms or 0m  . (c) 

Coefficients along 
fn  show a peak at 38fn   that corresponds to 26 cycles 

across the aperture. RSS along 0m   gives a value of 0.71 µm that is the same as 

RMS of the sinusoidal pattern calculated directly. 

 

For a spokes pattern, the peak of the distribution is at an azimuthal order m , where 

m  equals the number of azimuthal periods in the map, in this case at 9m  . This follows 

from the definition and symmetry of the Zernike polynomials. The largest coefficient in 
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the 9m   band happens at 0fn  ( 9zn  ). The amplitude of coefficients gradually 

decreases for higher orders of fn . RSS of the coefficients along 9m   in Figure 3.7 (b) 

is 0.71 µm that is the same as the RMS of the surface calculated directly.  

The results of fitting synthetic maps to high orders of Zernike polynomials provides 

information on the type, length scale and amplitude of MSF signatures through coefficient 

maps. Raster, ring-like and spokes patterns have diagonal, rotationally invariant and 

vertical peaks in the coefficient maps, respectively. The length scale or number of cycles 

across the aperture can be estimated from the location of the peak of the coefficients at 

Cartesian order t  or the number m  for spokes patterns. The amplitude of the dominant 

features can be derived through RSS of the peak values of the coefficients. Forbes Q-

polynomials behave similarly when used to describe MSF error [49]. The Zernike 

coefficients can be used to estimate the RMS of the height map whereas the Q-spectra 

(coefficients of Q-polynomials) give access to RMS gradient [50]. 

 

                 

Figure 3.7 (a) Spokes pattern with 9 cycles across 2 azimuthal angle. (b) A coefficient 

peak occurs at 9m  . 
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In Figure 3.8, the Q-spectra associated with some synthetic sinusoidal maps are plotted. 

The Q-spectra of the vertical sinusoidal map with 25 cycles across aperture -Figure 3.8 (a)- 

is very similar to the Zernike coefficient plot of the same surface map. You can see a thick 

band of large values and the location of the dark peak is at the same Cartesian orders. For 

the radial patterns, the peaks happen at 0m   and that’s the same case for Zernike 

polynomials. For spokes patterns similar to Figure 3.7 (a), due to the harsh singularity of 

the error map at the origin, instead, as suggested through personal communication with G. 

W. Forbes, the Q-spectra of the function 
9 cos(9 )    is calculated. The Q-spectra of 

these maps were calculated using an open-source Python package that implements the 

algorithm described in reference [49] [49, 108]. The Zernike coefficients can be used to 

estimate the RMS of the height map whereas the Q-spectra (coefficients of Q-polynomials) 

give access to RMS gradient [49, 100].  
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Figure 3.8 Q-spectra of (a) vertical sinusoidal map with 25 cycles across aperture with an 

initial phase of / 4 . (b) Radial sinusoidal map with 26 cycles across aperture. (c) 

Spokes pattern with 9 spokes.  

 

3.3.2. Measured surfaces 

In this section, there are examples of fit coefficient amplitude plots of measured 

surfaces with different MSF texture and orientation. These surface errors have been 

selected from the pool of in-house manufactured samples at UNC Charlotte and samples 

provided by industry affiliates due to their representative MSF characteristics. For example, 

the data in Figure 3.9 (a) shows MSF errors that are dominated by azimuthal and spoke-

like texture, whereas in Figure 3.11 (a) and Figure 3.13 (a), the MSF errors have radial and 

linear texture, respectively. Units are in nanometers in all real surface maps.  

(a)

(b)

(c)
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Figure 3.9 (a) shows the error map of an aluminum diamond turned part and Figure 3.9 (b) 

shows its coefficient map. It is interesting to observe that there are several azimuthal 

frequency peaks in this map. Figure 3.9 (c) shows the RSS of the coefficients along each 

azimuthal frequency where we can clearly read the location and RMS amplitude of each 

azimuthal frequency. The dominant azimuthal frequencies in this map are at m=0, m=14, 

m=15, m=22, and m=24 with RMS amplitudes of 31.6 ,  9.1 ,  4.1 ,  3.1 nm nm nm nm  and 

7.4 nm , respectively. Although extracting information about length scale and amplitude of 

pure sinusoidal structures is straightforward from the PSD representation, it is not 

straightforward for real surfaces like the one in Figure 3.9 (a). Aside from the pre-

processing steps and loss of information on the low order form errors due to detrending, 

extracting information about length scale and amplitude of mid-spatial frequencies involve 

slicing through the two-dimensional PSD or integrating the two-dimensional PSD into a 

one-dimensional PSD [41, 42]. In order to do so, prior insight into the direction of MSF 

texture is required. For example, selecting a horizontal slice of two-dimensional PSD is 

suitable for linear MSF texture but will not provide information on the spokes patterns 

present in the surface. 
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Figure 3.9 (a) Error map of aluminum diamond turned part with dominant spokes patterns 

of different frequencies. (b) Zernike fit coefficient map of the surface in (a). (c) RSS 

Zernike coefficient map revealing the peaks at different azimuthal bands. Units are in nm. 

 

In order to showcase the varying azimuthal frequency content of the error map in figure 

3.9 (a), we have selected different azimuthal bands of the structure shown by the dashed 

line in figure 3.9 (b). The RMS of the filtered surfaces at different bands of 0 8m   , 

9 15m   , 16 27m  , and 28 m  are 33.9, 10.3, 9.2 and 5.3 nm respectively. Within 

each band in Figure 3.10, you can see the superposition of close azimuthal frequencies with 

different phases. 
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Figure 3.10 (a) Rotationally invariant terms and all the other azimuthal terms between

0 8m   with 33.9RMS nm  . (b) Azimuthal orders 9 15m   with 10.3RMS nm  . 

(c) The band containing azimuthal orders between 16 27m   with 9.2RMS nm  . (d) 

The azimuthal bands of 28 m  with 5.3RMS nm  . 

 

Figure 3.11 (a) is an error map of a silicon carbide (SiC) spherical mirror, and the 

corresponding coefficient map is shown to the right. Aside from the dominant presence of 

large low-order coefficients in the left upper corner due to the form errors, there are 

rotationally invariant terms that extend to large radial orders of fn . Looking at the 

coefficient map, the absence of any linear structure and spokes-like patterns are verified 

since there are no diagonal or vertical peaks in the coefficient map. This structure is a 

signature of a turning process and thermal cycles of the process that usually have a larger 

33.9RMS nm 

     

10.3RMS nm 

9.2RMS nm 

(a)
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length scale. In Figure 3.12 (a) you can see the separation of rotationally invariant terms 

from the surface. Even after removing the ring-like structure, there is no raster pattern 

present in the error map. As shown in Figure 3.12, the RMS of the surface is 26.4 nm for 

0m   terms. For the non-rotationally invariant content of the surface, the RMS is 24 nm. 

                 

Figure 3.11 (a) The error map of SiC sphere with radial patterns. (b) The RSS Zernike 

coefficient plot revealing the dominant form errors and rotationally invariant terms. 

 

 

                 

Figure 3.12 (a) Rotationally invariant terms in the height map of SiC sphere with RMS of 

26.4 nm. (b) The non-rotationally invariant content of SiC sphere with RMS of 24 nm. 

 

The MSF content in the surface of Figure 3.13 (a) shows signatures of raster-like 

patterns, and the presence of diagonal peaks in the coefficient plot verifies that. The peaks 

for this map occur at certain Cartesian orders such as 29,44,59,67,112t  . These peaks 

correspond to approximately 9, 14, 19, 21 and 36 cycles across the aperture that can be 
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related to machining process parameters such as step-over in the programmed tool path and 

the geometry of the tool tip in the milling machine. The astigmatism coefficient 
2

2


 is 

set to zero for better visibility of higher-order coefficients in Figure 3.13(b). G. Forbes has 

calculated the Q-spectrum of the same surface and also observed diagonal peaks in the 

coefficient map [100]. We see the same characteristic in the Zernike spectrum. G. Forbes 

has isolated different length scales of this data by filtering different diagonal bands of along 

Cartesian orders of t  [100]. Using a bi-linear interpolation has enabled fitting to 250 

orders of Q-polynomials [100]. We have isolated different length scales of the surface in 

Figure 3.13 (a) along different Cartesian orders. The RMS of the filtered surfaces at 

different bands of 13,t  25 30t  , 35 45t  , and 105 115t   are 270, 10.9, 7 

and 5 nm respectively. The RMS values of isolated maps for the same bands using Q-

polynomials are 270, 11, 6.8, and 4.6 nm respectively [100]. These values are very similar 

and the small differences might be due to the interpolation process during the Q-polynomial 

fitting or other pre-processing choices. For comparison of filtering this data using Q-

polynomials, please see Figure 3 in reference [100]. 

                

Figure 3.13 (a) Error map of Ge sphere with raster-like MSF structure. (b) The RSS 

Zernike coefficient map reveals raster patterns at certain Cartesian orders of t  peaking 

diagonally in the coefficient map. 
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Figure 3.14 (a) Surface maps showcasing different diagonal bands of the germanium 

sphere in Figure 3.13 (a). (a) Diagonal bands of 13t   with 270RMS nm  . (b) 

Cartesian orders of 25 30t   with 10.9RMS nm  . (c) Cartesian orders between  

35 45t    with 7RMS nm  . (d) Cartesian bands of 105 115t   with 

5RMS nm  . 

 

3.4 Phase, orientation of spatial frequency components 

The coefficient maps provide information on the type and amplitude of the MSF texture 

but do not provide any information on the orientation of the MSF texture. In principle, this 

information is contained in the relative weighting of the sine and cosine terms in the 

Zernike representation. That is, if the surface is composed of multiple length scales or 

frequency components, then the relative phase between the constituent spatial frequencies 

in the azimuthal   direction can be extracted through an additional step.  Eqn. 3.13 can 

be rewritten as 
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 ( ) cos( ).
z z z

m m m

n n n

n m

W R a m     (3.15) 

where 
z

m

n  is the relative phase between m  and m  terms, or simply the clocking of 

each term, and can be calculated through the relation 1tan ( )z

z

z

m

nm

n m

n






 .  

Figure 3.15 (a) shows two spokes patterns with dominant azimuthal frequencies of  

5m   and 9m  . Figure 3.15 (c) shows the superposition of these spokes patterns with 

different relative phases. As can be seen in Figure 3.15 (b), the fit coefficient plots of all 

three height maps are the same, but the relative phase between 5m   and 9m   gives 

rise to the different height maps in (c). In Figure 3.15 (d), we have calculated the phase 

between the 5m    and 9m    terms of the surface maps shown in (c) using 

1tan ( )z

z

z

m

nm

n m

n






 . From this example, it is clear, the fit coefficient maps are not sufficient 

to retrieve the correct height maps and that there is degeneracy in the coefficient values. 
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Figure 3.15 (a) Two spokes patterns with azimuthal frequencies of 5m   and 9m  . (b) 

The resulting coefficient map of the combined map (superposition of maps in part (a)). 

(c) Different surface maps constructed by superposition of maps in part (a) with different 

relative phase. (d) Illustration of the phase difference in surface maps of part (c). 

 

Applying the same ideas to the surface height map of Figure 3.9 (a) provides the phase 

representation, as shown in Figure 3.16. Due to the symmetry properties of Zernike 

polynomials, rotation of a 
z

m

nZ 
  by an angle 

2

m


  (clockwise or counter-clockwise), 

provides the same polynomial map. Therefore, in order to find the smallest angle between 

azimuthal orders of m , we have also calculated 
2

( , )
z

m

eff nrem
m


   where rem  is the 

remainder after division (shown in Figure 3.16 (b)). The larger values of m  have higher 

azimuthal symmetry and therefore eff  becomes smaller. The larger angles show more of 

positive or cos( )m  terms and smaller angles show more of negative or sin( )m  terms. 

To have meaningful results, for coefficients that are smaller than one-hundredth of a 

nanometer, the phase is set to zero to avoid small values in the denominator. This value is 
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below the noise level in the interferometer. For complicated textures like the one in Figure 

3.9 (a), the coefficient phase map appears to be of limited use. However, looking at the 

selected azimuthal bands of the same surface as shown in Figure 3.10, it is obvious that the 

phase of neighboring azimuthal orders has an effect on the height map and overall RMS of 

the surface. 

