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ABSTRACT 

 
 

MUHAMMAD SAFEER KHAN. Acoustic signal propagation characterization of 
conduit networks.  (Under the direction of Dr. IVAN HOWITT.) 

 
 
 Analysis of acoustic signal propagation in conduit networks has been an 

important area of research in acoustics. One major aspect of analyzing conduit networks 

as acoustic channels is that a propagating signal suffers frequency dependent attenuation 

due to thermo-viscous boundary layer effects and the presence of impedance mismatches 

such as side branches. The signal attenuation due to side branches is strongly influenced 

by their numbers and dimensions such as diameter and length. Newly developed 

applications for condition based monitoring of underground conduit networks involve 

measurement of acoustic signal attenuation through tests in the field. In many cases the 

exact installation layout of the field measurement location may not be accessible or actual 

installation may differ from the documented layout. The lack of exact knowledge of 

numbers and lengths of side branches, therefore, introduces uncertainty in the 

measurements of attenuation and contributes to the random variable error between 

measured results and those predicted from theoretical models.  

There are other random processes in and around conduit networks in the field that 

also affect the propagation of an acoustic signal. These random processes include but are 

not limited to the presence of strong temperature and humidity gradients within the 

conduits, blockages of variable sizes and types, effects of aging such as cracks, bends, 

sags and holes, ambient noise variations and presence of variable layer of water. It is 

reasonable to consider that the random processes contributing to the error in the measured 

attenuation are independent and arbitrarily distributed. The error, contributed by a large 
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number of independent sources of arbitrary probability distributions, is best described by 

an approximately normal probability distribution in accordance with the central limit 

theorem. Using an analytical approach to model the attenuating effect of each of the 

random variable sources can be very complex and may be intractable. A tractable 

approach is to develop an empirical model of the attenuation that has a stochastic 

component of a finite mean and variance to account for the random variable error akin to 

addition of a normally distributed random variable shadowing component in the path loss 

models of radio frequency (RF) wireless communication channels. This approach forms 

the crux of the present study. 

To develop an empirical model, a large number of measurements in conduit 

networks were made in the field and in a laboratory test set up to measure the variability 

of attenuation with variation in four parameters. These parameters include distance of the 

receiver from the source, frequency, numbers and lengths of side branches. Variation in 

signal attenuation with distance at each transmitted frequency is predicted by using linear 

regression through the scatter plot of the measured data. Variations in signal attenuation 

due to change in frequency, number and lengths of side branches are measured in the 

field and laboratory tests by comparing the reference transmitted pressure with the 

received pressure at either the open end or at some distance away from the source along 

the conduit length. Residuals between measured and predicted sound pressure levels are 

computed and tested for normal probability distribution through a graphical method as 

well as a statistical goodness of fit test for quantifiable results. The findings indicate that 

an empirical model of signal attenuation, which includes a normally distributed random 

variable component to account for random variable errors in the attenuation 
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measurements, gives a more accurate prediction of received acoustic signal strength in a 

conduit compared to existing theoretical models. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Background 
 
 

Sound propagation in conduits has historically been an important subject for 

researchers in acoustics. The historic research effort was primarily driven by applications 

of acoustic propagation in conduits for the design of musical instruments, noise 

suppression in heating ventilation and air-conditioning (HVAC) systems, design of 

mufflers in automobiles, acoustic delay lines and modeling of the human vocal tract. 

Resultantly, there is a profusion of literature describing theoretical principles governing 

the propagation of acoustic signals in conduit environments (Long 1947; McSkimin 

1948; Beranek, Reynolds et al. 1953; Dyer 1958; Schroeder 1967; Wyerman 1976; Keefe 

1982; Munjal 1987; Okamoto, Boden et al. 1994; Kang and Jung 2001). 

In contrast to propagation in free space, the sound propagation in conduits is 

peculiar since the propagating signal is subjected to a wave guiding effect through 

confinement of its energy within the guide walls akin to propagation of radio frequencies 

in waveguides. There are two principal effects of this confinement of acoustic energy 

(Kinsler, Frey et al. 2000). First, it limits the modal content of the acoustic energy that 

may propagate at any particular frequency enabling a one dimensional approach to model 

the signal propagation. This occurs at low frequencies where the signal wavelength is 

sufficiently large compared to the radius of the conduit and acoustic energy transfer 



2 
between source and the receiver is through the fundamental plane wave only. As the 

signal wavelength becomes small compared to the radius of the conduit, the propagation 

is best described using modal analysis. The second effect of confinement of acoustic 

energy is the reduction in its geometric attenuation compared to the propagation in a free 

field. Acoustic signals are, therefore, well suited for applications requiring evaluation of 

acoustic signal attenuation in narrow conduits (Fishburne and Howitt 2010; Howitt 

2012).  

1.2 Research Problem Formulation 
 
 

In contrast to the theory of ideal rigid walled conduit with lossless propagation, 

practical conduits attenuate the acoustic signal not only due to the boundary layer effects 

of viscosity and heat conduction but also due to various other sources. One important 

source of signal attenuation in conduit networks is the presence of numerous impedance 

mismatches such as side branches, cracks, holes, bulges and sags etc. The existing 

theoretical approaches can be used to model the acoustic signal attenuation in a conduit 

due to side branches with known parameters (such as open or closed end condition, radii, 

lengths, numbers and locations etc.). Recent developments in condition based monitoring 

systems for underground conduits in the field (e.g. sewer pipes) are based on classifying 

the state of a conduit section through measurement of acoustic signal attenuation (Howitt 

2012). Condition classification based on attenuation measurement is complicated because 

most of the underground conduit infrastructure is almost a century old (USEPA 2012). 

Consequently, the exact installation layout of the conduit and its side branches at the 

measurement location may not be accessible or actual installation may differ from the 

documented layout. The lack of exact knowledge of conduit layout, therefore, introduces 
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uncertainty in the measurements of attenuation and contributes to the random variable 

error between measured results and those predicted from theoretical models. The 

presence of random processes in and around the conduit also affects the propagating 

signal and further complicates the evaluation of signal attenuation in the conduit by 

introduction of a random variable error in the measured attenuation. Examples of such 

random processes include unknown or inaccurately known lengths and number of side 

branches, temperature and humidity gradients, blockages of variable sizes, types and 

locations, effects of conduit aging, effects of reflections from the open end, the ambient 

noise source variations and anomalies in the measurement setup.  

In order to model the effect of random processes on signal attenuation in the 

conduit, it is reasonable to consider that each of the random process belongs to an 

arbitrary distribution. It is also realistic to consider that the random processes do not 

convey any information about each other and as a result knowledge of one random 

process does not change the probability distribution of another. This makes them 

independent of each other in a statistical sense. Considering the random processes to be 

independent and arbitrarily distributed enables use of the central limit theorem under its 

weak convergence condition (Henke 2007). This implies that the mean of the error due to 

independent and arbitrarily distributed sources belongs to an approximately normal 

probability distribution.  

The above stated stochastic based approach can be applied to model acoustic 

attenuation in a conduit network in the presence of random variable error sources in a 

manner similar to the modeling of the multipath shadowing effect in radio frequency 

(RF) wireless communication channels (Andersen, Rappaport et al. 1995). As in the case 
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of wireless communication channels a normally distributed random variable with finite 

mean and variance can be added to the analytically evaluated attenuation coefficient of a 

conduit network to more accurately predict the total attenuation of the received signal. 

Analysis of signal attenuation in a conduit network as a function of change in distance 

from the source, frequency and side branch impedance including the effect of other 

random variable processes forms the main theme of the present study.  

In light of the above discussion, the main research questions answered in this 

study are: 

1) What modeling approaches are available to analytically model the 

attenuation of an acoustic signal in a straight conduit with no impedance 

mismatches and a conduit network comprising T-joints with numerous 

side branches of different lengths? 

2) How can an empirical model be developed to characterize the acoustic 

propagation in conduits using the deterministic evaluation through existing 

analytical expressions? 

3) What is the variation in attenuation of a propagating signal in a conduit 

section or a network as a function of the change in distance of receiver 

from the source, frequency, number and lengths of side branches?  

4) How can the empirical measurements be analyzed to include the effect of 

random variable error in the measured attenuation caused by numerous 

random processes in and around a conduit network?  
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5) How to statistically analyze the error between the measured and 

theoretically evaluated attenuation to validate that it is a normally 

distributed random variable of finite mean and known variance?  

6) What is the validated form of the empirical model that includes the effects 

of random variable error in the total attenuation of the acoustic signal? 

The present study uniquely contributes to the state of the art in modeling acoustic 

propagation in conduit networks by laying out a stochastic based approach to model the 

inaccuracy in the measurement of attenuation in conduit networks caused by lack of 

information of random processes. The proposed approach lays out a method to use the 

empirical data to determine a correction factor for the propagation model. The empirical 

correction factor significantly improves the agreement between the measured and model 

predicted attenuation of a conduit network with variation in number and length of side 

branches. The developed model also reduces the complexity of analysis compared to the 

existing analytical approaches of solving acoustic signal propagation in conduit networks. 

It also enables characterization of the nature of probability distribution of the residuals 

that would otherwise be intractable to analyze. The modeling of acoustic propagation in 

conduits using this approach is generic and can be applied to any network of conduits 

enabling its use in a variety of applications requiring evaluation of acoustic attenuation. 

1.3 Assumptions 
 
 

In order to answer the research questions highlighted above, a large amount of 

empirical data has been collected through extensive measurements in conduit networks 

already laid out in the field and those in a laboratory setting. In order to use that measured 
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data for analyzing the probability distribution of random variable error, various 

assumptions are made that govern the present study: 

1) The conduits are primarily made of polyvinyl chloride (PVC) material. 

They are circular in cross section and are considered infinitely rigid as 

the acoustic impedance of the conduit walls is over three orders of 

magnitude higher than that of the propagating medium (Density of air 

is about 1.22 Kg/m3 whereas that of PVC is about 1380 Kg/m3). One 

end of the conduit is open and the acoustic source is placed at the other 

end. To apply an appropriate length correction due to the effects of 

reflections from open end, conduits are considered as rigid walled and 

flanged.  

2) Plane wave propagation is assumed as the primary source of energy 

transfer. As the conduits measured in this study especially during field 

tests are very long (typical lengths are about 30.0 m) and the receiving 

microphone is placed approximately at the centerline of the conduit as 

far as is practicable, the effects of higher order modes are assumed to 

be insignificant.  

3) The receiving transducer during measurements for data collection is 

assumed to be in the acoustic far field.  

4) The effect of reflections from the open end of the conduit is assumed 

to be considerably reduced by the extension of the conduit beyond the 

measurement point (about 12 wavelengths at 1.0 kHz) during 

laboratory measurements. The receiving microphone is placed at the 
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center of the conduit a significant distance away from the open end. 

An empirical correction factor that equals the difference between the 

measured and theoretically evaluated attenuation of a straight conduit 

is introduced in the proposed model to further reduce the effect of 

reflections from open end. The inclusion of the empirical correction 

factor significantly improves the accuracy of the prediction. The 

analysis of exact effects of reflections from the open end of the conduit 

in a manhole as observed during the field measurements is analytically 

complex and therefore merits a separate study. During field tests, 

several measurements were conducted that involved consecutive pipe 

segments spanning multiple manholes. The manhole transmission loss 

is not being analyzed in this study. It is assumed that the manhole 

transmission loss manifest itself as part of the random variable error in 

the signal attenuation. 

5) The fluid column in the conduits is assumed to be air. Variations in the 

properties of air due to temperature and relative humidity conditions 

encountered during measurements for this study are assumed to be 

insignificant, in that they do not affect the outcome of the analytical 

evaluation of attenuation coefficient. The density, coefficient of shear 

viscosity, the ratio of specific heats at constant volume and pressure 

and the thermal conductivity parameters of air are therefore treated as 

constants of the medium. 
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Having presented the assumptions made for the present study, next section 

presents the outline of the dissertation.  

1.4 Outline 
 
 
Following the introduction of Chapter 1, Chapter 2 presents an overview of 

historical research on acoustic signal propagation in conduits. Chapter 3 includes the 

theoretical foundations on acoustic propagation in straight conduits with no side 

branches. Chapter 4 covers the modeling of attenuation in conduit networks such as those 

with side branch. In Chapter 5, the proposed model is developed and the approach for 

using the empirical data to validate the proposed model is presented. Chapter 6 gives the 

description of the test set up of the field and laboratory measurements. Chapter 7 presents 

the analysis of the results obtained through comparison between the predicted and 

measured data. It also includes the deductions made from the data analysis. Chapter 8 

concludes the dissertation and presents recommendations for future work to further refine 

the empirical model. 



CHAPTER 2: LITERATURE REVIEW 
 
 
2.1 Review of Research on Straight Acoustic Conduits 

 
 
The subject of acoustic propagation in cylindrical conduits has a long history. 

Stokes was the first to investigate the nature of the acoustic field by studying the internal 

friction of moving fluids (Stokes 1845). He investigated the absorption of acoustic energy 

in the gaseous medium inside the conduit due to viscosity. However, because he 

considered free propagation and not the forced propagation, he found the temporal 

absorption coefficient and not the spatial one. He worked with Claude-Louis Navier to 

present the Navier-Stokes equations that form the basis of most of the work on acoustics. 

The solution of these equations resulted in a lossy wave equation which describes 

exponential decay of pressure with distance for plane wave propagation. Following 

Stoke’s work, Helmholtz published his monumental work analyzing the physiological 

basis of sensations of tone for developing his theory of music (Helmholtz 1885). He 

invented the Helmholtz resonator to identify various frequencies of pure sine wave 

components of complex multi-tonal sounds. Kirchhoff published a benchmark work on 

absorption in a thermo-viscous gaseous medium (Kirchhoff 1883). He studied the effects 

of viscosity and heat conduction on acoustic propagation through rigid cylindrical 

conduits. Subsequent work was focused on understanding relationship between 

oscillatory pressure and volume velocity of fluid within a cylindrical conduit and finding 

accurate approximations to Kirchhoff’s exact results. Rayleigh was the first to obtain 

http://en.wikipedia.org/wiki/Helmholtz_resonance
http://en.wikipedia.org/wiki/Audio_frequency
http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Fourier_analysis#Applications_in_signal_processing
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useful approximations to Kirchhoff’s transcendental solution for the case of narrow tubes 

with an acoustic boundary layer larger than the radius of the conduit (Rayleigh 1896).  

Subsequent to Kirchhoff's derivation, only analytical approximations of his 

complete solution were used to estimate the propagation coefficients. Brown extended 

these approximations to frequencies where the acoustic boundary layer is on the order of 

or smaller than the radius of the conduit (Brown 1962). Shields et al. were the first to 

numerically solve the original Kirchhoff’s transcendental formulation (Shields, Lee et al. 

1965). Tijdeman determined that the attenuation inside tubes depended on four non-

dimensional parameters (Tijdeman 1975). These parameters included shear wavenumber 

(Stokes number), the reduced frequency, square root of Prandtl number and the ratio of 

specific heats of the fluid medium. Daniels was the first to evaluate the characteristic 

impedance and propagation constant for a cylindrical conduit in terms of Bessel’s 

function using electrical network theory (Daniels 1950). Benade extended the work of 

Daniels by using an electrical transmission line analogy to express the characteristic 

impedance, phase velocity and attenuation coefficient in exact and limiting forms for the 

case of large and small diameter conduits (Benade 1968). Keefe presented approximate 

expressions for characteristic impedance and transmission wavenumber for a gaseous 

fluid enclosed in a rigid conduit (Keefe 1984). He also modeled the tone holes in 

woodwind musical instruments using T-circuit sections comprising a series and shunt 

impedance arms for each tone hole whose values varied depending upon whether the tone 

hole was open or closed (Keefe 1982) (Nederveen, Jansen et al. 1998).  
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Another important aspect of research on acoustic propagation in conduits 

involved analyzing the reflections from an open end of the conduit. An approximate end 

correction value of 0.6 times the radius was found by Lord Rayleigh (Rayleigh 1896) . 

His results were experimentally modified by Blaikley (Blaikley 1879), Boehm (Boehm 

1910), Anderson and Ostensen (Andersen 1928) and Bait (Bait 1937). Levine and 

Schwinger proposed a rigorous and explicit solution to the problem of radiation of sound 

from the open end of an un-flanged conduit assuming plane wave propagation for various 

ranges of the product of wavenumber and the conduit radius (Levine and Schwinger 

1948). Their analysis was further refined in (Morse and Feshbach 1953) and (Noble 

1988). Zorumski studied the case of flanged ducts and proposed generalized expressions 

for radiation impedance and reflection coefficient that were applicable for higher order 

modes (Zorumski 1973).  

In many practical situations acoustic propagation parameters for conduits such as 

input impedance, normal reflection, attenuation and transmission coefficients and 

transmission loss cannot be determined analytically due to complex geometry of the 

conduit or the presence of mean flow. In such cases, experimental techniques were used 

to determine the propagation parameters of the conduits. A standing wave ratio (SWR) 

technique involving a traversing microphone was used to measure the standing wave 

pattern inside the conduit from which the required propagation parameters were deduced 

(ANSI/ASTM 1977). As this technique required operation at single frequency and a 

travelling microphone, it was time intensive and the minima of acoustic pressure could 

not be accurately located. Subsequently, methods for measuring reflection coefficient in 

conduits using the correlation function and the cross spectral density were reported in 
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(Ross and Seybert 1977; Seybert and Ross 1977; Johnston and Schmidt 1978; Seybert 

and Soenarko 1980). Chung and Blaser proposed a much simpler two microphone 

transfer function method to measure normal incident acoustic properties (Chung and 

Blaser 1980; Chung and Blaser 1980; Chung and Blaser 1980). Their method involved 

decomposing the incident and reflected components of the acoustic wave in the conduit 

from the simple transfer function relation between acoustic pressures at the two 

microphone locations (Hull 1992). Boden and Abom analyzed the errors on the two-

microphone method for measuring acoustic properties in a conduit (Boden and Abom 

1986). Chu presented modification to the two-microphone technique by proposing that by 

using a periodic pseudorandom sequence as the noise signal it was possible to measure 

the acoustic properties in conduits with a single microphone (Chu 1986; Chu 1986).  

2.2 Review of Research on Acoustic Conduit Networks 
 
 

In addition to the above highlighted work, there has been considerable effort to 

study networks of acoustic elements comprising straight conduits with side branches for 

acoustic filtering applications. Stewart, in a series of papers, proposed that acoustic filters 

could be modeled using lumped parameters as an analog of an electrical filter comprising 

a combination of electrical circuit elements (Stewart 1922; Stewart 1925; Stewart 1926). 

He presented an analytical expression for attenuation and phase coefficients to analyze 

the influence of a side branch upon acoustic transmission through a conduit (Stewart 

1924) (Stewart 1925). He also laid out a method for direct and absolute measurement of 

acoustic impedance of a side branch (Stewart 1926). Mason was instrumental in 

conducting rigorous mathematical analysis of propagation characteristics of conduit 

networks as acoustic filters (Mason 1927; Mason 1928; Mason 1930). The results of 
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Mason and Stewart were compared by Lindsay (Lindsay 1929) and further simplified by 

Irons (Irons 1931). The research conducted to support this dissertation builds upon 

Stewart’s approach to analyze the effect of side branches on sound propagation in a 

conduit. 

More recently, the acoustic filters have been studied in the context of noise 

reduction in modern buildings with centralized air conditioning systems. The research 

effort by Chen looked at the use of Helmholtz resonators to improve the acoustic 

transmission loss of a conduit (Chen, Chen et al. 1998). Enescu et al. looked at low 

frequency filtering characteristics of side branches by considering an acoustical tube with 

multiple side branches (Enescu 1999). Tang looked at the sound transmission 

characteristics of the T junction formed by a side branch and an infinitely long duct using 

a finite element based modeling approach (Tang 2004). 

