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ABSTRACT 

 

JOSEPH ALLEN PELLER. A single-pixel hyperspectral imaging system for Cancer 

Margin Detection.(Under the direction of DR. SUSAN TRAMMELL) 

 

 

We have developed a hyperspectral imaging (HSI) system based on a single pixel 

camera design to detect differences in tissue properties based on the optical reflectance and 

autofluorescence spectra of the tissue. The long-term goal of this project is to develop an 

HSI system to be used as a surgical navigation aid. Surgical excision of malignant tissue 

continues to be the foundation of treatment for most solid mass tumors. A significant 

remaining challenge for cancer surgery is ensuring that no residual malignant tissue is left 

behind, as recurrent tumors lead to high mortality rates. Unfortunately, cancerous tissue is 

often indistinguishable from healthy tissue under visual inspection during surgery and there 

are few diagnostic imaging tools to aid the surgeon in the determination of the tumor 

margins in real time. Cancer surgeons are in need of additional intraoperative imaging 

modalities for use during surgery to clearly delineate tumor margins and identify areas of 

residual disease.  

 Recent research has demonstrated that optical spectroscopy can be used to 

distinguish between healthy and diseased tissue. HSI is a hybrid imaging modality that 

combines imaging and spectroscopy and provides a 2D image that contains spectral 

information in each pixel. Because HSI captures both spatial and spectral information, this 

technique has potential applications for noninvasive disease diagnosis and surgical 

guidance. Conventional HSI systems employ spatial or spectral scanning techniques that 

reconstruct the spectral image after scanning is complete. We are developing a different 

type of HSI system based on a single pixel camera design. The single pixel design provides 
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an imaging architecture that is more flexible than traditional HSI scanning techniques and 

can provide better performance in several key areas including improved operation at low 

light levels and enhanced dynamic range. 

A single pixel camera uses a single detector to create a 2-D image of a scene rather 

than using an array of detectors.  The design of a single-pixel camera relies on the 

mathematical theory and algorithms of compressive sampling (CS), which is based on the 

idea that a small number of linear projections of a compressible image contain enough 

information for reconstruction.  A single-pixel camera uses a digital micromirror device 

(DMD) as a spatial light modulator to optically calculate linear projections of a scene 

onto pseudo-random binary patterns. Hadamard matrices are used as the binary patterns. 

A single-pixel imaging system produces an image by rapidly obtaining many 

measurements of the intensity of a scene using different Hadamard matrices. The signal 

and the corresponding Hadamard code are saved for reconstruction, which occurred after 

all codes had been displayed on the DMD. This method of single-pixel imaging based on 

CS can be made hyperspectral by replacing the single detector with a spectrometer.  

The HSI system was built and images of known objects were acquired to test the 

spectral and spatial resolution of the camera and to determine operating parameters for 

future studies. The software necessary to acquire and reconstruct images was developed 

in LabView and Matlab. The test images were imaged in fluorescence and reflectance 

modes simulating future study conditions.  The compressive error was tested and 

relations between image reconstruction quality and the number of Hadamard codes sent 

to the DMD were quantified.  



v 
 

The ability of the single-pixel HSI system to distinguish between healthy and 

unhealthy tissue was initially tested using an ex vivo porcine tissue model. The 

autofluorescence emission from collagen (400 nm) and NAD(P)H (475 nm) along with 

differences in the optical reflectance spectra were used to differentiate between healthy 

and thermally damaged tissue. Thermal lesions were created in porcine skin (n = 12) and 

liver (n=15) samples using an IR laser. The damaged regions were clearly visible in the 

hyperspectral images. Sizes of the thermally damaged regions as measured via 

hyperspectral imaging were compared to sizes of these regions as measured in white light 

images and via physical measurement. Good agreement between the sizes measured in 

the hyperspectral images, white light imaging and physical measurements was found. The 

HSI system can differentiate between healthy and damaged tissue. 

 The ability of the HSI system to distinguish between healthy and cancerous tissue 

was evaluated by imaging human pancreatic tissue samples ex vivo.  Differences in the 

optical reflectance spectra were used to identify healthy and malignant pancreatic tissue. 

Tissue samples from 20 patients were imaged with the HSI system and these images were 

compared to white light and histological analysis of these samples. An overall sensitivity 

of 74.80±9.18% and a specificity of 68.59±10.43% as measured from reflectance HSI 

was found which confirms the system is sensitive to the changes in tissue caused by the 

presence pancreatic cancer. Differences in the optical autofluorescence emission from 

collagen (400 nm) and NAD(P)H (475 nm) were also used to identify healthy and 

malignant pancreatic tissue in a small subset of samples (n=2). 

Finally, polarization imaging capability was added to the HSI system. Thermal 

lesions were created in porcine skin (n = 8) samples using an IR laser. Sizes of the 
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thermally damaged regions as measured via hyperspectral polarization imaging were 

compared to sizes of these regions as measured in reflectance HSI and white light 

imaging of the samples. Good agreement between the sizes measured in the polarization 

HSI, reflectance HSI and white light images was found. These results confirmed the 

sensitivity of the camera to changes in the tissues polarization properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

DEDICATION 

 

This dissertation is dedicated to several people.  

Firstly, to my family. To my mom and dad and brothers, who have encouraged me 

from a young age to always keep learning, trying, and doing what makes me happy. Who 

have supported me and given advice and comfort whenever I needed it during this long 

process.  

To my friends, to those who I met during the long half decade we spent together in 

grad school, for the not just the academic help but for the sense of kinship and 

community we built up to support each other over the years. We are all about to go our 

separate ways and I know that I personally am bad at keeping up wish, but I wish 

everyone of you the best of luck in the future.  Chris, Madison, Charlotte, Abby, Francis, 

Zeba, Geoff. Thank you. 

And finally to Alex, I have no words for how much your patience and love has meant 

to me over this process. The many times I’ve come home fuming and frustrated over 

some small hang up only to have you help calm me down and consider things rationally. 

From little things like making sure I’m prepared for a conference, to surprise weekends 

away so we could both clear our heads from the week, to putting your own art career on 

hold for a few years so I could finish this. You are going to do great things, and I’m 

looking forward to spending our lives together. 

I couldn’t have done this on my own, thank you all. 



viii 
 

ACKNOWLEDGEMENTS 

 

I would like to begin by thanking the Levine Cancer Institute for funding these 

studies. Including a special thank you to the HPB group at CMC for the assistance in the 

pancreatic tissue experiment and all the Pas in the pathology lab who put us up in their 

workspace for over a year.  

Thank you to Charlotte Teacher Institute for the assistance over the summers and 

the chance to share not just this research but the research process to a fantastic and 

engaged group of teachers. 

Thanks to all the undergrads who have assisted in this project over the years. 

Aubrey, Andrew, Amanda, Nancy, your diligence in data collection made this whole 

process run so much smoother then it could have. 

Finally, I would also like to thank Dr. Fried for supplying the IR lasers used in 

chapters 3 and 5 of this dissertation. 

 

 

 

 

 

 

 



ix 
 

TABLE OF CONTENTS 

 
LIST OF TABLES .................................................................................................................. xii 

LIST OF FIGURES ................................................................................................................ xiii 

1. Introduction ........................................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 1 

1.2 Fluorescence Spectroscopy and Cancer Detection .......................................................... 2 

1.3 Reflectance Spectroscopy and Cancer Imaging .............................................................. 5 

1.4 Combination of Reflectance and Fluorescence Spectroscopy ......................................... 6 

1.5 Pancreatic Cancer ............................................................................................................ 6 

1.6 This Project...................................................................................................................... 7 

2. Design and Testing of a Single-Pixel Hyperspectral Imaging System for the Detection of 

Fluorescent and Reflectance Spectra ............................................................................................... 9 

2.1 Single-Pixel Hyperspectral Imaging................................................................................ 9 

2.3 Methods ......................................................................................................................... 13 

2.3.1 Single-Pixel Camera Design and Construction ...................................................... 13 

2.3.2 Test Images ............................................................................................................. 14 

2.4 Results and Analysis ..................................................................................................... 15 

2.4.2 Image Quality Measurements. ................................................................................ 17 

2.5 Conclusions ................................................................................................................... 19 

3. Defining regions of thermal damage in ex vivo porcine tissue samples using single-pixel 

hyperspectral imaging .................................................................................................................... 20 



x 
 

3.1 Introduction ................................................................................................................... 20 

3.2 Methods ......................................................................................................................... 23 

3.3 Results and Analysis ..................................................................................................... 27 

3.3.1 Spectral Angle Mapping ......................................................................................... 27 

3.3.2 SAM Analysis of Healthy Porcine Skin and Liver Tissue Samples ....................... 31 

3.3.3 SAM Analysis of Thermally Damaged Porcine Skin Tissue Samples and 

Comparison to Healthy Tissue ............................................................................................... 32 

3.3.4 SAM Analysis of Thermally Damaged Porcine Liver Tissue Samples and 

Comparison to Healthy Tissue ............................................................................................... 35 

3.4 Conclusions ................................................................................................................... 37 

4. Hyperspectral imaging based on compressive sensing to determine cancer margins in 

human pancreatic tissue ex vivo .................................................................................................... 39 

4.1 Introduction ................................................................................................................... 39 

4.2 Methods and Materials .................................................................................................. 41 

4.3 Results and Analysis ..................................................................................................... 44 

4.3.1 Spectral Angle Mapping ......................................................................................... 44 

4.3.2 Spectral Analysis of Pancreatic Tissue ................................................................... 45 

4.3.3 SAM Reflectance Analysis of Healthy Pancreatic Tissue ...................................... 47 

4.3.4 SAM Reflectance Analysis of Malignant Pancreatic Tissue .................................. 48 

3.4 SAM Analysis of the Reflectance Spectra of Samples Containing both Healthy and 

Malignant Pancreatic Tissue .................................................................................................. 49 

4.3.5 SAM Fluorescence Analysis of Pancreatic Tissue ................................................. 50 



xi 
 

4.4 Conclusions ................................................................................................................... 51 

5. Hyperspectral Compressive Polarization Imaging of Porcine Skin Tissue Ex Vivo ........... 53 

5.1 Introduction ................................................................................................................... 53 

5.2 Methods and Materials .................................................................................................. 54 

5.3 Results and Analysis ..................................................................................................... 56 

5.3.1 Reflectance HSI and White Light Images of Healthy and Damaged Tissue .......... 56 

5.3.2 Polarized Light HSI of Healthy and Damaged Tissue............................................ 59 

5.3.3. Comparison of Polarized Light HSI to White Light and Reflectance HSI ............ 62 

5.4 Conclusions ................................................................................................................... 63 

6. Conclusions ......................................................................................................................... 65 

References ............................................................................................................................... 68 

Appendix: Publications ........................................................................................................... 75 

 

 

 

 

 

 

 

 



xii 
 

LIST OF TABLES 

 

TABLE 1: The number of tissue samples from the 20 patients                                               28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

LIST OF FIGURES 

 

FIGURE 1: An example of fluorescence in a three level model                                                3 

FIGURE 2: The mean fluorescence spectra obtained from human pancreatic                          5 

           tissue containing normal tissue 

FIGURE 3: The mean reflectance spectra obtained from human pancreatic                             6 

           tissue containing normal tissue 

FIGURE 4: A hypercube of a flower.                                                                                        8 

FIGURE 5: An example of two types of hyperspectral scanning                                              8 

FIGURE 6: The mirrors on a digital micromirror device                                                         11 

FIGURE 7: Schematic of our initial hyperspectral imaging system                                        14                                            

FIGURE 8: Fluorescent spectra of highlighter pens                                                                15 

FIGURE 9: Reconstructed images of a black and white test image for                                   16  

           differing numbers of measurements 

FIGURE 10: Original and reconstructed images of a test image based on the                        17 

           fluorescent signal from highlighter ink illuminated by a 405 nm LED 

FIGURE 11: A test image reconstructed at differing number of measurements                     18 

FIGURE 12: Plots of increasing image quality measures with increasing                              19 

            number of measurements 

FIGURE 13: The effect of shrinking pixel size on reconstructed HSI                                    20 

FIGURE 14: The schematic of the hyperspectral system                                                        25 

FIGURE 15: A diagram of spectral angle mapping                                                                 28 

FIGURE 16: The autofluorescene and reflectance spectrum of porcine skin tissue                29 

FIGURE 17: The reflectance spectrum of porcine liver tissue                                                30 

FIGURE 18: Comparison of the white light image and the HSI                                              31 

           of healthy skin tissue 



xiv 
 

FIGURE 19: Comparison of the white light image and the reflectance HSI                           32 

           of healthy liver tissue 

FIGURE 20: Comparison of the white light image and the HSI                                              33 

           of damaged skin tissue 

FIGURE 21: Bland-Altman plots comparing the areas of the thermally damaged                  34 

           regions as measured in the HSI and white light images of porcine skin tissue 

FIGURE 22: Comparison of the white light image and the HSI images                                 35 

           of damaged liver tissue 

FIGURE 23: Bland-Altman plots comparing the areas of the thermally damaged                  36 

           regions as measured in the HSI and white light images of porcine liver tissue 

FIGURE 24: Schematic of the hyperspectral imaging system for chapter 4                           43 

