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ABSTRACT 

 

 

 MARUTI N. SINHA. Intelligent Demand Side Management of Residential Building  

Energy Systems. (Under the direction of DR. ROBERT W. COX) 

 

 

Building energy performance has emerged as a major issue in recent years due to 

growing concerns over costs, resource limitations, and the potential impact on climate. 

According to the 2011 Buildings Energy Data Book (prepared by D&R International, Ltd. 

for the US Department of Energy, March 2012), the built environment demands about 

41% of primary energy in the United States [1].  Given the emergence of modern sensing 

technologies and low-cost data-processing capabilities, there is a growing interest in 

better managing and controlling consumption within buildings.  Estimates suggest that 

the simple act of continuous monitoring can lead to improvements on the order of 20% 

[118]. 

To further reduce and better control energy consumption, one can turn to the use 

of real-time energy-performance modeling.  This thesis adopts the view that smaller 

buildings (i.e. homes and smaller commercial facilities), which represent more than half 

of the sector’s consumption, provide a rich opportunity for low-cost monitoring solutions.  

The real advantage lies in the growth of so-called smart meters for demand monitoring 

and advanced sensing for improved load control.  In particular, this thesis considers the 

use of a small sensor package for the creation of autonomously developed, data-driven 

thermal models.  Such models can be used to predict and control the consumption of 

space heating and cooling equipment, which currently represent about 50% of residential 

consumption in the United States.   
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The key contribution of this work is the real-time identification of thermal 

parameters in homes using only two temperature sensors, solar irradiance measurements, 

and a power meter with load-tracking capabilities.  The proposed identification technique 

uses the Prediction Error Method (PEM) to find a Multiple Input Single Output (MISO) 

state-space model. Two different models have been devised, and both have been field 

tested. The first focuses on energy forecasting and enables various diagnostic features; 

the other is formulated for more advanced capacity controls in vapor-compression air 

conditioners.  A Model Predictive Control (MPC) scheme has been implemented and 

shown in simulation to yield energy reductions on the order of 30% over typical 

thermostatic control schemes.  Similarly, the diagnostic model has been used to detect 

capacity degradation in operational units.   
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CHAPTER 1: INTRODUCTION 

 

 

Energy is essential to life. To drive modern society, humans harvest various 

resources from their environment and extract the energy embodied within them. Balance 

is required, however, so that consumption does not surpass the available resource supply. 

Growing concerns over resource limitations and the potential negative impact of primary 

energy conversion has led society to turn its collective attention towards new means for 

energy production and smarter means for energy utilization. 

This thesis focuses on exploiting the power of modern sensors and computing 

power to better monitor and control the consumption of energy in smaller buildings.  

Particular emphasis is given to the use of thermal energy for space heating and cooling.  

This chapter begins in Section 1.1 with a description of the problem and a formulation of 

the solution developed in this work.  Section 1.2 describes vapor-compression air-

conditioners, which are the primary source of heating and cooling energy in small 

buildings.  Section 1.3 describes the non-intrusive load monitor, which is the 

experimental platform used to support this work.  Section 1.4 provides an outline of the 

thesis, and Section1.5 summarizes the primary contributions.   

1.1 Energy Challenges in Buildings: Motivation and a Proposed Solution 

Energy consumption throughout the world continues to grow.  Figure 1 shows the 

projected growth within the United States.  Since this thesis focuses primarily on homes, 

we focus our attention on the residential sector, for which growth is projected to be about 
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0.2% or 1 quadrillion BTUs per year from 2010 to 2035 [1].  This growth comes despite 

the proliferation of more efficient loads.  Even more significant growth is expected in 

other parts of the world, particularly in Asia.  

A closer look at the residential sector reveals that Heating, Ventilation, and Air 

Conditioning (HVAC) are the primary consumers.  Figure 2 shows the typical breakdown 

in the United States, with space heating and cooling accounting for approximately 50% of 

consumption [1].  Given the clear importance of this end use, there is good reason to 

examine it more closely to determine what can be done to make the conversion process 

more efficient.   

 

 

Figure 1: Energy consumption by sector, as projected to grow by 2035.  Note that the y-

axis is in units of quadrillions of BTUs (quads) (Adapted from [1]). 
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 At present, most homeowners in the United States are unaware of the cost of 

energy, and thus efficiency is not a major concern.  Consider for a moment, however, the 

following statistics.  A recent field study of 4,168 in-service air conditioners found that 

72% had refrigerant levels below manufacturer specifications [3].  The resulting loss of 

efficiency is estimated to waste some 17.6 TW-hrs of energy in homes each year [4].  At 

10 cents per kW-hr, that represents a waste of $1.7 billion.   

 

 

Figure 2: Residential energy consumption by end use (Adapted from [1]).   

Inefficiencies such as the one described above are clearly rampant, but they can 

be easily detected by what are known as Building Energy Management Systems (BEMS). 

Such components use sensors and potentially some level of computation to monitor the 

conversion and consumption of energy within a building.  Typically, the cost of these 

systems is prohibitive for smaller buildings such as homes.  An interesting opportunity 

has recently arisen, however, in the form of what is known as “smart” meters.  Utilities 

throughout the world are currently deploying these devices in homes and commercial 
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facilities. Smart meters are fundamentally electric meters with data acquisition and 

communication capabilities.  They record electric power consumption and regularly 

communicate that information to the utility.  If equipped with two-way communications 

and a gateway to various devices within the home, utilities can use smart meters to shut 

down certain loads during peak demand periods [1].  Although this framework provides a 

tremendous opportunity for innovative demand-response actions, it can also be used to 

monitor and control the performance of heating, ventilation and air-Conditioning 

(HVAC) systems within a home.     

The primary objective of this research is to exploit the growing availability of 

smart meters and to use them as a platform for monitoring thermal performance in a 

home.  Specifically, the goal is to use the data obtained by the smart meter and several 

additional sensors in order to develop a thermal model.  This model can then be used for 

both diagnostics and improved control.   The crucial step is the development of a reliable 

thermal model. Various approaches have been developed which can be classified in three 

broad categories, i.e. physics-based, data-driven and hybrid. Physics based model is 

popular as White box model. This model is solely based on fundamental principles of 

heat transfer whereas data driven model does not have any physics behind it. This is also 

called Black box approach. This type of model is purely developed on measured data. 

The hybrid model does not depend only on gathered data but also takes into account 

physics behind the process to a certain extent. This is also known as Grey box approach. 

All these methods have their own merits and limitations. Theoretically, physics based 

model is the best one to have. 

The thermal model identification approach described in the research uses a smart 
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meter to find out compressor on-off schedule. This meter is known as Non-Intrusive Load 

Monitor (NILM) [5]. The detailed description of this meter has been given in section 1.3. 

It further describes how the NILM is used to detect several devices connected in home by 

just reading the current signatures. The research presents a discussion of the thermal-

modeling procedure used for refrigerant-charge diagnostics, and it also describes a 

similar procedure that could be used with next-generation control systems.  Experimental 

results are presented, and future work is described.     

1.2 General Overview of Vapor-Compression Air Conditioners 

Most homes and small buildings in the United States are cooled using what are 

known as vapor-compression air conditioners.  These are typically coupled with a heating 

system such as a gas furnace, or potentially, the air conditioner is used as a heat pump to 

remove cold air during the winter months.  Together, these components form the heating, 

ventilation, and air conditioning (HVAC) system.  In general, any such system should 

regulate the following four quantities: air temperature, humidity, air circulation, and air 

quality.    

The work in this thesis focuses heavily on vapor-compression air conditioners and 

heat pump systems.  Since the performance of this equipment is so critical to the overall 

work, it is wise to first review their operation.  Figure 3 shows the primary components, 

namely the compressor, the condenser, the expansion valve, and the evaporator. The 

function of each can be described through the pressure-enthalpy (P-H) diagram shown in 

Figure 4.  This plot represents operation between 0ºC-40ºC, which is the typical range for 

a residential or light commercial air conditioner.  The operation of each component can 

be seen as follows: 
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1. Compressor – This component compresses the refrigerant flowing through the 

fluid circuit shown in Figure 3. Scroll compressors are the most popular type in 

homes. Line 1-2 in Figure 4 shows the compression process.   

2. Condenser - Compressed refrigerant passes through the condenser, where it cools 

at the same pressure. This is represented by the line labeled 2-3 in Figure 4.   

3. Expansion Valve – This component, which is also referred to as a metering 

device, changes the pressure of the refrigerant at constant enthalpy.  This is shown 

by line 3-4 in Figure 4.  The expansion performed controls the amount of 

refrigerant flowing into the evaporator, which is the next component in the circuit.   

4. Evaporator – Inside the evaporator the enthalpy of the refrigerant is changed at 

constant pressure. The path labeled 4-1 represents the action of the evaporator.   

 

 

Figure 3: A typical vapor-compression air-conditioning system (HVAC system design by 

PES Institute of Technology, PACE). 
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As discussed before, working principles of all the components have been shown 

through P-H diagram. The system operates between two different pressures, evaporator 

and condenser pressures respectively.  In fact these are the intake and exit pressures of 

compressor. 

 

Figure 4: P-H diagram showing the refrigeration cycle for an air conditioner with R-134a 

refrigerant.   

A fan passing air over the evaporator coils transfers heat from inside the space 

into the refrigerant circuit.  The system is typically operated based on measurements of 

the air temperature within the occupied space. Typically, homes are divided into different 

zones, with each zone temperature controlled by a single dedicated thermostat.  For 

heating and cooling applications, most residences are equipped with On-Off controllers. 

This goes by several names such as Bang-Bang Control or Hysteretic control. The 
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operating principle is quite simple and straight forward. The thermostat has the 

temperature setting and whenever the measured temperature is above/below the setting, 

the compressor turns on to supply thermal cooling/heating capacity [24], [25]. This type 

of controller runs between two states which is not preferred for any kind of mechanical 

device.    The method is, however, inexpensive and simple to operate so it is preferred in 

most current and legacy systems.    

To avoid frequent on-off operation and to improve efficiency, efforts are 

underway to build better control systems for buildings.  Fuzz logic based controllers, i.e. 

fuzzy proportional, fuzzy proportional-plus integral etc. have been developed and 

compared [26].  Recent developments have also led to more straightforward feedback 

systems based on linear systems analysis (i.e. proportional-plus-integral compensators). 

[24], [25] 

It is important to note that the thermal modeling procedures described in this 

thesis can be applied to other means of heating and cooling (i.e. gas furnaces, etc.).  

Given the fact that the refrigerant circuit in an air conditioner is so prone to leakage, this 

system was given significance in this work.  All of the methods applied here could, 

however, be generalized to other systems.   

1.3 The Non-Intrusive Load Monitor 

As described in Section 1.1, the goal of this thesis is to leverage the growing 

availability of smart meters to help direct the monitoring and control of thermal 

performance.  In particular, we have considered the use of a Non-Intrusive Load Monitor 

(NILM), which is a particular smart meter that can disaggregate the operation of 

individual loads from a single set of aggregate current measurements.  Figure 5 shows a 



   9 
 

block diagram of this smart meter.  Note that the NILM is installed at the breaker cabinet, 

where it measures the aggregate current flowing in both phases of a typical split-phase 

residential utility connection. The NILM uses these signals to disaggregate the operating 

schedule of individual loads within the home. The NILM thus determines when the 

HVAC system is operating and when various heat sources (i.e. lights and appliances) are 

energized.  Although the use of the NILM is not critical to the thermal-modeling 

procedure adopted in this thesis, it does assist in sensor-count reduction and its software 

can be easily installed in most commercially available smart meters.     

This section describes the two main components of the NILM, namely the 

preprocessor and the event detector and classifier.   

1.3.1 Preprocessor 

Using measurements of the line voltage and aggregate current, a software-based 

preprocessor computes time-varying estimates of the frequency content of the measured 

line current [5]. Formally, these time-varying estimates, or spectral envelopes, are 

defined as 

  ( )   
 

 
∫  ( )    (   )   

 

   
                                                   (1) 

and 

  ( )   
 

 
∫  ( )    (   )    

 

   
                                                 (2) 

These relationships are Fourier series analysis equations evaluated over a moving 

window of length T [6].  
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Figure 5: Diagram showing the fundamental signal flow path in a NILM connected in a 

residential home with a split-phase utility connection. 

The coefficients   ( )  and   ( )  contain time-local information about the 

frequency content of   ( ). Provided that the basis terms    (   ) and    (   ) are 

synchronized to the line voltage, the spectral-envelope coefficients have a useful physical 

interpretation as real, reactive, and harmonic power [7]. For this reason, first spectral 

components of Fourier series a1 and b1 are often scaled by the magnitude of the line 

voltage and termed P1 and Q1, respectively. P1 and Q1 correspond to the conventional 

definitions of real and reactive powers. In general,              . Figure 6 shows 

a typical real-power signal recorded over several minutes in a test home. It is noted that 

several different on/off events are labeled.  The details have been described in section 

1.3.2 about how these classifications were made.  
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Figure 6: Real-power signal recorded in a test home.  Several on/off events are shown. 

1.3.2 Load Classification 

The spectral envelopes computed by the preprocessor are sent to an event detector 

that identifies the operation of each of the major loads on the monitored electrical service.  

Identification is performed using both transient and steady-state information [8]. Field 

studies have demonstrated that transient details are particularly powerful because the 

transient electrical behavior of a particular load is strongly influenced by the physical 

task it performs [7]. As shown in Figure 7, for example, the physical differences between 

an incandescent lamp and an induction machine result in vastly different transient 

patterns.   
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Figure 7: Top trace: The power drawn during the start of an incandescent light bulb. 

Lower trace: The power drawn during the start of an air conditioner. 

Load identification relies on the ability to detect certain specific power changes 

and to match them to particular load events.  The overall approach proceeds in two steps. 