 

                 

Figure 3.16 Illustration of phase for fit coefficients of the surface map in Figure 3.9 (a) 

For absolute phase calculated as 1tan ( )z
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3.5 Convergence of fit residuals 

The traditional understanding is that the least square fitting methods are ill-conditioned 

especially for calculating large order coefficients of Zernike polynomials. J. Y. Wang and 

D. E. Silva have shown that least square matrix inversion methods provide numerically 
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stable results despite the conventional belief [109]. They have shown that both methods, 

the Gram-Schmidt method, and the least-squares method give similar results. If the surface 

is not sampled properly, they will both become unstable [109]. It is common to sample the 

dataset and increase the number of samples as the number of basis elements goes up. For a 

reasonable fit, the number of samples N  and the highest order of polynomials in the fit 

n   are related to each other through 29N n   [93]. For example in [93], Kaya et al. 

increased the number of samples from 226 to 54845 as the number of Zernike polynomial 

terms goes up from 19 to 3319. They compared Zernike polynomials and Forbes Q-

polynomial in terms of describing a freeform surface shape. They showed that using an 

edge-clustered grid will improve the efficiency of the fit for both polynomials and that 

Zernike and Q-polynomials are equally effective in describing freefrom shapes when 

placed on a base conic section [93]. 

We have kept track of the RMS of fit residuals as fitting to a higher number of terms. 

As the number of basis elements goes up, the RMS of fit residuals becomes smaller, and 

the rate at which the RMS of fit residuals drops reflects how well the Zernike representation 

isolates or captures the MSF texture or how much of the surface is comprised of form and 

MSF errors. In general, we see that the residual drops with increasing fit order rather slowly. 

As the number of terms is increased to capture more and more completely the MSF texture, 

eventually the Nyquist sampling limit near the edge of the aperture is violated.  That is, 

the zero crossings of the Zernike polynomial at the aperture edge become more closely 

spaced than the pixels in the data. For a Zernike polynomial of order zn  and m , there are 

( ) 2zn m  distinct roots in  0 1   region [110]. For example, for 
4

200Z , there should 

be 98 roots in 0 1   whereas for the generated polynomial using a 1000x1000 uniform 
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grid, there are 93 zero crossings and five roots are already missing as shown in Figure 3.17. 

This impacts orthogonality and is discussed below. Interpolating our data to a non-uniform 

grid such as an edge-clustered [107] would enable robust fitting to even higher orders of 

polynomials. The RMS fit residual for 5151 basis elements (terms) for the germanium 

sphere in Figure 3.13 (a) is 13.6 nm. The RMS fit residual of the same surface for 20301 

basis elements is 10.4 nm. This shows a 1% drop in RMS fit residual for an increase of 

400 % in the number of basis elements. The RMS drops further to 7.8 nm after removing 

45451 terms. The results of the RMS fit residual and the fit residual maps for the 

germanium sphere data are shown in Figure 3.18.  

 

                 

Figure 3.17 A large order Zernike polynomial 4

200Z . In this polynomial, the number of 

zero crossings between 0 1   for a continuous case is 98. For a limited sized data 

such as 1000x1000 pixels, there are only 93 zero crossings in 0 1  .  
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Figure 3.18 The evolution of RMS fit residual vs. number of basis elements. The RMS fit 

residual for 5151 basis elements is 13.6 nm, for 20301 basis elements is 10.4 nm, and for 

45451 terms is 7.8 nm. 

 

                 

Figure 3.19 Uniform and Edge clustered sampling in fitting a parabola with a bump at 

the edge to Zernike polynomials and Forbes Q-polynomials [93]. 

 

Zernike polynomials are orthogonal to arbitrary large orders if the datasets are 
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limited to a certain number of pixels, an approximation to orthogonality breaks down at 

extremely large orders. One consequence of orthogonality is that the fit coefficients remain 

the same regardless of the number of terms being used for the fit. One way to check this 

condition is to calculate the RSS of the fit coefficients plus the square of RMS residual 

map ( res ) i.e. 2 2( ) ( )
z

m

fit n res

n m

a    as a function of the number of terms in the 

fit.  This value should remain constant and should be equal to the RMS of the surface as 

shown in Figure 3.20 for an orthogonal representation. This quantity is reasonably constant 

in our analysis with deviations of less than 1 nm, suggesting orthogonality is reasonably 

well maintained over much of our fitting range. In Figure 3.20, the difference between 
fit  

and the RMS of the surface stabilizes after about 90 terms fit and then increases after about 

20,000 terms. The fact that this difference is not a constant is a consequence of non-

orthogonality over the discrete dataset. The increase of the difference between 
fit  and 

the RMS of the surface after stabilizing may be the onset of a significant breakdown of 

orthogonality as a consequence of low data density compared to the spacing between 

adjacent zero crossings. 
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Figure 3.20 Check for orthogonality of polynomials up to 45451 terms. The difference 

between fit  (pink curve) and the RMS of the surface is less than a nanometer across 

45451 terms. 

 

The Zernike polynomials generated using the recursion formulas in this work extend 

to more than 45,000 terms and represent a unique possibility for characterization of MSF 

on freeform surfaces. We discussed how well Zernike polynomials describe different 

aspects of MSF structures such as type (raster, ring-like, etc.), orientation, length scale of 

the period, magnitude of different length scales and their relative phase. Although 

extracting information about length scale and amplitude is possible through PSD, it 

involves slicing through the two-dimensional PSD or integrating the two-dimensional PSD 

into a one-dimensional PSD in addition to the pre-processing steps such as windowing and 

detrending, hence losing information on the low order form errors and anisotropy of MSF 

texture. Unlike area PSD where we can see all the frequency peaks in the data, the 

polynomial representation is limited to the number of orders and will limit capturing the 

high-frequency content of the surface depending on the number of basis elements used. For 
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example, in the germanium sphere using area PSD, there is a peak at 27(1 )mm . This 

corresponds to 216 cycles across the aperture and in order to capture that frequency with 

Zernike polynomials, 340 orders would be required. However, unlike Fourier methods, 

polynomial coefficient distributions provide a different insight into the signatures of MSF 

texture. Such information can be useful in the specification and predicting the effects of 

MSF on optical performance. We have observed that Zernike and Forbes Q-polynomials 

have similar characteristics in representing mid-spatial frequency content of the surface. 

The RSS of Zernike-fit coefficients give access to RMS wavefront error that is directly 

related to the Strehl ratio [111] and RSS of Q-polynomial coefficients provide the RMS 

gradient of the wavefront that is related to the ray transverse error [28]. The key to 

performing a robust fitting to both polynomials is the use of recurrence relations [87]. 

Polynomial fitting methods open the door to spatial frequency filtering and isolation of 

specific MSF textures with different orientations caused by different fabrication processes, 

and they provide an interesting tool for quantifying and specifying MSF in manufacturing, 

design, and conformance testing. 
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CHAPTER 4 : OPTICAL PERFORMANCE 

 

In this chapter, we introduce optical performance metrics such as Strehl ratio and 

modulation transfer function (MTF) and will show examples of those metrics when there is 

MSF texture on the surface. The goal is to have an ideal analysis method to isolate the 

surface data so that designers can incorporate it in their tolerancing. This will then allow for 

a clear quantitative specification, where the designer has confidence that meeting a 

specification threshold will guarantee adequate optical performance, and the fabricator 

making the surface has a way of measuring and applying a conformance test to the part. We 

will investigate how Zernike polynomials can be used for tolerancing of mid-spatial 

frequencies in the next chapter.  

All optics should be toleranced before manufacturing. The tolerancing should guarantee 

the performance requirement and minimize the cost of manufacturing at the same time, and 

these two are usually contradictory [14]. In general, performance metrics are application 

specific and can be grouped based on the fields of illumination, imaging or beam shaping. 

Common metrics for optical performance in imaging systems are RMS spot size, encircled 

energy and Strehl ratio. MTF can be used by specifying a certain MTF value at a specific 

spatial frequency or over a specific frequency band. J. Tamkin recommends using the 

maximum drop in MTF from the nominal performance for specifying MSF surfaces [15, 

24]. Different frequency components of the surface have different scattering characteristics.  

Form errors do not affect the nodes of point spread function, they only affect Strehl ratio 
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and reduce the peak intensity. High spatial frequency or roughness, does not change the 

distribution of light between different orders, but rather reduces the peak of all orders 

equally. Mid-spatial frequency errors are grating-like structures and affect the distribution 

of light into different orders. These effects can be dramatic and significantly impact 

performance. Examples are shown in Figures 4.1 to 4.3.  

The optical reflection or transmission characteristics of a surface are directly impacted 

by the surface geometry, and they are a direct measure of optical performance.  In the limit 

of a relatively smooth surface that is stationary, a clear relationship exists between measured 

scatter and the power spectral density (PSD) of the surface and hence surface topographical 

features [36]. These assumptions are not valid for surfaces with MSF texture [36]. 

In imaging applications, the modulation transfer function (MTF) is the most common 

way to predict image quality. The MTF provides insight into the spatial response of an 

imaging system. For surfaces with significant MSF texture, the RMS or Strehl ratio metric 

may not capture the performance degradation, and the more detailed information contained 

in an MTF is likely the more suitable approach [15, 24]. Marioge et al. have applied a 

rotational periodic MSF structure to a surface near the pupil. The resulting MTF plot in the 

image plane shows oscillations. They have used the autocorrelation function to obtain these 

curves [112]. S. Shikama is one of the first authors to investigate the effects of structured 

spatial frequencies on the image plane. He has used the commercially available software 

ZEMAX for his simulations, which is based on geometrical ray tracing [113]. In the 

following sections, we will analyze the impact of MSF texture on the point spread function, 

the Strehl ratio and the MTF response of the system. Our analysis extends this work and 
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performs these calculations on a range of measured and virtual surfaces, using MATLAB 

and the commercially available software MetroProX (MX v6.3.0.4).    

4.1 Point spread function, modulation transfer function, and Strehl ratio 

The point spread function (PSF), or the impulse response, indicates the characteristics 

of the image of a point source [25]. The wider the PSF, the poorer the imaging resolution. 

Asymmetry in PSF causes image distortion. PSF of a system is impacted by both diffraction 

and aberration.  

The modulation transfer function is the magnitude response of the optical system to 

different spatial frequencies [114]. In other words, it is the magnitude of the optical transfer 

function (OTF) of the system and is a measure of how well the system can resolve different 

spatial frequencies. The coherent transfer function (amplitude transfer function in [25]) is 

the Fourier transform of the point spread function (amplitude impulse response),  

( , ) ( , )exp[ 2 ( )]u v x yH f f h u v j f u f v dudv




    .
            

(4.1) 

The incoherent transfer function is the normalized autocorrelation function of the 

amplitude transfer function defined as [25] 

2

2

( , ) exp[ 2 ( )]

( , ) .

( , )

x y

u v

h u v j f u f v dudv

f f

h u v dudv










 


 

            
(4.2) 

Therefore,  

2

2

{ ( , ) }
( , ) ,

( , )

u v

h u v
f f

h u v dudv








                        
(4.3) 

where ( , )h u v  is the PSF.  
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Most MTF plots contain the diffraction-limited MTF line for reference and MTF graphs 

for several field points. The OTF of a diffraction limited system with a circular pupil 

2 2

( , ) ( )
xp

x y
P x y circ

w


   for incoherent illumination is  

2

0

0 0 0

2
arccos( ) 1 ( ) 2

( ) ,2 2 2

0 otherwise

  
 

    

  
    

    



          (4.4) 

where  

0 .
xp

xp

w

z



      

                       
(4.5) 

MTF is easy to measure and the aggregate MTF of several subsystems is the 

multiplication of their individual MTFs if each subsystem operates independently [114].  

Strehl ratio is another common performance metric for imaging systems and is the ratio 

of the central irradiance (or PSF) for an aberrated pupil to its value for an unaberrated pupil 

(Eqn. 4.6). The Strehl ratio is also equal to the ratio of the area under the aberrated MTF to 

the corresponding area for an aberration-free system (Eqn. 4.7). Over circular apertures, 

the Strehl ratio can be defined by Eqn. 4.8. A good approximation for the Strehl ratio is 

given by Eqn. (4.9), and is valid for a Strehl ratio as small as 0.1 [29].  

(0,0)

ab ab

unab unab

I PSF
S

I PSF
 

                      
(4.6) 

 

 
,

,

u v

u v
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f f

unab

f f

MTF dudv

S
MTF dudv





                       
(4.7) 
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2
1 2
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0 0

1
S

2

ik W re rdrd


 


  
                  

(4.8) 

2 2exp( )S k  
                       

(4.9) 

Figures 4.1 to 4.3 show the PSF and MTF of different spatial frequency components of 

the IRG26 sphere shown in Figure 1.3. We have decomposed the surface into different 

spatial frequency components: spatial periods of 3mm    (form errors), 

0.1 3mm mm    (mid-spatial frequency region), and 0.1mm    (high-spatial 

frequency region). For each spatial frequency range, the 2D PSF and the 2D MTF of the 

corresponding surface were generated using the commercial software MetroProX (Mx). 

