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ABSTRACT

LI QI. Generalized semiparametric varying-coefficient models for longitudinal data.
(Under the direction of DR. YANQING SUN)

In this dissertation, we investigate the generalized semiparametric varying-coefficient

models for longitudinal data that can flexibly model three types of covariate effects:

time-constant effects, time-varying effects, and covariate-varying effects, i.e., the co-

variate effects that depend on other possibly time-dependent exposure variables.

First, we consider the model that assumes the time-varying effects are unspecified

functions of time while the covariate-varying effects are parametric functions of an

exposure variable specified up to a finite number of unknown parameters. Second, we

consider the model in which both time-varying effects and covariate-varying effects

are completely unspecified functions. The estimation procedures are developed using

multivariate local linear smoothing and generalized weighted least squares estimation

techniques. The asymptotic properties of the proposed estimators are established.

The simulation studies show that the proposed methods have satisfactory finite sam-

ple performance. ACTG 244 clinical trial of HIV infected patients are applied to

examine the effects of antiretroviral treatment switching before and after HIV devel-

opsing the 215-mutation. Our analysis shows benefit of treatment switching before

developing the 215-mutation.

The proposed methods are also applied to the STEP study with MITT cases show-

ing that they have broad applications in medical research.
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CHAPTER 1: INTRODUCTION

Longitudinal data are common in medical and public health research. In AIDS

clinical trials, for example, viral loads and CD4 counts are measured repeatedly dur-

ing the course of studies. These biomarkers have long been known to be prognostic

for both secondary HIV transmission and progression to clinical disease in observa-

tional studies (Mellors et al., 1997; HIV Surrogate Marker Collaborative Group, 2000;

Quinn et al., 2000; Gray et al., 2001), and more recently in randomized trials (Cohen,

2011). An important objective of the AIDS clinical trials is to examine treatment

effectiveness on these longitudinal biomarkers. In this dissertation, we consider new

methodologies for analyzing the longitudinal data arising from these studies.

1.1 A Motivating Example

In many medical studies, the treatment of the patients may be switched during the

study period or the patients may experience more than one phase of treatment. It

is important to understand the temporal effects of the new treatment after switching

as well as personalized responses to the switching.

A motivating example is a historical case study of antiretroviral treatment regi-

mens, ACTG 244. Zidovudine (ZDV) was the first drug approved for treatment of

HIV infection. Initial approval was based on evidence of a short-term survival advan-

tage over placebo when zidovudine was given to patients with advanced HIV disease.
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Shortly after that, zidovudine resistance was associated with disease progression mea-

sured by a rise in plasma virus and decline in CD4 cell counts in both children and

adults receiving zidovudine monotherapy (Japour, 1995; Principi, 2001). Subsequent

studies suggested benefits of switching patients to treatments that combined ZDV

with didanosine (ddI) or with ddI plus nevirapine (NVP). ACTG 244 enrolled sub-

jects receivingon ZDV monotherapy and monitored their HIV in plasma bi-monthly

for the T215Y/F mutation. When a subject’s viral population developed the 215 mu-

tation, the subject was randomized to continue ZDV, add ddI or add ddI plus NVP.

A diagram of the longitudinal monitoring times and treatment switching is given in

Figure 1. An important question is whether and how the treatment switching has

any beneficial effects in treating the HIV infected patients.

treament switching

Sit = 0 t

Ti1

1st viral test j-th viral test

...... ......

Tij

trial entry

Figure 1: Biomarkers on two time scales: time since the trial entry and time since
treatment switching.

The statistical methods developed in this dissertation apply for examining the pos-

sible time-varying effects of treatment switching on longitudinal biomarkers such as

CD4 cell counts and HIV viral load. These methods further have broad applica-

tions since treatment switching is common in medical studies, including switching

antiretroviral therapies in response to results of viral load and drug resistance testing

(Gilks et al., 2006; Phillips et al., 2008), and, very generally, switching therapies for

chronic diseases based on biomarker response results.
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We investigate the treatment switching problem under a general semiparametric

modelling framework with covariate-varying effects for longitudinal data. In the next

section, we will review some of the relevant literature in this area.

1.2 Literature Review

Time-varying semiparametric regression models for longitudinal data have been

intensively studied, in which the covariate effects are constant over time for some

covariates and time-varying for others. For the semiparametric additive model, the

approaches include the nonparametric kernel smoothing by Hoover et al. (1998), the

joint modeling of longitudinal responses and sampling times by Martinussen and

Scheike (1999, 2000, 2001), Lin and Ying (2001), the backfitting method by Wu and

Liang (2004) and the profile kernel smoothing approach by Sun and Wu (2005). Fan

et al. (2007) proposed a profile local linear approach by imposing some correlation

structure for the longitudinal data for improving efficiency. Fan and Li (2004) con-

sidered the profile local linear approach and the joint modelling for partially linear

models. Hu and Carroll (2004) showed that for partially linear models, the backfit-

ting is less efficient than the profile kernel method. The proportional means model

has been studied by Lin and Carroll (2000), Sun and Wei (2000), Cheng and Wei

(2000), Hu et al. (2003) and Sun (2010). The generalized linear model with a known

link function was studied by Lin and Carroll (2001) using profile-based generalized

estimating equations (GEE) and a local linear approach. Lin et al. (2007) proposed a

local linear GEE method when all regression coefficients are nonparametric functions

of time. Sun et al. (2013b) proposed a profile kernel estimation procedure for the
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generalized semiparametric model with time-varying effects without having to spec-

ify a sampling model for the observation times and thus avoiding misspecification of

the sampling model.

However, in many applications the covariate effects may not only vary with time,

but with an exposure variable. The covariate-varying effects models have been widely

studied for cross-sectional data since the seminal paper of Hastie and Tibshirani

(1993). For cross-sectional survival data, Scheike (2001) proposed a generalized addi-

tive Aalen model with two time-scales where, for example, one time-scale is the dura-

tion of illness since diagnosis and the other time-scale is the age when the transition

to the illness stage occurred. The model allows examining the nonlinear interactions

between the covariates and the age. The proportional hazards model with covariate-

varying effects was studied by Fan et al. (2006), with an application to the nursing

home data where the duration of nursing home stay and the age of residents are

the two time-scales. The nonlinear interactions between covariates with an exposure

variable were estimated using the local partial-likelihood technique. This approach

was extended to model multivariate failure data by Cai et al. (2007, 2008). Yin et al.

(2008) studied a partially linear additive hazards regression with varying-covariate

effects in which the nonlinear interactions were estimated using the local score func-

tion. Chen et al. (2013) studied time-varying effects for overdispersed recurrent event

data with treatment switching using spline method. However, we are not aware of any

research on the longitudinal models with covariate-varying effects. The motivating

examples testify the importance of such development.



CHAPTER 2: SEMIPARAMETRIC MODEL WITH PARAMETRIC
COVARIATE-VARYING EFFECTS

2.1 Model

Suppose that there is a random sample of n subjects and τ is the end of follow-up.

Let Xi(t) and Ui(t) be possibly time-dependent covariates for the ith subject. Suppose

that observations of response process Yi(t) for subject i are taken at the sampling time

points 0 ≤ Ti1 < Ti2 < · · · < Tini
≤ τ , where ni is the total number of observations

for subject i. The sampling times can be irregular and dependent on covariates. In

addition, some subjects may drop out of the study early. Let Ni(t) =
∑ni

j=1 I(Tij ≤ t)

be the number of observations taken from the ith subject by time t, where I(·) is the

indicator function. Let Ci be the end of follow-up time or censoring time whichever

comes first. The responses for subject i can only be observed at time points before

Ci. Thus Ni(t) can be written as N∗i (t ∧ Ci), where N∗i (t) is the counting process of

sampling times. Assume that {Yi(·), Xi(·), Ui(·), Ni(·), i = 1, · · · , n} are independent

identically distributed (iid) random processes. The censoring time Ci is noninforma-

tive in the sense that E{dN∗i (t) |Xi(t), Ui(t), Ci ≥ t} = E{dN∗i (t)|Xi(t), Ui(t)} and

E{Yi(t)|Xi(t), Ui(t), Ci ≥ t} = E{Yi(t)|Xi(t), Ui(t)}. Assume that dN∗i (t) is indepen-

dent of Yi(t) conditional on Xi(t), Ui(t) and Ci ≥ t. The censoring time Ci is allowed

to depend on Xi(·) and Ui(·).

Let Xi(t) = (XT
1i(t), X

T
2i(t), X

T
3i(t))

T consist of three parts of dimensions p1, p2 and
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p3, respectively, over the time interval [0, τ ]. Let Ui(t) be the scalar covariate process

with support U . To characterize the treatment switching effects of X3i(t) with respect

to Ui(t), we propose the generalized semiparametric varying-coefficient model

µi(t) = E{Yi(t)|Xi(t), U(t)} = g−1{αT (t)X1i(t) + βTX2i(t) + γT (Ui(t); θ)X3i(t)},

(2.1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(·) is a p1-dimensional vector of

completely unspecified functions, β is a p2-dimensional vector of unknown parameters

and γ(·; θ) is a p3-dimensional vector of parametric functions specified up to a finite

number of unknown parameters θ. Setting the first component of X1i(t) as 1 gives

a nonparametric baseline function. γ(u) is the effect of X3i(t) at the covariate level

Ui(t) = u. In addition, different link functions can be selected to provide a rich

family of models for longitudinal data. Both categorical and continuous longitudinal

responses can be modelled with appropriately chosen link functions. For example, the

identity and logarithm link functions can be used for continuous response variables

while the logit link function can be used for binary responses.

For the motivating example the ACTG 244, t is the time since initiation of an-

tiretroviral therapy (ART). It is of interest to know how biomarkers such as viral

load and CD4 counts respond to the new treatments. It is natural to assume that the

effects of the new treatments depend on the time duration Ui(t) = t − Si since the

switching, where Si is the time of treatment switching. Letting X3i(t) = I(t > Si)

in (2.1), γ(u) represents the change in the conditional mean response at time u after

treatment switching adjusting for other covariates X1i(t) and X2i(t). On the other
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hand, if we let X3i(t) = Xo
3i(t)I(t > Si) where Xo

3i(t) are the indicators for the new

treatments after switching, then γ(u) are the effects of new treatments starting from

testament switching. Note that for each patient we have two time scales involved, one

is the time since study entry t and the other one is the time since treatment switching

Ui(t). If there is no switching for the ith patient, we let Ui(t) = 0.

2.2 Estimation

In this section, we develop the estimation procedure for model (2.1) when α(t)

is an unspecified function and γ(u) = γ(u, θ) are parametric functions. The pro-

posed approach utilizes the local linear estimation technique which has been shown

to be design-adaptive and more efficient in correcting boundary bias than the kernel

smoothing approach in nonparametric estimation (cf., Fan and Gijbels (1996)). The

technique was applied by Cai and Sun (2003) and Sun et al. (2009b) to develop a

local partial likelihood method for the time-varying coefficients in the Cox regression

model, and recently by Sun et al. (2013b) for longitudinal data.

At each t0, let

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2)

be the first order Taylor expansion of α(·) for t ∈ Nt0 , a neighborhood of t0, where

α̇(t0) is the derivative of α(t) at t = t0. Denote α∗(t0) = (αT (t0), α̇
T (t0))

T , X∗1i(t, t−

t0) = X1i(t)⊗ (1, t− t0)T , where ⊗ is the Kronecker product. Let ζ = (βT , θT )T . For

t ∈ Nt0 , model (2.1) can be approximated by

µ̃(t, t0, α
∗(t0), ζ|Xi, Ui) = ϕ{α∗T (t0)X

∗
1i(t, t− t0) + βTX2i(t) + γT (Ui(t), θ)X3i(t)},

(2.2)
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where ϕ(·) = g−1(·) is the inverse function of the link function g(·).

At each t0 and for fixed ζ, we propose the following local linear estimating function

for α∗(t0):

Uα(α∗; ζ, t0) =
n∑
i=1

∫ τ

0

Wi(t) [Yi(t)− µ̃(t, t0, α
∗(t0), ζ|Xi, Ui)]

×X∗1i(t, t− t0)Kh(t− t0) dNi(t), (2.3)

where Wi(t) = W (t,Xi(t), Ui(t)) is a nonnegative weight process, K(·) is a kernel

function, h = hn > 0 is a bandwidth parameter and Kh(·) = K(·/h)/h. The solution

to the equation Uα(α∗; ζ, t0) = 0 is denoted by α̃∗(t0, ζ).

Let α̃(t, ζ) be the first p1 components of α̃∗(t, ζ). The profile weighted least squares

estimator ζ̂ is obtained by minimizing the following profile least squares function `ζ(ζ)

with respect to ζ, where

`ζ(ζ) =
n∑
i=1

∫ t2

t1

Qi(t)[Yi(t)−ϕ{α̃T (t, ζ)X1i(t)+β
TX2i(t)+γ

T (Ui(t), θ)X3i(t)}]2 dNi(t),

(2.4)

where Qi(t) is a nonnegative weight process that can be different from Wi(t) and

[t1, t2] ⊂ (0, τ) in order to avoid possible instability near the boundary.. The profile

estimator for α(t0) is obtained by α̂(t0) = α̃(t0, ζ̂) through substitution.

The Newton-Raphson iterative method can be used to find the estimator ζ̂ that

minimizes (2.4). Taking the derivative of `ζ(ζ) with respect to ζ leads to the following
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estimating function

Uζ(ζ) =
n∑
i=1

∫ t2

t1

Wi(t)
[
Yi(t)− ϕ{α̃T (t, ζ)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

]
×
{
∂α̃(t, ζ)

∂ζ
X1i(t) +

∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

}
dNi(t), (2.5)

where η(Ui(t), ζ) = (βT , γT (Ui(t), θ))
T , ∂η(Ui(t), ζ)/ζ = diag{Ip2 , ∂γT (Ui(t), θ)/∂θ}

and X∗2i(t) = (XT
2i(t), X

T
3i(t))

T . Here ∂α̃(t,ζ)
∂ζ

be the first p1 components of ∂α∗(t,ζ)
∂ζ

which

can be expressed in terms of the partial derivatives of Uα(α∗; ζ, t) at α∗ = α̃∗(t, ζ).

Specifically, since Uα(α̃∗(t, ζ); ζ, t) ≡ 02p1 , it follows that α̃∗(t, ζ) satisfies

{
∂Uα(α∗; ζ, t)

∂α∗
∂α̃∗(t, ζ)

∂ζ
+
∂Uα(α∗; ζ, t)

∂ζ

}∣∣∣∣
α∗=α̃∗(t,ζ)

= 02p1 .

Therefore,

∂α̃∗(t, ζ)

∂ζ
= −

{
∂Uα(α∗; ζ, t)

∂α∗

}−1
∂Uα(α∗; ζ, t)

∂ζ

∣∣∣∣∣
α∗=α̃∗(t,ζ)

, (2.6)

where

∂Uα(α∗; ζ, t0)

∂α∗
= −

n∑
i=1

∫ τ

0

Wi(t)ϕ̇{α∗T (t0)X
∗
1i(t, t− t0) + ηT (Ui(t), ζ)X∗2i(t)}

×X∗1i(t, t− t0)⊗2Kh(t− t0) dNi(t), (2.7)

and

∂Uα(α∗; ζ, t0)

∂ζ
= −

n∑
i=1

∫ τ

0

Wi(t)ϕ̇{α∗T (t0)X
∗
1i(t, t− t0) + ηT (Ui(t), ζ)X∗2i(t)}

×X∗1i(t, t− t0){
∂η(Ui(t); ζ)

∂ζ
X∗2i(t)}TKh(t− t0) dNi(t).

(2.8)

When link function is identity function, α̃∗(t0, ζ) can be solved explicitly as the
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root of the estimating function (2.3). Under a general link function, α̃∗(t0, ζ) can

be solved using the Newton-Raphson iterative algorithm. The estimation procedure

iteratively updates estimates of the nonparametric component α̃∗(t0, ζ) and the para-

metric component ζ. Specifically, the estimators α̂(t0) and ζ̂ can be accomplished

through the following iterated algorithm:

Computational algorithm

1. Given α̂(t){0} and ζ̂{0} as the initial values;

2. For each jump point of {Ni(·), i = 1, · · · , n}, say t0 , the mth step estimator

α̂∗{m}(t0) = α̃∗(t0, ζ̂
{m−1}) is the root of the estimating function (2.3) satisfying

Uα(α̂∗{m}(t0), ζ̂
{m−1}, t0) = 0, where ζ̂{m−1} is the estimate of ζ at the (m−1)th

step.

3. The mth step estimator ζ̂{m} is the minimizer of (2.4) obtained after replacing

α̃(t, ζ) with α̂{m}(t), where α̂{m}(t) is the first p1 components of α̂∗{m}(t).