First, an edge-detection algorithm locates abrupt changes in the real or reactive power 

signal. Subsequently, data around each edge is passed to a classifier that uses both 

transient and steady-state information to identify specific on/off events.  Steady-state data 

includes information about the differences in real power, reactive power, and other 

spectral envelopes recorded before and after the event.  Individual loads tend to have 

characteristic steady-state signatures learned during a one-time training process [5], [7], 

[8].  Transient shape information is also used to assist in load recognition.  Most loads 

observed in the field have repeatable transient profiles or at least sections of their 

transient profile that are repeatable [5], [7], [8].  
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Transients are identified by matching events in the incoming aggregate power 

stream to previously defined transient shapes known as exemplars. As in the case of the 

state-state signatures noted above, these exemplars are determined during a one-time 

training process.   When events occur, the resulting transient is fit to each exemplar using 

a least-squares process, and a best-fit metric (i.e. the 2-norm of the residuals) is used to 

determine the appropriate exemplar [7], [8].  The successful match of an exemplar to a 

motor transient is shown in Figure 8.      

 

 

Figure 8: Measured current and computed power during the start of a 2hp motor. 

Also shown in the power plot is the exemplar that has been successfully matched 

to the observed transient behavior by the transient classifier. The ultimate classification 

of any load is based on a combination of the best-fit metrics used by the steady-state 

classifier and its transient-based counterpart. Complete details are presented in [8].  After 
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a load has been properly classified, the NILM records this in a time-stamped data file. 

While a load remains energized, the NILM tracks its power consumption using a 

combination of the techniques described in [8] and [9].   

Again, it is important to note that it the NILM is not essential to the work of this 

thesis, but it was the platform used for field studies.   Given that most homes will have 

smart meters that measure only aggregate current, it makes sense to consider the use of 

the NILM’s load disaggregation capabilities to determine when appropriate heat loads are 

operating.  In this thesis, information about load operation is passed to the modeling 

software without having to separately monitor the operation of individual loads.  Since 

the preprocessor and event-detection software could be installed on any smart meter, it 

thus makes sense to consider the use of the NILM.   

1.4 Research Scope and Thesis Outline 

As noted, the goal of this thesis is to develop thermal-performance models for 

small buildings using data measured by a small set of sensors.  The thesis begins in 

Chapter 2 with a review of relevant background related to thermal modeling.  It then 

proceeds to describe the data-driven modeling procedure used in this work.  The next two 

chapters then consider specific applications of the proposed scheme.  The first, which is 

found in Chapter 4, involves the use of the model for advanced model-based controls.  

Currently, homes do not use plant models and there is no notion of using weather forecast 

information.  Chapter 4 considers both in an application of model-predictive control.  The 

second application, which is described in Chapter 5, is the application of thermal models 

for diagnostics.  The specific example considered is the loss of refrigerant, which was 
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noted to occur in over 70% of American homes without notice. Finally, the chapter 

presents conclusions and directions for future work.   

1.5 Thesis Contribution 

The primary contribution of this work is to present an on-line thermal modeling 

approach that is entirely sensor driven.  This scheme can be made autonomous so that 

costly human intervention in the modeling process is not required.  Through the 

development of such a process, one can monitor energy performance and find energy-

wasting faults.  Two specific applications are proposed, one is an optimal control strategy 

which that minimizes the energy consumed by space heating and cooling equipment.  The 

other is a process that monitors energy consumption and detects the presence of energy-

wasting faults.   Field measurements are presented to justify the performance of the 

thermal models and to demonstrate the effectiveness of the proposed fault detection and 

diagnosis.  Simulation results are used to validate the performance of the proposed 

control scheme.   

 

 

 

 

 



 

 

 

 

 

CHAPTER 2: RESEARCH BACKGROUND 

 

 

The fundamental challenge in this work is to construct a reliable model for the 

thermal performance of single-family residential buildings. To pursue this objective, a 

data-driven, scheme has been used in order to avoid excessive work in developing a 

complex physical model.  Such schemes have been applied in numerous fields, including 

the life sciences, social sciences, economics, and aerospace.  The first and most critical 

step is to identify an appropriate model.  From an application standpoint, the selected 

model should be accurate, stable, and as simple as the physical situation will allow.  

Adaptability of the model is also important. It gives the opportunity to capture the 

changing behavior of the system itself. Once the model is identified, it can be used to 

predict system behavior and control load operation. The capability of the model can be 

exploited to develop diagnostic scheme as well. This is extremely important application 

area where plenty of works are needed. 

This chapter provides relevant background information on detailed thermal 

modeling and an alternative approach, energy-usage forecasting using aggregated data.  

Note that the goal is to present typical approaches as a motivation for adopting the data-

driven approach described in the next chapter.   

2.1 Thermal Modeling Approaches for Buildings 

Various schemes have been proposed for modeling thermal performance in 

buildings.  This section considers both detailed analytical models and hybrid approaches 
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that rely on fewer direct physical considerations and more on field data.  In general, 

analytical models have always been preferred tool for thermal modeling. 

2.1.1 Analytical or White-Box Approach 

 Pure physics-based principles can be exploited to construct a thermal model. One 

common approach is to begin with an energy balance.  This approach is used by 

EnergyPlus [10] and other modeling programs. A fundamental assumption is that the 

building exists in a steady thermal condition.  This is a reasonable assumption in large 

commercial buildings, but it is not necessarily true in homes where heating and cooling 

equipment is operated cyclically.  Using physical principles and direct information about 

the materiality of the building, an accurate model can be constructed.  In practice, 

however, it can be extremely difficult to accurately capture all of the important material 

aspects.   

Figure 13 shows a typical two-story home.  In general, a home may have multiple 

zones to be heated or cooled.  An energy-balance equation for this site must include all of 

the relevant heat sources, which include occupants, appliances, solar irradiance, and 

heating and cooling equipment.  In addition, the equation must reflect the thermal energy 

stored in each zone as well as the amount of heat transferred between zones.  The rate of 

thermal energy storage in a single zone is dependent upon what is known as the zonal 

thermal capacitance,   .  The rate of energy storage is proportional to both    and the 

rate of change of the zone temperature, i.e.        .  This storage rate equals the rate at 

which energy which energy is provided or consumed by particular sources and 

transferred to other adjoining zones.  Thus, the energy balance relationship for a single 

zone   is 
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  ̇          ̇          ̇        ̇              ̇               (3)                                                                        

The first term on the right-hand side is the sum of all internal heat loads, each of which 

provides energy at a rate  ̇ .  Assuming     heat loads, this is.   

∑ ̇ 

   

   

  ̇          

Assuming that each surface bounding the zone has a convective heat transfer coefficient 

   and an area    the sum of the convective heat transfer from all of the surfaces is  

∑     (      )

         

   

  ̇          

Furthermore, if air transfers from the      adjoining zone at a mass flow rate  ̇  with a 

specific heat    and a temperature    , the effect is represented as  

∑  ̇   (

      

   

      )   ̇        

If any outside air at a temperature      infiltrates from outside the building at a rate  ̇   , 

the result is to add or remove energy at rate 

 ̇     (       )   ̇             

Finally, air may be supplied into the space by space conditioning equipment at a rate 

 ̇    with a temperature        .  The effect of such space conditioning is  

 ̇     (          )   ̇    

Many of the aforementioned terms can be exceptionally difficult to measure, 

especially under true ambient conditions.  For instance, the effect of infiltration is 

difficult to quantify since it depends on thermal gradients and changing wind patterns.  

Furthermore, the heat transfer coefficients and areas are often not known by a modeler 
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and need to be carefully measured in the field.  The use of a model is thus relatively 

limited for small buildings where the cost of model development can be excessive.   

 

Figure 9: A typical two-story house.    

 Another major challenge in the process of model development is the identification of the 

appropriate number of zones.   A two-story home such as the one shown in Figure 9 might have 

many such zones.  In general, however, the number of zones is practically accepted to be equal to 

the number of thermostats and thus the number of temperatures that can be directly controlled.  

This is clearly a limited approach, and thus a true limitation of the effective use of physical-based 

models.   

In the same vein, electrical circuit analogues can be used to develop thermal 

models. Figure 10 shows one candidate design for a small residence [11]. Using the R-C 

electrical circuit, a set of differential equation can be written and solved. This approach, 



   20 
 

which is physics-based has similar problems, i.e. one must carefully measure and 

determine each of the relevant model parameters.   

  

 

Figure 10: R-C equivalent model for a small residence.   

2.1.2 Hybrid Modeling Approaches 

As the name itself defines the methodology to a certain extent, it is the 

amalgamation of physics and some measured data relationship. To elaborate further some 

background research has been done to bring forth the techniques that have been known so 

far.  The most typical approaches use data to develop transfer functions.  These 

approaches relate the output of a linear system to a time series of current inputs and 

outputs to past inputs and outputs. It saves significant computation time over other 

schemes. Under this category there are numerous approaches such as Conduction 

Transfer Function (CTF) [12] and Comprehensive Room Transfer Function (CRTF) [13].  

The Comprehensive Room Transfer Function (CRTF) proposed by J. Seem [14] 

and further refined by P. Armstrong [13] uses a function    
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       (     )      (     )      (     )                                     (4) 

Equation             (     )      (     )      (     )                                     (5) 

relates   , which is the net heat input (or extraction) to a zone temperature and its past 

values. Here    is considered to be the output of the system, and the subscripts   refer to 

zonal parameters and the subscripts   refer to wall parameters.  The vectors   and   

represent model parameters corresponding to either the walls or the various zones, 

respectively.    is the back-shift operator and is defined as  

For zero lag term            (   )  ∑   
 
    (   )                                                      (6) 

And for general form        (   )  ∑   
 
    (   )                                                    (7) 

 The inverse CRTF or iCRTF is defined as  

           (     )      (     )      (     )                           (10) 

This equation treats zone temperature as an output in order to estimate the system 

parameters. It has been shown that parameter estimation through iCRTF is challenging 

but feasible [13]. 

Another modeling approach is the response factor method, which relates the 

output of a linear system to a time series of current and past inputs. To cite an example of 

thermal response factor formulation, calculation of response factor for a wall is 

              

             

Where     and     are the time-series for the influx in to surface A and out of surface B, 

respectively.    and     are the time-series for the temperatures at surfaces A and B 

respectively. X, Y are the time-series for the flux at surfaces A, B respectively due to a 

unit time series of temperatures at surface A.  Similarly, Y and Z are the time-series for 
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the flux at surfaces A, B respectively due to a unit time series of temperatures at surface 

B. The same method has been extended to develop a thermal model for room called 

Room Thermal Response Factor [15].  

There are many other works available in this area, almost all of which focus on 

large commercial buildings which are operating in stead-state conditions. Some of them 

start from general first order equation or equivalent thermal parameters equations and use 

regressive methods to estimate the parameters [16],[17],[18],[19],[20],[21].  All of the 

approaches considered here require significant data collection (i.e. wall temperatures, 

zone temperatures, etc.).  Given that the focus of this thesis was placed on low-cost 

modeling for homes and small buildings, a simpler method was sought.   

2.2 Energy Usage Forecasting 

The present work revolves around the idea of using energy smartly. One way to 

develop a model could be to base it on prior data.  A recent detailed study by the World 

Bank Development Research Group [22], [23] elaborates on such approaches. Reference 

[23]   has a very thorough analysis of such demand-forecasting methods.  Given the 

emphasis on low-cost approaches, this method was considered.   

Generally, previous data can be used in one of three ways.  The first involves 

time-series models of aggregate billing data.  In this approach forecasting is based on 

known past events and patterns. This is very easy in implementation. As this is a bulk 

approach, it is very difficult to explain or arrest any kind of source of error.  One way to 

refine such a model is to obtain detailed information about individual loads (i.e. 

appliances, etc).  This method is known as end-used modeling and it is based on 

historical demand records for different appliances. This approach requires lot of 
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information to process, and it becomes exhaustive to implement. A third approach is to 

use econometric models, which determines energy demand by considering the influence 

of population, employment, income, weather etc. This is the most complex form of 

energy forecasting. It takes into account the demography and geography. It needs very 

high level of survey or study to develop a model.  

The aforementioned forecasting models have potential for use in modeling the 

performance of thermal comfort systems, but they are very difficult to implement and 

would require numerous field-collection efforts over time to determine model updates.  

Such aggregate approaches would not be feasible in practice.   

2.3 Summary 

This chapter reviewed some relevant background on thermal-energy modeling.  

What is important to note is that the models presented here, while effective for their given 

purpose, are not useful for the purposes of this work.  The goal is to determine an 

effective, adaptive model for small buildings.  The models presented in Section 2.1 are 

effective for modeling, but they are either difficult to implement or require significant 

data.  By comparison, the models presented in Section 2.2 require significant survey data 

and do not necessarily provide any indication about the source of model error.  Chapter 3 

now begins to look at approaches that can adaptively and easily model individual homes.     



 

 

 

 

 

CHAPTER 3: RESIDENTIAL ENERGY SYSTEM IDENTIFICATION 

 

 

“Essentially, all models are wrong, but some are useful" by George E. P. Box.  

The simplest definition of a model would be it is a mathematical relationship 

between inputs and outputs which represents physical behavior of the system and can 

replace the real physical system for behavioral analysis. Models are broadly classified as 

Linear/Nonlinear and Discrete/Continuous. The focus of this research is towards 

residential building energy systems and therefore the models will be dealt with in that 

perspective only. The assumption has been made that mathematical model which 

represents a residential energy system is a Linear Time Invariant System. This kind of 

model doesn’t change over time i.e. same output can be produced by a given input 

irrespective of time. As discussed before, Armstrong [13] and Seem [14] have presented 

discretized state space model of a thermal model of a building energy system. For system 

identification purpose which is typically a reverse method, i.e. to find out the system 

parameters, various methods have been explored.  

Every method has its own merit. Here it is being realized that a method should 

require little or ideally no human interactions during its operation and use. At the same 

time, it should be adaptive so that it could match up with actual physical system if it 

undergoes through changing behavior. In practice, it is extremely difficult to represent a 

system by a model. The model cannot capture the dynamics if the real system deviates in 

behavior due to changes in parameters. To accommodate the changing parameters of the 
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system, model continuously monitors its performance. Therefore, measurement based or 

data driven model seems to be the path to pursue. Also for the sake of clarity, it is worth 

mentioning here that model based approach has been preferred over other methods such 

as genetic algorithm or rule based approaches. This particular approach has wide 

applications e.g. in Control design, Forecasting, Fault detections.  