The most recent work on analyzing acoustic signal propagation in conduit 

networks has been undertaken by the Pennine Water Group based at The Universities of 

Bradford and Sheffield in the UK. They approached the problem of characterizing in-pipe 

acoustic propagation in the presence of impedance mismatches through the use of mode 

matching technique in acoustic reflectometry (Horoshenkov 2003; Yin and Horoshenkov 

2005; Tolstoy, Horoshenkov et al. 2009). They also proposed an acoustic method for 

condition classification of live sewer networks using pattern recognition approach based 

on the “K-nearest neighbor classifier” method (Feng, Horoshenkov et al. 2012).  
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Having taken a look at the background work on acoustic propagation in conduit 

networks, the relevant theory to model acoustic propagation in conduit networks is 

presented in the next chapter.



CHAPTER 3: ACOUSTIC PROPAGATION IN CONDUITS 
 
 

3.1 Wave Propagation in Conduit Air Column 
 
 
The sound propagation in an infinitely long cylindrical conduit with radius a, as 

shown in Fig. 1, is governed by a linearized wave equation. This equation expressed in 

terms of velocity potential (𝚽) in cylindrical coordinates is given in (Dyer 1958) as: 

 
∇2𝚽 =  

1
𝑐2

 
𝜕2𝚽
𝜕𝑟2

 , 

where   ∇2=  
1
𝑟

 
𝜕
𝜕𝑟
�𝑟

𝜕
𝜕𝑟
� +

1
𝑟2

𝜕2

𝜕𝜑2 +  
𝜕2

𝜕𝑧2
 . 

(1)  

In (1), 𝚽(𝑹, 𝑟) is the velocity potential, c is the speed of sound and t is the time 

coordinate. R is a general space vector, which in the case of a cylindrical conduit is 

described by axial, radial and circumferential dimensions (z, r, φ). The sound source is 

assumed to be located at 𝑧 = 0. The sound pressure (p) and the sound particle velocity v 

 

 

Figure 1:  Cylindrical Conduit. 
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are related to the velocity potential by the following expressions where 𝜌0 is the density 

of the fluid medium in the conduit: 

 
𝑐 =  𝜌0

𝜕𝚽
𝜕𝑟

;  𝐯 =  −∇𝚽 . (2)  

In order to analyze the sound propagation in conduits, the solutions of (1) that 

obey the appropriate boundary conditions are desired. The general forms of the solutions 

to the wave equation are found by applying the method of separation of variables. In the 

case of a rigid walled, infinitely long circular conduit, and assuming a harmonic time 

dependence of velocity potential (single frequency, pure tone) with complex exponential 

representation (𝑒𝑗𝜔𝑡), in (1) the operator 𝜕
𝜕𝑡

 is replaced by jω and 𝜕
2

𝜕𝑡2
 is replaced by –ω2. 

The wave equation in (1) then becomes the Helmholtz equation given by (Dyer 1958): 

 
∇2𝚽 + �

𝜔
𝑐
�
2
𝚽 =  0 , 

∇2𝚽 + (𝑘)2𝚽 =  0 , 

(3)  

where,  𝑘 = 𝜔
𝑐
 is the wave number. The general solution of (3) found using the method of 

separation of variables for waves propagating away from the source in +z direction is a 

sum of all modes of oscillation given as: 

 
𝚽(𝐑,𝜔) =  � �𝐽𝑚(

∞

𝑛=1

∞

𝑚=0

𝛾𝑚𝑛𝑟) [𝐶𝑚𝑛(𝜔) cos𝛾𝜑)

+  𝐷𝑚𝑛(𝜔) sin𝛾𝜑)]𝑒𝑗𝑘𝑚𝑛𝑧 , 

(4)  

where  

   𝑘𝑚𝑛 = �(𝑘2 − 𝛾𝑚𝑛2 ) , (5)  

and for a hard walled conduit, 𝛾𝑚𝑛 is the nth root of the Bessel function of the first kind 

derivative 𝐽𝑚′  such that: 
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 𝐽𝑚′ (𝛾𝑚𝑛𝑎) =  0.    ∀ 𝛾,𝛾 = 0,1,2,3, … (6)  

The coefficients 𝐶𝑚𝑛 and 𝐷𝑚𝑛 in (4) are determined from the properties of the 

source and its match to the conduit. That determination is out of the scope of the present 

study and details can be found in (Dyer 1958).  

Analysis of wave propagation in circular conduits indicates that there are two 

possible conditions of the waves (Morse and Ingard 1968). First, when the wavelength is 

large compared to the radius of the conduit, only the direct wave propagates. It 

corresponds to the (0, 0) mode (plane wave) among an infinite number of modes (m,n). 

This plane wave mode is not affected by reflections off of the conduit walls and therefore 

has the lowest attenuation of any wave mode. The plane wave is non-dispersive as its 

phase speed is independent of the frequency of transmission and equals the speed of 

sound. The acoustic pressure disturbances in the plane wave do not suffer any change in 

their shapes because of their constant phases. Second, when the wavelength is small 

compared to the radius of the conduit, the wave propagation is best described using a 

multi-modal approach comprising a plane wave and an infinite number of other modes. 

The multi-modal wave can propagate in one of two possible ways. It can reflect more or 

less normally from the walls and focus into the center of the conduit. This corresponds to 

the modes with small m and large n. These modes suffer approximately double the 

attenuation due to reflections from the walls compared to the plane wave mode (Morse 

and Ingard 1968). Alternatively, for modes with large m and small n, the waves can move 

in a spiral path roughly parallel to the conduit walls with a multitude of radial nodes. 

These spiral modes cannot avoid reflections from the walls. Their energies are 

concentrated near the wall and have very small amplitudes close to the axis of the 
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conduit. These spiral-tangential modes, with energies clinging to the conduit walls, suffer 

quick absorption due to the boundary layer at the walls (Morse and Ingard 1968). 

Therefore, these modes do not persist outside the acoustic near field. 

From (5) the conditions for propagation of modes in circular conduits can be 

determined. It can be observed that the plane wave mode always propagates as the modal 

wavenumber  𝑘𝑚𝑛 = 𝑘. When the frequency is high enough to satisfy the condition 

(  𝑘𝑚𝑛 > 0), the higher order modes also propagate. At those modal frequencies for 

which the propagation condition is not satisfied i.e. (  𝑘𝑚𝑛 < 0), the wave number ( 𝑘𝑚𝑛) 

becomes purely imaginary and the modes attenuate axially at an exponential rate. The 

axially decaying modes are called the evanescent modes and the frequency at which this 

occurs is called the cut-off frequency. For a propagation mode (mn), the cut-off 

frequency and the mode wave number are related. The mathematical expressions for the 

two as given in (Kinsler, Frey et al. 2000) are: 

 𝑓𝑚𝑛 =  
𝑐

2𝑎
�
𝛾𝑚𝑛
𝜋
�, 

𝑘𝑚𝑛 = 𝑘 �1 −  �
𝑓𝑚𝑛
𝑓
�
2

�
 

1
2

. 

(7)  

Values of zeros of the Bessel function of the first kind derivative (𝛾𝑚𝑛) and cut-off 

frequencies (𝑓𝑚𝑛) for first ten modes of 0.1 m diameter conduits are given in Table 1. The 

speed of sound (c) in the conduit is taken as 343 m/s. 

The phase speed (cp) of an acoustic mode is the speed at which a surface of 

constant phase appears to propagate along the z-axis of the conduit. The phase speed is 

dependent on the cut-off frequency of the mode and is greater than speed of sound in a 

conduit. Therefore, in case of modal propagation, the acoustic wave inside the conduit 
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travels axially with continual reflections off of the walls. Thus, the group speed (cg) at 

which the wave energy moves in the z-direction is the fraction of the speed of sound 

along the conduit axis z. In case of a plane wave, the phase and group speeds are roughly 

equal to the speed of sound for the fluid in the conduit (for air, at 20 Celsius it is 343 

m/s). The expressions for phase speed and group speed of a particular mode can be 

observed from (5) and are given by: 

 
𝑐𝑝 =

𝜔
𝑘𝑚𝑛

=  𝑐�1 −  �
𝑓𝑚𝑛
𝑓
�
2

�
 

−0.5

;  𝑐𝑔 =  𝑐��1 −  �
𝑓𝑚𝑛
𝑓
�
2

� . (8)  

The phase and group speeds are plotted for the plane wave and first three modes 

in a 0.1 m diameter conduit and are given in Figs. 2 and 3. 

As stated briefly earlier, the major cause of attenuation of the higher order modes 

in conduits is the thermo-viscous losses due to the boundary layer at the conduit walls. 

This aspect has been addressed in detail by Beatty (Beatty Jr 1950) and Yin and 

Horoshenkov (Yin and Horoshenkov 2005). Bruneaua et al. have presented an analytical 

solution that describes the attenuation coefficient of higher order modes in the circular 

conduits due to non-zero wall admittance of the walls (Bruneaua, Bruneaua et al. 1987). 

 

Table 1: First ten values of 𝛾𝑚𝑛 and 𝑓𝑚𝑛 . 

Mode (m,n) 1,1 2,1 0,2 3,1 4,1 1,2 5,1 2,2 0,3 3,2 

𝛾𝑚𝑛 1.84 3.05 3.83 4.20 5.32 5.33 6.41 6.71 7.02 8.02 

𝑓𝑚𝑛(kHz) 1.97 3.25 4.08 4.48 5.67 5.68 6.84 7.16 7.48 8.55 
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They considered rigid walled conduits with dimensions of the same order of magnitude 

or greater than the acoustic wavelength. 

The transverse dimensions of the duct are assumed to be greater than the 

boundary layer thickness, but small enough so that wall losses are preponderant. The 

attenuation coefficient is then described in terms of the boundary specific admittance for 

the (m,n) mode and is given as the imaginary part of the complex axial wave 

number 𝑘𝑚𝑛. The modal attenuation coefficient is evaluated by:  

 
𝛼𝑚𝑛 =  ± 

1
√2

 �– (𝐴𝑚𝑛 +  𝐼𝑚𝑛)

+  �(𝐴𝑚𝑛 +  𝐼𝑚𝑛)2 + 𝑅𝑚𝑛2   �
2

. 

(9)  

The values of 𝐼𝑚𝑛 , 𝑅𝑚𝑛 and 𝐴𝑚𝑛 can be found in (Bruneaua, Bruneaua et al. 1987). For 

the plane wave mode, the modal attenuation coefficient in terms of wall admittance 

parameters 𝜀𝑣 (viscosity parameter) and 𝜀𝑡 (thermal conduction parameter) is given in 

(Bruneaua, Bruneaua et al. 1987) as: 

 
Figure 2. Phase speed as function of frequency. 

 

 
Figure 3. Group speed as a function of frequency. 
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𝛼00 =  ±
ℜ (𝜀𝑣 + 𝜀𝑡)

𝑎
. (10)  

The plot of attenuation coefficients of plane wave and first three higher order modes for a 

circular rigid walled conduit of 0.1 m diameter computed from (9) and (10) are given in 

Fig. 4.  

Two other important points regarding propagation of modes in hard walled 

circular conduits need to be highlighted here. In a study by McSkimin, the Helmholtz 

wave equation for a circular conduit has been solved using the method of separation of 

variables (McSkimin 1948). Based on his experiments of sound propagation through a 

circular conduit delay line, it was established that, at a receiving microphone, the 

contribution of higher order modes is very small except when it is in a very close 

proximity to the source (at ≈ 𝑧 < 𝜆). In close proximity to the source, variations in the 

 

 
Figure 4. Attenuation coefficient vs. frequency for plane wave and first three higher order modes.  
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signal pressure due to higher order modes become pronounced as the microphone is 

moved over a radial distance of r = a, i.e. from the centerline of the conduit to the wall. 

When close to the source, the prediction of acoustic pressure at the receiver by summing 

the pressure contained in all modes as highlighted by (4) gives results only slightly 

greater (about 1.6 dB) than those given by just considering the fundamental plane wave 

mode. Therefore, when measuring the acoustic signal away from the source, it is 

sufficient to consider the pressure contribution from the plane wave mode only. The 

accuracy of the pressure measurements can be enhanced by placing the receiving 

microphone as close to the centerline of the conduit as is possible. A similar conclusion is 

also presented by Dyer in her study on analyzing the measurement of noise in ventilation 

ducts (Dyer 1958). Dyer’s study also establishes that the modes of propagation in the 

circular conduits are statistically independent to the extent that the cross correlation of 

different modes is zero. Therefore, for the purposes of this study, measuring the pressure 

in the principal plane wave mode is considered sufficient to predict pressure at the 

receiving microphone away from the source within a frequency range of 50 Hz to 10.0 

kHz for a 0.2 m and 0.1 m diameter circular rigid walled conduits. Further analysis in this 

study is limited to considering the plane wave only, as the source of maximum pressure 

transfer to the receiving microphone away from the source. The next section presents 

analysis of plane wave propagation in cylindrical conduits.  

3.2 Plane Waves in Cylindrical Conduits 
 
 

As described in (Kinsler, Frey et al. 2000) under the assumption that only the 

plane waves are propagating in an infinitely long rigid lossless cylindrical conduit, (1) 
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reduces to a linear, one dimensional, homogenous, constant coefficient partial differential 

equation given as: 

 𝜕2𝑐
𝜕𝑧2

=  
1
𝑐2

 
𝜕2𝑐
𝜕𝑟2

 . (11)  

The general solution of (11) for a plane wave travelling in +z direction with sinusoidal 

time dependence and having initial amplitude 𝐶0 is given by: 

 𝑃(𝑧, 𝑟) =  𝐶0𝑒𝑗(𝜔𝑡−𝑘𝑧). (12)  

In order to determine the volume velocity and the characteristic acoustic impedance of 

the conduit, use is made of Newton’s second law for one-dimensional plane waves in a 

conduit given by: 

 𝜕𝑐
𝜕𝑧

=  −
𝜌0
𝑆
𝜕𝑈
𝜕𝑟

 , (13)  

where S is the circular cross-sectional area of the conduit and equals 𝜋𝑎2. The volume 

velocity (U) and the characteristic acoustic impedance (Zc) of the conduit are given by the 

following relationships: 

 
𝑈(𝑧, 𝑟) =  

𝑆
𝜌0𝑐

 𝑃(𝑧, 𝑟) 

𝑍𝑐 =  
𝑃(𝑧, 𝑟)
𝑈(𝑧, 𝑟)

=  
𝜌0𝑐
𝑆

. 

(14)  

 Practical conduits are not infinite in length as is the assumption for (11) from 

which the above relationships are derived. In cases where a plane wave travelling in a +z 

direction through a finite length conduit encounters a discontinuity such as an open end, 

part of the wave is reflected back which travels in a -z direction. Therefore, for a finite 

length conduit, wave equation in (11) has a general solution that represents superposition 



25 
of a wave propagating away from the source and a reflected wave. That solution has the 

form: 

 𝑃(𝑧, 𝑟) =  �𝐶1𝑒𝑗(𝜔𝑡−𝑘𝑧) + 𝐶2𝑒𝑗(𝜔𝑡+𝑘𝑧)�, (15)  

where 𝐶1 and 𝐶2 are the pressure amplitudes of the wave propagating away from the 

source and reflected waves. Similarly the volume velocity can be calculated from (15) 

and (14) as: 

 
𝑈(𝑧, 𝑟) = �

1
𝑍𝑐
� �𝐶1𝑒𝑗(𝜔𝑡−𝑘𝑧) − 𝐶2𝑒𝑗(𝜔𝑡+𝑘𝑧)�. (16)  

 For a cylindrical conduit of length L terminated at z=L by load impedance (ZL), 

the ratio of complex amplitudes 𝐶2/𝐶1 is termed as the complex pressure reflection 

coefficient (R) and is given by: 

 
𝑅 =

𝐶2
𝐶1

=  𝑒2𝑗𝑘𝐿 �
𝑍𝐿 −  𝑍𝑐
𝑍𝐿 +  𝑍𝑐

�. (17)  

 For an infinite cylindrical conduit, the load impedance (ZL) equals the 

characteristic impedance 𝑍𝑐 and hence there is no reflection. For a finite length rigid 

conduit, however, R depends on the termination condition of the conduit. When a conduit 

is open at one end, the load impedance becomes equal to the radiation impedance and 

therefore part of the acoustic energy is reflected back into the conduit. The effect of these 

reflections has been analyzed in detail for flanged and unflanged conduits. For a conduit 

flanged at an open end, the reflections have been addressed in detail in (Rayleigh 1896), 

(Olson 1947) and (Fletcher and Rossing 1998). For unflanged conduits, when the 

thickness of the conduit is small compared to the acoustic wavelength, the effect of 

reflections due to the open end has been analyzed in (Levine and Schwinger 1948). This 

aspect is addressed in detail in section 3.5.  
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 The input impedance (Zin) of the air column in a conduit is defined as the ratio of 

pressure and volume velocity at the input end (z=0). Assuming lossless propagation over 

the length of air column in the conduit, it is given by (Munjal 1987): 

 
 𝑍𝑖𝑛 =  

𝑃(0, 𝑟)
𝑈(0, 𝑟)

= 𝑍𝑐 �
𝐶1 + 𝐶2 
𝐶1 − 𝐶2

� = 𝑍𝑐  �
𝑍𝐿 cos 𝑘𝑍 + 𝑗𝑍𝑐 sin 𝑘𝑍
𝑗𝑍𝐿 sin𝑘𝑍 +  𝑍𝑐 cos 𝑘𝑍

�. (18)  

 

 The input impedance and the reflection coefficient (R) are related by the 

following expression: 

 
𝑅 =  

𝑍𝑖𝑛 −  𝑍𝑐
𝑍𝑖𝑛 +  𝑍𝑐

;  𝑍𝑖𝑛 = 𝑍𝑐  
1 + 𝑅
1 − 𝑅

 (19)  

 The input impedance provides very useful information about the frequency 

response of the acoustic behavior of a conduit excited with a sinusoidal signal. It enables 

prediction of the response of the conduit such that the sharper and stronger peaks in the 

input impedance plots indicate frequencies that can be easily transmitted through the 

conduit. To demonstrate the usefulness of the expression in (18), the response of a 

conduit can now be determined for several ideal load impedance conditions. With a 

conduit rigidly closed at the terminal end, the load impedance is 𝑍𝐿 =  ∞, and (18) 

reduces to: 

 𝑍𝑖𝑛 =  −𝑗𝑍𝑐 cot 𝑘𝑍. (20)  

The important feature of this expression is that it is entirely imaginary indicating that the 

acoustic energy does not leave the conduit. This is consistent with the physical situation 

where a rigidly closed end does not allow radiation out of the conduit. A plot of the 

magnitude of input impedance normalized by 𝑍𝑐 versus parameter kL is given in Fig. 5. 
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Alternatively, when the conduit is ideally open at one end, it implies that  𝑍𝐿 is equal to 

zero. This situation is physically not realizable as a terminating medium with some finite 

 𝑍𝐿 always exists. This condition reduces (18) to: 

 𝑍𝑖𝑛 =  𝑗𝑍𝑐 tan𝑘𝑍. (21)  

A plot of the magnitude of input impedance normalized by 𝑍𝑐 versus parameter kL for 

this case is given in Fig. 6. It can be observed that the impedance peaks in Fig. 5 occur at 

𝑘𝑍 =  𝛾𝜋. Substituting 𝑘 =  2𝜋𝑓/𝑐, the resonance peaks for a conduit closed at one end 

are found to be at: 

 𝑓𝑛 =  
𝛾𝑐
2𝑍

 (22)  

 
 
 

 

 

Figure 5:  Normalized |𝑍𝑖𝑛| vs. kL for 𝑍𝐿 =  ∞. 
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Figure 6:  Normalized |𝑍𝑖𝑛| vs. kL for 𝑍𝐿 =  0. 