FIGURE 25: The autofluorescene and reflectance spectrum of human pancreatic tissue       46 

FIGURE 26: Comparison of the white light image and the HSI                                              48 

           of healthy pancreatic tissue 

 

FIGURE 27: Comparison of the white light image and the HSI                                              49 

           of tumorous pancreatic tissue 

FIGURE 28: Comparison of the white light image and the HSI                                              50 

           of the margin between healthy and tumorous pancreatic tissue 

FIGURE 29: Comparison of the white light image and the fluorescence HSI                        51 

           of the margin between healthy and tumorous pancreatic tissue 

FIGURE 30: Schematic of the polarization detecting hyperspectral imaging system             55 

FIGURE 31: Comparison of the white light image and the polarized light HSI                     56 

           of healthy porcine skin tissue 

FIGURE 32: Comparison of the reflectance spectra of healthy and damaged                         57 

            porcine skin tissue 



xv 
 

FIGURE 33: Comparison of the white light image and the polarized light HSI                     59 

           of damaged porcine skin tissue 

FIGURE 34: Comparison of the polarization spectra of healthy and damaged                       60 

            porcine skin tissue 

FIGURE 35: Bland-Altman plots comparing the areas of the thermally damaged                  62 

           regions as measured in the polarized light HSI and white light images of  

     porcine skin tissue 

 

 

 

 



1 
 

1. Introduction 

1.1 Motivation 

In 2017, an estimated 15.5 million American’s were either cancer patients or 

survivors and that number is expected to rise over the next decade. The most prevalent 

types of cancers are those that form hard collagen rich tumors, known as solid mass 

tumors. [1] The most common treatment of solid mass tumors is surgical excision in 

conjunction with chemotherapy and/or radiation therapy. The goal of the surgical 

excision is to remove all diseased tissue, but this is often balanced by a need to preserve 

healthy tissue. For example, the standard course of treatment for many breast cancer 

patients is tissue-conserving lumpectomy and for pancreatic cancer, sparing healthy 

tissue is important to preserve digestive function and the ability to produce insulin. 

Multiple imaging modalities are available for preoperative tumor diagnosis and 

surgical planning, including x-ray, ultrasound, computed tomography (CT), magnetic 

resonance imaging (MRI), positron emission tomography (PET) and single photon 

emission computed tomography (SPECT). However, these techniques are not usually 

available during surgery. Paraffin section of inked surgical margins is the gold standard 

for margin assessment. Unfortunately, this process is time consuming and results are not 

available until several days after surgery. Typically, surgeons determine the tumor 

resection margins during procedures based on palpation, visual inspection and frozen 

section histology. In some cases, intraoperative ultrasound is used to guide tissue 

excision. [2] A danger to the patient exists if any residual cancerous cells are not removed 

in the resection. Missing these cells leads to a higher rate of local reoccurrence of cancer 

in the tissue even when followed up by chemotherapy and radiation. [3] Consequently, the 
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success of cancer surgery depends on a doctor’s ability to visualize the margins of the 

tumor to be removed. There is not yet a standard method to determine these margins 

intraoperatively. Cancer surgeons need additional intraoperative imaging modalities for 

use during surgery to clearly delineate tumor margins and identify areas of residual 

disease. 

We are developing a hyperspectral imaging system (HSI) to detect gross tumor 

margins using fluorescent and reflectance imaging in real-time. The long term goal of this 

project is to eliminate the need for frozen section histology, reduce the amount of time 

needed to complete the surgical procedure, increase the accuracy of tissue resection, and 

improve patient outcomes.  

1.2 Fluorescence Spectroscopy and Cancer Detection 

Fluorescence occurs when photons impart energy to bound electrons in atoms and 

molecules. For most materials, the excited electron will quickly release this extra energy 

when the excited electron drops to a lower energy state and the atom or molecule emits a 

photon. If the emitted photon has the same frequency as the excitation photon, this 

process is called resonance fluorescence. In complex molecules energy can be released 

through vibrational relaxation while the electron is in the excited state and then this is 

followed by radiative decay. In this case, the emitted photon will have a lower energy 

than the one that originally excited the molecule. [4] This process of excitation followed 

by fluorescence takes place on short time scales (200 ns – few μs). [5] A simplified 

example is shown in Figure 1. An initial photon raises the energy of an electron to the S2 

state. The electron then loses energy through non-radiative processes to the S1 state. 
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Finally, it returns to the ground state releasing a photon of a longer wavelength than the 

one that initially excited the atom. [4] 

 

Figure 1. This figure shows an example of fluorescence in a simplified three level model of an atom.  

 

Fluorescence can be used to identify specific molecules and is becoming an 

important tool for cancer diagnosis. Fluorescent dyes that bind to specific proteins have 

been used in biology for more than 20 years. A dye is injected into the tissue where it is 

absorbed by cells. When the tissue is illuminated by a specific light source the dye 

fluoresces. These fluorescent dyes can be used to target specific organelles and proteins 

[6] and multiple dyes can be used to simultaneously highlight specific features in tissues or 

cellular structures. The disadvantage of this technique is that it is sensitive to cellular 

metabolism, and insuring uniform uptake over a large area of tissue is difficult.  

Autofluorescence is fluorescent emission under UV illumination by proteins that 

naturally exist in tissue. Since the early nineties the autofluorescence of tissue proteins 

has been recognized as a marker of changes in the makeup and structure of tissue and a 

potential tool for cancer detection. Initially this spectroscopic technique was used to 

observe differences in the spectra of healthy and abnormal cells on a microscopic level. 

The autofluorescence of collagen near 400 nm and nicotinamide adenine dinucleotide 
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phosphate, NAD(P)H, near 475 nm were noted for their high sensitivity to the presence 

of a range of different cancers in these early experiments. [7-9]  

Recent research has shown that autofluorescent spectroscopy can be used to 

distinguish between healthy and diseased tissue and may become an important minimally 

invasive diagnostic tool for a range of diseases including breast cancer [10], colon cancer 

[11], cervical cancer [12], and Barrett’s esophagus. [13] Autofluorescence radiation is emitted 

by the natural constituents of tissue when the tissue is illuminated by a laser source. No 

exogenous fluorescent substances are added to the tissue. Consequently, laser-induced 

autofluorescence spectra give accurate information about the content and molecular 

structure of the emitting tissue and may signal small modifications of any of them.  For 

example, Chandra et al. illuminated excised pancreatic tissue with 355 nm laser radiation 

to excite autofluorescent emission from collagen and NAD(P)H [14] By measuring the 

ratio of the resulting emission peaks it is possible to distinguish healthy and diseased 

tissue in gross tissue samples. [14] Figure 2 shows the change in the autofluorescence 

spectrum for healthy and cancerous pancreatic tissue. The two peaks correspond to 

collagen and NADH at 400 nm and 475 nm respectively. Note that the carcinoma has a 

much higher collagen peak than healthy tissue. This indicates an increase in fibrosis in 

the tissue. The steep rise in the peak around 400 nm corresponding to an increase in 

collagen fluorescence. [15] By comparing this change in the collagen signal to the relatively 

stable NADPH fluorescence peak, the autofluorescence can be used as a biomarker for 

cancer.  
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Figure 2: This graph shows mean fluorescence spectra obtained from human pancreatic tissue containing 

normal tissue (blue solid line), inflamed tissue (pancreatitis; green dot-dash line), and adenocarcinoma (red 

dashed line). [15] 

1.3 Reflectance Spectroscopy and Cancer Imaging 

Another method of optical histology is the examination of the reflectance 

spectrum of bulk tissue. To obtain a reflectance spectrum, tissue is illuminated with a 

continuous light source and the spectrum of the reflected light is collected. Reflectance 

spectroscopy provides information about tissue morphology, including cell size and 

density. Chandra et al. demonstrated that reflectance spectra of healthy and diseased 

pancreatic tissue differ (see Figure 3), where the largest differences are apparent near 500 

nm. Reflectance spectroscopy has high specificity in detecting abnormal tissue and 

stronger signal strength than fluorescence. However, in general, reflectance spectroscopy 

has lower sensitivity than fluorescent spectroscopy due to differences in bulk tissue 

composition for single samples. [16-17]  
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Figure 3: This graph shows mean reflectance spectra obtained from human pancreatic tissue containing 

normal tissue (blue solid line), inflamed tissue (pancreatitis; green dot-dash line), and adenocarcinoma (red 

dashed line). The two gray dotted lines indicate the wavelengths at which the greatest and least change 

occur in the tissue. By taking the ratio of the intensity at these two wavelengths cancer can be detected in 

the tissue. [16]  

1.4 Combination of Reflectance and Fluorescence Spectroscopy 

While both reflectance and fluorescence spectroscopy are powerful tools for 

cancer detection, the combination of these two techniques increases sensitivity. Several 

studies have shown that by correlating reflectance spectra with fluorescence spectra at the 

same location, the specificity and sensitivity increases up to 90%. [18]   

1.5 Pancreatic Cancer 

Pancreatic cancer is the third leading cause of cancer related death in the United 

States. Most pancreatic cancer patients die within the first year after diagnosis, and only 

6% survive five years. In addition, pancreatic cancer death rates have remained constant 

in the past decade, in contrast to lower death rates for lung, colorectal, breast, and 

prostate cancers. These statistics reflect a lack of progress in prevention, early diagnosis, 

and treatment of the disease. [19] The research described here is developing a tool for 

more effective surgical treatment of pancreatic cancer.  

Currently, the only curative treatment for pancreatic cancer is surgery. The most 

common surgery to treat pancreatic cancer is the Whipple procedure. [20] The Whipple 
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preserves enough of the pancreas so that the patient can produce gastric enzymes and 

insulin, while removing all cancerous tissue. There are two important blood vessels that 

supply blood to the pancreas, the super mesenteric vein (SMV) and the super mesenteric 

artery (SMA). If these vessels are involved with the tumor these structures must be cut 

and reattached. Accurately identifying tumor margins dictates how much of the pancreas 

to leave, and which sections of the SMA and SMV to remove. [21] 

Pancreatic cancer margins are not well defined upon gross inspection because of 

inflammation and fibrosis associated with tumors and surrounding tissue. [22] The current 

method to determine resection margins is to remove small tissue samples from the 

suspected margins and then immediately test for the presence of cancer cells in the 

excised tissue via frozen section histology. The goal of this research is to provide a 

method for the identification of these margins in real-time.   

1.6 This Project 

In this study, a hyperspectral imaging (HSI) system based on a single-pixel 

camera design is used to examine the reflectance and autofluorescence spectra of tissue to 

detect malignant regions in tissue. HSI is a hybrid imaging modality that combines 

imaging and spectroscopy. By collecting spectral information at each position in a 2-D 

image, HSI generates a 3-D dataset of spatial and spectral information, known as a 

hypercube. 
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Figure 4: A hypercube of a flower.  Each pixel in the image contains a continuous spectrum. [23]  

 

Conventional HSI systems employ spatial or spectral scanning to acquire a 

hypercube. [24-25] Spatial scanning techniques obtain a spectrum in one location and then 

the object/spectrometer is translated to obtain spatial information. The full hyperspectral 

image is recovered after scanning is complete.  

 

Figure 5: An example of two types of hyperspectral scanning. In spatial scanning, the entire spectrum is 

collected over a pixel or line scan of the image, which is then iterated over the image to create a hypercube. 

In spectral scanning, the entire image is collected at a specific wavelength and then the wavelength is 

iterated to create a hypercube. [26]  
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In spectral scanning a 2-D image is projected through a tunable filter or filter 

wheel and individual images are captured at different wavelengths. The hyperspectral 

image is reconstructed by combining the separate monochromatic images. Because HSI 

captures both spatial and spectral information, this technique has potential applications 

for noninvasive disease diagnosis and surgical guidance.  

A single pixel camera uses a single detector to create a 2-D image of a scene 

rather than using an array of detectors. [27] The primary advantage of this technique over 

other spectral imaging systems is its potential to function at low light levels.  Since in this 

study we aim to detect changes in protein autofluorescence and reflectance due to the 

presence of malignant tissue and typically these signals are weak, we chose to build a 

single-pixel camera as the engine of our HIS system.  

This dissertation describes the design, construction and testing of this HSI system. 

The imaging system was constructed and its ability to capture both reflectance and 

fluorescence images was tested (Chapter 2).  The HSI system was used to detect changes 

in tissue resulting from thermal damage in ex vivo tissue models (Chapter 3). Next, the 

system was used to delineate tumor boundaries in human pancreatic tissue samples ex 

vivo and compared to histology. (Chapter 4) Finally, polarization imaging capability was 

added to the system and this was tested on ex vivo tissue models (Chapter 5). 