3.1 Model Identification 

Model identification is the process of investigation to represent a physical system 

through mathematical formulations using experimental data. The problem formulation for 

identification is also sometimes referred as inverse problem. This technique is widely 

used in automotive, aerospace, industrial process control. There are three established 

methods [27] to represent a physical model. 

3.1.1 White Box Approaches 

Laws of physics are used to build a model that represents the physical system. 

Here maximum time is devoted to build up the model. The typical example can be given 

of an aircraft flight model.   

3.1.2 Gray Box Approaches 

Empirical relations are used to represent the system. This is a balance approach 

where optimum time goes in building up and perfecting the model.  

3.1.3 Black Box Approaches 

This is purely a measurement data based model and also referred as data driven 

approach. This approach takes the least time in building up model. The technique is 

preferred over other methods especially when it is extremely difficult or complex to come 
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out with a formulation by well-established principles. In financial institutions, this is the 

most favored method for stock price forecast, investment return estimation etc.  

Figure 11 shows a typical process of model identification where measured output 

   of plant is compared to the model output   ̂ with the same input U. The error in the 

observation helps in getting those system parameters to build up the model. For the 

model identification measured field data were divided into 2 different groups, one has 

been used for parameters estimation and the other for model validation.   

 

 

Figure 11: Block diagram for System Identification process. 

In the model identification process, it is very important what kind of data is being 

fed for processing. Generally raw data, collected through sensors without any processing, 

can have noise. At the same time, sampling rate does create unwanted pattern which is 

not suitable for identification process. Therefore, preprocessing of the data is unavoidable 

and so smoothing has been considered to make data usable for the identification process.    
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3.2 Smoothing 

In any measurement process, it is quite likely that data would be exposed to noise. 

Usage of the concerned model and noise level in it throw questions to what degree 

removal of noise is needed. For example, if measurement of temperature in an Intensive 

Care Unit (ICU) of a hospital is compared to temperature measurement in a blast furnace 

of Iron melt, precise measurement in the former is very much expected in comparison to 

later. Therefore, one has to take into account the application of the model too. 

Elimination of noise can cost some important information in the signal and so it is 

extremely important to understand how to control it without affecting the real 

information. Smoothing is used to suppress undesired data. This works as a low pass 

filter which eliminates noise present in the measured data.  

There are various popular techniques of smoothing such as moving average, 

exponential moving average, local regression and Savitzky-Golay method.  Before going 

further, it is worth to revisit concepts of Filtering, Smoothing and Prediction as these 

tools will be used later. The present work involves all three concepts at different levels 

and has been addressed adequately in different sections.  

Fundamentals of Prediction, Filtering and Smoothing were explored by Norbert 

Wiener, Rudolf E. Kalman and Rchard S. Bucy. These three techniques are estimation 

problems. Optimal estimator processes measurements and minimizes error to estimate 

states using knowledge of the system and initial states. The concepts of prediction, 

filtering and smoothing [28] are closely related. This can be explained through an 

example of a moving vehicle. Filtering process refers to the vehicle position at a 

particular instant, say   . In prediction, the position of vehicle is computed at    knowing 
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position measurements up to     . If all measurements and post processing are done up 

to     , the estimation of where the vehicle was at time   , is called smoothing. Figure 12 

describes the concept aptly. The concepts behind Prediction, Filtering and Smoothing 

have been explained in [29]. 

 

 

Figure 12: Concept diagram of Prediction, Filtering and Smoothing. 

Coming back to the discussion of smoothing, it is extremely important to prepare 

data set for model identification out of collected data. There are various known methods 

and therefore choice should be judicious as each of the methods has its own merits and 

limitations.  

Among all available smoothing techniques, moving average method is the most 

simple to use.  

(a) Simple Moving average technique 

It takes average of all the numbers in a window centered about a point recursively 

and assign the value to the center point [30], [31]. Although it does remove noise 

effectively but at the same time introduces some distortions. It is unable to maintain 
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peaks and valleys. In many applications this is undesirable because data characteristics 

have to be maintained. Apart from this problem, moving average method has lag also. 

This formulation is for symmetric window around a data point.  

   ∑  (   )

(   )

 

   
(   )

 

 ⁄                                                         (11)          

Symmetric window formulation is used in engineering mostly. One important point to 

notice the performance of this technique is compromised at the boundary. 

(b) Exponential moving average technique 

To overcome the inability in maintaining the data characteristics, exponential 

moving average method can be used which solves the problem to a certain degree. Lag is 

still there. This is the modification on simple moving average method. Exponential 

weights are applied in the window to find out the smoothen data and eliminate noise. The 

weights decrease exponentially before or after the central data point inside a given 

window [30], [31]. This is a very popular and widely used method in the class of moving 

average smoothing.   

         (   )                                                     (12) 

Where    is the smooth and    measured raw data.  A series can be generated by doing 

backward substitution in the above equation.   is the time constant of the exponential 

trend or is the weight. 

(c) Local regression  

To overcome all these inherent problems, local regression method has been used 

for quite some time. Cleveland was the one who invented this local regression analysis 

[32], [33], [34], [35]. This approach does curve fitting locally i.e. in a given window of 

the selected order. This keeps the shape of data intact and also doesn’t introduce lag. 
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Savitzky-Golay is based on least square curve fitting of any order in a given window. 

Generally higher order curve fitting allows higher order of smoothing without attenuating 

the data [36], [37], [38], [39], [40], [41].  

Savitzky-Golay Smoothing 

   ∑       
  
     

                                                       (13) 

To fit a polynomial           
          Least square method is applied 

to find the coefficients a’s. 

Here   (   )      

Here to find    instead of FIR (Finite Impulse Response) is chosen [42].  

   {(   )      }  

Local regression technique has been pursued and realized that it has tremendous 

merits over others. Local regression fits the data locally i.e. in the neighborhood. It adapts 

well at boundaries and in the high curvature zones. Smoothing has been applied on all the 

collected data, i.e. ambient temperature, solar irradiance and zone temperature. Initially 

moving average method was considered but discarded later. It does do smoothing but 

fails to retain the shape of signal. There is lag between the observed and smoothen signal 

but can be nullified by shifting the data set back in time series. Local regression method 

does not have these faults and do smoothing without any issue. Figure 13 (a), (b), (c) and 

(d) show Savitzky-Golay smoothing of zone, ambient and solar measurement data.    

To explain and show the strength of Savitzky-Golay method, Figure 13 (b) has 

been produced from Figure 13 (a).  
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(a) 

 

 

(b) 

 

See Figure 13 (b) 
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(c) 

 

 

(d) 

Figure 13: Smoothed data using Savitzky-Golay compared to direct measurement of (a) 

Zone temperature, (b) A snapshot of zone temperature, (c) Ambient temperature and (d) 

Solar Irradiance. 
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To implement this smoothing technique, MATLAB command ‘sgolay’ has been 

used. The order of polynomial is chosen as 4 which capture the individual cyclical 

dynamics of zone temperature in compressor on-off schedule. 

3.3 Prediction Error Method 

As discussed before, there are various ways to represent a physical system, 

analytical and empirical. Formulation can be in a form of state space or time series, or 

response surface [43]. The key question remains how to identify system parameters. This 

section will focus solely on the proposed parameter identification or estimation method 

[44] [45][46].  

There are several established methods for parameter estimation. Some of them 

popular methods are Prediction Error Method (PEM) [47][48][49], Output Error Method 

(OEM) [50][51], and Subspace Identification Method (SID) [52][53].  

PEM has been chosen over others because of its known merits. This method can 

deal with any kind of linear and nonlinear problem robustly. It is also used to improve the 

model determined by other techniques.  

The models are trained in the field using sensor data and load operating schedules 

recorded over the course of several days.  During this training period, N sample of each 

of the input and output variables are recorded at a rate T.  At the k-th sampling instant tk, 

these input and output variables are expressed in vector form as    and   , respectively.  

Using the notation presented in [47][20] and [48], the dynamics of the system are 

represented in state-space form as 
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      ( )     ( )    ( )                                                 (14) 

Where    is measurement white noise,  ( )   is process noise. Matrices   ( ), ( ), 

and   ( )  are defined in terms of an initially unknown parameter set  . This vector 

equation is coupled with an observation equation that relates the measurements to the 

state variables, i.e.   

    ( )                                                          (15) 

Where  ( ) consists of another set of initially unknown parameters.   

The challenge during the training phase is to determine the elements of the 

parameter set  .  Estimation is performed using the prediction error method [54].  In this 

approach, the parameters estimates solve the equation   

 ̂          ( )                                                           (16) 

Where the objective function VN (θ) is defined over the entire data set as 

  ( )  ∑   
    

 
                                                       (17) 

The vector    is the set of residuals recorded at time tk. These residuals are defined 

as the difference between the measured outputs at time tk and the predicted outputs at the 

previous time step.  Using the notation from [20], 

       ̂ ( )                                                              (18) 

Where the prediction  ̂ ( ) can be written as  

 ̂ ( )   ( ) [{ ( )   ( ) ( )}  ̂     ( )      ( )    ]                            (19) 

It is obvious that  ̂ ( )  is obtained from all the previous measurements i.e. 

outputs, inputs and states. If the states are not measureable quantities then they are 

estimated.  
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The search for the minimizing argument  ̂ is performed using the damped Gauss-

Newton method [54].      is the initial state which is obtained by PEM. For Gaussian 

disturbances, it coincides with the Maximum Likelihood Estimation (MLE). 

3.4 State Estimation 

State estimation is an integral part of problem formulation. Typically, states are 

estimated when they are not measureable quantities or simply not available for 

measurement due to various other reasons. In general, measurements are costly affairs 

because of sensors and data acquisition, and then also states are estimated.   

In this section two methods of state estimations have been proposed, Kalman 

filtering and PEM based recursive state estimation. 

 Kalman Filtering 

Kalman filter [55], [56] was developed by Rudolf E. Kalman in 1960. It was 

initially investigated for spacecraft application but now days it is gaining its popularity in 

several areas. It has been a matter of interest for both theoreticians and practitioners. 

Currently this tool is widely used in numerous areas such as flight control, 

communication engineering, vehicle navigation, power systems and others. Kalman filter 

estimates the current states from measured data which are corrupted. Therefore, role of 

the filter becomes crucial. Kalman filter is potentially a state estimator which is mainly 

done for two important purposes, supervision and control. In the supervision application, 

states of the process variables are estimated to understand the system dynamics such as 

feed rate in a reactor, flow variations in chemical process plant, position in vehicle 

navigation. On the other hand in controls, states are used to track a trajectory so that 

corrective actions would take place to follow the trajectory or reference signal. It is 



   36 
 

extremely important for Kalman filter implementation that all states are available, i.e. the 

system is observable.  

From the above equation (14) and (15) 

      ( )     ( )    ( )                                                                 (20) 

                           ( )                                                                     (21) 

Here process noise covariance is defined as    {      
 }  

Kalman estimator for a discrete system [57], [58] will be written as 

 ̂         ̂            (      ̂     )                                       (22) 

   is obtained by solving Ricatti equation. 

  (      ̌)  ̌                                                    (23) 

 

 

             Figure 14: Block diagram representation for Kalman Filtering. 

Where,          ̌   (      ) 

And                ̌                    
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  is the steady state error covariance and is defined by 

   {(   ̂)(   ̂) }                                                        (24) 

 ( )                                                         (25) 

       {      
 }                                             (26) 

For simplicity, it has been assumed that process noise is built upon the white 

noise and measurement noise is potentially a white noise.  

Above Kalman filter formulation has been implemented in the present work and 

discussed in the section 3.5. Also recursive initial state estimation based on prediction 

error method has been proposed. The results of both compared and produced for detail 

analysis.  

 Prediction Error Method based recursive state estimation.  

The basic philosophy of this approach appreciates the fact that simulation in long 

time window is affected by measurement and process noise in the system. The errors 

caused by noise creep into the model. Due to this fact, the model observes deviation in 

the behavior compared to the real system. To control this error propagation, one has to 

recursively estimate states in a given interval of time once all the measurement become 

available. This is basically correction in states based on measurements. One sharp 

difference with Kalman filter approach can be drawn out that the time window of 

prediction can be long. In case of Kalman filter approach, the prediction is done just one 

data point ahead in time. 

It goes with the same approach of PEM based parameters estimation. Since all the 

parameters of the systems are known and therefore from equation (17), 
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  ( )  ∑   
    

 
                                                               (27) 

  ( ) is minimized to get      The simulation is run based on the identified system and 

new estimated initial condition.  This process is repeated with a selected operating 

window and renewed initial states. 

3.5 Proposed method for system identification 

So far all the discussions have been devoted towards building up fundamentals to 

formulate the present problem. Here onward, focus would be on developing the model 

and model validation. 

3.5.1 Overview 

To model thermal performance, load information obtained by the NILM is 

combined with data from various environmental sensors.  Figure 15 shows the current 

setup, which includes the NILM, a thermostat, an outdoor temperature sensor, and a solar 

irradiance sensor. These remote sensors and NILM can be enabled to communicate via 

wireless links. The NILM would use all of the data to build a thermal model that relate 

the various inputs (i.e. solar irradiance, indoor heat gains, etc.) to the indoor temperature.  

After building up the model, it can be used for either control system design or energy 

performance and diagnostics.   

The model formulation for control design takes indoor temperature as an output 

whereas for energy performance takes thermal energy.  The underlying methodology, 

however, is similar in both cases.   
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Figure 15: Diagram of a home showing all of the relevant system components.  The 

remote sensors can relay their data to the NILM via wireless links. 