Since anisotropy is present in most cases of MSF texture, a 2D MTF analysis where one 

can see the optical performance in all directions is important. The diffraction analysis in 

Mx enables the user to qualify the optical surface at a single field point for imaging 

performance through a circular exit pupil, assuming a transmissive wavefront. This 

analysis is performed using the FFT operation upon a measured wavefront. If not selected 

otherwise, the software assumes an exit pupil with # 1f  , NA of 0.5, a wavelength of 

0.632 µm, and a refractive index of 1.51. In Figure 4.1 (c), one can see the diffracted orders 

in the PSF due to the grating-like characteristics of the MSF error on the pupil function. 

The Strehl ratio for this MSF content of the wavefront is 0.85. The Strehl ratio for the 

isolated roughness region is 0.99 and for form errors of the same wavefront is 0.92.  
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Figure 4.1 (a) Mid-spatial frequency content of IRG 26 sphere (spatial periods of 

0.1 3mm mm  ). (b) PSD of the whole surface with the selected spatial bandwidth 

marked in the red box. (c) 2D PSF of the surface shown in (a). (d) 2D MTF of the surface 

shown in (a). The Strehl ratio is 0.85.  

 

                 

Figure 4.2 (a) Low spatial frequency content of IRG 26 sphere (spatial periods of

3mm  ). (b) PSD of the whole surface with the selected spatial bandwidth marked in 

the red box. (c) 2D PSF of the surface shown in (a). (d) 2D MTF of the form errors. The 

Strehl ratio is 0.92. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Figure 4.3 (a) High-frequency content of IRG 26 sphere (spatial periods of 0.1mm  ). 

(b) PSD of the whole surface with the selected spatial bandwidth marked in the red box. 

(c) 2D PSF of the surface shown in (a). (d) 2D MTF of the surface shown in (a). The 

Strehl ratio is 0.99 that indicates the small effect of roughness on optical performance. 

 

4.2 Degradation due to specific MSF signatures 

 In this section, you can see the MTF degradation due to typical MSF structure on 

optical surfaces. Figure 4.4 shows a sketch of an aberrated wavefront error at the exit pupil. 

The wavefront error can be described as the difference between the aberrated wavefront and 

the spherical (ideal) wavefront as in Eqn. 4.10, 

( , ) ( , ) ( , ).ab idealW x y W x y W x y 
                  

(4.10) 

The aberrated pupil function is defined by Eqn. 4.11 where the circ function is the 

circular diffraction limited exit pupil and wxp is the exit pupil radius.  

2 2

( , ) ( )exp( ( , ))
xp xp

xp

x y yxP x y circ jkW
w ww


 

          
(4.11) 

The simulated optical systems using MATLAB in this dissertation have a diffraction-

(a) (b)

(c) (d)
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limited performance and operate at # 5f   . We also assume that the beam footprint 

covers the lens and the exit pupil and entrance pupil are the same and are equal to the 

diameter of the lens. The wavefront error with mid-spatial frequencies is then added to the 

ideal spherical wavefront. The cut-off frequency for this system is 316 cycles/mm, 

assuming the incident wavelength is in the visible range (λ =     nm).  

The cut-off frequency is the limit where spatial frequencies greater than the cut-off 

cannot be resolved by the lens. The cut-off frequency depends on the size of the exit pupil, 

the focal length of the lens and the incident wavelength (see Eqn. 4.5). 

               

Figure 4.4 Sketch of the exit pupil with aberrated and ideal wavefronts. 

 

As mentioned earlier, MSF patterns are grating-like structures. Investigating the optical 

performance of synthetic periodic structures will provide insight into how to interpret the 

optical performance impact of real MSF texture. Figure 4.5 (a) shows raster-like patterns 

of a sinusoidal surface with the PV of 0.3 waves and 12 cycles across the aperture. We have 

generated the resulting 2D MTF shown in Figure 4.5 (b) by inserting the wavefront in (a) 

on the exit pupil and propagating the wavefront using FFT methods. A horizontal and 

vertical cross sections of the 2D MTF plot in part (b) are shown in Figure 4.5 (c) in 

comparison with diffraction limited MTF. As can be seen, the horizontal cross section of 

Pupil
Ideal

Aberrated

wavefront

xpz
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2D MTF has an oscillating behavior whereas the vertical cross section of 2D MTF is the 

same as diffraction limited MTF. The number of oscillations in the horizontal MTF cross 

section is equal to the number of cycles across the aperture. The horizontal and vertical 

MTF cross sections are labeled as uMTF and vMTF respectively. 

 

                 

Figure 4.5 (a) Sinusoidal raster patterns with a PV of  . λ (b) Cross section of the 

sinusoidal raster-like patterns. (C) 2D MTF of the system with sinusoidal MSF texture on 

the exit pupil. (c) Vertical and horizontal cross sections of 2D MTF. The normalized area 

MTF drop from the diffraction-limited MTF is 11%. The peak MTF drop and average 

MTF drop from the diffraction-limited MTF are 0.2 and 0.021, respectively. 

 

To see the effect of MSF texture on an image, we have simulated the image of USAF 

1951 resolution chart with and without MSF texture on the exit pupil. The USAF test chart 

was obtained from reference [115]. Figure 4.6 (a) and Figure 4.7 (a) show the ideal image 

of USFA chart, Figure 4.6 (b) and Figure 4.7 (b) show the image when there are no 
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aberrations on the exit pupil and part (c) in both figures shows the image when we have 

sinusoidal raster-like MSF texture on the exit pupil. Vertical raster patterns will result in 

ghost images in the horizontal direction -Figure 4.6 (c)- and horizontal raster patterns will 

result in vertical ghost images -Figure 4.7 (c). Part (e) in both figures shows the 2D MTF 

and part (f) shows the cross-sectional MTFs. The approach for simulating these images are 

based on Eqn. 4.12. I.e. to simulate the final image we take the inverse Fourier transform of 

the product of the transfer function and the ideal image.  

  1( , ) ( , ) ( , ) .i U V gU u v H f f U u v  
             

(4.12) 

In Eqn. 4.12, ( , )U VH f f   is the coherent transfer function and ( , )gU u v   is the ideal 

image. 

                 

Figure 4.6 (a) USAF test chart (ideal image) (b) Diffraction-limited image with no 

aberration on the wavefront (c) Aberrated image with mid-spatial frequency texture on 

the exit pupil. (d) Vertical raster-like MSF texture on the exit pupil (e) 2D MTF of the 

imaging system with vertical raster patterns on the exit pupil. (f) Horizontal and vertical 

cross sections of the 2D MTF. 
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Figure 4.7 (a) USAF test chart (ideal image) (b) Diffraction-limited image with no 

aberration on the wavefront (c) Aberrated image with mid-spatial frequency texture on 

the exit pupil (d) Horizontal raster-like MSF texture on the exit pupil (e) 2D MTF of the 

imaging system with horizontal raster patterns on the exit pupil. (f) Horizontal and 

vertical cross sections of the 2D MTF. 

  

In addition to sinusoidal patterns, it is also worthwhile to examine the optical 

performance and PSD of cusp-shaped surfaces, since the residual tool marks of diamond 

turned surfaces are cusp-shaped and not purely sinusoidal [36]. H. Aryan et al. have 

performed an in-depth study to connect design specifications, acceptance test criteria and 

optical performance of freeform optics with residual surface errors [116].  
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Figure 4.8 Sketch of a cusp-shaped surface generated by a tool of radius R and feed rate d 

[36]. 

 

Figures 4.9 shows a cusp-shaped surface with the same periodicity and PV as Figure 

4.5. Although they have the same period and PV, their optical performance is significantly 

different. The drop in the area MTF curve from its un-aberrated limit for the sinusoidal 

structure in Figure 4.5 is 38% whereas for the cusp-shaped surface in Figure 4.9 the area 

MTF drop is only 7.8%. The peak MTF drop for the wavefront in Figure 4.5 is 0.67 and 

the average MTF drop from its diffraction-limited curve is 0.073. The peak MTF drop for 

the cusp-shaped surface in Figure 4.9 is 0.14 and the average MTF drop from its 

diffraction-limited curve is 0.015. Like Figure 4.5, the horizontal and vertical cross sections 

of the 2D MTF have different behavior due to the anisotropy of the MSF texture. The 

horizontal MTF (uMTF)- blue line in Figure 4.9 (c)- oscillates with the same number of 

wiggles as the MSF texture. The vertical MTF (vMTF) is the same as diffraction limited 

MTF. 
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Figure 4.9 (a) Cusp shaped raster pattern with a PV of  . λ (b) 2D MTF of the system 

with cusp-shaped MSF texture on the exit pupil. (c) Vertical and horizontal cross sections 

of the 2D MTF. The area MTF drop is 7.8% for this cusp-shaped surface. The peak MTF 

drop and average MTF from the diffraction limited MTF curve are 0.14 and 0.015, 

respectively. 

 

The PSD plots of the two surfaces in Figures 4.5 and 4.9 depict the difference in their 

frequency content despite the fact that they have the same period and same PV. A pure 

sinusoidal grating diffracts light into different orders and their locations in the image plane 

are described by the well-known grating equation. A cusp-shaped surface diffracts light 

into multiple spots but their locations in the image plane are not straight forward. This is 

due to the fact that a cusp-shaped surface can be generated from a superposition of multiple 

sinusoidal waves of different amplitudes. Looking at the PSD curve of a pure sinusoidal 
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wave, one can see an obvious peak whereas the PSD of the cusp-shaped surface shows 

multiple peaks with lower values as shown in Figure 4.10. The RMS height for sinusoidal 

surface is σ =
PV

π
≈  .   PV and for the cusp-shaped surface is σ ≈  .   PV. We can 

see that PV and RMS of the surface are not ideal metrics for optical performance since they 

are not linearly proportional to the drop in MTF. 

                

Figure 4.10 (a) PSD of sinusoidal raster pattern with 12 cycles across aperture and PV =
 . λ. (b) PSD of the cusp-shaped surface with the same period and PV. 

 

Figure 4.11 (a) shows a simulation of a radial sinusoidal pattern. Figure 4.11 (c) shows 

the 2D MTF and is obtained by inserting the radial sinusoidal wavefront on the exit pupil 

with a given #f  . The resulting 2D MTF is rotationally-invariant and has the same 
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symmetry properties of the wavefront. The MTF behavior of radial periodic structures is 

different from the raster-like patterns. For radial patterns, there is a larger drop at lower 

frequencies as well as an overall drop in MTF. For a radial sinusoidal pattern with PV =

 . λ and 12 cycles across the aperture, the area MTF drop is 38 % and the Strehl ratio is 

0.62. The peak MTF drop is 0.47 and the average MTF drop from the diffraction limited 

MTF curve is 0.073. The maximum MTF drop is larger for radial patterns compared to 

raster patterns of the same PV, and a cross-sectional PSD will not show this difference. The 

average MTF drop from diffraction limited MTF curve is the same for radial and raster 

sinusoidal patterns of the same period and same PV. 

                 

Figure 4.11 (a) Sinusoidal radial pattern with a PV of  . λ (b) Cross section of (a). (c) 

2D MTF of the system with sinusoidal radial MSF texture on the exit pupil. The upper 

left image is the diffraction limited 2D MTF (d) Vertical and horizontal cross sections of 

the 2D MTF. The area MTF drop is about 11% and the Strehl ratio is 0.89. The peak MTF 

drop is 0.13 and the average MTF drop is 0.021, respectively.  
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Figure 4.12 shows the MTF response of a system with radial cusp-shaped texture on 

exit pupil. As we saw before, the MTF drop for the cusp-shaped surface is less than the 

sinusoidal texture of the same PV and the same period. The peak MTF drop and average 

MTF drop from its diffraction-limited curve are 0.098 and 0.015 respectively. 

                 

Figure 4.12 (a) A cusp-shaped radial pattern with a PV of  . λ (b) Cross section of the 

surface in part (a) (c) 2D MTF of the system with cusp-shaped radial MSF texture on the 

exit pupil. (d) Vertical and horizontal cross sections of 2D MTF. The area MTF drop is 

about 7.5% and Strehl ratio is 0.92. The peak MTF drop and average MTF drop are 0.098 

and 0.015, respectively. 

 

We have seen that the MTF behavior is different for different shapes of MSF texture. 

Since MSF textures are similar to diffraction gratings and the efficiency of a diffraction 

grating is a non-linear function of its PV, we also expect for MTF to change with the 

amplitude of MSF texture in a non-linear fashion. The relationship between MTF loss and 

PV of MSF texture has been shown by J. Tamkin in [15]. To explore this further, we have 
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carried out the MTF loss calculation for both sinusoidal and cusp-shaped radial patterns as 

a function of PV. The result is shown in Figure 4.13. 

 

                 

Figure 4.13 Area MTF loss vs. PV. Sinusoidal patterns have a larger loss compared to 

cusp-shaped patterns of the same PV.  