2. Design and Testing of a Single-Pixel Hyperspectral Imaging System for the Detection 

of Fluorescent and Reflectance Spectra 

2.1 Single-Pixel Hyperspectral Imaging 

 In this chapter the design and testing of a single-pixel hyperspectral 

imaging (HSI) system is discussed. Hyperspectral imaging is a technique that provides 
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both spatial and spectral information of a scene as discussed in Chapter 1. Traditional 

imaging systems use a pixel array to capture information, where each pixel in the image 

contains information about the intensity of the light measured as a function of position. In 

a hyperspectral image, an extra dimension of data is added in that each pixel also contains 

the spectral information. HSI differs from colorized or multispectral imaging in terms off 

spectral resolution. HSI has spectral resolution on the nanometer scale, while 

multispectral imaging uses wider spectral bands. Because HSI captures both spatial and 

spectral information, this technique has potential applications for noninvasive disease 

diagnosis and surgical guidance. HSI has been applied to a range of diseases including 

colon, breast, and cervical cancers[10-12] 

A single pixel camera uses a single detector to create a 2-D image of a scene 

rather than using an array of detectors. [27] The design of a single-pixel camera relies on 

the mathematical theory and algorithms of compressive sampling (CS), which is based on 

the idea that a small number of linear projections of a compressible image contain enough 

information for reconstruction. A single-pixel camera based on CS combines sampling 

and compression into a single measurement in that the camera directly acquires a 

condensed representation of the data set. The traditional approach to digital data 

acquisition samples a signal uniformly at or above the Nyquist rate. Using a conventional 

digital camera as an example, the samples are obtained by a 2-D array of N pixels. N is 

very large in digital cameras (megapixel arrays) and the raw data is often compressed in 

data formats such as JPEG, for storage after acquisition. Compression algorithms are 

used to store a fraction of the measurements, but retain the ability to recover the full 2-D 

image. CS bypasses the sampling process, and directly acquires a condensed 
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representation of the data set. A single-pixel camera based on CS acquires a series of 

intensity measurements from a scene and then the full 2-D image is reconstructed based 

on this sampling.  

A single-pixel camera uses a digital micromirror device (DMD) as a spatial light 

modulator to optically calculate linear projections of a scene onto pseudo-random binary 

patterns. A DMD is a reflective spatial light modulator that selectively redirects parts of a 

light beam (see Figure 6). The DMD is made up of small, electrostatically actuated 

micromirrors.  

 

Figure 6: An example of the mirrors on a digital micromirror device. Each mirror can be moved to different 

states corresponding to different angles of tilt, which allows them to direct light and act as a spatial light 

modulator. [28]  

 

Hadamard matrices, which fulfill the sparsity requirements for CS, are used as the 

binary patterns. A single-pixel imaging system produces an image by rapidly obtaining 

many measurements of the intensity of a scene using different Hadamard matrices. The 

signal and the corresponding Hadamard code are saved for reconstruction, which 

occurred after all codes had been displayed on the DMD. This method of single-pixel 
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imaging based on CS can be made hyperspectral by replacing the single detector with a 

spectrometer. The dispersive element of the spectrometer spreads the light across the 

linear detector array and each pixel along the array corresponds to a single pixel detector 

operating at a specific wavelength. The reconstruction of the image can be performed 

using any of the pixels, which corresponds to a reconstruction as a function of 

wavelength, or HSI. [29]  

CS theory offers a sensing framework that makes it possible to reconstruct signals 

from very few measurements and has found many applications in optics. Other 

researchers have developed compressive spectral imaging systems based on the single-

pixel-camera design [30-31], coded apertures [32-34], and schemes based on spectral 

modulation. [35] 

The long-term goal of this project is to construct a HSI system based on a single-

pixel design that can differentiate between healthy and diseased tissue at a video rate for 

use as a surgical guidance tool. This is a new application of single pixel HSI. The primary 

advantage of a single-pixel HSI system design over other HSI systems is the potential of 

a single-pixel system to function even when light levels are very low and therefore the 

signal to noise ratio is poor.  Since in this study we aim to detect changes in protein 

autofluorescence and reflectance and typically these signals are very weak, we have 

chosen to build a single-pixel camera as the engine of our HSI system. 
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2.3 Methods 

2.3.1 Single-Pixel Camera Design and Construction 

A schematic of the HSI system is shown in Figure 7.  The imaging system was 

mounted on a vertical stage and imaged an area on an imaging stage (see Figure 7). A 

halogen lamp (150 W, Model I-150 Optical Fiber Light Source, Cuda) was used as the 

source for to illuminate test objects and was mounted 23° from the vertical axis and 

aligned to illuminate the stage.  A DLP5500 0.55″ XGA with 1024 x 768 pixels DMD 

was used in the system. The signal was collected through focusing optics into an Ocean 

Optics HR4000 Spectrometer with a 200 μm slit and 600 line/mm grating, resulting in a 

spectral range of 355-800 nm and a dispersion of 0.12 nm/pix. To collect an image, a 

series of 32 x 32 pixel wide Hadamard matrices was programmed onto the DMD and a 

signal was collected for each code. The signal and the corresponding Hadamard code 

were saved for reconstruction, which occurred after all codes had been displayed. The 

spatial resolution of the system is set by a combination of the size of the pixels used in 

the binary codes used on the DMD and the focusing optics of the camera providing a 

spatial resolution of 0.5 mm/pixel, and a FOV of 1.4 cm x 1.4 cm. LabVIEW software 

was used to manipulate the DMD and capture the signal from the spectrometer. After 

image acquisition a MATLAB program based on the NESTA algorithm [36] was used to 

reconstruct the images.  

The camera design was updated after initial testing to be more sensitive to the 

fluorescence signal and to improve the spatial resolution. The same DMD and setup (see 

Figure 7) were used in the updated system. The sensitivity of the imaging system was 

improved by replacing the original spectrometer with an Ocean Optics QE Pro 
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Spectrometer. This improved the spectral range to 350-750 nm, and the dispersion to 

0.335 nm/pixel.  The spatial resolution of the system is set by a combination of the size of 

the pixels used in the binary codes used on the DMD and the focusing optics of the 

camera. 64 x 64 pixel Hadamard matrices were used on the DMD, and compared to 32 x 

32 pixel Hadamard matrices used in the earlier system. The 32 pixel had an improved 

spatial resolution of 0.44 mm/pix and the 64 pixel matrices had a spatial resolution of 0.3 

mm/pixel. Both imaging schemes had the same FOV of 1.9 cm x 1.9 cm. 

 

Figure 7: Schematic of the hyperspectral imaging system. The sample stage (e) is illuminated by either the 

nitrogen laser (a) focused through a cylindrical lens (b) and directed by a steering mirror (c) or by a halogen 

lamp (d). Light is collected from the sample by an imaging optic (f) and an image is formed on the DMD 

(g). The light is then reflected off the DMD’s mirrors through a series of collection optics (h) and into a 

fiber where the signal is sent to a spectrometer (i). 

 

2.3.2 Test Images 

A black and white test image was used to demonstrate the imaging capabilities of 

the original hyperspectral system (using the HR4000 spectrometer). A broadband halogen 

lamp illuminated this test image and the reflected light was imaged with the HSI system 

(see Figure 7). In addition, the ability of the system to reconstruct an image containing 
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spectral information was tested. A test image was created using two highlighters. The ink 

from the highlighters fluoresces at two distinct peaks, 520 nm and 606 nm, when 

illuminated with UV light (see Figure 8). The test image was illuminated with a 405 nm 

LED (Thorlabs M405L2) to excite fluorescence in the highlighter image and the 

fluorescent signal was imaged with the hyperspectral system. 

 

Figure 8: Fluorescent spectra of highlighter pens used to create a test image. Images were reconstructed for 

each fluorescent emission peak 

 

A test image that contained spectral information was also used to evaluate the 

updated HSI system (the system using the QE Pro spectrometer). In this case, the 

reconstructed HSI was compared to an image collected by a traditional 8-megapixel 

CMOS array camera (iSight camera, Apple).  

2.4 Results and Analysis 

Figure 9 shows reconstructed images of the black and white test image obtained with 

the first HSI system. The image was reconstructed using 50 pixels about the peak of the 

halogen emission, corresponding to a 6.5 nm window centered at 650.5 nm. The effective 
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spatial resolution in all images is 0.5 mm per pixel and the FOV of each image is 1.4 cm x 

1.4 cm. Figure 9 shows reconstructed images for three different values of M (number of 

Hadamard matrices used to sample the image).  The maximum collection time (for 805 

measurements) was approximately 15 seconds and reconstruction times were < 10 seconds. 

It is clear that with an increasing number of measurements, the overall quality of the 

reconstructed images increases. For M = 175 only a vague outline of the original picture 

can be discerned, while for M = 500 the major features of the image are clearly visible. 

 

Figure 9: Reconstructed images of a black and white test image for differing numbers of measurements 

(M). The FOV of each image is 1.4 cm x 1.4 cm. a) The original object. b) The reconstructed image based 

on 175 measurements. c)  The reconstructed image based on 250 measurements. d) The reconstructed 

image based on 500 measurements. e) The reconstructed image based on 805 measurements (the maximum 

number of measurements tested in this study). As M increases, the quality of the reconstructed image 

improves.  

 

Figure 10 shows the results of the fluorescent test image. Two images were 

reconstructed corresponding to the fluorescent emission peaks of two highlighters. Both 

images were reconstructed using a 50-pixel window, one corresponding to a 6.5 nm 

window centered at 520 nm and the other to a 6.5 nm window centered at 606 nm. In 

addition, an image containing both fluorescent peaks were reconstructed using a 200 nm 

window centered at 560 nm. The effective spatial resolution in all images was 0.5 mm per 

pixel and the FOV of each image is 1.4 cm x 1.4 cm. The images were reconstructed from 

M = 804 measurements and required a total collection time < 1 minute. Figure 8 clearly 



17 
 

shows that the individual fluorescent peaks can be selectively imaged with the camera. 

Only the features that appear orange it the original image are seen in the reconstructed 

image that is centered on 606 nm and only the features that appear green in the original 

image are evident in the image centered on 520 nm. Note that the strength of the 520 nm 

emission peak is approximately 6 times weaker than the 606 nm peak. The reconstructed 

image including both fluorescent peaks shows features that appear both orange and green 

in the original image. 

 

Figure 10: Original and reconstructed images of a test image based on the fluorescent signal from 

highlighter ink illuminated by a 405 nm LED. For all images, 805 measurements were used for the 

reconstruction. The FOV of each image is 1.4 cm x 1.4 cm. a) The original object. b) The reconstructed 

image for both fluorescent peaks. All features of the original object are evident. c)  The reconstructed 

image centered on the 606 nm emission peak. Only the features that appear orange in the original image are 

evident. d) The reconstructed image centered on the 520 nm emission peak. Only the features that appear 

green in the original image are evident. Note that the strength of this peak is approximately 6 times weaker 

than the 606 nm peak.  

 

2.4.2 Image Quality Measurements. 

Figure 11 shows a full color image of a test image obtained from a traditional 

CMOS camera. The red channel was extracted from this image using Adobe Photoshop, 

and then compared to reconstructed HSI of the same test image. The HSI image was 

reconstructed over the wavelength range from 600 nm - 675 nm this corresponds to the 

red channel in a traditional RGB image. Figure 9 demonstrates that increasing the number 
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of sampling codes increased the image quality. As the number of Hadamard codes 

decreased so did the image quality of the reconstruction. 

A detailed comparison of the HSI image and the red channel of the CMOS image 

was performed using both the average absolute error and the mean square error (MSE). 

Both methods are used to evaluate compression losses. The MSE is the cumulative 

squared error between the HSI and the red channel of the CMOS image, whereas the 

average absolute error measures the absolute difference between the two images. By 

increasing the sample numbers from 49 codes to 899 codes in the initial 32 x 32 pixel 

reconstruction HSI, the MSE decreases by 34.9% and the average error between the 

images decreased by 25.7%. For the high resolution 64x 64 pixel images were 

reconstructed from 3199 codes down to 899 codes. By increasing the code count from 

899 to 3199, the MSE decreases by 27.3% and the average error decreases by 16.7% 

These trends are shown in figure 12. 

     

Figure 11: The original test object is shown to the left.  The Red Channel image was extracted from the 

traditional RGB image. The other panels show 32x32 pixel HSI images based on different numbers of 

Hadamard codes used to reconstruct the image (799 codes, 599 codes, 399 codes).   

 

Increasing the number of acquisition codes improves image quality. Based on 

these measurements, the improvement in image quality plateaus. Beyond 750 codes, in 

the 32 pixel images and 2700 codes in the 64 pixel images little improvement in image 
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quality is noted. These tests infer a limit on the minimum number of Hadamard codes that 

can be used to quickly and accurately reconstruct an image.  