To make a control system or energy performance model cost effective, it is 

important to build a thermal model with little or no human interaction. Physics-based 

models, as mentioned before, are not helpful as they require the user to provide extensive 

information about the properties of furniture, walls, and windows.  Furthermore, these 

methods are not particularly adept at dealing with dynamic effects, such as changes in 

heat transfer caused by wind conditions along the building envelope.  Similarly, grey-box 

models, which use some combination of user-generated parameters and input-output 

correlation modeling, are also undesirable as they still require relatively large amounts of 

user-provided information. Black-box approaches, which rely wholly on mathematical 

input-output relationships, are thus the most attractive option.  Various black-box 

approaches have been proposed for modeling the thermal behavior of large-scale 

commercial facilities 0, [18]. There are several key differences between the operation of 

large and small buildings, however, that render these methods ineffective in homes and 

small commercial facilities.  Most importantly, the HVAC systems in large buildings 

typically operate in steady-state for long periods of time; by comparison, the HVAC 
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equipment in smaller settings operates cyclically, meaning that the thermal variables are 

often in a transient condition.   

A new robust modeling approach was developed to handle the unique thermal 

behavior of homes and small buildings without having to obtain information from users.  

In this setup, the distributed thermal system is modeled as Linear Time Invariant (LTI) 

system with a number of states.  The exact number of these states is determined using 

field data, meaning that the number can be automatically modified as needed.   The input 

and output variables used by the model differ depending upon its ultimate application, i.e. 

whether it is to be used energy performance and diagnostics or controls.  The remainder 

of this chapter thus proceeds in a generalized manner, describing only generic inputs and 

outputs.  The specific formulations of the model are analyzed in detail in the following 

section.   

In practice, the model order is unknown and the training process is repeated on 

the same data set with a higher order formulation until the model predictions suitably 

match the measurements.  Once the training process is complete, the parameter estimates 

are used to predict thermal behavior.   

3.5.2 Experimental Test Setup and Procedure 

In the previous section, overview of set up and process plan were given. Now, 

attention will be given to detailed procedure and experiments. Figure 15 has described the 

sensors and data loggers placements in a residential house. To develop a thermal model 

based on measurements, experimental site has been identified in Kings Mountain, NC. 

This is a trailer house. The detailed description of above mentioned house has been given 

in Appendix A. 
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Sensors installations have been described in Table 1. Detailed specifications have 

been given in Appendix B, Table 9 and Figure 50. 

 The specifications have been taken from [59]. For thermal model identification of 

house different temperature sensors have been identified and shown above.  Here, 

temperature sensors inside the house will take reading of the zone. To tap the outside 

condition, two sensors are there for temperature and solar radiation reading. Sampling 

rate for temperature sensors have been set as 1 data per minute and unit is °F.  Solar 

irradiance is recorded through same sampling rate. NILM records current data which 

gives the on-off schedule for compressor. The present scheme is based on sampling rate 

of 1 data per minute. 

Table 1: Sensor and Data loggers placement for thermal model identification of a 

residential house 
 

Sl no. Sensors Numbers Location Purpose 

1 Temp. 1 Inside the House House temp. observation 

2 Temp. 1 Outside the House Ambient temp. measurement 

3 Solar 1 Outside the House Solar irradiance measurement 

4 NILM 1 Inside the House On-Off cycle data logging 

 

Having developed the plan for thermal model formulations, heat input/extraction 

needs to be found out. Heat input/extraction is superimposed on NILM on-off cycle to get 

the desired input signal in time. This study was done during summer and so cooling 

capacity has been taken into account. Here is the little introduction of cooling capacity 

and later experiments will be discussed to investigate that. 
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Cooling capacity  

It is one of the most important and challenging variable in the modeling of energy 

systems. In general, cooling capacity value is written in the product specification supplied 

by manufacturer. There are already several established methods available and will be 

developing too in future to find it. Cooling capacity is defined as the rate at which heat is 

removed from a space. Generally, cooling capacities is expressed British Thermal Units 

(BTUs) per hour, or in tons. A ton of cooling capacity is equal to 12,000 BTUs per hour. 

Historically, tonnage of refrigeration has been defined as amount of heat extraction 

required to freeze one ton water in 24 hrs.  

In general,                   (     )      ̇      (       )                        (28) 

Where,                     ̇                                          (29) 

                          (       )        (       )            (30) 

and µ is the air density(      ), A cross-section through air flows (   ) , V air 

velocity (     ),    sp. heat capacitance (            ),     temperature before 

evaporator (ºC) and      temperature after evaporator (ºC).  

Cooling capacity in BTU can be expressed as 

                 (   )                                                                    (31) 

Where, CFM is velocity of airflow in cubic feet per minute. “4.5” comes 

from      (                      )     .  

Enthalpy tables or psychometric chart is used for enthalpy determination [60]. To 

find out cooling capacity of an existing system, there are potentially two ways to do it i.e. 

using analytical calculation and by measurements. This section has described the methods 
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in detail. Analytical method needs more information than available and therefore the 

present work has preferred the measurement method. This is more relevant and reliable.    

Experimental procedures 

1. Determine cooling capacity 

a. Based on analytical calculation 

b. Based on measurement 

2. Placement of temperature sensors for zone and ambient, solar sensors for 

irradiance measurement. 

3. NILM is deployed to find compressor ON-OFF schedule. 

4. Thermal model identification. 

As discussed before, cooling capacity is determined mainly in two ways i.e. 

through measurement or analytical approach. Both the methods have been discussed 

below.  

a. Based on analytical calculation 

Analytical approach goes with the parameters and detailed specification of 

compressor supplied by the manufacturer. 

Refrigerant mass flow rate calculation  

i) Compressor parameters:    ( ) ,       ( ) ,     ( ) , 

                   ( ) 

ii) Find swept  volume          (    )        

iii) Find clearance volume     

iv) Calculate    (     )        

v) Volumetric Efficiency calculation 
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 From the performance chart get   (  ) and   (  ) 

 Take ratio (Compression ratio)         

 Get the density for the refrigerant in vapor phase at    (or at 

superheat). 

 Calculate the mass flow rate,       ̇
              

 Find         
   

     
 {      }, where p is a polytropic exponent. 

vi) Find      ̇             ̇
    

Sometimes, actual flow rate is given in the performance chart too. It should 

always be verified first before going into details of analytical calculation. 

Cooling Capacity Calculation 

Refrigerant mass flow rate is known from previous shown calculation. It is used 

in the next step to yield cooling capacity [61]. 

i) Change in enthalpy, ∆h is obtained from psychometric chart. Here sub cooled 

and superheated should be taken into account. 

ii) Cooling capacity  ̇   ̇         

Here  ̇    can be obtained directly through metering device [62], [63] and [64].  

b. Based on measurements 

I. ARI coefficient based on manufacturer’s compressor map. 

II. Based on mean temperature and effective conductance. [62] 

III. Temperature across evaporator and air velocity measurement. 

Cooling capacity determination through measurements has been explained in 

detail. This method is always preferred over getting information from manufacturers and 
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doe analytical calculations. The reason is that analytical equations are over simplified and 

do not represent exactly the system. Therefore later is always given due considerations. 

I. ARI coefficient based on manufacturer’s compressor map 

To explain it better it is worth to understand compressor performance map first. 

Compressor map is provided by a manufacturer. Performance map shows mass flow rate, 

refrigeration capacity, the input power, input current as a function of evaporating and 

condensing temperatures.  

Using this data, AIR recommends developed a curve fit to get 10 coefficients 

[65], [66]. The Air-Conditioning and Refrigeration Institute’s (ARI) standard provides a 

method on how to present compressor performance data for all positive displacement 

refrigerant compressors and compressor units. This method uses compressor performance 

data to curve fit coefficients of polynomial equations. The equations are of the form 

           (32) 

Where X can represent refrigeration capacity, power input, mass flow rate or motor 

current.  

        – saturated evaporating temperature,  

          – saturated condensing temperature.  

C1 to C10 - curve fit parameters.  

To determine the 10 coefficients in each equation at least 10 measurements of the 

entity represented by X have to be made. This is based purely on mathematical ground 

however widely accepted as standard for refrigeration. All the coefficients have been 
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shown in Table no. 6. Each variable of interest has its own set of coefficients i.e. cooling 

capacity, electrical power, current and refrigerant mass flow rate. 

A typical manufacturer’s data sheet for compressors has been added. These have 

been taken for Bristol and Copeland compressor [67], [68]. In Appendix B, Figure 46 and 

Figure 47 represent the compressor performance map. 

  As discussed before, this formulation can be used to find cooling capacity if      

and       are known. Temperature Sensors are employed to measure these values. They 

can also be found out by having Saturation pressures of condenser and evaporator values 

and looking in p-h diagram.  

II. Based on mean temperature and effective conductance 

This method comes out from a bulk approach towards air system and evaporator 

interaction and heat transfer between them [69]. Popular methods are Log Mean 

Temperature Difference (LMTD) and Number of Transfer Units (NTU). 

III. Temperature across evaporator and air velocity measurement. 

Test plan and placement of sensors: HOBO Sensors have been used for all the 

measurement and data acquisition [59]. 

Air velocity measurement: As per ASHRAE standard air flow measurement in a 

duct should be at least 25point for a rectangular shape [70]. The duct in the study has 

rectangular in shape. Hot wire anemometer is being used for velocity measurement. In 

Appendix B, Figure 1 shows the duct and recommended measurement points. Also, in 

Appendix B, Table 7 and Table 8 are showing air velocity measurements and cooling 

capacity calculations. 
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3.5.3 Stability, Controllability and Observability 

Once the model is identified, it becomes extremely crucial to analyze the 

performance of the model of system. There are three most important tests laid out i.e. 

Stability, Controllability and Observability. These concepts have been dealt extensively 

in [71], [72], [73] and [74].These are vital for any system as they set standard for 

selection.      

As discussed before, any LTI discrete system in state space representation will be  

 (   )    ( )    ( )                                                        (33) 

       ( )    ( )                                                                                  (34) 

Where X, U and Y are states, input and output respectively. A, B, and C are plant 

matrices or simply model parameters. 

Where n=number of states. In the present case number of states is 4.  

(a) Stability  

Ideally, a system is called stable when the outputs do not go to infinity 

irrespective of the inputs. 

To understand the stability, z-transform of the plant is taken and by doing 

mathematical rearrangement, (33) and (34) can be written as that the transfer function 

  ( )   (    )     
   (    )

   (    )
                                                       (35) 

Here roots of    (    ) or eigenvalues of A decides the stability of the system. 

This is equated to zero. It is also called characteristics equation. If absolute value of z i.e. 

| | lie inside a unit circle, system is called stable else unstable.  

Hence eigenvalues of characteristics equation is defined as follows. In the 

formulation, I is the identity matrix. 
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   |    |                                                                        (36) 

The proposed model has all the roots are inside the unit circle and system is stable. 

 

Figure 16: Unit circle to test the stability of a system. 

(b) Controllability 

A state of system is controllable if a control input can transfer it from initial state 

 ( ) to  (  )     in finite time Ts. The entire system is controllable if all the states X 

are controllable. It has been shown in Figure 17.  

 

Figure 17: System dynamics plot to show controllability. 
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For a LTI discrete system, states are written as below, 

 ( )     ( )  ∑         ( )   
                                                    (37) 

Expanding equation (36) would yield, 

 ( )     ( )        ( )        ( )        ( )      (   )         (38) 

Equation (37) can be re-written as equation (38) by shifting the first term on the left hand 

side.  The whole purpose of this rearrangement is to make sure that only input terms 

associated with inputs only kept on one side. 

 ( )     ( )        ( )        ( )        ( )      (   )         (39) 

Right hand terms of equation (38) can be further re-arranged to represent in a row and 

column vectors. 

             ( )     ( )                  

[
 
 
 
 
 
 
 (   )
 (   )
 (   )

 
 
 

 ( ) ]
 
 
 
 
 
 

                     (40) 

Now to get Controllability matrix one has to make no. of samples k equal to no. of 

states n in equation (39), i.e. replacing k with n. 

                                                                                                         (41) 

α should be full of rank for a system to be controllable. As discussed before, by choosing 

input U, a controllable system can be transferred from X (0) to X. 

The proposed model of 4-states has rank 4 and therefore the system is entirely 

controllable. 
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(c) Observability  

A system is called observable if initial states X (0) of all the states can be 

determined by knowing inputs and output. Any change in states affect output if the 

system is observable. 

From above, inserting equation (36) in (33) yields 

 ( )    ( )      ( )  ∑          ( )
     
                                      (42) 

Now for k=0, 1, 2… n-1 and writing equation (42) in matrix form 

[
 
 
 
 
 

 ( )
 ( )
 ( )

 
 

 (   )]
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 ( )  

[
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 (   )
 (   )
 (   )

 
 

 ( ) ]
 
 
 
 
 

             (43) 

 Here Observability matrix is written from equation (43)  

                                            

{
 
 
 

 
 
 

 
  
   

   

 
 
 

     }
 
 
 

 
 
 

                                                                       (44) 

For system to be observable, β should be full of rank. The present system has full 

rank of 4 and therefore it is observable. 

3.5.4 Control Oriented Model Identification and Validation 

There is growing motivation to be able to better control HVAC systems in homes 

and small buildings. For instance, utilities are exploring the concept of shedding 

residential HVAC load as an effective means for reducing peak loads and dealing with 

the intermittency of renewable resources.  A smart meter is able to predict internal zone 
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temperatures could be used to improve this activity because it could determine how long 

it would take for the zone temperature to reach a certain preset limit.  Furthermore, zone 

temperature predictions could be coupled with variable-capacity systems.  In future 

homes with appropriate thermal mass and variable-speed motors, this could lead to 

significant energy savings.   

         Figure 18 shows the control-oriented model formulation. The model output 

in this case is the internal zone temperature, TZ, which is the variable one would likely 

seek to control.  Once again, a fourth-order model is used, and training occurs over a 

three-day period.   

Figure 19 shows representative training data, and Figure 20 (a)-(g) show measured and 

simulated zone temperatures recorded over a single day during the validation period.  

These results are there for validation and suggest that the thermal modeling procedure 

could be used to form the basis of a robust optimal control system in homes. Here the 

measurement data have been pre-processed using smoothing technique which has been 

discussed already.  

Figure 21 shows the system identification based on just raw data.  