  

Figure 4.13 confirms the previous observation that the MTF loss of a pure sinusoidal 

MSF texture is larger than the MTF loss a cusp-shaped surface with the same period and 

PV. In this simulation, surfaces are assumed to be transmissive with a refractive index of 

1.51 and incident wavelength of 633 nm. The loss is defined as the Strehl ratio of the ideal 

system minus Strehl ratio of the system with MSF texture where Strahl ratio is obtained by 

using Eqns. 4.6 and 4.7. 

The MTF loss depends on refractive index as well as PV. Figure 4.14 shows the loss in 

MTF for radial cusp surfaces with 12 cycles across aperture with the same PV but different 

materials with different refractive indices. In these simulations, we ignore the loss due to 

material absorption. For a larger refractive index, the MTF loss will be larger. This is 

expected since a larger refractive index with the same PV results in a larger OPD and a 
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larger wavefront error. Therefore, optical path difference (OPD) is a more suitable metric 

for optical performance compared to PV. 

 

                 

Figure 4.14 The MTF loss vs. PV has a higher slope for a larger refractive index. 

 

If we plot the MTF loss as a function of OPD rather than PV, we can see the dependence 

of MTF loss to refractive index more clearly. In Figure 4.15, we have plotted the loss in 

MTF as a function of OPD for two different materials where OPD is equal to (n −  )PV.  

As can be seen, the loss in MTF vs. OPD is the same for different materials of the same PV. 

This statement is valid for transmission optics. For reflective optics, the optical path 

difference (OPD) does not depend on the refractive index but it is equal to twice the height 

variations.  
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Figure 4.15 The MTF loss vs. OPD is the same for surfaces with different refractive 

indices.  

  

 

In the next chapter, we will show how Zernike polynomials can be used in predicting 
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CHAPTER 5 : USING ZERNIKE POLYNOMIALS FOR OPTICAL PERFORMANCE 

SPECIFICATION 

 

 

The ability to generate very large orders of Zernike polynomials enables fitting and 

describing optical surfaces all the way from low order form errors to mid-spatial 

frequencies. Unlike the power spectral density (PSD), the use of Zernike polynomials does 

not require windowing and detrending of the surface data for specification and prediction 

of optical performance.  

Our goal is to have a surface characterization metric that fabricators can use to fix their 

process and designers can incorporate into tolerancing. In the previous chapter, we saw a 

few examples of typical MSF texture and their effect on modulation transfer function and 

Strehl ratio. In this chapter, we show how a Zernike polynomial representation of the 

surface can be used for these calculations. The first section shows the filtering aspect of 

Zernike polynomials and how different signatures affect optical performance differently. 

In the second section, we will investigate Strehl ratio as a performance metric for mid-

spatial frequency. We will look at Strehl ratios of selected Zernike-filtered bands of a 

surface and their relation to the Strehl ratio of the entire surface. We will discuss limits of 

validity of this formulation and present some examples. In the third section, the linear 

system theory of MTF and limits of its validity for mid-spatial frequency texture is 

investigated. We will present examples of both real and synthetic MSF textures to examine 

the approximation limitations of MTF when using linear systems formulation.  
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5.1 Filtering using Zernike polynomials 

Polynomial fitting methods open the door to spatial filtering based on polynomials and 

their symmetry properties, thus allowing for the isolation of specific MSF structures with 

different orientations and symmetries caused by different processes. For example, 

rotationally invariant mid-spatial frequency errors from turning operations are often caused 

by slowly varying environmental temperature fluctuations such as chiller temperature drift 

and the impact on tool-tip expansion. Raster patterns in milling operations are usually 

caused by the overlap in the programmed path of the polishing tool and the tool geometry.  

Figure 5.1 (a) shows the height error map of the IRG26 diamond milled sphere, and 

Figure 5.1 (b) shows the fit residuals after removing the rotationally invariant terms (all 

ring-like structures present in the map). A clear raster-like pattern is observable. Figure 5.1 

(c) shows the rotationally invariant content that was removed. We have used 200 orders of 

Zernike polynomials to separate these signatures of the surface. Figure 5.2 shows the MTF 

of the surfaces in Figure 5.1. Knowledge of the optical performance degradation due to 

different patterns gives designers insight into the ways in which the manufacturing details 

may give rise to a degradation in optical performance.  It also helps fabricators know what 

parameter of the process needs to be changed.  

                 

Figure 5.1 (a) Error map of IRG26 diamond milled sphere (b) Error map excluding all 

rotationally invariant terms (c) Rotationally invariant content of IRG26. 
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In Figure 5.2 you can see the MTF drop due to rotationally invariant terms and raster 

patterns of IRG26 sphere separately.   

 

Figure 5.2 (a) The 2D MTF of non-rotationally invariant terms in the IRG26 sphere. (b) 

The 2D MTF of rotationally invariant terms (c)The cross-sectional MTFs. Vertical and 

horizontal MTF are not the same for this surface and that is an indication of non-

rotationally invariant terms (d) The MTF cross-sections (uMTF and vMTF) for the 

rotationally invariant content of the IRG26 sphere. 

 

In the simulation for Figure 5.2, we have assumed a reflective surface and a wavelength 

of 633 nm. The Strehl ratio for the non-rotationally invariant terms is 0.93, and it is 0.77 

for the rotationally invariant terms. Therefore, removal of rotationally invariant 

contributions to the height error map should be of higher priority in improving the 

fabrication process for this surface. The overall loss is more for the rotationally invariant 

part, and this contribution to the performance does not depend on the orientation of the part 

or object. In the presence of raster-like texture on the surface, the performance and the 
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quality of the image varies with the orientation of the surface in the optical system.  

5.2 Strehl ratio for mid-spatial frequency errors and limits of validity  

The low order Zernike polynomials and their impact on the optical transfer function 

(OTF) have been discussed in the literature [117]. The effect of large-order Zernike 

polynomials has not been investigated to our knowledge. In this section, we use the Zernike 

polynomial characterization of a surface out to high orders to analyze optical performance. 

V. Mahajan has shown that 
2 2ke 

where σ is the RMS of the surface, provides a better 

approximation for Strehl ratio than the Marechal formula [111]. The Marechal formula 

approximates the Strehl ratio as 2 2 2(1 2)S k   . Except for small Strehl ratios, the 

Marechal formula underestimates the Strehl ratio value. Mahajan has also shown that the 

error in the Marechal formula is less than 10% if the Strehl ratio is greater than 0.6. The 

Strehl ratio approximation, 
2 2ke 

, provides a good estimate with less than 10% error as 

long as 0.3S   [118]. 

To begin the investigation of extending the Strehl ratio into the MSF range, we look at 

the PSF, MTF and Strehl ratio for a single high-order Zernike polynomial by adding that 

this as high order wavefront error to an ideal spherical wavefront. Figure 5.3 (a) shows the 

error map of the high-order Zernike polynomial Z50
4  with an RMS coefficient of 0.3 waves. 

Figures 5.3 (b) and (c) show the PSF and 2D MTF of the wavefront shown in part (a). The 

PSF shows the image of a point source in the presence of this large order aberration. The 

2D MTF in (c) shows the image degradation as a function of spatial frequency when the 

wavefront is aberrated by this very large order Zernike polynomial. In Figure 5.3 (d) we 

show a horizontal (uMTF) and vertical (vMTF) cross-section of the 2D MTF in part (c). 

This is an example of a wavefront error where looking at only the horizontal and vertical 
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cross sections of the 2D MTF is not sufficient to characterize image quality. Due to the 

symmetry properties of Zernike polynomials, the diversity in MTF with orientation can be 

assessed with a horizontal cross section, a cross section at an angle of 
𝜋

𝑚
  and a cross 

section at 
𝜋

 𝑚
 from the 2D MTF curve. Figure 5.4 shows the PSF and 2D MTF of a low 

order Zernike polynomial, 
1

3z  (coma), with the same RMS as Figure 5.3. Comparing the 

2D MTF of the high-order Zernike polynomial in Figure 5.3 to coma emphasizes the large 

number of oscillations in the cross-sectional MTF in Figure 5.3 that is due to oscillations 

of the wavefront for a high-order polynomial. The Strehl ratio obtained through FFT 

methods for this aberration, assuming a transmissive surface and a refractive index of 1.51 

is 0.42. Calculating the Strehl ratio using Eqn. 4.9 provides the same value.   

                 

Figure 5.3 (a) Large order Zernike polynomial map of Z50
4  (b) Point spread function 

assuming a transmissive wavefront with a refractive index of 1.51. (c) 2D MTF of the 

system with Z50
4  aberration on the wavefront (a). (d) Vertical and horizontal MTF of the 

system.  
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Figure 5.4 (a) Low order Zernike polynomial map of Z3
1 (b) Point spread function 

assuming a transmissive wavefront with a refractive index of 1.51. (c) 2D MTF of the 

system with Z3
1 aberration on the wavefront (a). (d) Vertical and horizontal MTF of the 

system.  

 

To verify the validity of Eqn. 4.9 for large orders Zernike polynomials, we have 

calculated the Strehl ratio for the large order Zernike polynomial Z50
4 ,using both Eqns. 4.6 

and 4.9 as a function of RMS amplitude. Eqn. 4.9 is a convenient calculation for the Strehl 

ratio, but it is only valid for lower RMS wavefront errors. To quantify its applicability range, 

we calculate the Strehl ratio directly using FFT methods (Eqns. 4.6 and 4.7) and also using 

the approximation based on Zernike coefficients (
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 ) of the wavefront Z50
4   as a 

function of RMS. Figure 5.5 compares the two calculations. As can be concluded from 
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4.9 are identical for Strehl ratios as small as 0.1. The benefit of using Zernike polynomial 

fitting here is that σ   (the wavefront RMS) is equal to the root sum square of the fit 

coefficients when the Zernike polynomials are properly normalized.  

                

Figure 5.5 Comparison of Strehl ratio calculated directly from Eqn. 4.6 and Strehl ratio 

predicted based on wavefront variance σ  (Eqn. 4.9). Results from two different 

methods match for Strehl ratios larger than 0.1. 

 

One of the advantages of a polynomial analysis such as Zernike polynomials is the 

ability to decompose the surface into bands of different texture based on the symmetry 

properties of the polynomials.  Potential error sources during the manufacturing process 

have varying symmetry characteristics, and these symmetries are transferred to the surface. 

Figure 5.6 (a-c), shows bands of the aluminum diamond part (Figure 3.9 (a)) along with the 

2D MTF maps and their superposition in (d). By using the approximation of Eqn. 4.9 and 

the orthogonality property of Zernike polynomials, it is straightforward to see that the Strehl 
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ratio of the sum wavefront is equal to the product of Strehl ratios of each band, as shown in 

Eqn. 5.1:  

1 2 3

1 2 3 1 2 3

2 2 2 2 2 2

2 2 2 2 2 2

exp( ) exp( ( ))

exp( ) exp( ) exp( )

w w w w w

w w w w w w

S k k

k k k S S S

   

  

     

        
.
        

(5.1) 

The approximation in Eqn. 4.9 is particularly useful when used along with bands of 

Zernike polynomials since we can benefit from the fact that the sum in quadrature of the 

Zernike fit coefficients is equal to the RMS of the surface. For example, Figure 5.6 shows 

azimuthal bands of the aluminum diamond turned part (first row) and their 2D MTF in the 

second row. The Strehl ratio of the sum wavefront in (d) is equal to the product of the Strehl 

ratios of the bands in (a), (b) and (c). 

                 

Figure 5.6 Selected bands of aluminum diamond turned part with their 2D MTF and 

cross-sectional MTFs. (a) Azimuthal band of 0 8m  . (b) Azimuthal band of 

9 15m  (c) Azimuthal band of 16 27m  . (d) Superposition of all three bands. 

The Strehl ratio of the sum wavefront in (d) is equal to 
1 2 3w w wS S S  .   
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When using an orthogonal representation, the surface can also be decomposed into its 

individual Zernike components such that ( , )
z z

z

m m

n n

n m

W Z    . We use a ‘Strehl ratio 

map’ to test the validity of the exp(−𝑘 𝜎 ) approximation for all Zernike polynomials of 

a real surface. In Figure 5.7, the Strehl ratios associated with the fit coefficients of SiC 

sphere (the error map in Figure 3.11 (a)) assuming a reflective surface and incident 

wavelength of 0.633 m have been calculated. We have used direct FFT methods for part 

(a) and indirect methods based on Eqn. 4.9 for part (b). If we construct the SiC sphere 

based on its 200 Zernike polynomials, the Strehl ratio for that surface is 0.6042. The 

predicted Strehl ratio based on SiC sphere fit coefficients, i.e. ∏ exp (k σi
 )N

i=1  is 0.6034. 