4. Repeating step 2 and 3, the estimators α̂∗{m}(t0) and ζ̂{m} are updated at each

iteration until convergence. ζ̂ and α̂(t0) are ζ̂{m} and the first p1 components of

α̂∗{m}(t0), respectively, at convergence.

2.3 Asymptotic Properties

Let ζ0 and α0(t) be the true values of ζ and α(t) under model (2.1). Let

µi(t) = ϕ{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)},

µ̇i(t) = ϕ̇{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)},



11

and εi(t) = Yi(t) − µi(t). Let ω(t) be the deterministic limit of W (t) in probability

as n→∞. Define

e11(t) = E
[
ωi(t)µ̇i(t)X1i(t)

⊗2λi(t)ξi(t)
]
,

and

e12(t) = E
[
ωi(t)µ̇i(t)X1i(t)

(
∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

)T
λi(t)ξi(t)

]
,

where ξi(t) = I(Ci ≥ t).

Let

µ̂i(t) = ϕ{α̂T (t)X1i(t) + ηT (Ui(t), ζ̂)X∗2i(t)},

ˆ̇µi(t) = ϕ̇{α̂T (t)X1i(t) + ηT (Ui(t), ζ̂)X∗2i(t)},

and ε̂i(t) = Yi(t)− µ̂i(t). Let

Ê11(t) = n−1
n∑
i=1

∫ τ

0

Wi(s)ˆ̇µi(s)X1i(s)
⊗2Kh(s− t) dNi(s),

and

Ê12(t) = n−1
n∑
i=1

∫ τ

0

Wi(s)ˆ̇µi(s)X1i(s)

(
∂η(Ui(t), ζ)

∂ζ
X∗2i(s)

)T
Kh(s− t) dNi(s).

The following theorem characterizes the asymptotic properties of the proposed esti-

mator ζ̂.

Theorem 2.1. Under Condition I in the Appendix, the estimator ζ̂ is consistent for

ζ0, and
√
n(ζ̂ − ζ0) converges in distribution to a mean zero Gaussian random vector

with covariance matrix A−1ΣA−1, where

A = E
[∫ t2

t1
ωi(t)µ̇i(t){−(e12(t))

T (e11(t))
−1X1i(t) + ∂η(Ui(t),ζ0)

∂ζ
X∗2i(t)}⊗2 dNi(t)

]
,
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and

Σ = E
[∫ t2

t1
ωi(t)εi(t){−(e12(t))

T (e11(t))
−1X1i(t) + ∂η(Ui(t),ζ0)

∂ζ
X∗2i(t)} dNi(t)

]⊗2
. (2.9)

The matrix A can be consistently estimated by

Â = n−1
∑n

i=1

∫ t2
t1
Wi(t)ˆ̇µi(t){−(Ê12(t))

T (Ê11(t))
−1
X1i(t) + ∂η(Ui(t),ζ̂)

∂ζ
X∗2i(t)}⊗2 dNi(t)

and Σ can be consistently estimated by

Σ̂ = n−1
∑n

i=1

(∫ t2
t1
Wi(s)ε̂i(t){(Ê12(t))

T (Ê11(t))
−1
X1i(t) + ∂η(Ui(t),ζ̂)

∂ζ
X∗2i(t)} dNi(s)

)⊗2
.

Next, we state the asymptotic result for the proposed local estimator α̂(t). Denote

α̇0(t), α̈0(t) the first and second derivatives of true α0(t) with respect to t, respectively.

Theorem 2.2. Under Condition I in the Appendix, we have that α̂(t) converges to

α0(t) uniformly in t ∈ [t1, t2], and

√
nh(α̂(t)− α0(t)−

1

2
µ2h

2α̈T0 (t))
D−→N (0,Σα(t)) , (2.10)

where µ2 =
∫ 1

−1 t
2K(t) dt, Σα(t) = (e11(t))

−1Σe(t)(e11(t))
−1, and

Σe(t) = limn→∞ hE{
∫ τ
0
ωi(s)εi(s)X1i(s)Kh(s− t) dNi(s)}⊗2.

The variance-covariance matrix Σα(t) can be estimated consistently replacing e11(t)

by Ê11(t) and Σe(t) by Σ̂e(t) = n−1
∑n

i=1 {ĝi(t)}
⊗2, where

ĝi(t) =h1/2
∫ τ

0

Wi(s)Kh(s− t)X1i(s)ε̂i(s) dNi(s)− h1/2Ê12(t)

Â−1
∫ t2

t1

Wi(s)ε̂i(s)

{
∂η(Ui(t), ζ̂)

∂ζ
X∗2i(s)− (Ê12(s))

T (Ê11(s))
−1X1i(s)

}
dNi(s).
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Note that the estimation error of ζ does not appear in the asymptotic variance of

α(t), however for small samples, we suggest estimate high order terms to get better

performance of coverage probabilities.

Let α(k)(t) be the k-th component of α(t). Similar notations are used throughout

with the superscript (k) denoting the kth component of the corresponding vector.

Based on Theorem 2.2, an asymptotic (1−α) pointwise confidence intervals for α(k)(t),

0 < t < τ , is obtained by

α̂(k)(t)± (nh)−1/2zα/2

[
n−1

n∑
i=1

{ĝ(k)i (t)}2
]1/2

. (2.11)

Let A0(t) =
∫ t
t1
α0(s) ds and Â(t) =

∫ t
t1
α̂(s) ds. The following theorem presents a

weak convergence result for Gn(t) = n1/2(Â(t) − A0(t)) over t ∈ [t1, t2]. This result

provides theoretical justifications for construction of simultaneous confidence bands

of A(t) =
∫ t
t1
α(s) ds developed later.

Theorem 2.3. Under Condition I, Gn(t) = n−1/2
∑n

i=1Hi(t) + op(1) uniformly in

t ∈ [t1, t2] ⊂ (0, τ), where

Hi(t) =

∫ t

t1

(e11(s))
−1
∫ τ

0

ωi(u)Kh(u− s)X1i(u){Yi(u)− µi(u)} dNi(u) ds

−
∫ t

t1

(e11(s))
−1e12(s) dsA

−1

×
∫ t2

t1

ωi(s){
∂η(Ui(t), ζ)

∂ζ
X∗2i(s)− (e12(s))

T (e11(s))
−1X1i(s)}

×{Yi(s)− µi(s)} dNi(s). (2.12)

The processes Gn(t) converges weakly to a zero-mean Gaussian process on [t1, t2].

The asymptotic covariance matrix ofGn(t) can be estimated consistently by Σ̂G(t) =
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n−1
∑n

i=1{Ĥi(t)}⊗2, where Ĥi(t) is obtained by replacing the unknown quantities in

Hi(t) with their corresponding empirical counterparts.

For time-varying coefficient models, simultaneous confidence bands for the esti-

mated coefficient functions are more desirable than the pointwise confidence intervals.

Motivated by the Gaussian multiplier resampling method of Lin et al. (1993), we de-

fine G∗n(t) = n−1/2
∑n

i=1 Ĥi(t)φi, where φ1, φ2, . . . , φn are iid standard normal random

variables independent from the observed data set. By Lemma 1 of Sun and Wu (2005),

the processesGn(t) andG∗n(t) given the observed data sequence converge weakly to the

same zero-mean Gaussian process on [t1, t2]. The distribution of supt1≤t≤t2 |G
∗(k)
n (t)

/[
∑n

i=1{Ĥ
(k)
i (t)}2/n]1/2| can be approximated by repeatedly generating samples of

φ1, φ2, . . . , φn. Let cαk be the 100(1− α)-th the percentile of this approximate distri-

bution, the (1 − α) simultaneous confidence bands for {A(k)(t), t ∈ [t1, t2]} is given

by

Â(k)(t)± n−1/2cαk
[
n−1

n∑
i=1

{Ĥ(k)
i (t)}2

]1/2
.

2.4 Bandwidth Selection

The optimal bandwidth h can be selected by minimizing the asymptotic mean

integrated square error (MISE). It follows from Theorem 2.2 that the MISE for the

kth component of α(t) is

∫ t2

t1

[
1

4
h4µ2

2{α̈
(k)
0 (t)}2 +

1

nh
σ(k)(t)

]
dt,

where α̈
(k)
0 (t) is the kth element of the vector α̈0(t) and σ(k)(t) is the kthe diagonal

element of (e11(t))
−1Σα(t)(e11(t))

−1. Therefore, the asymptotic optimal bandwidth is
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giving by

hopt,k =

[ ∫ t2
t1
σ(k)(t) dt∫ t2

t1
µ2
2{α̈

(k)
0 (t)}2 dt

]1/5
n−1/5.

The optimal theoretical bandwidth is difficult to achieve since it would involve

estimating the second derivative α̈(t); see Fan and Gijbels (1996), Cai and Sun (2003),

Sun and Gilbert (2012) and Sun et al. (2013b). In practice, the appropriate bandwidth

selection can be based on a cross-validation method. This approach is widely used in

the nonparametric function estimation literature; see Rice and Silverman (1991) for

a leave-one-subject-out cross-validation approach, and Tian et al. (2005) for a K-fold

cross-validation approach for survival data. Sun et al. (2013b) extended the K-fold

cross-validation approach for longitudinal data.

An analog of the K-fold cross-validation approach in the current setting is to divide

the data into K equal-sized groups. With Dk denoting the kth subgroup of data, the

kth prediction error is given by

PEk(h) =
∑
i∈Dk

{∫ t2

t1

Wi(t)[Yi(t)− ϕ{α̂T(−k)(t)Xi1(t) + ηT (Ui(t), ζ̂(−k))X
∗
2i(t)}]dNi(t)

}2

,

(2.13)

for k = 1, · · · , K, where α̂(−k)(t) and ζ̂(−k) are estimated using the data from all

subgroups other than Dk. The data-driven bandwidth selection based on the K-

fold cross-validation is obtained by minimizing the total prediction error PE(h) =∑K
k=1 PEk(h), with respect to h.

We also investigate another user friendly bandwidth selection method. The band-

width selection formula h = Cσ̂wn
−1/3 has been examined for the nonparametric den-

sity estimation and for semiparametric failure time regression in Jones et al. (1991),
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Zhou and Wang (2000) and Sun et al. (2013a) among others, where C is a constant

and σ̂w is the estimated standard error of the sampling times in the domain of the

nonparametric functions to be estimated. To adopt the formula for the longitudinal

data, we note that the observation times {Tij, j = 1, . . . , ni} for a subject i are likely

dependent. Suppose that φi is the random effect that induce such dependence. Then

variance of the observation times can be expressed as

σ2
T = V ar(Tij) = E{V ar(Tij|φi)}+ Var{E(Tij|φi)}.

The σ2
T can be estimated by σ̂2

T = n−1
∑n

i=1 S
a
i +Sb, where Sai is the sample variance

of Tij, for j = 1, . . . , ni, for the ith subject, and Sb is the sample variance of T̄i· =

n−1i
∑ni

i=1 Tij.

Our simulation shows that the K-fold cross-validation method works well for K is

the range of 3 to 10. The constant C in the bandwidth selection formula h = Cσ̂Tn
−1/3

is calibrated through simulations under different models and sample sizes, where the

cross-validation selected bandwidths hCV are taken as the responses. Some of the

results are summarized in Table 1. Although C can be different for different settings,

it falls in the range between 3 and 5. The estimation and hypothesis testing results

are not very sensitive to the choice of C ∈ [3, 5]. In practice, a larger C can be used

if the distribution of the sampling times is skewed or sparse in some areas.

2.5 Weight Function Selection

Since the data used in (2.3) are localized in a neighborhood of t, a weight func-

tion for (2.3) will not have much effect on the local linear estimator for α(t).(Sun
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et al., 2013b). And under Theorem 2.1, the proposed estimator ζ̂ is consistent and

asymptotically normal as long as the weight process W (·) converges in probability

to a deterministic function ω(·). However the selection of W (·) does affect the ef-

ficiency of the estimator ζ̂. Naturally, we would like to choose the optimal weight

such that the asymptotic variance of ζ̂ is minimized. Wang et al. (2005) showed that,

in semiparametric setting, the estimator for the parametric component in the model

will achieve the semiparametric efficiency bound only if the within-cluster correlation

matrix is specified correctly. One typically takes the weight matrix in the weighted

least squares method to be the inverse of estimated covariance matrix. Challenges

arise in estimating the covariance function nonparametrically due to the fact that

longitudinal data are frequently collected at irregular and possibly subject-specific

time points.

When the link function is identity, Wu and Pourahmadi (2003) proposed non-

parametric estimation of large covariance matrices using a two-step estimation pro-

cedure (Fan and Zhang, 2000), but their method can deal with only balanced or

nearly balanced longitudinal data. Huang et al. (2006) introduced a penalized like-

lihood method for estimating a covariance matrix when the design is balanced and

Yao et al. (2005a,b) approached the problem from the standpoint of functional data

analysis. Fan et al. (2007) proposed a quasi-likelihood approach and they studied

the case in which the observation times are irregular on a continuous time interval.

In their method, the variance function is modeled nonparametrically as a function in

time, but the correlation is assumed to be a member of a known family of parametric

correlation functions. Li (2011) extended these methods by modelling the covariance
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function completely nonparametrically.

This topic for models with non identity link is beyond the scope of this thesis.

Here we suppose that the repeated measurements of Yi(·) within the same subject

are independent and that Yi(·) is independent of Ni(·) conditional on the covariates

Xi(t) and Ui(t). Let σ2
ε (t|X,U) = Var{Yi(t)|Xi(t), Ui(t)} be the conditional variance

of Yi(t) given Xi(t) and Ui(t). Then

Σ = E

[∫ t2

t1

ω2
i (t)σ

2
ε (t){−(e11(t))

−1e12(t)X1i(t) +
∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)}⊗2ξi(t)λi(t)

]
.

When ωi(t) = µ̇i(t)/σ
2
ε (t|X,U), it often leads to asymptotically efficient estimators in

many semiparametric models discussed by Bickel et al. (1993) and Sun et al. (2013b).

Practically a two-stage estimation procedure can be considered to improve the

efficiency of the estimation of ζ. In the first stage, unit weight function is used to

obtain α̂I(t) and ζ̂I . In the second stage, the updated estimators ζ̂W are obtained

by choosing the weight Wi(t) = ˆ̇µi(t)/σ̂
2
ε (t|X,U), where ˆ̇µ(t) = ϕ̇{α̂IT (t)X1i(t) +

ηT (Ui(t), ζ̂I)X
∗
2i(t)}. And the nonparametric estimation of the variance process is

σ̂2
ε (t) =

∑n
i=1

∫ τ
0
ε̂i(s)

2Kh(t− s)dNi(s)∑n
i=1

∫ τ
0
Kh(t− s)dNi(s)

, (2.14)

where ε̂i(s) = Yi(s)−ϕ{α̂IT (t)X1i(t) +ηT (Ui(t), ζ̂I)X
∗
2i(t)} is the residuals in the first

stage. Note that in logit link for Bernoulli data, σ̂2
ε (t) = µ̂i(t)(1− µ̂i(t)), so the weight

function cancels out to be identity.

2.6 Link Function Selection

Our estimation procedure for model (2.1) holds for a wide class of link functions.

This presents an opportunity to select the most appropriate link function for a partic-
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ular application. In some applications the choice may be based on prior knowledge,

but data-driven link function selection is also appealing in many applications. In

practice, the link function can be selected to minimize the regression deviation:

RDk(g(·), hcv) =
n∑
i=1

{∫ t2

t1

Wi(t)[Yi(t)− ϕ{α̂Tg (t)Xi1(t) + ηT (Ui(t), ζ̂g)X
∗
2i(t)}] dNi(t)

}2

,

(2.15)

where hcv is the bandwidth selected based on the K-fold cross-validation method

for the given link function g(·) described in section 2.4, and α̂g(t) and ζ̂g are the

estimators with such bandwidth.