 

 
 
 
 For the case in Fig. 6 of an open ended conduit, the resonances occur at 𝑘𝑍 =

 𝛾𝜋/2. Therefore the general expression for resonances is: 

 
𝑓𝑛 =  

(2𝛾 − 1)𝑐
4𝑍

 (23)  

 

 Having analyzed the resonances in conduits with a closed and an open end, it is 

important to consider that the expression for input impedance of a conduit in (18), is of 

the same form as that for an electrical transmission line. The next section presents an 

approach in which the acoustic conduit is modeled using a two port analysis akin to 

electrical transmission lines.  
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3.3 Two Port Analyses of Plane Waves in a Conduit  
 
 
 There has been extensive work on analyzing acoustic wave propagation in 

conduits similar to electrical transmission line networks, using ‘two port’ analysis with 

transmission matrices (Keefe 1982; Okamoto, Boden et al. 1994). While analyzing 

acoustic conduit using this approach, it is considered that the pressure is analogous to the 

voltage and the volume velocity is analog of the current in electrical transmission line. 

The essence of the approach is to break the system being analyzed into discrete elements 

which can be modeled by using basic techniques in acoustics.  

 The analysis is accomplished by taking two state variables, acoustic pressure (P) 

and volume velocity (U) at the input and output sides of the conduit of length L shown in  

Fig. 7 and establishing a relationship between them in terms of a 2 × 2 matrix as given in 

(Munjal 1987): 

 �𝑃𝑖𝑈𝑖
� =  �𝐴11 𝐴12

𝐴21 𝐴22
�  �𝑃0𝑈0

� (24)  

Where 𝑃𝑖, 𝑃0, 𝑈𝑖 and 𝑈0 are the sound pressures and volume velocities at the input and 

output end of the conduit in Fig. 7. The four pole parameters of the transmission matrix 

(T) can be found by realizing that: 

 

P0 U0Pi Ui

Zin = Pi / Ui ZL = P0 / U0

11 12

21 22

A A
A A
 
 
 

 
Figure 7: An acoustic conduit as a two port element. 
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 𝐴11 =  𝑃𝑖

𝑃0
�
𝑈0=0

;  𝐴12 =  𝑃𝑖
𝑈0
�
𝑃0=0

; 

𝐴21 =  
𝑈𝑖
𝑃0
�
𝑈0=0

 ;  𝐴22 =  
𝑈𝑖
𝑈0
�
𝑃0=0

. 
(25)  

 

 The values of these four pole parameters can be derived using relationships given 

in (15) and (16). That derivation is given in (Munjal 1987) and is not reproduced here. 

Using that work, the transmission matrix parameters for the case of a lossless conduit can 

be given as: 

 𝐴11 = cos(𝑘𝑍);  𝐴12 =  𝑗𝑍𝑐 sin(𝑘𝑍) ; 

𝐴21 =  
𝑗
𝑍𝑐

sin(𝑘𝑍) ;  𝐴22 =  cos (𝑘𝑍) 
(26)  

 

 Using the above approach, a cylindrical conduit section can be represented by its 

transmission matrix. It also becomes apparent that description of conduit sections in 

terms of their four-pole transmission matrices is convenient because the output of one 

section is the input of the next section and therefore, the overall transmission matrix of a 

cascaded set of conduit sections can be found by multiplication of transmission matrices 

of each section in cascade. For a cascade of n cylindrical sections, the input end pressure 

and volume velocity can be found by:  

 

 
�
𝑃𝑖1

𝑈𝑖1
� =  �𝐴11

1 𝐴121

𝐴211 𝐴221
�  �𝐴11

2 𝐴122

𝐴212 𝐴222
�… . �𝐴11

𝑛 𝐴12𝑛
𝐴21𝑛 𝐴22𝑛

� �
𝑃0𝑛

𝑈0𝑛
� 

�𝑃𝑖𝑈𝑖
� = �𝑇11 𝑇12

𝑇21 𝑇22
� �
𝑃0𝑛

𝑈0𝑛
� 

(27)  
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where 

 
�𝑇11 𝑇12
𝑇21 𝑇22

� =  ��𝐴11
𝑚 𝐴12𝑚

𝐴21𝑚 𝐴22𝑚
�

𝑛

𝑚=1

 (28)  

By comparing (24) with (18) an expression can be found for the 𝑍𝑖𝑛 of a conduit section 

such that: 

 
𝑍𝑖𝑛 =  

𝐴12 + 𝐴11𝑍𝐿 
𝐴22 +  𝐴21𝑍𝐿

 (29)  

The relationship in (29) can be applied to a system of cascaded conduits to find the 

overall 𝑍𝑖𝑛 of the cascade.  

 The above analysis of a conduit section and cascade of sections has assumed that 

the conduit is lossless. In practice, however, losses due to viscous drag and heat 

conduction in the boundary layer of a conduit cause deviations from ideal behavior. 

These losses due to viscous and thermal boundary layers in a conduit are addressed in the 

next section. 

3.4 Effects of the Boundary Layer on Plane Waves in Conduits  
 
 

In a constant cross section conduit, in addition to the losses at the boundary layer 

due to thermal conduction and viscosity, friction along the conduit walls also decelerates 

the moving fluid particles and reduces their kinetic energy. The transfer of thermal 

energy between the fluid medium and conduit walls violates the adiabatic character of 

sound waves thereby decreasing the potential energy of moving particles (Benade 1968). 

These energy losses occur within a thin boundary layer along the conduit walls. The 

parameter that governs the viscous losses at the boundary layer is known as viscous layer 

thickness or skin depth ( 𝑑𝑣). The thermal layer thickness ( 𝑑ℎ) controls the losses due to 
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heat conduction at the boundary walls. The expressions for frequency dependent viscous 

and thermal layer skin depths along with their approximations for air at standard 

conditions are given by (Kinsler, Frey et al. 2000) and (Benade 1968): 

 
𝑑𝑣 =  �

2𝜂
𝜔𝜌0

= 0.21 × 10−2 𝑓−0.5  (𝛾) 

𝑑ℎ =  �
2𝜅

𝐶𝑝𝜔𝜌0
=  0.25 × 10−2 𝑓−0.5  (𝛾), 

(30)  

where 𝑓 is frequency in Hz, 𝜌0 is the density of the medium, 𝜂 is the shear viscosity, 𝜅 is 

thermal conductivity and 𝐶𝑝 is the specific heat of air at constant pressure. The losses due 

to friction at the boundary layer are characterized by a parameter 𝑟𝑣 which is the ratio of 

conduit radius (a) to viscous boundary layer thickness (𝑑𝑣): 

 𝑟𝑣 = 𝑎 × (𝜔𝜌0 𝜂⁄ )0.5. (31)  

 

The losses due to thermal conduction are characterized by a parameter 𝑟𝑡 which 

equals: 

 𝑟𝑡 = 𝑎 × �𝐶𝑝𝜔𝜌0 𝜅⁄ �
0.5

. (32)  

 Benade has provided the values of molecular constants and their combinations 

evaluated at a temperature of 26.85°C. He also stated the approximations to the values of 

𝑟𝑣 and 𝑟𝑡 which are given as: 

 

 𝑟𝑣 = 632.8 𝑎 𝑓0.5(1 − 0.0029 ∆𝑇)  (33)  
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 and  

 𝑟𝑡 = 532.2 𝑎 𝑓0.5(1 − 0.0031 ∆𝑇), (34)  

where ∆𝑇 is deviation of temperature in degree Celsius from 26.85°C.  

 The plots of 𝑑𝑣, 𝑑ℎ, 𝑟𝑣 and 𝑟𝑡 for a 0.1 m diameter conduit at 15°C computed 

using (30), (33) and (34) are given in Figs. 8 and 9. It is evident from the plots that at 

frequencies greater than 2.0 kHz the smaller viscous and thermal layer depths result in 

loss of energy in the acoustic wave due to surface friction and heat conduction at the 

conduit walls. The effect of losses discussed above is included in the wave equation for a 

plane wave given in (12) by rewriting the wave number (k) as a complex number, 

Γ = 𝛽 − 𝑗𝛼, where 𝛽 is the phase coefficient equal to 𝜔 𝑐𝑝⁄  and 𝛼 is the attenuation 

coefficient per unit length. This change makes the wave equation in (12) applicable to the 

lossy conduits. The modified wave equation is then given as: 

 𝑃(𝑧, 𝑟) =  𝐶0 𝑒−𝛼𝑧 𝑒𝑗(𝜔𝑡−𝛽𝑧) (35)  

 The separation of complex wave number (Γ) into its real and imaginary parts 

shows in (35) that the pressure amplitude decays by  𝑒−1 in a distance 𝛼−1meters. The 

reduction of pressure amplitude by  𝑒−1 corresponds to a power reduction of 8.686 dB, 

 
Figure 8: Viscous and thermal skin depths. 

 

 
Figure 9: Dimensionless parameters 𝑟𝑣  and 𝑟𝑡 . 
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therefore, the power attenuation in decibels per meter is given by 8.686 ×  𝛼. The 

pressure reduction due to thermo-viscous losses at the boundary layer also affects the 

phase speed of the plane wave. The expressions for phase speed and attenuation 

coefficient (𝛼) for large 𝑟 parameter values have been approximated by Keefe [Keefe – 

1984] in terms of a dimensionless parameter 𝑟𝑣 , 𝛾 the ratio (𝐶𝑝/𝐶𝑣) of specific heat at 

constant pressure (𝐶𝑝) to specific heat at constant volume (𝐶𝑣) and Prandtl number (𝑃𝑟) 

given by 𝐶𝑝𝜂 𝜅⁄ . At 26.85°C, the Prandtl number for air is 0.841 and 𝛾 has a value of 

1.40. The expressions for phase speed (𝑐𝑝) and attenuation coefficient (𝛼) evaluated by 

Keefe are: 

 

 𝑐𝑝−1 =  
1
𝑐

 �1 +  �
1

𝑟𝑣√2
��1 +

𝛾 − 1
�𝑃𝑟

�

−  �
1

𝑟𝑣3 √2
� �

7
8

+
𝛾 − 1
�𝑃𝑟

−
1
2
�
𝛾 − 1
𝑃𝑟

� −
1
8
�
𝛾 − 1
(𝑃𝑟)1.5�

−
1
2
�
𝛾 − 1
�𝑃𝑟

�
2

+
1
2
�
𝛾 − 1
(𝑃𝑟)1.5�

2

+
1
2

 
(𝛾 − 1)2

(𝑃𝑟)1.5 +
1
2

 �
𝛾 − 1
�𝑃𝑟

�
3

�� 

(36)  

and  

 
𝛼 =  

𝜔
𝑐

 � �
1

𝑟𝑣√2
��1 +

𝛾 − 1
�𝑃𝑟

� +  𝑟𝑣−2 �1 +
𝛾 − 1
�𝑃𝑟

−
1
2
�
𝛾 − 1
𝑃𝑟

� −
1
2
�
𝛾 − 1
�𝑃𝑟

�
2

�

+  �
1

𝑟𝑣3 √2
� �
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�𝑃𝑟

−
1
2
�
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� −
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𝛾 − 1
�𝑃𝑟
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(37)  

For air at 26.85°C and 𝑟𝑣 > 2, the phase speed and attenuation coefficient have been 

approximated as: 
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 𝑐𝑝−1 =  
1
𝑐

 �1 +  
1.045
𝑟𝑣

� (38)  

and  

 
𝛼 =  

𝜔
𝑐
�

1.045
𝑟𝑣

+
1.080
𝑟𝑣2

+
0.750
𝑟𝑣3

�.  (39)  

Based on assuming an isothermal wall of the conduit, Keefe also approximated the value 

of the complex characteristic impedance of the conduit 𝑍𝑐′ . He presented a simplified 

expression for 𝑍𝑐′  of air at 26.85°C and 𝑟𝑣 > 2, that can be used in engineering 

applications without significant loss of accuracy: 

 
ℜ(𝑍𝑐′) =  𝑍𝑐 �1 +  

0.369
𝑟𝑣

� 

−ℑ(𝑍𝑐′) =  𝑍𝑐 �
0.369
𝑟𝑣

+
1.149
𝑟𝑣2

+
0.303
𝑟𝑣3

� 

(40)  

 
 
 

 
Figure 10: Attenuation coefficient (𝛼) vs. 

frequency. 

 

 
Figure 11: Phase speed (𝑐𝑝) normalized to speed of 

sound (c) vs. frequency. 
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Figs. 10 and 11 show the attenuation coefficient for a 0.1 m diameter conduit and ratio of 

phase velocity to the speed of sound computed at 15°C. Fig. 12 shows the ratio 𝑍𝑐′/𝑍𝑐 for 

a 0.1 m diameter conduit. The density of air has been taken as 1.21 kg/m3. It can be seen 

from the plots that the phase speed is almost equal to the speed of sound for a plane wave 

and 𝑍𝑐′  is also very close to 𝑍𝑐. The attenuation coefficient increases due to wall friction 

and thermal conduction losses at the walls as the thickness of viscous and thermal 

boundary layers decreases.  

 It is also to be considered that these losses have been evaluated under the 

assumption that conduit walls remain isothermal during the oscillatory cycle. However, 

this ideal condition does not prevail in practical situations as localized heating of fluid 

transfers heat to the inner walls of conduit. As any conduit has a finite capacity to absorb 

heat, a local rise in temperature takes place at the conduit wall. This decreases the 

thermal gradients in the boundary layer of the fluid and the heat conduction losses are 

somewhat reduced compared to the ideal isothermal wall condition. Franken et al. have 

 

 

Figure 12:  Ratio 𝑍𝑐′/𝑍𝑐 vs. frequency.  
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analyzed the case of sound propagation in conduits with non-isothermal walls (Franken, 

Clement et al. 1981). Keefe has also analyzed this aspect and has shown that the effect of 

non-isothermal walls can be incorporated in (36) and (37) by substituting 𝛾𝑒 for 𝛾 such 

that: 

 
𝛾𝑒 =  

𝛾 − 1
1 + 𝜖𝑤

+ 1. (41)  

The dimensionless parameter 𝜖𝑤 defines the oscillatory heat transfer at the solid-gas 

interface and is given by:  

 
𝜖𝑤 =  �

𝐶𝑝𝜅𝜌0
𝜌𝑤𝐶𝑤𝜅𝑤

�
1
2
 (42)  

where 𝜌𝑤, 𝐶𝑤 and 𝜅𝑤 are mass density, specific heat and thermal conductivity of the 

conduit wall material. Keefe has also concluded that in the case of air as the fluid 

medium in a PVC conduit, the parameter 𝜖𝑤 is on the order of 0.01 (Keefe 1984) and 

hence, its effect on attenuation coefficient in (37) is negligibly small. Therefore, for the 

purposes of this study effect of non-isothermal conduit walls is not considered any 

further.  

The lossy conduit assumption with complex propagation wave number Γ and 

characteristic impedance 𝑍𝑐′ , also results in modifications to the expressions of four pole 

parameters given in (26). The new set of the transmission matrix parameters is given in 

(Munjal 1987) (Shi 2009) by: 

 𝐴11 = cos ℎ(Γ𝑍);  𝐴12 =  𝑗𝑍𝑐′ sinh(Γ𝑍) ; 

𝐴21 =  
𝑗
𝑍𝑐′

sinh(Γ𝑍) ;  𝐴22 = cosh(Γ𝑍). 
(43)  
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 With the modified parameters, the value of frequency dependent input impedance 

can be computed for a lossy conduit using the expression in (29). However, for finding 

the input impedance, it is important to consider the reflections from the open end of a 

conduit and the effect of frequency dependent radiation impedance which acts as a load 

impedance. This aspect is analyzed in the next section. 

3.5 Acoustic Radiation from Open Ends in Conduits 
 
 

The discussion so far has been principally concerned with the propagation of 

sound waves within finite length conduits that are open at one end. For such cases the 

load impedance at the open end has been assumed to be given by the ideal, low-frequency 

approximation that is  𝑍𝐿 = 0. In order for the sound waves to be heard, however, it is 

necessary that they escape from the open end and propagate into the surrounding 

environment. The fact that acoustic waves can be heard originating from a cylindrical 

conduit with an open end indicates that the assumption of  𝑍𝐿 being equal to 0 is 

practically not valid. The surrounding atmosphere presents finite impedance, known as 

radiation impedance, to the acoustic energy coming out of the open end.  

For the purpose of this analysis, consider that one end of the conduit at z = L is 

open to free space and the other end has an acoustic source driving the sound energy into 

the conduit. Assuming a plane wave as the dominant mode of propagation within the 

conduit and neglecting the non-uniformity of volume velocity and pressure distribution 

across the open end, it can be assumed that the air at the open end acts like a piston, 

radiating sound out into the open as well as reflecting some back towards the driving 

source at the end z=0 (Kinsler, Frey et al. 2000). In the long wavelength limit (𝑘𝑎 ≪ 1), 

a strong standing wave builds up inside the conduit (Levine and Schwinger 1948). 
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However, as the driving frequency is increased more energy leaks out of the open end. 

Therefore, the load impedance at the open end, which is radiation impedance, can be 

defined as the ratio of mean pressure at z = L to the mean axial velocity. This impedance 

is complex, its reactive part produces reflections back to the driving source and its 

resistive part represents energy being radiated out of the open end (Morse and Ingard 

1968).  

The conduits considered in present study have open ends with no flare (such as a 

horn) at the end of the fluid column that can transform the load impedance to match it 

with that of the source to achieve maximum radiation and reduce the reflections. It is 

therefore, necessary to determine the radiation characteristics of the open end. The 

derivation of complex radiation impedance terminated in a flanged or an un-flanged open 

end has been the subject of many researchers. The first results were obtained by 

considering a circular piston set in an infinite wall (Olson 1947; Morse and Ingard 1968). 

For the case of a conduit terminating in an infinite flange the approximation for radiation 

impedance was given by (Rayleigh 1896) as: 

 𝑍𝑟 =  𝑅𝑟 + 𝑗𝑋𝑟 

𝑅𝑟 =
𝑐
𝜋𝑎2

 �
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22.  42 . 6
+  

(2𝑘𝑎)6
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𝜋

(2𝑘𝑎)
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(2𝑘𝑎)
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−
(2𝑘𝑎)

32.  52. 7

5
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(𝑘𝑎)7

32.  52 . 72. 9
−⋯� 

(44)  

The radiation impedance 𝑍𝑟 is also related to the frequency dependent reflection 

coefficient R and the characteristic impedance of the conduit at the open end by the 

relationship given in (Munjal 1987): 
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𝑍𝑟 =  
𝑐
𝜋𝑎2

�
1 + 𝑅
1 − 𝑅

�  

𝑅 =  �
𝑍𝑟 + 𝑐

𝜋𝑎2

𝑍𝑟 −  𝑐
𝜋𝑎2

� 

(45)  

and the reflection coefficient at the open end is given by: 

 𝑅 =  −|𝑅| 𝑒2𝑗𝑘𝐿. (46)  

 For the case of an unflanged conduit with an open end, Levine and Schwinger 

have found a rigorous and explicit solution to the problem of sound radiation assuming 

axial symmetry of the pressure excitation by solving an integral equation using Wiener-

Hopf technique (Levine and Schwinger 1948). They determined that within the conduit 

the velocity potential was same as if the conduit was lengthened by a certain fraction of 

its radius as shown in Fig. 13. The conduit behaves as if it had a length of 𝑍 +  𝛿𝑙 with 

small purely real load impedance (𝑅𝑟).  