Figure 5.6 (c) shows the difference in Strehl ratios calculated from Eqn. 4.6 and 4.9. The 

largest difference is smaller than 0.01. The Strehl ratio of the whole surface is 0.6048. This 

confirms that the error in the approximation to Strehl ratio, exp(−𝑘 𝜎 ), is very small. 

The larger coefficients cause larger loss and that is expected. The Strehl ratio map has the 

same pattern and trend as a coefficient map and we can predict the Strehl ratio or loss of 

each band from a fit coefficient map.   
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Figure 5.7 (a) The Strehl ratio plot of SiC sphere calculated directly from each 

coefficient and its corresponding Zernike polynomial map (Eqn. 4.6). (b) Strehl ratio 

based on a prediction of fit coefficients (Eqn. 4.9) (c) Difference between Strehl ratios 

calculated directly using FFT methods and based on the prediction. 

 

The Strehl ratio of the sum wavefront is not always equal to the product of Strehl ratios 

of its components.  An example of this is shown in Figure 5.8. Figure 5.8 (a) is the first 

36 Zernike terms of diamond milled germanium sample in Figure 3.13 (a). Figure 5.8 (b) 

is the fit residual errors of the germanium surface when subtracting 36 terms of Zernike 

polynomials. The Strehl ratio calculated for the whole surface is different from the product 

of the Strehl ratios in part (a) and part (b). In this case, the Strehl ratio of one of the bands 

( 1w ) is 0.069, which is below 0.1 and therefore we do not expect the approximation to the 

Strehl ratio  
2 2ke 

to be valid, consequently 
ii

i

ww
i

S S
  . The row below the surface 

profiles in Figure 5.8 depicts cross sections of the 2D MTF. As can be seen, the drop in 

MTF in Figure 5.8 (a) is very large and the MTF is close to zero within most of the 

frequency range. The large drop in the MTF of the wavefront in (a) is consistent with a 

(a) (b) 

(c) 
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breakdown in the approximation to the Strehl ratio, and as a result, the Strehl ratio of the 

sum wavefront (0.073) is not equal to the product of Strehl ratios of its components (0.06). 

The simulations for this figure are carried out using the Mx software and the assumptions 

are described in section 4.1.  

                 

Figure 5.8 Selected bands of diamond milled germanium part. The second row is cross-

sectional MTF of each band. (a) The first 36 Zernike terms of the sample in Figure 3.13 

(a). (b) The fit residual errors after subtracting 36 terms of Zernike polynomials. (c) The 

superposition map and its MTF and PSF. 
1 2

0.06w wS S   and is not equal to 0.073.   

 

The main advantage of decomposing the surface into bands of polynomials is that the 

metrologist can know what aberrations with what magnitude are present in the system and 

how much each band affects the optical performance. Furthermore, the Strehl ratio 

approximation with its direct relation to surface RMS provides a means of assessing the 

optical performance with only an analysis of the surface without needing to perform a 

Fourier-based calculation. The user must keep in mind that this prediction is not valid if 

the coefficients (surface errors) are large enough to give rise to a Strehl ratio that is smaller 

than 0.1. Because the Strehl ratio depends only on wavefront RMS, two wavefronts can 

have the same RMS (and therefore Strehl ratio) but the spatial frequency content of the 

wavefront can be very different.  This means the point spread functions can be very 

1w
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different. Thus, the use of the Strehl ratio of the full surface error is not particularly useful 

when MSF texture is present. Strehl ratio as an MSF specification metric might be 

reasonable, however, if the wavefront is decomposed or filtered into the low order 

aberration terms and the MSF errors, separately. Then, separate Strehl ratio specifications 

could be sensibly defined for each band.  

This problem of using the full wavefront RMS (or Strehl ratio) alone has been discussed 

by J. Tamkin [24]. J. Tamkin has shown that 0.66 waves defocus, causes the MTF loss of 

20%. Mid-spatial frequency errors with the same RMS will result in 30% loss in MTF and 

a cyclic MTF curve [24]. He suggests using characteristics of the MTF curve for 

specification, such as specifying an allowable drop in the MTF for MSF errors on optical 

surfaces [24]. MTF provides more detailed information on the frequency response of an 

imaging system and is one of the most common methods to specify optical elements [114]. 

Since MSF errors are usually quasi-periodic with specific symmetry and anisotropy 

characteristics, considering the impact of these errors in terms of the frequency response 

seems reasonable.  In the next section, we will see examples of the MTF response of the 

system in the presence of mid-spatial frequency errors, and we will investigate the 

limitations of linear systems theory of MTF and its application to MSF texture.  

5.3 Linearity properties of MTF and application to mid-spatial frequency error 

According to linear systems theory, if components that lead to image degradation are 

independent and uncorrelated, the system’s OTF is given by the product of the OTFs of 

individual components [114, 119]. If the sub-components in the system respond to the 

image degradation without any partial coherence effects, the MTF of the aggregate system 

is the point-by-point product of individual MTFs [114]. The sub-components will not 



128 

change the partial coherence of the intermediate image if their superposition gives no 

visible fringes [120], and that is the case if sub-components are not correlated [48]. That is, 

if the mutual coherence function between the wavefronts of the sub-components is zero, 

we can multiply their MTFs to obtain the MTF of the aggregate system [121]. By 

normalizing the mutual coherence function (Eqn. 5.2) to the product of the square root of 

the intensities, we obtain the correlation coefficient function as shown in Eqn. 5.3 [48].  

12 1 2( ) ( ) ( )V t V t    
                     

(5.2) 

12 12

12

11 22 1 2

.r
I I

 
 

                     
(5.3) 

If the above assumptions are valid, the convolution theorem tells us that the system’s 

PSF is equal to the convolution of the PSFs of individual components,  

1 2 3 4system w w w w    and
                     

(5.4) 

1 2 3 4system w w w wPSF PSF PSF PSF PSF    .
             

(5.5) 

J. E. Harvey et al. have developed a nonparaxial scalar diffraction theory to develop a 

linear systems formulation of surface scatter phenomena [122]. Unlike previous methods 

such as Rayleigh–Rice or classical Beckmann–Kirchhoff, the generalized Harvey Shack 

model does not have the smooth and isotropic surface assumptions [123]. Without the 

smooth and isotropic assumptions, the linear systems formulation can be applied to MSF 

texture. 

In this section, we investigate the MTF of filtered bands in measured surfaces to test 

the linearity property of MTF for isolated textures. Figure 5.9 shows two filtered bands of 

the germanium sample in Figure 3.13 (a), part (a) Cartesian bands of 13t    with 
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270RMS nm    and part (b) Cartesian bands of 25 30t    with 10.9RMS nm   . The 

second row in Figure 5.9 shows the 2D MTF of each surface and the third row shows 

horizontal and vertical cross sections of the 2D MTF.   

                 

Figure 5.9 Filtered bands of germanium sample, their superposition and their MTFs. 

(a) Cartesian bands of 13t   with 270RMS nm   with its MTF depicted below the 

surface (b) Cartesian bands of 25 30t   with 10.9RMS nm   with its MTF and 

cross-sectional MTF shown below the surface error. (c) Superposition surface map and its 

MTF.  

 

Eqn. 5.2 and Eqn. 5.3 show that if the cross-correlation between two wavefronts is zero, 

we can apply linear system theory of MTF. The cross-correlation coefficient between the 

two wavefronts in Figure 5.9 (a) and (b) is 0.0026  and is obtained using Eqn. 5.6.  
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(5.6) 

assuming A and B are matrices that represent 1w  and 2w . Eqn. 5.6 shows another 

definition of cross-correlation that is the equivalent of Eqn. 5.3. Since the correlation 

coefficient between these two surfaces is negligible, we examine to see if the linear systems 

formulation of MTF is valid in this case. Simply multiplying 
1wMTF  and 

2wMTF , would 

count the diffraction limited MTF twice since aperture diffraction is present in every band 

[114]. Therefore, to carry out this comparison, the diffraction limited contribution is 

accounted for in 1 2MTF    and the error  1 2 1 2 diffMTF MTF MTF MTF 
        is 

plotted and shown in Figure 5.10. The error in the linear systems formulation of MTF is 

negligible in this example where the correlation between two surfaces is small (-0.0026).  

 

                 

Figure 5.10 (a) The difference between the product of MTFs of wavefronts in Figure 

5.8 (a) and (b), and the MTF of their superposition. (b) The error is plotted here on the 

same scale as an MTF plot (from zero to one) and it is clearly negligible.  
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To find the geometrical MTF of any system or subsystem, the aperture diffraction 

contribution should be separated [114]. To obtain the geometrical MTF, we should 

normalize the MTF of the aberrated wavefront by its diffraction-free MTF as shown in Eqn. 

5.7. 

,

,

.w

w geom

w diff

MTF
MTF

MTF


                     
(5.7) 

Figure 5.11 shows the geometrical MTF of different bands of the germanium sphere. 

Figure 5.11 (a) shows the wavefront that contains the band of 25 30t   along with its 

MTF in the second row and its geometrical MTF in the third row. Figure 5.11 (b) shows a 

different selected band of the germanium sample, 35 45t   . Part (c) shows the 

superposition of the wavefronts in (a) and (b). In Figure 5.11 (d), one can see that the 

product of the geometrical MTFs of the two bands overlays the geometrical MTF of the 

sum wavefront. i.e. 1 2, 1, 2,geom geom geomMTF MTF MTF   . 
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Figure 5.11 (a) Filtered band of the germanium sample 25 30t   with its MTF in 

the second row and its geometrical MTF in the third row. (b) Filtered band of the 

germanium sample 35 45t   with its MTF in the second row and its geometrical MTF 

in the third row. (c) Superposition of the bands in (a) and (b). (d) Cross sections of the 

geometrical MTFs in a-c and the product of geometrical MTFs of (a) and (b). 
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The linear properties of MTF are only applicable when the correlation between the 

components of the system is negligible. In an attempt to investigate the validity of linear 

systems properties of MTF, bands of real surfaces, as well as artificially generated bands 

and their superposition, have been examined. We take the error in the MTF calculation 

using linear systems formulation approximation to be the difference between the correct 

value (MTF of sum wavefront) and the approximated value (the product of individual 

MTFs), normalized by the correct value: 

 

 

1 2 1 2

,

1 2

,

u v

u v

diff

f f

MTF

f f

MTF MTF MTF MTF dudv

MTF dudv






   






.
            

(5.8) 

We applied this calculation to a variety of filtered real surface data and simulated data, 

and the findings are plotted in Figure 5.12 where the error is plotted vs. the correlation 

coefficient between the individual bands. Table 5.1 provides more information about each 

data point in the plot. 
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Figure 5.12 (a) The error is MTF approximation obtained from Eqn. 5.8 plotted 

against the correlation coefficient between individual surfaces composing the system. The 

raw data are presented in Table 5.1. 

 

Each data point in Figure 5.12 and Table 5.1 is obtained from the MTF of the surfaces 

shown in Figures 5.13 and 5.14.  

Table 5.1 Data obtained from 13 different cases in Figure 5.12. The surfaces are chosen 

from selected bands of real surfaces as well as artificially generated bands. 

Sample # 
Correlation 

coefficient r   
MTF Error    

Max MTF 

drop 

Average MTF 

drop 

1 -0.037 0.0144 0.5478 0.0969 

2 0.1311 0.1218 0.6056 0.1232 

3 0.2675 0.2228 0.4394 0.109 

4 -9.10E-04 0.0109 0.144 0.0322 

5 3.84E-06 0.0027 0.3414 0.0771 

6 -1.12E-05 0.0013 0.0795 0.0141 

7 0.25 0.0306 0.4209 0.0918 

8 0.92 0.9551 0.7874 0.1724 

9 -0.0026 0.0688 0.8723 0.1852 

10 0.0938 0.2269 0.9289 0.1841 

11 0.6667 0.4125 0.7498 0.1671 

12 0.4714 0.2312 0.6953 0.1523 

13 0.8165 0.3345 0.7306 0.1576 

#2

#3

#7, Al, 0.42

# 8, Al, 0.78
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#10, Ge, 0.92
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In Figure 5.13, cases (1) to (3) are raster patterns that are artificially generated using 

the diagonal bands of Zernike-fit coefficient maps. The surfaces in case (4) are generated 

using bands of specific azimuthal orders. Cases (5) to (8) are bands of aluminum diamond 

turned sample in Figure 3.9 (a). The correlation between the wavefronts of the case (8) is 

0.9 despite no overlapping bands. This is due to the fact that the fit coefficients of this 

sample in the region of 0 8m   does not converge to zero and as a result, there will be 

a significant amount of 0 8m   left in the residual map. The band of 28 m  contains 

all the fit residuals of 300 orders that include residuals of non-converging bands. That is 

why the cross-correlation value between the non-overlapping bands of the case (8) is large.   