  

Figure 12: These plots show the effect of increasing code number in reconstruction vs image quality. In 

both cases the average absolute error and the MSE both decreases exponentially as code numbers are 

increased. This trend shows that error is inherent in the compression algorithm and a minimum error is 

defined by the number of codes used in reconstructing the image.  

2.5 Conclusions 

A HSI system based on a single-pixel camera design capable of detecting 

fluorescence and reflectance spectra has been constructed.  Tests were conducted that 

showed qualitatively and quantitatively the effects of increasing code projection 

increased image quality in the reconstructed image. The system also showed that discrete 

wavelength bands of light could be selected and reconstructed with a high dynamic range. 

The combination of CS and high dynamic range techniques can produce images of 

superior dynamic range when compared to traditional imaging techniques. [41] Although 

not presented in this chapter, single-pixel HSI also allows the user to adjust the size of 
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pixels on the DMD. This allows the user to effectively trade FOV for spatial resolution 

without adjusting any optics. An example of this is presented in figure 13. 

 

Figure 13: These reconstructions show the effect of shrinking pixel size on reconstructed HSI images. The 

image on the left is a reconstructed 32 x 32 image with a FOV of 1.9 cm. By decreasing the pixel size on 

the DMD, the camera can effectively zoom. The image on the right is a reconstructed 32 x 32 image but 

with a FOV of 1.1 cm. No optics were adjusted to produce the zoomed in image.   

 

 These studies show that the single-pixel HSI system can create accurate images 

and retrieve spectral information from the reconstructions. The next step in testing the 

HSI system was to assess the ability of the system to differentiate between healthy and 

damaged tissue.  

3. Defining regions of thermal damage in ex vivo porcine tissue samples using single-

pixel hyperspectral imaging 

3.1 Introduction 

 Research has demonstrated that optical spectroscopy can be used to distinguish 

between healthy and diseased or damaged tissue. Both reflectance and fluorescence 

spectroscopy have been shown to effectively identify unhealthy tissue. [10-13] 
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Autofluorescence emission is produced by the natural constituents of tissue (no 

exogenous fluorescent substances are added) when the tissue is illuminated by UV light. 

The autofluorescence of collagen, near 400 nm, and nicotinamide adenine dinucleotide 

phosphate, NAD(P)H, near 475 nm, have been noted for their high sensitivity to the 

presence of a range of different diseases. [7-9] The sensitivity arises because the 

autofluorescence spectra of proteins change due to alterations in the makeup and structure 

of unhealthy tissue compared to healthy tissue. Reflectance spectroscopy provides 

information about tissue morphology including cell size and density. Changes in the 

wavelength dependence of the reflected spectrum indicate differences in the morphology 

and/or make up of the tissue. [24] 

Hyperspectral imaging (HSI) is a hybrid imaging modality that combines imaging 

and spectroscopy. By collecting spectral information at each position in a 2-D image, HSI 

generates a 3-D dataset of spatial and spectral information, known as a hypercube. 

Conventional HSI systems employ spatial or spectral scanning to acquire a hypercube. [24-

25] Spatial scanning techniques obtain a spectrum in one location and then the 

object/spectrometer is translated to obtain spatial information. The full hyperspectral 

image is recovered after scanning is complete. In spectral scanning a 2-D image is 

projected through a tunable filter or filter wheel and individual images are captured at 

different wavelengths. The hyperspectral image is reconstructed by combining the 

separate monochromatic images.  Because HSI captures both spatial and spectral 

information, this technique has potential applications for noninvasive disease diagnosis 

and surgical guidance  
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In this study, the design and testing of a HSI system based on a single-pixel 

camera design is discussed. A single pixel camera uses a single detector to create a 2-D 

image of a scene rather than using an array of detectors. [27] The primary advantage of 

this technique over other spectral imaging system is its potential to function even when 

light level is very low and therefore the signal to noise ratio is poor.  Since in this study 

we aim to detect changes in protein autofluorescence and reflectance due to thermal 

damage in porcine skin and liver ex vivo and since typically these signals are very weak 

we chose to build a single-pixel camera as the engine of our HIS system. The design of a 

single-pixel camera relies on the mathematical theory and algorithms of compressive 

sampling (CS). [37-39] CS is based on the idea that a small number of linear projections of 

a compressible image contain enough information for reconstruction. A single-pixel 

camera uses a digital micromirror device (DMD) as a spatial light modulator to optically 

calculate linear projections of a scene onto pseudo-random binary patterns. Hadamard 

matrices, which fulfill the sparsity requirements for CS, are used as the binary patterns. A 

single-pixel imaging system produces an image by rapidly obtaining many measurements 

of the intensity of a scene using different Hadamard matrices. This method of single-pixel 

imaging based on CS can be made hyperspectral by replacing the single detector with a 

spectrometer. The dispersive element of the spectrometer spreads the light across the 

linear detector array and each pixel along the array corresponds to a single pixel detector 

operating at a specific wavelength. The reconstruction of the image can be performed 

using any of the pixels, which corresponds to a reconstruction as a function of 

wavelength, or HSI. [29] CS theory offers a sensing framework that makes it possible to 

reconstruct signals from very few measurements and has found many applications in 
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optics. Other researchers have developed compressive spectral imaging systems based on 

the single-pixel-camera design [30-31], coded apertures [32-34], and schemes based on 

spectral modulation. [35] 

The long-term goal of this project is to construct a HSI system based on a single-

pixel design that can differentiate between healthy and diseased tissue at a video rate for 

use as a surgical guidance tool. This is a new application of single pixel HSI. A single 

pixel HSI system design based on CS provides improved performance compared to HSI 

scanning techniques for this type of application. For example, a single-pixel design offers 

improved sensitivity as the intensity of the compressed signal at the detector is much 

greater compared to the signal obtained via scanning techniques. Starling et al. 

successfully applied the methods from compressive sensing to create a single-pixel 

spectrometer capable of quickly measuring spectra with limited signal. [40] The 

autofluorescence signals of NAD(P)H and collagen are weak and the improved 

sensitivity of a single pixel design is important for accessing tissue health with HSI. In 

addition, most scenes in nature, including images of tissues, have more dynamic range 

than traditional cameras can capture. The combination of CS and high dynamic range 

techniques can produce images of superior dynamic range when compared to traditional 

imaging techniques. [41] 

3.2 Methods 

    For this ex vivo tissue study, porcine skin and liver tissue samples of uniform 

thickness were cut into 2 cm x 2 cm squares. Hyperspectral reflectance imaging of both 

porcine skin and liver samples were obtained, while autofluorescent imaging was 
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obtained for skin tissue. Fluorescent imaging of the liver was not obtained due to the 

reabsorption of the autofluorescence by blood in the liver.  

This study uses a camera with a similar design as in section 2, but has improved 

sensitivity and spatial resolution. The DMD in the system is a DLP5500 0.55″ XGA with 

1024 x 768 pixels. The sensitivity of the imaging system was improved with the addition 

of a new spectrometer (Ocean Optics QE Pro Spectrometer; spectral range 350-750 nm, 

1044 pixels in the linear array, and dispersion 0.335 nm/pixel). The spatial resolution of 

the system is set by the size of the pixels used in the binary codes used on the DMD. In 

this study, 64 x 64 Hadamard matrices were used on the DMD, (compared to 32 x 32 

pixel codes in previous studies) with a FOV of 1.9 cm x 1.9 cm. This improved the 

spatial resolution from 0.44 mm/pixel to 0.30 mm/pixel. LabVIEW software is used to 

manipulate the DMD and capture the signal from the spectrometer. 

The imaging system was mounted on a vertical stage and imaged an area on a 

stainless steel specimen stage (see Figure 14). A 3 mW nitrogen laser (SRS, NL100) was 

used as the fluorescence excitation source. The laser has a center wavelength of 337.1 

nm, a 0.1 nm optical bandwidth, 170 μJ pulse energy, and a 10 Hz pulse rate. The beam 

was expanded using a cylindrical lens to evenly illuminate an area of approximately 1 cm 

x 1 cm on the imaging stage resulting in an energy density of about 1.76 J/m2. The laser 

was mounted parallel to the stage and the beam directed via a steering mirror onto the 

sample at approximately 20° from the normal of the sample. A halogen lamp (150 W, 

Model I-150 Optical Fiber Light Source, Cuda) was used as the source for reflectance 

spectroscopy and was mounted 23° from the vertical axis and aligned to illuminate the 

specimen stage.  This provided uniform illumination across a 2 cm x 2 cm imaging area. 
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Figure 14: Schematic of the hyperspectral imaging system. The sample stage (e) is illuminated by either the 

nitrogen laser (a) focused through a cylindrical lens (b) and directed by a steering mirror (c) or by a halogen 

lamp (d). Light is collected from the sample by an imaging optic (f) and an image is formed on the DMD 

(g). The light is then reflected off the DMD’s mirrors through a series of collection optics (h) and into a 

fiber where the signal is sent to a spectrometer (i). 

 

To collect an image, a series of Hadamard matrices was programmed onto the 

DMD and a signal was collected for each code. The signal and the corresponding 

Hadamard code were saved for reconstruction, which occurred after all codes had been 

displayed. For the fluorescence imaging of the skin samples 3200 Hadamard patterns 

were used on the DMD with an integration time of 200 ms per code to acquire the 

intensity measurements needed to reconstruct the image. Total acquisition time was 

approximately 15 minutes. To obtain reflectance imaging of the liver and skin samples, 

3200 Hadamard patterns were used with an integration time of 10 ms to acquire the 

intensity measurements needed to reconstruct the image. Total acquisition time was 

approximately 7 minutes. After image acquisition a MATLAB program based on the 

NESTA algorithm [36] was used to reconstruct the compressed images. This method of 

reconstruction was tested using a sample grid and was found to have a PSNR of about 19 

dB per image and an RMSE of about 30.  
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Hyperspectral reflectance imaging of undamaged tissue samples was obtained by 

illuminating both liver and skin tissue samples with the halogen lamp. The skin samples 

were then illuminated with the nitrogen laser to obtain images of the autofluorescence of 

the tissue. A white light image was obtained for all samples using a traditional 8-

megapixel CMOS array camera (iSight camera).  These white light images do not contain 

spectral information. The morphology of structures seen in these white light images is 

compared to structures seen in the hyperspectral images.  

After the initial images were obtained, the tissue samples were thermally damaged 

using an IPG Photonics thulium fiber laser at 1850 nm (TLM-5). Skin samples were 

illuminated for 35 seconds over a 0.78 mm2 area with a power of 3 W. This created a 

thermally damaged region about 0.5 mm in diameter. Liver samples were illuminated for 

60 seconds over a 1.1 mm2 area with a power of 3 W, creating a thermally damaged 

region about 4 mm in diameter. The laser damage alters both the autofluorescence and 

reflectance spectra of the tissue. Reflectance HSI of both the damaged liver and skin 

samples was obtained and autofluorescence HSI of the damaged skin samples was 

acquired. An additional white light image of the damaged tissue was also obtained with 

the traditional array camera.  After imaging was completed, the sizes of lesions on the 

liver samples were measured with a ruler, as the damaged region was clearly visible on 

these tissue samples. 
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3.3 Results and Analysis 

3.3.1 Spectral Angle Mapping 

 The hyperspectral images were analyzed using the Spectral Angle Mapping or SAM 

algorithm.[42] SAM analysis compares a known reference spectrum to the spectrum of each pixel 

in a spectral image of an object to look for differences between the two, an example of which can 

be seen in figure 15. To create the reference spectrum, two wavelengths of interest are chosen and 

the intensities of all pixels in the reference image are determined in these two bands. These pixel 

intensities are graphed as a scatterplot and a linear regression is performed to define a reference 

vector. For comparison, a vector is created for each pixel in the image of the object. For each 

pixel, the intensity of the pixel in the two wavelength bands is plotted and the vector is drawn 

from the origin to this point. The reference and pixel vectors are then compared using the 

normalized dot product producing a spectral angle between the two vectors. This method is 

insensitive to differences in intensity since the SAM algorithm uses only the vector direction and 

not the vector length for comparison. This process can then be repeated for multiple wavelengths 

to create a hyperspectral angle. 
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Figure 15: Panel a) An example of the process to create a spectral angle. To create the reference spectrum, 

two wavelength bands are chosen and the intensities of all pixels in the reference image are determined in 

these two bands. These pixel intensities are graphed as a scatterplot and a linear regression is performed to 

define a reference vector (red line). For comparison, a vector is created for each pixel in the image of the 

object. For each pixel, the intensity of the pixel in the two wavelength bands is plotted and the vector 

(green line) is drawn from the origin to this point. The reference and pixel vectors are then compared using 

the normalized dot product producing a spectral angle between the two vectors. 