 
 
 
The length correction is given by: 

 
𝛿𝑙 =  

1
𝑘

 tan−1
𝑍𝑟
𝑗𝑍𝑐′

 . (47)  

 

Geometric Length (L)

Acoustical Length (L + δl)

δl

 
Figure 13: Geometric and acoustical length of a conduit.  
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The length correction, in case of lower frequencies, has been determined for a flanged 

conduit to be 0.85 times the radius and for an unflanged conduit 0.6133 times the radius 

of conduit. Due to the frequency dependence of the length correction, the resonance 

peaks inside the conduit get broader and less pronounced with the increase in frequency. 

This is apparent through comparison of input impedance plots for lossless and lossy 

conduit cases with radiation impedance of the open end as the load impedance.  

As the determination of radiation impedance using the integral formulations of 

Raleigh and Levine and Schwinger are very complex, there have been many attempts at 

presenting approximations for computing the radiation impedance and reflection 

coefficient by putting some restrictions on the parameter ka (product of free space wave 

number and the conduit radius), for example in (Norris and Sheng 1989; Dalmont 2001). 

However, these approximations did not completely fulfill the conditions for a physically 

representative model e.g. the hermitian property of the reflection coefficient and causality 

of the impulse response of the reflection coefficient. This study uses the approximate 

formula for reflection coefficient based on accurate analytical or numerical fitting for an 

unflanged conduit given by Silva (Silva, Guillemain et al. 2009):  

 𝑅(𝜔) =  −�1 −
𝑗𝑘𝑎
𝜇′
�
−(𝜈+1)

 (48)  

The values of parameter 𝜇′ and 𝜈 for flanged and unflanged cases are presented in Table. 

2. 

This model shows good agreement with that given by Levine and Schwinger for 

unflanged conduits in the low frequency limit (ka < 2) and by Zorumski for flanged 

conduits (Zorumski 1973). The plot of magnitude of R computed from (48) for a 0.1 m 

flanged and unflanged conduit corresponding to a frequency range between 50 Hz to 1.95 
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kHz (0.046 < ka < 1.82) is given in Fig. 14. Comparison between the computed reflection 

coefficient from (46) and (48) is given in Fig. 15.  

It can be observed that both the approximations shown in Fig. 15 demonstrate 

good agreement for values below 1.42 kHz (ka = 1.32). At frequencies higher than this 

the deviation between the approximations increases. At those frequencies, approximation 

by Rayleigh gives more accurate results. The plot in Fig. 16 shows real and imaginary 

parts of the radiation impedance computed from (45) using the approximation given in 

(44). It indicates that for a 0.1 m diameter conduit, the imaginary part of the 𝑍𝑟 remains  

Parameters Unflanged conduit Flanged Conduit 

𝜇′ 1.226 0.8216 

𝜈 0.504 0.350 

  Table 2: Values of parameters 𝜇′ and 𝜈 

 

Figure 14: Reflection Coefficient magnitude 
computed for flanged and unflanged conduits using 

(48) and Table 2.  

 

 

Figure 15: Comparison between |R| from 
approximations in (46) and (48). 
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dominant at frequencies less than 1.3 kHz. For these frequencies the magnitude of the 

reflection dominates the magnification of the radiation from the open end. However 

beyond 1.3 kHz, the real part of 𝑍𝑟 becomes dominant which explains the greater 

radiation and lower reflection coefficient for frequencies higher than 1.3 kHz.  

The evaluation of reflection coefficient and radiation impedance using (45) 

enables the determination of normal incidence acoustic absorption coefficient of sound 

absorbing materials as in (Chung and Blaser 1980) and (Wyerman 1976). In order to 

reduce the effect of reflections from an open end during the measurement of acoustic 

properties of conduit liner materials, two methods are generally used. In the first method 

a sound absorbing material is placed at the open end of the conduit so that the acoustic 

energy escaping from the open end of the conduit is absorbed and the effect of any 

reflections on the measurements is minimized. In the second method, the length of the 

conduit is increased so that the receiving microphone in the conduit can be placed away 

from the open end to minimize the effect of reflections akin to an infinitely long conduit 

that has no reflections. In the present study, the second approach is used and 17.56 m 

 

 
Figure 16: Normalized magnitudes of 𝑍𝑟 components vs. frequency.  
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long conduit is extended by about 12𝜆 at 1.0 kHz from the location of the receiving 

microphone.  

Using the expressions for radiation impedance, frequency dependent complex 

characteristic impedance and attenuation coefficient of the conduit as laid out in the 

previous discussion, the input impedance of a lossless and lossy conduit can be compared 

using (18). For lossless conduit, the characteristic impedance, 𝑍𝑐, is determined from (14) 

and the load impedance is determined from the approximation for 𝑍𝑟 given in (44). For 

the lossy case, 𝑍𝑐, is replaced with the complex frequency dependent characteristic 

impedance 𝑍𝑐′  given in (40). The input impedance in both cases for a 5 m long, 0.1 m 

diameter conduit is plotted in Fig. 17 within a frequency range of 200 Hz to 1200 Hz. 

The resonance peaks in both plots are visible. In case of lossy conduit, the peak 

magnitudes are in general less than those of the lossless conduit. Also, as the frequency is 

increased the peaks tend to shift in frequency in the case of lossy conduit due to higher 

open end length correction (0.85 a).  

Having discussed the sound propagation in case of a straight conduit, it is 

important to also take a look at the effects of introducing junctions with side branches 

and how that affects the attenuation of acoustic signal in a conduit network. This is the 

subject of next chapter.  



45 

 

  

Figure 17: |𝑍𝑖𝑛| vs. frequency for a 0.1 m diameter, 5 m long conduit. 
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CHAPTER 4: ACOUSTICS OF CONDUIT NETWORKS 
 
 
4.1 Introduction 
 
 
 In many industrial and domestic applications conduits are used with multiple side 

branches that are connected to form a T-junction and thereby forming an acoustic 

network. When a sound wave is excited in the main conduit, it induces the sound waves 

in the connected side branches as well. The main principle governing this transport of 

sound energy into the side branches is that the energy incident upon a side branch must 

be conserved unless there are other sound attenuating mechanisms. The distribution of 

energy among the side branches depends upon the relative impedances of the junctions.  

The combination of conduits connected in a network to produce the desired 

acoustic response has been studied in the context of design of acoustical filters. 

Following the development of electrical filters, Stewart was the first one to demonstrate 

that the combination of a straight conduit with a side branch can be used to control the 

transmission characteristics of the main conduit (Stewart 1925). Using lumped circuit 

analysis analogous to that for electrical filters, he showed that within the main conduit the 

transmission of frequencies that correspond to the resonant frequencies of the side branch 

would be adversely affected. In this study, the focus is on the approach mentioned by 

Stewart to model the signal attenuating effects of side branches. 
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4.2 Propagation Model of Conduit with One Side Branch 
 
 

4.2.1  Stewart’s Model 
 
 
 Stewart analyzed the influence of a side branch upon acoustic transmission 

through a conduit and developed an expression for the ratio between the transmitted 

acoustic energy with the branch present to that with the branch absent for the case of an 

acoustic filter (Stewart 1925). He assumed a plane wave propagating through a conduit of 

constant cross-sectional area with acoustic source at one end of the conduit. He also 

assumed that source pressure was not affected by the presence of side branch.  

 
 
 

a

S

Side branch

Main conduit

bl

 
Figure 18: A conduit with one side branch.  

 

 
 
A conduit with a radius a and cross sectional area S with one side branch having a 

radius b and cross-sectional area Sb is shown in Fig. 18. As an analog to electrical 

circuits, the sinusoidal source pressure is given as 𝑃 =  𝑃0 𝑒𝑗𝜔𝑡. At the junction point 

between the main conduit and the side branch the pressure is affected by the reflections 

from the side branch. At the junction point, therefore, the pressure in the main conduit is 
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given by 𝑃′ =  𝑃0′  𝑒𝑗𝜔𝑡. The altered pressure at the junction point 𝑃′ is caused by two 

waves, one from the source and the other from the side branch. Stewart has also 

determined that the resulting pressure at the junction point due to the wave from the side 

branch is given by: 

 𝑃′ = 𝑃 −  𝜌0𝑐
𝑈
2𝑆

  

𝑈 =
𝑃′

𝑍𝑏
 

(49)  

Where U is the volume velocity in the side branch and 𝑍𝑏 is its complex input impedance 

given by 𝑍𝑏 =  𝑅𝑏 + 𝑗 𝑋𝑏. The ratio 𝑃′/𝑃 is the pressure transmission coefficient (𝑇𝜋) 

describing the fraction of transmitted signal propagating beyond the junction with side 

branch. From (49), it can be derived in terms of side branch impedance 𝑍𝑏 as follows: 

 𝑃′

𝑍𝑏
= 𝑈 =

𝑃
𝑍𝑏

−  𝜌0𝑐
𝑈

2𝑆𝑍𝑏
 

𝑈
𝑃

=
1

�𝑍𝑏 + 𝜌0𝑐
2𝑆 �

 

𝑈 = 𝑃 �𝑍𝑏 +
𝜌0𝑐
2𝑆

�
−1

 

(50)  

From (50), the pressure transmission coefficient is obtained by putting the value of the 

volume velocity U in (49), such that: 

 𝑃′

𝑃
= 𝑇𝜋 = 1 − �

𝜌0𝑐
2𝑆

� �𝑍𝑏 +
𝜌0𝑐
2𝑆

�
−1

 (51)  

The pressure transmission coefficient is complex and frequency dependent as the 

impedance of side branch is complex and varies with frequency. From (51), the sound 

pressure transmission loss (Ω) due to the junction with side branch can be defined as: 
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Ω =
𝑃
𝑃′

=
1
𝑇𝜋

=  
𝑍𝑏 + 𝜌0𝑐

2𝑆
𝑍𝑏

 

Ω (dB) = 20 ×  log10 �
1
𝑇𝜋
�. 

(52)  

From (52), the transmission loss of the propagating signal due to the presence of 

side branch can be evaluated, provided that 𝑍𝑏 is evaluated from analytical expressions. 

To determine 𝑍𝑏, Stewart’s expressions for real and imaginary part of 𝑍𝑏 for an open 

ended side branch given in (Stewart 1926) are used. Stewart’s expressions for 𝑅𝑏 and 𝑋𝑏 

are reproduced below: 

 𝑅𝑏 =  (𝜌0𝑘𝑓)𝐷−1 

𝑋𝑏 =  
𝜌0𝜔
4𝑏

+  �
𝜌0𝜔
𝜋𝑏2

. sin𝑘𝑙 cos 𝑘𝑙 +
𝜌0𝜔
5.5𝑏

(cos2 𝑘𝑙 − sin2 𝑘𝑙)

− 𝑘𝜋𝑏2𝜌0𝜔 �
𝑘2

4𝜋2
+  

1
(5.5𝑏)2� . sin𝑘𝑙 cos𝑘𝑙 �

× 𝐷−1 

(53)  

where 

 

 
𝐷 =  𝑘2𝜋2𝑏4 �

𝑘2

4𝜋2
+ 

1
(5.5𝑏)2� sin2 𝑘𝑙 +  cos2 𝑘𝑙

−  
2𝑘𝜋𝑏2

5.5𝑏
sin𝑘𝑙 cos 𝑘𝑙, 

(54)  
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and b is the radius of the side branch and 𝑙 is its length. Representative plot of the 

transmission loss over a logarithmic frequency range between 50 Hz to 10 kHz due to a 

1.62 m, 0.05 m diameter side branch in a main conduit of 0.1 m diameter is given in Fig. 

19. The normalized input impedance of the side branch obtained from Stewart’s 

expressions in (53) and (54) is also plotted in Fig. 20.  

It can be observed that the side branch impedance acts similar to parallel 

impedance in an electrical circuit. The maxima of transmission loss in the main conduit 

coincide with the minima of 𝑍𝑏. When 𝑍𝑏 = 0, no power is transmitted past the junction 

as all of it is reflected back to the source. This condition is akin to a short in a parallel 

arm of an electrical circuit. When 𝑅𝑏 is larger than 0 but is not infinite, some power is 

consumed in the side branch and part of it is transmitted past the junction. When either 

𝑅𝑏 or 𝑋𝑏 is very large compared to 𝑍𝑐, the characteristic impedance of the conduit, almost 

 
Figure 19: Transmission loss due to a 0.05 m 

diameter 1.62 m long side branch.  

 

 
Figure 20: Input impedance of a 1.62 m long 0.05 

m diameter side branch.  
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all the incident power is transmitted past the side branch. In the limit, 𝑅𝑏 =  𝑋𝑏 = ∞, 

which corresponds to no side branch, the signal propagates with no transmission loss. 

Stewart’s model is general as it can be applied to an acoustic network with a 

number of side branches and is independent of the nature of the side branch. It has also 

been shown to agree very well with empirical data (Stewart 1926). However, it has two 

limitations that can make the predicted results using this model deviate from 

experimental measurements. First, this model does not take into account the losses due to 

reflections from the open end of the main conduit as it assumes an infinitely long conduit 

that terminates in its characteristic impedance with no reflections. The second limitation 

is that this model assumes no signal flow into the side branch. Although, it adequately 

models the effect of reflections at the junction point causing the transmission loss, 

however, it does not take into account the escape of acoustic energy due to the finite 

frequency dependent radiation impedance at the open end of the side branch. The 

simplicity of this model makes it a good choice for empirical modeling. The accuracy of 

the model, however, can be enhanced by including a correction term to take care of the 

losses in the main conduit due to reflections from the open end. This is explained in more 

detail in the development of the empirical model in the next chapter.  

4.2.2  Mason’s Model 
 
 
 Following Stewart’s pioneering effort to model the effect of a side branch on the 

pressure transmission through a conduit, Mason extended Stewart’s analysis and 

analyzed the filtering effects of recurrent side branches in a main conduit (Mason 1927). 

His analytical model is based on assuming a plane wave of sound propagating in a 

uniform duct to determine the propagation constant. The propagation constant is then 
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translated into attenuation and velocity characteristics by considering its real and 

imaginary parts. His approach is valid under the condition that: 

 
�
𝜌0𝜔
2𝜂

  >
2
𝑎

 (55)  

For the frequencies of interest between 50 Hz to 10 kHz and air as a medium, this 

condition is satisfied for a 0.2 m and 0.1m diameter conduits. For a straight conduit with 

no side branches, the attenuation coefficient is given by: 

 

𝛼 =  ℜ

⎣
⎢
⎢
⎡
�−𝜔

2

𝑐2
−
−2𝜔2

𝑎𝑐2
�

𝜁
2𝜔𝜌0

 + 𝑗
−2𝜔2

𝑎𝑐2
�

𝜁
2𝜔𝜌0

 

⎦
⎥
⎥
⎤
 , (56)  

where 𝜁 is parameter to take into account the losses due to viscosity and heat conduction. 

For a conduit with one side branch as shown in Fig. 21, the ordinary assumption is that 

the width of the junction is small compared to the wavelength. The side branch length 

correction is 0.785b at the junction end and 0.57b at the open end. So the total length of 

side branch becomes 𝑙′ = 𝑙 + (0.785 + 0.57)𝑏. With this length correction, the 

attenuation coefficient of the structure in Fig. 21 is given by: 

 
  𝛼 =  ℜ�2𝑗Γ𝑍𝑠  +  𝑐𝑜𝑠ℎ−1(

𝑍𝑐 𝑏2

2 𝑍𝑏 𝑎2
sinh 2𝑗Γ𝑍𝑠)� (57)  

where Γ is the complex propagation constant and 𝑍𝑠 is half the length of one section of 

conduit with side branch. The side branch impedance 𝑍𝑏 is modeled using electrical 

circuit analogy with the circuit shown in Fig. 22. The expression for 𝑍𝑏  using the 

electrical circuit analogs becomes: 

 
𝑍𝑏 =  

(𝑅𝑏 + 𝑗𝜔𝑍𝑏) 

𝑗𝜔𝐶𝑏 �𝑅𝑏 + 𝑗𝜔𝑍𝑏 +  1
𝑗𝜔𝐶𝑏

�
 (58)  
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𝑅𝑏 =   
2
𝜋𝑏

 �
𝜁2𝜌0𝜔

2
 𝑙′ ;  𝑍𝑏 =   

𝜌0
𝜋𝑏2

𝑙′ ;    𝐶𝑏 =  
𝜋𝑏2

𝜌0𝑐2
 𝑙′ 
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Figure 21: Main conduit with one side branch 
for Mason’s Model 
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Figure 22: Electrical circuit equivalent of acoustic 
impedance in the conduit in Fig. 21. 

 

The attenuation coefficient is computed using (56), (57) and (58) for a 0.1 m 

diameter, 6.24 m long conduit with a 0.05 m diameter 1.52 m long side branch at 3.12 m 

from the source. The attenuation coefficient for the same conduit dimensions with no side 

branch is also evaluated using (56). The computed attenuation coefficients for both cases 

are plotted in Fig. 23. It can be observed that the attenuation in a conduit increases with 

increase in frequency as is also the case with the results from Stewart’s model. The 

theoretical works of Stewart and Mason stem from similar understanding of acoustic 

filters i.e. the effect of a side branch in a conduit can be best modeled by using an 

analytical approach akin to modeling electrical filters. Both the models have been 

compared using empirical data (Stewart and Sharp 1929). It has been concluded that the 

simplified theory of Stewart is superior and more easily applicable especially in 

determining the characteristic impedance of the side branch and including the effects of 

reflections from the joint between main conduit and side branch. One of the main 

requirements of Mason’s theory is that the structure of a conduit with side branches is 
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symmetrical and side branches recur at equally spaced intervals. This is not the case with 

the conduits considered in this study as the side branch locations are mostly unknown 

random variables. Therefore, Mason’s more detailed analysis is not readily applicable. 

For the purpose of this study, therefore, use is made of Stewart’s simpler and more 

general approach rather than Mason’s more specific theory. 

Having discussed the acoustic propagation in conduit networks, the next chapter 

discusses the method used to model the propagation in conduit networks used in this 

study is presented.  

 

 

Figure 23: Attenuation coefficient vs. frequency using Mason’s model. 
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CHAPTER 5: MODEL DEVELOPMENT AND APPROACH 
 
 
5.1 Introduction 
 
 

The theoretical behavior of conduit as an acoustic propagation channel has been 

described in the previous chapters. The analysis of signal attenuation in conduit networks 

indicates that it can be divided into two parts: one due to thermo-viscous losses in the 

main conduit and the other due to presence of side branch impedance mismatches. The 

attenuation due to the thermo-viscous losses depends upon the distance from the source, 

frequency, the radius of the conduit and the physical properties of the fluid medium (air) 

such as density, viscosity, thermal conductivity and specific heats at constant pressure 

and volume. The variation in speed of sound with change in humidity and temperature is 

given in Appendix A. The variation in thermodynamic properties of air with change in 

temperature is given in Appendix B. The effect of local variations in temperature on the 

fluid properties, when included in the analytical determination of attenuation coefficient 

does not appreciably change the results of computation. The effect on fluid properties due 

to change in relative humidity involves complex analysis of molecular interactions 

between water and the medium particles, and is beyond the scope of present study. 