       

Figure 5.13 (a) Surface error maps with their correlation coefficients. (1-3) Raster 

patterns generated artificially from bands of different Cartesian orders. (4) Error maps of 

azimuthal bands (5-8). Selected bands of diamond turned aluminum sample.  
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In Figure 5.13, cases (9) and (10) are selected bands of germanium sample. Case (10) 

has some overlapping bands. Cases (11) to (13) are spokes patterns with different relative 

phases.  

                 

Figure 5.14 Surface error maps of Table 5.1 with their correlation coefficients. (9-10) 

Cartesian bands of germanium sample. (11-13) Artificially generated spokes patterns with 

different relative phases.  

 

Figure 5.11 shows that the error in MTF is connected to the correlation between 

individual surfaces. While there is a connection between correlation and the error in the 

approximation of MTF using linear systems theory, Eqn. 5.8 does not capture enough detail 

to provide a clear assessment of the error when wavefronts are partially correlated. Further 

work could be done to establish a more detailed model for such cases. When surfaces (or 

wavefronts) are uncorrelated, the error in the validity of linear systems formulation of MTF 

is small and we can benefit from the cascade properties of MTF. The data points that are 

above the fitted line in Figure 5.12, for example, cases number 8, 9 and 10 are surfaces 

where the error in approximation of MTF is more sensitive to the correlation between the 

components. The surface errors of these cases are shown in Figures 5.13 and 5.14. These 
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cases have a few characteristics in common. They have form errors in one of their 

components. They also have larger maximum MTF drop (MTF drop greater than 0.75). 

Larger MTF drop allows for a larger error in the approximation of MTF when specifying 

band-limited surfaces.  

The orthogonality property of Zernike polynomials provides us with an effective tool 

to separate bands of a surface with textures caused by different fabrication processes. The 

linear systems formulation of MTF provides us with another useful tool for specifying 

tolerable wavefront errors and therefore tolerable surfaces. This tool can be applied to 

cascaded components of a system as well as uncorrelated bands within an individual sub-

system or wavefront. However, orthogonality does not guarantee zero correlation. The 

correlation coefficient between the two wavefront maps 1w   and 2w   is related to the 

mean of their inner product and the mean of each map. The inner product of two orthogonal 

maps is zero.  

1 2 1 21 2

1 2

1 2 1 2

.[ , ]
[ , ]

[ ] [ ] [ ] [ ]

w w w wCov w w
r w w

w w w w   


 

              
(5.9) 

Therefore, for two maps of zero mean, orthogonality results in zero correlation. Since 

Zernike polynomials are orthogonal, the mean of the dot product of selected bands is zero. 

The mean of Zernike polynomials is zero for comma, astigmatism and non-rotationally 

invariant terms [97].  

 
 

1 2

0 0

1 2

0 0

,

, 0,             0,  0.

m

n

m

n

Z d d

Z n m

d d





    

 

  

   
 

       
(5.10) 



138 

Zero mean plane differs from the reference sphere for rotationally invariant terms and 

therefore, their mean is not zero. In order to apply the linear systems formulation of MTF 

along with filtering capability of Zernike polynomials, all of the rotationally invariant 

components of the surface (wavefront) must be in only one of the bands. As long as one of 

the bands contains all of the   rotationally invariant terms (all m=0 Zernike terms), the 

correlation between the bands will be negligible and therefore the linear systems properties 

of MTF applies. 

 
, ,

exp( ) exp( ) exp( ) .m m m m

n n n n

n m n m

MTF ikW MTF ik Z MTF ik Z 
 

     
 

 
    

(5.11) 

Figure 5.15, shows filtered bands of the aluminum diamond-turned part. Figure 5.15 

(a) contains all the rotationally invariant terms ( 0m  ) and Figure 5.15 (b) is the azimuthal 

bands of 9 15m  . The mean of the surface in (a) is 0.73nm  -a non-zero value. The 

mean of the surface in (b) is 75.8 e nm   t- a negligible value. The mean of their dot 

product, 1 2.w w  , is equal to 52.86 e  . Eqn. 5.12 shows the correlation coefficient 

between surfaces in Figure 5.15 (a) and (b) that is equal to the correlation coefficient 

obtained from Eqn. 5.9. 

 
5 7

7

1 2

2.86 (-0.73) ( 5.8 )
, 1.13

28.3 9.05

e e
r w w e

 
   

  
            

(5.12) 
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Figure 5.15 (a) Rotationally invariant bands of the aluminum diamond turned part with 

RMS of 28.3 nm. (b) Azimuthal band of 9 15m   with RMS of about 9 nm.  

 

This example verifies that as long as one of the filtered bands is composed of only non-

rotationally invariant terms, then the correlation coefficient between orthogonal bands of 

Zernike polynomials of the surface is close to zero and we can apply the linear systems 

formulation of MTF in specifying each band.  

5.4 Application to measured data 

In this section, we apply the linear systems theory of MTF to filtered bands of measured 

wavefronts. We will show different filtering examples based on the conclusion in section 

5.3. To benefit from the linear properties of MTF, we separate the rotationally invariant 

content of the surface and apply other filters on the non-rotationally invariant residuals 

based on the signature of the coefficient map. This will then allow us to specify MTF of 

each band separately. Figure 5.16 shows different azimuthal bands of the aluminum 

diamond part sample. Figure 5.16 (a) is all of the rotationally invariant terms plus the 

azimuthal band of 28 m . The fit coefficients of the error map do not converge to zero 

even for 300 orders (see Figure 3. 9 (b)). Therefore, there will be significant rotationally 

invariant content in the residual map of 28 m  and therefore a large correlation between 

7

1 2( , ) 1.13r w w e 

0m  9 15m 

28.3RMS nm 

1 -0.73w  7

2 5.8w e 

9.05RMS nm 
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these two bands (r=0.3). Thus, we have added the residual band of 28 m   to the 

rotationally invariant terms as shown in Figure 5.16 (a) to ensure all rotational invariant 

structure is isolated into one band. Parts (b), (c) and (d) show the azimuthal bands of 

1 8m  , 9 15m  , and 16 27m   with the RMS of 10.35nm, 10.32 nm and 9.2 nm 

respectively. The wavefront in (e) is equal to the superposition of the wavefronts in (a) to 

(d) as shown in Eqn. 5.13. The MTF of the sum wavefronts in (e) is almost equal to the 

product of the MTFs of filtered bands in (a) to (d) (Eqn. 5.14). 

1

N

i

i

w w
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
                           

(5.13) 

1 2 ...
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MTF MTF  
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
                     

(5.14) 

                 

Figure 5.16 Azimuthal bands of the aluminum diamond turned part in the first row and 

their corresponding MTF in the second row (a) Rotationally invariant bands and the 

azimuthal band of 28 m  with the RMS of 31.1 nm (b) Azimuthal band of 1 8m   

with the RMS of 10.35 nm and its 2D MTF in the second row (c) Azimuthal band of 

9 15m   with RMS of about 10.32 nm. (d) azimuthal band of 16 27m   with the 

RMS of 9.2 nm. (e) Superposition of the wavefronts in (a) to (d). 

 

Figure 5.17 shows the error in the calculation of MTF by obtaining the difference 
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accounted for the diffraction-limited MTF in simulating the MTF error in Figure 5.17 by 

multiplying the MTF of the sum wavefront by
1n

diffMTF 
 where n is the number of filtered 

bands. The scale in Figure 5.17 (a) is the order of 310 . Changing the color bar scale to [0 

1] in Figure 5.17 (b) shows that the error in the approximation of MTF is negligible. The 

volume MTF error is obtained through Eqn.5.8 and is equal to ~0.25%. 

                

Figure 5.17 (a) Error in the approximation of MTF obtained by subtracting the MTF of 

the superposition wavefronts in Figure 5.16 and the product of MTFs of all bands. The 

scale is in the order of 310 . (b) The MTF error when we change the color scale to [0 1]. 

The difference is negligible.  

 

The previous example had signatures of spokes-like patterns. To examine the linear 

system theory of MTF for filtered bands of raster patterns, we have selected different bands 

of the germanium sample. Prior to filtering of the germanium sample error map, the 

primary astigmatism terms have been removed due to their large RMS so that MSF textures 

in different bands and their MTF will be more visible. The filtered band in Figure 5.18 (a) 

is all of the rotationally invariant terms. Figures 5.18 (b), (c), (d), (e), (f) and (g) show the 

diagonal bands of 14t   , 15 35t   , 36 50t   , 51 78t   , 79 110t   , 
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111 119t  , and 120 t  with their RMS shown above each map. The filtered bands in 

(b) to (h) exclude the rotationally invariant terms. Figure 5.17 (i) shows the error map of 

the germanium sample where the astigmatism terms (
2

2Z 
) have been removed and this is 

also equal to the superposition of the filtered bands from (a) to (h).  
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Figure 5.18 Diagonal t-bands and the rotationally invariant content of the germanium 

sphere. (a) Rotationally invariant content of the sample. Diagonal t bands of (b) 14t  , (c)  

15 35t  , (d) 36 50t  , (e) 51 78t  , (f) 79 110t  , (g) 111 119t  , and (h)

120 t . (i) Superposition of wavefronts in (a) to (h) and its 2D MTF is shown on the 

right. 
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Figure 5.19 shows the error in the calculation of MTF based on the product of MTFs 

of wavefronts in Figure 5.18. The error in the calculation MTF based on Eqn. 5.8 is 0.4 % 

that is less than one percent of the volume under the 2D MTF surface of the sum wavefront.   

                

Figure 5.19 (a) Error in the approximation of MTF obtained by subtracting the MTF of 

the superposition wavefronts in Figure 5.18 and the product of MTFs of all bands. (b) The 

MTF error when we change the color scale to [0 1]. There is no visible pattern in the re-

scaled MTF error and the difference is negligible. 
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limited MTF in simulating the MTF error in Figure 5.17. The volume MTF error based on 
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Figure 5.20 (a) Rotationally invariant bands of the geranium sample with RMS of 10.2 

nm. (b) Selected azimuthal band of 1 5m   with the RMS of 67.7 nm. (c) Azimuthal 

band of 6 10m   with the RMS of 24.6 nm. (d) Azimuthal band of 11 20m   with 

the RMS of 14.5 nm. (e) Azimuthal band of 21 m  with the RMS of 17.3 nm. (f) 

Superposition of bands in (a) to (e) and its 2D MTF.  

 

                

Figure 5.21 (a) Error in the approximation of MTF for the filtered bands of Figure 

5.20. (b) The MTF error when we change the color scale to [0 1]. The difference is 

negligible. 
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Here we show an example of the application of the linear systems theory of MTF on 

isolated bands of a wavefront based on sources of fabrication errors. In Figure 5.22, 

different filtered bands of the IRG sphere are shown. Figure 5.22 (a) shows all the ring-like 

structures, (b), (c) and (d) are filtered bands of 0 10t  , 11 50t  , and 51 t  that 

also exclude all of the rotationally invariant terms. This part was fabricated with diamond 

raster milling and the direction of the feed is obvious in Figures 5.22 (c) and (d). Figure 

5.22 (a) shows the rotationally invariant content of the surface. These errors are caused by 

misalignment of the diamond cutting tool (incorrect center and not exactly perpendicular 

to the shank [124]). Figure 5.22 (b) shows large-scale raster patterns (maximum five cycles 

across aperture). These errors are the consequence of three different sources that are mainly 

thermal. These include i) thermal oscillations in the milling spindle chiller, ii) thermal 

oscillations in the work-holding spindle chiller iii) uneven thermal distortion due to the 

handling of the part during mounting on the machine [124]. The raster-like texture in 

Figures 5.22 (c) and (d) are mainly caused by the step-over in the programmed tool path. 

In Figure 5.22 (d), one can see locations of two dust particles near the edge of the part. 

Some of the high-frequency errors in Figure 5.22 (d) are caused by the tool vibrations due 

to sharp changes in direction and velocity of the toolpath [124]. 

 The second row in Figure 5.22 shows the 2D MTF of the filtered bands. Depending 

on the application, one could specify the maximum geometrical MTF drop in a specific 

frequency range if resolving a specific spatial frequency is needed such as in lithography 

tools. For example, if the specification requires that the maximum geometrical MTF drop 

for the superposition wavefront at the spatial frequency of 12.16  1xf mm  and 

8.1 1yf mm  to be no smaller than 0.65 and equal budgets are required for rotationally-
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invariant terms and raster-like patterns, then to meet the specification, both geometrical 

MTFs should be no smaller than √𝑀𝑇𝐹𝑆𝑝𝑒𝑐
𝐺𝑒𝑜𝑚|𝑓𝑥,𝑓𝑦

2
 at those spatial frequencies. If we have 

N number of bands, for equal budget specification for each band, the geometrical MTF of 

each band should be no smaller than √𝑀𝑇𝐹𝑆𝑝𝑒𝑐
𝐺𝑒𝑜𝑚|𝑓𝑥,𝑓𝑦

𝑁
, where N is the number of bands. 