 

Figure 16 shows representative autofluorescence and reflectance spectra of 

healthy and thermally damaged porcine skin tissue. These spectra are shown to illustrate 

the changes in the spectra that result from thermal damage and the wavelength regions 

used for SAM analysis. The spectra of healthy tissue were created by taking the mean 

spectrum over a 9 x 9 pixel area in the image of the tissue taken before laser irradiation. 

The spectra of damaged tissue are the mean spectra across the region of thermal damage 

after laser irradiation. In the autofluorescence spectrum the dominant peak at 400 nm is 

collagen and the weaker peak near 425 nm is NAD(P)H. The collagen autofluorescent 

emission peak is stronger relative to the NAD(P)H peak for damaged tissue due to 

coagulation of collagen. 
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Figure 16: Panel a) The autofluorescence spectrum of porcine skin tissue before and after thermally 

damaging the tissue with an IR laser. The two fluorescence peaks of collagen (400nm) and NADPH (425 

nm) are apparent in the undamaged spectra.  The laser damage increased the collagen emission in the skin 

after illumination. Panel b) The reflectance spectrum of porcine skin tissue before and after illumination 

with the IR laser. In both panels the red and green regions indicate the wavelength ranges used to construct 

reference vectors for SAM analysis 

 

A series of reference vectors was created using the hyperspectral images of 

undamaged porcine skin tissue. Separate reference vectors were created for each tissue 

sample. For the fluorescence images, the x-coordinate for all reference vectors was the 

average intensity over the 395-400 nm wavelength band in the image of undamaged 

tissue. The wavelength band used for the y-coordinate for the reference vectors was 

varied in 5 nm increments across the wavelength band 425-475 nm. This analysis resulted 

in a series of reference vectors across multiple wavelengths that were used to determine 

spectral angles when compared across the same wavelength ranges to images of tissue 

samples with thermal damage. Reference vectors for the reflectance images of healthy 

porcine skin were determined in a similar manner. The wavelength band 590-595 nm was 

used as the x-coordinate and the y-coordinate for the scatterplot was varied in 5 nm 

increments across the 450-520 nm band. 
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Figure 17: The reflectance spectrum of porcine liver tissue before and after thermally damaging the tissue 

with an IR laser. The red and green regions indicate the wavelength ranges used to construct reference 

vectors for SAM analysis. 

 

Figure 17 shows a representative example of a reflectance spectrum of damaged 

and undamaged porcine liver tissue. The spectrum of healthy tissue was created by taking 

the mean spectrum over a 9 x 9 pixel area in the image of the tissue taken before laser 

irradiation. The spectrum of damaged tissue is the mean across the region of thermal 

damage after laser irradiation. To define the reference vectors for healthy porcine liver 

tissue, the intensities measured in the wavelength band 660 to 665 nm were used as the x-

coordinate in the SAM scatterplot. The y-coordinate was varied in 5 nm increments 

across the 500 to 600 nm band. 
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3.3.2 SAM Analysis of Healthy Porcine Skin and Liver Tissue Samples 

 

Figure 18: Panel a) An autofluorescence spectral angle image of porcine skin tissue before illumination 

with the IR laser. This image is a map of spectral angle, not intensity. The average of spectral angle in the 

illuminated region is 0.14 ± 0.47 degrees, indicating that the spectrum is uniform across the tissue sample. 

Panel b) A white light image of the same porcine skin sample. The tissue sample has a uniform appearance 

in this image. Panel c) A hyperspectral reflectance image of porcine skin tissue before illumination with the 

IR laser. This image is a map of spectral angle, not intensity.  The average spectral angle is -0.42 ± 0.58 

degrees, indicating that the spectrum is uniform across the tissue sample. 

 

SAM analysis was applied to the images of healthy tissue. This analysis provides 

a measure of how uniform the spectra of the healthy tissue samples are as a function of 

position across the samples. A series of spectral angles was calculated for each reference 

vector and these spectral angles were summed to form a hyperspectral angle. Figure 18 

shows representative examples of hyperspectral and white light images of healthy porcine 

skin tissue. The hyperspectral images are maps of the hyperspectral angle, not intensity. 

The white light image is a traditional intensity map and this white light image is uniform 

across the tissue sample. For the healthy tissue the spectral angle is approximately 

constant across the tissue, resulting in a uniform appearance in both the reflectance and 

fluorescence images. The spectral angle had an average value of 0.14 ± 0.47 degrees in 

the fluorescence image and -0.42 ± 0.58 degrees in the reflectance image. This indicates 

that the autofluorescence emission spectrum and the reflectance spectrum are 

approximately constant across the tissue sample.   
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Figure 19: Panel a) A hyperspectral reflectance image of porcine liver tissue before illumination with the 

IR laser. This image is a map of spectral angle, not intensity.  The dark spot in the upper right of the image 

is glare from the light source. The average of spectral angle in this image is 0.04 ± 0.32 degrees, indicating 

that the spectrum is uniform across the tissue sample. Panel b) A white light image of the same porcine 

liver sample. The appearance of the tissue is uniform across the tissue sample. 

 

Figure 19 shows representative examples of hyperspectral and white light images 

of healthy porcine liver tissue. Again, the hyperspectral images are maps of the 

hyperspectral angle, not intensity. The white light image is a traditional intensity map and 

this white light image is uniform across the tissue sample. For the healthy tissue the 

spectral angle is approximately constant (0.04 ± 0.32 degrees) across the tissue, resulting 

in a uniform appearance in the reflectance images. 

3.3.3 SAM Analysis of Thermally Damaged Porcine Skin Tissue Samples and 

Comparison to Healthy Tissue 

Figure 20 shows a representative example of hyperspectral and white light images 

of thermally damaged porcine skin tissue. The hyperspectral images are maps of the 

hyperspectral angle, not intensity. The white light image is a map of intensity and thermal 

damage is clearly visible in these white light images. In both the autofluorescent and 

reflectance images, bright regions indicate areas in which the magnitude of the spectral 

angle is large. In both cases these bright areas correspond to the region of thermal 
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damage. The spectral angle has an average value of -2.29 ± 0.83 within the damaged 

region in the reflectance image and -4.29 ± 1.83 within the damaged region in the 

fluorescence image. In both cases the spectral angles are significantly different from the 

spectral angle of the healthy tissue. This large spectral angle indicates a significant 

change in the spectra of damaged tissue relative to healthy tissue. 

 

Figure 20: Panel a) A hyperspectral autofluorescence image of porcine skin tissue after illumination with 

the IR laser. This image is a map of spectral angle, not intensity.  The bright spot in the center corresponds 

to a coagulation of collagen at the site of IR illumination. Panel b) A white light image of the same porcine 

skin sample with thermal damage clearly visible.  Panel c) A hyperspectral reflectance image of porcine 

skin tissue after illumination with the IR laser. The bright spot in the center of the image corresponds to the 

damaged area. 
 

The area of the damaged region as measured in the white light images was 

compared to the size of this region as measured in the hyperspectral images to see how 

well the hyperspectral imaging outlined the damaged regions. MATLAB was used to 

calculate the pixel area of the damaged region in all images. The boundary of the 

damaged region was determined by measuring the mean spectral angle of the entire 

image. Pixels with spectral angles greater than 1.5 standard deviations from this mean 

were considered to be part of the damaged region. A similar method using intensity 

values was used to determine the boundary of the damaged region in the white light 

images. The conversion from pixels to mm in the hyperspectral images was determined 
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by imaging a USAF resolution test plate and an object of known size was used as the 

basis of this conversion in the white light images. 

 

Figure 21: Bland-Altman plots comparing the areas of the thermally damaged regions as measured in the 

hyperspectral and white light images of porcine skin tissue. a) Comparison of the lesion areas in the 

reflectance and white light images. b) Comparison of the lesion areas in the autofluorescence and 

reflectance images. c) Comparison of the lesion areas in the autofluorescence and white light images. 

 

Figure 21 shows Bland-Altman plots comparing the lesion areas measured in the 

white light and hyperspectral images. [43] Figure 21a shows good agreement between 

lesion areas as measured in the reflectance and white light images. All the measurements 

fall within two standard deviations of the mean difference and there is little difference 

between the bias and the line of equality.  Figures 21b and 21c show similar relationships 

between the autofluorescence and reflectance images and autofluorescence and white 

light images, respectively.  In all cases, these plots indicate good agreement between the 
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areas determined from the white light images and the hyperspectral images. This suggests 

that the hyperspectral technique is imaging the same region of thermal damage as is seen 

in the white light images. This indicates that the HSI system is sensitive to thermal 

damage of the tissue and can map the location of this damage. 

3.3.4 SAM Analysis of Thermally Damaged Porcine Liver Tissue Samples and 

Comparison to Healthy Tissue 

 

 

Figure 22: Panel a) A hyperspectral reflectance image of porcine liver tissue after illumination with the IR 

laser. This image is a map of spectral angle, not intensity.  The bright spot corresponds to the damaged area 

on the liver tissue. Panel b) A white light image of the same porcine liver sample with thermal damage 

clearly visible. 

 

Figure 22 shows a representative example of hyperspectral and white light images 

of thermally damaged porcine liver tissue. The hyperspectral images are maps of the 

hyperspectral angle, not intensity. The white light image is a map of intensity and thermal 

damage is clearly visible in these white light images. In the reflectance images, the bright 

region indicates an area in which the spectral angle is large, and this region corresponds 

to the location of thermal damage. This large spectral angle indicates a significant change 

in the reflectance spectrum of damaged tissue relative to healthy tissue. Using the same 

process described in section 3.3, the area of the damaged regions was measured in the 
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white light and hyperspectral images. The sizes of the damaged regions as measured in 

the white light images and the hyperspectral images were then compared. In addition, the 

size of the major axis of the lesion was measured with a ruler and the area was calculated 

assuming the lesion was a nearly circular ellipse. The reason for the ellipsoidal nature of 

the burn was due to the topology of the tissue. These measurements were also compared 

to the hyperspectral images.    

  

Figure 23: Bland-Altman plots comparing the areas of the thermally damaged regions as measured in the 

hyperspectral and white light images and via physical measurement for porcine liver tissue. a) Comparison 

of the lesion areas in the reflectance and white light images. b) Comparison of the lesion areas determined 

in the white light images and from physical measurement.   c) Comparison of the lesion areas seen in the 

reflectance images and those determined from physical measurement. 
 

Figure 23 shows Bland-Altman plots comparing the lesion areas measured in the 

white light and hyperspectral images and via physical measurement. [43] Figure 23a shows 

good agreement between lesion areas as measured in the reflectance and white light 
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images. All but one of the measurements fall within two standard deviations of the mean 

difference and there is little difference between the bias and the line of equality.  Figures 

23b and 23c show similar relationships between the physical measurement and white 

light images and the reflectance images and physical measurement, respectively.  In all 

cases, these plots indicate good agreement between the areas determined from the white 

light images, hyperspectral images and physical measurement. This suggests that the 

hyperspectral technique is imaging the same region of thermal damage as is seen in the 

white light images and measured with the ruler. The HSI system is sensitive to thermal 

damage of the tissue and can map the location of this damage based on changes in the 

optical spectrum of the tissue.  

3.4 Conclusions 

A HSI system based on a single-pixel camera design for use in discriminating 

between healthy and unhealthy tissue based on the autofluorescence and reflectance 

spectra of the tissue has been constructed.  Thermal lesions were created in ex vivo 

porcine skin tissue samples (n = 12) and porcine liver samples (n=15) using an IR laser. 

This thermal damage caused changes in the reflectance and autofluorescent spectra of the 

tissue. For the porcine skin samples, good agreement between the sizes of thermal lesions 

measured in both the autofluorescent and reflectance hyperspectral images and the lesion 

sizes measured via white light imaging are found. For the liver tissue, only reflectance 

imaging was obtained. Again, good agreement between lesion sizes measured in the 

hyperspectral reflectance images and sizes measured by both white light imaging and 

physical measurement is demonstrated. These studies show that the single-pixel HSI 
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system can differentiate between healthy and thermally damaged porcine skin and liver 

tissues.  

The next step in testing the HSI system is to assess the ability of the HSI system to 

differentiate between healthy and cancerous tissue. The system currently takes about 15 

minutes to collect a single image and this is clearly not “real-time” imaging. However, 

recently other groups have shown that single pixel compressive imaging can be made 

faster. G. Satat, et al have shown that by including time of flight data to the intensity 

measurements collected by the single pixel detector images can be reconstructed more 

accurately with fewer measurements. [44] The current limitation on acquisition time is 

hardware (both the speed of the DMD and computer) that can be overcome in future 

imaging systems. 
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4. Hyperspectral imaging based on compressive sensing to determine cancer margins in 

human pancreatic tissue ex vivo 

4.1 Introduction 

The American Cancer Society estimates that more than 1.6 million people will be 

diagnosed with cancer and over 600,000 will die from the disease in 2017. [45] While 

there have been great strides in the treatments of some cancers over the past decade, 

pancreatic cancer has maintained the lowest five year survival (7.8%) of all the major 

cancers monitored by the NIH [46] and the majority of these types of tumor are 

adenocarcinomas. Surgery remains the primary treatment for the majority of carcinoma, 

and other of solid mass tumors. The objective of surgery is to remove malignant tissue, 

while minimizing damage to adjacent healthy tissue to preserve function and/or for 

cosmetic reasons. A significant challenge for cancer surgery is ensuring that no residual 

malignant tissue is left behind as recurrent tumors lead to high mortality rates [47]. 