Therefore, for analysis in this study, these parameters are treated as constants of the 

medium and variation in attenuation due to distance, frequency and conduit radius is 

analyzed using the analytical expressions. The attenuation due to the side branches 

depends upon the radius of the conduit and radii, number and length of side branches. 
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When considering the total attenuation of the signal in a conduit network, the attenuation 

due to both the parts needs to be considered.  

In practical conduit networks, the measured signal attenuation deviates from the 

theoretical value due to the effects of processes that introduce a random variable error in 

the attenuation of the propagating signal. Therefore, there is a need to develop a model 

based on empirical data that can accurately characterize the attenuation in conduit 

environment such that: 

 𝛼� =  ℱ({𝛼�}𝐷 , {𝛼�}𝑆), (59)  

where {𝛼�}𝐷 is the deterministic part and {𝛼�}𝑆 is the stochastic part. The deterministic part 

is dependent upon variations in parameters that can be modeled using existing analytical 

approaches. The development of deterministic model is presented in the next section. 

The stochastic part is contributed by many sources in and around the conduit. Due 

to lack of information about the sources, their effect on acoustic signal attenuation in a 

conduit is intractable to analyze. This causes a random variable error between measured 

attenuation and that predicted from deterministic model. The stochastic based approach 

enables characterization of the probability distribution of the random variable error in 

accordance with Central Limit Theorem. The development of a stochastic based approach 

is presented in section 5.3.  

5.2 Deterministic Model Development 
 
 

5.2.1 Straight Conduit with no side branch 
 
 

In case of a straight conduit with no side branch impedance mismatch, the 

received pressure at distance (z) from the source is given in (Blackstock 2000) as: 
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 𝑃𝑟(𝑧) =  𝑃0 𝑒−𝛼 𝑧 𝑒𝑗(𝜔𝑡−𝛽𝑧), (60)  

where 𝑃𝑟 represents the received pressure at distance 𝑧 from the source at frequency f, 

𝑃0  is the reference pressure measured at distance 𝑧0 from the source such that 𝑧 > 𝑧0 and 

𝛼 is attenuation coefficient in nepers per meter (1 neper/m = 8.686 dB/m) and 𝛽 is the 

phase constant. The sound pressure is normally measured with respect to a reference 

pressure in terms of Sound Pressure Level (SPL) in decibels [dB]. For brevity, SPL is 

denoted by 𝑃�  during further analysis in this study. From (60), 𝑃� of the travelling wave at 

distance z is given by (Blackstock 2000): 

 𝑃𝑟�  (𝑧) = 20 𝑙𝑜𝑔10 �
𝑃0 √2⁄
𝑝𝑟𝑒𝑓

� +  20 𝑙𝑜𝑔10( 𝑒−𝛼𝑧 ). 

𝑃𝑟� (𝑧) =  𝑃�0 − 𝛼𝑧. 

(61)  

 Where 𝑐𝑟𝑒𝑓 is 2 × 10−5 Pascals is the threshold of normal human hearing in air and 𝛼 in 

the bottom equation of (61) is in dB/m (Blackstock 2000). The relationship in (61) 

suffices to determine the received SPL within a straight conduit with no side branches. 

The attenuation coefficient 𝛼 is determined from (39). The reference pressure is obtained 

from the measurements. 

5.2.2 Conduit with side branches 
 
 

 In case of a conduit with one side branch, the acoustic signal within the conduit 

suffers additional loss due to the presence of an impedance mismatch at the junction with 

the side branch. The additional transmission loss due to the junction point is evaluated 

using Stewart’s analytical relationship given in (52). Therefore, the additional 

transmission loss due to any side branch (Ω) in dB is subtracted from (61). The received  
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pressure at distance z away from the source is then given by: 

 𝑃𝑟� (𝑧) = 𝑃�0 − 𝛼𝑧 −  Ω. (62)  

In the case of a conduit network involving up to N side branches as shown in Fig. 

24, an additional source of loss in the propagating signal is presence of an impedance 

mismatch at the junction of each side branch with the main conduit. The total loss due to 

all side branches needs to be included in (62) to completely characterize the transmitted  

 

 

Up to N side 
branches

P0 Pr(z)

z0

z

Speaker

Microphone Microphone

 

Figure 24:  Conduit with multiple side branches. 
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Figure 25: Electrical analog of a conduit with multiple side branches.  
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signal attenuation in the presence of multiple side branches. In order to analyze the total 

transmission loss due to multiple side branches, an electrical circuit based approach is 

followed which expresses the conduit with multiple side branches in terms of its 

electrical circuit equivalent as shown in Fig. 25. 

Each side branch is represented by a parallel impedance (Z) in the circuit of Fig. 

25. The current 𝑍𝑠 is the analog of volume velocity in the conduit and 𝑉𝑠 is the source 

voltage corresponding to the pressure source in a conduit. As the side branch impedances 

in parallel provide paths for the current to flow through, the equivalent impedance in the 

circuit is given by: 

 1
𝑍𝑒𝑞

=  
1
𝑍1

+
1
𝑍2

+  
1
𝑍3

+  
1
𝑍4

… . +
1
𝑍𝑁

 (63)  

In case of an open ended conduit, the load impedance is the radiation impedance 

as discussed in Chapter 3. The goal here is to find the total loss of transmitted pressure in 

the conduit due to multiple parallel paths provided by side branch impedances. For a 

conduit with one side branch the pressure transmission loss is defined in (52). Our goal is 

to find the pressure transmitted past the multiple junctions with side branches i.e. 

pressure 𝑃′. Therefore, the individual impedance of each parallel path is lumped together 

into equivalent impedance given in (63) to find the transmitted pressure past the junctions 

with multiple side branches. The side branch impedance (𝑍𝑏 ) is then replaced with 

equivalent impedance of all parallel paths (𝑍𝑒𝑞) such that the total transmission loss (Ω𝑇) 

is then given by: 

 
Ω𝑇 =  

𝑃
𝑃′

=  
𝜌0𝑐 2𝑆⁄ +  𝑍𝑒𝑞

𝑍𝑒𝑞 
 (64)  
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For the case of conduit network with multiple side branches, (62) is modified to 

include the total transmission loss computed in (64) and expressed in dB. The 

propagation model in (62), therefore, becomes: 

 𝑃𝑟� (𝑧) = 𝑃�0 − 𝛼𝑧 −  Ω𝑇 . (65)  

5.2.3 Empirical Correction Factor 
 
 
 The theoretical propagation model for an open ended straight conduit with no side 

branches is given in (61). That model assumes an infinitely long conduit with no 

reflections from the open end. The practical conduits, however, are finite in length and 

the reflections from the open end are a major source of deviation from the results 

obtained by using the model in (61). In the case of a conduit with a side branch, the 

propagating signal in the main conduit suffers additional transmission loss due to the 

shunt impedance of the side branch. The propagation model for conduit with one or more 

side branches given in (62) and (65) also do not take into account the reflections from 

open end of the conduit. This increases deviation between the results obtained from 

theoretical models and the measured data. Therefore, there is a need to adjust the 

propagation models to take into account the effect of reflections at the open end to 

improve their accuracy. In order to achieve this, an empirical correction factor (𝐾𝑒) is 

defined as the difference between the measured and theoretical transmission loss of a 

straight conduit open at one end with no side branch. The measured transmission loss is 

the difference of SPL between reference and output microphones. The empirical 

correction factor is then given by: 

 𝐾𝑒(z) =  𝑃�0 −  𝑃�𝑟(𝑧) −  𝛼𝑧 (66)  
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 The correction factor accounts for the additional losses that a propagating signal 

suffers which are not accounted for by the theoretically evaluated loss given by the term 

𝛼𝑧 in the propagation models. The use of correction factor significantly improves the 

accuracy of the predicted results from the models in (62) and (65) to analyze the variation 

in signal attenuation with change in the length and number of side branches.  

 The plots of empirical correction factors for 8.22 m and 17.56 m long conduits are 

given in Figs. 26 and 27 along with the measured transmission losses. It can be observed 

that the correction factor varies with the length of the conduit. This is due to the reason 

that the effect of standing waves on the propagating signal in the conduit varies with the 

length of the conduit. With the correction factor included, the propagation model in (65) 

takes its final form given as: 

 𝑃�(𝑧) =  𝑃�0 − 𝛼𝑧 −  Ω𝑇 −  𝐾𝑒(𝑧) (67)  

 

 

 

 
 

Figure 26:  Empirical Correction Factor – 8.22 m long 0.1 m diameter straight conduit. 
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Figure 27:  Empirical Correction Factor – 17.56 m long 0.1 m diameter straight conduit. 

 

 
 
 

5.2.4  Model Evaluation 
 
 

In order to evaluate (67), {𝑃�0,𝛼,Ω𝑇} need to be estimated. Deriving 𝑃�0 

analytically or numerically is in general complex and intractable unless under specific 

conditions (Dyer 1958). Therefore, 𝑃�0 is obtained either through direct measurement or as 

y-intercept of linear regression through the scatter plot of 𝑃� versus 𝑧. In the proposed 

approach, 𝑃�0 is directly measured by placing a microphone at 𝑧 = 𝑧0 as shown in Fig. 24. 

Based on the dimensions of conduits considered in this study, the approximation for 𝛼 

given in (39) can be used for its evaluation as the parameter 𝑟𝑣 > 2. Also, Ω𝑇 can be 

analytically evaluated using (64) and corrected for the effect of reflections from open end 

of the conduit by subtracting the term 𝐾𝑒. The combined pressure attenuation (𝛼𝑐) in a 

straight conduit with multiple side branches is then given by: 

 
{𝛼}𝐷 =  𝛼𝑐 =   

𝜔
𝑐
�

1.045
𝑟𝑣

+
1.080
𝑟𝑣2

+
0.750
𝑟𝑣3

� 𝑧 + Ω𝑇 +  𝐾𝑒 .  (68)  
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The analysis of (68) reveals that loss of pressure signal depends upon following 

parameters: 

1) Distance from the source (𝑧). 

2) Frequency of the signal (𝑓). 

3) Number of side branches (𝑁). 

4) Length of side branch (𝑙). 

5) Radius of the main conduit (a). 

6) Radius of the side branch (b). 

 

The expression for received pressure at distance z from the source, therefore, is 

given by:  

 𝑃�(𝑧, 𝑓,𝑁, 𝑙, 𝑎, 𝑏) =  𝑃�0 − 𝛼𝑐(𝑧,𝑓,𝑁, 𝑙,𝑎, 𝑏), (69)  

where 𝑁 represents the number of side branches and 𝑙 represents their lengths and a and b 

are the radii of main conduit and the side branch. Based on extensive measurements in 

conduits of different lengths, at a set of frequencies with different numbers and lengths of 

side branches an empirical data set, 

 
��𝑧𝑗 ,𝑓𝑘,𝑁, 𝑙𝑛,𝑃��𝑧𝑗 ,𝑓𝑘 ,𝑁, 𝑙𝑛,𝑎, 𝑏��� ∀ �

𝑗 = 1, … 𝐽.
𝑘 = 1, …𝐾.
𝛾 = 1, …𝑁

�, (70)  

is obtained which is used to estimate 𝛼𝑐. In (70), 𝐽 represents the total number of 

distances at which the measured data was collected, 𝐾 is the number of frequencies and 

𝑁 is the maximum number of side branches. The empirical model is given by: 

 𝑃��(𝑧,𝑓,𝑁, 𝑙) =  𝑃�0 − 𝛼𝑐�(𝑧,𝑓,𝑁, 𝑙) (71)  
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In further analysis (71), is used to predict the received pressure at distance 𝑧 away 

from the source. 

5.3 Stochastic Model 
 
 

The data collection for the purposes of this study was based on a series of 

measurements made in conduits of variable lengths with variable number and length of 

side branches. This extensive data is used to predict the loss of pressure with distance in 

an approach similar to modeling attenuation of RF signals in conduits (Howitt, Khan et 

al. 2008). This is done by fitting a first order polynomial �𝑌� = 𝑔 − ℎ𝑧� regression line to 

the scatter plot of the measured data versus distance. The value of 𝑔 is the Y-intercept and 

ℎ is the slope of the line through the data. The slope represents the amount of change in 𝑌�  

when 𝑧 increases by one unit. Therefore, the slope of the regression line through the 

scatter plot of measured SPL with distance from the source gives the predicted 

attenuation in dB/m. That predicted value is used to compute the model in (71). The 

difference between the measured SPL and that estimated from theory is defined as the 

residual and is given by (Henke 2007): 

 𝜀 [𝑑𝐵] = [𝑃�]𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  �𝑃���
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 (72)  

The accuracy of measured attenuation in conduit networks is adversely affected 

by the lack of information of the factors that cause error between the measured and 

estimated attenuation results. Some of the factors that affect the audio signal and 

introduce error in the predicted attenuation of the acoustic signal are: 

1) Unknown or inaccurately known number of side branches. 

2) Unknown or inaccurately known lengths of side branches. 
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3) Presence of strong temperature and humidity gradients. 

4) Blockages of variable sizes, types and locations e.g. root ingress, 

grease/waste build up or a moving rodent etc. 

5) Deviation in the known properties of fluid medium. 

6) Non-ideal installations that vary significantly from the available layout. 

7) Effects of aging such as cracks, sags, bulges and holes etc. 

8) Effect of reflections from a conduit end opening into a cavity with 

multiple paths for signal loss e.g. a manhole. 

9) Inaccuracies of the measurement data recording. 

10) Non-ideal placement of receiving sensor and the acoustic source. 

11) Momentary ambient noise variations. 

The error in the estimated attenuation caused by the above-stated factors can be 

best described using a stochastic based approach. In that each of the above-stated factors 

can be considered as a random process that is independent and arbitrarily distributed. The 

error in the estimated attenuation caused by lack of information of the independent and 

arbitrarily distributed random processes follows approximately normal distribution in 

accordance with the weak convergence condition of the Central Limit Theorem (Henke 

2007). 

The stochastic part of the attenuation coefficient is, therefore, represented by: 

 {𝛼�}𝑆 =  𝜓(𝜇,𝜎2). (73)  

Where (𝜓) is a normal random variable, with zero mean (𝜇) and finite variance 𝜎2. This 

stochastic part translates itself into pressure variations at the receiver and is used to 
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predict the received pressure at distance z. The deterministic analytical model given in 

(69), therefore, becomes: 

 𝑃�(𝑧,𝑓,𝑁, 𝑙,𝑎, 𝑏) =  𝑃�0 − 𝛼𝑐(𝑧, 𝑓,𝑁, 𝑙,𝑎, 𝑏) +  𝜓(𝜇,𝜎2).   (74)  

The estimate of the total error in a data set containing J measurements of received 

pressure at distance 𝑧 is then given by root mean square error (RMSE), such that: 

 
𝜀̅ =  �

1
𝐽
��{𝑃�}𝑗 − �𝑃���

𝑗
�
2 

 
𝐽

𝑗=1

�

½

. (75)  

The RMSE gives the standard deviation of residuals and is used as a metric to 

compare the estimated and the measured results. The adequacy of the proposed model 

when compared with the measured data is assessed based on the analysis of residuals 

obtained from (72). The residuals are checked for a normal distribution by using a normal 

probability plot which contains the plot of residuals on y-axis and the values from 

standard-normal distribution on x-axis. A straight line plot indicates that the residuals 

belong to a normal distribution.  

 In order to check the goodness of fit of the residuals to the normal probability 

distribution, hypothesis testing is done. If the results from normal probability plot of 

residuals hold the null hypothesis (H0), it indicates that the data is normally distributed 

otherwise the alternate hypothesis (H1) is true which indicates that the data does not 

belong to a normal distribution (Romano 2005).  The Anderson Darling (AD) goodness 

of fit test is performed to check the normality of the residuals (Anderson 1954).  If the 

AD test statistic is less than the critical value for the required confidence level, then the 

null hypothesis holds and the data belongs to the normal probability distribution 

otherwise the null hypothesis is rejected.  
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5.4 Model Validation with Empirical Data 
 
 
 In order to validate the model described in sections 5.2 and 5.3 with the empirical 

data, the variation in attenuation coefficient 𝛼𝑐 has been observed with respect to 

following parameters: 

1) Distance from the source (𝑧). 

2) Frequency of transmitted signal (𝑓). 

3) Number of side branches (N). 

4) Length of side branch (l). 

A discrete set of frequencies within a frequency range of 50 Hz to 10 kHz is used 

to measure the response of the conduits to an acoustic excitation. The lengths of the 

conduits ranged between 1.2 m to 221.1 m with a diameter of 0.1 m and 0.2 m. The side 

branch numbers ranged from 1 to 7 with a diameter of 0.1 m and 0.05 m. The side branch 

lengths varied between 0.1 m to 14.32 m.  

5.4.1 Variation in Attenuation with Distance 
 
 
 The evaluation of variation in 𝛼𝑐 with 𝑧 is done in following steps:  

1) A set of 28 frequencies between 50 Hz to 10 kHz are used to estimate the 

variation of attenuation coefficient with distance at each frequency.  

2) A first order polynomial linear regression line is drawn through the scatter 

plot of measured SPL vs. frequency to predict the coefficients of the first order 

polynomial. The measured SPL is the response variable and the distance is the 

predictor variable. The slope of the linear regression line gives the attenuation in 
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dB/m for the particular frequency at which the measurements are made. This is 

𝛼𝑐�, the predicted attenuation coefficient at each frequency.  

3) The linear model is used to predict the SPL at each point along the 

distance vector. This gives the predicted SPL at each distance. The residuals are 

computed between the measured and estimated SPL through the linear regression 

model  

4) As the critical assumption for using the linear regression model is that the 

residuals are normally distributed, therefore, the computed residuals are tested for 

normality. This is done by graphical methods by plotting the residuals along with 

the distance and observing their distribution around the zero mean line. A random 

distribution of the residuals around the zero mean indicates that the residuals are 

normally distributed.  

5) The next step is to check the residuals for fitting to the normal distribution 

through a normal probability plot. A straight line plot indicates that the residuals 

are normally distributed. The graphical methods may have outliers and their effect 

on normality of residuals is ascertained by hypothesis testing using Andersen 

Darling (AD) goodness of fit tests.  

6) The probability of AD test statistic is checked against the specified 

significance level (0.05). If the test statistical probability is greater than the 

significance level, then the null hypothesis holds and the data belongs to the 

normal probability distribution otherwise the null hypothesis is rejected.  

7) With the normally distributed residuals, the use of a linear regression 

based model is validated. A comparison is then made between the attenuation 
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predicted through the linear model, the theoretical attenuation and the measured 

attenuation. The measured attenuation at each duct length is obtained by finding 

the difference between the reference pressure and the measured pressure at the 

receiver location. The measured attenuation coefficient in dB/m is obtained by 

dividing the difference of pressures by length (L) of the conduit i.e.: 

 
𝛼𝑐[

𝑑𝐵
𝛾

] =  �
𝑃�0 −  𝑃� 

𝑍
� (76)  

where the reference pressure 𝑃�0 is measured SPL at 1.21 m from the source for 

each measured frequency. This distance avoids the pressure variations at low 

frequencies in the near field of the acoustic source (≈ 1.0 𝛾) that arise because of 

evanescent modes. 

8) A histogram of residuals from all measurements is plotted along with the 

probability density function (PDF) of the normal distribution. The mean and 

variance of the residuals from all tests are compared to the zero mean and finite 

variance of normal PDF. A normal probability plot of the residuals from all tests 

is also plotted to graphically observe their fitting to the normal distribution.  