In this example, to meet the specification, both the rotationally invariant band and the non-

rotationally invariant band should have geometrical MTFs of no smaller than 0.81 at the 

specified spatial frequencies. Geometrical MTF of rotationally invariant terms shown in 

Figure 5.23 (a) is 0.73 at 12.16  1xf mm  and 8.1 1yf mm   that does not meet the 

specification. The second row in Figure 5.23 shows the cross section of the 2D geometrical 

MTF at 8.1 1yf mm . To meet our specification, fixing the centering of the cutting tool 

should be a priority. The diamond cutting tool should be centered properly and it should be 

perpendicular to the shank. Non-rotationally invariant terms as an aggregate meet the 

specification. However, if we had to specify each band separately allowing equal budget, 

the geometrical MTF of each band should be no smaller than 0.94 at those frequencies. The 

filtered band in (b) with  𝑀𝑇𝐹𝑤2
𝐺𝑒𝑜𝑚 =  .   meets the specification. The filtered band in 

(c), 3w , does not meet the specification since 𝑀𝑇𝐹𝑤3
𝐺𝑒𝑜𝑚 =  .   but it is very close to the 

specified value. The filtered band in (d) with 𝑀𝑇𝐹𝑤4
𝐺𝑒𝑜𝑚 =  .   meets the specification. 

The 
4

,
0.889x yf f

wMTF    and depending on the specified uncertainty in the reporting of 

MTF, may or may not meet the specification.  
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Figure 5.22 Orthogonal bands of the IRG 26 sphere. (a) Rotationally-invariant content 

of the IRG 26 sphere. (b) Diagonal band of 0 10t   with the rotationally-invariant 

content removed. (c) Diagonal band of 11 50t   excluding the rotationally invariant 

terms. (d) Diagonal band of 51 t  with the rotationally-invariant terms removed. (e) 

Superposition of wavefronts in (a) to (d) and it's 2D MTF.  
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Figure 5.23 Orthogonal bands of the IRG 26 shown in the first row and their cross-

sectional MTF at 8.1 1yf mm  in the second row. (a) Rotationally-invariant content of 

the IRG 26 sphere. (b) Diagonal bands of 0 10t   with the rotationally-invariant 

content removed. (c) Diagonal band of  11 50t   excluding the rotationally invariant 

terms. (d) Diagonal band of 51 t  with the rotationally-invariant terms removed. (e) 

Superposition of wavefronts in (a) to (d) and its cross-sectional MTF at 8.1 1yf mm . 
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CHAPTER 6 : CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Conclusions 

In Chapter one, we reviewed the importance of characterizing the mid-spatial 

frequency texture due to its effect on the final image. We also showed different spatial 

frequency regions of form (Figure), mid-spatial frequency (waviness), roughness, and their 

definitions from the literature along with an example of a measured surface with different 

frequency regions separated. In 1.3, we introduced different mathematical methods such as 

power spectral density (PSD) and Zernike polynomial analysis for characterization of mid-

spatial frequencies.  

In Chapter two, we compared these mathematical methods against chosen evaluation 

criteria. Our evaluation criteria were the amount of pre-processing, the uniqueness of the 

result (related to orthogonality), connection to fabrication choices, dependence on aperture 

geometry, ability to generalize to full frequency range, connection to optical performance 

and level of intuitiveness. Zernike polynomials are orthogonal over a unit circle and for 

characterizing circular aberrations with these polynomials, there is no need for pre-

processing the data.  

In Chapter three, we showed the generation of very large orders of Zernike polynomials 

using recursive formulas to avoid round-off errors. The Zernike polynomials generated 

extend to more than 45,000 terms, and they represent a unique possibility for characterizing 

MSF errors on freeform surfaces. The results of fitting pure sinusoidal patterns to high 
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orders of Zernike polynomials reveal the signatures of MSF texture in the fit coefficient 

maps. We showed that for raster-like patterns the values of fn   and    where the 

coefficients are largest happen at unique values corresponding to the length-scale of the 

periodicity. For rotationally invariant patterns, the peak of the coefficient distribution 

occurs at rotationally invariant orders where the azimuthal order   is zero. For spokes 

patterns, the peak of the distribution is at an azimuthal order   , where    equals the 

number of azimuthal periods in the map. We then evaluated the effectiveness of Zernike 

characterization in identifying the length scale, amplitude and, type of MSF by comparing 

this analysis to PSD. Having built intuition on how to interpret Zernike fit coefficients 

maps, we showed fit coefficient maps of real mid-spatial frequency texture where we can 

observe and interpret signatures of different fabrication processes. We showed that the 

RMS of fit residuals decreases as the number of basis elements goes up, and this supports 

the conclusion that the fit coefficients are numerically stable even for these very large 

orders. However, the rate of drop in RMS residual decreases, in part due to choice in the 

ordering of the fit. At very extreme orders, the true polynomial map has more than one 

zero-crossing oscillation within each pixel around the edge of the aperture. Real measured 

surface data are discrete and have limited array size. Therefore, we cannot increase the 

number of polynomial basis arbitrarily.  

In Chapter four, we discuss optical performance metrics of imaging systems in the 

context of MSF surface error.  The primary metrics used are the point spread function 

(PSF), the modulation transfer function (MTF) and the Strehl ratio. We considered these 

metrics for both synthetic and real MSF surfaces using both commercial software (Mx) and 

MATLAB. We showed that raster-like patterns on an optical surface of a sinusoidal surface 
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and of a cusp-shaped surface with the same PV surface error have different MTF responses. 

Pure sinusoidal MSF textures on an optical surface degrade the optical performance more 

than the cusp-shaped texture of the same PV. We also showed that MTF loss has a non-

linear relationship with PV, and we recommend using an optical path difference that 

embodies the impact of both refractive index and incident wavelength for optical 

performance analysis and specification purposes.  

In Chapter five, we showed how Zernike fit coefficients of a surface can be used to 

predict the Strehl ratio. We showed that the Strehl ratio approximation exp(−𝑘 𝜎 ) is 

valid for a large portion of the Strehl ratio curve, as well as large order Zernike polynomial 

terms. The nominal orthogonality property of Zernike polynomials provides an effective 

tool in estimating the Strehl ratio of the whole surface based on the Strehl ratios of each 

filtered band. The limits of validity of the Strehl ratio approximation for MSF texture and 

large polynomial orders was analyzed using some examples. We also showed that one can 

take advantage of the linear systems properties of MTF and find the MTF of the entire 

surface based on the MTF of individual filtered bands. The nominal orthogonality 

properties of Zernike polynomials, along with linear systems formulation of MTF, provide 

us with a powerful tool to connect surface characterization metrics, such as filtering based 

on Zernike polynomials, with design and performance metrics, such as MTF. Knowing the 

optical performance degradation contribution due to individual bands and their relationship 

to the degradation of the whole surface enables designers and metrologists to specify MSF 

due to different fabrication sources. 

6.2 Assumptions and validity of our optical performance analysis 

In order to describe the interaction of light with surface texture completely, a rigorous 
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coupled wave analysis (RCWA) is needed. In the optical performance analysis in this 

dissertation, we have used scalar diffraction theory. The treatment of mid-spatial frequency 

texture as grating structures and using scalar diffraction theory sets a limit on the surface 

heights and feature sizes of the surface for which the approximation is valid. In order for 

scalar diffraction theory to be valid, the spatial periods on the sample must be larger than 

min where Λmin =
λ

n
. Harvey et al. use an extended diffraction theory for small feature 

sizes (compared to the wavelength) and large scattering angles [119, 123].   

 

                 

Figure 6.1 Mid-spatial frequency errors are grating-like structures. As the surface 

wavelength gets smaller, the diffraction angle increases. When <min the diffracted 

orders become evanescent waves.  

 

Another assumption for this analysis is that the light interacts with the surface once. As 

a result, we ignore the propagation of waves inside the grating structure and ignore 

implications for the effective medium theory. We use Rayleigh-Sommerfeld diffraction 

theory for our analysis, which is based on scalar diffraction theory. The Rayleigh-

Sommerfeld diffraction theory is valid when the propagation medium is non-magnetic, 

linear, isotropic and homogeneous, which allows for the expression of Maxwell’s equations 

as scalar wave equations (scalar diffraction theory). Then the Sommerfeld radiation 

condition applies here, which guarantees that we are only dealing with outgoing waves and 
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the integral over S2 in Figure 6.2 will be zero. 

  

                 

Figure 6.2 Kirchholf formulation of diffraction [25]. 

 

Using Rayleigh-Sommerfeld theory, the field at point p0 can be written as 
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where 01cos( , )n r is the obliquity factor, and for the case of an infinitely distant point source 

with plane wave illumination (which is the case for calculating point spread function and 

modulation transfer function), the obliquity factor is equal to 1. 

Another assumption is that r01 ≫ λ, i.e. the distance between the observation point 

and the diffracting surface is much larger than the incident wavelength. 

6.3 Future work 

As described in the previous chapters, measurements of a surface are limited by the 

instrument transfer function and the Nyquist sampling frequency. As a result, we cannot fit 
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the data to arbitrary orders of Zernike polynomials. Residual maps of MSF surfaces reveal 

clear structured texture even after removal of very large orders. Figure 6.3 shows the fit 

residual maps of measured surfaces after removal of 200 orders of Zernike polynomials. 

For small wavelengths and high-performance applications, this residual texture can be 

significant and further degrade the optical performance. Thus, a Zernike representation of 

MSF errors is unable to adequately capture the impact of the texture and provide a reliable 

prediction of optical performance. When we go to higher orders of Zernike polynomials, 

the zero crossings of the polynomials at the aperture edge and near the center become more 

closely spaced than the pixels in the data. Interpolating our data to a non-uniform grid such 

as an edge-clustered- recommended in [107]-, or a non-uniform grid depicted in [49] would 

enable robust fitting to even higher orders of polynomials. 

                 

Figure 6.3 The residual maps of three surfaces after removal of 200 orders of Zernike 

polynomials. (a) The residual map of germanium sphere with RMS error of 10.4 nm. (b) 

Residual map of diamond turned aluminum part with RMS error of 5.7 nm. (c) Residual 

map of SiC sphere with RMS error of 2.8 nm.  

 

Measurements from multiple instruments with varying resolution can be combined to 

provide the whole surface map with a greater data density. L. He et al. have combined area 

structure function calculations from different instruments (a Fizeau phase shifting 

interferometer and a Zygo ZeGage environmentally tolerant coherence scanning 
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interferometer (CSI)) [59]. Sub-aperture stitching ideas were first developed to test large 

optical flats and spheres [125]. Thunen and Kwon have developed algorithms based on 

Zernike polynomials to construct full aperture data error from the measurement of single 

sub-apertures [94, 126]. The main problem in the accuracy of sub-aperture stitching 

methods are the uncertainties in the relative piston and tilt of sub-apertures. These 

uncertainties can be estimated and then added to the sub-aperture data before performing 

the analysis. Other methods exist that require overlapping regions among sub-apertures, 

and the piston and tilt are estimated by least square fitting to the difference of overlapping 

data [127-129]. Murphy et al. extended sub-aperture stitching to the measurement of mild 

aspheres [130]. Tricard et al. have incorporated variable optical null (VON) in sub-aperture 

stitching interferometry for measurement of high departure aspheres with up to 1000 waves 

of departure from the best-fit sphere. VON technology uses configurable auxiliary optics 

to generate aberrations that match with all different sub-apertures [131]. Predicting the 

optical performance of full aperture data from sub-aperture data based on Zernike 

polynomial analysis can also be valuable for future research in freeform optics.  
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APPENDIX: MATLAB code 

 

Contents 

 Fit to Zernike Polynomials 

 Organize coefficients in the coefficient map 

 Sub functions 

% Author: Zahra Hosseinimakarem 

% Written July 2014, Revised Dec 2016 

% This code gives Zernike fit coefficients of a NxN matrix  

% using Jacobi polymomials in a recursive formula 

% Inputs: Data map, Zernike order number 

% Outputs: Zernike fit coefficients of the height map 

%   

_____INPUT_________________________________________________

____________ 

%   map                  raw data              

%   nn1                  Zernike order number              

% 

%   

_____OUTPUT________________________________________________

____________ 

%   Z      Zernike coefficients and plots of coefficients 

  

  

  

function [Z]=ZpolyCoef(map,nn1); 

  