2.7 Simulations

We conducted a simulation study to assess the finite sample performance of the

proposed methods. Performance is illustrated under models with three popular link

functions below:

Identity : Yi(t) = α0(t) + α1(t)X1i + βX2i + (θ1 + θ2(t− Si))X∗3i(t) + ε(t);

Log : Yi(t) = exp{α0(t) + α1(t)X1i + βX2i + (θ1 + θ2(t− Si))X∗3i(t)}+ ε(t);

Logit : logit{P (Yi(t) = 1)} = α0(t) + α1(t)X1i + βX2i + (θ1 + θ2(t− Si))X∗3i(t),

for 0 ≤ t ≤ τ with τ = 3.5, where α0(t) = 0.5
√
t, α1(t) = 0.5 sin(t) and ζ =

(β, θ1, θ2) = (0.9, 0.3,−0.6), X1i and X3i are uniform random variables on [−1, 1], X2i

is a Bernoulli random variable with success probability of 0.5, Si is a uniform random

variable on [0, 1] and X∗3i(t) = X3iI(t > Si). The error εi(t) has a normal distribution

with mean φi and variance 0.52, and φi is N(0, 1). The observation time follows a

Poisson process with the proportional mean rate model h(t|Xi, Si) = 1.5 exp(0.7X2i).
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The censoring times Ci are generated from a uniform distribution on [1.5, 8]. There

are approximately six observations per subject on [0, τ ] and about 30% subjects are

censored before τ = 3.5. The Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1)

and the unit weight function are used. We take t1 = h/2 and t2 = τ − h/2 in the

estimating functions (2.5) to avoid large variations on the boundaries.

The performances of the estimators for ζ and α(t) at a fixed time t are measured

through the Bias, the sample standard error of the estimators (SEE), the sample

mean of the estimated standard errors (ESE) and the 95% empirical coverage prob-

ability (CP). We take n = 200, 400 and 600 and consider bandwidths h = 0.2, 0.3,

0.4 and the data-driven selected bandwidth hC = 4σ̂Tn
−1/3, hC = 0.68 for n = 200,

hC = 0.54 for n = 400 and hC = 0.47 for n = 600. Table 2-4 summarize the Bias,

SEE, ESE and CP for ζ under the three different link functions, the logarithm link

function, the identity link function and the logit link function. Each entry of the

tables is calculated based on 500 repetitions. Table 2-4 show that the estimates are

unbiased and there is a good agreement between the estimated and empirical standard

errors. The bias and variances of the estimates decrease as the sample size increases.

The coverage probabilities are close to the 95% nominal level. The simulation results

are not overly sensitive to these selection choices. The simulation results also show

that the data-driven bandwidth formula hC = 4σ̂Tn
−1/3 works well.

Figure 2-4 show the plots of the bias, SSE, ESE and the coverage probability for

the estimators of α0(t) and α1(t) over the time interval [0, 3.5]. The plots show that

the estimates are close to the true values and the ESE provides a good approximation

for the SSE of the pointwise estimators. The empirical coverage probabilities are close
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to the 95% nominal level.

Note that our weight function was derived under the independency of the error

process in Section 2.5. To evaluate the performance of the weigh function selection

method, we did some sensitivity analysis for some different error forms. In Error

Model I, the random error εi(t) is normally distributed conditional on the ith subject

with mean φi and variance 0.52 and φi is N(0, 1). In this model, there are correlations

between εi(t) and εi(s). In Error Model II, εi(t) is taken to be a Gaussian process

with mean 0, variance function σ2
ε (t) = 2 sin2(2t). The error process is nonstationary

as the variance function is time-dependent. In Error Model III, εi(t) has a normal

distribution conditional on the ith subject with mean φi and variance 2 sin2(2t) and

φi is N(0, 1). Define the empirical relative efficiency (eff) of the weighted estimator

ζ̂W to ζ̂I as

eff(ζ) =

(
SSE(ζ̂I)

SSE(ζ̂W)

)2

.

Larger eff means more efficiency is improved by the introduced weight function.

It’s of interest to test whether there are varying effects of X3 with time since

treatment switching, which is to test H0 : θ2 = 0. Based on the asymptotic normality

of ζ̂ = (β̂T , θ̂T )T ) and the estimator for its asymptotic covariance given inTheorem 2.1,

the test statistic is taken as Z = θ̂2/se(θ̂2), where se(θ̂2) is the estimated standard

error of θ̂2. The observed sizes of the test statistic are calculated under the null

hypothesis H0 : θ2 = 0. The powers of the test are calculated from θ2 = .01 to .5 by

.01. A larger value of θ2 indicates an increased departure from the null hypothesis.

The power curve of the test against θ2 at 5% nominal level is potted in Figure 5 for



22

n = 400, and bandwidth h = .2, .3 and .4.

2.8 Application to the ACTG 244 trial

Zidovudine resistance (ZDVR) has been associated with clinical progression in HIV

infected patients. ACTG 244 was a randomized, double-blind trial that evaluated the

clinical utility of monitoring for the ZDVR mutation T215Y/F in HIV reverse tran-

scriptase in asymptomatic HIV infected subjects taking ZDV monotherapy. Subjects’

plasma was tested for T215Y/F bi-monthly, and upon detection were randomized to

continue ZDV, add didanosine (DDI) or add DDI plus nevirapine (NVP).

The primary objectives of ACTG 244 included: (1) to determine whether a decline

in CD4 cell counts was preceded by the T215Y/F mutation and (2) to determine

whether initiating alternative antiretroviral regimens based on T215Y/F detection

could alter the course of CD4 cell decline associated with clinical failure on ZDV

monotherapy.

Among the 289 subjects enrolled, 284 were dispensed ZDV, among whom 57 de-

veloped T215Y/F. Forty-nine of these subjects were randomized to ZDV (n=17),

ZDV+ddI (n=15), or ZDV+ddI+NVP (n=17), and the other eight subjects went

off treatment prior to randomization. Of the 234 treated subjects who were not ran-

domized, 137 remained on ZDV treatment without the T215Y/F mutation until the

study was modified after the interim review: 69 (68) subjects were randomized to

ZDV+ddI (ZDV+ddI+NVP), and 97 (33.6%) subjects went off treatment prior to

the interim review. Table 6 illustrates baseline demographics.

The impact of the 215-mutation based randomization was measured primarily by



23

the square root CD4 cell count (measured by flow cytometry) and log10plasma HIV

RNA. We focus on the CD4 cell count endpoint, which is an independent predictor of

AIDS/death (cf. Grabar et al. (2000); Kaufmann et al. (1998); Piketty et al. (1998);

Mellors et al. (1997)) and is a partially valid surrogate endpoint (GROUP, 2000).

CD4 cell count and T215Y/F mutation status (determined by RT-PCR (Larder et al.,

1991)) were measured at study entry and every 8 weeks thereafter, with variability

in visit dates across individuals. Figure 6 shows histograms of the visit times and of

the first and second randomization times, all since entry into ACTG 244.

2.8.1 Analysis of the Effects of Switching Treatments After Drug-resistant Virus

Was Detected

First, we examine the effects of switching treatments following detection of the

T215Y/F mutation. Let Y be the square root of CD4 count, Z1 be Sex (1 if Female;

0 if Male), Z2 be Age in years at study entry, Z3 and Z4 be dummy variables coding

race (Z3 = 1 if white and 0 otherwise, Z4 = 1 if black and 0 otherwise), S be

the time of the codon 215 mutation, Trt1i(t) = 1 if randomized to ZDV and 0

otherwise, Trt2i(t) = 1 if randomized to ZDV+ddI and 0 otherwise, and Trt3i(t) = 1

if randomized to ZDV+ddI+NVP and 0 otherwise; note that all three indicators are

zero prior to detection of the mutation. After preliminary exploration of the data, we

propose the following model for each subject i:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i + (θ1 + θ2(t− Si))Trt1i(t)

+ (θ3 + θ4(t− Si))Trt2i(t) + (θ5 + θ6(t− Si))Trt3i(t) + εi(t) (2.16)
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for t ∈ [0, 2]. We can use the 3-fold cross-validation method to select the optimal

bandwidth. As shown in Figure 7, h = 0.47 yielded the smallest prediction error.

We calculate σ̂T = 0.5923. By the proposed bandwidth formula, h = Cσ̂Tn
−1/3

with C = 4, the selected bandwidth is around h = 0.36. The results are insensitive

to the bandwidths between 0.36 and 0.47.

The time-invariant parameter estimates are presented in Table 7. The estimated

baseline function α̂0(t) with 95% pointwise confidence intervals, the point and 95%

pointwise confidence intervals of the switching-treatment effect parameters γk(u) =

θk + θk+1u for k = 1, 3 and 5 are presented in Figure 8, where u is the time since

T215Y/F mutation-based treatment switching according to the first randomization.

The results show that CD4 counts decrease over time, are significantly higher for

older individuals, and are not significantly affected by sex and race. None of the

treatment effect parameters shows a significant effect. While the estimated γk(u)’s

are all not statistically different from zero, they are all negative, indicating that

none of the randomly assigned treatments increased CD4 counts after the codon 215

mutation. This analysis suggests lack of benefit of switching treatments (among those

available in the study) after drug-resistant virus was detected.

2.8.2 Analysis of the Effects of Switching Treatments Before Drug-resistant Virus

Was Detected

Next, we examine the effects of switching treatments before drug-resistant virus,

the codon 215 mutation, was detected. After independent review of the study data by

the Data Safety Monitoring Board in September 1996, all subjects were offered ran-
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domization to the ZDV+ddI or ZDV+ddI+NVP arms with six months of additional

follow-up.

We let S be the time of the second randomization after interim review and only

include subjects without 215 mutation in the analysis. The model is similar to before:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i

+ (θ1 + θ2(t− Si))Trt2i(t) + (θ3 + θ4(t− Si))Trt3i(t) + εi(t). (2.17)

The results for parameter estimation are in Table 9. From it, θ̂2 = 3.1732 (p-

value=0.0021), θ̂3 = 1.0623 (p-value=0.0126) and θ̂4 = 2.7819 (p-value=0.0097). The

estimated baseline function α̂0(t) with 95% pointwise confidence intervals is presented

in Figure 9. The estimated switching-treatment effects and 95% confidence bands are

above zero, suggesting that ZDV+ddI and ZDV+ddI+NVP improve CD4 counts for

patients who have not yet developed the codon 215 drug resistance mutation.

In conclusion, the analyses suggest that switching from ZDV monotherapy to com-

bination therapy improves the CD4 cell count marker of HIV progression for subjects

who have not yet had the T215Y/F drug resistance mutation, but treatment switching

has little effect after the mutation developed.
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Table 1: Average of the cross-validation selected bandwidths, hCV , in 10 repetitions
based on 10-fold cross-validation for five different sample sizes and three link functions.
The last row of the table includes the values of C calibrated using the formula hC =
CσTn

−1/3 under the three models.

Identity-link Log-link Logit-link
n hC

200 0.56 0.52 0.65
300 0.50 0.48 0.90
400 0.41 0.40 0.70
500 0.46 0.35 0.45
600 0.40 0.46 0.33
C 3.31 3.14 4.37
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Figure 2: Plots of bias, SEE, ESE and CP for α̂0(t) and α̂1(t) under the identity link
with n=400. The figures in the left panel are for α0(t) = .5

√
t, and the figures in the

right panel are for α1(t) = .5 sin(t). Figures (a) and (b) show the bias of α̂0(t) and
α̂1(t); (c) and (d) show the SSEs; (e), (f) show the ESEs; and (g) and (h) show the
CPs based on 500 simulations.
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Figure 3: Plots of bias, SEE, ESE and CP for α̂0(t) and α̂1(t) under the logarithm
link with n=400. The figures in the left panel are for α0(t) = .5

√
t, and the figures

in the right panel are for α1(t) = .5 sin(t). Figures (a) and (b) show the bias of α̂0(t)
and α̂1(t); (c) and (d) show the SSEs; (e), (f) show the ESEs; and (g) and (h) show
the CPs based on 500 simulations.
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Figure 4: Plots of bias, SEE, ESE and CP for α̂0(t) and α̂1(t) under the logit link
with n=400. The figures in the left panel are for α0(t) = .5

√
t, and the figures in the

right panel are for α1(t) = .5 sin(t). Figures (a) and (b) show the bias of α̂0(t) and
α̂1(t); (c) and (d) show the SSEs; (e), (f) show the ESEs; and (g) and (h) show the
CPs based on 500 simulations.
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Table 5: The empirical relative efficiency of the estimators of ζ with introduced weight
function to the estimators using the unit weight function for n=200.

Logarithm-link Identity-link
h eff(β) eff(θ1) eff(θ2) eff(β) eff(θ1) eff(θ2)

Error Model I
.2 1.3631 1.0373 1.0453 1.0002 1.0093 1.0043
.3 1.4402 1.0246 1.0050 1.0035 1.0017 0.9922
.4 1.2846 0.9676 1.0549 1.0004 1.0039 1.0059

Error Model II
.2 3.1695 2.9670 2.1842 2.5538 2.4383 2.6306
.3 2.4600 2.5332 2.2989 1.8118 1.7333 1.9764
.4 2.1410 1.8586 2.0769 1.4311 1.3781 1.6106

Error Model III
.2 3.1473 4.4735 5.1587 2.4529 3.4207 4.9425
.3 2.3560 3.1196 3.9545 1.8133 2.1275 2.8485
.4 1.7775 2.3707 2.7515 1.4417 1.4513 1.6595
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Figure 5: The power curves of the test for testing θ0 = 0 against θ2 6= 0 with n=400
for log link function, identity link function and the logit link function, based on 500
simulations.
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Table 6: Demographics and Baseline Characteristics for ACTG 244 data.

Number of
subjects Percentage

n
289 100 %

Sex
Male 246 85 %

Female 43 14 %
Race/Ethnicity

White Non-Hispanic 181 62%
Black Non-Hispanic 84 29 %

Hispanic (Regardless of Race) 17 5 %
Asian, Pacific Islander 5 1 %

American Indian, Alaskan Native 2 0 %
Race

Black or African American 84 29 %
White 182 62 %

Unknown 23 7 %
Treatment
Assignment

ZDV (1st Rand.) 17 6 %
ZDV+DDI (1st Rand.) 15 5 %

ZDV+DDI+NVP (1st Rand.) 17 6 %
ZDV+DDI (2nd Rand.) 69 24 %

ZDV+DDI+NVP (2nd Rand.) 68 24 %
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Table 7: Estimated effects of switching treatments after drug-resistant virus was
detected based on the ACTG 244 data. Point and 95% confidence interval estimates
of β1, β2, β3, β4, θ1, θ2, θ3, θ4, θ5 and θ6 for model (2.16) based on the ACTG 244
data using h = 0.47 and unit weight.

Estimate Standard deviation 95% Confidence limits p-value
β1 -1.3243 0.7181 -2.7318 0.0832 0.0652
β2 0.0622 0.0285 0.0064 0.1180 0.0289
β3 -0.7315 0.7838 -2.2678 0.8048 0.3507
β4 -0.7611 0.8607 -2.4482 0.9259 0.3765
θ1 0.9899 1.2725 -1.5042 3.4841 0.4366
θ2 -3.0354 1.9689 -6.8944 0.8236 0.1231
θ3 -0.6186 0.9281 -2.4377 1.2005 0.5051
θ4 -0.4806 1.3129 -3.0538 2.0926 0.7143
θ5 -1.0576 0.9562 -2.9318 0.8167 0.2687
θ6 0.3953 0.7520 -1.0787 1.8693 0.5992

Table 8: Estimated effects of switching treatments after drug-resistant virus was
detected based on the ACTG 244 data. Point and 95% confidence interval estimates
of β1, β2, β3, β4, θ1, θ2, θ3, θ4, θ5 and θ6 for model (2.16) based on the ACTG 244
data using h = 0.47 and calculated weight.

Estimate Standard deviation 95% Confidence limits p-value
β1 -1.2582 0.6872 -2.6051 0.0888 0.0671
β2 0.0507 0.0254 0.0008 0.1006 0.0464
β3 -0.6630 0.7362 -2.1060 0.7800 0.3679
β4 -0.7310 0.8192 -2.3367 0.8747 0.3722
θ1 0.3639 1.2144 -2.0162 2.7441 0.7644
θ2 -2.7324 1.8128 -6.2856 0.8207 0.1317
θ3 -0.3989 0.7709 -1.9100 1.1122 0.6049
θ4 -0.6121 1.2672 -3.0958 1.8715 0.6290
θ5 -1.1150 0.9232 -2.9245 0.6944 0.2271
θ6 0.7096 0.7589 -0.7779 2.1971 0.3498
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Figure 8: Estimated effects of switching treatments after drug-resistant virus was
detected based on the ACTG 244 data. (a) is the estimated baseline function α̂0(t)
with 95% pointwise confidence intervals; (b), (c) and (d) are the point and 95%
confidence interval estimates of γk(u), k = 1, 3, 5, respectively, under model (2.16)
using h = 0.47.
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Table 9: Estimated effects of switching treatments before drug-resistant virus was
detected based on the ACTG 244 data. Point and 95% confidence interval estimates
of β1, β2, β3, β4, θ1, θ2, θ3, θ4, θ5 and θ6 for model (2.17) based on the ACTG 244
data using h = 0.47 and unit weight.