5.4.2 Variation in Attenuation with Frequency 
 
 
 Variation of 𝛼𝑐 with frequency in each conduit section of a length L, is obtained 

by measuring 𝑃� at each frequency. This gives the frequency response of the conduit to a 

pressure excitation. The attenuation is measured by finding the difference between the 

reference SPL and the measured received SPL. This gives the measured attenuation in the 

conduit and is converted into dB/m by dividing it with the distance between the 

microphones. The predicted SPL is then found by the following procedure: 
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1) The attenuation coefficient is computed from approximation in (39) under 

the assumption of a lossy conduit and with 𝑟𝑣 ≫ 2 for 0.1 m and 0.2 m diameter 

conduits considered in this study. The length of the conduit is adjusted assuming a 

flanged conduit with a length correction equal to 0.85 times the conduit radius.  

2) The parameter 𝑟𝑣 is computed from (31), taking the density of air, 

𝜌0 = 1.21 𝑘𝑔 𝛾3⁄  and the coefficient of shear viscosity 𝜂 = 1.78 ×  10−5P (1 

Poise (P) = 0.1 𝑘𝑔
𝑚 𝑠

) for the frequencies between 50 Hz to 10.0 kHz and for 

conduit diameters of 0.1 m and 0.2 m. 

3) The computed attenuation coefficient is in the units of nepers/m and is 

converted to dB/m. This value is the predicted attenuation coefficient.  

4) The computed attenuation coefficient is used in (71) to predict the 

received SPL at distance z from the source. This predicted SPL is used to compute 

residuals by subtracting it from the measured SPL at the receiving microphone. 

The measured received SPL and the predicted received SPL are plotted to observe 

the predicted response of the conduit. The pressure received at the reference 

microphone in Fig. 24 is taken as reference pressure for use in (71).  

5) The residuals between measured and predicted SPL are checked for fitting 

to the normal distribution through normal probability plot. The quantitative results 

of normality of residuals are ascertained through hypothesis testing using 

Andersen Darling goodness of fit test.  

6) The measurement of attenuation in a straight conduit with no side branch 

is used to determine the correction term due to reflections and other losses from 

open ended conduit. The correction is used to analyze the variation of attenuation 
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with the change in number and length of side branches. The correction is 

determined in following steps. 

7) The measured SPL at the receiving microphone is subtracted from the 

reference SPL. This gives the attenuation of a signal in a straight conduit. The 

effect of thermo-viscous losses which is part of the empirical model in (67) is 

removed by subtracting the loss term 𝛼𝑧 dB. The result is the empirical correction 

factor which is used to predict the transmission loss of the side branch in a 

conduit. This improves the accuracy of prediction from the theoretical model by 

taking into account the losses due to the open end of the main conduit.  

5.4.3 Variation in Attenuation with Number of Side Branches 
 
 
 In this study, the variation of attenuation coefficients is analyzed by varying the 

number of side branches from one to seven. The following procedure is adopted: 

1) Initially one side branch is introduced in the conduit section. The pressure 

at the reference microphone and the receiving microphone are measured. The 

difference between the pressure at the reference microphone and at the receiver 

microphone gives the attenuation in the signal. The pressure difference divided by 

the distance between measurement points gives the attenuation in dB/m. The 

result is the total measured attenuation of the signal due to side branch and the 

straight conduit.  

2) The next step is to determine the theoretical transmission loss due to the 

side branch from (64) using the side branch impedance computed from (53). The 

theoretical transmission loss due to a side branch is corrected for the losses due to 

the standing wave in straight conduit. The three attenuations (measured, 
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theoretical and corrected) are plotted for each tested configuration of conduit with 

side branches.   

3) The theoretically evaluated and corrected attenuations are used in (71) to 

predict the received SPL. The received SPL computed from (71) is plotted with 

that measured at the receiving microphone for each tested configuration of 

conduit with side branches.  

4) The residuals between the measured and predicted SPL are computed and 

tested for normality initially using a graphical method of the normal probability 

plot. The quantitative testing for normality is performed using hypothesis testing 

with AD goodness of fit test. 

5) The histogram of residuals from all the measurements of change in 

number of side branches is plotted along with the bell-shaped normal probability 

density function (PDF). The mean and variance of the residuals is compared to the 

mean and finite variance of the normal PDF.  

6) A normal probability plot of the residuals from all tests is also plotted to 

graphically analyze the deviations from normality.  

5.4.4 Variation in Attenuation with Length of Side Branches 
 
 
 The length of a side branch is an important parameter as any change of length 

alters the side branch input impedance and hence its resonances. The signal attenuation in 

the main conduit is strongly influenced by the resonances of the side branch. The 

approach to model the effect of changes in side branch length is similar to the procedure 

outlined above for change in the number of side branches and is outlined as follows: 
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1) The attenuation due to the introduction of side branch is measured as 

outlined for changing the number of side branches in section 5.4.3, step (1).  

2) The theoretical input impedance and attenuation due to the side branch are 

obtained from (53) and (64). The theoretical attenuation is corrected for the loss 

due to the standing wave in the straight conduit. The three attenuations (measured, 

theoretically evaluated and corrected) are plotted for each tested configuration. 

3) The theoretically evaluated and corrected attenuations are used in (71) to 

predict the received SPL. The received SPL computed from (71) is plotted with 

that measured at the receiving microphone for each tested configuration of 

conduit with side branches.  

4) The residuals between the measured and predicted SPL are computed and 

tested for normality initially using a graphical method of the normal probability 

plot. The quantitative testing for normality is performed using hypothesis testing 

with AD goodness of fit test. 

5) The histogram of residuals from all the measurements of change in length 

of side branches is plotted along with bell-shaped normal probability density 

function (PDF). The mean and variance of the residuals is compared to the mean 

and finite variance of the normal PDF.  

6) A normal probability plot of the residuals from all tests is also plotted to 

graphically analyze the deviations from normality.  

Having discussed the development of an empirical propagation model and the 

details of the modeling approach and validation, the next chapter presents the details of 
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experimental set up to obtain the measured data. Since the measurements are made in the 

field and in the laboratory settings, the details of both set ups are presented. 



CHAPTER 6: MEASUREMENT SETUP  
 
 
6.1 Field Measurements  
 
 
 In order to determine the propagation characteristics of long conduits to an 

acoustic excitation, a comprehensive measurement campaign was undertaken at selected 

sites in Charlotte, NC. This was accomplished with the support of the Charlotte 

Mecklenburg Utility Department (CMUD). The layout of one location where multiple 

tests were conducted to collect measurement data is shown in Fig. 28. The manholes are 

shown in solid red circles and distance between them is indicated in meters. The conduit 

material was PVC and the main conduits had a diameter of 0.2 m with 0.1 m diameter 

side branches. The goal of the measurement campaign was to estimate the attenuation 

coefficient in 0.2 m diameter conduits. The selected location enabled the determination of 

variation in attenuation coefficient over long conduit lengths, which is impractical in a 

laboratory setting. One limitation of testing the propagation of acoustic signals over long 

ranges was that some measurements spanned a number of manholes. This incurred 

greater attenuation due to the scattering, reflection and escape of acoustic signal through 

the manhole. However, the analysis of this loss is beyond the scope of present study.  
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The pictures showing the measurement set up are included as Figs. 29 and 30. The 

test equipment comprised a 1/3 Octave band Phonic PAA3 audio spectrum analyzer, a 
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Figure 28: Field measurement location layout.  

 

 

Figure 29:  Audio spectrum analyzer and condenser 

microphone at receiving location. 

 

 

Figure 30:  Speaker in conduit at the source end. 



77 
condenser microphone, Alesis RA-150 audio amplifier and a 4-inch speaker. Two Dell 

notebooks were used as controllers at the transmitter and receiver locations. The PAA3 

spectrum analyzer dynamic range was between 30 to 130 dB. It also had a USB interface 

for rapid data transfer to the controller for quick analysis. The condenser microphone was 

used to record the data using .wav file format. As far as practical, the speaker and 

microphone were placed 0.05 m to 0.1 m inside the open end of the conduit. In some 

instances the microphone was not able to reach the open end of the conduit due to tight 

dimensions of the manhole. In those situations, it was inserted into trough about 0.15 m 

to 0.3 m away from the open end of the conduit.  

 
 

Tone Number Frequency (Hz) Tone Number Frequency (Hz) 

1 50 13 800 

2 63 14 1000 

3 80 15 1250 

4 100 16 1600 

5 125 17 2000 

6 160 18 2500 

7 200 19 3150 

8 250 20 4000 

9 315 21 5000 

10 400 22 6300 

11 500 23 8000 

12 630 24 10000 

 

Table 3: Frequencies of transmitted tones during field tests. 
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At each measurement location the ambient noise was recorded to adjust the 

measured sound pressure level. The test signal comprised 31 audio tones at 1/3 octave 

band frequencies. These frequencies lie between 20 Hz to 20 kHz. However, for the 

purpose of this study, 24 frequencies between 50 Hz to 10.0 kHz are selected for analysis. 

These frequencies are listed in Table 3. These are selected due to high attenuation at 

frequencies above 10.0 kHz. Each tone had duration of 5 seconds. The transmission of 

the test tone was preceded and succeeded by a 5 s long 1.0 kHz pilot tone. The data files 

containing test tones were recorded using a sampling rate of 96 kHz at 24 bits to be 

consistent with CD quality. The test tones were divided into 3 sets: 50 Hz -200 Hz, 250 

Hz to 2.0 kHz and 2.0 kHz to 10.0 kHz. The temperature and humidity were recorded at 

each measurement location. Also, recorded were the approximate lengths and number of 

the side branches in each conduit section. The details of side branches between manhole 

pairs are given in Table 4. 

6.2 Laboratory Measurements  
 
 

In addition to testing 0.2 m diameter conduit networks at the field measurement 

location, a series of tests have also been conducted in a more controlled environment. The 

goal of the laboratory tests was to observe the variation in signal attenuation with 

frequency due to variation in number and length of side branches. The test set up for 

laboratory tests is shown in Fig. 31. It comprised a Data Acquisition (DAQ) system DT-

9837A, an Alesis RA-150 audio amplifier, a DC Gold N7R 7-inch speaker and BSWA 

MP215 (1/2 inch free field) microphones. A Sony notebook was used to control the 

transmission of tones, data recording and preliminary analysis. The DAQ has four, 24-bit 

simultaneous channels with a 4 mA current source to support IEPE (Integrated Electronic 
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Piezoelectric) inputs. It can be set with a sampling rate of up to 52.73 kHz. The DAQ’s 

interface with the controller is through a DAQ adapter for Matlab working with the 

Matlab’s Data Acquisition Toolbox. The MP215 microphones have a sensitivity of 40 

mv/Pa (BSWA 2013). The DC gold speaker has 80 W continuous power output with 

peaks of 300 W. A Scantek calibrator (model 407744) with an output of 94 dB at 1.0 kHz 

was used to calibrate the measurement set up. Three lengths of RG-50 (20 AWG) coaxial  

 
Manhole pairs Number of 

side 

branches 

Lengths of side branches (meters) 

AC2 – AC1 7 l1 = 7.9 ; l2 = 6.1; l3 = 8.1 ; l4 = 8.0; l5 = 6.6; l6 = 9.4;  

l7 = 14.3 

 AC3 – OL6 3 l1 = 7.1 ; l2 = 7.3; l3 = 7.7 

OL5 – OL6 4 l1 = 7.4 ; l2 = 9.0; l3 = 10.0 ; l4 = 7.4 

OL4 – OL5 2 l1 = 7.4 ; l2 = 7.0 

OL3 – OL4 2 l1 = 7.7 ; l2 = 5.5 

OL2 – OL3 7 l1 = 7.9 ; l2 = 7.0; l3 = 8.0 ; l4 = 8.9; l5 = 8.0; l6 = 8.6;  

l7 = 6.7 

OL1 – OL2 1 l1 = 5.28 

AL1 – OL2 3 l1 = 7.0 ; l2 = 10.0; l3 = 10.1 

WD2 – WD3 2 l1 = 8.9 ; l2 = 7.7 

WD1 – WD2 7 l1 = 6 ; l2 = 9.9; l3 = 9.5 ; l4 = 7.2; l5 = 10.0; l6 = 9.0;  

l7 = 9.7 

 

Table 4: Manhole pairs with number and lengths of side branches 
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cable were used during the tests. The lengths of the cables were 8.0 m, 3.65 m and 0.91 

m. The results of the calibration tests indicated that the cable losses are insignificant for 

the purpose of this study. 

 The test signal comprised three sets of discrete tones within a frequency range of 

50 Hz – 10 kHz. Each tone within the set was 5 s long. The start of each set was preceded 

by a 5 s long pilot tone of 1.0 kHz. The tones were recorded at a sampling rate of 44100 

samples per second. The first set of tonal frequencies comprised fifteen tones between 50 

Hz to 1950 Hz. The second set comprised seven tones between 2.0 kHz to 5.0 kHz and 

the third set comprised eleven tones between 5.1 kHz to 10.0 kHz. The tonal frequencies 

are given in Table 5. The discrete tones were chosen as the test signal because the 

flexibility of setting the duration of each tone and reduced complexity of analyzing the 

conduit’s response to each tonal excitation. The ambient noise was measured prior to the 

start of the tests. The outside air temperature and humidity readings were also recorded. 

During the tests, PVC Schedule 40 conduits of 0.1 m diameter were used. Each conduit  

 

z
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z = L
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Controller (Sony 
Notebook)
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Audio Amplifier

DC Gold N7R 
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Microphone BSWA 
MP215

Microphone 
BSWA MP215

 

Figure 31:  Laboratory test setup. 
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Tone Number Frequency (Hz) Tone Number Frequency (Hz) 

1 50 17 3000 

2 200 18 3500 

3 350 19 4000 

4 500 20 4500 

5 650 21 5000 

6 800 22 5100 

7 950 23 5600 

8 1100 24 6100 

9 1250 25 6600 

10 1400 26 7100 

11 1550 27 7600 

12 1700 28 8100 

13 1850 29 8600 

14 1950 30 9100 

15 2000 31 9600 

16 2500 32 10000 

 
 
section was 1.62 m long. The sections were joined together with a 0.1 m diameter 

coupling. The side branches were installed through a 0.1 m to 0.05 m T coupling. The 

microphones were placed at the measurement positions with sensing heads at the 

centerline of the conduit through a 0.025 m adapter and a bushing. The initial trials were 

conducted on an 8.22 m long conduit. The reference microphone was placed at 0.76 m 

from the source to minimize the near field effect. The receiving microphone was placed 

Table 5: Frequencies of transmitted tones during laboratory tests  
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at 1.22 m from the open end of the conduit. This was done to reduce the effect of 

reflections from the open end. 

The test setup involving a conduit with two side branches is shown in Fig. 32. 

Pictures of the conduit with the test set up are also given in Fig. 33 and 34. The tested 

configurations are given in Table 6.  

 

 

6.24 m 1.22 m0.76 m

3.04 m

Speaker

Reference 
Microphone

Receiving 
Microphone

1.62 m

 

Figure 32:  An 8.22 m long conduit with two side branches – initial test set up. 
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Figure 33: Conduit with one side branch. 

 

 

Figure 34: Test set up.  

 
A set of tests was also conducted to measure the attenuation versus frequency 

with change in the lengths and number of side branches. These tests comprised a longer 

 

Configuration 

Number 

Description Side branch location 

from receiving 

microphone (m) 

Side branch 

lengths (m) 

1. Straight Conduit - - 

2. Conduit with one side branch 3.12 1.62 m 

3. Conduit with one side branch 1.62 1.62 

4. Conduit with one side branch 3.12 1.32 

5. Conduit with one side branch 3.12 1.02 

6. Conduit with one side branch 3.12 0.72 

7. Conduit with one side branch 3.12 0.42 

8. Conduit with two side branches 1.56 , 4.68 1.62 

9. Conduit with three side branches 1.52, 3.04 , 4.56 1.62 

 

Table 6: Tested Configurations – 8.22 m long conduit.   



84 
conduit (17.56 m from end to end) assembled by joining 1.62 m long PVC conduit 

sections through 0.1 m couplings. The number of tested side branches was increased from 

one to seven along the length of the conduit. The variation in attenuation vs. frequency 

was measured with the change in the length of the side branch in four 0.3 m steps 

between 0.12 m to 1.62 m. In order to reduce the near field effects, the reference 

microphone was placed at 2.38 m from the speaker and the receiving microphone was 

placed at 4.25 m from the open end to reduce the effects of reflections. The distance 

between two microphones was 10.93 m. The test setup for this case is shown in Fig. 35. 

The photographs of the test set up are given in Figs. 36 and 37. The ambient noise was 

recorded initially for 10 s and subsequently before each configuration change. The tested 

conduit configurations are given in Table 7. 

The empirical data collected during the measurements was pre-processed before it 

was ready for analysis. The details of the pre-processing are given in the next section.  

 

10.93 m 4.25 m2.38 m

1.61 m

Speaker

Reference 
Microphone

Receiving 
Microphone

1.62 m
1.64 m

 
Figure 35: A 17.56 m long conduit with two side branches. 
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6.3 Preprocessing of Empirical Data 
 
 

The evaluation of transmitted signal pressure variation with distance from the 

source, using the data measured in the field tests, involved evaluating the mean SPL at 

each transmitted frequency for each time interval for every measurement through a 

particular conduit section. The mean SPL of the noise was evaluated from the collected 

noise data for each test by comparing the noise SPL against a 29 dB lowest offset limit of 

the PAA3. A spectrogram of the background noise measured at AC1 manhole is given in 

Fig. 38. The measured SPL of the signal was measured against the noise threshold that 

 
Figure 36:  Test set up – 17.56 m long conduit with 

one side branch. 

 

 
Figure 37:  Test set up – 17.56 m long conduit 

with three side branches. 
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was evaluated through the sum of mean and standard deviation of the noise SPL at each 

frequency. This SPL data is used to predict the variation of the SPL with range at each 

transmitted frequency. 

 

 

 
 
 

 

Configuration 

Number 

Description Side branch location from 

receiving microphone (m) 

Side branch 

lengths (m) 

1. Straight Conduit - - 

2. Conduit with one side branch 7.57 1.62 m 

3. Conduit with one side branch 7.57 1.32 

4. Conduit with one side branch 7.57 1.02 

5. Conduit with one side branch 7.57 0.72 

6. Conduit with one side branch 7.57 0.42 

7. Conduit with one side branch 7.57 0.12 

8. Conduit with two side branches 1.64 , 3.25 1.62 

9. Conduit with three side branches 1.64 , 3.25 , 4.89 1.62 

10. Conduit with four side branches 1.64, 3.25, 4.89, 6.53 1.62 

11. Conduit with five side branches 1.64, 3.25, 4.89, 6.53, 8.16 1.62 

12. Conduit with six side branches 1.64, 3.25, 4.89, 6.53, 8.16, 

9.81 

1.62 

13. Conduit with seven side 

branches 

1.64, 3.25, 4.14, 4.89, 6.53, 

8.16, 9.81 

1.62 

 

Table 7: Tested Configurations – 17.56 m long conduit. 
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 The data collected in the laboratory tests was converted into dB SPL. To 

accomplish this, the received signals from reference and receiving microphones was 

adjusted for the time delay corresponding to 10.93 m distance between two microphones 

at the speed of sound adjusted for the recorded humidity and temperature readings. This 

is done by computing the cross-correlation between the data from reference microphone 

and the receiving microphone. The index of the peak of the cross-correlation is 

computed. The offset is determined by subtracting the index of the cross-correlation peak 

from the total number of samples in the data from reference microphone. As an example 

at the sound speed of 343 m/s, the distance between two microphones corresponds to a 

time difference of 31.9 ms or 1406 points at the sampling rate of 44,100 samples per 

second. In order to remove the effects of noise the signal is compared against the sum of 

mean SPL of noise and its standard deviation. The histograms of the background noise 

 

 

Figure 38: Spectrogram of background noise at the field measurement location (measured at AC1 
manhole. 
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along with the bell-shaped normal PDF for the tested configurations with 8.22 m and 

17.56 m long pipes are given in Figs. 39 and 40. The DC offset is removed from the 

sampled signals of both microphones by subtracting their mean values and passing the 

signal through an IIR DC blocking filter with a cut-off frequency of 40 Hz.  