Consequently, the success of cancer surgery depends on a doctor’s ability to visualize the 

margins of the tumor to be removed. 

Multiple imaging modalities are available for preoperative tumor diagnosis and 

surgical planning, including x-ray, ultrasound, computed tomography (CT), magnetic 

resonance imaging (MRI), positron emission tomography (PET) and single photon 

emission computed tomography (SPECT). However, these techniques are not usually 

available during surgery. Paraffin section of inked surgical margins is the gold standard 

for margin assessment. Unfortunately, this process is time consuming and results are not 

available until several days after surgery. Typically, surgeons determine the tumor 

resection margins during procedures based on palpation, visual inspection and frozen 
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section histology. In some cases, intraoperative ultrasound is used to guide tissue excision 

[2]. Cancer surgeons need additional intraoperative imaging modalities for use during 

surgery to clearly delineate tumor margins and identify areas of residual disease. 

Research has demonstrated that optical spectroscopy can be used to distinguish 

between healthy and diseased or damaged tissue. Both reflectance and fluorescence 

spectroscopy have been shown to effectively identify unhealthy tissue. [10-13] 

Autofluorescence emission is produced by the natural constituents of tissue (no 

exogenous fluorescent substances are added) when the tissue is illuminated by UV light. 

The autofluorescence of collagen, near 400 nm, and nicotinamide adenine dinucleotide 

phosphate, NAD(P)H, near 475 nm, have been noted for their high sensitivity to the 

presence of a range of different diseases.[7-9] The sensitivity arises because the 

autofluorescence spectra of proteins change due to alterations in the makeup and structure 

of unhealthy tissue compared to healthy tissue. Reflectance spectroscopy provides 

information about tissue morphology including cell size and density. Changes in the 

wavelength dependence of the reflected spectrum indicate differences in the morphology 

and/or make up of the tissue.[24]  

HSI is a hybrid imaging modality that combines imaging and spectroscopy. By 

collecting spectral information at each position in a 2-D image, HSI generates a 3-D 

dataset of spatial and spectral information, known as a hypercube. Conventional HSI 

systems employ spatial or spectral scanning to acquire a hypercube.[24-25] Spatial scanning 

techniques obtain a spectrum in one location and then the object/spectrometer is 

translated to obtain spatial information. The full hyperspectral image is recovered after 

scanning is complete. In spectral scanning a 2-D image is projected through a tunable 
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filter or filter wheel and individual images are captured at different wavelengths. The 

hyperspectral image is reconstructed by combining the separate monochromatic images. 

Because HSI captures both spatial and spectral information, this technique has potential 

applications for noninvasive disease diagnosis and surgical guidance.  

In this chapter, a HSI system based on a single-pixel camera design is used to 

examine the reflectance and autofluorescence spectra of pancreatic tissue to detect 

adenocarcinoma margins in tissue. A single pixel camera uses a single detector to create a 

2-D image of a scene rather than using an array of detectors. [27] The primary advantage 

of this technique over other spectral imaging systems is its potential to function at low 

light levels.  We aimed to detect changes in protein autofluorescence and reflectance due 

to the presence of malignant tissue and typically these signals are weak. The design and 

testing of this single-pixel HSI system is described in chapter 2 of this dissertation, but in 

this study the system is used to image malignant human tissue for the first time. This 

chapter presents the results of a 20 patient study comparing the ability of the HSI system 

versus visual tissue inspection augmented with traditional histology to delineate tumor 

margins in human pancreatic tissue imaged ex vivo.   

4.2 Methods and Materials 

Pancreatic tissue excised during pancreatectomy was imaged immediately after 

being sent to the pathology lab for analysis and before any processing or staining. After 

receiving the tissue sample, a pathologist sectioned the tissue into roughly 2 cm x 2 cm 

pieces and placed the 2-4 different sections into separate standard tissue embedding 

cassettes. These tissue samples were then imaged using the hyperspectral system. After 
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imaging, the samples were returned to the pathologist for processing and analysis. The 

hyperspectral imaging was later compared to the histological analysis. From the histology 

patients tissue was divided into three groups, wholly cancerous tissue, wholly healthy 

tissue, or tissue containing a margin. Some patients contributed tissue samples to multiple 

groups. The number of tissue samples from each group is shown in Table 1 below. 

Table 1: The number of tissue samples from the 20 patients

 
In addition to the hyperspectral imaging, a white light image was obtained for all 

samples using a traditional 8-megapixel CMOS array camera (iSight camera).  These 

white light images do not contain spectral information. The morphology of structures 

seen in these white light images was compared to structures seen in the hyperspectral 

images and in the histology slides. 

The design and testing of a single-pixel hyperspectral imaging system for 

detecting changes in tissue properties has been previously reported by these authors. 19 In 

this study, this HSI system was used to image human pancreatic tissue ex vivo. Figure 1 

shows a schematic of the HSI system. The digital micromirror device (DMD) in the 

system is a DLP5500 0.55″ XGA with 1024 x 768 pixels. The spectrometer is an Ocean 

Optics QE Pro Spectrometer (spectral range 350-750 nm, 1044 pixels in the linear array, 

and dispersion 0.335 nm/pixel). The spatial resolution of the system is set by the size of 

the pixels used in the binary codes used on the DMD. In this study, 32 x 32 Hadamard 

matrices were used on the DMD, with a FOV of 1.9 cm x 1.9 cm. The spatial resolution 

Tissue Sample Type 
Wholly Healthy 

Tissue 

Wholly Cancerous 

Tissue 
Margin 

Number of tissue 

samples 
12 10 19 
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was 0.44 mm/pixel. LabVIEW software was used to manipulate the DMD and capture 

the signal from the spectrometer.  

 

Figure 24: Schematic of the hyperspectral imaging system. The tissue sample in a histology cassette (e) is 

illuminated by either the nitrogen laser (a) focused through a cylindrical lens (b) and directed by a steering 

mirror (c) or by a halogen or xenon lamp (d). Light is collected from the sample by an imaging optic (f) and 

an image is formed on the DMD (g). The light is then reflected from the DMD’s mirrors through a series of 

collection optics (h) and into a fiber where the signal is sent to a spectrometer(i). 

 

The HSI imaging system was mounted on a vertical stage and imaged the tissue 

samples from above (see Figure 24). Either a halogen lamp (150 W, Model I-150 Optical 

Fiber Light Source, Cuda) or xenon (300 W, Circon MV 9086) source was used as the 

source for reflectance spectroscopy. Both light sources were mounted 23° from the 

vertical axis and aligned to illuminate the specimen.  This provided uniform illumination 

across the 1.9 cm x 1.9 cm imaging area. A 3 mW nitrogen laser (SRS, NL100) was used 

as the excitation source for the autofluorescence spectroscopy and was mounted 

perpendicular to the imaging system. A steering mirror reflected the laser onto the sample 

and a cylindrical lens expanded the beam to provide uniform illumination over the tissue. 
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To collect an image, a series of Hadamard matrices was programmed onto the 

DMD and a signal was collected for each code. The signal and the corresponding 

Hadamard code were saved for reconstruction, which occurred after all codes had been 

displayed. To obtain reflectance, imaging 800 Hadamard patterns were used on the DMD 

with an integration time of 100 ms to acquire the intensity measurements needed to 

reconstruct the image. Total acquisition time was approximately 7 minutes. Because the 

fluorescence signal was much weaker than the reflectance signal, integration time for 

each Hadamard pattern was increased to 200 ms. Total acquisition time was 

approximately 15 minutes for each fluorescence image. After image acquisition a 

MATLAB program based on the NESTA algorithm was used to reconstruct the 

compressed images. [36] 

4.3 Results and Analysis 

4.3.1 Spectral Angle Mapping 

The hyperspectral images were analyzed using the Spectral Angle Mapping 

(SAM) algorithm. [42] SAM analysis compares a known reference spectrum to the 

spectrum of each pixel in a spectral image of an object to look for differences between 

the two. To create the reference spectrum, two wavelengths of interest are chosen and the 

intensities of all pixels in the reference image are determined in these two bands. These 

pixel intensities are graphed as a scatterplot and a linear regression is performed to define 

a reference vector. For comparison, a vector is created for each pixel in the image of the 

object. For each pixel, the intensity of the pixel in the two wavelength bands is plotted 

and the vector is drawn from the origin to this point. The reference and pixel vectors are 

then compared using the normalized dot product producing a spectral angle between the 
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two vectors. This method is insensitive to differences in intensity since the SAM 

algorithm uses only the vector direction and not the vector length for comparison. This 

process can then be repeated for multiple wavelengths to create a hyperspectral angle. 

4.3.2 Spectral Analysis of Pancreatic Tissue 

Figure 25 shows the autofluorescence and reflectance spectra of pancreatic tissue 

to illustrate the differences between healthy and cancerous tissue. In the autofluorescence 

spectrum there are two dominant peaks. The peak at 400 nm is collagen and the peak near 

455 nm is NAD(P)H. The collagen autofluorescence emission peak is stronger relative to 

the NAD(P)H peak for cancerous tissue due to fibrosis.  The autofluorescence spectra of 

healthy and cancerous tissue are similar between 550-650nm, but differ significantly in 

the region around the collagen (375-400 nm) and NAD(P)H peaks (450-500nm). 

Absorption by blood (575 nm) is evident in the spectrum of the healthy tissue. The 

reflectance spectra of healthy and cancerous tissue are similar between 650 and 675 nm, 

but large differences are apparent from 450 to 520 nm. Scattering and absorption by 

hemoglobin (540 nm and 575 nm) are evident in the reflectance spectrum. There was 

significant variation in the appearance of healthy and cancerous tissue from patient to 

patient. Because of this reference vectors were determined on a patient-by-patient basis. 
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Figure 25: Panel a) The reflectance spectrum of healthy and cancerous pancreatic tissue. In both panels the 

red and green regions indicate the wavelength ranges used to construct reference vectors for SAM analysis. 

Panel b) The autofluorescence spectrum of healthy and cancerous pancreatic tissue. The two fluorescence 

peaks of collagen (~400nm) and NADPH (~450 nm) are apparent in the both spectra.  The cancerous tissue 

has an increased collagen emission due to fibrosis associated with the tumor. The red and green regions 

indicate the wavelength ranges used to construct reference vectors for SAM analysis. 

 

A series of reference vectors was created using the hyperspectral images of 

healthy pancreatic tissue. For the fluorescence images, the x-coordinate for all reference 

vectors was the average intensity over the 395-400 nm wavelength band in the image of 

undamaged tissue. This corresponds to the wavelength band over which the healthy and 

tumorous tissue spectra exhibit the largest difference across the collagen emission peak. 

The wavelength band used for the y-coordinate for the reference vectors was varied in 5 

nm increments across the wavelength band 550-650 nm. This corresponded to the region 

across the NADPH autofluorescence peak over which the spectra of healthy and 

tumorous tissue are similar. This analysis resulted in a series of reference vectors across 

multiple wavelengths that were used to determine spectral angles when compared across 

the same wavelength ranges to images of tissue samples with a transition region from 

healthy to tumorous tissue.  
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Reference vectors for the reflectance images of healthy pancreatic tissue were 

determined in a similar manner. The wavelength band 650-655 nm was used as the x-

coordinate and the y-coordinate for the scatterplot was varied in 5 nm increments across 

the 450-520 nm band. 

4.3.3 SAM Reflectance Analysis of Healthy Pancreatic Tissue 

Samples of healthy pancreatic tissue were obtained from 12 patients. These tissue 

samples did not contain any malignant tissue. We did not obtain samples of purely 

healthy tissue from all patients because in some cases regions of healthy tissue could not 

be identified by the pathologist due to the extent of disease. SAM analysis was applied to 

the images of healthy tissue to provide a measure of how uniform the spectra of the 

healthy tissue are as a function of position across the samples. A series of spectral angles 

was calculated for each reference vector and these spectral angles were summed to form a 

hyperspectral angle. Figure 26 (panels a and b) shows representative examples of white 

light and HSI of healthy pancreatic tissue. Some structures within the tissue are evident in 

the white light image. However, these structures are not seen in the HSI indicating that 

they have the same spectrum as healthy tissue. For the healthy tissue the spectral angle is 

approximately constant across the sample. The spectral angle has an average value of 

0.98 ± 4.02 degrees in the reflectance images. This indicates that the reflectance spectra 

are approximately constant across the tissue samples.  