Estimate Standard deviation 95% Confidence limits p-value
β1 -0.6660 0.6477 -1.9355 0.6036 0.3039
β2 0.0198 0.0251 -0.0293 0.0689 0.4287
β3 -1.0917 0.7225 -2.5079 0.3245 0.1308
β4 -1.7661 0.7765 -3.2880 -0.2441 0.0229
θ1 0.2564 0.5387 -0.7994 1.3123 0.6340
θ2 3.1732 1.0324 1.1497 5.1967 0.0021
θ3 1.0623 0.4257 0.2280 1.8967 0.0126
θ4 2.7819 1.0759 0.6732 4.8906 0.0097

Table 10: Estimated effects of switching treatments before drug-resistant virus was
detected based on the ACTG 244 data. Point and 95% confidence interval estimates
of β1, β2, β3, β4, θ1, θ2, θ3, θ4, θ5 and θ6 for model (2.17) based on the ACTG 244
data using h = 0.47 and calculated weight.

Estimate Standard deviation 95% Confidence limits p-value
β1 -0.7090 0.6510 -1.9849 0.5670 0.2761
β2 0.0194 0.0239 -0.0275 0.0662 0.4176
β3 -1.0340 0.6924 -2.3912 0.3231 0.1353
β4 -1.6997 0.7501 -3.1698 -0.2295 0.0235
θ1 0.1065 0.4998 -0.8732 1.0861 0.8313
θ2 3.3040 1.0166 1.3116 5.2965 0.0012
θ3 0.8839 0.4070 0.0861 1.6817 0.0299
θ4 2.7652 1.0956 0.6178 4.9126 0.0116
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Figure 9: Estimated effects of switching treatments before drug-resistant virus was
detected based on the ACTG 244 data. (a) is the estimated baseline function α̂0(t)
with 95% pointwise confidence intervals; (b) and (c) are the point and 95% confidence
interval estimates of γk(u), k = 1, 3, respectively, under model (2.17) using h = 0.47.



CHAPTER 3: SEMIPARAMETRIC MODEL WITH NONPARAMETRIC
COVARIATE-VARYING EFFECTS

Parametric modeling of covariate-varying effects reduces the infinite dimensional

unknown parameters to a finite number of unknown parameters while permitting

evaluation of the effects of switching treatments. The methods are useful in evaluating

the effects of treatment switching when the number of patients switched treatment

is not large enough for nonparametric estimation. However, nonparametric modeling

of covariate-varying effects would provide greater flexibility.

3.1 Model

Suppose that there is a random sample of n subjects and τ is the end of follow-

up. Suppose that observations of response process Yi(t) for subject i are taken at

the sampling time points 0 ≤ Ti1 < Ti2 < · · · < Tini
≤ τ , where ni is the total

number of observations on subject i. The sampling times are often irregular and

depend on covariates. In addition, some subjects may drop out of the study early.

Let Ni(t) =
∑ni

j=1 I(Tij ≤ t) be the number of observations taken on the ith sub-

ject by time t, where I(·) is the indicator function. Let Ci be the end of follow-up

time or censoring time whichever comes first. The responses for subject i can only

be observed at the time points before Ci. Thus Ni(t) can be written as N∗i (t ∧ Ci),

where N∗i (t) is the counting process of sampling times. Let Xi(t) and Ui(t) be the

possibly time-dependent covariates associated with the ith subject. Suppose Ui(t)
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has support U . Assume that {Yi(·), Xi(·), Ui(·), Ni(·), i = 1, · · · , n} are independent

identically distributed (iid) random processes. The censoring time Ci is noninforma-

tive in the sense that E{dN∗i (t) |Xi(t), Ui(t), Ci ≥ t} = E{dN∗i (t)|Xi(t), Ui(t)} and

E{Yi(t)|Xi(t), Ui(t), Ci ≥ t} = E{Yi(t)|Xi(t), Ui(t)}. Assume that dN∗i (t) is indepen-

dent of Yi(t) conditional on Xi(t), Ui(t) and Ci ≥ t. The censoring time Ci is allowed

to depend on Xi(·) and Ui(·).

Suppose that Xi(t) = (XT
1i(t), X

T
2i(t), X

T
3i(t))

T consist of three parts of dimensions

p1, p2 and p3, respectively, over the time interval [0, τ ]. Let Ui(t) be the scalar

covariate process. We propose the following generalized semiparametric regression

model with varying coefficients:

µi(t) = E{Yi(t)|Xi(t), U(t)} = g−1{αT (t)X1i(t) +βTX2i(t) +γT (Ui(t))X3i(t)}, (3.1)

for 0 ≤ t ≤ τ , where g(·) is a known link function, α(·) is a p1-dimensional vector of

completely unspecified functions, β is a p2-dimensional vector of unknown parameters

and γ(Ui(t)) is a p3-dimensional vector of functions. The notation θT represents

transpose of a vector or matrix θ. The first component of X(t) is set to be 1, which

gives a nonparametric baseline function. γ(u) represents the effect of X3i(t) at the

level u of a confounding covariate Ui(t). Including the first component of X3i(t) also

allows nonparametric modeling of covariate Ui(t).

3.2 Estimation

Assume that α(·) and γ(·) are smooth so that their first and second derivatives

α̇(·), γ̇(·), α̈(·) and γ̈(·) exist. By the first order Taylor expansion, for t ∈ Nt0 , a
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neighborhood of t0,

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2).

The first order Taylor expansion of γ(u) in the neighborhood of u0 denoted by Nu0

yields the approximation

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

For t ∈ Nt0 and Ui(t) ∈ Nu0 , model (3.1) can be approximated by

µ̃(t, t0, u0, ϑ
∗(t0, u0)|Xi, Ui) = ϕ{ϑ∗T (t0, u0)X̃

∗
i (t, t0, u0) + βX2i(t)},

where ϑ∗(t0, u0) = (αT (t0), γ
T (u0), α̇

T (t0), γ̇
T (u0))

T , X̃∗i (t, t0) = (XT
1i(t), X

T
3i(t), X

T
1i(t)×

(t− t0), XT
3i(t)× (Ui(t)− u0))T .

At each t0 and u0, and for fixed β, we consider the following estimating function

Uϑ(ϑ∗; t0, u0, β) =
n∑
i=1

∫ τ

0

Wi(t) [Yi(t)− µ̃(t, t0, u0, ϑ
∗(t0, u0)|Xi, Ui)]

× X̃∗i (t, t0, u0)Kh,b(t, Ui(t); t0, u0) dNi(t), (3.2)

where Kh,b(t, Ui(t); t0, u0) = Kh(t − t0)Kb(Ui(t) − u0) is a two dimensional product

kernel with bandwidths h and b, Kh(·) = K1(·/h)/h and Kb(·) = K2(·/b)/b, K1(·)

and K2(·) are kernel functions, h = hn and b = bn are bandwidth parameters. The

solution to U(ϑ∗, t0, u0, β) = 0 is denoted by ϑ̃∗(t0, u0, β).

Let ϑ̃(t, u, β) be the first p1 + p3 components of the solution of (3.2) given β. The

profile least-squares estimator β̂ is obtained by minimizing the following profile least-
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squares function:

`β(β) =
n∑
i=1

∫ t2

t1

Qi(t)
[
Yi(t)− ϕ{ϑ̃(t, Ui(t), β)X̃i(t) + βTX2i(t)}

]2
dNi(t), (3.3)

where Qi(t) is a nonnegative weight process and X̃i(t) = ((X1i(t))
T , (X3i(t))

T )T . The

Newton-Raphson iterative method can be used to find the estimator of β. Taking

derivative with respect to β, we obtain the profile estimating equation for β:

Uβ(β) =
n∑
i=1

∫ t2

t1

Wi(t)
[
Yi(t)− ϕ{ϑ̃(t, Ui(t), β)X̃i(t) + βTX2i(t)}

]
×

{
∂ϑ̃(t, Ui(t), β)

∂β
X̃i(t) +X2i(t)

}
dNi(t), (3.4)

where ∂ϑ̃(t,Ui(t),β)
∂β

is the first p1 + p3 rows of

∂ϑ̃∗(t, Ui(t), β)

∂β
= −

{
∂Uϑ(ϑ∗; t, Ui(t), β)

∂ϑ∗

}−1
∂Uϑ(ϑ∗; t, Ui(t), β)

∂β

∣∣∣∣∣
ϑ∗=ϑ̃∗(t,Ui(t),β)

.

The estimators ϑ̂∗(t0, u0) can be obtained through an iterated estimation proce-

dure. Let α̂(t0, u0) include the first p1 elements of ϑ̂∗(t0, u0) corresponding to the

position of α(t0) in ϑ∗(t0, u0). Let γ̂(t0, u0) include the elements of of ϑ̂∗(t0, u0) cor-

responding to the position of γ(u0) in ϑ∗(t0, u0). Estimation of α(t0) by α̂∗(t0, u0) is

inefficient because it only utilizes the local observations with Ui(t) ∈ Nu0 for t ∈ Nt0 .

More efficient estimator for α(t0) at t0 can be obtained through aggregation without

restricting Ui(t) ∈ Nu0 . Similarly, more efficient estimator of γ(u0) can be obtained

through aggregating over t such that Ui(t) = u0. We propose the following estimators

α̂(t0) and γ̂(u0) for α(t0) and γ(u0), respectively:

α̂(t0) = n−1
n∑
j=1

α̂∗(t0, Uj(t0)), γ̂(u0) = n−1u0

nu0∑
j=1

γ̂∗(tu0,j, u0), (3.5)
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where tu0,j ∈ U−1j (u0) = {t : Uj(t) = u0}, and nu0 is the number of points in the union

∪nj=1{U−1j (u0)}. For the first motivating example, Uj(t) = t−Sj, thus tu0,j = u0 +Sj.

If it is difficult to find U−1j (u0), γ(u0) can also be estimated by

γ̂(u0) =

∫ τ

0

γ̂∗(t, u0) dt. (3.6)

Computational algorithm

The estimators α̂(t0), γ̂(u0) and ζ̂ can be accomplished through the following iter-

ated algorithm:

1. Given ϑ̂(t, u){0} and β̂{0} as the initial values;

2. For each jump point of {Ni(·), i = 1, · · · , n}, say t and u = Ui(t), the mth step

estimator ϑ̂∗{m}(t, u) = ϑ̂∗(t, u, β̂{m−1}) is the root of the estimating function

(3.2) satisfying Uϑ(ϑ̂∗{m}(t, u), t, u, β̂{m−1}) = 0, where β̂{m−1} be the estimate

of β at the (m− 1)th step.

3. The mth step estimator β̂{m} is minimizer of (3.3) obtained after replacing

ϑ̂(t, u) with ϑ̂{m}(t, u).

4. Repeating step 2 and 3, the estimators ϑ̂∗{m}(t, u) and β̂{m} are updated at each

iteration until converges. β̂ is β̂{m} at the convergence.

5. The estimate of α̂(t0) and γ̂(u0) is obtained by (3.5) at the grid points t0 and

u0 fine enough such that their plots look reasonably smooth.
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3.3 Asymptotics

3.3.1 Notations

Let I1 = {Ijk} be a p1× (p1 + p3) matrix with elements Ijk = 1 for j = 1, . . . , p1,

k = j, and Ijk = 0 otherwise. And let I3 = {Ijk} be a p3 × (p1 + p3) matrix with

elements Ijk = 1 for j = 1, . . . , p3, k = j + p1, and Ijk = 0 otherwise.

Let α0(t), β0 and γ0(u) be the true value of α(t), β and γ(u) under model (3.1),

respectively. Let µi(t) = ϕ{α0(t)X1i(t) + β0X2i(t) + γ0(Ui(t))X3i(t)} and µ̇i(t) =

ϕ̇{α0(t)X1i(t) + β0X2i(t) + γ0(Ui(t))X3i(t)}. Define

e11(t, u) = E[ωi(t)µ̇i(t){X̃i(t)}⊗2ξi(t)λi(t)|Ui(t) = u]fU(t, u)

and

e12(t, u) = E[ωi(t)µ̇i(t)X̃i(t)(X2i(t))
T ξi(t)λi(t))|Ui(t) = u]fU(t, u),

where ξi(t) = I(Ci ≥ t) and fU(t, u) is the density function of U(t) evaluated at u.

Let µ̂i(t) = ϕ{ϑ̂T (t, Ui(t))X̃i(t) + βTX2i(t)} and ˆ̇µi(t) = ϕ̇{ϑ̂T (t, Ui(t))X̃i(t) +

βTX2i(t)}. Let

Ê11(t0, u0) = n−1
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Wi(t)ˆ̇µi(t){X̃i(t)}⊗2 dNi(t),

and

Ê12(t0, u0) = n−1
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)Wi(t)ˆ̇µi(t)X̃i(t)(X2i(t))
T dNi(t).
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3.3.2 Asymptotic Properties

The following theorems present the asymptotic properties of the proposed estima-

tors.

Theorem 3.1. Assume that Condition II holds. Then
√
n(β̂ − β0) converges in

distribution to a mean-zero normal distribution N(0, A−1β ΣβA
−1
β ), where

Aβ = E

[∫ τ

0

ωi(t)µ̇i(t){X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)}⊗2 dNi(t)

]

and

Σβ = E

(∫ t2

t1

ωi(t)[Yi(t)− µi(t)]{X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)} dNi(t)

)⊗2
.

The matrix Aβ can be consistently estimated by

Âβ = n−1
n∑
i=1

∫ t2

t1

Wi(t)ˆ̇µi(t){X2i(t)− (Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1X̃i(t)}⊗2 dNi(t)

and Σβ can be consistently estimated by

Σ̂β = n−1
n∑
i=1

(∫ t2

t1

Wi(t){Yi(t)− µ̂i(t)}

× {X2i(t)− (Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1X̃i(t)} dNi(t)
)⊗2

. (3.7)

Theorem 3.2. Assume that Condition II holds. Then

(a) sup
t∈[0,τ ]

|α̂(t)− α0(t)| = op(1);

(b)
√
nh(α̂(t)− α0(t)−

1

2
h2ν2α̈(t))

D−→N (0,Σα(t)) ,
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where

Σα(t) = lim
n→∞

hE

[∫ τ

0

ωi(t) {Yi(s)− µi(s)}I1e11(t, Ui(s))
−1Xi(s)Kh(s− t) dNi(s)

]⊗2
.

The limiting variance-covariance matrix Σα(t) can be consistently estimated by

h

n

n∑
i=1

[∫ τ

0

Wi(t) {Yi(s)− µ̂i(s)}I1Ê(t, Ui(s))
−1Xi(s)Kh(s− t) dNi(s)

]⊗2
.

Theorem 3.3. Assume that Condition II holds. Then

(a) sup
u∈[u1,u2]

|γ̂(u)− γ0(u)| = op(1);

(b)
√
nb(γ̂(u)− γ0(u)− 1

2
b2ν2γ̈(u))

D−→N (0,Σγ(u)) .

where

Σγ(u) = lim
n→∞

bE

[∫ τ

0

ωi(t) {Yi(t)− µi(t)}I3e11(t, u)−1Xi(t)Kb(Ui(t)− u) dNi(t)

]⊗2
.

The limiting variance-covariance matrix Σγ(u) can be consistently estimated by

b

n

n∑
i=1

[∫ τ

0

Wi(t) {Yi(t)− µ̂i(t)}I3Ê(t, u)−1Xi(t)Kb(Ui(t)− u) dNi(t)

]⊗2
.

Let Γ0(u) =
∫ u
u1
γ0(s)ds and Γ̂(u) =

∫ u
u1
γ̂(s)ds. The following theorem presents a

weak convergence for Gn(u) = n1/2(Γ̂(u)− Γ0(u)) over u ∈ [u1, u2] ⊂ U .

Theorem 3.4. Assume that Condition II holds, we have Gn(u) = n−1/2
∑n

i=1Hi(u)+
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op(1) uniformly in u ∈ [u1, u2], where

Hi(u) =

∫ u

u1

∫ τ

0

ωi(t) {Yi(t)− µi(t)}I3e11(t, s)
−1Xi(t)Kb(Ui(t)− s) dNi(t) ds

+

∫ u

u1

E{(e11(U−1j (s), s))−1e12(U
−1
j (s), s)} dsA−1β

∫ t2

t1

ωi(t)[Yi(t)− µi(t)]

× {X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)} dNi(t)

The processes Gn(u) converges weakly to a zero-mean Gaussian process on [u1, u2].

3.3.3 Hypothesis Testing of γ(u)

In this section we assume X3(t) is one dimensional for simplicity and let Γ(u) be

the cumulative coefficient function. A formal hypothesis testing procedure can be

established to check whether there are varying effects of X3(t), that is to test

H
(1)
0 : γ(u) = 0 for u ∈ [u1, u2]

H
(1)
a : γ(u) 6= 0 for some u.