 

Figure 18: Control-oriented model formulation including random errors e. 
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It can be concluded that for training purposes data should be pre-processed to get 

rid of noise. Although, enough care should be taken as it might suppress some important 

signature. Matlab file has been added in Appendix C. The proposed state space equation 

of house would be  

      ( )    ( )[ ̇         ]   ( )                                                   (45) 

 

       ( )                                                                                  (46) 

 

 

Figure 19: Measured (and smoothed) and simulated data recorded during the training 

period. 

Based on the discussion before, poles of the identified system are  

z =   0.9606 + 0.24151*j, 0.9606 - 0.2415*j, 0.9998, 0.9519 

Since all the points are inside unit circle, it shows a stable system. Further, to 

check controllability, observability  - matrix and  - matrix respectively above 

mentioned formulations have been followed. 

 - matrix has rank 4 and therefore the system is fully controllable. 
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 - matrix has rank 4 and therefore the system is fully observable. 

To validate the identified model, consecutive days have been selected. To control 

the error propagation and disturbance, simulation is run for each full day independently. 

Also, simulation start and end time has been selected the same for consistency. 

The model clearly tracks all the variations in the zone temperature. It does have 

tendency to deviate from actual as time progresses. Later in this work, two methods have 

been proposed to track the zone temperature more precisely, i.e. recursive state 

estimation based on Prediction Error method and Kalman filter [75].  

Control model validation results have been shown in Figure 20. After the model 

identification through training, 7 consecutive days have been selected and the zone 

temperature is calculated using the identified model. Later, the calculated zone 

temperature is compared with the measured one. Figure 20 (a) to (g) clearly shows the 

capability of the identified model. Several months of data were recorded and compared 

with the calculated data which are obtained from the identified mode. The author can be 

contacted in this regard. 
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Control model validation 

 

 

(a) 

 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

 

(f) 
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(g)  

Figure 20: (a) to (g) Control Oriented Model Validation. 

System identification based on purely raw (measured data without smoothing) 

data, it clearly shows how important role smoothing plays in the data preprocessing.  

 

Figure 21: Measured (raw data, without Smoothing) and simulated data recorded 

during the training period. 
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As discussed previously, to take into account variations in the system two 

methods have been proposed.  

1. Temperature prediction based on recursive state estimation using PEM.  

This method recursively does initial state estimation based on PEM.  15 min. of 

time window has been selected and shown the predicted data compared to measured data 

Figure 22 (a) to (g). It does produce sound scheme to track the zone temperature.  

 

(a) 
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(b) 

 

 

(c) 
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(d) 

 

 

(e) 
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(f) 

 

 

 

(g) 

Figure 22: (a) to (g) Using recursive state estimation using PEM approach for Control 

Model Validation. 
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2. Kalman filter implementation for temperature prediction. 

Kalman filter [75] has been discussed in the previous section in details. This has 

been implemented to track zone temperature accurately and it also produces interesting 

results. There is although a legitimate question about the use of this model in the 

proposed controls system. It does one step ahead prediction. The present research 

focusses on development of control system also. The model should have long time 

predictions. In that case it might seem little difficult to implement. However, this can be 

used independently, with any other control system or for just a solution to tracking 

problem. 

Here are the results Figure 23 (a) – (g) using Kalman state estimation. 

 

 
(a) 
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(b) 

 
(c) 
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(d) 

 

 

(e) 
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(f) 

 

 

(g) 

Figure 23: (a) to (g) Using Prediction based on Kalman Filter for Control Oriented Model 

Validation. 
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It can be concluded that model capability is enhanced by using previously 

available measurement data. In case of implementation in real system, all the sensors 

would be data loggers. The data will be taken to estimate states to track the system 

behavior.



 

 

 

 

 

CHAPTER 4: DEVELOPMENT OF CONTROL SYSTEMS 

 

 

Ideal objective of a control system should be to meet the thermal comfort 

requirements at the expense of optimum amount of energy. So far efforts have been there 

to develop a thermal model of residential house. Having obtained one, it is worth to 

proceed towards building up controller. There are many well developed control strategies 

present for HVAC of building systems such as On-Off, PID and rule based. Building 

Energy Management Systems (BEMS) [76], [77] is used to control and better energy 

utilization in big buildings. [78] Demonstrates the uses of Matlab/Simulink to design 

building energy systems through S-function. There are various ways to implement the 

controllers, Variable Air valve system (VAV) and Variable capacity control (VCC). 

VAV is takes into account the efficient utilization inter zonal air distribution in which fan 

plays an important role [79].  Most of the existing systems have fixed speed compressor 

which is highly inefficient at part load conditions. Variable capacity control matches with 

part load, reduces on-off cycling losses to mechanical components in HVAC. It has 

already been proven that variable capacity control is an efficient way to maintain the 

comfort level [80]. Variable capacity control is realized through selecting the variable 

speed compressor. Mathematical relationship between number of variables such as, 

cooling capacity, input power, mass flow rate etc. to the rpm of compressor have been 

shown [81]. This can be taken as basis to convert thermal energy requirement to speed of 

compressor as an input.  
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Interestingly, focus towards residential houses has been the least. On-Off 

controller is the most popular and widely used in houses. It does address the need of 

thermal comfort but does not do anything as far as optimum amount of energy usage is 

concerned. Coming back straight to address the objective of a controller in residential 

houses, first of all it should fulfill the need of thermal comfort. This is the foremost 

important duty of any control system.  Moving further, no existing controller decides the 

action based on weather forecast information which is available for any location in the 

country. New Time of Use (TOU) policy which is “time of use” will be reality in the near 

future. User should be able to deal with all the possible options in a dynamic fashion to 

keep the electric bill low. On top of that advent of smart grid technology, Utility and 

household will be communicating to each other.  Our present system is not prepared to 

handle all the dynamics. Definitely, there is strong need for a new kind of control strategy 

to deal with all kind of situations.  

Taking into account these challenges, present work proposes Model Predictive 

Control strategy in residential energy systems. This is a very popular and effective 

controller in process industry. The section 3.1 will be introducing the concepts behind 

existing systems and later proposed controller strategy will be discussed in detail with 

validation results. 

4.1 Residential Temperature Control 

As of today, the most popular controller in residential houses is on-off (bang-bang 

or hysteretic) control. It is quite simple in it its operation.  A typical HVAC system has 

already been discussed.  On-off control makes the compressor run in two states, no 

rotation or running at a fixed speed. The controller will switch whenever the measured 
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temperature crosses the set temperature. Figure 24 shows the operation of on-off 

controller. HVAC tries to follow the set value (SV). PV (process value) is improved once 

PI or PID controller is used. 

 

 

Figure 24: Showing temperature dynamics under on-off control. 

For heating and cooling, equations (47) and (48) represent basic philosophy behind on-

off control. 

For heating 

      
        

 
                                               (47) 

Similarly, for cooling, 

      
        

 
                                               (48) 

Figure 25 shows various components in detail. Generally dead band are given to 

avoid frequently on-off cycles which are detrimental to the life of mechanical 



   70 
 

components. HTS and CTS are two temperature settings for heating and cooling 

respectively. Further, SV (set value) has been defined in equation (48) 

 

 

Figure 25: Pictorial representation of an on-off control strategy. 

The Dead Band is the range around the PV in which the heating / cooling outputs remain 

off. Here dead band can be defined as 

     
        

 
                                                                    (3) 

Present work is going to focus on the development of a controller which can, 

handle model variations, deal with constraints on both inputs and outputs, take into 

account weather forecast information, handle multiple objectives, optimize energy 

consumption and suitable for on-line usage.  

Model Predictive Controller has been selected for the residential HVAC control. 

It deals with problems especially in process industry. Effort has been made through the 

proposed work to bring this technology down from process industry to residential energy 

systems. Model Predictive Control (MPC) is a set of algorithms based on the models. It is 

known in the industry for its capability to handle systems and processes with not so 
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perfect models. Prediction model is the starting point for MPC. Generally, a prediction 

model can be defined as a model which can produce future outputs based on collected 

information of the past and anticipated future inputs. For example, a set of differential 

equations, state space equation and transfer function can be prediction models. MPC does 

not have a strict requirement on the model structure, which is different from the 

traditional control techniques and therefore MPC can handle any format of model. It is a 

general practice that the most convenient modeling methods are selected based on the 

information available to develop MPC.  

Model Predictive control approach: - This technique can handle several 

constraints over inputs and outputs both. It is formulated as QP (quadratic Programming) 

problems. As far as minimization of performance function J alone is concerned, it’s 

similar to LQG/LQR problem. A typical formulation for MPC has been given below. 

General formulation, 

       ∑ (     )
  (     )    

        
     

 
                     (50) 

                                                                            (51) 

                                                                            (52) 

                                                                          (53) 

Where, r= reference input,  

u=input, y=output, ∆u= change in u.  

Q, R, S are weights 

However, there are other parallel developments too. In [82], authors have 

explored to make a control law for a discrete time invariant system which minimizes 

performance function for finite horizon (Model Predictive Control) and infinite horizon 
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(Linear Quadratic Regulator). Although, it needs continuous effort in the future too. In 

the same vein, [83] summarizes various multi-objective optimization and search methods.      

4.2 Model Predictive Control 

4.2.1 Introduction 

 

Model predictive control (MPC) is a process control technology that is being 

increasingly popular and being put in practice across several industries [84], [85], [86]. 

During late seventies, the concept was initiated at Shell Oil. As of date it is the most 

applied advanced control technique, around 67% in the process industries i.e. 4600 

installations worldwide. There are several expert players in this technology, Aspen 

Technology, Honeywell, Invensys, ABB, Adersa etc. 

Over the last decades Model Predictive Control (MPC) has evolved an extremely 

important tool in industry to solve complex dynamic problems [87]. MPC popularity can 

be attributed to its easy way of integrating constraints, handling multiple process 

variables, and dealing with uncertainties. As of now MPC has been present in process 

industry but recently, it is gaining momentum and has also started to be used in traffic 

control [88]. MPC has been demonstrated to control different traffic measures at the same 

time: ramp metering and variable speed limits, route guidance and ramp metering, and 

ramp metering and main-stream metering. MPC can also be used in implementation of 

controlling mixed urban and freeway traffic, where the objective is to make traffic in 

urban areas and on freeways smoothly interact with each other in such a way that total 

time spent in the network is minimized.  

As discussed before, MPC uses a model of the system to be controlled, a 

performance function to characterize the desired behavior, constrains to limit the 



   73 
 

variables of the system. MPC calculates required actions over a finite horizon that which 

will take the system to the desired state. MPC uses receding horizon optimization which 

is different from other widely used controller. The concept behind receding horizon 

optimization will be discussed in the following section. It takes into account the model-

plant mismatch, time-varying behavior and disturbances. Therefore, it is always based on 

real scenarios, and the control moves are optimal. For a real complicated industrial 

process, the uncertainties incurred by model-plant mismatch, time-varying behavior and 

disturbances are unavoidable and, hence, the receding finite-horizon optimization can be 

more powerful than the global one-time optimization.  

4.2.2 Formulation 

Before going further deep in understanding MPC technology and implementation 

of it, few terminologies need be addressed first. Some of the important terms are 

explained below. These terms are shown in Figure 27.  

Rolling or Receding horizon: - The problem of robustness is due to the fact that 

models are inherently inaccurate. A model is always an approximation of the system 

under consideration. Predictions about the behavior of the system become more and more 

inaccurate when considered further in the future. MPC techniques use a rolling horizon to 

increase robustness. The rolling horizon principle consists of synchronizing the state of 

the model with the state of the true system at every decision step. At every decision step 

the MPC agent observes the state of the true system updates its model of the system and 

tries to find the best sequence of actions given the updated model. Typically the agent 

only executes the first action of this sequence. It then observes the system’s state again 
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and finds a new sequence of actions. Thus, the rolling horizon principle implements as a 

sequence of optimization problems for each decision step. 

Finite Horizon: - Concept of Finite horizon opposed to global or infinite horizon 

is used for optimization of performance function. Longer the horizon better is the result. 

This is much faster in response and cheap in computational cost compared to infinite 

horizon.  Although judicious decision on selection of size of horizon is necessary because 

performance function optimization is tied up with this timeframe.            

Prediction horizon: - This refers to the timeframe which is used up for prediction 

model to produce future outputs. These outputs are taken as basis by MPC to plan for 

actions ahead of time. 

Control horizon: - Having known the desired outputs control actions are 

calculated inside a certain time interval by optimizing the performance function. Control 

horizon has to be smaller than prediction horizon, 

Soft constraints: - The constraints which are applied on outputs are called soft 

constraints. These constraints are relatively easy to handle compared to the constraints on 

inputs. Equation (50) is the example for soft constraints. 

Hard constraints: - These constraints are applied on inputs and relatively difficult 

to deal with. Equation (51) is the example for hard constraints. 

Apart from above mentioned parameters, there are other important factors too 

such as weights for input variables, output variables and rates. These weights are decided 

depending upon preferences of each variables and sensitivities associated with that to 

design MPC.  
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Laying out foundation for MPC, working principle and implementation process 

will be discussed briefly. MPC interacts with a dynamic system at every discrete time 

instant. Action is decided to force on the system after estimating state of the system on 

each time interval. The agent decides which action is selected based on a policy. The 

policy indicates what action the agent will make in each state. The goal of the control 

agent is to find a policy that maps states to actions in such a way that the system behaves 

in the best way possible. In order for the agent to evaluate how well the system is 

behaving, there typically is some kind of performance function. This function indicates 

how well it is to make a certain state-action-state transition. The agent has to find a policy 

that chooses actions in states in such a way that the overall performance is maximized. 

MPC [89], [90], [91], [92] uses a model of the system and information of the 

desired behavior to determine required actions to take. The system model is used as a 

predictions model to understand the behavior of the system under various actions. The 

algorithm tries to find a sequence of actions that bring the system to a desired state. It 

finds out sequence of actions that which don not violate any constraints. Looking further 

ahead helps in understanding if there are possible constraint violations. In summary, the 

task is to determine a sequence of actions based on predictions using the system model 

that optimizes the performance of the system in terms of the desired behavior model, 

while preventing violation of system and action constraints. 