The filtered data is divided into bins corresponding to the number of 5 s tones in 

the test signal. The root mean square value of each bin is computed. The data is converted 

into pressure in Pascal (Pa) by dividing it with the sensitivity of the microphone (≈

40 𝛾𝑉/𝑃𝑎). The pressure in Pascals is then converted into dB referenced to 20 µPa. The  

SPL in dB is used for finding the variation in attenuation with frequency by changing the 

side branch parameters. 

 Having discussed the measurement set up for the field and the laboratory 

measurements and the preprocessing of data, the next chapter presents the details of the 

analysis and results. 

 

 

Figure 39: Histogram of background noise in 8.22 m long conduit.  
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Figure 40:  Histogram of background noise in 17.56 m long conduit. 
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CHAPTER 7: DATA ANALYSIS AND RESULTS 
 
 
7.1 Introduction 
 
 
 In this chapter, the analysis of collected data from field measurements and 

laboratory tests is presented. The data analysis is performed in accordance with the 

approaches presented in section 5.4. The field data is analyzed for evaluating the 

variation of attenuation with the distance from the source using a linear regression based 

model. The underlying assumption for a linear regression based model is that the 

residuals are normally distributed with zero mean and finite variance. Therefore, the 

residuals are checked for normality using statistical measures and graphical as well as 

quantitative goodness of fit tests. The analyzed data was collected at the test site shown in 

Fig. 28. As the field tests spanned many days, very large amount of test data was 

collected. However, for the purpose of brevity and to illustrate the analysis methodology, 

only a snapshot of the field data is being analyzed. The analysis and results from the field 

data are presented in section 7.2.  

The laboratory data is used to analyze the variation in acoustic signal attenuation 

in the conduit with change in frequency, number and lengths of side branches. The 

analysis and results from laboratory data are presented in sections 7.3, 7.4 and 7.5. For 

each tested configuration, a representative plot is given for the measured and the 

predicted attenuation, the side branch input impedance, the measured and predicted SPL, 

the normal probability plot and the results of the hypothesis testing. The histograms of 
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residuals from estimates of attenuation in a conduit with and without the correction factor 

for an open end are also presented along with the probability density function of a normal 

distribution. The presented results are analyzed and relevant deductions are drawn to 

validate the proposed modeling approach given in chapter 5.  

7.2 Variation of Attenuation with Distance from Source 
 
 
 The data collected during the field measurement campaign is plotted in a scatter 

plot for each set of trials. Then a first order polynomial is used to check the fitting of the 

scatter plot data with a straight line. The attenuation is predicted from the slope of the 

fitted line. Representative scatter plots of measured data fitted with a first order 

polynomial are given in Figs. 41-44 for 200, 500, 1600 and 6300 Hz. 

In order to observe the attenuation of acoustic signal at long ranges some 

measurements spanned more than one manhole. The statistics of linear regression model 

�𝑌� = 𝑔 − ℎ𝑧� are given in Table 8. The bracketed figures of model parameters represent 

the lower and upper bounds on the predicted data.  

The goodness of fit statistics given in Table 8 are explained in detail in (Henke 

2007). The goodness of fit is explained in terms of statistical measures. These measures 

include the sum of squares error (SSE), coefficient of determination (𝑅𝑟𝑒𝑔2 ), degrees of 

freedom (DF) and the root mean square error (RMSE). The SSE describes the 

unexplained variability in the residuals. The DF refers to the number of data points that  
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are independent of one another and carry unique information. The standard deviation (𝜎) 

of the estimate can be obtained from SSE by dividing it with 𝐷𝐹 − 2 and taking its 

square root. The parameter 𝑅𝑟𝑒𝑔2  measures the percentage of variability in the measured 

data that can be explained through the knowledge of the independent variable (distance).  

The analysis of the data in Table 8 reveals that as the frequency is increased, the value of 

𝑅𝑟𝑒𝑔2  increases and RMSE and SSE reduce. This indicates the increased strength of 

regression as the frequency is increased. However, with increase in frequency the data 

points that carry unique information about variation of received SPL with distance also 

reduce due to greater attenuation and the regression line fits the data well. The plots also 

show 95 % confidence bounds on the model prediction. As the frequency increases, there 

are only few outliers and most of the data lies within the confidence bounds indicating 

that a linear model is a good fit to the measured data (Henke 2007). 
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Figure 41: Linear regression through measured 
data at 200 Hz. 

Figure 42: Linear regression through measured 
data at 500 Hz. 
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The use of regression analysis to fit a linear model to the measured data is based on 

assumption that the residuals are normally distributed with zero mean and finite variance. 

Therefore the next step is to check the residuals for fitting to a normal distribution. The 

first step in this process is to scatter plot the residuals to graphically observe their 

distribution around the zero mean line. For the four representative frequencies, the 

residuals are plotted with distance in Figs. 45-48. It can be observed that residuals are 

randomly scattered around the mean and they do not seem to follow any fixed pattern. 

There are few residuals that belong to outliers but the majority of the residuals are 

distributed randomly around the zero mean. This is one of the tests that the residuals have 

to pass so that the assumption of normality for the linear regression model is satisfied.  

 

 
Figure 43:  Linear regression through measured 

data at 1600 Hz. 
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Figure 44: Linear regression through measured data 
at 6300 Hz. 
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There are two more tests that the residuals have to pass before it is established that they 

belong to a normal distribution (Henke 2007).  

The normal probability plot is a graphical technique that is used to confirm 

whether a set of samples belong to a normal probability distribution or not. A straight line 

on the plot indicates the normal distribution and if the residuals are normally distributed 

they follow the straight line. The residuals at four representative frequencies are tested for 

normality using normal probability plots in Figs. 49-52. The plots indicate that the 

residuals generally follow the straight line indicating that they belong to the normal 

probability distribution. There are some observations that are outliers and indicate that 

there was another component to the error in addition to the stochastic component. In  

Table 8: Goodness of Fit Statistics for Linear First Order Polynomial Model. 

Measured 

Frequency 

Model Parameters Goodness of Fit Statistics  

Y-Intercept (g) [dB] slope of the estimate 

(h) (dB/m) 

SSE 𝑅𝑟𝑒𝑔2
 DF RMSE 

[dB] 

200 Hz 133 (126.9, 139.1) 1.306 (1.496, 1.116) 1.92 x 

103 

0.884 26 8.60 

500 Hz 127.8 (121.7, 

133.9) 

1.058 (1.26, 0.8554) 2.34 x 

103 

0.797 29 8.98 

1600 Hz 118.5 (114.2, 

122.8) 

1.246 (1.387, 1.105) 1.52 x 

103 

0.907 33 6.80 

6300 Hz 122.1 (116.3, 

127.9) 

0.756 (0.845, 0.668) 579.5 0.953 16 6.01 
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order to further quantify the normality of residuals, the Andersen Darling (AD) normality 

test is performed. 

 

 

 

 

 

Figure 47:  Scatter plot of residuals at 1600 Hz. 

 

 

Figure 48:   Scatter plot of residuals at 6300 Hz. 
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Figure 46: Scatter plot of residuals at 500 Hz. Figure 45: Scatter plot of residuals at 200 Hz. 
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Figure 49:  Normal probability plot of residuals at 
200 Hz. 

 

 

Figure 50: Normal probability plot of residuals at 
500 Hz. 

 

Figure 51: Normal probability plot of residuals at 
1600 Hz. 

 

 

Figure 52: Normal probability plot of residuals at 
6300 Hz. 
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The AD test is used for the data, where the number of observations is not large. 

The advantage of using this test is that it is one of the more sensitive tests based on 

computing the cumulative distribution function (CDF). It belongs to a class of tests that 

compare the distance between the theoretical CDF of the normal distribution with that of 

the CDF of residuals. The functional form of AD test statistic is given by (Romeu 2003): 

 
𝐴𝐷 = �

1 − 2𝑍
𝑀

�ln�𝐹0�𝑍(𝑖)�� + ln�1 − 𝐹0�𝑍(𝑀+1−𝑖)�� +�
𝑀

𝑖=1

− 𝑀. (77)  

Where 𝐹0 is the assumed normal distribution with assumed or sample estimated 

parameters (𝜇,𝜎), 𝑍(𝑖) is the sorted, standardized sample value, 𝑀 is the sample size, ln is 

the natural logarithm and subscript i runs from 1 to 𝑀. 

The null hypothesis (H0) is that the data belongs to the normal distribution. This 

hypothesis is rejected when the probability associated to AD test statistic is less than the 

specified significance level (0.05). In that case, the alternate hypothesis stands and the 

data does not belong to the normal distribution. The AD test results for the representative 

plots in Figs. 49-52 are given in Table 9. 

Using the above procedure of fitting the linear model to the measured data at each 

frequency and then computing the residuals between the measured data and fitted model, 

the residuals were computed for all the measured data. The histogram of the residuals 

with the probability density function (PDF) of normal distribution is given in Fig. 53. The 

histogram indicates that the data fits a normal probability distribution of zero mean and a 

variance of 73.1. It also shows that the assumption of normality of residuals is valid at 

95% significance level. Normally distributed residuals also show that the linear 

regression model adequately describes the variation of SPL with the distance in a conduit  
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network. The normal probability plot of the residuals is given in Fig. 54. The residuals 

mostly follow the straight line indicating that they belong to a normal distribution. The 

tails of the data are, however, longer and residuals at the tails depart from normality. This 

is caused by outliers in the regression analysis that can be attributed to the inaccuracies of  

 

 

 

 

Table 9: Andersen Darling goodness of fit test results – Linear Regression Model. 

Frequency 

(Hz) 

AD Test 

Statistic 

Probability of 

AD statistic 

Normal Distribution Mean and 

Variance 

Results 

200 0.676 0.069 Mean = 0.0, Variance = 80.00 H0 is true. 

500 0.446 0.2817 Mean = 0.0, Variance = 86.66 H0 is true. 

1600 0.365 0.4165 Mean = 0.0, Variance = 49.03 H0 is true. 

6300 0.559 0.1263 Mean = 0.0, Variance = 41.39 H0 is true. 
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Figure 53: Histogram of residuals from all measurements and probability density function of 
normal probability distribution. 
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the measurements which resulted in systematic rather than random error in the measured 

data. 

As the analysis indicates the residuals generally follow a normal distribution and 

therefore, a linear fit through the measured data is a valid model. The slope of the 

measured data signifies the predicted attenuation coefficient of the model. Based on all 

the field measurements in 0.2 m diameter conduits, the attenuation coefficient is 

predicted using the linear model for the case of conduit between OL6 and OL5 manholes 

(distance 40.28 m, four side branches). The theoretical attenuation coefficient is obtained 

from (39) and (64). The attenuation coefficient is also measured from the difference 

between reference and received pressures. The plot is given in Fig. 55. It can be observed 

that the predicted attenuation from the linear model gives a much closer estimate of the 

measured attenuation coefficient compared to that from a purely theoretical computation 

for frequencies less than 2.0 kHz. 
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Figure 54: Normal probability plot of the residuals from all measurements. 
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7.3 Variation of Attenuation with Frequency 
 
 
 In this section, the data collected from laboratory tests is analyzed to observe the 

variation of attenuation with frequency of the transmitted signal. For each tested 

configuration, the predicted attenuation coefficient from (39) is compared with that 

measured in the laboratory tests. The initial comparison is made for an 8.22 m long and a 

17.56 m long conduit with no side branches. The plots of measured attenuation and that 

predicted from theory for both cases are given in Figs. 56 and 57. 

 
 
 

 

 
Figure 55: Measured, predicted and theoretically evaluated attenuation coefficient.  
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Figure 56:  Predicted and measured attenuation in 8.22 m long 0.1m diameter conduit. 

 

 
 

 

Figure 57: Predicted and measured attenuation in 17.56 m long 0.1 m diameter conduit. 
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The effect of pipe resonances is visible especially at frequencies between 350 Hz 

to 3.0 kHz for 17.56 m long conduit. In Figs. 58 and 59, the measured SPL at the 

receiving microphone and that predicted from (71) are plotted. The model predicted SPL 

compares well with that measured during the laboratory tests especially at frequencies 

less than 3.0 kHz for 17.56 m long conduit.  

In order to determine the stochastic component of the attenuation, the residuals 

are computed between the measured and predicted attenuation. The normal probability 

plots of the residuals for both cases are given in Figs. 60 and 61. The plot for 8.22 m  

 

 

Figure 58: Predicted and measured SPL in 8.22 m long 0.1m diameter conduit. 
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conduit shows a slight right skew and a long tail. This can be attributed to the outliers in 

the attenuation coefficient as a result of the effect of conduit resonances. The plot for a 

17.56 m long conduit has a long tail at both ends with a slight bend in the middle. This 

indicates that due to the effect of outliers a higher degree of variability is visible in the 

residuals compared to that in a normal distribution. On the whole, though, as the results 

of AD tests given in Table 10 indicate the residuals belong to normal distribution 

validating the assumption that the error between the measured and predicted attenuation 

is a random variable belonging to a normal probability distribution with a zero mean and 

finite variance.  

 The variation of attenuation coefficient with frequency has also been analyzed 

due to the change in number and length of side branches. This is given in the next 

sections.  

 
 

 

 

Figure 59: Predicted and measured SPL in 17.56 m long 0.1m diameter conduit. 
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7.4 Variation of Attenuation with Number of Side Branches 
 
 
 Variation in attenuation due to change in number of side branches is observed by 

initially introducing one side branch in a straight 17.56 m long conduit of 0.1 m diameter. 

The length of the side branch is 1.62 m with a diameter of 0.05 m. Attenuation due to the 

side branch is measured by subtracting the received SPL from the reference SPL. 

The measured attenuation is compared with that obtained from theory and corrected 

 

Table 10: Goodness of Fit test results - 8.22 m and 17.56 m long conduits. 

Conduit 

Length (m) 

AD Test 

Statistic 

Probability of 

AD statistic  

Normal Distribution Mean and 

Variance 

Results 

8.22 0.485 0.207 Mean = 0.04, Variance = 0.78 H0 is true. 

17.56 0.470 0.230 Mean = 0.491, Variance = 0.479 H0 is true. 

 

 

 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

 Residuals (dB)

 P
ro

b
a
b

il
it

y

-0.5 0 0.5 1 1.5
0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

 Residuals (dB)

 P
ro

b
a
b

il
it

y

Figure 60: Normal probability plot of residuals for 
8.22 m long 0.1 m diameter conduit. 

Figure 61: Normal probability plot of residuals 
for 17.56 m long 0.1 m diameter conduit. 
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for the losses due to reflections from impedance mismatches in the straight conduit. The 

measured, corrected and theoretically evaluated attenuations are obtained for all tested 

configurations. The results are plotted in Figs. 62-68 for conduits with one through seven 

side branches. The theoretically evaluated attenuation reduces for frequencies greater 

than 2.0 kHz as the side branch impedance increases. However, as the theoretically 

evaluated attenuation only considers the signal attenuating effects of reflections from the 

junction point with the main conduit, therefore, it does not match up well with the 

measured attenuation especially at frequencies greater than around 2.0 kHz. The 

measured attenuation indicates sharp increase beyond 2.5 kHz. This could be attributed to 

the increased attenuation at the junction point with the side branch at frequencies greater 

than 2.5 kHz. 

 

 

Figure 62:  Measured and theoretical attenuation for a 17.56 m long conduit with one 1.62 m side 
branch. 
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Figure 63:   Measured and theoretical attenuation for a 17.56 m long conduit with two side branches. 

 

 

 

Figure 64:  Measured and theoretical attenuation for a 17.56 m long conduit with three side branches. 
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Figure 65:  Measured and theoretical attenuation for a 17.56 m long conduit with four 1.62 m side 
branches. 

 

 

 

Figure 66:  Measured and theoretical attenuation for a 17.56 m long conduit with five 1.62 m side 
branches. 
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Figure 67:   Measured and theoretical attenuation for a 17.56 m long conduit with six 1.62 m side 
branches. 

 

 

 

 

Figure 68:  Measured and theoretical attenuation for a 17.56 m long conduit with seven 1.62 m 
side branches. 
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The plots also indicate that the signal attenuation increases with the increase in 

number of side branches. The effect of side branch resonances is also visible which 

causes large variations in the measured attenuation. As the attenuation computed from 

theory does not take into account the radiation loss from the side branches, therefore, it 

does not indicate appreciable variation at higher frequencies except for in a band between 

5 kHz to 7.0 kHz.  

 The empirical correction factor, when added to the theoretically evaluated 

attenuation, results in a close agreement between the measured and the predicted 

attenuation except for a frequency band between 6.0 kHz to 9.0 kHz. At these frequencies 

the additional attenuation can be attributed to the radiation of acoustic energy through the 

side branches. At frequencies less than 6.0 kHz, the corrected attenuation compares well  

 

  
Figure 69: Side branch input impedance vs. frequency.  
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with the measured attenuation. The minima of theoretically evaluated attenuation 

correspond with the maxima of side branch input impedance as shown in Fig. 69.  

The input impedance has strong peaks and troughs at relatively lower frequencies. 

The deep minima of side branch input impedance causes reflections back into the main 

conduit and buildup of standing wave which attenuates the propagating signal. At higher 

frequencies the side branch impedance increases with increase in frequency and the 

minima of impedance are not as deep as is the case with relatively lower frequencies. 

Therefore, the theoretically evaluated transmission loss due to the side branch reduces at 

higher frequencies. However, the total attenuation of the signal in the main conduit 

increases due to the buildup of standing wave and increased transmission of the signal 

through the side branches. As the number of side branches is increased, the total 

attenuation of the propagating signal in the main conduit increases with the increase in 

frequency.  

In order to compare the measured SPL with that predicted from the proposed 

model, the transmission loss is computed from (64) for the case of one through seven side 

branches. A comparison between the model predicted SPL and that measured at the 

receiving microphone for one through seven side branches is given in Figs. 70-76. As 

expected the theoretical model does not sufficiently cater for the reflected signal from the 

open ended conduits and radiation of the signal at higher frequencies through the side 

branches. Therefore, there is large error between the predicted and measured SPL 

especially at higher frequencies. The predicted SPL with empirical correction factor 

shows better agreement with the measured SPL than that predicted from theory only. 
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Figure 70: Predicted and received SPL for a 17.56 m long conduit with one 1.62 m side branches. 

 

 

 

Figure 71: Predicted and received SPL for a 17.56 m long conduit with two 1.62 m side branches. 

 

 

10-1 100 101
60

70

80

90

100

110

120

130

Frequency (kHz)

SP
L(

dB
)

 

 

Measured
Predicted (with Correction)
Predicted (No Correction)

10-1 100 10160

70

80

90

100

110

120

130

Frequency (kHz)

SP
L(

dB
)

 

 

Measured
Predicted (with Correction)
Predicted (No Correction)



112 
 

 

Figure 72:   Predicted and received SPL for a 17.56 m long conduit with three 1.62 m side branches. 

 

 

 

Figure 73:  Predicted and received SPL for a 17.56 m long conduit with four 1.62 m side branches.  
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Figure 74:   Predicted and measured SPL for a 17.56 m long conduit with five 1.62 m side branches. 