Figure 26, panel c, identifies regions in the sample for which the spectral angle 

measured for the tissue was more than two standard deviations away from the spectral 

angle of the mean reference vector for healthy tissue. This was defined as the boundary 

condition between healthy and cancerous tissue. In these regions, HSI did not classify the 
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healthy tissue correctly. The specificity of the HSI method can be measured by 

determining the percentage of pixels that are properly classified as healthy in the images 

of healthy tissue. The average specificity for all HSI of healthy tissue was 83.90±5.09. 

 

Figure 26: a) A white light image of healthy pancreatic tissue (no tumor present). The red circular structure 

near the center of the image is a blood vessel. b) The SAM image based on the HSI. The spectral angle is 

approximately uniform across the tissue. c) The blue pixels indicate regions for which the measured 

spectral angle is more than two standard deviations away from the mean reference spectrum. 

 

4.3.4 SAM Reflectance Analysis of Malignant Pancreatic Tissue  

Samples of malignant pancreatic tissue were obtained from 10 patients. These 

tissue samples contained only malignant tissue. We did not obtain samples of purely 

malignant tissue from the first 10 patients. SAM analysis was applied to the images of 

malignant tissue to access the ability if HSI to identify malignant tissue. In all cases, a 

series of reference vectors of healthy tissue were formed from a sample of healthy tissue 

for each patient. SAM analysis was then performed on the images of malignant tissue 

comparing the spectra in these images to the healthy tissue reference vector. Because all 

of the tissue in the samples was malignant, all pixels in the image should exhibit large 

spectral angles, indicating that the spectrum of the tissue was different from the healthy 

tissue spectrum. Figure 27 (panels a and b) shows representative examples of white light 

and HSI of malignant pancreatic tissue. Figure 27, panel c, identifies regions in the 
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sample for which the spectral angle measured for the tissue was more than two standard 

deviations away from the mean reference vector for healthy tissue. These are the pixels 

identified as malignant by HSI. The pixels that have smaller spectral angles have been 

classified as healthy tissue by HSI imaging. An average sensitivity of 75.42 ± 17.89 was 

found across this dataset. 

 

Figure 27: a) A white light image of a tissue sample that was entirely tumor. b) The reconstructed SAM 

image. c) The blue pixels indicate regions for which the measured spectral angle is more than two standard 

deviations away from the mean reference spectrum. 

 

3.4 SAM Analysis of the Reflectance Spectra of Samples Containing both Healthy 

and Malignant Pancreatic Tissue 

Tissue samples from 19 patients contained transition regions from healthy to 

cancerous tissue – a margin. SAM analysis was applied to these images, using the 

spectrum of healthy tissue as the reference vector.  Figure 28 (panels a and b) shows 

representative examples of white light and HSI of a sample containing both healthy and 

malignant tissue. In the HSI, regions with large spectral angles are regions in which the 

spectrum of the tissue is significantly different from that of healthy tissue. Each HSI 

image was used with histology to denote regions in the tissue that were healthy or 

cancerous. Regions that were marked as “healthy” were used to create a binary mask that 

could be compared with the HSI. Regions in the HSI that were two standard deviations 
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away from the mean reference vector for healthy tissue were then identified as malignant. 

Comparing the two methods allowed a sensitivity and specificity to be found for each 

image. From this data a mean sensitivity of 74.80±9.18% and a specificity of 

68.59±10.43% were determined. 

 

Figure 28: a) A white light image of pancreatic tissue. The red line denotes the border of the cancerous 

region. b) The reconstructed SAM image, the lighter color corresponds to a larger spectral angle indicting 

the presence of malignant tissue. c) A comparison of the pixels identified as malignant via HSI and via 

histology. The red pixels correspond to where histology found cancer, the blue pixels where HSI found 

cancer and purple where both imaging techniques detected cancer. 

 

4.3.5 SAM Fluorescence Analysis of Pancreatic Tissue 

The same process described in sections 3.3 and 3.4 was performed on 

fluorescence images of the tissue as well. The fluorescence signal of collagen and 

NAD(P)H are very faint and had a lower signal to noise then the reflectance images. For 

this reason, single pixel imaging’s high dynamic range make it preferable to other 

imaging modalities. Unfortunately, the limitations to the project only allowed us to 

collect 3 fluorescence images. Those that did showed a promising ability to distinguish 

between healthy and cancerous tissue (Figure 29). 
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Figure 29: a) A white light image of pancreas the redder colored tissue that is dominant on the left side of 

the image is cancerous tissue. b) The reconstructed SAM image, the lighter color corresponds to a larger 

spectral angle from the reference vector calculated from healthy tissue. c) The masks of the cancerous 

tissue. The red pixels correspond to where histology found cancer, the green pixels where the 

reconstruction found cancer and yellow where both imaging techniques detected cancer. 

 

4.4 Conclusions 

A HSI system based on a single-pixel camera design for use in discriminating 

between healthy and malignant pancreatic tissue based on the autofluorescence and 

reflectance spectra of the tissue was constructed.  Pancreatic tissue samples from 20 

patients were imaged ex vivo using the single pixel HSI system. For the reflectance HSI a 

sensitivity of 74.80±9.18% and a specificity of 68.59±10.43% was determined. These 

results confirm that our camera is sensitive enough to detect spectral differences between 

healthy and malignant pancreatic tissue. 

The system currently takes about 15 minutes to collect a single image which is 

insufficient for “real-time” imaging. However, recently other groups have shown that 

single pixel compressive imaging can be made faster. [44] The current limitation on 

acquisition time is hardware (both the speed of the DMD and computer) that can be 

overcome in future imaging systems. In addition, for this technology to be most useful in 
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an intraoperative setting, we will integrate HSI imaging into endoscopic and laparoscopic 

probes using a coherent fiber bundle.  

Before this HSI technique can be used in a surgical setting the effects of blood 

profusion must be addressed. In the study presented the tissue was blotted and no blood 

was present on the surface of the tissue, however many groups have shown the presence 

of blood absorption effects the spectroscopy of tissue. [48] We will need to next test this 

technique on a live animal model to investigate these effects in more detail. The use of 

similar spectroscopic techniques has been shown to be effective in the detection of a 

range of different tumors [11-13]. Another avenue of potential development for this 

research is to test the camera’s ability to detect tumor margins of skin and throat cancer. 
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5. Hyperspectral Compressive Polarization Imaging of Porcine Skin Tissue Ex Vivo 

5.1 Introduction 

 As light interacts with a biological tissue via scattering and absorption, the 

reflectance spectrum changes. These changes in the reflectance spectrum provide 

information about tissue properties, including cell size and density, which can be used to 

distinguish healthy and unhealthy tissue. In previous chapters of this dissertation, this 

alteration of the reflectance spectrum resulting from the interaction of incident light and 

tissue was used to delineate the boundaries of thermal lesions and pancreatic tumors.  

 In addition to changes in the reflectance spectrum, as light travels through a 

biological tissue the polarization state of that light is altered. Examining the polarization 

of light to diagnose and mark damaged or diseased tissue has a long history in biomedical 

optics. Groups initially used illumination with polarized light to reduce glare from tissue 

surfaces. [49] Researchers soon discovered that polarized light could be used to increase 

the penetration depth and image superficial layers of tissue. [50] It was then found that 

cancerous tissue changed the birefengence in ways that made it possible to image and 

identify tumor margins. [51-52] Multi-spectral polarization imaging has been used to further 

refine the technique to identify specific chromophores. [53] Recent work done by Vasefi et 

al. has shown that combining the high spectral resolution of HSI with polarization 

imaging allows for the accurate selection of specific chromophores and markers in 

tissue.[54] 

In this chapter, we discuss the addition of polarized light imaging to the single pixel 

HSI system that has been discussed in previous chapters. We use this system to measure 
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the polarization of back-scattered light from porcine skin samples (n=8). These samples 

were damaged with an IR laser and the sizes of the resulting lesions were measured using 

HSI polarization imaging, HSI reflectance imaging (the technique discussed in previous 

chapters) and white light imaging. The sizes of the lesions as measured using these three 

techniques are then compared.  

5.2 Methods and Materials 

The design and testing of a single-pixel hyperspectral imaging system for capable 

of detecting changes in tissue properties was discussed in previous chapters of this 

dissertation. This study uses the same HSI system as used in Chapters 3-4, with the 

addition of polarization imaging capabilities. In this study, 64 x 64 Hadamard matrices 

were used on the DMD, with a FOV of 1.9 cm x 1.9 cm. The spatial resolution was 0.30 

mm/pixel.  

The imaging system was mounted on a vertical stage and imaged a sample stage 

(see Figure 30). A xenon (300 W, Circon MV 9086) source was used as the source for 

reflectance spectroscopy and was mounted 23° from the vertical axis and aligned to 

illuminate the specimen stage. The light from the xenon source was passed through a 

linear polarizer (Thorlabs LPVISE100-A). This provided uniform polarized light 

illumination across the 2 cm x 2 cm imaging area. A second linear polarizer was placed 

after the DMD, to act as an analyzer.    
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Figure 30: Schematic of the hyperspectral imaging system. The porcine sample (c) is illuminated by 

polarized light that comes from a halogen lamp (a) after passing through a linear polarizer. Light is 

collected from the sample by an imaging optic and an image is formed on the DMD (d). The light is then 

reflected off the DMD’s mirrors through a series of collection optics and passes through an analyzer. (e) 

The light is then collected by a fiber where the signal is sent to a spectrometer. (f) 

 

The tissue was imaged at four different orientations of the analyzer 

(0°,45°,90°,135°) to allow for the reconstruction of the polarization intensity. To collect 

an image for each position of the analyzer, a series of 3200 Hadamard matrices was 

programmed onto the DMD and a signal was collected for each code. The signal and the 

corresponding Hadamard code were saved for reconstruction, which occurred after all 

codes had been displayed. The analyzer was then adjusted to the next polarization angle 

and the process was repeated to obtain 4 images. To obtain reflectance imaging, the four 

images were summed together. Total acquisition time was approximately 15 minute per 

image, and about an hour per sample. After image acquisition a MATLAB program 

based on the NESTA algorithm [36] was used to reconstruct the compressed images. A 

white light image was obtained for all samples using a traditional 8-megapixel CMOS 

array camera (iSight camera). The morphology of structures seen in these white light 

images is compared to structures seen in the hyperspectral images.  
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For this ex vivo study, porcine skin tissue samples (n=8) of uniform thickness 

were cut into 2 cm x 2 cm squares. Polarized light HSI, reflectance HSI and white light 

imaging was obtained of all samples. After the initial images of healthy tissue were 

obtained, the tissue samples were thermally damaged using an IPG Photonics Nd:YAG 

laser at 1064 nm. Skin samples were illuminated for about 3 minutes over a 10 mm2 area 

with a power of 1 W. This created a thermally damaged region about 4 mm in diameter. 

The damaged samples were then imaged using the three techniques. 

5.3 Results and Analysis 

5.3.1 Reflectance HSI and White Light Images of Healthy and Damaged Tissue 

 

Figure 31: Panel a) A white light image of healthy porcine tissue Panel b) The HSI reflectance SAM image, 

the lighter color corresponds to a larger spectral angle from the reference vector calculated from healthy 

tissue. Panel c) The polarized light HSI SAM image. 

 

Figure 31 panel a shows the white light image of a representative example of a 

healthy porcine skin sample. The white light image is a traditional intensity map. The 

tissue is uniform in appearance. Figure 33 panel a shows the white light image of a tissue 

sample after laser irradiation. A region of thermal damage is evident near the center of 

the image.  
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Figure 32: The reflectance spectrum of porcine skin tissue before and after illumination with the IR laser. 

Because a different laser source was used in this study the change in the spectrum is not as pronounced as 

the change seen in Chapter 3. 

 

Figure 32 shows the reflectance spectrum of healthy and thermally damaged 

tissue. These spectra are shown to illustrate the changes in the spectrum that result from 

thermal damage. The spectrum of healthy tissue was created by taking the mean spectrum 

over a 60 x 60 pixel area in the image of the tissue taken before laser irradiation. The 

spectrum of damaged tissue is the mean across the region of thermal damage after laser 

irradiation. The change in the spectrum after laser irradiation is not as pronounced as that 

seen in the earlier studies described in Chapter 3. This is because we used a different 

laser source (1064 nm) to create the thermal damage in this study. This 1064 nm laser has 

a larger penetration depth than the 1850 nm laser used previously. As a result, the laser 

energy was spread over a larger volume in the tissue, resulting in less heating and less 

thermal damage.  