MPC takes finite horizon by using a control horizon, a prediction horizon, and a 

performance function. The control horizon helps in finding appropriate actions. 

Prediction horizon predicts the autonomous behavior of the system. The performance 

function is related to the performance that MPC will obtain from the state at the end of 
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the prediction horizon. Typically both horizons are much shorter than infinity, while the 

prediction horizon is larger than the control horizon. This is the case since in particular 

when considering systems that have autonomous behavior, actions are used to steer the 

system in a certain direction after which it can autonomously evolve further. By 

considering a prediction horizon that is larger than the control horizon, the agent can 

analyze where the system ends up after the agent has executed its actions over the control 

horizon [93], [94], [95].   

Figure 26 is the block diagram representation of MPC.  In the figure, MPC and 

Plant have been shown with their respective inputs and outputs.  

 

 

Figure 26: Block diagram representation of a typical MPC system. 

There are three different kinds of inputs in general, i.e. Measured disturbance, 

Manipulated variable and Unmeasured disturbances. Each one of them has been 

described in brief. 
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Measured disturbance: - It is a measured quantity which affects the plant in 

consideration. It cannot be changed just measured. For example in thermal modeling of 

house, ambient temperatures, solar radiations are measured disturbances. 

Manipulated variable: - It is a measured quantity which can be manipulated as per 

the plan or necessity. It is the control input and designing controller directly addresses 

deciding the manipulated variable. 

Unmeasured disturbances: - It is non-measurable random quantity. Because of the 

randomness, it introduces plant and model mismatch and to counter this model should be 

robust enough. 
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Figure 27: Description of MPC strategy. 

In Figure 26, measured disturbance, manipulated variable and unmeasured 

disturbance is represented by v, u and d respectively. r is reference or set-point, y is 

output and z is the noise.  MPC and the plant have been shown in closed-loop where y is 

fed back to the MPC block. MPC produces a manipulated variable to control the plant. 

Figure 27 is the detailed representation of MPC strategy. It is extremely 

important to understand the figure.     ,             and      are the limits or 

constraints on inputs and outputs. At any instant k, prediction and control horizons are 
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defined. As mentioned before too, Prediction horizon is always greater than Control 

horizon. Based on the prediction model and model variable measurements future moves 

are estimated. Interestingly, just one of the future inputs is applied and rest is discarded 

and MPC moves to the next instant, i.e. k+1. 

Continuing with the MPC, there are enough credible works available which 

suggest its immense capability.  The detailed methodologies have been discussed in [96], 

[97]. In [98] foundation of functional, parametric optimization has been addressed in 

detail. This could be one starting point to understand the concept behind MPC.   

Industrial processes of multivariable with constraints are controlled through digital 

process control [99]. Further, stability and robustness of MPC methods and constraints 

handling have been discussed in [100], [102], [103]. It has been observed so far that MPC 

outperforms traditional controllers because of its inherent features. Further, MPC has 

been compared with PID controller. [104] has shown MPC performance is better than 

PID. Also, a robustness characteristic, i.e. noise affecting output of MPC is better than 

PID [105].  

4.2.3 Implementation of MPC in Residential HVAC systems. 

In the previous section, model predictive control has been presented in detail and 

its capability discussed with few examples. One of the objectives of the proposed work 

has been to bring this technology from process control to residential energy systems. This 

is preferred from other competing controllers for obvious reasons that it is fully capable 

to optimize multi-objectives and constraints. It does not fully rely on the model provided 

for the system to be controlled rather on continuous measurements to do course of action 

at each sampling time. It can be implemented on an approximate model, should not be 
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100% perfect. Therefore time spent in building up models is less. There are few 

successful applications of MPC in energy system also. [106]  presents an interesting work 

where MPC is used to control a solar refrigeration plant. The goals are different at 

various operating point which makes the problem as multi-objective optimization 

problem. A preliminary study of cooling of a building by water chiller plants using 

thermal energy storage has been done in University of Cal. Merced campus [107]. It was 

a joint research and other members are Univ. of Cal. Berkley, and UTRC. A MPC for the 

chillers operation is designed in order to optimally store the thermal energy in the tank by 

using predictive knowledge of building loads and weather conditions. There is another 

contribution in MPC domain called economic MPC. In it economic MPC is minimized 

opposed to general MPC where weighted least square objective is minimized. Economic 

MPC operates on power generators and consumers such that cost of power production is 

minimized [108]. Going through numerous examples and discussions, the confidence in 

MPC is vindicated. 

Therefore, Model predictive controller has been proposed for the energy control 

of residential houses. This is going to utilize the online weather forecast [109] info to 

plan actions ahead of time to minimize energy consumption, and better control the 

comfort level in the house.  

Proposed thermal model of a residential house described by discretized state 

space equation (53) and (54). This is the fourth order linear time invariant system. This is 

a control oriented model. The model has been identified and presented already in chapter- 

3.  
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        ( )    ( )[ ̇         ]   ( )                                                 (54) 

      ( )                                                        (55) 

Here,             and    are zone temperature, ambient temperature and solar irradiation at 

any instant k.  ̇  is the cooling capacity.  

 To develop model predictive control, Matlab toolbox “mpctool” was used [110]. 

The identified control oriented plant model was imported through mpctool GUI. MPC 

has been defined with three inputs i.e. ambient temperature,     and solar irradiance,   as 

measured disturbances and  ̇  as manipulated variable. Zone temperature    is output. 

Here are the values of several factors needed for MPC formulation,  

Prediction horizon = 4 hrs. , 

Control Interval = 1 min, 

Control Horizon = 15 min,  

Simulation run time = 24 hrs.  

Max cooling capacity,  ̇          , 

Reference temperature,              

Zone Temperature,    {
   
   

} 

Figure 28 represents simulation of residential house with MPC. The experiment has been 

developed in Simulink with feedback Controller and plant imported from Matlab. 
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Figure 28: Simulink model for model predictive controller in a residential house. 

The plant model which represents the house has discrete state space 

representation. In symbolic terms “mo”, “ref”, “md” and “mv” stand for measured output, 

reference, measured disturbance and manipulated variable respectively. In the simulation, 

manipulated variable generated by MPC is fed to the plant to generate the desired zone 

temperature. In the simulation, “T” is the zone temperature recorded while when on-off 

system was operational. The simulation is run for 24 hrs. The primary purpose of this 

simulation is show that same zone temperature can be created with the less amount of 

thermal energy. Energy saving is the key of this work. There are other equally important 

motives are to explore smaller thermal unit size, smooth operation of mechanical 

components for longer life span and better zonal comfort as there is no on-off cycle. The 

scheme has been implemented to show the capability of MPC. Energy usage has been 

compared for the same days when On-Off has been operational.  
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Figure 29(a)-(b) and Figure 30 (a)-(b) show the MPC against On-Off controller. 

(a) 

(b) 

Figure 29: Day-1-Comparison of On-Off Controller vs. MPC with Prediction Horizon  

4 hrs. 
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(a) 

(b) 

Figure 30: Day-2 Comparison of On-Off Controller vs. MPC with Prediction Horizon 4 

hrs.  
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  Using MPC controller, the system will consume less thermal energy. The 

following plot shows the zone behavior if the MPC is placed in the same residential 

house. This is a typical reference tracking problem where measured zone temperature has 

been taken as a reference trajectory. 

Table 2: Performance comparison of On-Off Controller and MPC. 

Days On-Off Controller 

(kW-hr.) 

MPC Controller 

(kW-hr.) 

% Improvement 

1 -44.27 -29.26 33.91 

2 -52.88 -36.72 30.56 

3 -54.85 -41.93 23.55 

4 -58.37 -40.85 30.01 

5 -59.36 -45.44 23.45 

6 -66.69 -47.69 28.49 

7 -52.88 -34.49 34.77 

 

To dig further in MPC scheme, it can explore that forecast info plays an important 

role in the formulation and energy savings. Above plots have been generated on the basis 

of 4 hours of forecast information. Exactly same study is being done to understand the 

significance of forecast information on the MPC controller performance. Following plots 

have been generated based on 2 hours of forecast information.  

This time also MPC over performs On-Off controller by 29.91 % but little less 

compared to previous controller. The reason is attributed to the fact that longer the 

forecast horizon better is action plan for energy usage, i.e. optimum performance. Also, it 

can be easily noticed that proposed controller has its peak almost close to peak 

temperature whereas in the previous plot peak occurs way before the temperature hits its 

highest measurement.  

It is quite noticeable from the shown plots that smaller the forecast horizon, 

steeper rise will be in the control action to meet the demand. 
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(a)

 

(b) 

Figure 31: Comparison of On-Off Controller with MPC taking Prediction horizon as 2 

hrs.



 
 

 

 

CHAPTER 5: DEVELOPMENT OF ENERGY PERFORMANCE MODEL 

 

 

Energy demand forecasting is an integral part of demand side management. The 

prior knowledge of future demand helps to understand whether there is shortage of 

supply, overabundance or need for new unit as a whole. The energy usage model has 

tremendous applications for utilities and consumers both. On hand it gives a scientific 

tool to utility to plan strategy for energy distribution and establish a robust relationship 

between demand and supply.  

5.1 Energy Performance- Oriented System Identification 

As noted previously, two different models have been formulated, one for control 

in homes with next-generation HVAC systems and one for Energy Usage forecasting 

which can be extended to a model for diagnostics in homes with traditional HVAC 

systems.  This section considers the specifics of both formulations, and presents 

experimental results from a single-zone test home with a three-ton air-vapor-compression 

air-conditioning unit.  The home is located approximately 40 miles west of Charlotte, 

North Carolina.     

The Energy usage forecasting model formulation is represented as shown in 

Figure 32. The model is provided with measurements of the outdoor temperature (  ), the 

internal zone temperature (  ), the solar irradiance (S). The output is the thermal energy 

input to the home since the beginning of the day.  This quantity is defined as  
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      ∫  ̇
 

 
                                                                  (56) 

where  ̇ is the heating/cooling capacity of the HVAC system.  Note that this quantity 

should be negative during the cooling season.  In homes with heat pumps, this value 

would be positive during the heating season. The above formulation comes down to 

cumulative sum of heating/cooling capacity when applied to a discrete system. This has 

been tested for a discrete system with constant step measured variables.   

The discrete system representation of a house for Energy usage will be 

represented as follows: 

      ( )    ( )[            ]   ( )                                       (57) 

          ( )                                                                    (58) 

This innovation form representation has already been discussed in detail in chapter 3.  

 

 

Figure 32: Energy usage-model formulation including random errors e. 

This is 4
th

 order state space based model.  The block diagram for the above formulation 

can be represented as in Figure 32. 
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Figure 33: Measured (and Smoothen) and simulated data recorded during the training 

period. 

The measured data have been used for training of the model and represented as 

shown in Figure 33. This experiment was done during summer and so cooling capacity 

has been used in model.   

Identified model has been put for the validation through consecutive days. To 

minimize the effect of error propagation and disturbance, simulation is run for each full 

day independently. 

The model clearly tracks all the variations in the thermal energy consumption. It 

does have tendency to deviate from actual as time progresses. Later in this work, two 

methods have been proposed to track the energy usage more precisely, i.e. Kalman filter 

and Prediction Error method based recursive state estimation. 
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5.2 Energy Performance Model validation 

To validate the identified house model ambient temperature, zone temperature, 

solar irradiance and compressor on-off time are measured. The first three terms are used 

to find out total thermal energy consumed during entire day and compared to the 

measured thermal energy using on-off time of compressor. Sampling rate is 1 data/min 

and therefore 1440 measured values are there in single day.  

 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

 

 

(e) 
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(f) 

 

 

(g) 

Figure 34: (a)-(g) show Energy Usage Model Validation. 
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As discussed above the method recursively estimates states using PEM.  1 hr. of 

time window has been selected and shown the predicted data compared to measured data.  

Hourly prediction from recursive PEM 

 

 

(a) 

(b) 
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(c) 

 

 

 

(d) 
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(e) 

 

 

 

(f) 
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(g) 

Figure 35: (a) to (g) Using Prediction based on recursive PEM approach for Energy 

Usage Model Validation. 

 

Kalman Filter implementation for energy usage prediction. 

(a) 
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(b) 

 

 

 

(c) 
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(d) 

 

 

 

(e) 
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(f) 

 

(g) 

Figure 36: (a) to (g) Using Prediction based on Kalman filter approach for Energy Usage 

Model Validation. 
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Recursive state estimation using PEM does produce sound scheme to track the 

Energy usage. The long one-hour window tool can be proven to be quite helpful to 

utilities.  

5.3 Energy Performance Model as Diagnostic Tool 

 Fault detection and diagnosis have been extremely important and challenging 

problems in engineering. It becomes even more critical when high level of automation is 

employed and system is being monitored and controlled. Revenue loss is very significant 

due to the fault in the system. To understand the faults imply understanding the 

performances. PNNL has done detailed research on the performance of HVAC [111]. 

Fault is generally defined as deviation from acceptable band or normal behavior. 

Typically faults from different sources [112] in any controlled process can be represented 

as in Figure 37.  

 

Figure 37: General Framework of a Diagnostic System. 
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The block diagram has been shown to display failures related to each individual 

component.  

In general there are three different classes of faults [112], i.e. Gross parameter 

change in model, Structural changes and Malfunctioning sensors-actuators. Parameter 

failures arise when there is a disturbance entering the process from the environment 

through one or more exogenous variables. Structural change refers to the change in the 

process itself. Structural malfunctions are the result of failure of information flow 

between variables. Malfunctioning of sensors and actuators could be due to a fixed 

failure, a constant bias (positive or negative) or an out-of range failure. A failure in one of 

the instrument could cause the plant state variables to deviate beyond acceptable limits. 

Broadly, there are three general methods for the development of a fault detection and 

diagnostic system. These are Quantitative model-based methods [112], Qualitative 

model-based methods [113] and process history based methods, shown below [114] in  

Figure 38.  

 

Figure 38: Diagnostic Algorithm classification. 
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All the popular methods have been shown under a tree structure of Diagnostics 

formulation method. 