% Crop valid data 

idx=(~isnan(map));      % Makes a logical mask 

[row col]=find(idx);    % Finds the rows and column of the 

boundaries of mask 

row_min=min(row(:)); 

row_max=max(row(:)); 

col_min=min(col(:)); 

col_max=max(col(:)); 

map_new=map(row_min:row_max, col_min:col_max);   % Crops the 

data acroding to mask pixel numbers 

  

map_rms=map_new(~isnan(map_new)); 

Ave=rms(map_rms(:)); % RMS of valid data 

c_min=-3.*Ave; 

c_max=3.*Ave; 

  

map=map_new; 
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[nx ny]=size(map); 

N=nx; 

xs=1; 

dx=2.*xs./N;  % Delta x in spatial domain 

dy=dx; 

X=linspace(-xs,xs,N); 

Y=linspace(-xs,xs,N); 

[x y]=meshgrid(X,Y); 

r1=(x.^2+y.^2).^(0.5); 

  

map(find(r1>0.99))=NaN;      % Replaces empty cells with NaN 

figure;                      % Show input map 

mesh(map); 

xlabel('x(pixels)');   

ylabel('y(pixels)'); 

title('Height map','fontsize',14,'fontweight','b');   

shading interp;   

axis xy;axis equal; 

set(gcf,'color','w'); 

colorbar; 

view([0 90]);  

%% Fit to Zernike Polynomials 

w=map; 

nn=4; 

arg=0.5.*((nn.*(nn+2)+nn))+1; % Number of terms 

frame_tot=arg; 

  

xs=1;         % Normalized aperture 

dx=2.*xs./N;  % delta x in spatial domain 

dy=dx; 

X1=linspace(-xs,xs,N); 

Y1=linspace(-xs,xs,N); 

[x1 y1]=meshgrid(X1,Y1); 

r=(x1.^2+y1.^2).^(0.5); 

TH=-atan2(y1,x1); 

  

rJ=(-N/2:1:(N/2-1))*dx;   % 1D Jacobi spatial domain 

rJ=2.*rJ.^2-1; 

frame_tot_2=0.5.*((nn1.*(nn1+2)+nn1))+1; 

J2D=zeros(N,N); 

  

Z=zeros(1,frame_tot_2); 

w_temp=w(:);                     % linearize input map 

w_temp=w_temp(~isnan(w_temp));   % select valid data 

PL=zeros(frame_tot,N);           % The first set of Jacobis 

from the function 

PLM=zeros(frame_tot_2,N);        % More 1D Jacobi matrix 
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tic  % start the clock 

j=1; 

for n=0:nn; 

    for m=(n):-2:-(n); 

        mtemp=m; 

        m=abs(m); 

        if m==0; 

            del=1; 

        else 

            del=0; 

        end 

         

        nor_f=((2.*(n+1))./(1+del)).^0.5;  % Normalization 

factor 

        numel=(n-m)./2; 

        Result=Jacobi_abc(numel,n,m,rJ); 

        PL(j,:)=Result; 

        J1D=Result; 

         

        for i=1:N 

            J2D(i,:)=J1D(:); 

        end 

         

        J2D=interp2(X1,Y1,J2D,r,TH,'spline'); 

        Zrad=r.^(m).*J2D; 

         

        if mtemp>=0 

            Result=Zrad.*cos(m.*TH); 

        else 

            Result=Zrad.*sin(m.*TH); 

        end 

         

        polynm=Result; 

        polynm=nor_f.*polynm; 

        polynm=polynm(:);              % Linearize Zernike poly 

        polynm=polynm(~isnan(w)); 

        Z(1,j)=polynm\w_temp; 

        w_temp=w_temp-Z(1,j).*polynm;  % Subtract the fitted 

Zernike from input map 

         

        j=j+1; 

    end 

end 

  

% The rest of Jacobis 
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k=1; 

PLM(1:frame_tot,:)=PL; 

for n=nn+1:nn1; 

    for m=n:-2:-n; 

        mtemp=m; 

        m=abs(m); 

        numel=(n-m)./2; 

        numel_2=(n-2-m)./2; 

        numel_3=(n-4-m)./2; 

        if m==0; 

            del=1; 

        else 

            del=0; 

        end 

         

        nor_f=((2.*(n+1))./(1+del)).^0.5;    % Normalization 

factor 

         

        if numel==0 

            J1D=ones(1,N); 

        elseif numel==1 

            J1D=0.5.*(2+(m+2).*(rJ-1));       

        else 

            np=n; 

            n2=np-2; 

            n3=np-4; 

             

            ind_1=0.5.*((np.*(np+2)+mtemp))+1; 

            ind_2=0.5.*((n2.*(n2+2)+mtemp))+1; 

            ind_3=0.5.*((n3.*(n3+2)+mtemp))+1; 

             

            if numel_2==0 

                P_2=ones(1,N); 

            elseif numel_2==1 

                P_2=0.5.*(2+(m+2).*(rJ-1));  

            else 

                P_2=PLM(ind_2,:); 

            end 

             

            if numel_3==0 

                P_3=ones(1,N); 

            elseif numel_3==1 

                P_3=0.5.*(2+(m+2).*(rJ-1));  

            else 

                P_3=PLM(ind_3,:); 

            end 

            if (numel>1) 
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                J1D=(COZa(numel-1,m)+COZb(numel-

1,m).*rJ).*P_2-COZc(numel-1,m).*P_3; 

                PLM(frame_tot+k,:)=J1D; 

            end 

        end 

         

        % Converting 1D Jacobi to 2D Jacobi 

         

        for i=1:N 

            J2D(i,:)=J1D(:); 

        end 

         

        J2D=interp2(X1,Y1,J2D,r,TH,'spline'); 

                 

        Zrad=r.^(m).*J2D; 

         

        if mtemp>=0 

            Result=Zrad.*cos(m.*TH); 

        else 

            Result=Zrad.*sin(m.*TH); 

        end 

         

        polynm=Result; 

        polynm=nor_f.*polynm; 

        polynm=polynm(:); 

        polynm=polynm(~isnan(w)); 

        Z(1,k+frame_tot)=polynm\w_temp; 

        w_temp=w_temp-Z(1,k+frame_tot).*polynm; 

        k=k+1; 

     end 

end 

toc 

  

coeff_sample=Z; 

save coeff_sample.mat  coeff_sample -mat -double % Saves 

coefficients 

  

%% Organize coefficients in the coefficient map 

Z=Z'; 

k=1; 

for n=0:nn; 

    for m=(n):-2:-(n); 

        j=0.5.*((n.*(n+2)+m)); 

        ZZ(k,1)=j; 

        rad_in=ceil(0.5.*(-3+sqrt(9+8.*j))); 

        rad(k,1)=rad_in; 

        azi_in=2.*j-n.*(n+2); 
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        azi(k,1)=azi_in; 

        k=k+1; 

    end 

end 

  

X=azi; 

Y=rad; 

Z=abs(Z(1:arg,:)); 

x = [X(:); X(:); X(:)]; 

y = [Y(:); Y(:); Y(:)]; 

z = [Z(:); Z(:); Z(:)]; 

  

figure; 

scatter3(x,y,z,[],z,'filled');colorbar; 

view([0 90]); 

xlabel('m','fontsize',12,'fontweight','b');   

ylabel('n','fontsize',12,'fontweight','b'); 

title('Zernike fit 

coefficients','fontsize',14,'fontweight','b'); 

set(gcf,'color','w'); 

  

np=linspace(0,nn,nn+1); 

mp=linspace(0,nn,nn+1); 

ZMp=NaN(nn+1,nn+1); 

  

k=1; 

for n=0:nn; 

    for m=(n):-2:-(n); 

        j=0.5.*((n.*(n+2)+m)); 

        ZZ(k,1)=j; 

        azi_in=2.*j-n.*(n+2); 

        if (azi_in >= 0) 

            rad_in=ceil(0.5.*(-3+sqrt(9+8.*j))); 

            ZMp(rad_in+1,azi_in+1)=Z(k); 

        end 

        k=k+1; 

    end 

end 

  

ZMPS=ZMp.^2;               % Square of that map 

ng=linspace(1,nn,nn);      %  n negative 

mg=linspace(-nn,-1,nn);    %  m negative 

ZMg=NaN(nn,nn); 

k=1; 

for n=0:nn; 

    for m=(n):-2:-(n); 

        j=0.5.*((n.*(n+2)+m)); 
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        ZZ(k,1)=j; 

        azi_in=2.*j-n.*(n+2); 

        if (azi_in < 0) 

            mneg=abs(azi_in); 

            rad_in=ceil(0.5.*(-3+sqrt(9+8.*j))); 

            ZMg(rad_in,mneg)=Z(k); 

        end 

        k=k+1; 

    end 

end 

  

ZMgS=ZMg.^2;              % Square of neg map 

nm=linspace(0,nn,nn+1); 

mm=linspace(0,nn,nn+1); 

mm_1=linspace(-2,nn,nn+3); 

ZM=NaN(nn+1,nn+1); 

  

% sum of pos and neg 

ZM(:,1)=ZMPS(:,1); 

ZMpp=ZMPS(2:nn+1,2:nn+1); 

ZMp_neg=ZMgS+ZMpp; 

ZM(2:nn+1,2:nn+1)=ZMp_neg; 

ZM=sqrt(ZM); 

  

log_ZM=log10(ZM); 

log_ZM(find(log_ZM<(-5)))=NaN;  % Replaces very small values 

with NaN 

c_max=max(log_ZM(:)); 

c_min=-5; 

  

ZM_big=NaN(nn+1,nn+3); 

ZM_big(:,3:nn+3)=log_ZM; 

  

img_data=ZM_big; 

  

% Forbes indexing 

F=NaN(nn./2+1,nn+1); 

  

for n=0:nn 

   for m=n:-2:0 

        nf=(n-m)./2; 

        F_dir(nf+1,m+1)=ZM(n+1,m+1); 

        F(nf+1,m+1)=log_ZM(n+1,m+1); 

    end 

end 

  

F_big=NaN(nn./2+1,nn+2); 
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F_big(:,2:nn+2)=F; 

  

mf=linspace(0,nn,nn+1); 

nf=linspace(0,nn./2,nn./2+1); 

  

figure;imagesc(mf,nf,F);axis image;colorbar; 

xlabel('m','fontsize',16,'fontweight','b');   

ylabel('n_f','fontsize',16,'fontweight','b'); 

title('Fit coefficients, Log 

scale','fontsize',14,'fontweight','b');  

caxis([c_min, c_max]); 

set(gcf,'color','w'); 

end 

  

%% Subfunctions 

% Subfunction, Recusrive generation of Jacobi polynomials 

function Result=Jacobi_abc(numel,num,m,x); 

% Recursive function to generate  

% Zernike polynomials based on Jacobi polynomials 

% References 

  

% [1] Forbes, G. W. "Robust and fast computation for the 

polynomials of optics."  

%     Optics express 18.13 (2010): 13851-13862. 

%     Based on Equations 1.6 and 4.1a,b,c 

% [2] Abramowitz, M. and I.A. Stegun, Handbook of 

mathematical functions. Applied mathematics series, 1966. 

55: p. 62. 

  

if numel==0 

    Result=1; 

elseif numel==1 

    Result=0.5.*(2+(m+2).*(x-1));  

else 

    Result=(COZa(numel-1,m)+COZb(numel-

1,m).*x).*Jacobi_abc(numel-1,num,m,x)-COZc(numel-

1,m).*Jacobi_abc(numel-2,num,m,x); 

end 

end 

  

  

% Subfunction, calculate the first recursive coefficient 

function result = COZa(n,m) 

  

% Based on M. Abramowitz, and I. Stegun, Handbook of 

Mathematical Functions (Dover, 1978), Chap. 22 

% eqn 22.7 
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a1=2.*(n+1).*(n+m+1).*(2.*n+m); 

a2=-(2.*n+m+1).*m.^2; 

a3=(2.*n+m).^3; 

a4=2.*n.*(n+m).*(2.*n+m+2); 

result=a2./a1; 

  

end 

  

% Subfunction, calculate the second recursive coefficient 

function result = COZb(n,m) 

% Based on M. Abramowitz, and I. Stegun, Handbook of 

Mathematical Functions (Dover, 1978), Chap. 22 

% eqn 22.7 

  

a1=2.*(n+1).*(n+m+1); 

a3=(2.*n+m+1).*(2.*n+m+2); 

result=a3./a1; 

  

end 

  

% Subfunction, calculate the third recursive coefficient 

function result = COZc(n,m) 

% Based on M. Abramowitz, and I. Stegun, Handbook of 

Mathematical Functions (Dover, 1978), Chap. 22 

% eqn 22.7 

  

a1=(n+1).*(n+m+1).*(2.*n+m); 

a4=n.*(n+m).*(2.*n+m+2); 

result=a4./a1; 

  

end 

 