In Theorem 3.4, we know that Gn(u), u ∈ [u1, u2] converges weakly to a mean zero

Gaussian process with continuous sample paths on u ∈ [u1, u2]. Further, the distribu-

tion of Gn(u), for u ∈ [u1, u2], can be approximated by using the Gaussian multipliers

resampling method based on G∗(1)(u) = n−1/2
∑n

i=1 Ĥi(u)φi, where φ1, · · · , φn are re-

peatedly generated independent normal random variables and Ĥi(t) are obtained by

replacing the unknown quantities in Hi(t) with their corresponding empirical coun-

terparts.

Consider the test process Q(1)(u) = n1/2Γ̂(u), u ∈ [u1, u2]. Then Q(1)(u) = Gn(u)+

n1/2Γ0(u), u ∈ [u1, u2]. Under H0, Γ0(u) = 0 for u ∈ [u1, u2], which motivates the
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following supreme type and integrated squared difference type test statistics:

S
(1)
1 = sup

u∈[u1,u2]
|Q(1)(u)|,

and

S
(1)
2 =

∫
[u1,u2]

Q(1)(u)2 du.

Under H0, the distribution of Q(1)(u), u ∈ [u1, u2], can be approximated by the

conditional distribution of G∗(u), u ∈ [u1, u2], given the observed data sequence.

Hence, the distributions of S
(1)
1 and S

(1)
2 under H

(1)
0 can be approximated by the

conditional distributions of

S
∗(1)
1 = sup

u∈[u1,u2]
|G∗(u)|,

and

S
∗(1)
2 =

∫
[u1,u2]

G∗(u)2 du,

given the observed data sequence, respectively. The critical values c1 and c2 of the

test statistics S
(1)
1 and S

(1)
2 can be approximated by the (1− α)-quantile of S

∗(1)
1 and

S
∗(1)
2 , which can be obtained by repeatedly generating a large number, say 500, of

independent sets of normal samples {φi, i = 1 · · · , n} while holding the observed data

sequence fixed. At significant level α, the tests based on S
(1)
1 and S

(1)
2 reject H0 if

S
(1)
1 > c

(1)
1 and S

(1)
2 > c

(1)
2 respectively.

Nonparametric estimation is flexible but it yeilds to slower convergent rate. One

may interested in parametric estimation. One important usage of the nonparametric

estimation is to verify the functional form used in parametric estimation.
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Let Γ̂(t) =
∫ t
t1
γ̂(u)du and its parametric counterpart Γ(t; θ̂) =

∫ t
t1
γ(u; θ̂)du. A

large deviation between Γ̂(u) and Γ(u; θ̂) would indicate the lack of fit of the lack of

fit of the parametric form Γ(u; θ̂) .

Let Q(2)(u) = n1/2(Γ̂(u)− Γ(u; θ̂)) To test the null hypothesis

H
(2)
0 : γ(u) = γ(u; θ) for u ∈ [u1, u2]

H
(2)
a : γ(u) 6= γ(u; θ) for some u.

we consider the following supremum type and integrated squared difference type test

statistics:

S
(2)
1 = sup

u∈[u1,u2]
|Q(2)(u)|,

and

S
(2)
2 =

∫
[u1,u2]

Q(2)(u)2 dt,

Under these tests, the coefficient regression functions γ(u) can be tested simultane-

ously. By Theorem 3.4 we have

Q(2)(u) = n−1/2
n∑
i=1

H
(2)
i (u) + op(1), (3.8)

where

H
(2)
i (u) =Hi(u)−

∫ u

u1

γ′θ(s; θ) dsA
−1

×
∫ t2

t1

εi(t)

{
∂α̃(t, ϑ0)

∂ϑ
X1i(t) +

∂η(Ui(t), ϑ0)

∂ϑ
X∗2i(t)

}
dNi(t). (3.9)

inheriting notations in Chapter 2. We obtain Ĥ
(2)
i (u) by replacing the unknown

quantities in H
(2)
i (u) with their corresponding empirical counterparts. The distri-

bution of Q(2)(u) can be estimated by the conditional distribution of G∗(2)(u) =
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n−1/2
∑n

i=1 Ĥ
(2)
i (u)φi, where φ1, · · · , φn are repeatedly generated independent stan-

dard normal random variables. The critical values of the test statistics S
(2)
1 and S

(2)
2

at the significant level α can be estimated by the (1−α)-quantile of , say 500, copies

of S
∗(2)
1 and S

∗(2)
2 , respectively, where

S
∗(2)
1 = sup

u∈[u1,u2]
|G∗(2)(u)|,

and

S
∗(2)
2 =

∫
[u1,u2]

G∗(2)(u)2 du.

The null hypothesis is rejected if the test statistics are greater than the critical values.

3.3.4 Bandwidth Selection

Instead of selecting the bandwidths by the leave-one-out cross-validation method

suggested in Rice and Silverman (1991), we choose the bandwidths for the mean

function estimator via a K-fold cross validation procedure (Tian et al., 2005) to reduce

the computational cost. Below, we describe theK-fold cross-validation method for the

bandwidth selection for two bandwidth parameters h and b. Supposing that subjects

are randomly divided into K groups, (D1, D2, · · · , DK), the K-fold cross-validation

bandwidth is (hopt,K , bopt,K) = arg minh,b
∑K

k=1 PEk(h, b), where the kth prediction

error is given by

PEk(h, b) =
∑
i∈Dk

{∫ τ

0

Wi(t)[Yi(t)− ϕ{α̂T(−k)(t)X1i(t) + β̂T(−k)X2i(t)

+ γ̂T(−k)(Ui(t))X3i(t)}]dNi(t)
}2

(3.10)
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for k = 1, · · · , K, where α̂(−k), β̂(−k) and γ̂(−k) are estimated using the data excluding

subjects in Dk.

3.4 Simulations

We conducted extensive simulation studies to assess the finite sample performance

of the proposed methods. The proposed methods are illustrated under three models

with three popular link functions below:

Identity link : Yi(t) = α(t) + βZi + γ(Ui(t))Xi + ε(t); (3.11)

Logarithm link : Yi(t) = exp{α(t) + βZi + γ(Ui(t))Xi}+ ε(t); (3.12)

Logitlink : logit{P (Yi(t) = 1)} = α(t) + βZi + γ(Ui(t))Xi, (3.13)

for 0 ≤ t ≤ τ with τ = 3.5, where α(t) = 0.5
√
t, γ(Ui(t)) = −0.6Ui(t), Xi is

a uniform random variable on [−1, 1], Zi is a Bernoulli random variable with the

success probability of 0.5, and Ui(t) = t + Si where Si is a uniform random variable

on [0, 1]. The error εi(t) has a normal distribution conditional on the ith subject with

mean φi and variance 0.52, and φi is N(0, 1). The observation time follows a Poisson

process with the proportional mean rate model h(t|Xi, Si) = 2.5 exp(0.9Zi). The

censoring times Ci is generated from an uniform distribution on [2.5, 8]. There are

approximately twelve observations per subject in [0, τ ] and about 30% subjects are

censored before τ = 3.5. The Epanechnikov kernel K(u) = .75(1− u2)I(|u| ≤ 1) and

the unit weight function are used. We take t1 = h/2 and t2 = τ−h/2 in the estimating

functions (3.3) to avoid larger variations on the boundaries. The suitable bandwidths

are around h = 0.45 and b = 0.475 based on a preliminary investigation in which
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the cross-validation method was applied to a few simulated data sets (see Figure 10).

We report several bandwidths around h = 0.45 and b = 0.475 to investigate the

sensitivity of the bandwidth selection.

The performances of β̂, and the performances of α̂(t) and γ̂(u) at a fixed point

t and u are measured through the Bias, the sample standard error of the esti-

mators (SEE), the sample mean of the estimated standard errors (ESE) and the

95% empirical coverage probability (CP). The overall performance of the estimator

α̂(t) are evaluated by the square root of integrated mean square error RMSEα ={
1

N(τ−2h)
∑N

j=1

∫ τ−h
h

(α̂j(t)− α0(t))
2 dt
}1/2

, where N is the repetition number, α̂j(t)

is the jth estimate of α(t) for j = 1, · · · , N . RMSEγ is defined likewise.

Table 11-13 summarize the Bias, SEE, ESE and CP for β and RMSE for α(t) and

γ(t) under Model (3.11)-(3.13). Each entry of the tables is calculated based on 500

repetitions. It can be seen that the proposed estimations perform well for all three

models. It appears that the estimates are unbiased and there is a good agreement

between the estimated and empirical standard errors. Several bandwidths are selected

and it shows that the results are not sensitive to the bandwidth selection. And in

general smaller bandwidth leads to smaller variance but bigger bias. The bias and

variances of the estimates decrease as the sample size increases. The CPs are close

to the nominal value.

Figure 11-13 (a) and (b) show the bias of the time-varying coefficient estimates for

α(t) and γ(u) at selected time points. (c), (d) correspond to the SSEs and (e), (f)

correspond to the ESEs. (g) and (h) correspond to the empirical CPs averaged over

500 simulations. We can see that the local estimators are close to the true values



56

and the ESE provides a good approximation for the SSE of the point estimates. The

empirical coverage probabilities are reasonable and the results become better when

the sample size increases.

It’s of interest to test whether there are covariate-varying effects of X3(t) with

respect of Ui(t), which is to test H0 : γ(u) = 0 for u ∈ [u1, u2]. The observed sizes

of the test statistics are calculated under the null hypothesis. The powers of the test

are calculated from θ = 0.01 to 0.3 by 0.01 for γ(Ui(t)) = −θUi(t) . A larger value of

θ indicates an increased departure from the null hypothesis. The power curve of the

test against θ at 5% nominal level is potted in Figure 14 with n = 400 for statistics

S
(1)
1 and S

(1)
2 .

3.5 Application to the ACTG 244 trial

We apply the methods developed in the previous sections to the randomized,

double-blind AIDS Clinical Trials Group (ACTG) 244 trial to evaluate the clinical

utility of monitoring for the ZDVR mutation T215Y/F in HIV-1 reverse transcriptase

in asymptomatic HIV-1-infected subjects taking ZDV monotherapy.

First, we examine the effects of switching treatments following detection of the

T215Y/F mutation. The 3-fold cross-validation method for bandwidth selection yields

h =0.47 Let Y be the square root of CD4 count, Z1 be Sex (1 if Female; 0 if Male),

Z2 be Age in years, Z3 and Z4 be dummy variables coding race (Z3 = 1 if white and 0

otherwise, Z4 = 1 if black and 0 otherwise), S be the time of the codon 215 mutation,

Trt1i(t) = 1 if randomized to ZDV and 0 otherwise, Trt2i(t) = 1 if randomized to

ZDV+ddI and 0 otherwise, and Trt3i(t) = 1 if randomized to ZDV+ddI+NVP and 0
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otherwise; note that all three indicators are zero prior to detection of the mutation.

After preliminary exploration of the data, we propose the following model for each

subject i:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i + γ1(t− Si)Trt1i(t)

+ γ2(t− Si)Trt2i(t) + γ3(t− Si)Trt3i(t) + εi(t) (3.14)

for t ∈ [0, 2]. The 3-fold cross-validation method for bandwidth selection yields

h = 0.5 and b = 2.5.

The estimated baseline function α̂0(t) and the time-varying switching-treatment

effect function γ̂k(u), k = 1, 2, 3 with their 95% pointwise confidence intervals are

presented in Figure 15, where u is the time since T215Y/F mutation-based treatment

switching in the first randomization. The time-invariant parameter estimates are

presented in Table 14.

The results show that CD4 counts decrease over time. None of the constant effects

are significant. The estimated γ̂1(u) looks flat, the estimated γ̂2(u) looks decreasing

while the estimated γ̂3(u) looks increasing. The hypothesis testing procedure devel-

oped in Section 3.3.3 is applied here to test whether H0 : γk(u) = 0, k = 1, 2, 3

against Ha : γk(u) > 0, k = 1, 2, 3. The p-values using test statistics S
(1)
1 (S

(1)
2 )

are 0.6435 (0.6190 ), 0.9855 (0.9945) and 0.9670 (0.9225) for k = 1, 2, 3 respectively,

which indicate to fail to reject the null hypothesis. It shows that none of the randomly

assigned treatments increased CD4 counts significantly after the codon 215 mutation.

This analysis does not show the benefit of switching treatments (among those

available in the study) after drug-resistant virus was detected. This result is consistent
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with the result of Chapter 2.

Next, we examine the effects of switching treatments before drug-resistant virus,

the codon 215 mutation, was detected. After independent review of the study data

in September 1996, all subjects were offered randomization to the ZDV+ddI or

ZDV+ddI+NVP arms with six months of additional follow-up.

We let S be the time of the second randomization after interim review and only

include subjects without 215 mutation in the analysis. The model is similar to before:

Yi(t) =α0(t) + β1Z1i + β2Z2i + β3Z3i + β4Z4i

+ γ1(t− Si)Trt1i(t) + γ2(t− Si)Trt2i(t) + εi(t). (3.15)

The 3-fold cross-validation method for bandwidth yields h = 0.5 and b = 1.5. The

results for constant effects are in Table 15. In addition, Figure 16 shows that for each

treatment switch to ZDV+ddI or ZDV+ddI+NVP, CD4 cell counts significantly rise.

The p-values using test statistics S
(1)
1 (S

(1)
2 ) to test H0 : γk(u) = 0, k = 1, 2 against

Ha : γk(u) 6= 0, k = 1, 2 are 0.004 (< 0.001) and < 0.001 (< 0.001), suggesting that

ZDV+ddI and ZDV+ddI+NVP improve CD4 counts for patients who have not yet

developed the codon 215 drug resistance mutation.

In conclusion, the analyses suggest that switching from ZDV monotherapy to com-

bination therapy improves the CD4 cell count marker of HIV progression for subjects

who have not yet had the T215Y/F drug resistance mutation, but treatment switch-

ing has little effect after the mutation developed. The results are consistent with the

result of Chapter 2.
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Figure 10: A preliminary study to choose suitable bandwidth for simulation with
n = 200 and the logarithm link. The plot indicates that the optimal bandwidth are
around h = 0.45 and b = 0.475.
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Table 11: Summary of Bias, SEE, ESE and CP for β, and RMSEs for α(t) and γ(u)
under model (3.11) with identity link function.

n h b Bias SEE ESE CP RMSEα RMSEγ

200 0.4 0.4 0.0081 0.2640 0.2556 0.936 0.2043 0.1867
0.5 0.5 0.0043 0.2721 0.2607 0.932 0.2103 0.1789
0.6 0.6 -0.0161 0.2705 0.2584 0.934 0.2003 0.1738

400 0.4 0.4 -0.0068 0.1875 0.1837 0.940 0.1464 0.1309
0.5 0.5 0.0042 0.1890 0.1842 0.936 0.1384 0.1213
0.6 0.6 -0.0145 0.1849 0.1848 0.956 0.1378 0.1157

600 0.4 0.4 -0.0121 0.1502 0.1512 0.966 0.1162 0.1086
0.5 0.5 0.0047 0.1537 0.1512 0.942 0.1178 0.0955
0.6 0.6 -0.0032 0.1601 0.1520 0.942 0.1196 0.0925
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Table 12: Summary of Bias, SEE, ESE and CP for β, and RMSEs for α(t) and γ(u)
under model (3.12) with logarithm link function.

n h b Bias SEE ESE CP RMSEα RMSEγ

200 0.4 0.4 0.0022 0.0633 0.0604 0.930 0.0822 0.0753
0.5 0.5 0.0042 0.0898 0.0631 0.936 0.0826 0.0645
0.6 0.6 -0.0018 0.1276 0.0656 0.944 0.0777 0.0633

400 0.4 0.4 0.0014 0.0428 0.0430 0.952 0.0581 0.0527
0.5 0.5 -0.0023 0.0459 0.0444 0.940 0.0573 0.0470
0.6 0.6 -0.0032 0.0456 0.0462 0.950 0.0544 0.0447

600 0.4 0.4 0.0004 0.0362 0.0351 0.946 0.0484 0.0410
0.5 0.5 0.0000 0.0349 0.0364 0.952 0.0448 0.0386
0.6 0.6 0.0006 0.0356 0.0378 0.956 0.0466 0.0347
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Table 13: Summary of Bias, SEE, ESE and CP for β, and RMSEs for α(t) and γ(u)
under model (3.13) with logit link function.

n h b Bias SEE ESE CP RMSEα RMSEγ

200 0.4 0.4 0.0003 0.2308 0.1706 0.934 0.3012 0.3012
0.5 0.5 -0.0058 0.1741 0.1723 0.932 0.2717 0.2544
0.6 0.6 -0.0030 0.1928 0.1743 0.926 0.2509 0.2172

400 0.4 0.4 0.0000 0.1192 0.1170 0.930 0.2045 0.2101
0.5 0.5 0.0048 0.1224 0.1186 0.924 0.1834 0.1705
0.6 0.6 -0.0113 0.1331 0.1205 0.910 0.1804 0.1507

600 0.4 0.4 0.0065 0.0987 0.0978 0.956 0.1630 0.1698
0.5 0.5 -0.0019 0.0986 0.0977 0.946 0.1510 0.1366
0.6 0.6 -0.0019 0.1005 0.0997 0.940 0.1404 0.1211
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Figure 11: Plots for bias, SEE, ESE and CP for n=200, 400, 600 for identity link
with h=0.4,b=0.4. Left panel is for α0(t) = .5

√
t. Right panel is for γ(u) = −.6u.
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Figure 12: Plots for bias, SEE, ESE and CP for n=200, 400, 600 for logarithm link
with h=0.4,b=0.4. Left panel is for α0(t) = .5

√
t. Right panel is for γ(u) = −.6u.
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Figure 13: Plots for bias, SEE, ESE and CP for n=200, 400, 600 for logit link with
h=0.4,b=0.4. Left panel is for α0(t) = .5

√
t. Right panel is for γ(u) = −.6u.
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function and logit link function, based on 500 simulations.
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Table 14: Point and 95% confidence interval estimates of β1, β2, β3 and β4 for model
(3.14) based on the ACTG 244 data using h = 0.5, b = 2.5.