In Quantitative model based techniques, faults are identified as residuals between 

expected behavior of model and actual observation. There are wide ranges of quantitative 

based models such as state space based input-output, first principle and frequency 

response etc. The first principle method has been popular because of the mathematical 

complexity involved in the formulation step itself. Most of the Fault, Detection and 

Isolation (FDI) methods use black-box approach.         

Qualitative model based technique has some understanding of behavior of the 

process or system. This is not in terms of explicit mathematical representation but in 

causal representation. The diagnostic system has some symptomatic feature or look table. 

 Lastly, Process history based method has just historical data and no priory 

information of the system. This data is used for feature extraction which gives 

information about the fault in the system. Feature extraction methods are either statistical 

or non-statistical. Neural networks falls under are non-statistical whereas Principle 

Component Analysis (PCA) and Partial Least Square (PLS) are statistical based feature 

extraction methods.  

 The proposed method falls under Quantitative model based diagnostic technique. 

It is measurement based discrete state space model. Here residual has been defined as the 

difference between observed and estimated through model. The entire approach has been 

explained below. 

 In practice, the NILM calculates       at each time step over an individual day.  

To do so, the NILM assumes a fixed cooling capacity value.  This quantity is determined 
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from a one-time measurement performed during initial commissioning of the system.  

Each time the compressor is energized, it is assumed that the system delivers its 

measured capacity.  The assumed heat input from the HVAC system is thus of the form 

shown in Figure 41 b, and the corresponding measured and simulated values of       are 

shown in Figure 41 a.  Note that because of the assumed form of the cooling capacity, the 

measured value of       changes linearly when the system is on and remains constant 

when it is off.   

 As refrigerant charge leaks out of the HVAC equipment, the actual value of the 

cooling capacity drops, forcing the predicted value of       to deviate from the 

measurement.  The homeowner can be alerted when differences arise and provided with 

information about how much excess money has been spent as a result of the fault.   

Model parameters have been estimated using data recorded over a three-day period.  

Once parameters are known, the thermal energy consumption is predicted and compared 

to measurements.    

 

 To elaborate these methodologies further, following examples would cast light on 

it. Thermal capacity can be represented by a collection of unit step functions where   ,   , 

  …….   are time instants to represent compressor on-off schedule.  

 ̇      ( )   (    )   (    )   (    )      (      )   (    )  

(59) 

q is estimated based on the above equations using measured data. Later, the estimated q is 

used to as reference to investigate the system performance.  

Further,  ̇ is integrated over time to get total energy imparted during the time. 

Ramp signal E, 
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  ∫  ̇ 
 

 
       ( )  (    )   (    )     (    )   (    )  (    )  

 (    )       (      )   (      )  (    )   (    )     

  (60) 

Both the plots, Thermal capacity and total thermal energy input to the house have been 

shown here. 

 
 

(a) 

 

 
 

(b) 

 

Figure 39: (a) Cooling capacity, (b) Measured vs. Estimated cumulative cooling energy to 

show system performance with no fault. 
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Here E1, E2…, En are defined as total thermal energy input to the system up to  , 

  ,   …….   from the beginning.  

   ∫  ̇ 
 

 
,    ∫  ̇ 

  

 
,    ∫  ̇ 

  

 
, ….       ∫  ̇ 

(   ) 

 
,     ∫  ̇ 

  

 
 

 

 

Figure 40: Measured vs. Estimated cumulative cooling energy to show system 

performance with fault. 

As discussed before, this methodology of fault diagnosis comes under Quantitative model 

based approach. Validation of this approach has been dealt in the following section. To 

give emphasis further, the results have been revalidated through Process history based 

approach. This particular approach for faults diagnosis was used by Chris Laughman.  

5.4 Diagnostic Tool demonstration 

       To explore the diagnostic capabilities of this approach, a small amount of 

refrigerant (~25%) was removed from the system.  This value was selected for two 

reasons.  First, research suggests that many systems are undercharged by about this 

amount [3].  Additionally, this value is low enough that energy consumption increases, 

but not by an amount that most consumers can detect from billing data.   



   107 
 

     To demonstrate the comparison between healthy performance and with fault, 

simulation was done with no fault. Figure 41 (a) displays cooling energy ECOOL 

simulation against time and Figure 41 (b) is the cooling capacity input to the house. 

Clearly, measured and simulated values are close to each other. This can be called normal 

or expected performance of the system.  
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(b) 

Figure 41: (a) Simulated and measured values of ECOOL over a single day when the 

experimental system has normal refrigerant charge. (b) The corresponding cooling 

capacity as a function of time. 

As discussed before, if refrigerant leaks and the performance of the system 

deteriorate, it will be reflected in the monthly electricity bill. In reality, it is difficult to 

notice such an issue simply from the bill.  To demonstrate a more robust approach, some 

refrigerant was removed from the test system.  Figure 42 shows how the estimated and 

measured values of       deviated during this test.  Note that several different measured 

curves are shown.  The lowest of these is the one that was initially recorded assuming 

that the cooling capacity was still at its initial value  ̇    .  With that assumption, the 

magnitude of the corresponding final measured value of      is approximately 5kW-hrs 
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greater than the final simulated value.  To account for the refrigerant loss, the assumed 

cooling capacity is thus reduced. Measured curves are shown 

for  ̇        ̇        ̇             ̇    , respectively.  Note that the curve corresponding to 

72% of the initial cooling capacity provides the best fit.   

Understanding the significance of Figure 42 can be difficult.  Part of the challenge 

lies in the fact that the figure suggests that a 27% drop in cooling capacity causes a 

corresponding drop in thermal energy.  This may at first seem counterintuitive since the 

lower  ̇ is expected to increase energy consumption.  The overall energy draw did, 

however, increase relative to normal conditions. Figure 42 is thus misleading on this 

point.  Consider, for example, Figure 41, which shows results under normal conditions 

(i.e. ̇   ̇     ) on a day with similar weather conditions.   

 

Figure 42: Measured and simulated values of ECOOL when the system is undercharged 

by about 25%. 
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 Note that the overall amount of thermal energy increased from approximately 

6.5kW-hrs on the normal day to approximately 11kW-hrs after the refrigerant was 

removed and the cooling capacity was reduced.  This difference results from an increase 

in system run time after refrigerant removal. The various measured curves correspond to 

different assumptions for the cooling capacity, from 100% of its initial value (bottom) to 

72% of its initial value (top). 

To analyze performance through coefficient of performance (COP), it has been 

calculated and presented in Figure 43. As per definition, 

    
|     |

 
                                                               (61) 

Where   ∫  , P represents electrical power input. 

 

 

Figure 43: Coefficient of Performance (COP) based analysis of the system. 

In this figure, each data point represents a single day observation of COP as it has 

been calculated for each day.  
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The figure shows two groups of days. COP for optimum performing days is high 

compared to low performing days. Therefore, as the performance starts derogating, slopes 

become more flat, i.e. low COP.  

Figure 44 shows residuals calculated over days to study the performance. 

Residual is defined as the difference between simulated and measured data. This has been 

taken as one of the possible identifier to judge the system performance. A threshold value 

of 15% has been taken to make difference between normal operation and faulty one. 

Although this is just an assumption to show the system behavior. It could be a value 

different than 15%.. 

 

Figure 44: Residuals calculated each day to judge the system performance. 

It is evident from Figure 44 that on days when the system was fully charged with 

refrigerant comes under threshold limit else they go well beyond limit when they are 

partially charged. 
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Now, simulated total thermal energy data for each day calculated and compared 

with the measured one. % absolute error has been determined too. Table 3 summarizes 

the observations.  “-“ in front of each no. to show that the system is cooling. It will be 

replaced with “+” for heating. 

Table 3: Comparison of measured and simulated total thermal energy, % difference for 

(a) fully charged with refrigerant, (b) partially charged with refrigerant. 
 

Table3: (a) fully charged with refrigerant 
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Table 3: (b) partially charged with refrigerant. 

 

Having visited Quantitative model based diagnosis; it is worth to check the fault 

by process history based approach now. It has been tried out to see the same data through 

different angle. To start with, (To-Tz) has been calculated and plotted against   . The 

term    is time interval of compressor on time. Here, objective is to look for   , the time 

interval for the same temperature difference (To-Tz). Two data sets have been chosen for 

display, i.e. first 7 days and last 7 days of system performance. After close analysis of 

this plot, it can be inferred that to maintain the same temperature compressor runs for 

long time in last 7 days which confirms underperformance of the system.  
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Figure 45: System performance study through compressor running time. 

The chapter has dealt with the diagnostic scheme developed for residential or low 

rise buildings. It takes the same measurement data which will be used in control oriented 

model formulation. It has the potential to be quite useful for health determination of 

HVAC system in house. 

 

 

 

 

 



 

 

 

 

 

CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

 

This research has demonstrated the effectiveness of the proposed thermal 

modeling procedure and considered two applications, i.e. a Model Predictive Control 

strategy and a system for fault diagnosis [115], [116], [117]. The entire formulation has 

been developed with the intention of limited or no human interaction. The work will 

assist utilities to better understand energy demand; it will also empower consumers with 

tools for cost savings.   

6.1 Conclusions 

The focus of this research has been towards developing an accurate thermal model 

that can be used to monitor and potentially control energy conversion in homes and small 

buildings while maintaining the same level of comfort.  Two different applications have 

been considered, one for control and the other for energy usage.  The demonstrated 

models have been developed purely based on measured data, which makes it attractive in 

applications where the first-time cost can be problematic.   

Two different models have been built, i.e. a control-oriented model and energy-

performance model. The control-oriented model takes as inputs cooling capacity, ambient 

temperature, and solar irradiance; zone temperature is the output.  In the case of the 

energy-performance, zone temperature, ambient temperature and solar irradiance are the 

inputs; and cooling energy is the output.  Both models are cast in state-space form and 

system identification is performed using the Prediction Error Method (PEM).  Field 



   116 
 

testing has demonstrated that four days of data is sufficient and that a fourth-order model 

is sufficient.   

To improve the performance of the models for prediction, recursive PEM and a 

Kalman filter have been used. It has been demonstrated that both are very powerful and 

greatly improve the capability of the models. The research also demonstrates some of the 

finer details about smoothing of recorded data for model identification.  Field validation 

has been performed through measurements in a small single-zone home.  The entire 

scheme uses as small a set of sensors as possible, which thus reduces overall installation 

cost.  Since this is a sensor-based and potentially online scheme, no human training is 

required.   

 The control-oriented model has been used to develop a predictive control strategy.  

Simulation results show energy costs can be reduced by about 30% if the proposed 

model-predictive scheme is employed.  It should be noted here this scheme would take 

into account the weather forecast information to decide control actions in advance. 

 The energy-performance model would be used potentially by utilities where the 

agencies can plan ahead for resource allocation. This is the key for demand side 

management.  

Further, the energy usage model has been used to detect refrigerant leaks.  In this 

case, a partially charged unit was detected in the field.  The refrigerant level was reduced 

by approximately 25% from its normal value, which causes over-consumption but not by 

an amount that is detected by most homeowners.  Thus, such a system could detect issues 

before they were to become extremely problematic.  
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6.2 Future Directions 

At present, new research students are beginning to use the models developed 

herein for more detailed fault detection and diagnostics.  The team has installed the 

monitoring systems at two Wells Fargo retain bank branches in the greater Charlotte, 

North Carolina, area.  The systems have successfully detected faults in one building near 

the UNC Charlotte campus.  The team is currently working to automate the modeling 

process described in this thesis so that the system could potentially be deployed across a 

large number of retail sites.  Such facilities are similar in size to many homes, and the 

fact that an enterprise customer has so many buildings motivates the desire to better 

understand and monitor performance.  The team is also combining through the individual 

sensor streams to determine the exact cause of a fault.  The present model would not 

necessarily isolate such a fault.  

Another major application of the modeling process is in the context of demand-

side management.  Utilities have a strong desire to shed HVAC equipment during periods 

of peak demand.  This allows them to optimize the use of “peak” power sources.  To date, 

most load-shedding schemes are very simplistic.  The approach used here is being 

considered for more optimal control of such shedding activities.   
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APPENDIX A: EXPERIMENTAL SITE DESCRIPTION 

 

 

Description of Experimental site: -  

No. of Windows = 8, No. of Doors = 2 

Total dimensions: Length X Width X Height X Thickness = 70 ft X 14 ft X 8 ft X 4 inch  

 

 

 

 

 

 

 

 

 

      

    

 

 

(a) 

Table 4:  Dimensions of (a) doors, (b) windows. 

No. Windows Dimension (inch) 

( Width X Height ) 

1 32 X76 

2 32 X 76 

(b) 

No. Windows Dimension (inch) 

( Width X Height ) 

1 28 X26 

2 92 X 38 

3 28 X 26 

4 46 X 38 

5 46 X 38 

6 12 X 25 

7 46 X 38 

8 46 X 38 



   128 
 

APPENDIX B: EXPERIMENTAL SET UP AND RESULTS 

 

 

 

(a) 
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(b) 

Figure 46: Compressor details provided by manufacturer (a) Compressor specification 

datasheet, (b) Compressor map. 
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(a) 
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(b) 

Figure 47: Compressor (used in experiment) details provided by Emerson (a) Compressor 

specification datasheet, (b) Compressor map. 
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Table 5: Coefficients for Compressor Model H25B35QABC. 

 

Coefficient Capacity Power Current Mass Flow 

C1 
63 

419.510000000 
3 223.298000000 20.972470000 918.813200000 

C2 867.817300000 6.043080000 0.105030100 8.892987000 

C3 
-1 

073.361000000 
- 50.539860000 - 0.390878800 - 17.894800000 

C4 4.682023000 - 0.310720900 - 0.001639142 0.023432740 

C5 - 4.3893 32000 0.064433370 - 0.000895550 - 0.032792550 

C6 7.910625000 0.543413000 0.003834512 0.149084700 

C7 0.016168570 - 0.002064642 - 0.000017815 0.000182424 

C8 - 0.010601010 0.002249506 0.000017343 0.000169021 

C9 0.005200759 0.001074376 0.000008195 0.000067663 

C10 - 0.021876740 - 0.001776723 - 0.000011864 - 0.000437768 

 

 

Table 6: Sensors specifications and placements for cooling capacity measurement. 