SAM analysis was applied to the HSI reflectance imaging of both healthy and 

damaged tissue using the methods previously discussed in Chapters 3 and 4. Separate 

reference vectors for healthy tissue were created for each tissue sample. The x-coordinate 
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for all reference vectors was the average intensity over the 600-605 nm wavelength band 

in the images of undamaged tissue. The wavelength band used for the y-coordinate for 

the reference vectors was varied in 5 nm increments across the wavelength band 460-550 

nm. A series of spectral angles was calculated for each image. Figure 31, panel b shows a 

representative example of the hyperspectral reflectance SAM image of healthy porcine 

skin tissue. The spectral angle is approximately constant across the tissue, resulting in a 

uniform appearance in the reflectance image. The spectral angle had an average value of 

0.22 ± 0.28 degrees in the reflectance images. These results indicate that the reflectance 

spectrum is approximately constant across the tissue sample before illumination with the 

laser.  Figure 33, panel b shows a shows representative example of the hyperspectral 

reflectance SAM image of thermally damaged porcine skin tissue. The bright region near 

the center of the image is a region in which the magnitude of the spectral angle is large, 

and this region corresponds to the region of thermal damage. The spectral angle has an 

average value of -2.98 ± 0.85 within the damaged region in the reflectance image. The 

spectral angle in the damaged region is significantly different from the spectral angle of 

the healthy tissue. This indicates a change in the spectrum of the damaged tissue relative 

to healthy tissue.  
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Figure 33: Panel a) A white light image of the same porcine skin sample with thermal damage clearly 

visible. Panel b) A hyperspectral reflectance image of porcine skin tissue after illumination with the IR 

laser. The bright spot in the center corresponds to a coagulation of collagen at the site of IR illumination. 

Panel c) A hyperspectral polarization image of porcine skin tissue after illumination with the IR laser. The 

bright spot in the center of the image corresponds to the damaged area. 

 

MATLAB was used to calculate the pixel area of the damaged region in both the HSI 

reflectance and white light images. For the HSI, the boundary of the damaged region was 

determined by measuring the mean spectral angle of the entire image. Pixels with spectral 

angles greater than 2 standard deviations from this mean were considered to be part of the 

damaged region. A similar method using intensity values was used to determine the 

boundary of the damaged region in the white light images. 

5.3.2 Polarized Light HSI of Healthy and Damaged Tissue  

 The images reconstructed at four different orientations of the analyzer (Im0, Im45, 

Im90, Im135) were used to create a polarization image.  The images were combined to 

create hyperspectral images of the Stokes parameters Q and U using equations 1 and 2. 

These two images of the Stokes parameters were then used to create an HSI of the linear 

polarization (Pol) using equation 3.  

 



60 
 

𝑸 =
𝐈𝐦𝟎−𝐈𝐦𝟗𝟎

𝐈𝐦𝟎+𝐈𝐦𝟗𝟎
          (equation 1) 

𝐔 =
𝐈𝐦𝟒𝟓−𝐈𝐦𝟏𝟑𝟓

𝐈𝐦𝟒𝟓+𝐈𝐦𝟏𝟑𝟓
         (equation 2) 

𝐈𝐦𝑷𝑶𝑳 = √𝐐𝟐 + 𝐔𝟐                (equation 3) 

The Impol is a hypercube of linear polarization as function of position and 

wavelength across the tissue sample. The tissue is illuminated with 100% linearly 

polarized light. If the tissue does not depolarize the light via multiple scatterings, you 

would expect to detect 100% polarized light. A drop in the percentage of polarization 

then is likely due to scattering of light in the tissue. 

 

Figure 34: The polarization spectrum of porcine skin tissue before and after thermally damaging the tissue 

with an IR laser. The polarization remains constant at lower wavelengths while damaging with the laser 

depolarizes the tissue at higher wavelengths. 

 

Figure 34 shows the polarization as a function of wavelength of both healthy and 

damaged tissue. The healthy tissue polarization spectrum was created by taking the mean 

spectrum over a 60 x 60 pixel area in the image of the tissue before laser irradiation. The 

polarized light spectrum of damaged tissue is the mean spectrum across the region of 

thermal damage. The polarization of healthy tissue is relatively constant over the 

spectrum. After damaging with the laser, the polarization changes.  At shorter 
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wavelengths, from about 400-475 nm, there is little variation from the healthy tissue. 

From 500-650 nm the damaged tissue has lower polarization compared to healthy tissue, 

this is due to a change in the scattering properties of the damaged tissue.  

The polarized light HSI spectral images were then analyzed using the SAM algorithm 

as previously discussed in Chapters 3 and 4. [42] Separate reference vectors for healthy tissue 

were created for each tissue sample. The x-coordinate for all reference vectors was the 

average intensity over the 405-410 nm wavelength band in the images of undamaged 

tissue. The wavelength band used for the y-coordinate for the reference vectors was 

varied in 5 nm increments across the wavelength band 500-650 nm. This analysis resulted 

in a series of reference vectors across multiple wavelengths that were used to determine 

spectral angles relative to the healthy tissue reference vector. 

Figure 30 panel c shows a representative example of a SAM image of polarized 

light HSI of healthy porcine skin tissue. The spectral angle is approximately constant 

across the tissue. The spectral angle had an average value of  -0.32 ± 0.66 degrees in the 

polarized light HSI. These results indicate that the polarization spectrum is approximately 

constant across the tissue sample before illumination with the laser. 

Figure 32 panel c shows a representative example of a SAM image of polarized 

light HSI of thermally damaged porcine skin tissue. The bright regions near the center of 

the image indicate areas in which the magnitude of the spectral angle is large. These 

bright areas correspond to the region of thermal damage. The spectral angle has an 

average value of 3.54 ± 1.57 within the damaged region in the polarized light image. In 

the spectral angles are different from the spectral angle of the healthy tissue. This large 

spectral angle indicates a change in the polarization as a function of wavelength of 
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damaged tissue relative to healthy tissue, which suggests a change in the scattering 

properties of the tissue. 

MATLAB was used to calculate the pixel area of the damaged region in the 

polarized light HSI. The boundary of the damaged region was determined by measuring 

the mean spectral angle of the entire image. Pixels with spectral angles greater than 2 

standard deviations from this mean were considered to be part of the damaged region.  

5.3.3. Comparison of Polarized Light HSI to White Light and Reflectance HSI 

 

 

Figure 35: Bland-Altman plots comparing the areas of the thermally damaged regions as measured in the 

polarized light HSI, reflectance HSI and white light images of porcine skin tissue. a) Comparison of the 

lesion areas in the white light images and reflectance HSI. b) Comparison of the lesion areas in the 

reflectance HSI and polarized light HSI. c) Comparison of the lesion areas in the white light images and 

polarized light HSI. 
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Figure 35 shows Bland-Altman plots comparing the lesion areas measured in the 

white light, reflectance HSI and polarized light HSI. Figure 34a shows good agreement 

between lesion areas as measured in the reflectance HSI and white light images. This is 

consistent with the finding in Chapter 3. All the measurements fall within two standard 

deviations of the mean difference and there is little difference between the bias and the 

line of equality.  Figures 35b and 35c show similar relationships between the polarized 

light and reflectance HSI and the white light images and polarized light HSI, 

respectively.  In all cases, these plots indicate good agreement between the areas 

determined from polarized light HSI, white light images and the reflectance HSI. This 

suggests that the polarized light HSI is sensitive to thermal damage of the tissue and can 

map the location of this damage.  

 

5.4 Conclusions 

A HSI system based on a single-pixel camera design for use in discriminating 

between healthy and unhealthy tissue based on the linear polarization and reflectance 

spectra of the tissue has been constructed.  Thermal lesions were created in ex vivo 

porcine skin tissue samples (n = 8) using an IR laser. This thermal damage caused 

changes in the reflectance and polarization spectra of the tissue. For the porcine skin 

samples, good agreement between the sizes of thermal lesions measured in both the 

polarization and reflectance hyperspectral images and the lesion sizes measured via white 

light imaging are found. These studies show that the single-pixel HSI system is sensitive 

to the changes in polarization as a function of wavelength produced by thermal damage. 
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This test has shown the systems potential in capturing polarized light HSI. The 

next step in testing this imaging modality to attempt to reproduce results by prior groups. 

As mentioned in the introduction of this chapter, Jacque et al, used polarization imaging 

to image light from superficial layers of tissue and groups have used both broadband and 

multispectral polarization to detect damaged tissue boundaries, [52,53] both techniques 

could be performed with this system as well. 

These studies show the technique described in this chapter has the sensitivity to 

detect differences in tissue properties. As shown in chapter 4 of this dissertation, cancer 

changes the properties of the tissue. It may be possible to enhance the sensitivity of the 

system presented in chapter 4 by adding polarization imaging to it. Research has also 

shown that the polarization of fluorescence can be used to enhance cancer imaging [53], 

this suggests such a technique may increase the sensitivity of the fluorescence 

measurements presented in 4.3.5. 

The effectiveness of those techniques in comparison to reflectance and 

autofluorescence measurements described in earlier chapters needs to be quantified as 

well. While the study presented here demonstrates the sensitivity of the system to 

polarization it does not demonstrate whether polarization imaging presents a better 

measurement of tissue damage then reflectance imaging alone. A further study needs to 

be undertaken with comparisons to histology to demonstrate the accuracy of the 

technique.   
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6. Conclusions 

The overall goal of this study was to develop a hyperspectral imaging camera that 

can be used in the operating room to detect the boundaries between healthy tissue and 

tumors. The study was divided into 4 experiments each designed to test the HSI camera’s 

abilities.  

In chapter 2 the design and testing of the initial single pixel imaging camera was 

discussed. The camera was built, and a series of test images were used to measure the 

spectral and spatial resolution. The samples were imaged in fluorescence and reflectance 

modes simulating future study conditions. The compressive error was also tested and 

relations between image reconstruction quality and the number of Hadamard codes sent 

to the DMD were quantified. Using this information, the camera’s operating parameters 

were determined for future studies. 

In chapter 3 the camera’s ability to detect changes in tissue properties were first 

investigated. Porcine skin and liver tissues were imaged before and after being thermally 

damaged creating a lesion.  The tissue was imaged in fluorescence and reflectance modes 

and the size of the lesion were compared to white light images and physical 

measurements.  These results confirmed the sensitivity of the camera to changes in tissue 

properties using reflectance imaging. Fluorescence imaging was found to be effective as 

well in determining lesion size in skin tissue, however the blood perfusion in the liver 

tissue quenched the fluorescence signal in these samples. A very faint signal was detected 

from the liver tissue, however the instability in the laser source combined with the 

absorption of the blood prevented this signal from being successfully reconstructed. 
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Recent advances in characterizing and removing blood spectra [56-57] along with a constant 

laser source suggest this method could be possible in future studies. 

In chapter 4 the camera was used to detect the boundaries between cancerous and 

healthy tissue in human pancreatic tissue. Twenty patients pancreatic tissue was imaged, 

and the images were compared to white light images augmented with histology. An 

overall sensitivity of 74.80±9.18% and a specificity of 68.59±10.43% was found which 

confirms our systems sensitivity to the changes in tissue caused by the presence of solid 

mass tumors. Previous research has found reflectance spectroscopy has lower sensitivity 

than fluorescent spectroscopy due to differences in bulk tissue composition for single 

samples. [16-17] The lower than expected specificity of the images were hypothesized to be 

a combination of low spatial resolution and compression error. Increasing the spatial 

resolution while maintaining the same field of view requires hardware upgrades to the 

system, and new and efficient compression algorithms offer quicker acquisition and 

lower compression error. [58] 

In chapter 5 the camera was augmented with linear polarizers to explore the 

possibility of adding polarization imaging to the camera. A similar experiment to the one 

described in chapter 3 was conducted and polarization intensity images were compared to 

reflectance and white light images. These results confirmed the sensitivity of the camera 

to changes in the tissues polarization properties as well as those previously explored. 

Adding this extra layer of information to the camera will help increase the accuracy of 

the camera and hopefully increase the reliability of the system. 

The camera system presented in this dissertation has now been shown to be 

sensitive to a variety of spectroscopic signals from tissue - fluorescence, reflectance, and 
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polarization. The goal of the project was to develop the hyperspectral camera to be used 

in a surgical setting, and at the end of this dissertation the camera has shown significant 

progress to this goal. However, additional studies will need to pursue several avenues 

before the system is ready for a surgical setting. The reliability of the system needs to be 

experimentally tested before it is ready for a medical setting, this includes upgrading 

several hardware pieces on the system including the light source and DMD improving 

speed and sensitivity.  

Once these tests have been performed a fourth and easily accessible imaging 

modality that can be added to the system is fluorescence polarization, which has been 

shown to be useful in delineating certain types of cancer. [59] The systems sensitivity has 

been tested on pancreatic cancer, melanoma and skin cancer has shown in the literature to 

have similar signatures [54,59] that suggest our system would excel at this type of imaging. 

Finally, discussions with surgeons at CMC have also highlighted a desire to deliver the 

imaging system through an endoscopic system. A fiber-based system would allow it to be 

delivered into a variety of surgical options and open a range of diseases that may be 

investigated with this tool.  
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