 

 

 

 

Figure 75:   Predicted and received SPL for a 17.56 m long conduit with six 1.62 m side branches. 
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Figure 76:   Predicted and received SPL for a 17.56 m long conduit with seven 1.62 m side branches. 

 

 
 

The residuals between the predicted SPL with the correction factor and the 

measured SPL are computed from (72) and statistically analyzed. The model’s 

assumption is that the residuals belong to a normal distribution with finite mean and 

variance. In order to graphically check the residuals for normality, normal probability 

plots of the residuals are generated. The plots are given in Figs. 77-83 for the case of one 

through seven side branches. 
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Figure 77:  Normal probability plot for a 17.56 m 

long conduit with one 1.62 m side branch. 

 

 

 
Figure 78:  Normal probability plot for a 17.56 m 

long conduit with two 1.62 m side branches. 

 

 
Figure 79:  Normal probability plot for a 17.56 m 

long conduit with three 1.62 m side branches. 

 

 
Figure 80:  Normal probability plot for a 17.56 m 

long conduit with four 1.62 m side branches. 
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Figure 81:   Normal probability plot for a 17.56 m 
long conduit with five 1.62 m side branches. 

 

 

Figure 82:  Normal probability plot for a 17.56 m 
long conduit with six 1.62 m side branches. 

 

 

Figure 83:  Normal probability plot for a 17.56 m long conduit with seven 1.62 m side branches. 
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The plots indicate that the residuals mostly follow the straight line of normal 

distribution. There are deviations from normality at the tails for the case of four, five, six 

and seven side branches. These deviations are caused by large residuals at high 

frequencies between the predicted and the measured data. The AD test results are given 

in Table 11. It can be seen that the null hypothesis is true in all tested cases indicating 

that the residuals belong to normal distribution with a finite mean and variance as given 

for each case in Table 11.  

The histogram of residuals obtained from SPL data corrected for the standing 

wave effects in the straight conduit is plotted in Fig. 84. Histogram of residuals without 

the correction factor is also given in Fig 85. It can be observed from the histograms that 

the residuals with the correction factor applied follow the normal distribution more 

closely than the residuals without the correction factor. The mean and variance of the 

 

Table 11: Goodness of Fit test results – Change in number of side branches. 

Number of 

side 

branches 

AD Test 

Statistic 

Probability of 

AD statistic  

Normal Distribution Mean (dB) 

and Variance 

Results 

One 0.376 0.390 Mean = 0.78, Variance = 15.44 H0 is true. 

Two 0.170 0.924 Mean = -1.07, Variance = 40.12 H0 is true. 

Three 0.158 0.945 Mean = -2.54, Variance = 49.20 H0 is true. 

Four 0.332 0.497 Mean = -2.16, Variance = 59.79 H0 is true. 

Five 0.671 0.072 Mean = -2.48, Variance = 79.16 H0 is true. 

Six 0.682 0.068 Mean = -2.25, Variance = 52.19 H0 is true. 

Seven 0.376 0.392 Mean = -3.10, Variance = 52.68 H0 is true. 
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corrected residuals is significantly lower than the case of residuals with no correction. In 

order to further check the residuals for normality, the normal probability plots of the 

residuals for both cases are given in Figs. 86 and 87. Both the plots indicate that the 

residuals mostly belong to the normal probability distribution. There is more deviation 

from normality around the lower tail of the normal probability plots due to the effect of 

outliers in the measured data. 

In the next section the variation in attenuation with change in the length of side 

branches is analyzed and the evaluated residuals are tested for normality. 

 
 

 

Figure 84:  Histogram of residuals (with 
correction included) from all measurements 

(Change in number of side branches). 

 

 

Figure 85:  Histogram of residuals (without 
correction) from all measurements (Change in 

number of side branches). 
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Figure 86: Normal probability plot of residuals 
(with correction) from all measurements (due to 

change in number of side branches). 

 

 

Figure 87: Normal probability plot of residuals 
(with no correction) from all measurements (due 

to change in number of side branches) 
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-20 -15 -10 -5 0 5 10 15

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997

Residuals (dB)

P
ro

b
a
b

il
it

y

 

 

Residuals (with Correction)

-40 -30 -20 -10 0 10

0.001
0.003

0.01 
0.02 

0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 

0.98 
0.99 

0.997

Residuals (dB)

P
ro

b
a
b

il
it

y

 

 

Residuals (No Correction)



120 
 

 

Figure 88:  Normalized input impedance for a 0.12 m long side branch. 

 

 

 

Figure 89:   Attenuation due to a 0.12 m long side branch. 
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Figure 90:   Normalized input impedance for a 0.42 m long side branch. 

 

 

 

Figure 91:   Attenuation due to a 0.42 m long side branch. 
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Figure 92:   Normalized input impedance for a 0.72 m long side branch. 

 

 

 

 

Figure 93:   Attenuation due to a 0.72 m long side branch. 
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Figure 94:  Normalized input impedance for a 1.02 m long side branch. 

 

 

 

 

Figure 95:  Attenuation due to a 1.02 m long side branch. 
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Figure 96:  Normalized input impedance for a 1.32 m long side branch. 

 

 

 

Figure 97:  Attenuation due to a 1.32 m long side branch. 
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It is noticeable from the plots that at higher frequencies as the length of side 

branch is reduced the input impedance increases. The increase in input impedance causes 

radiation of the signal conduit through the side branch. The shorter side branch acts as a 

high pass filter for the signal propagating in the main conduit. The transmission loss is 

computed from (64) and is used in (71) for each case of change in the length of side 

branch to predict the received SPL. The predicted and measured SPL are plotted for each 

change of side branch length in Figs. 98-103. The predicted SPL, corrected for the losses 

due to standing waves in the main conduit, provides a better fit to the measured data 

compared to the theoretically predicted SPL. As the frequency is increased beyond 2.0 

kHz, there is rapid rise in attenuation of the measured SPL. This can be attributed to the 

radiation through the open ended side branches causing transmission loss of the signal in 

main conduit.  

 

 

Figure 98:  Measured and Predicted SPL in a conduit with 0.12 m long side branch. 
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Figure 99:  Measured and Predicted SPL in a conduit with 0.42 m long side branch. 

 

 

 

 

Figure 100:  Measured and Predicted SPL in a conduit with 0.72 m long side branch. 
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Figure 101:  Measured and Predicted SPL in a conduit with 1.02 m long side branch. 

 

 

 

Figure 102:   Measured and Predicted SPL in a conduit with 1.32 m long side branch. 
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Figure 103:  Measured and Predicted SPL in a conduit with 1.62 m long side branch. 
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exist due to outliers in the residuals. 

In order to quantify the effect of deviations from normality, the AD test is 

performed. The results are given in Table 12. The probability of AD test statistic is 

checked against the specified significance level of (0.05). The results of AD test show 

that the null hypothesis holds in all cases, therefore, the residuals belong to the normal 
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probability distribution. The AD test also gives the mean and variance of the fitted 

distribution. The residuals from all tests are computed for corrected data as well as data 

without correction. The histograms of residuals for both cases are given in Figs. 110 and 

111 along with the probability density function of the normal distribution. It can be 

graphically observed that the residuals from the corrected SPL data provide better fit to 

the normal probability distribution than residuals from SPL data with no correction. The 

normal probability plots of the residuals for both cases are also given in Figs. 112 and 

113. The plots indicate that the residuals generally follow the straight line of normal 

probability distribution. Some residuals at the tails, however, deviate from normality 

corresponding to the outliers in the measured data. 
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Figure 105: Normal probability plot of residuals for 
a 0.42 m long side branch. 

Figure 104: Normal probability plot of residuals 
for a 0.12 m long side branch. 
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1.32 m Side Branch
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1.62 m Side Branch

Figure 106: Normal probability plot of residuals for 
a 0.72 m long side branch. 

Figure 107: Normal probability plot of residuals for 
a 1.02 m long side branch. 

Figure 108: Normal probability plot of residuals for a 
1.32 m long side branch. Figure 109: Normal probability plot of residuals for 

a 1.62 m long side branch. 
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Figure 110:  Histogram of residuals (with 
correction included) from all measurements 

(Change in length of side branches). 

 

 

Figure 111:  Histogram of residuals (with no 
correction) from all measurements (Change in 

number of side branches). 
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Table 12: AD goodness of fit test results – Change in length of side branch. 

Side 

branch 

lengths 

AD Test 

Statistic 

Probability 

of AD 

statistic  

Normal Distribution Mean and 

Variance 

Results 

1.62 0.376 0.390 Mean = 0.78, Variance = 15.4 H0 is true. 

1.32 0.578 0.122 Mean = -0.49, Variance = 30.8 H0 is true. 

1.02 0.580 0.120 Mean = -0.78, Variance = 25.9 H0 is true. 

0.72 0.225 0.804 Mean = -0.81, Variance = 34.0 H0 is true. 

0.42 0.265 0.670 Mean = -0.30, Variance = 30.5 H0 is true. 

0.12 0.351 0.447 Mean = -0.57, Variance = 25.7 H0 is true. 
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Figure 112: Normal probability plot of residuals 
(with correction) from all tests of side branch 

length changes. 

 

 

In the previous sections, the variation in attenuation with distance along the length 

of conduit, frequency of transmitted signal, the number and length of side branches have 

been analyzed. In the next section, relevant deductions are drawn from the analysis and 

results presented in the previous sections.  

7.6 Deductions from Analysis 
 
 

Having analyzed the residuals in all cases of change in the number and lengths of 

side branches, it is evident that the residuals generally follow normal probability 

distribution. The histograms and corresponding normal probability plots of the residuals 

(with and without the correction) from all tested configurations of change in numbers and 

lengths of side branches are given in Figs. 114-117. The histogram of residuals with  
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Residuals (No Correction)

Figure 113:  Normal probability plot of residuals 
(no correction) from all tests of side branch length 

changes. 
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correction has a mean of -1.15 dB and variance of 39.68. The residuals with no correction 

have a mean of -6.62 dB and a variance of 95.76.  
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Residuals (All Tests)

Figure 116: Histogram of residuals from all tests 
with correction. 

Figure 117: Normal probability plot of residuals 
from all tests with correction. 

Figure 114: Histogram of residuals from all tests 
with no correction. 

Figure 115: Normal probability plot of residuals 
from all tests with no correction. 
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The probability plots indicate that the corrected residuals have a probability of 

between 10% to 98% that they belong to a normal distribution with a finite mean and 

variance before the deviations start. In case of residuals with no correction, their 

probability of following a normal distribution lies between 12% to around 80% before 

they start to deviate from normality. This indicates that adding a correction factor in the 

theoretical model of side branch transmission loss provides more accurate prediction of 

received SPL compared to the side branch transmission loss with no correction. Also, the 

corrected residuals more closely follow normal probability distribution compared to the 

residuals with no correction.  

Through the analysis of data from the field and laboratory tests, variability in 

attenuation of propagating signal has been analyzed due to change in the distance from 

the source, the frequency, the number and length of the side branches. The following 

overall deductions are made based on the presented results: 

1) The first order polynomial linear regression model fits the measured SPL versus 

distance data well. The representative samples of received SPL at 200 Hz, 500 

Hz, 1600 Hz and 6300 Hz analyzed through a linear regression model have strong 

(closer to 1) coefficients of determination (𝑅𝑟𝑒𝑔2 ). This indicates that most of the 

variation in the received SPL can be explained by a first order polynomial 

relationship between distance from the source and the SPL. The variability in the 

linear relationship that cannot be explained by linear regression model has been 

analyzed through statistical analysis of residuals between the measured data and 

the fitted model. The analysis indicates that the residuals are random variables 

belonging to a normal probability distribution with zero mean and finite variance. 
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2) The analysis of variation in attenuation with frequency, for a conduit with no side 

branches, indicates that the residuals between measured and predicted attenuation 

belong to a normal probability distribution with finite mean and variance. The 

statistical analysis of residuals indicates that they have a variability that can be 

best explained by a normally distributed stochastic component of finite mean and 

variance.  

3) Variation in signal attenuation with the change in number of side branches also 

introduces a random variable error in the measured attenuation that can be best 

modeled as a normally distributed random variable with a finite mean and 

variance. The mean error between the prediction from the model and the 

measured data can be reduced to a marginal level if a correction factor is included 

in the theoretically computed attenuation to take into account the standing wave 

effects of an open ended conduit.  

4) Change in the length of side branch has significant effect on the signal attenuation 

in a conduit as the input impedance of side branch varies with length. As the side 

branch length decreases, the transmission loss increases and the maxima of the 

transmission loss correspond to the minima of the side branch input impedance. 

The variation in the length of side branch also introduces a random variable error 

in the measured attenuation that is normally distributed with a finite mean and 

variance.  

The proposed propagation model as the sum of analytical deterministic part and a 

stochastic part from (74) is reproduced below:  

 𝑃�(𝑧, 𝑓,𝑁, 𝑙,𝑎, 𝑏) =  𝑃�0 − 𝛼𝑐(𝑧,𝑓,𝑁, 𝑙,𝑎, 𝑏) +  𝜓(𝜇,𝜎2).   (78)  
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Based on the deductions from analysis of empirical data, it can be concluded that 

the proposed model to characterize the acoustic signal propagation in conduit networks 

with variations in distance from the source, frequency, number and lengths of side 

branches is a valid model as it describes not only the deterministic component of the 

signal attenuation but also the stochastic component contributed by random variable 

sources. It has also been validated that the stochastic component of the model 𝜓(𝜇,𝜎2) 

can be most accurately described by a normal distribution with a finite mean and 

variance. Therefore, the model in (78) can be used to more accurately predict the signal 

attenuation in conduit networks than the existing analytical models. 

 In the next chapter the conclusions drawn from the present study and some 

recommendations for future work are presented.  



CHAPTER 8: CONCLUSION AND FUTURE WORK 
 
 
8.1 Conclusion 
 
 

Development of models to characterize acoustic propagation in conduits has 

historically been an important subject for scientific investigators especially due to 

applications in the design of musical instruments, sound absorbing liner material for 

muffling applications, acoustic based delay lines, noise analysis in HVAC ducts and 

pipeline condition monitoring systems. The motivation for the present study stems from 

the need to characterize the propagation of an acoustic signal in a conduit in the presence 

of random sources that introduce an uncertainty in the signal attenuation measurements. 

Some of these random variable sources of error include the presence of temperature and 

humidity gradients, blockages of variable sizes and types, defects due to aging and 

ambient noise variations. Characterizing the random variable error due to random 

variable sources using analytical approaches can be intractable to model due to increased 

complexity. This study proposes a stochastic based approach to model the random 

variable error in the attenuation of the propagating signal with the change in the distance 

from the source, the frequency, the number and lengths of side branches. An empirical 

based model is proposed that can describe the propagation in a conduit network in 

presence of random variable error sources with better accuracy compared to the 

theoretical based approaches only.  
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Extensive field and laboratory measurements have been made to collect the data 

for validating the proposed model. The predicted results from the model show good 

agreement with those from the theoretical model calibrated for the effects of standing 

waves in an open conduit. Graphical and statistical approaches are used to analyze the 

residuals between measured and predicted data. The analysis of residuals indicates that 

they belong to a normal distribution with a finite mean and variance. The addition of a 

stochastic part in the propagation model to describe random variable error in signal 

attenuation is validated by close agreement between the predicted and measured SPL for 

all tested conduit configurations. The proposed propagation model can be used for 

predicting signal attenuation in conduit networks more accurately compared to theoretical 

models only.  

8.2 Future Work 
 
 
 In order to improve the accuracy of the model for use in field applications 

following aspects can be studied: 

1) During field measurements some tests involved measuring the pressure response 

of the conduit with one or more manholes between the source and the receiver. 

The effect of manholes on the propagating signal in terms of transmission loss on 

the propagating signal, reflection back into the source conduit and coupling to the 

next conduit section needs to be analyzed. There is also a need to analyze the 

effect of placing the source as well as receiver in the manhole cavity rather than at 

the open ends of the conduit. 

2) Routinely, conduit networks in the field have a thin layer of water along with 

variable level of blockage. The depth of layer of water can momentarily vary 
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depending on the use of the conduit. Therefore, there is a need to analyze its 

effect on the signal attenuation. The effect of variable sizes and types of 

blockages in conduits can also be studied and their effects included in the 

propagation model. 

3) The sources of noise in the conduit in the field are random variables and their 

effect on ambient noise inside the conduit need to be analyzed. A probability 

distribution to best model the ambient noise affecting the propagating signal 

inside the conduit environment may be investigated.  
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APPENDIX A: EFFECT OF TEMPERATURE AND HUMIDITY VARIATIONS ON 

SPEED OF SOUND 
 
 

The speed of sound in air has strong dependence on the variations in temperature 

and humidity. The temperature changes cause change in the density of the medium that 

change the speed of sound. The variation of sound with changes in relative humidity and 

temperature are given in (Bohn 1987). Here the variation in speed of sound is analyzed 

through expressions given in (Bohn 1987) at variation in relative humidity conditions 

encountered during the field tests. The speed of sound (c) in air with temperature (T) in 

degree Celsius is given by: 

 𝑐 = 20 √𝑇 + 273 . (79)  

The moisture in air affects the density of air and hence the speed of sound in air. Moist 

air is less dense than the dry air and hence speed of sound in dry air is less than the moist 

air. The presence of water vapors in the air cause its specific heats ratio to change. The 

variation in speed of sound due to temperature (T) and humidity (h) changes is given by: 

 
𝑐 = 1.5 × 105 �

𝛾𝑚𝑜𝑖𝑠𝑡(273 + 𝑇)
(7917 − 3003ℎ)

 , (80)  

where h is the water molecule fraction that can be converted to the percent relative 

humidity (RH) and 𝛾𝑚𝑜𝑖𝑠𝑡 is the ratio of specific heats for moist air. The change in speed 

of sound with temperature and relative humidity is plotted in Fig. 115 for a temperature 

range from 0 to 30°C and for relative humidity range of 10 to 90% with 10% step.  
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Figure 118: Change in speed of sound vs. relative humidity and temperature. 

 

 
 
 
The plot indicates that with the change in humidity the speed of sound slightly 

varies. The variation becomes more pronounced with the increase in temperatures. For 

the purpose of this study the temperatures and humidity readings during the field and 

laboratory tests have been recorded and are used to analyze the speed of sound in conduit 

networks. 
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APPENDIX B: THERMODYNAMIC PROPERTIES OF AIR 
 
 
The variation in thermodynamic properties of air with temperature is given in the 

following table. Those properties are included that are relevant to this study: 

 
 

Thermodynamic constants of air: All constants are evaluated at 𝑇 = 26.85°𝐶 (300°𝐾)  

and are accurate to within ±10°𝐶 of that temperature. The temperature difference relative 

to 26.85°𝐶 is ∆𝑇. 

Equilibrium density of air (𝜌0) 
𝜌0 = 1.1769(1 − 0.00335 ∆𝑇) 

𝑘𝑔
𝛾3 

 
Coefficient of shear viscosity (𝜂) 

𝜂 = 1.846 × 10−5(1 + 0.0025 ∆𝑇) 
𝑘𝑔
𝛾 𝑠

 

𝛾 =  
𝐶𝑝
𝐶𝑣

 𝛾 = 1.4017(1 − 0.00002 ∆𝑇) 
 

Prandtl number, 𝑃𝑟 =  𝜂𝐶𝑝
𝜅

 �𝑃𝑟 = 0.8410(1 − 0.0002 ∆𝑇)
 

Characteristic impedance of air 
𝜌0𝑐 = 408.65(1 − 0.0017 ∆𝑇) 

𝑘𝑔
𝛾2𝑠
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