 

Sl no. Sensors Numbers Location Purpose 

1 Temp sensor 

(20' cable Sensor 

TMC20-HD) 

1 Before 

Evaporator 

To measure air temperature 

entering through evaporator. 

2 Temp sensor 

(20' cable Sensor 

1 After 

Evaporator 

To measure air temperature 

existing evaporator. 
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TMC20-HD) 

3 Data logger (HOBO 

U12 4-Channel 

External Data Logger 

- U12-006) 

1 Close to 

Evaporator 

For data acquisition, collected 

by temperature sensors. 

4 Air velocity sensor 

(Hot wire anemometer 

T-DCI-F900-L-O) 

1 Before 

evaporator 

To measure air velocity 

passing through the 

evaporator. 

 

 

 

(a):  Temp sensor: 20' cable Sensor 

TMC20-HD 

 

(b):  HOBO U12 4-Channel External Data 

Logger - U12-006 
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 (c): Air velocity sensor: Hot wire anemometer T-DCI-F900-L-O 

 

Figure 48: Sensor and data loggers used in measuring cooling capacity. 

 

 

Figure 49: Air flow measurement in rectangular duct. 
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Table 7: Air velocity measurement using Hotwire Anemometer (measurement range is 0 -

4 volt for .15 m/sec to 10 m/sec). 

Velocity Meas.(volt) 

    
Locations 1 2 3 4 5 

1 0.782 0.791 0.742 0.765 0.678 

2 0.671 0.659 0.636 0.669 0.598 

3 0.669 0.589 0.615 0.636 0.459 

4 0.683 0.577 0.589 0.643 0.495 

5 0.683 0.586 0.589 0.676 0.655 

average (V) 0.698 0.640 0.634 0.678 0.577 

average reading (v) 0.6454 

     

  

Avg. Velocity (10-.15)*.6454/(4-0)=1.589 m/sec 

   

   

Table 8: Temperature and air flow values. 

Temp. across Evaporator 

Entry Exit   

78 35 F 

25.56 1.67 C 

   Del T 23.89 C 

Area 0.18 sq. m 

Flow rate, q 0.29 Cub. m/min  

Air density, row 1.2 kg/cub.m 

Air mass flow rate, 

m_dot 0.35 kg/sec 

Sp. Heat capacity, Cp 1.005 KJ/kg-K 

Cooling Cap. 
8459.64 W 

2.41 Ton 
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Table 9: Sensors and Data loggers for house thermal model identification. 

Item Description No. 

Temperature sensor and 

data logger 

HOBO
®
 Temperature Data Logger - U10-001 2 

Solar data Logger 

(Outdoor) 

HOBO® Micro Station Data Logger - H21-002 1 

Solar sensor(Outdoor) Solar Radiation Sensor (Silicon Pyranometer) Sensor - S-

LIB-M003 

1 

 

 

 

(a): HOBO
®
 Temperature Data Logger U10-

001 

 

 

(b): Solar Radiation Sensor (Silicon 

Pyranometer) Sensor - S-LIB-M003 
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 (c): HOBO® Micro Station Data Logger - H21-002 

Figure 50: Sensors and data loggers for house thermal model identification. 

 

 

(a) Experimental site: Trailer house, King’s Mountain, NC 
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(b) Ambient temperature sensor place outside. 

 

 

 (c) Zone temperature sensor placed inside trailer over thermostat. 
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(d) Solar sensor place outside. 

Figure 51: Sensors and data loggers installations on experimental site for thermal model 

identification. 
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APPENDIX C: PROGRAMMING 

 

 

Program: 1 

% Reading data from files 

Indoor = xlsread ('72011indoor.csv'); 

Outdoor = xlsread ('72011outdoor.csv'); 

Solar = xlsread ('72011solar.csv'); 

Current = xlsread ('snapshot-20110720.xlsx'); 

CurrentA = xlsread ('snapshot-20110720A.xlsx'); 

Tz = indoor(:,3);To=outdoor(:,3);S=solar(:,3);Qest=current(:,2);Q=currentA(:,2); 

 %Savitzky-Golay Smoothing 

span=0.002; 

Tzs = smooth (Tz, span, 'sgolay', 4); 

Tos = smooth (To, span, 'sgolay', 4); 

Ss=smooth(S, span, 'sgolay', 4); 

figure(1); plot(Tzs); hold on; plot(Tz,'k'); hold off; 

figure(2);plot(Ss);hold on;plot(S,'k');hold off; 

figure(3);plot(Tos);hold on;plot(To,'k');hold off; 

% Defining Cooling Capacity 

number= find(Qest > 5); 

cool(1:length(Qest))=0; 

cool(number)=8460; 

number= find(Q > 5); 

coolA(1:length(Q))=0; 
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coolA(number)=8460; 

 %Control oriented model identification with smoothing 

data = iddata(Tzs(2044:7742),[-cool(1502:7200)' Tos(2044:7742) Ss(2044:7742)]); 

model = pem(data,4,'Focus','simulation'); 

Y = sim(model,data); 

figure(4); plot(Y); hold on; plot(Tz(2044:7742),'r'); hold off; 

%Check for Observability, Controllability and Stability  

A=model. A; B=model.B; C=model.C; D=model.D; 

 Ob = obsv(A,C);rank (Ob) 

 Co = ctrb(A,B);rank(co) 

 eig(A) 

%Control oriented model identification without smoothing  

data = iddata(Tz(2044:7742),[-cool(1502:7200)' To(2044:7742) S(2044:7742)]); 

model = pem(data,4,'Focus','simulation'); 

Y= sim(model,data); 

figure(5); plot(Y); hold on; plot(Tz(2044:7742),'r'); hold off; 

%Energy performance oriented model identification  

 data = iddata(-cumsum(cool(1502:7200)'),[Tzs(2044:7742) Tos(2044:7742) 

Ss(2044:7742)]); 

model = pem(data,4,'Focus','simulation'); 

Y=sim(model,data); 

figure(6);plot(Y.y*60/3600000);hold on;plot(-

cumsum(cool(1502:7200)*60/3600000),'r');hold off; 
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clear Y; 

X0=model.X0; X{1}=X0; 

m=7; 

for k=1:m 

for i=1:1440 

    X{i+1}=A*X{i}+B*[Tz(7742+(k-1)*1440+i);To(7742+(k-1)*1440+i); 

S(7742+(k-1)*1440+i)]; 

    Y(k,i)=C*X{i}; 

 end 

 figure(7);subplot(3,3,k);plot(60*Y(k,:)/3600000);hold on; 

plot(-(60/3600000)*cumsum(coolA(1+(k-1)*1440:(k)*1440)),'.');hold off; 

end 

 % Calculation of errors, i.e. deviation from the filed data 

for k=1:m 

    a(k)=Y(k,1440)*60/3600000; 

    b(k)=-(60/3600000)*sum(coolA(1+(k-1)*1440:(k)*1440)); 

    c(k)=100*(a(k)-b(k))/b(k); 

end 

a 

b 

c 

 X0=model.X0; X{1}=X0; 

for k=1:m   
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for i=1:1440 

        X{i+1}=A*X{i}+B*[-coolA((k-1)*1440+i);To(7742+(k-1)*1440+i); 

S(7742+(k-1)*1440+i)]; 

    Y(k,i)=C*X{i}; 

    end 

 figure(8); 

subplot(3,3,k);plot(Y(k,:));hold on;plot(Tz(7743+(k-1)*1440:7742+k*1440),'r');hold off; 

 end  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 

Program :2 

%Energy Performance Oriented model recursive state estimation 

 data=iddata(-cumsum(cool(1502:7200)'),[Tzs(2044:7742) Tos(2044:7742) 

Ss(2044:7742)]); 

model=pem(data,4,'Focus','simulation'); 

Y=sim(model,data); 

figure(1);plot(Y.y*60/3600000);hold on;plot(-

cumsum(cool(1502:7200)*60/3600000),'r');hold off; 

 A=model.A;B=model.B;C=model.C;D=model.D; 

 % PEM based recursive initial states updation 

 clear Y out; 

 Z=0;  Y=[];  out=[]; 

 X0=model.X0; X{1}=X0;  

 r=1440*6; m=24;  n=60; 
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 for k=1:m   

 for i=1:n 

          X{i+1}=A*X{i}+B*[Tz(7742+r+(k-1)*n+i);To(7742+r+(k-1)*n+i);S(7742+r+(k-

1)*n+i)]; 

    out(i)=C*X{i}; 

    end 

  temp=iddata(-cumsum(coolA(r+(k-1)*n+1:r+(k-1)*n+n))'+Z,[Tzs(7742+r+(k-

1)*n+1:7742+r+(k-1)*n+n) Tos(7742+r+(k-1)*n+1:7742+r+(k-1)*n+n) Ss(7742+r+(k-

1)*n+1:7742+r+(k-1)*n+n)]); 

 X{1}=findstates(model,temp); 

  for i=1:n 

       X{i+1}=A*X{i}+B*[Tz(7742+r+(k-1)*n+i);To(7742+r+(k-1)*n+i);S(7742+r+(k-

1)*n+i)]; 

 end 

  X{1}=X{n+1}; 

  Z=-sum(coolA(r+1:r+(k-1)*n+n)); 

  Y=[Y out]; 

  end  

 figure(2);plot(Y*60/3600000);hold on; 

plot(-cumsum(coolA(1+r:1440+r)*60/3600000),'r');hold off; 

  (-Y(length(Y))*60/3600000- 

sum(coolA(1+r:1440+r)*60/3600000))*100/sum(coolA(1+r:1440+r)*60/3600000) 

  plot(Y)-Tz(7743:7742+7*1440)'); 
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 %State estimation space with Kalman filter 

 G=model.K; H=1; 

QN=model.NoiseVariance;RN=0;NN=0; 

sys=ss(A,[B G],C,[D H],1); 

[kest,L,P,M] = kalman(sys,QN,RN,NN); 

Af=kest.a;Bf=kest.b;Cf=kest.c;Df=kest.d; 

 clear Y; 

Z=0;Y=[]; 

X0=model.X0; X{1}=X0; 

r=1440*6; m=1; n=1440; 

 for k=1:m   

for i=1:n 

     X{(k-1)*n+i+1}=A*X{(k-1)*n+i}+B*[Tzs(7742+(k-1)*n+i+r);Tos(7742+(k-

1)*n+i+r);Ss(7742+(k-1)*n+i+r)]+L*(-cumsum(coolA((k-1)*n+i)+r)+Z-C*X{(k-

1)*n+i}); 

    X{(k-1)*n+i}=X{(k-1)*n+i}+M*(-cumsum(coolA((k-1)*n+i)+r)+Z-C*X{(k-1)*n+i}); 

    temp(i)=C*X{(k-1)*n+i}; 

    Z=-sum(coolA(r+1:r+(k-1)*n+i));        

    end 

    Y=[Y temp]; 

 end  

 figure(3); 

plot(Y*60/3600000);hold on;plot(-cumsum(coolA(1+r:r+1440)*60/3600000),'r');  
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hold off; 

%%%%%%%%%%%%%%%%%%%%%%%%%5 

Program :3 

%Kalman state estimation for the Control Oriented Model 

data=iddata(Tzs(2044:7742),[-cool(1502:7200)' Tos(2044:7742) Ss(2044:7742)]); 

model=pem(data,4,'Focus','simulation'); 

Y=sim(model,data); 

figure(1);plot(Y);hold on;plot(Tz(2044:7742),'r');hold off; 

 A=model.A;B=model.B;C=model.C;D=model.D; 

 % Kalman filter approach 

G=model.K; H=1; 

QN=model.NoiseVariance;RN=0;NN=0; 

sys=ss(A,[B G],C,[D H],1); 

[kest,L,P,M] = kalman(sys,QN,RN,NN); 

 Af=kest.a;Bf=kest.b;Cf=kest.c;Df=kest.d; 

 

 clear Y; 

Y=[];  

X0=model.X0; X{1}=X0; 

m=7; n1=600; n=1440; 

 for k=1:m   

for i=1:n 
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     X{(k-1)*n+i+1}=A*X{(k-1)*n+i}+B*[-coolA((k-1)*n+i);Tos(7742+(k-

1)*n+i);Ss(7742+(k-1)*n+i)]+L*(Tzs(7742+(k-1)*n+i)-C*X{(k-1)*n+i}); 

    X{(k-1)*n+i}=X{(k-1)*n+i}+M*(Tzs(7742+(k-1)*n+i)-C*X{(k-1)*n+i}); 

    temp(i)=C*X{(k-1)*n+i}; 

 end 

Y=[Y temp]; 

 end  

  figure(2); plot(Y);hold on; 

plot(Tzs(7744:7743+1440*7),'r'); 

hold off; 

% PEM based recursive initial states updation 

clear Y out; 

Y=[];out=[]; 

X0=model.X0; X{1}=X0; 

m=672; n=15;  

for k=1:m   

for i=1:n 

       X{i+1}=A*X{i}+B*[-coolA((k-1)*n+i);To(7742+(k-1)*n+i);S(7742+(k-1)*n+i)]; 

    out(i)=C*X{i}; 

    end 

 temp=iddata(Tzs(7742+(k-1)*n+1:7742+(k-1)*n+n),[-coolA((k-1)*n+1:(k-1)*n+n)' 

Tos(7742+(k-1)*n+1:7742+(k-1)*n+n) Ss(7742+(k-1)*n+1:7742+(k-1)*n+n)]); 

X{1}=findstates(model,temp); 
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 for i=1:n 

       X{i+1}=A*X{i}+B*[-coolA((k-1)*n+i);To(7742+(k-1)*n+i);S(7742+(k-1)*n+i)]; 

end 

 X{1}=X{n+1}; 

 Y=[Y out]; 

 end  

figure(3); 

 plot(Y);hold on;plot(Tz(7743:7742+7*1440),'r');hold off; 

 