Estimate Standard deviation 95% Confidence limits p-value
β1 -1.0510 0.6617 -2.3478 0.2458 0.1122
β2 0.0642 0.0343 -0.0029 0.1314 0.0607
β3 -0.4178 0.8255 -2.0357 1.2001 0.6128
β4 -0.7539 0.9259 -2.5686 1.0608 0.4155

Table 15: Point and 95% confidence interval estimates of β1, β2, β3 and β4 for model
(3.15) based on the ACTG 244 data using h = 0.5, b = 1.5.

Estimate Standard deviation 95% Confidence limits p-value
β1 -0.4899 0.9355 -2.3236 1.3437 0.6005
β2 0.0819 0.0358 0.0117 0.1521 0.0221
β3 1.2564 1.0559 -0.8131 3.3259 0.2341
β4 0.7582 1.1206 -1.4381 2.9546 0.4986
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Figure 15: Plots of α̂0(t), γ̂k(u), k = 1, 2, 3 with their 95% pointwise confidence
intervals under model (3.14) based on the ACTG 244 data using h = 0.5 and b = 2.5.
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Figure 16: Plots of α̂0(t), γ̂k(u), k = 1, 2 with their 95% pointwise confidence intervals
under model (3.15) based on the ACTG 244 data using h = 0.5 and b = 1.5.



CHAPTER 4: DATA EXAMPLE: STEP STUDY WITH MITT CASES

All previous analyses of HIV vaccine efficacy trials assessed the biomarkers based

on the time from the diagnosis with Ab+. While active treatments start from the

time of diagnosis, it is biologically meaningful to assess whether and how vaccination

modifies or accelerates the development of these biomarkers over time since the actual

HIV acquisition. The time of actual HIV acquisition can be approximated well with

more advanced PCR test for patients shown Ab+. Hence two time-scales are involved,

one is the time from diagnosis from which time patients may start antiretroviral treat-

ments and the longitudinal biomarkers, e.g., viral loads and CD4 counts are regularly

monitored. The other one is the time from actual HIV acquisition. Simultaneous

modeling of the two time-scales enable understanding the effects of treatments that

started from the time of diagnosis as well as the possible time-dependent confounding

between the treatments and vaccinations.

The proposed methods can be applied to solve such two-time-scale problems. A

multi-center, double-blind, randomized, placebo-controlled, phase II test-of-concept

STEP study (cf. Buchbinder et al. (2008); Fitzgerald et al. (2011)) was to determine

whether the MRKAd5 HIV-1 gag/pol/nef vaccine, which elicits T cell immunity, is

capable to result in controlling the replication of the Human immunodeficiency virus

among the participants who got HIV-infected after vaccination.

This study opened in December 2004 and was conducted at 34 sites in North Amer-
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ica, the Caribbean, South America, and Australia. Three thousand HIV-1 negative

participants aged from 18 to 45 who were at high risk of HIV-infection were en-

rolled and randomly assigned to receive vaccine or placebo in ratio 1:1, stratified by

sex, study site and adenovirus type 5 (Ad5) antibody titer at baseline. Some of the

participants were fully adherent to vaccinations while others not.

The analysis in this section includes a subset of the 3000 participants which in-

volves all 174 MITT cases as of September 22, 2009. MITT cases stand for modified

intention-to-treat subjects who became HIV infected during the trial. The modified

intention-to-treat refers to all randomized subjects, excluding the few that were found

to be HIV infected at entry. It is recommended to study males only for the entire

analysis to avoid the effect of sex since there are only 15 females that are < 10% of

the sample. There were 159 HIV-infected males. Each participant had the records of

the first positive diagnosis (the dates of their first positive Elisa confirmed by Western

Blot or RNA) and the estimated time of the infection (determined by the dates of

the first positive RNA (PCR) test)

After first positive diagnosis, 18 post-infection visits were scheduled per subject at

weeks 0, 1, 2, 8, 12, 26, and every 26 weeks thereafter through week 338. However,

the actual time and dates of visits may vary due to each individual. During jth

visit, the ith subject received tests to have the measurements of HIV virus load and

CD4 cell counts before the subject started the antiretroviral therapy (ART) or was

censored. The time between the first positive Elisa and ART initiation or censoring

is the right censoring time. In the analysis time is measured in years. The time since

the first positive Elisa to the jth visit for ith subject is denoted by Tij and the time
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since the first evidence of HIV infection is denoted by Uij = Tij +Oi, where Oi is the

gap between the first positive RNA (PCR) test and the first positive Elisa. Let Y1

be the common logarithm of HIV virus load, Y2 be the square root of CD4 counts,

X1 be the natural logarithm of Ad5, X2 be the site indicator (1 if North America or

Australia; 0 otherwise), X3 be the pre-protocol indicator (1 if the subject was fully

adherent to vaccinations; 0 otherwise) and X4 be the treatment indicator (1 if the

subject received vaccine; 0 if receiving placebo). Our first main interest is to see the

how the effects of vaccine on the HIV virus load and CD4 counts change with time

since actual infection.

In the data 159 males made a total of 791 pre-ART visits. Among them there are

156 missing in CD4 cell counts and 5 missing in HIV virus load. Since there are no

missing in CD4 and virus load at the same time, we could use simple imputation

method to impute the missing values. At each time point separately, we use a linear

regression model linking log10(viral load) to square root of CD4 count (for those with

data on both), and use the viral load value for those with missing data to fill in the

missing CD4 cell count or predict missing virus load data by CD4 values. However,

at three time points there are no complete data for conducting the linear regression

model fitting; at two other points there are only one complete data which is unable to

complete the linear model fitting; at another time point one predicted value of virus

load is relatively far beyond the range of other values of virus load and may affect

the analysis results. Therefore, we delete these six visits to get the complete data for

the entire analysis.

Now in this complete data set there are 159 subjects with 785 visits. 97 Of all the
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participants were in the vaccine group while 62 received the placebo. 122 subjects

participate in the study in North America or Australia and the rest are residents in

the other sites mentioned at the beginning of this chapter. The right censoring rate

of Tij is 69.81%. Figure 17 is further exploration of the observation times in different

time scales. It is easy to figure out that there are few data after time point 2.5.

Therefore we choose τ = 2.5.

After preliminary exploration of the data, X1, X2 and X3 show no evidence of

varying coefficients. We propose the following models based on Chapter 2 for virus

load

Y1i(t) = α0(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + (θ1 + θ2Ui(t))X4i(t) + εi(t), (4.1)

and the CD4 count:

Y2i(t) = α0(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + (θ1 + θ2Ui(t))X4i(t) + εi(t). (4.2)

By the empirical bandwidth formula proposed in Chapter 2, a possible reasonable

choice of the bandwidth for this data set is 0.25. The estimates of time-varying

baseline function α̂0(t) and their 95% pointwise confidence intervals are shown in

Figure 18. The estimates of time-invariant parameters are shown in Table 16. It is

shown that there are no significant effects of baseline Ad5 titer, study sites or the

pre-protocol on the HIV viral load level, and study sites have significant effect on

the CD4 counts. Also θ2 is significantly positive for the CD4 model, which indicates

the vaccine effect changes over time since actual infection and improves the CD4

counts for later time. However, Figure 19 shows that the overall vaccine effect is not
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significant. Figure 20 shows the scatter plot of the residuals from fitting the Model

(4.1) and (4.2).

From Figure 18, the estimates for the baseline functions are not smooth enough,

since the obseavation are right skewed. We may choose a larger bandwidth or use

the following transformation of the actual visit times t = log(Tij + 0.05) + 3 to make

the observation times more evenly distributed. The estimates of α0(t) and their 95%

pointwise confidence intervals in the log transformed time scale are shown in Figure

21 and the time-invariant parameter estimations are in Table 17. The baseline virus

load function is very flat while the baseline CD4 function is decreasing over time.

None of the parameter estimators are significant.

Next we model the γ(Ui(t)) nonparametrically based on Chapter 3 for virus load

Y1i(t) = α0(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + γ(Ui(t))X4i(t) + εi(t), (4.3)

and the CD4 count:

Y2i(t) = α0(t) + β1X1i(t) + β2X2i(t) + β3X3i(t) + γ(Ui(t))X4i(t) + εi(t) (4.4)

We choose τ = 2.5 and h = 0.5 and b = 0.4 by 3-fold cross-validation. The

estimates of time-invariant parameters are shown in Table 18. β2 is significant (p-

value=0.0016) in Model (4.4). The estimates of α0(t), γ(u) and their 95% pointwise

confidence intervals are shown in Figure 22. In Model (4.3), γ(u) is increasing but

not significant since p-values are 0.216 and 0.098 for S
(1)
1 and for S

(1)
2 separately. In

Model (4.4), there is no clear trend for γ(u) and it is not significant since p-values

are 0.625 and 0.722 for S
(1)
1 and for S

(1)
2 separately.
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Table 16: Summary statistics of the estimators of β1, β2, β3, θ1 and θ2 for Model (4.1)
and Model (4.2).

Estimate Standard deviation 95% Confidence limits p-value
Model (4.1): Virus load model

β1 0.0132 0.0415 -0.0681 0.0945 0.7505
β2 -0.1171 0.1633 -0.4372 0.2030 0.4734
β3 -0.0713 0.1752 -0.4146 0.2720 0.6840
θ1 -0.0411 0.2888 -0.6071 0.5249 0.8868
θ2 -0.0759 0.1368 -0.3440 0.1923 0.5792

Model (4.2): CD4 model
β1 -0.2617 0.1743 -0.6033 0.0800 0.1333
β2 3.1931 0.7250 1.7722 4.6141 < .0001
β3 -0.5376 0.8613 -2.2258 1.1506 0.5325
θ1 -1.7745 1.2981 -4.3188 0.7698 0.1716
θ2 1.1132 0.5332 0.0682 2.1582 0.0368
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Table 17: Summary statistics of the estimators of β1, β2, β3, θ1 and θ2 for Model (4.1)
and Model (4.2) in log transformed time scale.

Estimate Standard deviation 95% Confidence limits p-value
Model (4.1): Virus load model

β1 0.0239 0.0397 -0.0539 0.1016 0.5470
β2 -0.0999 0.1592 -0.4120 0.2121 0.5301
β3 -0.1268 0.1716 -0.4630 0.2095 0.4600
θ1 0.6312 0.3848 -0.1231 1.3854 0.1010
θ2 -0.2642 0.1473 -0.5529 0.0246 0.0729

Model (4.2): CD4 model
β1 -0.1806 0.1834 -0.5400 0.1789 0.3249
β2 3.2033 0.7254 1.7815 4.6252 < .0001
β3 -0.1317 0.9393 -1.9727 1.7093 0.8885
θ1 -1.2696 1.6745 -4.5516 2.0123 0.4483
θ2 0.3918 0.5598 -0.7055 1.4891 0.4840
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Table 18: Summary statistics of the estimators of β1, β2, β3 for Model (4.3) and
Model (4.4).

Estimate Standard deviation 95% Confidence limits p-value
Model (4.3): Virus load model

β1 0.0491 0.0592 -0.0669 0.1651 0.4071
β2 -0.2021 0.2277 -0.6484 0.2442 0.3748
β3 -0.0634 0.2408 -0.5353 0.4085 0.7922

Model (4.4): CD4 model
β1 -0.1178 0.2934 -0.6929 0.4572 0.6879
β2 3.9227 1.2405 1.4913 6.3540 0.0016
β3 0.1481 1.3294 -2.4574 2.7537 0.9113
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Figure 17: Histogram of several observation times in different time scales based on
the data from STEP study with MITT cases.
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Figure 18: Estimated baseline function α̂0(t) and their 95% pointwise confidence
intervals for Model (4.1) and Model (4.2).
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Figure 19: Estimates and the 95% confidence band of γ̂(u) = θ̂1 + θ̂2Ui(t) in Model
(4.2).
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Figure 20: Scatter plots of the residuals from fitting the Model (4.1) and Model (4.2).
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Figure 21: Estimated baseline function α̂0(t) and their 95% pointwise confidence
intervals for Model (4.1) and Model (4.2) in log transformed time scale.
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Model (4.3): Virus load model
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Figure 22: Estimated baseline function α̂0(t), γ̂(u) and their 95% pointwise confidence
intervals for Model (4.3) and Model (4.4).
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APPENDIX A: PROOFS OF THE THEOREMS IN CHAPTER 2

Condition I.

(I.1) The censoring time Ci is noninformative in the sense that E{dN∗i (t)|Xi(t), Ui(t),

Ci ≥ t} = E{dN∗i (t)|Xi(t), Ui(t)} and E{Yi(t)|Xi(t), Ui(t), Ci ≥ t} = E{Yi(t)|

Xi(t), Ui(t)}; dN∗i (t) is independent of Yi(t) conditional on Xi(t), Ui(t) and

Ci ≥ t; the censoring time Ci is allowed to depend on the left continuous

covariate process Xi(·);

(I.2) The processes Yi(t), Xi(t) and λi(t), 0 ≤ t ≤ τ , are bounded and their total

variations are bounded by a constant;

(I.3) The kernel function K(·) is symmetric with compact support on [−1, 1] and

bounded variation; bandwidth h→ 0; nh2 →∞ and nh5 is bounded.

(I.4) E|Ni(t2)−Ni(t1)|2 ≤ L(t2 − t1) for 0 ≤ t1 ≤ t2 ≤ τ , where L > 0 is a constant;

E|Ni(t+ h)−Ni(t− h)|2+v = O(h), for some v > 0;

(I.5) The link function g(·) is monotone and its inverse function g−1(x) is twice

differentiable;

(I.6) α0(t), e11(t) and e12(t) are twice differentiable; (e11(t))
−1 is bounded over 0 ≤

t ≤ τ ; the matrices A and Σ are positive definite;

(I.7) The weight process W (t, x)
P−→ω(t, x) uniformly in the range of (t, x); ω(t, x) is

differentiable with uniformly bounded partial derivatives;
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(I.8) The limit limn→∞ hE{
∫ τ
0
ωi(s){Yi(s) − µi(s)}X1i(s)Kh(s − t) dNi(s)}⊗2 exists

and is finite.

Lemmas

Let uα(α, ζ, t) = E{[ϕ{αT0 (t)X1i(t)+η
T (Ui(t), ζ0)X

∗
2i(t)}−ϕ{αT (t)X1i(t)+η

T (Ui(t), ζ)

X∗2i(t)}] X1i(t)ξi(t)λi(t)}. Define αζ(t) as the unique root such that ua(αζ , ζ, t) = 0

for ζ ∈ Nζ0 and α∗ζ(t) = (αTζ (t),0Tp1)
T where 0p1 is a p1 × 1 vector of zeros. Let

eζ,11(t) = E
[
ωi(t)ϕ̇{αTζ (t)X1i(t)+ηT (Ui(t), ζ0)X

∗
2i(t)}X1i(t)

⊗2λi(t)ξi(t)
]

and eζ,12(t) =

E
[
ωi(t)ϕ̇{αTζ (t)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}X1i(t)(

∂η(Ui(t);ζ)
∂ζ

X∗2i(t))
Tλi(t)ξi(t)

]
. When

ζ = ζ0, we have αζ(t) = α0(t), eζ,11(t) = e11(t) and eζ,12(t) = e12(t).

The following lemmas are used for proving the main theorems. The proof of the

lemmas make repeated applications of the Glivenko-Cantelli Theorem (Van Der Vaart,

1998). A sufficient condition for applying the Glivenko-Cantelli Theorem can be

checked by estimating the order of the bracketing number, similar to the proof of

Lemma 2 of Sun et al. (2009a). This sufficient condition holds under the conditions

provided in Condition I. Let H = diag{Ip1 , hIp1}.

Lemma A.1. Under Condition I, as n→∞, Hα̃∗(t, ζ)
P−→α∗ζ(t),

H∂α̃∗(t, ζ)/∂ζ
P−→(−(eζ,11(t)

−1eζ,12(t))
T ,0Tp1)

T , (A.1)

and H∂2α̃∗(t, ζ)/∂ζ2 converges in probability to a deterministic function of (t, ζ) of

bounded variation, uniformly in t ∈ [t1, t2] ⊂ (0, τ) and ζ ∈ Nζ0 at the rate n−1/2+ν

for ν > 0.

Proof of Lemma A.1
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The first result of this lemma follows from Lemma 1 of Sun et al. (2013b) directly.

We only prove the second and the third results.

By (2.6),

H
∂α̃∗(t, ζ)

∂ζ
= −

{
n−1H−2

∂Uα(α∗, ζ, t)

∂α∗

}−1
n−1H−1

∂Uα(α∗, ζ, t)

∂ζ

∣∣∣∣∣
α∗=α̃∗(t,ζ)

.

Note that

n−1H−2
∂Uα(α∗, ζ, t0)

∂α∗

= n−1
n∑
i=1

∫ τ

0

ωi(t)ϕ̇{α∗T (t0)X
∗
1i(t, t− t0) + ηT (Ui(t), ζ)X∗2i(t)}

×H−2X∗i (t, t− t0)⊗2Kh(t− t0) dNi(t)

= E{
∫ τ

0

ωi(t)ϕ̇{α∗T (t0)X
∗
1i(t, t− t0) + ηT (Ui(t), ζ)X∗2i(t)}

×H−2X∗i (t, t− t0)⊗2Kh(t− t0)ξi(t)λi(t) dt}+Op(
1√
nh

)

uniformly in t by Glivenko-Cantelli Theorem.

Since Hα̃∗(t, ζ)
P−→α∗ζ(t), we have

n−1H−2
∂Uα(α∗, ζ, t0)

∂α∗

∣∣∣∣
α∗=α̃∗(t,ζ)

= E{
∫ τ

0

ωi(t)ϕ̇{αTζ (t0)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

×H−2X∗i (t, t− t0)⊗2Kh(t− t0)ξi(t)λi(t) dt}+Op(
1√
nh

)

= E{ωi(t0)ϕ̇{αTζ (t0)X1i(t0) + ηT (Ui(t0), ζ)X∗2i(t0)}

×

 1 0

0 µ2

⊗ {X1i(t)}⊗2ξi(t0)λi(t0)}+O(h2) +Op(
1√
nh

)
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uniformly in t and ζ ∈ Nζ0 . Similarly,

n−1H−1
∂Uα(α∗, ζ, t)

∂ζ

∣∣∣∣
α∗=α̃∗(t,ζ)

P−→


E[ωi(t0)ϕ̇{αTζ (t0)X1i(t0) + ηT (Ui(t0), ζ)X∗2i(t0)}

×X1i(t){∂η(Ui(t);ζ)
∂ζ

X∗2i(t)}T ξi(t0)λi(t0)]

0


uniformly in t and ζ ∈ N (ζ0). Therefore, (A.1) holds uniformly in t and ζ ∈ N (ζ0).

By a similar argument, the third statement holds.

Lemma A.2. Under Condition I,

√
nh{α̃(t, ζ0)− α0(t)−

1

2
µ2h

2α̈T0 (t)} = (e11(t))
−1(nh)1/2n−1Uα(α0(t), ζ0) + op(1),

(A.2)

uniformly in t ∈ [t1, t2] ⊂ (0, τ), where

Uα(α0(t), ζ0) =
n∑
i=1

∫ τ

0

Wi(s)εi(t)X1i(s)Kh(s− t) dNi(s)

Further, (nh)1/2n−1Uα(α0(t), ζ0) = Op(1) uniformly in t ∈ [t1, t2] ⊂ (0, τ).

Proof of Lemma A.2

Applying the first order Taylor expansion to Uα(α̃∗(t, ζ0), ζ0), we have

√
nhH(α̃∗(t, ζ0)− α∗0(t)) = −

{
n−1H−2

∂Uα(α∗0(t))

∂α∗

}−1√
h

n
H−1Uα(α̃∗(t, ζ0), ζ0)(A.3)

The first p1 components of the above equation is

√
nh(α̃(t, ζ0)− α0(t)) = −(e11(t))

−1(h/n)1/2Uα(α̃(t, ζ0), ζ0){1 + op(1)} (A.4)
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By the local linear approximation for α0(t) around t0,

µi(t)− ϕ{α∗T (t0)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

= ϕ{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)} − ϕ{α∗T (t0)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}

= µ̇i(t){
1

2
α̈T0 (t)X1i(t)(t− t0)2 +O((t− t0)3)}, (A.5)

It follows that

(h/n)1/2Uα(α̃(t, ζ0), ζ0)

= (h/n)1/2
n∑
i=1

∫ τ

0

ωi(t)
[
Yi(t)− µi(t) + µi(t)− ϕ{α∗T (t0)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}

]
×Xi(t)Kh(t− t0) dNi(t)

= (h/n)1/2
n∑
i=1

∫ τ

0

ωi(t)εi(t)X1i(t)Kh(t− t0) dNi(t) +
1

2
µ2

√
nhh2α̈T0 (t)e11(t)

Hence

√
nh(α̃(t, ζ0)− α0(t)−

1

2
µ2h

2α̈T0 (t))

= −(e11(t))
−1

√
h

n

n∑
i=1

∫ τ

0

Wi(s)εi(s)X1i(s)Kh(s− t) dNi(s) + op((nh)−1 +
√
nh5)

Follow Appendix A of Tian et al. (2005), the right hand side of above equation is

Op(1) uniformly in t ∈ [t1, t2].

Proof of Theorems

Proof of Theorem 2.1

We first consider the proof for the consistency of ζ̂. By Glivenko-Cantelli theorem
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and Lemma A.1, we have

n−1Uζ(ζ)
P−→E

{∫ t2

t1

ωi(t)
[
Yi(t)− ϕ{αTζ (t)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

]
×
[
−(eζ,12(t))

T (eζ,11(t))
−1X1i(t) +

∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

]
dNi(t)

}
uniformly for ζ ∈ Nζ0 . The right side of the above equation equals to

E
{∫ t2

t1

ωi(t)
[
ϕ{αT0X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)} − ϕ{αTζ (t)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

]
×
[
−(eζ,12(t))

T (eζ,11(t))
−1X1i(t) +

∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

]
ξi(t)λi(t) dt

}
.

defined as u(ζ) by double expectation. Taking partial derivative of Uζ(ζ) with respect

to ζ and applying Lemma 1, we have

n−1
∂Uζ(ζ)

∂ζ

= −n−1
n∑
i=1

∫ t2

t1

ωi(t)ϕ̇{α̃T (t, ζ)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

×
{
∂α̃(t, ζ)

∂ζ
X1i(t) +

∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

}⊗2
dNi(t)

+ n−1
n∑
i=1

∫ t2

t1

ωi(t)
[
Yi(t)− ϕ{α̃T (t, ζ)X1i(t) + ηT (Ui(t), ζ)X∗2i(t)}

]
×
{
∂2α̃(t, ζ)

∂ζ2
X1i(t) +

∂2η(Ui(t), ζ)

∂ζ2
X∗2i(t)

}
dNi(t). (A.6)

When ζ = ζ0, the latter term goes to zero as n goes to infinity by Lemma A.1 and
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the Glivenko-Cantelli theorem. It follows that

−n−1 ∂Uζ(ζ)

∂ζ

∣∣∣∣
ζ=ζ0

P−→E{
∫ t2

t1

ωi(t)ϕ̇{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)}{

−(eζ,11(t))
−1eζ,12(t)X1i(t) +

∂η(Ui(t), ζ)

∂ζ
X∗2i(t)

}⊗2
dNi(t)}

= A (A.7)

which is positive definite, uniformly in a neighborhood of ζ0. Since u(ζ0) = 0 and A

is positive, ζ0 is the unique root of u(ζ). By Theorem 5.9 of Van Der Vaart (1998),

we have the consistency of ζ̂.

Now we show the asymptotic normality of n−1/2Uζ(ζ0).

n−1/2Uζ(ζ0)

= n−1/2
n∑
i=1

∫ t2

t1

ωi(t)
[
Yi(t)− ϕ{α̃T (t, ζ0)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}

]
×
{
∂α̃(t, ζ0)

∂ζ
X1i(t) +

∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t),

= n−1/2
n∑
i=1

∫ t2

t1

ωi(t)εi(t)

{
∂α̃(t, ζ0)

∂ζ
X1i(t) +

∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t), (A.8)

+ n−1/2
n∑
i=1

∫ t2

t1

ωi(t)[ϕ{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)}

− ϕ{α̃T (t, ζ0)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)}]

×
{
∂α̃(t, ζ0)

∂ζ
X1i(t) +

∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t), (A.9)

The (A.9) is negligible because by Taylor expansion,

ϕ{αT0 (t)X1i(t) + ηT (Ui(t), ζ0)X
∗
2i(t)} − ϕ{α̃T (t, ζ0)X1i(t) + ηT (Ui(t), ζ0)X

∗
2i(t)}

= µ̇i(t){(α̃(t, ζ0))
T − (α0(t))

T}X1i(t) +Op(‖α̃(t, ζ0)− α0(t)‖2).
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(A.9) = n−1/2
n∑
i=1

∫ t2

t1

ωi(t)µ̇i(t){(α̃(t, ζ0))
T − (α0(t))

T}X1i(t)

×
{
∂α̃(t, ζ0)

∂ζ
X1i(t) +

∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t),

= op(1)

by Lemma 1 in Lin and Ying (2001).

Hence,

n−1/2Uζ(ζ0)

= n−1/2
n∑
i=1

∫ t2

t1

ωi(t)εi(t)

{
∂α̃(t, ζ0)

∂ζ
X1i(t) +

∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t) + op(1)

= n−1/2
n∑
i=1

∫ t2

t1

ωi(t)εi(t)

{
(e11(t))

−1e12(t)X1i(t) +
∂η(Ui(t), ζ0)

∂ζ
X∗2i(t)

}
dNi(t) + op(1),

(A.10)

which converges in distribution to N(0,Σ) by central limit theorem, where Σζ is

defined in (2.9).

It follows from (A.7) and (A.10) that n1/2(ζ̂ − ζ0)
D−→N(0, A−1ΣζA

−1).

Proof of Theorem 2.2

Since α̂(t0) = α̃(t0, ζ̂), we have α̂(t0)
P−→α0(t0) uniformly in t ∈ [t1, t2] by applying

continuous mapping theorem and the uniform consistency results in Lemma A.1 and

Theorem 2.1. Now we prove the asymptotic normality.

By Taylor expansion we have

√
nh(α̃(t0, ζ̂)− α̃(t, ζ0)) = −(nh)1/2

∂α̃(t0, ζ̃)

∂ζ
(ζ̂ − ζ0)

where ζ̃ is on the line segment between ζ0 and ζ̂, which is Op(h
1/2), by (A.1) and
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Theorem 2.1. Thus

√
nh{α̂(t)− α0(t)−

1

2
µ2h

2α̈T0 (t)}

=
√
nh{α̃(t, ζ0)− α0(t)−

1

2
µ2h

2α̈T0 (t)}+
√
nh(α̃(t0, ζ̂)− α̃(t, ζ0))

= (e11(t))
−1(h/n)1/2

n∑
i=1

∫ τ

0

ωi(s){Yi(s)− µi(s)}Xi(s)Kh(s− t) dNi(s) +Op(h
1/2),

= (e11(t))
−1n−1/2

n∑
i=1

ψi(t) +Op(h
1/2),

for t ∈ [t1, t2] by (A.2).

Note that E(ψi(t)) = 0. It follows that n−1/2
∑n

i=1 ψi(t)
D−→N(0,Σe) by applying

the Lindeberg-Feller central limit theorem. Consequently,

√
nh(α̂(t)− α0(t)−

1

2
µ2h

2α̈T0 (t))
D−→N

(
0, (e11(t))

−1Σe(t)(e11(t))
−1) .
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APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3

Condition II.

(II.1) The censoring time Ci is noninformative in the sense that E{dN∗i (t)|Xi(t), Ui(t),

Ci ≥ t} = E{dN∗i (t)|Xi(t), Ui(t)} and E{Yi(t)|Xi(t), Ui(t), Ci ≥ t} = E{Yi(t)|

Xi(t), Ui(t)}; dN∗i (t) is independent of Yi(t) conditional on Xi(t), Ui(t) and

Ci ≥ t; the censoring time Ci is allowed to depend on the left continuous

covariate process Xi(·);

(II.2) The processes Yi(t), Xi(t) and λi(t), 0 ≤ t ≤ τ , are bounded and their total

variations are bounded by a constant; E|Ni(t2) − Ni(t1)|2 ≤ L(t2 − t1) for

0 ≤ t1 ≤ t2 ≤ τ , where L > 0 is a constant; E|Ni(t+h)−Ni(t−h)|2+v = O(h),

for some v > 0;

(II.3) The kernel function K(·) is symmetric with compact support on [−1, 1] and

Lipschitz contimuous; Bandwidths h � b; h→ 0; nh2 →∞ and nh5 is bounded;

(II.4) The function ϕ(·) is monotone twice differentiable;

(II.5) α0(t), γ0(u), e11(t) and e12(t) are twice differentiable; (e11(t))
−1 is bounded over

0 ≤ t ≤ τ ; the matrices A and Σ are positive definite;

(II.6) The limit limn→∞ hE
[∫ τ

0
[Yi(t)− µi(t)] I1e11(t0, Ui(t))

−1Xi(t)Kh(t− t0) dNi(t)
]⊗2

,

and

limn→∞ bE
[∫ τ

0
{Yi(t)− µ̂i(t)}I3e11(t, u0)

−1Xi(t)Kb(Ui(t)− u0) dNi(t)
]⊗2

exist

and are finite.
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Lemmas

Let random function ψ : R4 → R satisfy: ψ(t, y, x, u) are continuous on {(t, x, u)},

uniformly in y ∈ R; E|ψ|s < ∞ for s > 2. Let ψi(t) = ψ(t, Yi(t), Xi(t), Ui(t)). The

kernel-weighted averages for two-dimensional smoothers are defined as

Ψn(t0, u0) = n−1
n∑
i=1

∫ t2

t1

ψi(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t).

Lemma B.1. Under some conditions II, and assume h � b; h → 0;
√
nhb2 → ∞,

we have

sup
t0∈[t1,t2],u0∈[u1,u2]

|Ψn(t0, u0)− E{ψi(t0)ξi(t0)λi(t0)|U(t0) = u0}fU(t0, u0)|

= Op(log n/
√
nhb+ h2 + b2)

Proof of Lemma B.1

Let Mi(t) = Ni(t)−
∫ t
0
ξi(s)λi(s)ds be a mean zero stochastic process, we have

Ψn(t0, u0) = n−1
n∑
i=1

∫ t2

t1

ψi(t)Kh(t− t0)Kb(Ui(t)− u0) {dMi(t) + ξi(t)λi(t) dt}

Following the argument in Lemma 1 of Zhang et al. (2013), we have that

sup
t0∈[t1,t2],u0∈[u1,u2]

∣∣∣∣∣n−1
n∑
i=1

∫ t2

t1

ψi(t)Kh(t− t0)Kb(Ui(t)− u0) dMi(t)

∣∣∣∣∣ = Op(log n/
√
nhb).

Then

Ψn(t0, u0) = n−1
n∑
i=1

∫ t2

t1

ψi(t)Kh(t− t0)Kb(Ui(t)− u0)ξi(t)λi(t) dt+Op(log n/
√
nhb).
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uniformly in t0 ∈ [t1, t2], u0 ∈ [u1, u2]. Note that the first term of above is equal to

∫ t2

t1

Kh(t− t0)n−1
n∑
i=1

{ψi(t)Kb(Ui(t)− u0)ξi(t)λi(t)} dt. (B.1)

By applying Lemma A.1 in Yin et al. (2008) , (B.1) becomes

∫ t2

t1

Kh(t− t0)[E{ψi(t)ξi(t)λi(t)|U(t) = u0}fU(t)(u0) +Op(log n/
√
nb+ b2)] dt,

and by the Taylor series expansion, it follows that

Ψn(t0, u0) = E{ψi(t0)ξi(t0)λi(t0)|U(t0) = u0}fU(t0, u0) +Op(log n/
√
nhb+ h2 + b2).

Lemma B.2. Let Θ and U be compact sets in Rp and Rq, and let Φn(θ, u) be random

functions and let Φ(θ, u) be a fixed function of (θ, u) ∈ Θ × U . Let δ(u) be a fixed

function of u ∈ U taking values in Θ. Assume that sup
θ,u
‖ Φn(θ, u) − Φ(θ, u) ‖ P−→0

and that for every ε > 0, we have inf
‖θ−δ0(u)‖>ε

‖ Φ(θ, u) ‖> 0 =‖ Φ(δ0(u), u) ‖ for

u ∈ U . Then for any sequence of estimators δ̂(u), with Φn(δ̂(u), u) = op(1) uniformly

in u ∈ U , we have δ̂(u)
P−→δ0(u) uniformly in u ∈ U .

Proof of Lemma B.2

This follows from the Lemma 1 of Sun et al. (2009a), on applying it to the functions

Φn(u, θ) = − ‖ Qn(u, θ) ‖ and Φ(u, θ) = − ‖ Q(u, θ) ‖.

Let H is a (2p1 + 2p3)-diagonal matrix diag{Ip1+p3 , hIp1 , bIp3}. Let uϑ(ϑ, β) =

E([ϕ{ϑT0 (t, Ui(t))X̃i(t) + βT0 X2i(t)} − ϕ{ϑT (t, Ui(t))X̃i(t) + βTX2i(t)}]X̃i(t)ξi(t)λi(t)

|Ui(t) = u)fU(t, u). Define ϑTβ (t, Ui(t)) as the unique root such that uϑ(ϑ, β) = 0 for
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β ∈ Nβ0 . Let

eβ,11(t, u) = E[ωi(t)ϕ̇{ϑTβ (t, u)X̃i(t) + βTX2i(t)}{X̃i(t)}⊗2ξi(t)λi(t)]

and

eβ,12(t, u) = E[ωi(t)ϕ̇{ϑTβ (t, u)X̃i(t) + βTX2i(t)}X̃i(t)(X2i(t))
T ξi(t)λi(t))].

When β = β0, we have ϑβ(t, u) = ϑ0(t, u). In this case, eβ,11(t, u) = e11(t, u) and

eβ,12(t, u) = e12(t, u).

Lemma B.3. Under condition II, we have Hϑ̃∗(t, u, β)
P−→(ϑ∗Tβ (t, u),0T )T ,

∂Hϑ̃(t, u, β)/∂β
P−→(−eβ,12(t, u)e−1β,11(t, u),0T )T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] and β in a neighborhood of β0.

Proof of Lemma B.3

To facilitate technical arguments, we will reparametrize the estimating function

(3.2) via the transformation η = H(ϑ∗ − ϑ∗0).

We first show that η̃ → 0 in probability, where η̃ = H(ϑ̂∗ − ϑ∗0). Hence, the

estimating function is

Uϑ(η, t0, u0) =
n∑
i=1

∫ τ

0

Wi(t)
[
Yi(t)− ϕ{ϑ∗Tβ X̃∗i (t, t0, u0) + ηTH−1X̃∗i (t, t0, u0) + βTX2i(t)}

]
×X∗i (t, t0, u0)Kh(t− t0)Kb(Ui(t)− u0) dNi(t).

By the Glivenko-Cantelli theorem and lemma B.1, and by exchanging the order of
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expectation and integration, we have

n−1{U(η, t0, u0)− U(0, t0, u0)}

= −n−1
n∑
i=1

∫ τ

0

Wi(t)
[
ϕ{ϑ∗Tβ X̃∗i (t, t0, u0) + ηTH−1X̃∗i (t, t0, u0) + βTX2i(t)}

−ϕ{ϑ∗Tβ X̃∗i (t, t0, u0) + βTX2i(t)}
]
X̃∗i (t, t0, u0)Kh(t− t0)Kb(Ui(t)− u0) dNi(t)

P−→
∫ 1

−1

∫ 1

−1
E

ωi(t0)µ̇i(t0)η
T


X̃i(t0)

X1i(t0)y

X3i(t0)x


 X̃i(t0)

0

 ξi(t0)λi(t0)|Ui(t0) = u0


×fU(t0, u0) dy dx,

uniformly in t0 ∈ [t1, t2], u0 ∈ [u1, u2] and η in a neighborhood of 0.The limit has a

unique root at η = 0. By Lemma B.2 it follows that η̃ → 0 uniformly in t and u.

Thus Hϑ̃∗(t, u, β)− (ϑ∗Tβ (t, u), 0T )T
P−→0 uniformly in t, u and β ∈ Nβ

Following the same steps as in Lemma A.1 in Chapter 2, and by using Lemma B.1

repeatedly, we can show that

∂Hϑ̃(t, u, β)/∂β
P−→(−eβ,12(t, u)e−1β,11(t, u),0T )T

uniformly in t ∈ [t1, t2], u ∈ [u1, u2] and β in a neighborhood of β0.

Lemma B.4. Under condition II, as h � b, nh2 →∞ and nh6 = Op(1), we have

√
nhb{ϑ̃(t0, u0, β0)− ϑ0(t0, u0)−

1

2
h2ν2e

−1
11 (t0, u0)bα(t0, u0)−

1

2
b2ν2e

−1
11 (t0, u0)bγ(t0, u0)}

= (e11(t0, u0))
−1
√
nhbAn(t0, u0) + op(1) (B.2)
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uniformly in t0 ∈ [t1, t2] and u0 ∈ [u1, u2], where

An(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Wi(t){Yi(t)− µi(t)}X̃i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t).

Further,
√
nhbAn(t0, u0) = Op(1) uniformly in t ∈ [t1, t2] and u ∈ [u1, u2].

Proof of Lemma B.4

Because Uϑ(ϑ̃∗, t0, u0, β0) = 0, by Taylor expansion we have

H{ϑ̃∗(t0, u0, β0)− ϑ∗0(t0, u0)} = e−111 (t0, u0){n−1H−1Uϑ(ϑ∗0, t0, u0)}+ op(1).(B.3)

The first p1 components yields

ϑ̃(t0, u0, β0)− ϑ0(t0, u0) = e−111 (t0, u0)U1(ϑ
∗
0, t0, u0) + op(1)

uniformly in t0 and u0, where

U1(ϑ
∗
0, β0) =

1

n

n∑
i=1

∫ τ

0

Wi(t)
[
Yi(t)− ϕ{ϑ∗T0 X̃∗i (t, t0, u0) + βT0 X2i(t)}

]
× X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t).

Because by local linear approximation,

Yi(t)− ϕ{ϑ∗T0 X̃∗i (t, t0, u0) + βT0 X2i(t)}

= Yi(t)− µi(t) + µi(t)− ϕ{ϑ∗T0 X∗i (t, t0, u0) + βT0 X2i(t)}

= Yi(t)− µi(t) +
1

2
µ̇i(t){(α̈(t0))

TX1i(t)(t− t0)2 + (γ̈(u0))
TX3i(t)(Ui(t)− u0)2}

+ op((t− t0)2 + (Ui(t)− u0)2),

it yields U1(ϑ
∗
0, β0) = An(t0, u0) + Bn(t0, u0) + Cn(t0, u0) + op(h

2 + b2), where
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Bn(t0, u0) =
1

2n

n∑
i=1

∫ τ

0

Wi(t)µ̇i(t)(α̈(t0))
TX1i(t)(t− t0)2

× X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t), (B.4)

and

Cn(t0, u0) =
1

2n

n∑
i=1

∫ τ

0

Wi(t)µ̇i(t)(γ̈(u0))
TX3i(t)(Ui(t)− u0)2

×X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t) (B.5)

By lemma 1, we conclude that

1

h2
Bn(t0, u0) =

1

2n

n∑
i=1

∫ τ

0

Wi(t)µ̇i(t)(α̈(t0))
TX1i(t)

(
t− t0
h

)2

× X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t),

P−→1

2
ν2bα(t0, u0),

where bα(t0, u0) = E{ωi(t0)µ̇i(t0)X̃1i(t0)X
T
1i(t0)|Ui(t0) = u0}fU(t0, u0)α̈(t0), and

1

b2
Cn(t0, u0) =

1

2n

n∑
i=1

∫ τ

0

Wi(t)µ̇i(t)(γ̈(u0))
TX3i(t)

(
Ui(t)− u0

b

)2

× X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t)

P−→1

2
ν2bγ(t0, u0),

where bγ(t0, u0) = E{ωi(t0)µ̇i(t0)X̃1i(t0)X
T
3i(t0)|Ui(t0) = u0}fU(t0, u0)γ̈(u0). Hence

(B.2) holds.
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Proof of Theorems

Proof of Theorem 3.1

By Lemma B.1, Lemma B.3 and application of the Glivenko-Cantelli theorem to

the estimating function defined in (3.4), we have

n−1Uβ(β)

P−→E
∫ τ

0

Wi(t)[Yi(t)− ϕ{ϑTβ (t, Ui(t))X̃i(t) + βTX2i(t)}]

× {X2i(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1X̃i(t)}dNi(t)

= E

∫ τ

0

Wi(t)[ϕ{ϑT0 (t, Ui(t))X̃i(t) + βT0 X2i(t)} − ϕ{ϑTβ (t, Ui(t))X̃i(t) + βTX2i(t)}]

× {X2i(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1X̃i(t)}ξi(t)λi(t)dt

= u(β), (B.6)

where β0 is the unique root of u(β). Then by Theorem 5.9 of Van Der Vaart (1998),

β̂
P−→β0.

By Glivenko-Cantelli theorem and Lemma B.3,

− n−1∂Uβ(β)

∂β
|β=β0

= n−1
n∑
i=1

∫ τ

0

Wi(t)ϕ̇{ϑ̃T (t, Ui(t), β0)X̃i(t) + βT0 X2i(t)}

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
X̃i(t) +X2i(t)

}
dNi(t) + op(1)

P−→E[

∫ τ

0

ωi(t)µ̇i(t){X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)}⊗2dNi(t)] ≡ Aβ

Now we show that n−1/2Uβ(β0) converges in distribution to a normal distribution.
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By Taylor expansion,

ϕ{ϑ̃T (t, Ui(t), β0)X̃i(t) + βT0 X2i(t)} − ϕ{ϑT0 (t, Ui(t))X̃i(t) + βT0 X2i(t)}

= µ̇i(t){ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))}X̃i(t)

+Op(‖ϑ̃(t, Ui(t), β0)− ϑ0(t, Ui(t))‖2 (B.7)

By Lemma B.3 and Lemma B.4,

n−1/2
n∑
i=1

∫ τ

0

Wi(t)[ϕ{ϑ̃T (t, Ui(t), β0)X̃i(t) + βT0 X2i(t)}

− ϕ{ϑT0 (t, Ui(t))X̃i(t) + βT0 X2i(t)}]×

{
(X̃i(t))

T ∂ϑ̃(t, Ui(t), β0)

∂β
+ (X2i(t))

T

}
dNi(t)

= n−1/2
n∑
i=1

∫ τ

0

Wi(t)µ̇i(t){ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))}

×

{
(X̃i(t)X̃i(t))

T ∂ϑ̃(t, Ui(t), β0)

∂β
+ X̃i(t)(X2i(t))

T

}
dNi(t) + op(1)

= op(1). (B.8)

Hence,

n−1/2Uβ(β0)

= n−1/2
n∑
i=1

∫ τ

0

Wi(t)εi(t)

{
∂ϑ̃(t, Ui(t), β0)

∂β
X̃i(t) +X2i(t)

}
dNi(t) + op(1)

= n−1/2
n∑
i=1

∫ τ

0

Wi(t)εi(t){X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)}dNi(t) + op(1)

which converges in distribution to a normal distribution with variance

Σβ = E

(∫ t2

t1

ωi(t)εi(t){X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)}dNi(t)

)⊗2
.

Hence, n1/2(β̂ − β0)
D−→N(0, A−1β ΣβA

−1
β ).
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Proof of Theorem 3.2

(a) Since ϑ̂(t0, u0) = ϑ̃(t0, u0, β̂), we have ϑ̂(t0, u0)
P−→ϑ0(t0, u0) uniform in t ∈ [0, τ ]

and u ∈ [u1, u2] by Lemma B.1 and Theorem 1. Then

sup
t0∈[t1,t2]

|ϑ̂(t0)− ϑ0(t0)| = sup
t0∈[t1,t2]

|n−1
n∑
j=1

{ϑ̂(t0, Uj(t0))− ϑ0(t0, Uj(t0))}|

≤ sup
t0∈[t1,t2],u0∈[u1,u2]

|ϑ̂(t0, u0)− ϑ0(t0, u0)| = op(1).

(b) Following the proof of Lemma B.4, we obtain

√
nhb{α̃(t0, u0, β0)− α0(t0, u0)}

= −I1e
−1
11 (t0, u0)

√
hb

n

n∑
i=1

∫ τ

0

Wi(t)εi(t)X̃1i(t)Kh(t− t0)Kb(Ui(t)− u0) dNi(t)

+
1

2

√
nhbh2ν2e

−1
11 (t0, u0)bα(t0, u0) +

1

2

√
nhbb2ν2e

−1
11 (t0, u0)bγ(t0, u0) + op(

√
nhb(h2 + b2))

Note that e−111 (t0, u0)bγ(t0, u0) is zero for the first p1 components and e−111 (t0, u0)bα(t0, u0)

is α̈(t0) for the first p1 components. Then

√
nh{α̂(t0)− α0(t0)}

= −
√
h

n

n∑
i=1

∫ τ

0

Wi(t){Yi(t)− µi(t)}{n−1
n∑
j=1

I1e
−1
11 (t0, Uj(t0))Xi(t)Kb(Ui(t)− Uj(t0))}

×Kh(t− t0) dNi(t)

+

√
h

n
n−1

n∑
j=1

{e11(t0, Uj(t0))−1e12(t0, Uj(t0))}(β̂ − β0)

+
1

2

√
nhh2ν2α̈(t0).
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By Lemma A.1 in Yin et al. (2008),

1

n

n∑
j=1

e−111 (t0, Uj(t0))Kb(u− Uj(t0)) = e−111 (t0, u) +Op(
log b√
nb

) +O(b2)

uniformly in t ∈ [t1, t2] and u ∈ [u1, u2]. It follows that

√
nh{α̂(t0)− α0(t0)−

1

2
h2ν2α̈(t0)}

=

√
h

n

n∑
i=1

∫ τ

0

Wi(t) {Yi(t)− µi(t)}I1e
−1
11 (t0, Ui(t))Xi(t)Kh(t− t0) dNi(t) + op(1)

= n−1/2
n∑
i=1

gi(t0) + op(1),

where gi(t0) = h1/2
∫ τ
0
{Yi(t)− µi(t)}I1e

−1
11 (t0, Ui(t))Xi(t)Kh(t−t0) dNi(t). Following

the arguments of Lemma 2 of Sun (2010),

√
nh(α̂(t)− α0(t)−

1

2
h2ν2α̈(t0))

D−→N (0,Σα(t)) (B.9)

where

Σα(t0) = lim
n→∞

hE

[∫ τ

0

{Yi(t)− µi(t)}I1e
−1
11 (t0, Ui(t))Xi(t)Kh(t− t0) dNi(t)

]⊗2
.

Proof of Theorem 3.3

Following the same argument as the proof of Theorem 3.2, we have γ̂(u)
P−→γ0(u)

uniformly in u ∈ [u1, u2], and
√
nb(γ̂(u)−γ0(u)− 1

2
b2ν2γ̈(u))

D−→N (0,Σγ(u)) .

Proof of Theorem 3.4
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By Lemma B.4,

√
nh{γ̂(u)− γ0(u)− 1

2
b2ν2γ̈(u)}

=
√
nh{γ̃(u, β0)− γ0(u)− 1

2
b2ν2γ̈(u)}

−
√
nhE{(e11(U−1j (u), u))−1e12(U

−1
j (u), u)}{β̂ − β0}.

Thus

Gn(u) = n−1/2
n∑
i=1

{∫ u

u1

∫ τ

0

ωi(t)εi(t)I3e11(t, s)
−1Xi(t)Kb(Ui(t)− s) dNi(t) ds

+

∫ u

u1

E{(e11(U−1j (s), s))−1e12(U
−1
j (s), s)} dsA−1β

∫ t2

t1

ωi(t)[Yi(t)− µi(t)]

× {X2i(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1X̃i(t)} dNi(t)
}

+ op(1),

which converges weakly to a mean-zero Gaussian process by central limit theorem.


